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ABSTRACT 
 

A small eddy viscosity or mass diffusivity that varies with height has been found to 

have unexpected effects on the Kelvin-Helmholtz (KH) instability of a stably 

stratified shear layer near the neutral stability boundary. In particular, varying 

viscosity can increase the growth rate of the instability in contrast to the effect of 

uniform viscosity. Here, these results are extended to parameter ranges relevant in 

many geophysical and engineering contexts. We find that linearization of the viscous 

terms based on the assumption of weak viscosity/diffusivity is valid for 

nondimensional values (inverse Reynolds number) up to ~10!!. Decreasing the 

Richardson number far below its critical value 1/4 can change, or even reverse, the 

effects of eddy viscosity and diffusivity. A primary goal is to explain the unexpected 

destabilization by viscosity. Varying viscosity affects vorticity (and other fluid 

properties) in a manner identical to advection with an advecting velocity equal to 

minus the gradient of viscosity. Destabilization occurs when this viscous “advection” 

reinforces the vorticity distribution of a growing mode.   
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Destabilization of a Stratified Shear Layer by Ambient Turbulence 

 
 
1. Introduction 

 

Kelvin-Helmholtz (KH) instability of a stratified shear layer is an important 

mechanism in all natural (and many fabricated) fluid systems because it can trigger 

turbulence (e.g. Smyth & Moum 2012) which is a dominant process in momentum 

and heat transfer in fluids.  KH instability finds a broad range of applications not only 

in the ocean, but also in the atmosphere, magnetosphere and interplanetary space 

where velocity shears exist.  A distinguishing characteristic of KH instability is a train 

of finite-amplitude billows (figure 1). 

The standard theory assumes that the initial state is laminar and inviscid  

(Rayleigh 1880), whereas naturally occurring shear layers invariably coexist with 

some level of ambient turbulence (e.g., remnants of previous instability events).  

Thorpe, Smyth & Li (2013, hereafter referred to as T13) investigated the stability of a 

stratified shear layer in which ambient turbulence was represented as vertically 

variable eddy viscosity and diffusivity.  That study found, counterintuitively, that in 

some circumstances spatially variable viscosity acts to amplify instability.  This 

amplification could speed the onset of a new turbulent episode or allow its 

development in flows that would otherwise be stable. 

We are motivated by these results to (i) explain the physics underlying the 

destabilization phenomenon, and (ii) assess its relevance over a broader range of 

initial conditions. This line of research is part of an ongoing effort to understand the 

relationship between instability and turbulence in the ocean.  The resulting theory has 

found useful application in studies of mixing in tidally driven stratified shear flows in 

the Clyde Sea (west of Scotland; Liu, Thorpe & Smyth 2012) and has led to a 

potential explanation for diurnally varying, near-surface turbulence in the equatorial 

Pacific (Smyth, Moum & Li 2013, hereafter referred to as S13). 

T13 worked with a perturbation theory that assumed (i) the wavenumber was 

close to a stability boundary, and (ii) that viscosity and diffusivity were small.  In this  
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FIGURE 1. Kelvin-Helmholtz billows in nature. (a) KH billows made visible by a fog layer 

on the shore of Nares Strait in the Canadian Arctic (courtesy of Scott McAuliffe, Oregon 

State University).  (b) Example acoustical snapshot of a nonlinear internal gravity wave 

approaching the Oregon coast (Moum et al. 2003). (c) A fast coronal mass ejecta erupting 

from the Sun, with KH vortices detected on its northern flank, closed by rectangle (Credit: 

NASA/SDO/AIA). (d) An equatorial view of the Earth’s magnetosphere. Kelvin-Helmholtz 

billows are generated due to the velocity gradient at the magnetopause. 

 

paper, we extend the method numerically to allow arbitrarily large viscosity and 

diffusivity and mean flows that are far from any stability boundary, e.g., the fastest-

growing instability for a given initial state.  We explore these effects over a broad 

range of initial states and propose a mechanistic explanation for the amplification of 

instability.  In geophysical flows, observed mean profiles of velocity, density and 

turbulence magnitude vary greatly (e.g., S13).  Here, we seek conceptual 
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understanding by focusing on a few idealized profile shapes that are expected to have 

general relevance.  Our model for a stratified shear layer is the Holmboe flow, in 

which mean velocity and buoyancy are both proportional to tanh 𝑧 , where 𝑧 is the 

height.  Eddy viscosity and diffusivity are assumed to act on vertical gradients only, 

and have one of three simple vertical profiles (uniform, minimum within shear layer, 

and maximum within shear layer). 

We begin by reviewing the mechanism of shear instability and considering the 

potential effects of stable stratification and uniform viscosity and mass diffusivity.  

Imagine two fluid layers moving opposite to one another, separated by a transition 

layer (or shear layer) in which the vorticity is concentrated.  Now suppose that the 

transition layer suffers a sinusoidal vertical displacement (figure 2a).  This creates 

constrictions in the upper and lower layers where the horizontal flow must accelerate.  

The accelerated flow preferentially advects vorticity toward a convergence point 

(located at the center of 2a).  The resulting accumulation of vorticity (2b) induces 

enhanced clockwise motion that acts to amplify the original sinusoidal displacement.  

The result is a positive feedback loop that leads to exponential growth. 

 

 

 
 

FIGURE 2. Schematic representation of the positive feedback that regulates shear instability:  

(a) vorticity accumulation due to horizontal advection;  (b) Amplification of the initial wave 

by induced vertical motions.  Buoyancy perturbations (indicated as 𝛿𝑏 < 0, 𝛿𝑏 > 0) generate 

a baroclinic torque that retards growth.  

 

If the fluid is stably stratified, the vertical displacement induces buoyancy 

perturbations 𝛿𝑏 of opposite sign in the crests and troughs (figure 2b).  This creates a 

counterclockwise baroclinic torque that acts to impede growth.  Only when the 
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former effect (vorticity accumulation) dominates the latter (baroclinic torque) can the 

perturbation grow.  

The effect of uniform viscosity is to disperse the vorticity accumulation and 

hence to weaken the instability.  In contrast, uniform diffusivity reduces the buoyancy 

contrast and its attendant baroclinic torque, allowing the perturbation to grow more 

rapidly.  These effects operate the same whether the eddy viscosity and diffusivity act 

on vertical gradients, horizontal gradients, or both.  As we will see, though, spatial 

nonuniformities in the viscosity and diffusivity can lead to very different effects. 

 The destabilizing influence of uniform mass diffusivity has been documented 

recently by T13.  The stabilizing effect of viscosity has been demonstrated explicitly 

in many studies.  Betchov & Szewczyk (1963) studied the stability of a uniformly 

viscous, homogeneous, hyperbolic tangent shear layer.  Viscosity was found to damp 

the growth rate for a perturbation of any wavenumber. Maslowe & Thompson (1971) 

extended this work to include stable stratification, with the Prandtl number (the ratio 

of viscosity to diffusivity) 𝑃𝑟 = 0.72, as is typical of air.  They found that instability 

is damped as viscosity and diffusivity are increased. 

 Defina, Lanzoni & Susin (1999) explored the effect of uniform viscosity on 

the instability of a stratified shear flow in a tilted tube both theoretically and 

experimentally.  This study assumed 𝑃𝑟 ≫ 1 (i.e., the diffusion is small compared to 

viscosity).  The damping action of viscosity was found to reduce the critical 

Richardson number with respect to the inviscid limit 𝑅𝑖 = 0.25.  The critical 

Richardson number decreases as viscosity increases. 

 These studies find that both viscosity and diffusivity have a stabilizing effect 

on KH instability.  In each case, however, the viscosity and diffusivity were assumed 

to be uniform, and the range of Prandtl numbers tested was limited.  Here, we allow 

viscosity and diffusivity to vary in space, and test values of 𝑃𝑟 covering two orders of 

magnitude.  This gives a more comprehensive, and in some respects very different, 

view of viscous and diffusive effects. 

 Section 2 describes the background profiles of the shear flow and methods 

used in the analysis.  Section 3 reviews the results near the neutral stability boundary 

(T13).  Section 4 gives the numerical results away from the stability boundary, 
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retaining the assumption of small viscosity and diffusivity.  Section 5 extends 

viscosity and diffusivity to larger values. In section 6 an analysis of the enstrophy 

budget is applied to identify the mechanism of destabilization, and an explanation is 

proposed for the anomalous effects of viscosity variations.  In section 7 we describe 

the dependence on the Prandtl number.  Conclusions are summarized in section 8. 

 

2. Methods 

2.1. Equations of motion 

Our calculation is carried out on a vertical plane measured by Cartesian coordinates 𝑥 

(streamwise) and 𝑧 (vertical). The fluid is assumed to be incompressible. Because 

small-scale turbulent fluxes in geophysical flows are primarily vertical, we assume 

here that eddy viscosity and diffusion act on vertical gradients only.  The Boussinesq 

equations for this case are 

∂
!u
∂t
+ (!u ⋅∇)!u = −∇p

ρ0
+bẑ + ∂

∂z
(A∂
!u
∂z
)     (2.1a) 

db
dt
=
∂
∂z
(K ∂b

∂z
)                                 (2.1b) 

∇⋅
!u = 0 .                                                          (2.1c) 

The buoyancy is defined by 𝑏 = −(𝜌 − 𝜌!)/𝜌! where 𝜌! is a reference density, 𝑧 is 

the vertical unit vector and 𝑝 is the pressure.  Here 𝐴(𝑧) and 𝐾(𝑧) denote the vertical 

eddy viscosity and mass diffusivity, respectively.  Eddy viscosity and diffusivity 

components that act on horizontal gradients (e.g. Liu et al. 2012) are not included in 

the present study. 

 Following Liu et al. (2012), we assume a steady mean flow with stable 

stratification, and use the method of normal modes to study the evolution of small 

perturbations. Velocity, buoyancy, and pressure are expressed in terms of a mean 

profile and a small perturbation: 𝑢 = [𝑈 𝑧 + 𝑢! 𝑥, 𝑧, 𝑡 ,  𝑤! 𝑥, 𝑧, 𝑡 ] where 𝑈(𝑧) is 

the horizontal mean flow and 𝑢′(𝑥, 𝑧, 𝑡) and 𝑤′(𝑥, 𝑧, 𝑡) are velocity perturbations.  

Buoyancy 𝑏 = 𝐵 𝑧 + 𝑏′(𝑥, 𝑧, 𝑡) and pressure 𝑝 = 𝑃 𝑧 + 𝑝′(𝑥, 𝑧, 𝑡).  The normal 

mode form is assumed for the perturbation 𝜙! = 𝜙 𝑧 exp (𝑖𝑘𝑥 + 𝜎𝑡) where 𝜙 

represents 𝑢,𝑤, 𝑏 or 𝑝.  Here 𝜎 = 𝜎! + 𝑖𝜎! where 𝜎! is the growth rate and 𝜎! is the 



 

 

6 

frequency.  The wavenumber 𝑘 of the perturbation is real. The complex vertical 

structure function 𝜙 depends only on 𝑧. 

 Linearizing the equations of motion for small perturbations leads to 

σ ( d
2

dz2
− k 2 )ŵ = [−ikU ( d

2

dz2
− k 2 )+ ik d

2U
dz2

+ Fw ]ŵ− k
2b                 (2.2a) 

σ b̂ = −N 2ŵ+[−ikU + Fb]b̂                                       (2.2b) 

where 𝑁! = 𝑑𝐵/𝑑𝑧.  In (2.2) 𝑤 and 𝑏 are structure functions of vertical velocity and 

buoyancy perturbation.  The effects of eddy viscosity and diffusivity are expressed by 

   Fw =
d 2

dz2
(A d

2

dz2
)− k 2 d

dz
(A d
dz
)                                    (2.2c) 

Fb =
d
dz
(K d
dz
)                                                 (2.2d) 

This can be written in a matrix form and treated as a generalized eigenvalue problem: 

σ ∇2 0
0 I

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ŵ
b̂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−ikU∇2 + ikUzz + Fw −k 2

−N 2 −ikU + Fb

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
ŵ
b̂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,      (2.3) 

where I is the identity matrix.  The submatrix ∇!= !!

!!!
− 𝑘!, and the second 

derivative !
!

!!!
 is replaced by a second order finite difference.  Given a certain 

background velocity 𝑈(𝑧), buoyancy frequency profile 𝑁(𝑧) and eddy coefficients 

𝐴(𝑧) and 𝐾(𝑧), eigenvalues of 𝜎 and corresponding eigenfunctions 𝑤 and 𝑏 can be 

calculated using standard numerical methods. 

 

2.2. Model for the background flow 

We use the Holmboe flow model that assumes a hyperbolic tangent profile for both 

the background velocity and buoyancy: 

U (z)
ΔU

=
B(z)
ΔB

= tanh z
h

                                            (2.4) 

where ℎ is the half-change of the shear layer and ∆𝑈 and ∆𝐵 are the half-changes of 

velocity and buoyancy, respectively (figure 3a). Three choices are made for eddy 

coefficients of viscosity and diffusivity: 
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A
A0
=
K
K0

=

1                            profile 1

tanh2 z
h

                  profile 2

sech2 z
h

                   profile 3.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

                             (2.5) 

In each profile 𝐴! and 𝐾! characterize the maximum values of the vertical eddy 

coefficients of viscosity and diffusivity.  Note that 𝑃𝑟 = 𝐴/𝐾 is independent of 𝑧 in 

these profiles. 

 

 
 

FIGURE 3. (a) Background profiles of scaled velocity and buoyancy;  (b) scaled vertical 

eddy viscosity and diffusivity.  Only the center part of the shear layer is shown in this figure. 

The boundaries for the calculation are at 𝑧 = ±10ℎ. 

 

For profile 1 the viscosity/diffusivity is uniform through the whole depth, as 

in previous studies (Betchov & Szewczyk 1963; Maslowe & Thompson 1971; Defina 

et al. 1999).  Profile 2 represents a viscosity/diffusivity distribution that is smaller 

−1 −0.5 0 0.5 1
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prof 1: Const
prof 2: tanh2(z/h)
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within the shear layer and larger away from it.  Profile 2 may be thought of as a layer 

of locally weak ambient turbulence where instability is about to begin, e.g. a 

thermohaline staircase (Gregg & Sanford 1987), or a stable layer of the sort formed 

when eddy diffusivity varies inversely with stratification (e.g. Phillips 1972; 

Posmentier 1977), exposed to shear due to internal waves (e.g. Kimura, Smyth & 

Kunze 2011). In profile 3 the viscosity/diffusivity is greatest in the shear layer and 

decays away from it. Profile 3 may represent a region where instability has occurred 

recently and has left behind a layer of turbulence. 

After scaling with ℎ and ∆𝑈, the solution depends on four nondimensional 

parameters.  The Richardson number 𝑅𝑖 = ℎ∆𝐵/∆𝑈!.  The nondimensional 

maximum viscosity 𝐴!/ℎ∆𝑈, and diffusivity 𝐾!/ℎ∆𝑈 are the inverses of the 

Reynolds and Péclet numbers, respectively.  The Prandtl number is 𝑃𝑟 = 𝐴/𝐾 =

𝐴!/𝐾!.  In what follows all quantities are nondimensionalized by ℎ and ∆𝑈. 

Ideally, we would assume an infinite vertical domain, as in T13.  Due to finite 

computer capacity, we must assume a finite domain.  We choose the domain half-

depth 𝐻 = 10 and the increment of the vertical coordinate 𝑑𝑧 = 0.01.  We run the 

calculation with different values of 𝐻 and 𝑑𝑧 and confirm that the results are well 

converged.  Boundary conditions 𝑤 = 0 and 𝑏 = 0 are imposed at upper and lower 

boundaries 𝑧 = ±𝐻. 

 

2.3. Normal mode solutions to a Holmboe flow 

In this subsection we review the normal mode solutions to a Holmboe flow. The 

solutions of a normal mode perturbation 𝜙! = 𝜙 𝑧 exp (𝑖𝑘𝑥 + 𝜎𝑡) to a non-diffusive 

and inviscid flow are shown in figure 4.  The growth rate 𝜎! determines if the 

perturbation will have an exponential growth, which leads to instabilities.  𝜎! < 0 (>

0,= 0) indicates a stable (unstable, neutral) mode.  The fastest growing modes are of 

the most importance because they are what we expect to observe in the growth of the 

KH instability.  As the Richardson number increases, the fastest growth rate decreases 

and the range of wavenumber 𝑘 for unstable modes decreases.  Apparently a higher 

Richardson number indicates the flow is more stable.  The wavenumber of the fastest  
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FIGURE 4. Normal mode solutions to a non-diffusive and inviscid Holmboe flow.  The red 

circles are the fastest growing modes for each solution. 𝑅𝑖 is the Richardson number defined 

in 2.1.  The arrows show the footprints of the neutral modes. 

 

 

 
FIGURE 5. Neutral stability boundary curves of a Holmboe flow with uniform turbulent 

viscosity 𝐴!.  The black dashed curve is the neutral stability boundary of the inviscid flow 

(𝐴! = 0). 
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growing modes is close to 0.5 that indicates a wavelength of about 7 times the 

thickness of the shear layer.  This has been verified in many observations. 

The neutral modes of all the solutions give the neutral stability boundary 

(figure 5) on which 𝜎! = 0 everywhere.  Adding a uniform turbulent viscosity 𝐴! 

decreases the unstable area under the neutral curve, suggesting that a uniform 

turbulent viscosity has stabilizing effect on the shear flow. 

 

3. Effects of weak ambient turbulence near the stability boundary 

We now review pertinent results from the perturbation theory of T13.  Near 

the stability boundary in the inviscid, non-diffusive limit, the change of the growth 

rate due to small viscosity and diffusivity is 

δσ r = A0FA(k)+ K0FK (k)                                              (3.1) 

where the coefficients 𝐹!(𝑘) and 𝐹!(𝑘) quantify the sensitivity of 𝜎! to small 

increments of viscosity and diffusivity.  Equation (3.1) shows that the effects of the 

two eddy coefficients are additive, so it is convenient to study them separately. 

 The circle at the top of figure 6 represents the case where instability first 

appears as shear is increased or stratification is decreased. The solid curve is the 

stability boundary for 𝐴! = 𝐾! = 0 (Holmboe’s inviscid and non-diffusive solution); 

everywhere below this curve 𝜎! > 0 (unstable), while above it 𝜎! = 0  (neutral). For 

a given 𝑅𝑖, the fastest growing inviscid and non-diffusive mode is shown by the 

dashed curve.  With the introduction of small viscosity or diffusivity, modes on the 

inviscid stability boundary shown in figure 6 generally acquire non-zero growth rates 

𝛿𝜎!, with 𝛿𝜎! < 0(> 0) indicating that viscosity/diffusivity has a stabilizing 

(destabilizing) effect. 
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FIGURE 6. The solid curve, 𝑅𝑖 = 𝑘 (1 − 𝑘), is the neutral stability boundary on which the 

growth rates are zero (J. Holmboe 1960, personal communication).  The dashed line shows 

where the fastest growing modes lie, obtained with a numerical method. The arrow represents 

the departure from T13. 

 

Changes to the growth rate by vertically variable viscosity and diffusivity 

profiles near the neutral stability boundary curve are discussed in detail by T13.  

Values of 𝐹! and 𝐹! computed for the profiles used here are in table 1.  For profile 2, 

we have 𝐹! > 0.  This tells us that, near the neutral stability boundary, the effect of 

eddy viscosity profile 2 is to destabilize the flow.  This presents a striking contrast 

with the finding of all previous studies that viscosity stabilizes a shear layer  (Betchov 

& Szewczyk 1963; Maslowe & Thompson 1971; Defina et al. 1999).  Also 

interesting is that adding a small eddy diffusivity 𝐾 with profile 2 stabilizes the shear 

flow.  This effect is opposite to that of the other two profiles of 𝐾. 

 

4. Effects of weak ambient turbulence away from the stability boundary 

 Here we explore the effects of moving 𝑅𝑖 away from the small neighborhood 

of 0.25 considered by T13 (dashed curve and arrow on figure 6), with 𝐴! and 𝐾! kept 

small.  The results of increasing 𝐴! and 𝐾! will be examined separately. 
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Eddy coefficient Effect 𝑭𝑨(𝒌),𝑭𝑲(𝒌) at 𝒌 = 𝟎.𝟓 
𝐴 = 𝐴! Stab -3.75 

𝐴 = 𝐴!𝑡𝑎𝑛ℎ!(𝑧) Destab 0.52 
𝐴 = 𝐴!𝑠𝑒𝑐ℎ!(𝑧) Stab -4.24 

𝐾 = 𝐾! Destab 1.69 
𝐾 = 𝐾!𝑡𝑎𝑛ℎ!(𝑧) Stab -0.12 
𝐾 = 𝐾!𝑠𝑒𝑐ℎ!(𝑧) Destab 1.82 

 

TABLE 1. Effects on stability for three vertical eddy viscosity and diffusivity profiles.  

Results pertain to the limiting case of small viscosity and diffusivity and close proximity to 

the inviscid stability boundary (T13). 

 

 In the inviscid limit, the fastest growth rate for a given 𝑅𝑖 decreases from 

0.1897 at 𝑅𝑖 = 0 (where 𝑘 = 0.445) to 0 at 𝑅𝑖 = 0.25 (𝑘 = 0.5) as shown in figure 

7(a).  Here we will describe the change of this growth rate due to variable eddy 

viscosity or diffusivity (figure 7b,c): 

Δσ r =σ r (Ri,A0 ,K0 ,k,n)−σ r (Ri,0,0,k0 ,n)                            (4.1) 

where the wavenumbers 𝑘 and 𝑘! correspond to the fastest-growing modes of viscous 

case and in the inviscid limit, and 𝑛 = 1,2,3 specifies profiles 1-3 given by (2.5).  The 

change of growth rate due to viscosity or diffusivity of profile 2 is small relative to 

the other two profiles and is therefore plotted in a separate panel. 

 

4.1. Effects of non-zero eddy viscosity A 

The three solid curves in figure 7(b, c) show the change of the fastest growth rate 

when a small eddy viscosity with vertical dependence (2.5) is added to the inviscid 

flow.  In this calculation 𝐴! = 10!! and 𝐾! = 0.  For profiles 1 and 3 the change of 

the growth rate is negative for all 0 < 𝑅𝑖 < 0.25 so these two viscosity profiles are 

stabilizing.  The stabilizing effect is stronger at higher 𝑅𝑖.  In the limit 𝑅𝑖 → 0.25, 

∆𝜎! approaches the value predicted using the T13 perturbation theory as expected 

(figure 7b, asterisks).  When 𝑅𝑖 > 0.13, viscosity with profile 3 (the 𝑠𝑒𝑐ℎ!𝑧 case) has 

a stabilizing effect greater than that of uniform viscosity. 
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FIGURE 7.  Numerical results for three profiles. 𝐴! = 10!!, 𝐾! = 10!!.  (a) Fastest growth 

rate of the inviscid flow.  (b) The change of the fastest growth rate due to a small viscosity or 

diffusivity disturbance from the inviscid flow for profiles 1 and 3. (c) The change of the 

fastest growth rate due to a small viscosity or diffusivity disturbance from the inviscid flow 

for profile 2. The asterisks at the right are values at 𝑘 = 0.5; 𝑅𝑖 = 0.25 from table 1 of T13. 
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viscosity with this profile is destabilizing as predicted by T13 for the limiting case 

𝑅𝑖 → 0.25,  (asterisk on 7c).  Farther from the stability boundary (i.e. for 𝑅𝑖 < 0.25), 

this change is reduced.  When 𝑅𝑖 < 0.13 the destabilizing effect is reversed.  We 

conclude that the anomalous destabilizing effect of the 𝑡𝑎𝑛ℎ!𝑧 viscosity profile is not 

restricted to the immediate vicinity of the stability boundary (as explored by T13) but 

instead operates over a range of 𝑅𝑖 extending down to 𝑅𝑖 = 0.13. 

 Because (3.1) is linear in 𝐴!, the changes due to the different viscosity profiles 

described above are related to each other through the identity 𝑡𝑎𝑛ℎ! + 𝑠𝑒𝑐ℎ! = 1.  

The change of the fastest growth rates due to profile 1 is equal to the summed effects 

of profiles 2 and 3.  For example, in the parameter range 𝑅𝑖 > 0.13 where profile 2 is 

destabilizing, profile 3 is more stabilizing than profile 1.  While for 𝑅𝑖 < 0.13, profile 

3 is less stabilizing than profile 1, and correspondingly profile 2 becomes stabilizing.  

 

4.2. Effects of non-zero eddy diffusivity K 

In this calculation 𝐾! = 10!! and 𝐴! = 0.  The three dashed curves in figure 7(b,c) 

show ∆𝜎! for the three profiles of  𝐾 described in (2.5).  For profiles 1 and 3, 𝐾 is 

destabilizing as we expect, and increases with 𝑅𝑖 to match the asymptotic results of 

T13.  In the case of profile 2, diffusivity is destabilizing for most 𝑅𝑖, but the effect is 

reversed when 𝑅𝑖 > 0.22.  In contrast to viscosity, the effects of diffusivity approach 

zero in the limit 𝑅𝑖 → 0, because there are no buoyancy perturbations on which the 

diffusivity can act. 

 

5. Effects of strong ambient turbulence 

 So far, the calculations are performed at small values of eddy viscosity and 

diffusivity where ∆𝜎! is small and varies linearly with 𝐴! and 𝐾! as described by 

(3.1).  At larger values, the variation of ∆𝜎! becomes more complicated.  A 

representative example, with 𝑅𝑖 = 0.2, is shown in figure 8.  In this log-log 

representation, the slopes are very close to unity for small 𝐴! and 𝐾!, indicating that 

the linear relationship (3.1) remains approximately correct.  The linear relationship 

breaks down when 𝐴! (or 𝐾!) exceeds ~10!!. At that extreme, ∆𝜎! is comparable 

with the inviscid growth rate.  In the common case 𝑃𝑟 = 1, this criterion is equivalent 
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to 𝑅𝑒 < 100.  This is consistent with existing indications of the magnitude of 𝑅𝑒 at 

which viscous effects are no longer ‘small’.  For example, when 𝑅𝑒 = 0.2, instability 

is damped completely when 𝑅𝑒 < 25 (Maslowe & Thompson 1971).  At the other 

extreme, viscous effects on KH instability are generally negligible when 𝑅𝑒 is greater 

than a few hundred (e.g. Smyth, Klaassen & Peltier 1988). 

 

 
 

FIGURE 8. Growth rate increase versus eddy viscosity (diffusivity) for profile 2.  The results 

are obtained for 𝑅𝑖 = 0.2 and on the maximum growth rate curve of figure 6. The dashed line 

has unit slope. 

 

6. Destabilization mechanism of the eddy viscosity for the 𝒕𝒂𝒏𝒉𝟐𝒛 profile 

 The destabilization by eddy viscosity ∝ 𝑡𝑎𝑛ℎ!𝑧 (profile 2) bears further 

discussion.  Here, we offer a physical explanation based on the perturbation enstrophy 

budget. Perturbation enstrophy is defined as 

Z = 1
2
ω

2
                                                          (6.1) 

where 𝜔 = 𝑤! − 𝑢! is the vorticity. The subscripts 𝑥 and 𝑧 denote partial derivatives.  

Based on (2.1c), the eigenfunction of horizontal velocity is 𝑢 = 𝑖𝑤!/𝑘. 

The equation of motion (2.1a) implies the normal mode enstrophy balance, 
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(i) Here ℰ! is analogous to the shear production term in the kinetic energy budget 

(e.g. Smyth & Peltier 1989).  The asterisk denotes the complex conjugate and 

ℜ indicates the real part.  ℰ! is a correlation between the perturbation vorticity 

and its rate of change due to vertical advection of the mean gradient 𝑈!!.  If 

vertical advection reinforces the existing vorticity distribution, as is the case 

with KH billows, the term supports growth. 

(ii) We use ℰ! to represent changes in enstrophy due to buoyancy.  In the case of 

KH instability, the baroclinic torque opposes the vorticity concentration that 

drives the growth of the large vortex (figure 2), but it also generates intense 

shear in the thin braids separating the billows of the wave train (Corcos & 

Sherman 1976; Staquet 1995; Smyth 2003) and thereby contributes positively 

to the net enstrophy. 

(iii)  Here ℰ! is dissipation due to viscosity.  

(iv) The term ℰ! is non-zero only for variable viscosity profiles.  We will see later 

that this is the main factor in the destabilization mechanism. 

(v) Like ℰ!, ℰ! is only non-zero for variable viscosity.  Its magnitude is negligible 

in the present case. 

(vi) The final term, ℰ! is a flux divergence that vanishes when (6.2) is integrated 

over the whole range of 𝑧. 

We now integrate (6.2) over –𝐻 ≤ 𝑧 ≤ 𝐻 and divide each side by < 2𝑍 >=

2 𝑍𝑑𝑧, isolating 𝜎! on the left-hand side.  The growth rate can now be decomposed 

into several partial growth rates, each corresponding to a term on the right-hand side 

of (6.2): 

𝜎!!𝜎!" + 𝜎!" + 𝜎! + 𝜎!! + 𝜎!!                                        (6.3) 

The partial growth rate terms on the right-hand side are defined as 

σ SP =ε1 / 2Z                                                      (6.4a) 

σ BP =ε2 / 2Z                                                      (6.4b) 
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σ e =ε3 / 2Z                                                      (6.4c) 

σ A1 =ε4 / 2Z                                                      (6.4d) 

σ A2 =ε5 / 2Z                                                      (6.4e) 

 The change of the fastest growth rates ∆𝜎! from the inviscid limit is 

determined by the balance among the changes of these partial growth rates of (6.3).  

For profile 2, the effect of viscosity is to increase 𝜎!" and decrease 𝜎!" (figure 9), the 

only two nonzero partial growth rate terms in the inviscid limit.  The change of the 

growth rate due to the shear production, ∆𝜎!", is always positive, but decreases to a 

value very close to zero as 𝑅𝑖 approaches 0.25.  Hence, it cannot be the main 

contribution to the destabilization effect of this viscosity profile.  The change of the 

growth rate due to the buoyancy production term ∆𝜎!" is always negative.  Due to 

dissipation ∆𝜎! is always negative and does not vary much with the increase of 𝑅𝑖.   

Here ∆𝜎!! is negative, and its magnitude is small.  As 𝑅𝑖 approaches 0.25, ∆𝜎!! is the 

dominant source of destabilization (thick solid line in figure 9). 

 To understand how ∆𝜎!! makes the growth rate increase, we interpret −𝐴!𝑍! 

((6.2), (6.4d)) as an advection process, with equivalent vertical velocity 𝑤! = −𝐴!.  

For profile 2, 𝑤! is negative for 𝑧 > 0 and positive for 𝑧 < 0 (figure 10a); hence, the 

effective vertical velocity converges.  The enstrophy maximum (figure 10b) is 

thereby reinforced, and the growth rate increases.  At lower 𝑅𝑖 (e.g. figure 10c), this 

mechanism is less effective due to the double-peaked structure of 𝑍. 

 If 𝑤! diverges, as in profile 3 where 𝐴 is a maximum at 𝑧 = 0, the effect is 

opposite: the enstrophy maximum at the center of the flow is diffused and viscosity 

tends to damp the instability.  This explains why, when 0.13 < 𝑅𝑖 < 0.25, viscosity 

with profile 3 has a damping effect greater than that of uniform viscosity as noted in 

section 4.1. 
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FIGURE 9. The change of partial growth rate from inviscid case due to eddy viscosity profile 

2 with 𝐴! = 10!!. It is the term ∆𝜎!! that makes the change of growth rate positive.  Note 

that ∆𝜎! = 𝜎!, ∆𝜎!! = 𝜎!! and ∆𝜎!! = 𝜎!! and since none of the three processes exists in the 

inviscid limit. 

 

 
 

FIGURE 10. (a) Equivalent vertical velocity 𝑤! = −𝐴! for profile 2.  Enstrophy profiles for 

high-Ri (b) and low-Ri (c) cases. 
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The change in the enstrophy profile with 𝑅𝑖, which governs the behavior of 

the destabilizing term ∆𝜎!!, can be understood in terms of the wave resonance 

mechanism of shear instability.  At low 𝑅𝑖, the instability is primarily a resonance 

between waves supported by the vorticity gradients on the upper and lower flanks of 

the shear layer, so enstrophy is concentrated there (Baines & Mitsudera 1994; 

Carpenter et al. 2013).  When stratification is stronger (i.e., as 𝑅𝑖 approaches 0.25), 

the resonance includes a gravity wave centered at the stratification maximum, 𝑧 = 0, 

and that wave dominates the enstrophy profile. 

 

7. Dependence on the Prandtl number for small viscosity and diffusivity 

 When viscosity and diffusivity are small, the effect of varying 𝑃𝑟 is easily 

predicted because (3.1) holds (see figure 8 and the accompanying discussion).  Figure 

7(b) shows that for profiles 1 and 3, if the same amounts of viscosity and diffusivity 

are added to the inviscid flow (i.e., if 𝑃𝑟 = 1), the stabilizing effect of viscosity is 

greater than the destabilizing effect of diffusivity.  Only if diffusivity is much greater 

than viscosity (𝑃𝑟 ≪ 1) does the destabilizing effect dominate, and this is not 

generally true for geophysical turbulence. This is why diffusive destabilization was 

not evident in the studies of Maslowe & Thompson (1971) and Defina et al. (1999) 

who used 𝑃𝑟~1 and 𝑃𝑟 ≪ 1, respectively. 

Now we explore the dependence of ∆𝜎! on 𝑅𝑖 and 𝑃𝑟 for profile 2.  Profile 2 

is more complicated than cases 1 and 3.  Diffusion is destabilizing (figure 7c) except 

for a very small range of 0.22 < 𝑅𝑖 ≤ 0.25.  Viscosity, in contrast, is destabilizing 

for 𝑅𝑖 > 0.13 but stabilizing for 𝑅𝑖 < 0.13.  For 𝑅𝑖 < 0.13, if 𝑃𝑟 is sufficiently 

large, the stabilizing effect of viscosity dominates the destabilizing effect of diffusion 

and the net effect is stabilization.  The Prandtl number needed for viscous 

stabilization to dominate becomes smaller as 𝑅𝑖 decreases (and vice versa).  At 

𝑃𝑟 = 1, a typical value for geophysical turbulence, stabilization occurs for 

0 < 𝑅𝑖 < 0.08, and destabilization occurs for 0.08 < 𝑅𝑖 < 0.22.  For 0.22 < 𝑅𝑖 <

0.25, diffusion is weakly stabilizing, but the destabilizing effect of viscosity 

dominates unless 𝑃𝑟 < 0.23 (calculated with the values of 𝐹! and 𝐹! at 𝑘 = 0.5 in 

table 1) 
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FIGURE 11. The Prandtl number dependence for profile 2, i.e. 𝐴,𝐾 ∝ 𝑡𝑎𝑛ℎ!𝑧.  On the two 

curves the change of growth rate ∆𝜎! = 0.  In the shaded area ∆𝜎! > 0 which means the net 

effect from viscosity and diffusevity is destabilizing in this area. Outside this area ∆𝜎! < 0 

and the viscosity and diffusivity are stabilizing. 

 

8. Conclusions 

 We have examined the effects of vertically varying turbulent viscosity and 

mass diffusion on the Kelvin-Helmholtz instability of a stratified shear layer.  In the 

double limit of weak turbulence and 𝑅𝑖 approaching 0.25, these effects are accurately 

predicted by the perturbation analyses of T13.  When non-dimensional eddy viscosity 

and diffusivity (or the inverse Reynolds and Péclet numbers, respectively) exceed 

𝑂(10!!), the results change quantitatively, though not qualitatively.  When 𝑅𝑖 

departs from the neighborhood of 0.25, dramatically different results may be found 

depending on the vertical structure of the turbulence. 

 When turbulent eddy coefficients are localized within the shear layer (profile 

3), as might happen if the latter is colocated with a previous turbulent event, the 

effects of turbulence are similar to those of uniform viscosity and diffusivity: 

viscosity tends to stabilize the flow; diffusion tends to destabilize it. 

 The results are very different when an unstable shear layer develops in a 

region of weak ambient turbulence (profile 2), as is often observed (S13).  In that 

case, eddy viscosity tends to diffuse vorticity inward from the flanks of the shear 
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layer to the center.  When 𝑅𝑖 > 0.13, the enstrophy profile is sharply peaked at 𝑧 =

0, and is therefore reinforced by this turbulent vorticity diffusion, resulting in 

accelerated growth.  When 𝑅𝑖 < 0.13, enstrophy is concentrated away from the shear 

layer, and vorticity diffusion has the opposite effect, impeding growth.  This 

difference in the shape of the perturbation enstrophy profile, which determines its 

response to turbulent vorticity diffusion, can be understood in terms of the wave 

resonance mechanism of instability growth (e.g. Baines & Mitsudera 1994; Carpenter 

et al. 2013). 

 For 𝑅𝑖 < 0.13 and profile 2, the effects of eddy viscosity and mass diffusion 

act oppositely, and the net effect can be stabilizing or destabilizing depending on the 

turbulent Prandtl number.  For any 𝑃𝑟, there is a value of 𝑅𝑖 below which the 

stabilizing effect of eddy viscosity dominates, while at larger 𝑅𝑖, the destabilizing 

effect of mass diffusion dominates.  At 𝑃𝑟 = 1, for example, the flow is destabilized 

if 𝑅𝑖 > 0.08.  When 𝑅𝑖 > 0.13, the flow is destabilized regardless of 𝑃𝑟 since eddy 

viscosity and diffusion act in the same sense. 

 This stability theory has already proven useful in the analysis of 

oceanographic observations by Liu et al. and S13.  The analyses of S13 revealed that 

the damping of unstable modes by pre-existing turbulence is an important facet of the 

diurnal cycle of near-surface turbulence.  Observed profiles are complicated, 

however, and conceptual understanding of the instability characteristics is aided 

considerably by the study of simple, canonical profiles such as those examined here.  

Future work will include a broader range of velocity, buoyancy, viscosity, and 

diffusivity profiles. 

 This theory may also lend insight into marginal instability, the property of 

sheared, stratified turbulence wherein the Richardson number fluctuates about the 

critical value 1/4 due to the interaction of external forcing, instabilities, and ambient 

turbulence (Thorpe & Liu 2009; Smyth & Moum 2013). 

 The effects of ambient turbulence on instability evolution will ultimately be 

investigated via direct numerical simulations that include small-scale turbulence as 

part of the initial conditions (e.g. Brucker & Sarkar 2007).  This will bypass two 
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important idealizations made in the present model: the neglect of nonlinear terms and 

the representation of turbulence via eddy coefficients. 
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