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leads to a method for estimating smooth regression with

a polynomial which appears in Monte Carlo studies to be

an improvement on popular classical methods.

Another set of restrictions,

leads to a class of estimates which dominate the least

squares estimator when using squared error loss.
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A PRIOR DISTRIBUTION FOR SMOOTH REGRESSION

1. INTRODUCTION

1.1. The Problem

This thesis is concerned with the general linear

regression problem. That is, we have an N dimensional

vector y, which is the observed value of the random

vector . It is also assumed that 3 has a

multivariate normal distribution with mean X(3 and

covariance matrix V1. This will be denoted by writing

.vNN(X3, V1). It is also assumed that X is a known

Nx(m+1) dimensional matrix of rank m+l; V1 =

where V is a known symmetric positive definite N x N

matrix and Cr2> 0 is known or unknown; /3 is an unknown

m+1 dimensional vector. The problem is to estimate p

The problem will be modified (without loss of

generality). We shall reparanieterize to obtain

"orthogonality". Let X denote the th column

of X for i = O,1,...,m. We may apply the GramSchmidt

process to the Xi's since they are linearly independent.

The inner product to be used in this process is <.> ,

defined 13y

<U, w> = u'Vw

for all N dimensional vectors u and w (u' denotes



the transpose of' u). If the process is performed in

the order of the Xsubscript, we obtain orthonormal

vectors %' Q, ..., where

= 0(x0), = 1(x, X1), ..., =

x1, X)

That is, ZL is a function of Xk for k = O,l,...,i.

Let Q = (,
' ' S) Let denote the

Kronecker delta function. That is:

çoiri#i
Oij

j = j

Then we have

<i' ij

2

for i,j O,l,...,m,

Q'V1Q = I

where I is the appropriate dimensioned identity matrix,

arid

X= Q
where G is defined by

= Q'V1Xf

We now wish to estimate , since /3 =. (Q'vxY'.

Thus we have

JNN(Q,Vl).

The approach to the problem will be Bayesian, in



that we shall assume a prior distribution on the

parameter . Our assumptions are

1.

where the element of the th row and the

th column of V2 is

for i,j = O,1,...,m.

2. =
2

where V1 = cj- V.

That is, the conditional distribution of given

= is Nvariate normal. Throughout this

dissertation, V, Q, and p are assumed known. For

most of the results we obtain, we also assume Q'V1Q = I

and Nm+1. We shall consider estimation of under

conditions that vary from
2,

çj2, ,
all

known to
2,

o-' o- ..., o) all unknown. The

exact nature of these conditions will be discussed later.

We shall first digress in order to consider Assumption 1.

In particular, we consider the assumption that the

components of L for ± = O,1,...,m are assumed

independent. Let u = (u0, u1, ..., U) and suppose

one is concerned with estimating a real valued function

P defined by
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P(u) =

where g (a real valued function of the real variable

u) is known for j = O,l,...,m and for

j = O,l,...,m is unknown. Define the function f

by

f(u) = g(u)

for j = O,l,...,m. Then we may write

P(u) = E
j0

The reason for defining the f's is to enable us to

view P as a sum of functions all of which have the

same domain as P, yet f depends only on the th

coordinate of u, u for j = O,l,...,m.

When considering the estimation of P, it is useful

to have a distance defined on the class of functions

which would include P and its possible estimates.

Define the set D by

D - (i) (2) (N)

where for i = l,2,...,N, u isafi:ed rn+1

dimensional vector. Suppose for each UED we are given
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a real number Y which is assumed to be the observed

value of a random variable where E) = P(u). That

is the expectation of is P(u). More precisely,

assume that

c\NN(X, v1)

where the element of the
th row and the

Jth column

of X is

f.(u)
3

for i = 1,2,...,n and j = O,l,...,m, (3= '

V1 = crv, V is symmetric positive definite and Q2O. We

shall now restrict the domain of the function P and its

possible estimates to the set D. The class of all real

valued functions on D will be denoted by S. For each

h in 3, define h by

h [ h(u), h(u(2)), ..., h(u)]'.

Then, if h and H are in S, we have h = H if and

only if = H. This was the only reason for restricting

the domain of P to D. Now we may define an inner

product <)> on S by

(h, H> = Ti'v1i

for all h, H in S. This leads to the definition of

distance between any pair of functions h, H on D. We

define this distance as tlhH(I , where
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hH 2 = (fj) 'v1(ii-fl).

This definition seems consistent with the classical

least squares theory [Searle, 1971], since in that spirit,

one looks for a vector (3 which minimizes

(yX,3) 'V(yXp)

After "orthogonalizing" in the manner described earlier,

we may write P as

P(u) = .Q.(u)
j=O

for all u c D where is defined by the relation

= [Q(u), ..., Q(u)]'

That is, the set of linearly independent vectors

to' '
has been replaced by the set of

orthonormal vectors [,
,

..',

If A is a subset of Q1, Q, we write

"S(A)" to denote the subspace of S spanned by the

members of A. For example, S = S( Q1, ..., Q ).

If we wish to approximate P with a member of S(A) for

some A, the classical projection theorem [Luenberger,

1969] implies that the closest function in S(A) to P

is

.Q.(u)1 (Q)
.=o 33 3
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where is the indicator function defined by

ço if x4A
if xcA

For example, if we wish to use a member of

3([Q0, Q1, "' ) to estimate F, the "best"

approximation to P is

Q(u).

The point of this discussion is "the coefficient of

k
(in the expression for F) is unchanged in the

expression for the "best" approximation to P if is

a member of the subspace the approximation is taken from."

This results, of course, from the orthogonality of the Q's.

This is the justification for the assumption of

independence in the distribution of the @'s. If one is

prepared to estimate P with

= .Q.(u)
j=O '

and then one was told that m = one should be

satisfied with the estimate

Q(u)

provided one still felt that was close to P.



Hence, his opinions on the values of for

j = O,l,...,m1 will be unchanged with knowledge of

the value of
m'

The most familiar example of such

reasoning is perhaps in the context of orthogonal

polynomials.

We may also note, that if

P =

and one believes that P can be "adequately" approximated

by a member of S(i.Q0, Q1, ..., Q), then one believes

that the distance from P to F, where

= , n<m,
j=O '

is small. Thus, one believes that

JJP-I2 = II Q =
j=nl ' j=n+l

is small. Equivalently, one believes that for

j = n+l,n+2,...,m is near zero.

The method of estimating proposed in this

dissertation was designed for the purpose of exploiting

one's prior opinions that for some specified values

of i are near zero. The nature of such prior opinions



which may occur in applications is illustrated in the

following examples.

Example 1: Let g be a continuous real valued function

on a closed interval I, Ic (-00,00). Suppose we wish

to approximate g. By the Weirstrass Theorem (see

[Ftudin, 1964]), if given c 0, there exists a polynomial

of degree n, n depends on C , such that

IP(x) - g(x)j < for all x I.

Thus, suppose we wish to approximate g with a

polynomial, , where

m

-
g = L13±x

1=0

for some30, f3, '(3m That is, our prior knowledge

enables us to be sure that m is a sufficiently high

degree for to be an adequate approximation. We may

also be sure that should be of degree k, or higher

for some kc1,2,...,m}. Suppose we have obtained

observations y1 of g(x1) with an error which is

assumed to be N(0, cr2) for i = 1,2,...,N. We assume

is unknown and that there are at least rn-i-i distinct

x1's. Hence, (y1, y2,
..., N' is an observation of

the random vector where

3/N(Xp, 2I)
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where the element of the
th row and the th column

of X is

for i = l,2,...,N, j = O,1,...,m, (3= (3w, ..,ç)',

I is the N x N identity matrix and Cr2> 0. Thus, an

estimate of (3 will determine . Since there are at

least m+l distinct xi's, we may "orthogonalize" as

described earlier to obtain

=>IIIQ , and

= NN(Q&, 2I)

We add the assumption that

N1(0, v2)

where the element of the th row and the th column

of V2 is

for i,j = 0,1,...,m.

Now, one method of expressing our prior opinion that

the degree of should be between k and m is to

assume

= o for i = 0,1,...,k and

2 20k+1k+2
Roughly speaking, this could be interpreted as the belief
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that we are not at all sure of the values of for

i = O,l,...,k, but we believe there is a positive

probability that
k+1 is near (within a distance d ol'

zero, d>O)zero. There is a larger probability that

(within a distance d of zero) is near zero as i

increases from k+2 to m. This also expresses a belief

that is smooth. If the values of for

i = k+l,...,m are not known, the method proposed in this

2 . 2.thesis allow us to estimate with in such a way

that

kl k+2

It should be noted, that the computational aspects

of the methods proposed in this thesis for obtaining

for i = k+l,...,m and the estimate are relatively

simple. That is, we use closed form formulas. No

iterations, or approximations of the estimates are

needed. In fact, the computations are only slightly more

(if any) involved than those needed for the classical

procedures of obtaining a least squares estimate of 9

followed by a sequence of Ftests of the hypothesis that

= 0 for i = kl,k2,...,m.

A Monte Carlo study was done for the case k = 1,

m = 6 arid N = 14. This method for estimation of 9

(called the IR rule) was compared to three popular
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classical methods and one other method (called the GM?

rule) which is derived in Section 3.2.3 of this disserta-

tion. The GM? rule is a "classicallike" method which

was derived within the basic structure we have imposed.

The results are summarized in Chapter 4 of this thesis.

It will be seen that the IR rule performed almost

uniformly better than the others.

The purpose of deriving the GM? rule was to get a

clearer understanding of the relationship between the

classical type rules and the IR rule. The GM? rule may

be considered a generalization of the optimal classical

rule given in [Anderson, 1971]. The main distinction

between the GM? and the IR rules is that the quantity

for i = O,1,...,m is assumed to have a value of either

zero or one in the GM? rule, while in the lit rule it is

assumed to have any possible value in the interval (0,1].

It is believed that the lit rule, derived under more

realistic assumptions, would be an improvement over the

GM? rule, and hence, an improvement over the classical

rule given in [Anderson, 1971].
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Example 2: Suppose we wish to establish a linear

regression equation for a particular response Y in

terms of the "independent" predictor variables

X1, X2, ..., X6. Consider the problem of selecting the

"best" regression equation. Suppose we are willing to

assume

2 2
ynINN(X(3, c'I), U-' unknown

where the first column of X is a vector of ones and

the (i+l)th column of X has components which are

values of the predictor variable for i = 1,2,...,6.

After "orthogonalization" we have

2yI=NN(QG-I)
If the GramSchmidt process is applied in the ordinary

manner we will essentially replace the predictor

variables X1, X2, ..., X6 with Q1, Q2, ..., Q6 where

is a function of X1, X2, ..,Xk. We also assume

(0, iT2)

where the element of the th row and the th column of

V2 is

o-

for i,j = o,i,...,6. Suppose one has the following

prior opinions:

1. A fit based on Q2(X1, 12) is preferred

to a fit based on Q4(X1, X2, X3, X4).

2. A fit based on Q3 is preferred to a



:1.4

fit based on Q4.

3. A fit based on Q4 is preferred to a

fit based on Q5.

Then an appropriate set of restrictions may be

o-cr, crcy, u-c-

If the cr's are unknown, the method for estimating ,

proposed in this dissertation, will do so subject to the

desired restrictions. The computation involved in this

example is more complicated than that of Example 1,

however an algorithm is available which leads to the

exact estimate.

Example 3: Suppose we assume

YI =

m2.
That is, the 's are independent as well as identically

distributed for i = O,1,...,m. We will see in

Section 3.2.2 that when o2 is assumed to be known and

equal to one, the methods for estimation of proposed

in this thesis lead to a class of estimators which

uniformly dominate the least squares estimator. One



member of this class is a rule which is a uniform

improvement on the JamesStein estimator. The loss

function, in this discussion is taken as the usual

squared error loss.

2
The assumption that 1Nm+i(O -I) may not

seem realistic in most applications, however, it is

used in [Efron and Morris, 1973] to derive a class

of estimators which dominate the least squares

estimator. One member of the class Efron and Morris

derived, was the JamesStein estimator.

The property of dominating the least squares

estimator with the methods proposed in this thesis is

not limited to the case when is known. We shall

see in Section 3.2.2 that when is unknown, the

methods proposed in the dissertation lead to a class of

rules which are given as an example in [Baranchik, 1970]

of rules known to dominate the least squares estimator

with squared error loss.

In view of the fact that the methods proposed for

estimation of in this dissertation lead to such

excellent results in very special cases, as in this

example, it seems likely that the methods are good for

more general (and seemingly more realistic) cases as

well.
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1.2 Related Research

To the best of this author's knowledge, there has

been very little research on this problem that is

closely related to the approach taken in this thesis.

Brunk and Pierce [1965] used methods similar to

those proposed in this thesis in connection with

density estimation.

The work done by Efron and Morris [1973] was

already mentioned in Example 3 of Section 1.1. They

were primarily concerned with obtaining estimators which

would dominate the least squares estimator. The

question of elimination of parameters or smooth

regression was not considered.

Halpern [1973] has investigated polynomial

regression from a point of view that places prior

probabilities on the degree of a polynomial where the

degree is assumed to be one of some finite set of

consecutive positive integers. He does not work with

orthogonal polynomials and hence requires a prior

distribution on 2 for each given degree assumed. A

Monte Carlo study indicates that he obtained good

results for determining the degree of a polynomial,

however there was no indication as to the usefulness
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of his methods in prediction. His methods would lead

to a polynomial of maximum degree (whenever a positive

prior was placed on the maximum degree) if one used a

loss function that was quadratic. It appears that the

computations involved in actually obtaining the

estimation of j3 would be rather cumbersome compared to

methods currently in use.

Lindley and Smith [1972] have investigated linear

regression under the assumptions

'J f3 "N11' v1)

m+12 , iT2)

v3)

with the additionalassumption that the distribution of

be exchangeable or at least that the components of

f all into classes in which the elements of any given

class are assumed to have an exchangeable distribution.

As pointed out by M. R. Novick [Lindley and Smith, 1972],

one weakness with their methods is that of computational

difficulties in actually getting the estimate of

Lindley and Smith also mention that the assumption

of exchangeability would not be appropriate in many

applications.



2. DISTRIBUTIONAL RESULTS

In this chapter some distributional results are

provided for later use. Parts a and b of the first

theorem are well known. Those results as well as the

first equation of part c of the first theorem may be

found in [Lindley and Smith, 1972]. The results are

presented here for the sake of completeness.

Theorem 1

Let V1 and V2

matrices. Let =

Then

=

= +

be positive definite covariance

.'NN(Q, v1) and "JN1()4, V2).

V), where

'Vy) and V = (V + Q'V1QY1

N' V1 + QV2Q')

C. (V1 + QV2Q'Y' = V1 - VE'QVQ'V'

- = Q' (V1 + QV2Q' )1Q, and

V1 = I(V1 + QV2Q' )hl, where IA I

is the determinant of the matrix A and V

is defined in part a.

. If is a least squares estimate of , then

+ (I -
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Proof. We begin by proving the second equation in

part c.

From the definition of V we have

+ Q'Vi-Q) = I

which implies

= I - VQ'Vi-Q

From the first equation in part c, we have

Q'(Vi- + QV2Q'Y'Q = Q'(Vi- - Vi-QVQ'Vi-)Q

= Q'VQ(I - VQ'Vi-Q)

= Q'Vi-QV1Ti-

= Q'Vi-QVVi- + ç'vç' - Vi-1TV'

= (Q'vQ + v ) vç' - v'vç'

= ç1- - ç'vç'

C]

The symbol [1 indicates the conclusion of the proof

of part a.

We now prove the third equation in part c.

Using the fact that A = A'I for any invertable

matrix A, we see that it suffices to prove

v2r-
J

} vi- = j (vi- + QV2Q')
(
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After multiplying both sides by IV'1 , we see that

it suffices to prove

= 1(1 + V1QV2Q')

which is equivalent to

1(1 + V2Q'VE'Q)I = j(I + V'QV2Q')I.

To see this, we use the result from matrix algebra that

}EfI(B-CE'DI = = lB

for appropriately dimensioned matrices

By putting

B=IN, C=VQ, D=V2Q',

where 'N
indicates the n x n identi

obtain the desired result. (This proof

by Justus Seely.)

E - DB1C(

B, C, D, and E.

E

y matrix, we

was suggested

C]

Now we prove part d. Recall [Searle, 1971] that

is a least squares estimate of if and only if

9 satisfies

Q'VI'Q = Q'V1y. (1)

From part a, we have

= V(V1p + Q?VfLy) = W1(i + V2Q'Vy).
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Thus, using (1) we get

= + + V2Q'V1Q9]

= + Vv(i + V2Q'V1Q)

= + V(V + QtVQ)

Using the definition of V, we have

= Vv1ji + (I -
[]

The next theorem deals with partitioning the

exponent of the density function of given in

Theorem lb.

Theorem 2

Let V1 and be positive definite covariance

matrices. Let Q be an Nx(m-i-l) matrix with rank

mi-i. Let =9rJNN(Q9, V1) and v2).

a. If denotes the usual least squares estimate of G

(i.e. = [Q'ç'Q]Q'ç'y, [Searle, i971J),

then

(y - Q)'(V1 + QV2Q')(y - Qp) =

R + ( - )' [(Q'VQ) + v2](
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where R is defined by

R = (y - Q)'V(y - Q).

b. If N >m+l, then = ( - Q) 'V(5 - Q)

has a central chisquare distribution with

N(m+l) degrees of freedom.

C. If [(Q'V1Q'1 + is a diagonal matrix,

say A where a> 0 i = O,1,...,m,

then

-

has a central chisquare distribution with

one degree of freedom and is stochastically

independent of

and )2

when i j, i,j = 0,1,...,m.

Proof (a) Since = (Q'V1QQ'Vy, we may

rewrite R as

It = y'Vy - 'Q'Vy. (2)

Recall that V of Theorem 1 was defined by

V = (v' + Q'V'QY'.

Thus

I + VQ'V1Q



23

Multiplying by (Q'VI'QY' gives
V = (Q'vE'Q) - Vv(Q'vQY.

From Theorem ic,

Thus,

(V1 + QV2Q'r' = V1 - V1QVQ'V1

= V - V1Q(Q'V1QY1Q'V1 +

V1QVV1(Q'V1QY1Q'V1

= V - V'Q(Q'VQY'Q'V' +

(y - Qp)'(V1 + QV2Q')1(y - Q) =

y'V1y - y'V'Q(Q'V'QY'Q'V'y

- 2ji'Q'[V1 - VQ(Q'VQY'Q'V']y

+ .i'Q'[V1 - VQ(Q'VQY"Q'V]Q)1

+ (y _.:)

- 2i'[QtV'y - Q'Vy]

+ Q'V1Q]t

+ ( - p)'(Q'V1Q)VST1(

by using (2).
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(Q'vQ)vç' = Ev2(v + QIVQ)(QtVQ)]'

1 \1= [(Q'v1 Qi +

(a) is true. C]

(b) The validity of (b) when R is replaced by

= 9 isa we1. known classical result. Let

f(R19) denote the density of = 9 and g() denote

the density of . Then

fr(Ri)g(9)d9 = f(R19),

since f(R9) does not depend on 9. But the integral

gives the density of i. Thus, and 9 have

the same density. []

(C) First, observe (from Theorem lb and the

definition of ) that the covariance of ( - ji) is

(Q'VQQ'V1[v1 + QV2Q'1V'Q(Q'VE'QY'

= (Q'V1QY1 + V2

1A
by the definition of A. Hence,

( - j) = (Q'v1Q)1Q'v15 - N1(O, A1).
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Therefore, the components of - ,i, - ji, are

stochastically independent and N1(O, at). Thus,

(L i)2a has a central chisquare distribution with

one degree of freedom.

To see independence of = ( - p.)2a and

we may again appeal to the corresponding classical result.

It is known that Z9 = 9 and = 9 are independent.

Let h(Z)9) and f(R(9) denote the densities of ZJ' = 9

and 'I9 = 9 respectively. Let g(9) denote the density

of 9.

Then the joint density of Z and given = 9

is given by h(Z19)f(R19). The density of , and

is then given by h(Z I 9)f(R) 8)g(9). We may integrate

with respect to 9 to obtain the joint density of Z and

R. But this is h(Z)9)f(R19) since neither of these

functions depends on 9. Since the joint density of

and It factors into a function of Z alone and a

function of It alone, and are independent. []

In this thesis the full generality of Theorems 1 and 2

is not needed. A special case of sufficient importance

is to be stated next.

Corollary 1

Let V2 where for i = O,1,...,m ,
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and V1 y2V, where V is a symmetric positive

definite matrix. Let Q be an Nx(m+1) matrix

with rank m1 with .the property that Q'V1Q = I
Also, let I'=dNN(Q, V1) and INmi(P v2

a. yiiN v), where

ii = z;1 + (1 -

V 2([1 - and

z= ---------- 1 =

b. The density of the random vector whose

distribution is given in Theorem lb may be

written as

2(2'Iv) zte_
1,1202) z(ji)

where r is defined by

r=02R
arid It is defined as in Theorem 2a.

Proof (a) Q'V1Q = -½ Q''Q = -½ I.

Now, V = (V+ Q'V1Q)= ( -1ij -½
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)

=

vç' 2(G2g) (&) = (3)

The result follows from Theorem id.

(b) From Theorem ib, we know the density of is

given by

(2yN/2
I(V1+QV2Q' )_lI exp[4(yQi) '(V1+QV2Q' )(yQ)]

= (2Tr)_N/2j2 1.fViI2exp ' 23" IJ 1,
+ I

by Theorems ic and 2a. The result now follows from (3)

and the hypothesis.
[]



3. ESTIMATION OF

3.1 V1 and V2 known (The Basic Rule)

In this chapter, we consider the estimation of

under the assumptions

yl_//NN(Q, v1),

AJN1(;1, v2),

where V1 and V2 are positive definite and Q and

are known.

In this section we shall assume V1 and V2 are

known. In section 3.2 this assumption will be dropped.

We shall take the posterior mean (which is also the

posterior mode) as the estimate of .

From Theorem la and id we have

= V(V1i + Q'V'y)

and
-1--p2 (I 2

where

V = (V' + Q'V1QY1 and

is a least squares estimate of .

As an estimate of , j has several appealing

properties. We shall list some of them.
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Properties of

1. It is a "weighted average" of the prior mean and

the least squares estimate , in the sense that the

weighting matrices sum to the identity.

2. As our prior knowledge becomes vague, our estimate

approaches the least squares estimate. More

precisely, for fixed V1, ji-,- as

3. As sampling becomes less precise the estimate

approaches the prior mean. That is, for fixed

V2, ji-ji as

4. The estimate, ji, is unique (even though may

not be).

Define a loss function L by

L(, a) = ( - a)'C( - a)

where C is a symmetric nonnegative definite matrix.

Then we have the additional properties:

5. The estimate, ji, is a Bayes rule. (See [DeGroot, 1970])

6. If C is positive definite, then )l is admissible.

(This is immediate from the fact that i is unique

and a theorem in [Ferguson, 1967]).
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Perhaps the loss function, L, merits some

discussion. We note that it gives the usual squared error

loss if C is taken as the identity. In case V1 is

unknown, C is often taken as 1T. L has also been used

in another way.

Suppose we wished to estimate the polynomial

0ixi

over the interval [a, b] and used the estimate

ax1

We may wish to define our loss as the "average squared

error over the interval [a, b]". That is we define

Lby
m

L(,a) = c[ (G. a)x1]dx
1

Then the positive definite matrix C would be defined by

C = (c)

where

b - a
i+j1

cii =
, i,i = 0,L,...,m.

(i+ji) (ba)

This is the loss function that was used in the Monte Carlo
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study the results of which are given in Chapter 4.

In this dissertation, we are particularly interested

in the special case in which

V1 = O?V, Q'V1Q = I, and

V2 = where

, for i = O,1,...,m.

With these assumptions we have (from Corollary 1)

= + (1_z)

where
2 1 2

0 fo

22 1421/2

for i = O,1,...,m.

This estimate, ji, will henceforth be referred to

as the basic rule.

We note that the th component of is a weighted

average of the 1th
component of the prior mean with the

weight of its precision, 1/-.2 and the component of

the least squares estimate with the weight of its

precision, 1/o-

It is also interesting to note that

as
2(2

fixed) or as 2o 2
fixed)
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as ( C-'fixed) or as 0 (o fixed).
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3.2 V1 and 112 unknown

3.2.0 Introduction

In this section we continue with the problem of

estimating under the assumptions:

SI\NN(Q, vi), -N1(i, 112),

= trV, Q'V1Q = I, V2 = (

2>o, cr,0 for i = 0,1,.,.,m.

The estimate considered in the previous section was

= + (1 -. (1)

where

= Q'Vy (the least squares estimate of ),

for ± = 0,l,2,...,m.

We now assume that V is known and that .2
is

unknown. In addition, we shall assume that some of the

z's are unknown. Without loss of generality, we assume

there is a k 0,1,...,m} such that when

± E.k, k+1,...,m} z is unknown.
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The assumptions we are making are not unusual. In

most applications V is taken as the identity matrix.

The assumption that Q is orthogonal, is made without

loss of generality if one starts with a full rank design

matrix. One would know z, for some particular i, if

he knew cx12. If one thought Q/2 was very large,

he might (in view of (1) ) wish to act as though z = 0.

This would have the effect of estimating G with the

least squares estimate This was done for i = 0

in the Monte Carlo study given in Chapter 4. Likewise,

if one believed ?,
2

was very small, he may wish

o act as though z = 1. When = 0, as it was in

the Monte Carlo study, taking z = 1 has a smoothing

effect, or in other words, it has the effect of

eliminating the parameter from the model.

We shall consider using the basic rule, (1) as

the estimate of , with unknown z's being

replaced by their estimates. We shall use a "maximum

likelihood" procedure. That is, we shall choose the

z's to maximize the marginal density of when

viewed as a function of the z1ts. It is mathematically

convenient to estimate
2

along with the unknown z1's.

The appropriate density is given in Corollary lb. Thus,



the quantity to be maximized is

(i/2 )e r/2fr2) ze 1/2
2)
z±(p.)

2]

If we let

= 1/2 and

vi =c2Zi

for i = k,k+i,...,m , then we wish to choose

for i = k,k+1,...,m+1 to maximize

where
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vmexp ( 4Vm+iWm+1) ( 4vwi) 1 (2)

n = N(m-i-1k)

w = (-,i)2 for i = O,1,...,m

ki
wm+l=r+ zw if k#O

i=O

=r if k=O, and

r = (y)'V1(yQ)
(r is the error sum of squares).

It is easily seen that the quantity in (2) is

maximized by taking v = where



Thus,

=

= fli/'Wm+i
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i = k,k+l,....,m and

= _; = _±L j = k,k+1,...,m .(3)
1 nw

nH-i 1

So far, we have ignored the obvious fact that

O<zi, i = O,i,...,m. In practice,
i

[as

defined in (3)] could be larger than 1. It would seem

that maximizing (2) subject to the restriction O<zj<i,

i = O,i,...,m should lead to improved estimates. This

will be done in the next section. However, the

procedure considered so far is very closely related with

the standard classical procedures as we shall see next.

The usual classical procedure uses the least

squares estimate of only as a starting point. Once

is obtained, some sort of procedure is usually used

to eliminate some of the parameters from the

model. If nonnality is assumed, most procedures are

based on some sort of Ftest or sequence of Ftests.

We shall proceed along similar lines. First, note

that the conditions we have assumed satisfy the

conditions of Theorem 2C. The a of that theorem is
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now

see that

Thus, as a result of that theorem, we

zi wml
i =

has an Fdistribution with 1 and n degrees of

freedom. Hence, we could obtain confidence intervals

or perform Ftests on the z1ts.

We note that our basic rule (1), will estimate

to be if and only if is estimated to be one

(since P[ = = 0). In fact, if we take .k = 0,

then (L) (which is an appropriate statistic for

testing H0: = or H: z = 1) is the same

statistic used in the classical Ftest of H0: =

(recall Theorem 2). When H0 is true, is

distributed as it is in the classical situation.

3.2.1. Estimating the hyperparameters: flat prior

In this section, we shall continue with the same

problem that was introduced in the previous section. We

make the same assumptions. The only difference is that

now we consider maximizing the quantity given in (2)

subject to the restrictions that O<z<1 for
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i = O,l,...,m. In terms of the v's, this means that

we require O<Vj<Vm1 for i = k,k+1,...,m.

Hence, our problem now is to find vi's which

minimize

rn-i-i

(4)

Subject to OViVm+1 for i =

where

g= *
for i = k,kl,..,m and

t+i
For the remainder of this thesis, we shall assume

that an observed value, X, of a random variable, X,

is positive and finite whenever is positive and

finite almost surely. Thus, we shall assume (L - pj)2

and its inverse is positive and finite for i = O,1,...,m.

This implies that is positive and finite whenever

n>O, since if N'(m+i), the error sum of squares

is almost surely positive and finite. Hence, when

n>O, g for 'i =k,k-i-i,.,.,m+i is assumed

positive and finite.

This problem may not have a solution since the
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inequalities on the vi's define an open set. However,

in most practical situations, one may be satisfied to

have a solution which minimizes the quantity in (4)

subject to for i = k,k+1,...,m; when

0 is sufficiently small. In fact, we are usually

able to minimize the quantity in (4) subject to 0<VV1

for i = k,k+1,...,m as stated in the next theorem.

But, first we need a lemma.

Lemma 1

Let and w be positive and finite for

i = k,k1,...,m. The problem of finding vi's to

minimize

m+1

v_g1og(v)]w

subject to a given set of restrictions is equivalent to

the problem of finding vi's to minimize

m+1
(g , v )

i=k

subject to the same set of restrictions, where

(a,b) = (a) - (b) - (ab)'(b)

(x) =xlog(x), and
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is the derivative of '. (It is assumed that the

restrictions on the vi's will in include v> 0 for

i =

Proof: Since A.(g,v) = [vglog(v)] + g[log(g).-1]

We have

rn-i-i rn-i-i m+i

= (5)

Since the second term of the right haid side of (5) does

not depend on it may be ignored for the purpose of

minimizing in the vi's. C]

The next theorem will not only give us the

solution to the minimization of (4) with the restrictions

0 <v Vm+l

for i = k,k+1,...,rn but will also give the solution

for a more general set of restrictions. Let the set X

be defined by

X = k,k+i,...,m+i).

Let 2 be a quasiorder on X (A quasiorder is a

binary relation that is reflexive and transitive. See

the appendix of this thesis.) The set of restrictions



for which the next

requiring the func

(i.e. for i, jcX,

To obtain the

i =

by

theorem applies is defined by

tion v on X to be isotonic

i Zj implies v

restrictions O<VjVm+1 for

we may define the quasiorder

41

±2± and i2mi-1 for all itX.

This only requires ViVm+l for all i in X but

we shall see that this is sufficient for our purpose.

Theorem 3

Let g and w be positive and finite for

i = k, k+1, ..., m+1. The sum

mFl

i=k

- glog(v)]w1

is minimized over the set of isotonic functions, v,

by taking v to be the isotonic regression of g with

weights w for i = k, k+1, .. . ,m+1 . The minimizing

function is unique. If is the isotonic regression

of with weights w for ± = k,k+1,...,m*1 , then

V1>O for ± = k,k+1,...,m+1. (See the appendix

for definitions and key theorems on the subject of isotonic
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regression.)

Proof: The first two assertions follow immediately

from Lemma 1 and Theorem A2 (Theorem A2 is in the

appendix). The last assertion follows from Theorem Al

of the appendix by noting that O<min

for i = k,k+1,...,m+l . C]

For the quasiorder which lead to the restrictions

ViVm+l for i = k,k+l,...,m . a very simple

algorithm for computing the isotonic regression is

available. The algorithm is called the "Maximum Violator

Algorithm" and is given in the appendix of this
dissertation.

Exarnpl e

Let us consider Example 1 of the Introduction to

this thesis. We wished to obtain a polynomial estimate

of a continuous function. The estimate was to be

of the form

mE
i=O

where the Q1's were orthonormal polynomials of

I
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degree i for i = O,l,...,m. We wished to get an

estimate that would be of degree k or higher. It is

slightly simpler (notationwise) to assume we want the

degree to be k - 1 or higher. This would be expressed

by taking

= 6 for i = O,1,...,k-1.

We also wished to express the prior opinion of smooth

regression by requiring

2 2 2

c+1

These restrictions can be rewritten in terms of

the

2

where z=--- '

as z 0 for i = O,1,...,k-1

OZk<.Zk+1(.Zm<l

or in terms of the v's

(v = L1 , = k,k+1,...,m, Vm+1

as = 0 for i = O,1,...,k-1

0 <Vk Vk+1 Vm <

The basic rule, with ,i = 0, is

= (1 - for i = 0,1,...,m.
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Thus for z = 0, we would use the least squares estimate

of E. Our theory at this point does not allow for

taking z 0, but suppose (temporarily) we are content

with taking z = £ for i = O,l,...,k-1 for some

£, 0 1 suffiently small. Also, suppose we are

willing to replace the restriction VmVm+1 with

VV1. Our theory includes the solution to this

problem. The quasiorder we assume on X is the usual

simple order (i.e. for i,j e X, i j if and only

if ij). For v to be isotonic on X, with this order,

means simply for v to be nondecreasing.

If N>m+1, then n>O (for all kO), where

n = N - (rn-i-ik). Thus, the g's and wi's as

defined in (2) are positive and finite so we may apply

Theorem 3 to the problem of minimizing the quantity in

(4). We obtain estimates v(c) (we use the notation

instead of V to indicate the dependence on the

known values of = for i = O,1,...,k) of

and use the relation

=
1

vm+i(E:)

and

z =E for

for i = k,k-i-1,...,rn,

i = 0,1,... ,m.
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ki
Wm+i = r + C w.

i=O 1

Wm+i

Since the wi's and the g's are all well defined

for E = 0, we may speak of the isotonic regression

of g1 with weights w for i = k,k-i-i,...,m-,-i

when C = 0. We denote this by V1(0). It is an

immediate result of the definition of isotonic

regression and Theorem A3 of the appendix that

as c-0.

Hence, for the problem we wish to solve (i.e. with

restrictions =o for i = O,i,...,ki), the

recommended solution is

where

P1 = (- - i)i for i = 0,i,...,m

= 0 for i.= O,i,...,ki

_1
- for i = k,k+i,...,m.-
0Vm+i



3.2.2 Estimating the hyperparameters: gamma prior

In this section, we generalize the results of the

previous section. We put a truncated gamma prior

distribution on the unknown v1's. We will see that the

estimator obtained in the previous section is a limit

of the estimator derived in this section. We also

include an example in which the estimator derived is

known to dominate the least squares estimator.

At this point, it may be useful to restate the

assumptions. They are:

1. v1),

V1 = O-2V, Q'V1Q = I,

V is positive definite,

Q is known, V is known, o2 is unknown;

2. Nm+i1 v2),

is known, V2 = (

ct 0, z

and

i = O,1,...,m

is Iunknown
for k i m

known otherwise

3. We use the posterior mean, yi, of the

distribution of = y to estimate .



The components of

= +

and where is

the prior mean p

component of the

Iii

(1 -

the

and

Least

are

z)

1th

is

squares

where

Tiponent of

the th

estimate .
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4. When is unknown, we shall replace it With

its estimate, L, in the expression for j11.

5. v =z i = k,k+1,...,m

1V1 =

We now add the following assumptions.

6. Prior knowledge imposes a set of restrictions

on the function v defined on X = [k,k+1,...,m+1

such that those restrictions are satisfied if and

only if v is isotonic with respect to some

quasiorder on X. We let B denote the set

of (VkVk+lsVm+1) which satisfy the given

restrictions. Then (Vk,Vk1,...,Vl) LB if

and only if v is isotonic.

7. The prior distribution of k'k+1'''m+1 is



m+l

[ T7 v1ie ]1B(Vk,Vk+1,
i=k

where ccc" means "proportional to", and where

0 and f3> 0 for i =

1 ( \ _çlifxinB
B (.0 otherwise

In some applications, it may be easier for one to

express his prior opinions with a prior distribution on

2,
for i = k,k+l,...,m or their inverses, but

it is mathematically more convenient to put a prior on

the vi's or the z's. When using p = 0 and

desiring to express smoothness, it seems

appropriate to put a prior on the z's. This is

particularly true in view of the nature of the basic

rule. An opinion that should be eliminated from

the model is expressed as an opinion that z = 1. To

express a belief that is small and perhaps should

be eliminated is to believe that is near 1. In

terms of O-, we would need to express the fact that

is near o . It seems somehow easier to this author

to think of something being near 1 than to think of

something being near oQ.

Next, we proceed to finding estimates of the vi's.



We shall use a posterior mode. The posterior distribution

of k'k+1''"m+1 given = y is proportional to the

product of the density given in Corollary lb and the prior

density given above. We get

m (2 j_eWj]
(6)v1. exp ( 4v1w1) [ v.

i=k 1

for in B and zero elsewhere,

where

n = N(m+lk) + 2(Ym+i_l)

w = ( - ,i)2 for i =

= (L - + 2/ for i = k,k+l,.. . ,m ,

Wm+l = r + + 2/m+i if k> 0,

if k= 0.

If we define g by

21
i = k, k+l, .. .

=-- i=m+l,
Wm+l

and take the negative of the logarithm of the quantity in

(6), then we see that we wish to minimize
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rn-i-i

ZZ[vg1og(v) ]w (7)

subject to (VkVk+1Vm+1) B

The quantity in (7) is the same as

except for the definitions of the wi's

Thus, if g . 0 and w > 0 for i =

obtain as the isotonic regression

we:Lghts w , as in Theorem

We observe that if = 1 for i

then

that in (4),

arid g1ts

k,...,m-i-i ; we

with

= k,k-i-i,...,m+1 ,

(i) the prior distribution of the vi's approximates

an improper distribution that is uniform over

B as p-oo for i=k,...,m-i-i and

(ii) the 's of this section become the 4's of

the previous section when =oo for

i =

To prove (ii), we note that the g's and wi's of

this section then differ from those of the last section

only in the and do not differ at all when the

are all equal to o
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To determine appropriate values for the Ii's and

ç311s in practical applications it may be useful to know

what prior distribution Assumption 7 places on the joint

distribution of k' ''m'm+i' The transformation

Y', defined by Y' (Vk,Vk+1

(Zk, Zk+1,. . . where

zi = v/v1 for i =

maps B onto Y'(B) in a 1-1 fashion. The Jacobian is

m+1k.
Vm+1

Thus, the density of

+1_kE(zv ZV1/ 'w+1_1 v
nH-i

i=k
e ]vm+i e

rn-fl mi-i

for (zk,.. . , zmVm+i) in (B) and zero elsewhere

or

m-i-1k+ E( i) Vm+1/Pm+i m (. i z vVi e [flz.1 e
1 rn-i-

i=k1

for(zk,...,zm,vml) in (B) and zero elsewhere, where

the sum is taken from i=k to mi-i.
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Apart from the factor " )", the density

converges to a product of of independent beta distributions

on the 's and a gamma distribution on as

for i = k,k+l,...,m. The beta distributions

would be uniform distributions if the Y1s were

equal to one, but the distribution on is not

flat, unless mi-ik = 0, even as

Thus, one may not want to use the prior distribution

given in Assumption 7 if he wanted to express vague

knowledge about Vm+i and knowledge about the z1's in

terms of beta distributions. It seems that in practical

applications, such a situation would be rare, but one can

circumvent this state of affairs by taking a prior

I,.., ,,, ,d
distribution on ZkSZmVm+1) which is

vm+11evm+1m+1(zi1)
lB(Vk, . .rn-Fl

Now, one way vague knowledge on can be

obtained is by taking m+1
= 1 arid letting Pm+T>

'°

We shall next derive the posterior distribution of

kZm'm+1) given = y under the assumption

that prior distribution is proportional to that in (s).

We may rewrite the quantity in () in terms of the

v's as
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Ym+l ' Vm+i/m+i m 1
e

(rTv1 )1B(vk,...,vi),Vm+l
i=

where the summation is taken from i=k to ni.. The desired

posterior density is then proportional to the product of

the above quantity and the density given in Corollary lb.

We get

1 4V1W1 m --(2l) 4vw
v1e (flv e )1B(vk, .

1=

where
m

n = N(m+ik) + 2[' 1 t (i)],m i=k

= (-p.)2 for i = O,l,...,m; arid

ki
wm+i=2/I3m+i+r=ziwi if k>-O

i=o

if k=O

If we define g by

21
= -i-- for i =

1

- for i=m+l,
Wm+i

We see that the problem of finding the posterior mode is

the same as the problem given in (7). The Monte Carlo

study, for which results are given later in this thesis,

(9)
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was based in part on a prior of the form given in (s).
Using a prior proportional to the quantity given

in (s), instead of that of Assumption 7, has a possible

computational disadvantage since one may make

negative by taking sufficiently large values for the

for i = k,k+l,...,m.

With either prior, it is possible to get negative

values for some of the g's. If this happens, a posterior

mode may or may not exist. It depends on the region B.

When some of the g's are negative and a posterior mode

does exist, it may not be the isotonic regression of

something. Thus, other computational methods may be

needed to compute the posterior mode. Such computational

methods will not be discussed in this thesis.

Hence, with either prior, one may encounter

computational difficulties if one or more of the

was less than . This would be the case if one

wished to express strong opinions that the corresponding

z1 or v was near zero.

First, consider the case in which one believes some

particular z is near zero. If one feels very strongly

about this, he may essentially take z as known to be

zero. That is, one may place z in the group of known

z's where ik (this would require relabeling the
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z's arid a new value for k ). One may then obtain the

estimate (z) which is the isotonic regression of

g(z) with weights w(z) for j =

(We use g(z) and w(z) to indicate that

these quantities depend on the value of z .). The

limiting estimate .(o) = urn .(z) is the isotonic

regression of g(0) with weights w(0) for

j = k,k+1,...,m-i-1 . (The validity of the limit statement

follows from the definition of isotonic regression and

Theorem A3 of the appendix.)

Next, suppose one wished to express a strong

opinion that v is near zero. Since v = l/(o.2+C2)

one must feel that either or is very large. If

2 2.one s willing to act as though
Of

= oo arid a- is

finite, then one is willing to act as though z =

is near zero. Thus one may proceed as described in the

previous paragraph. If one is willing to act as though

= and is finite, then one may be willing to

:1.act as though z.
1 isknowntobe 1.

In view of the preceding discussion, it seems that

the possible computational difficulties caused by wanting

to choose less than , can often be overcome.

We now carry out the promise made in Example 3 of
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the Introductory chapter of this thesis for the case in

which Cr2 is unknown.

Example: We make the Assumptions 1 through 7 along

with the following assumptions:

(:i) k=O
(ii) v=i
(iii) = = - = cr (unknown)

(iv) i=O

(v) N>ni-,-1>2

(vi) N(ml) + 2('(il)> 0

(vii) for i = O,l,...,m

m
.(2 2(ni-1)

(viii) i=0

The assumption (iii) implies that

B = (vo,...,vmi); OVo=ViVm+1 for i =

Assumption (iii) and (iv) imply that

for i = 0,1,...,m.

In vector notation we have

We must minimize the quantity given in (7) which is

m+1
E [v_glog(v) ]w
1=0

= v0 log(v0)0 + v1w1_log(v
i
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where

m m
= i0 Wj and = (1/ci (2_1)° 1=0

aibject to the restrictions that VOVm+l
By the Maximum Violator Algorithm in the appendix

we have

and

(_o

om+i'ooin+iWmi) otherwise

(m+1 f
Vm+l

(.(Wo+wmi) otherwise.

Therefore

(o1+i if

ZO V0/V1
1 otherwise

We now let for i =

Then

(ar/n ' if a/n

zo =

11 otherwise

m
where a = E (2-1) , n = N(m+1) + 2( l) and

1=0
r is the usual residual sum of squares defined in

Corollary lb.



Now define F by F =

Then

(al F>n
(1 otherwise

Thus

, aj . a
- (l--._)9 if F

' 1F fl

( 0 otherwise

We can now easily see that the rule i is obtained

by performing a classical Ftest of the hypothesis

H0: =0, against the alternative H1:9O. The critical

region is given by F; Fa/n1. If is rejected,

then = (1 while if H0 is not rejected, then

Ti = 0. Also, we see that an increase in the value of

a, which is increased sureness in the prior opinion that

z0 is near 1, lowers the level of significance of the

test.

The interpretation of this rule under the assumptions

from which it was derived would be to perform an Ftest of

the hypothesis that = z1 = ... = = 1. The

critical region and degrees of freedom are the same

under either interpretation. We may rewrite as
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In [Baranchik, 1970], the rules

= (1c/F),

where 0 c 2(m-1)/[N(m+1)-2],

are cited as being the James-Stein estimates. Baranchik,

in that same reference remarks that these estimates may

be improved by replacing (1c/F) by max 0, 1c/F'

Therefore, i is an improvement of the JamesStein

estimates and dominates the least squares estimate .

3.2.3 Estimating the hyperparameters: Bernoulli prior.

Consider the basic rule when p 0. We have

)1j = (1z)1 , i = O,1,...,m

If the values of z1 were restricted to being zero or

one for i = 0,l,...,m; the basic rule would give

estimates resembling the usual (i.e. least squares or

modifications of least squares) estimates. This section

is devoted to estimation of the z's when they are

assumed to have independent Bernoulli prior distributions.

We make Assumptions 1 through .5 of section 3.2.2. We

shall also assume k = 0. Thus, by Corollary lb the

distribution of
'3 given =

is

m iv1 e4"m+iYm+i(fl z.) (10)
i=0 1



where

= i = O,1,..,,m

Wm+1

The quantity in

that Oz<1 for
put an ordinary Bern

Let 0H5<'-,

for i = 0,1,...,m.

m
r + E z.w1

i=o
1

(10) is based on the assumption

i = 0,1, . . . ,m. Thus, we cannot

Dulli prior on the z's.

0<- and 0<p1<l

Let

(p. if z. =
P[=z] = )

a. 1

(qif z1=C

where = for i = 0,1,...,m. Assume that

m' m1 are independent and that has

a gamma distribution with parameters z , 0 and f3 >0.

Then the posterior density of given

y=y1s

m+1v1 z_le_V [l/B+R)W1]m(l)
i=O

for v1> 0 and zero elsewhere.

After integrating with respect to we obtain the

prior density of It 15
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[(l/ç3) + 2Wm.1:1] (TT zP[z=zJ). (il)

We denote the posterior density by 3e Then

is proportional to the quantity in (U). The

domain of f has 2m+1
points. We could obtain the

posterior mode, , by evaluating
(,E)

f at each point of its domain.

In view of our original objectives, it would seem

that this procedure should become more desirable (in the

sense of being nearer Bernoulli) as and approach

zero. Unfortunately there is a danger in taking E too

small. Letting -1 presents no difficulty, we obtain

for each . But,

urn = (1,1,...,1),
c -0 (1,)

since if for some j £ {O,1.. . ,rn}, z = C, then

Urn f1 (z ,...,z ) = f1 0(z ,...,z ) = 0.
, o m , o m

However,

Urn (1,,..,1) >0.

Therefore

= (1,...,i).m (i,)

The preceding limits we obtained under the
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assumption that p did not depend on for

j = O,1,...,m. We would like to choose values of

from the set but we are given a choice of values

of z from the set As approaches zero, we

may become more willing to increase for i = O,l,...,m.

That is, the choice of C , as opposed to 1, becomes

more appealing as -O.

We shall now assume that there exists Ci's such that

p = and = lp

While it is recognized that the preceding discussion

perhaps provides a rather "weak" motivation

for assuming = Ci1 for i = O,1,...,m, this

assumption does lead to the desired goal of obtaining a

rule which resembles those currently used. Then

(r1-cv if z = C
z2 P[z=z]

=

Therefore we may rewrite the quantity in (11) as

. 4N Z )1r[r (1C1V
i(

1 1( z)
J.(14 4Wm+1)

1=0

(12)

Now, for each fixed , the quantity (V)m+l may
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be ignored when comparing the values of at the

points of its domain to find the mode. Hence, we will

get a nontrivial limiting mode as approaches zero.

It would be given by computing the mode of the function

m 1 m z.

[14 +(r+0ziwj)YN_zLFCj1:I,ii(zj)], (13)

which is proportional to the limit of the posterior

densities, f1 as E approaches zero, where

for i = O,1,...,m. We shall denote this

limit by f. Thus, the limiting posterior density, f,

is proportional to the quantity given in (13).

This is the sort of posterior density that was

desired. It does not depend on 6. It is a function

of the z1's which gives positive probability only when

each c O,13 . The relative magnitude of the prior

probabilities, p, is reflected in the relative

magnitudes of C for i = O,1,...,m. The function, f,

has a unique mode (almost surely). Even though f is

not a well known density, its use leads to an optimal rule

derived by T. W. Anderson [1971] for determining the

degree of a polynomial.

In using f to duplicate Anderson's rule, we



do not compute its mode. We take (3 = . Next we

restrict the domain of f to points x of the form

o = (0,0,...,0), and

Xk = (z0sz)

where

64

(1 for kim
1

(.0 otherwise

for k 0,l,...,m}. In Anderson's procedure we would

begin by comparing f(0) with f(xm) If f(0) > f(Xm)

then we fit a polynomial of degree m. If f(0) <f(Xm)

then we compare f(xm) with f(Xm_i) If f(X) > f(Xm_i)

then we fit a polynomial of degree rni. If not, we

compare f(xmi) with f(Xrn_2) The procedure continues

until we find a point, x, such that f(x) > f(x_1) and

fit a polynomial of degree j1 or until we find

f(x1) <1(x0) and then fit a constant.

To see that the described procedure is that given

by Anderson's rule, we note that

f(x) .f(x_)

if and only if

m 1 rn m 1 m[(r+Ewj)]T_z(yTCj) t-(r+ w)JN_'Z(.fl. C)13 1=3 1j-i



if and only if

w_1/( r + E w) > c 2/(N-i-2 z)1
i=j

In Chapter 4, T. W. Anderson's nile is compared to the

rule of taking o''m as the mode of f when

= cO as well as other rules.



known, V2 unknown

3 .3 .0 Introduction

The sections 3.2.1, 3.2.2, and 3.2.3 differ from

3.3.1, 3.3.2, 3.3.3 primarily in just one respect. In

the latter sections, it is assumed that is known.

We shall make Assumptions 1 through 5 as given in 3.2.2

except that we now assume 2
is known.

We again wish to estimate for i = k,k+1,...,m.

If we wish to obtain "maximum likelihood estimates", the

appropriate density function is the density of '. Thus,

by Corollary 1b, we wish to find VkVk+1SØVm which
maximize

where w ()2
i=k

e'iYi

for i = k,k+1,...,m

('4)

First, we consider maximizing the quantity in (14)

with no restrictions. We may consider the problem as

that of finding VkVk+1SSVm which minimize

i=k

]w (15)
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where g = 1/wi for

Clearly

= 1/wi

for i = k,k+1,...,m.

Hence,

i = k,k+1, . . .,m,

ii = Vi/Vm+i = a-2/wi

for i = k,k+l,...,m.

From Theorem 2C, we see that

2
ziwi/U-

for i = k,k+1,...,m; has a central chisquare

distribution with one degree of freedom. We

maximize the quantity in (15) without imposing the

restriction that ViVm+1 for i. =

Thus, the estimate could exceed one.

If for some ic {k,k-i-1,...,ml, we wished to test

the hypothesis I-1: z1=1 against the alternative that

H1: z1, it seems that a reasonable procedure might

be to reject H0: if w1/cr-2 were sufficiently large.

When = 1, the basic rule gives us ji =

If a classical statistician were to test the

hypothesis H: 9=p against the alternative H:



he would most likely reject H: if w/Q-2 were

suffiently large.

In either of the above cases, the test statistic

has a central chisquare distribution with one degree

of freedom when the null hypothesis is true.

Hence, after comparing these results with those of

3.2.0, it appears that regardless of the knowledge of

the procedure of taking the estimates of z to be

the maximizing values of the density of , yields

results which closely resemble those of the classical

procedure. It also seems that in both cases we could

improve our estimates by imposing the restriction that

V for i = k,k+1, .. . ,m. This is the primary

goal of the next section.

3.3.1 Estimating the hyperparameters: flat prior, known

In this section, we make Assumptions 1 through 5

as given in 3.2.2, except that we assume 2
is known

We add the following assumption:

Let X = k,k+1,..,m and let "" denote a

quasiorder on X. There is a set, B, such that

(VkVk+lIVm) LB. We require the estimate of

(Vk,Vk1,...,V),



element of B. We also require B to be

defined in such a way that g = (gg1t. . . ,g) B

if and only if g is isotonic with respect to ,

and O<gv1.

Example

Consider again Example 1 of the introduction to

this dissertation. Suppose that now r2 is known.

Suppose we wish to obtain a polynomial estimate

1=0

with a degree of ki or higher. Then we may take

= oo for i = 0,1,...,ki.

Suppose we wish to express the opinion that the

regression is smooth by requiring

22 2

or

Zm<i

or

OVk<Vk+1 S

Suppose also, we are willing the replace the restriction
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VmVm+1 with vv1. Then we define the quasiorder

2 on X = Ek,k+1,...,rn) as the usual total orders. Then

v is isotonic if and only if

VkVk+1(1

We add the restrictions that 0 <v for

i = k,k+1,...,m. Then we are requiring v to be

isotonic with bounds 0 and Vm+1 The set B of

Assumption 6' would be defined as

B = (VksVm) ; O<Vk<Vk±1.. ZVm

The main purpose of this section is to describe the

estimate = with Assumption 6'. We

wish to minimize the quantity in (15) subject to v being

isotonic and O<VSVm+1S

Theorem 4

Let g and w be positive and finite for

i = k,ki-1,...,m. The sum

m
E [v1 glog(v)]w
i=k

is minimized over isotonic v for which 0 'V

by taking v = V, where is the bounded isotonic

regression of with weights w for i =

and bounds 0 and Vm+1 The minimizing function is
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unique. (See the appendix of this thesis for

definitions and key results on bounded isotonic regression.)

Proof: Without loss of generality, we may assume that

the bounds are 0 and 1. To see this, define

g = g/V1 and v = Vm+1i where minimizes

]w

over all isotonic such that 0<v1. (Note: All

summations in this proof will be taken from i=k to m.

Hence, we shall omit showing the limits.)

Then t ]w .

for all isotonic such that 0.v1

if and only if

(i gp [log) - lo(+i}w. cLOg(\) -

for all isotonic v. such that 0 <v. v1

if and only if

c g1log(V) ]w + . log(v1) gw
m+1 m+1

E[v g1log(v)]w1 + . log(v1)Egjwjm1 mi-i

for all isotonic v such that O<v Vm+1
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We shall now assume the bounds are 0 and 1. By

Lemma 1, in section 3.2.1, it suffices to minimize

subject to v being

Theorem A2 in the a

isotonic regression

in (16) in the class

0v1. ByTheorem

V >0.

(16)

isotonic and Ov1. By

Dpendix of this thesis, the bounded

V uniquely minimizes the quantity

of isotonic functions v such that

Al in the appendix of this thesis,

C]

Thus, for a given quasiorder on X, we may

apply Theorem 4 to minimize the quantity in (15) subject

to v being isotonic and 0 v Vm+l The minimizing

function is the bounded isotonic regression of

with weights w for i = k,k+1,...,m. It will be seen

in the next section that this estimate of the vi's is

a limit of the estimates derived in that section.

If the quasiorder,, on X is a simple order

(i.e. i,jEX; 12j if and only if iJ ,

method for the computation of the bounded isotonic

regression is given in the appendix of this thesis. For

methods of computation of bounded isotonic regression with

other orders, see [Barlow, Bartholomew, Bremmer, and

Brunk, 1972].



73

3.3.2 Estimating the hyperiDararneters: gamma prior, 2Inown

This section contains a method for estimating the

unknown vi's when they are assumed to have "truncated"

gamma distributions. The exact distribution will be

specified in Assumption 7'. We shall see that with an

appropriate choice of the parameters of the priors, we

may obtain the rule (the rule obtained by minimizing (15)

subject to v being isotonic and bounded) given in the

preceding section. This section is concluded with an

example. In the example, a particular quasiorder is

assumed. The resulting rule, for several choices of

the prior parameters, dominates the least squares

estimator when using squared error loss. For a

particular choice of the prior parameters, the

resulting rule is seen to be a plusrule version of

the JamesStein estimator which uniformly improves

on the JamesStein rule.

Again, we shall make Assumptions 1 through 5 as

stated in 3.2.2 except that we assume 2
is known.

We shall also assume 6'

addition we assume

as given in 3.3.1. In

7'. The prior distribution of k''m 15
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j.-1 (v.43.)
1 1 1ITT v e 1B(VkIVm) (17

where and (3o for 1 =

The posterior distribution of

given = y is proportional to the product of the

quantities given in (14) and (17). The product is

in ()(2Y.-1) (flv.w.
1

[rTk v e
1]

1]3(vk,...,vm) (i.e)

where we have redefined w as

w (,)2
+

for I = k,k+1,...,m.

If we define g1 by

= (2-1)/. (19)

for I k,k+1,...,m, then we see that finding the v

which maximizes (is) is equivalent to finding v which

minimizes

]w (20)

Subject to v being isotonic and

We may apply Theorem 4 to minimize the quantity in (20)

when g>0 for i = k,k+1,.,.,m. Thus when g1> 0

for i = k,...,m, V is the unique
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minimizing function of the quantity in (20), where V

is the bounded isotonic regression of g with respect to

the weights w and the bounds 0 and Vm+1s

Observe that if = 1 for i = k,k+1,...,m,

then the prior distribution of the vi's, given in

Assumption 7', will become "flat" as becomes

large for i = k,k1,...,m. That such a prior is

appropriate to represent vague knowledge (apart from

Assumption 6') is substantiated not only by its shape,

but by the fact that the g's and the wi's of this

section converge to the g's and wi's of the previous

section as oO and = 1 for i = k,k+1,...,m.

Hence, by Definition A4 and Theorem A3 of the appendix,

the V of this section converges to the V ol' the

previous section when = 1 and for

I = k,k.+1,...,m. In the previous section we had no

prior distribution on the v1's.

As was discussed in 3.2.2, the problem of expressing

prior knowledge which leads to a negative value of some

can often be overcome by assuming that z is

known.

We now present the example mentioned in the

introductory chapter of this thesis as well as in 3.3.0.
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Example

We make Assumptions 1 through 5 as given in 3.2.2

except that we assume 2 is known. We also make

Assumptions 6' and 7' as given in 3.3.1 and 3.3.2

respectively. We make the following additional

assumptions:

(i) k=O.
(ii) v=i.

(iii)
2 2

(unknown).

(iv)

(v) 2i
(vi) m2.

(vii) a 0, where a =
In

E (2-1).
i=O

Assumptions (iii) and (iv) imply that

B = v1; 0 = V1 = =Vm< i\

The quasiorder on X = [0,1,...,m) is defined

by

ij
for all i,j E. X.

Assumptions (iii) and (iv) imply that the basic

rule becomes



=

where is the least squares estimate of .

To obtain we must minimize the quantity

given in (20), which is

subject to v being isotonic and 0

For this particular example, an expression for

is easier to obtain by reformulating the problem

somewhat. Using the fact that

V0 = V1 = =

the quantity to be miniiriized is

m m
v0(Ew) - [log(v0)](gw)

Define and by

= w1 and = = a

Then we wish to minimize

[v0-0log(v0) ]

subject to 0<v01.

Thus, the set B, defined above, may be
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(21)



replaced with the set , where B = (04]. The set

X is likewise replaced with the set X = o1. The

quasiorder is replaced with the usual totalorder,

, on 5.

Hence, our problem is now to minimize (21) subject

to v0 being isotonic on X and 0 < 1 . Thus, by

Theorem A4 of the appendix to this thesis,

= mm 11,

Therefore

Zo = Vo/Vm+l = mm [1,
c3

For the remainder of this example, we shall assume

a loss function L defined by

L(9,) = (9fl'(s).

for all parameters and estimates g

We now define S by

s=1.
Then Baranchik's Theorem [Efron and Morris, 1973] states

that the rule, , defined by

= [1 -
will dominate 9, if

(i) 'C(s) is nondecreasing in S, 'C(s) O and

(ii) 'C(s)-t as S-°, and 0t< 2.
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Since p = 0, w, as defined in (la), becomes

= + 2/3

for i = 0,l,...,m. If we define b by

then

Thus

implies that

m
b = 21/f3.,

1=0 1

=Ew1 = Si-b.

= a/W0 = a/(Sb)

= minfi ,

We define t(s) by

if Sab
= i

a otherwise.

It is easy to see that condition (1) of Baranchik's

Theorem is satisfied. Since T(S)_ mal as S-;

the rule

=

will dominate when a2(m-1) (See Assumption vii).

In particular, the methods of 3.3.1, which would

correspond to b = 0 and a = mi-i, yield a rule which



dominates when m 3.

Now, the JamesStein rule is

= [i - (mi)/S]

It is well known that dominates . But the

plusrule version of the JamesStein rule, which is

= [1 - mm {1,(m-1)/S3],

uniformly improves on
2

[Efron and Morris, 1973].

Clearly, if a rni and b = 0, we have

--c-I-
°2 .

p.3.3 Estimating the hyperparameters: Bernoulli prior,

cr2 Known

As in section 3.2.3, we shall restrict the possible

values of the parameters z, for i = O,i,...,m to

zero and one in order to obtain "classicallike"

estimates from the basic rule.

We make Assumptions 1 through 5 of 3.2.2 except

that we assume o2 is known.

We shall also assume k = 0 and pi = 0.

The likelihood function which is proportional to the

quantity given in (14) may be written so as to be

cx TTzje4 (22)



where w = 2 for i = 0,1,...,rn.

Since the result in (22) was obtained under the

assumption that 0 z <1 for i = 0,1,... ,m, we

use the following prior distribution:

(23)

where for 0 < ' and 0

(p if =

=
if z=

for i. = 0,1,...,m.

Thus, the posterior is

m 1fl z2P[=z]e
(24.)

i=0

For £ and sufficiently small,

4w
yqe (1_)2pe

for i = 0,1,...,m. Thus, the value of z1 which

maximizes the posterior when C and are sufficiently

small is 1 for i =

As in section 3.2.3, we let



q=]p

for I = 0,1,...,m. Then

z.) 1 (z.)
z P[1=z]=C1 1 (1C) 1 (z.)

1

for i = 0,1,...,m. Thus, the posterior distribution

converges as £ 0 and '- 0 to a distribution which is

m-

TT[Ce
(.-)wz1

1=0

That is, the 's are independent binary variables

leading to a posterior distribution which is a product

of Bernoulli distributions with parameters given by

ci

e

for the probability that = 1 for i 0,1,...,m.

The mode is obtained by taking L = 1 if and

only if

Wi < 2log(c..)

for i = 0,1,...,m. That is, we perform the classical

test of the hypothesis

9=O against HL rj

with critical region defined by



2logC

(w is the square of the usual test statistic) and

take

if is rejected

(-0 otherwise,

for i = 0,l,...,m.

Since the tests are independent, there is no

difficulty in obtaining the overall level of significance

for the test procedure.



4. MONTE CARLO COMPARISONS: UNKNOWN

4.0 Introduction

Fifteen different polynomials were considered;

five were quadratics; five were cubics; and five were

quartics. For each polynomial, say R(x), a random

sample of size two was taken from a population which

was normal with a mean equal to R(x), and a variance

of one. At each of the seven points x = 3,-2,1,0,l,2,3.

Thus, a total of N = 14 observations was obtained.

Based on the 14 observations, five estimators of R were

evaluated. The estimators used were

1. GM Gauss Markov = Least squares

2. GMT = T. W. Anderson's rule (see 3.2.3 or

[Anderson, 1971]

3. GMD = method recommended in [Draper and Smith,

1966]

4. GIP = the rule derived in 3.2.3 (the mode of

a posterior distribution)

5. IR = the basic rule using Isotonic Regression

derived in 3.2.2.

The loss was computed for each of the five rules.

The loss attained in using the estimate R to estimate



the polynomial R was defined as "the average squared

error loss over the interval I = [-3, 3]". That is

L(R,) = (1/6)5[R(x)(x)]2dx.

This loss function is discussed in 3.1.

The process was repeated twenty times for each

polynomial R(x). That is, in each of the twenty times,

fourteen observations were taken. From these fourteen

observations a loss for each of the five estimates was

computed. Thus, for the polynomial rt(x), we obtained

twenty losses using the GM rule, twenty losses using

the GMT rule , itc, Section 4.1 contains tables in

which the average and the variance of the twenty losses

for each estimator is given. The tables also include

the number of times the estimated polynomial was of the

same degree as the actual polynomial for each estimator.

The average loss and the variance of the losses are

denoted by AL and VI respectively, and defined by

20
AL =(1/20) L(R,1) and

i=1

20
VI =(1/19)L [L(R,) - AL]2

i=1

where denotes the estimate of R obtained on the
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1th repitition of the experiment for i 1,2,...,20.

The polynomials, R, were expressed as the sum of

orthonormal polynomials, (where 1P is of degree i)

for i = 0,1,...,6. That is

R(x) =

where

if ±
=

x=-3
_1 if i=j

The tables in Section 4.1 identify R by specifying

the values of for i = o,1,...,6.

The design matrix used was

Q = E(x)] i = 1,2,...,14

j = o,1,...,6

Thus, the observed vector y of the random vector y,

where

'vN14(Q,I)

led to the GM estimate , where = Q'y. Thus, the

GM rule produced a six degree polynomial estimate in

each case. This is to be expected since

] =0.

In each of the other four estimation procedures, it was



assumed that the coefficient of the constant term,

was known to be nonzero.

Thus, in the GPID procedure, the hypothesis

=O against the alternative 41):

was tested for i = l,2,...,6. In each test, a

standard Ftest was performed using a significance

level of 5%. The denominator of the test statistic

was the same in each of the six tests. In fact, it

was y'y -

The GMT nile was obtained as described in 3.2.3

with the Ci's chosen so that each individual test

would have a significance level of 5%.

For the GMP nile, the Ci's of the GMT rule

were used. The domain of the posterior distribution was

unrestricted (except that each z was either zero

or one for i = 1,2,...,6) so that it was possible

for the GMP rule to produce estimates,
,

of Qj

in which

1' 2°' 3O 85O 6#1

Such a result could not be obtained from the GMT rule

since if the hypothesis that 6=O is rejected, the

parameter elimination is stopped and a polynomial of

degree six is fitted.
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The IR rule that was used is described in 3.2.2.

A "truncated beta" prior distribution was put on the

z's. Vague knowledge was expressed regarding

1
Vm+1

by taking 'm+i = 1 and Im+1 = °. In this case,

m=6, and N=14. Then, in order to insure that n>O,

where
m

n = N(rn1--k) - 2E(y1-1),
i=k

it was necessary to choose for i = 1,2,...,6 so

that

6
2E(11.-l) < .
i=1

It was also desired to choose the Y'S to be consistent

with the restriction z1 z2 . ... z6. Thus was

taken to be nondecreasing in i . The values used were

'1 = :i, '(3 = 1.5, '(4 ='(5 = 2.0, '6 = 2,49999.

These were the only values for the 's that were

tried. It would be interesting to see the change in

performance of the IR rule with other choices of the

S.

The known value of z0 was taken as zero in the



in the sense of the procedure described in 3.2.2. The

order on the set X = 1,2,...,6} used was the usual

order, Z. This means that the set B was defined by

B= (v1,v2,...,v7); 0v1v2<...v73

where v7 = 1/2 (presumed unknown).

There was also some Monte Carlo work done by taking

ten observations at each of the points 3,-2,1,0,1,2,3.

So that in that case N 70 observations on which to

base each estimate. In that study, the same loss

function was used, but the average loss was based on

ten observations of the loss. Also, in that study the

IR was based on a flat prior as described in section

3.2.1. In that study the IR rule was compared to the

GM and the GMD rules. While this IR rule had no

difficulty outperforming the GM rule, especially when

the actual degree of the polynomial sampled from was less

than five, it did not perform as well as the GMD

rule, especially when the actual degree of the polynomial

sampled from was less than three.

Based on these observations it seems that in order

to have the IR rule compete Lth the GMD or GMT

rules one should express a fairly strong opinion that

the zs are near 1, unless he has good reason to do



otherwise. It may be that this would not hold if one

expressed an opinion other than that of vagueness

about 1/-2



4.1 Tabulated Results

(1)

GM

GMT

GMD

GMP

IR

(2)

GM

GMT

GMD

GIVtP

IR

(3)

GM

GMT

GMD

GIVIP

IR
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Quadratic

= 30, G.1 = 20, G2 = 10, G = 0 i = 3,4,5,6

# times correct degree

.78096 .36885 0

.37350 .24063 17

.36320 .22308 17

.36320 .22308 17

.21138 .02536 16

= 0, G. = 10, G2 = 4, G = 0 i = 3,4,5,6

# times correct degree

1.09831 1.11057 0

.50750 1.06915 17

.47061 .94630 1.8

.47061 .94630 i8

.20241 .07655 16

= 15, G1 = = .05, G = 0 ± = 3,4,5,6

# times correct degree

.93745 .66490 0

.29541 .43898 2

.29582 .29558 2

.26715 .29961 2

.14092 .02168 3



(4) 0 = = 10,

GM

GMT

GID

GMP

IR

(5)

GM

GMT

GMD

GMP

IR

(6)

GM

GMT

GMD

GP

IR

AL

.78068

.24000

.22417

.22417

.178 24

92

220, =0 i=3,4,5,6

# times correct degree

.16709 0

.04793 17

.03364 17

.03364 17

.00978 17

o105.8299, 2
91.6516, O= 0 1. 3,4,5,6

# times correct degree

.76443 .20960 0

.28164 .20511 17

.22023 .11066 17

.16997 .06971 18

.14183 .01395 16

= 10, = 6,

AL

.86323

.39045

.46637

.41361

.27024

Cubic

2_2, 321 =O i=4,5,6

VL # times correct degree

.20929 0

.11722 14

.15661 13

.12101 13

.04816 15
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(7) o 1
= 3, = 1, E = 0 ± = 4,5,6

AL VL # times correct degree

GM .86210 .36926 0

GMT .44486 .18113 2

GMD .46246 .20863 2

GMP .35094 .09404 2

IR .28643 .02703 5

(8) 3_30 =0 I = 4,5,6

# times correct degree

GM .65137 .49892 0

GMT .31807 .44597 18

GMD .31806 .44592 18

GMP .31806 .44592 18

IR .17346 .01960 19

(9) o = 0 = 3, = 0 ± = 4,5,6

# times correct degree

GM .95592 .71419 0

GMT .52958 .67972 16

GMD .50934 .70962 15

GMP .40302 .61922 17

IR .33509 .10354 i8
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i=4,5,6

AL VL # times correct degree

GM .7607 .27760 0

GMT .53724 .13719 10

GMD .69695 .14145 12

GMP .6629 .17239 13

IR .3964 .o614 14

Quartic

(11) 22, 32 42 =O I = 5,6

AL VL # times correct degree

GM .73146 .14500 0

GMT .73621 .17419 10

GMD .2296 .03301

G?1P .?936 .04.93 6

IR .73354 .1019 9

(12) e1s, 2' 33 42 9=O I = 5,6o1'
AL VL # times correct degree

GM .76137 .23555 0

GMT .60645 .14911 10

GMD .67361 .17767 9

GMP .61509 .1702 10

IR .5E56E .09763 13
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(13) 9o1, 9ib0, 2' 3_2 94=l0 9=O i=5,6

# times correct degree

GM .664 .3225 0

GMT .3346 .26674

GMD .49036 .29075

GNP .4.611 .2761

IR .2321 .02550 19

(14) o=- 9i=15, 9210, 93=5 94=1 9=O i=5,6

# times correct degree

GM .93403 .51401 0

GIT .3th3 .O37 4

GMD .367 .0390 4

GMP .3670 .03997 4.

IR .33466 .04143 6

(15) 9=1 9150, 92=25, 93=50 94=10 9=0 i=5,6

AL VL if times correct degree

GM .67665 .11935 0

GMI' .39573 .07236

GMD .39175 .O669 1

GNP .39175 .o669

IR .3615 .05240 19



4.2 Graphical Results

In the graphs which follow, the vertical scale gives

the values of the average loss as taken from the preceding

tables. The integers on the horizontal scale correspond

to the situation described in the like numbered table.

"Best" is defined as the minimum value of the average

loss (for each particular situation) attained by the five

rules, GM, GMT, GMD, GMP, and IR. The plotted points are

labeled with the final letter of the designations for each

rule except for the IR rule. For example, GMT is

labeled as T and IR is labeled as I

Notice that the IR rule does uniformly well. In

fact it is "Best" except for case (ii); and then it is

within .0021 of the "Best" The IR rule performed well

even when the assumption was

radically violated.

We also see that the GNP rule (the generalization of

GMT) outperforms GMT ten of the 15 times. The G1'1P rule

does as well or outperforms GMD every time.
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APPENDIX

The material in the appendix is included for the

purpose of aquainting the reader (or reminding the already

infonued reader) of those aspects of isotonic regression

and bounded isotonic regression alluded to in the text of

this thesis. Most of the facts on isotonic regression

were taken from [Barlow, Bartholomew, Bremner and Brunk,

1972]. Nost of the facts on bounded isotonic regression

were mentioned in that reference as being obtainable by

generalizing the theorems on isotonic regression, but

proofs were omitted. Thus, the thesis author has provided

proofs of these facts which were deemed most important

in the thesis.

Definition Al

A binary relation "2" on a set X establishes

a simple order on X if

i. it is reflexive: x 2 x for all x in X ;

ii. it is transitive: x, y, z in X ,

x2y, yzz imply xz ;
iii. it is antisymmetric: x,y in X , x 2 y

yx imply x=y;
iv. every two elements are comparable: x,y in X

implies either x y or y Z x
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A partial order is reflexive, transitive and anti-

symmetric.

A quasi-order is reflexive and transitive.

Definition A2

A real valued function f on X is isotonic

with respect to a quasi-ordering " 2 on X if

x,y in X , x Z y imply f(x) f(y)

Note: For the remainder of the appendix, we shall assume

X is a nonempty, finite set. We shall also assume the

function w defined on X is strictly positive.

Definition A3

Let g be a given function on X and w a given

positive function on X An isotonic function g* on X

is an isotonic regression of g with weights w , if and

only if it minimizes in. the class of isotonic functions f

on X the sum

[g(x)-f(x)]2w(x) . (ai)
xX

Definition A4

Let a and b be real numbers with a b

An isotonic function g* on X with a g* b is

called a bounded isotonic regression of g with weights

w and bounds a and b if and only if it minimizes the



ii:i

sum in (al) in the class of isotonic functions f for

which a f(x) b for all x in X

Note: In [Barlow, Bartholomew, Bremner and Brunk, 1972],

the a and b of Definition A4 are allowed to be functions

on X Since such generality was not needed in this

thesis, we will use Definition A4 as it is stated.

Notation: Let X {Xl,X2,...,XkI ,
Z be a quasi-order

on X

K = f; 1' is (bounded) isotonic on xJ

C = (y1,y2,.s.,y)'c Rk
; y=f(x) , i =

forsome f6K},

where y' denotes the transpose of the vector y and Rk

Euclidian k-space . Also, let

w = (w(x±)) i,j = l,2,...,k

If g is a real valued function on X , let

g = (g(x1),...,g(x))

That is, the bar over a function on X is the vector of

the function's values.

Remark: With the above notation we may define an inner

product " on Rk by
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u'Wv

for all u,v in and a nonn "II on by

2
i1ytL - y'Wy

for all y in Rk.(We are now assuming w?O .)

Then the sum in (al) may be written as

Hence, an (a bounded) isotonic regression g* is that

element of C which is closest to in this metric.

It is easily seen that C is a closed convex subset of

Therefore, a well known theorem guarantees the

existence and uniqueness of g* One may consult

[Luenberger, 1969] for example. A necessary and sufficient

condition that g* be the (bounded) isotonic regression of

g is that

(a2)

forall finK

Theorem Al: If g1 and g2 are (bounded) isotonic

functions on X such that g1(x) g(x) g2(x) for all

x in X , and if g* is the (bounded) isotonic regression

of g , then also g1(x) g*(x) g2(x) for all x in X

Proof: We repeat the method of proof given on page 29 of

[Barlow, Bartholomew, Bremner, and Brunk, 1972].
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Define the function h on X by

h(x) max[g*(x), g1(x)]

It is easily seen that h is (bounded) isotonic. If

g*(x) for a particular x in X , then h(x) = g*(x)

so that g(x) - g*(x) = g(x) - h(x) ; while if g*(x) <g1(x)

then 0 g(x) - h(x) = g(x) - g1(x) g(x) g*(x)

Thus, f or all x in X

[g(x) - h(x)]2 [g(x) - g*(x)]2

implies

[g(x)-h(x)]2w(x) [g(x)_g*(x)]2w(x)
xcX xcX

with strict inequality if g*(x) < g1(x) for some x in.X

The proof that g*(x) g(x) is similar. []

Notation: Let be a convex function which is finite

on an interval I containing the range of the function g

and infinite elsewhere. Let be an arbitrary

determination of its derivative (any value between or equal

to the left and right derivatives), defined and finite on

I For real numbers u and v set

if u,vI
L(u,v) =A(u,v) =

if u41, vI
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Results: (Ai) ' is nondecreasing.

(Au) A(u,v) 0 , with strict inequality if

u v and is strictly convex.

(Aiii) (r,t) =(r,$) +(s,t) + (r-s)[(s)-'(t)]

if s,tI

Theorem A2: The sum

E (g(x),f(x))w(x)
xcX

is minimized over the class of (bounded) isotonic f by

taking f = g* where g* is the (bounde isotonic

regression of g with weights w1. The minimizing function

is unique if is strictly convex.

Proof. The proof given is for the bounded case with

bounds 0 and 1 . This proof is easily adapted to the

unbounded case and is shorter than that given in [Barlow,

Bartholomew, Breniner and Brunk, 1972]. Using (Aiii) with

r = g(x) , -U = f(x) , and s = g*(x) we have

where

(g(x),f(x))w(x) = (g(x),g*(x))w(x)
xcX xX

+ ZTh (g*(x),f(x))w(x) + H(f)
xX

(a3)

H(f) = [g(x)_g*(x)][(*(x))4$(f(x))]w(x)
xX
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From (a3), we see that it sufficesto show that H(f) 0

for all bounded isotonic f Let f be a fixed isotonic

function on X such that 0 f(x) 1 for all x in .X

Define A , A0 , and A1 by

A = [xX; Og*(x)<1

A0 = xEX; g*(x)0}

A1 =xcX; g*(x)1}

Since X is finite there exists a real number c , c > 0 ,

small enough, so that

(i) 0 g*(x) - c[(g*(x))_'(f(x))] 1

forall xinA

(ii) c[' (f(x))4'(0)] 1 for all x in A.

(iii) c[' (i)-'(f(x))1 1 for all x in A , and

(iv) g*(x) - g*(y) c[(g*(x)) - t(gE(y))J for

all x, y in X such that y x

Define f by

f'(x) = g*(x) -

forall xinX.

Since is nondecreasing, (i), (ii) and (iii) imply

0 f'(x) 1 for all x in X

since (iv) implies that f' is isotonic, f' is bounded

isotonic.



Now,

H(f) =
xcX

Since f' is bounded isotonic, (a2) implies H(f) 0

To prove uniqueness, (a3) and the result just

obtained imply

(g(x),f(x))w(x) (g(x),g*(x))w(x)
xEX xEX

+ (g*(x),f(x))w(x) (a4)
xX

for all bounded isotonic f When is strictly convex

(Au) implies that last sum in (a4) is strictly positive

when fg* Thus

(g(x) ,f(x))w(x)>(g(x) ,g*(x))w(x)
xX xX

when fg* []

Theorem A3 Let C be a closed convex subset of a finite

dimensional Hilbert space H with inner products < , .>

for 0 o a Let 1lci denote the norm induced by

for 0 a Assume-' ,
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(i) Ux1I1 flx1Jc for all x in H when

,
0<2 in [O,a]

(ii) lix I llx I as oO for each x in H

and

(iii) o
as o' o , where in H for

0 c a

(Note: Since H is finite dimensional, all norms on

H are equivalent. So, by assuming convergence in

any particular norm, we have convergence in

all norms on H .)

Let Pg denote the point in C which minimizes

I1
over ? in C Then _P0 as 0

Proof: First we show P as o 0 Let

be a sequence such that 0 < a for all

n and 0 as n - o

Then by (i) and the definition of PØ we have

II g0 - P00 1k0 o4O1n 1 g0

for all n . By taking the limit superior (Urn) as n-

and using (ii), we have

:i PonoIo IO - 00i0
n-oo

But by the definition of we have



1Io oo - 000

for all n Thus

urn = i1O OO11O
fl o0

By the parallelogram law we have

m0
The) + o I

2JlPç10
olI

+ 2II0

Ilo m0 +

2)
- '12P g0 g010 + 2i(o - - FO0J0

m

since C is convex and in C

The right hand side of the inequality converges to zero

as n , -4 Co Therefore, the sequence

is Cauchy in
}

j and has a limit in C Thus,

p0g0jJ0 = lim n00 limp
n 0onfl-+co

Hence, by the definition and uniqueness of P00 we have

lim =

Now let CO be given. Then (iii) and the result

just obtained imply that there exists a c < a
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if &Ia < /2 and ftp00 - ' < E/

for all o in [O,] . But from (i) we have

< and - P <

for all o in [O,c] . Using the triangle inequality,

(i), and the fact that P is a projection and norm

reducing (see [Brunk, 1965]), we have

ll1t)oo coIO IIoo +

+

for all Oe in [O,o<]

oI(o + tt

[1

The remainder of the appendix is devoted to computation

of isotonic regression and bounded isotonic regression. We

shall begin with the Minimum Violator algorithm. The

Maximum Violator algorithm is analogous and will not be

stated. First we give a definition.

Definition A4

An element x in the partially order set X is

an immedia-te predecessor of an element y if x y but
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there is no z in X distinct from x and y such that

xz
Minimum Violator aLcorithm (taken from [Barlow, Bartholomew,

Brenmer, and Brunk, 1972]).

This algorithm applies when the partial order is such

that each element has exactly one immediate predecessor,

except for one element, called the root, which has no

predecessor.

"The algorithm starts with the finest possible
partition into blocks, the individual points of
X We look for violators: y is a violator
if g(y) g(x) where x is the immediate pre-
decessor of y A minimum violator is a violator
y for which g(y) attains its minimum value
among the values of g at violators. The
algorithm begins by selecting a minimum violator
and pooling it with its immediate predecessor to
form a block. At an arbitrary stage of the
algorithm we have a partition into blocks. Each
block has a weiht, the sum of the weights of its
individual elements; a value, the weighted average
of the values of g at its individual points; and
a root, that one of its points whose immediate
predecessor is not in the block. The immediate
predecessor of any block is the block containing
the immediate predecessor of its root. When a
block and its immediate predecessor are pooled,
the root of the new block is the root of the
immediate predecessor block.

A block is a violator if its value is smaller
than that of its immediate predecessor block. A
minimum violator block is a violator whose value
1s at least as small as that of any other violator.
Each step of the algorithm consists in pooling a
minimum violator with its immediate predecessor
block. This is continued until there are no
violators. At this point the blocks are sets of
constancy for g* and the value of g* at each
point of any block is just the value of the block.

If the partial order is such that each ele-
ment has exactly one immediate sucessor, except
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for one with no successor, an analogous maximum
violator algorithm can be used. Of course, these
algoritfts apply in particular to the special
case of a complete order."

Henceforth we shall assume that X = {xl,...,xk)

is equipped with a simple order . That is we assume

X1X2 ..ZXks

IIaxMin formula (simple order)

Let g* be the isotonic regression of g with

weights w Then

where

g*(x) = max mm Av(s,t) I = l,2,...,k
si t2i

t

E g(x)w(x)
Av(s,t)

r=s
t
W(X)

r= s

(a5)

(a6)

(This formula and other equivalent formulas are found in

[Barlow, Bartholomew, Bremner, and Brunk, 1972].)

We now present a formula for the case of bounded

isotonic regression with a simple order.

IlaxMin formula (simple order)

Let g* be the bounded isotonic regression of

with weights w and bounds 0 and 1 . Then if

forall xinX,

g(x) > 0
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g*(x1) min{1, Av(1,t), t i) (a7)

g*(x) = maxg*(x_1), minti, Av(i,t), t i)3 (aS)

for ± = 2,3,...,k

(Again [Barlow, Bartholomew, Bremner, and Brunk, 1972]

contains more general formulas, but no proof.)

We shall prove the formulas in (a7) and (a8). First

we establish some notation and then give three lemmas.

Notation: Let g* be defined by (a7) and (a8),

K = ff; f:X4[O,11, f(x)f(x1), i

= g(x.)w(x.), g*(x.)w(x.) , and
j=1 j=1

n
w = Ew(x)

i=1

Lemma Al

Let g 0 , then , i 1,2,...,k

Proof: Let denote the isotonic regression (unbounded)

of g with weights w . By comparing the formula of

(a5) with those of (a7) and (a8), it is clear that g*

n
Thus, G , where = g(x.)w(x.) . But it is

i=1
1 1

established in [Barlow, Bartholomew, Bremner, and Brimk,

1972] that G G n = l,2,...,k . []n n
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Lemma A2

Let g > 0 , then for i 1,2,...,k-1 , G <

implies g*(x1) - g*(x) = 0

Proof: Let B = fl,2,...,k} and A = {n in B ;
g*(x) = i.

If A is empty, then g < 1 and is therefore the isotonic

(unbounded) regression of g with weights w (i.e. g*

is given by formula (a5)). it is shown that Lemma A2

holds when g* is the isotonic regression in [Barlow,

Bartholomew, Bremner, and Bnnk, 1972].

Thus, assume A is not empty. Let T be the least

element of A . Then

g*(x.) 1 for i T and

g*(x.) < 1 for i < T

The lemma holds for i T . If T = 1 , we are done.

Soassume 1 Tk-1
Since T > 1 , g*(x1) < 1 Hence

g*(x1) = min(Av(1,t),t1

Define t1 as the largest member of B for which

g*(x1) = Av(1,t1)

Thus, we have
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G
ti G

g*(x1) =w-<w- (a9)

-I;i t

-4-for all t >

Claim 1: g*(x) g*(x1) for n = 1,2,...,t1 . Hence

Lemma A2 holds for i (

Proof of Claim 1: If t.1 = 1 we are done. So assume

> 1 The claim is trivial for n = 1

N ow

= (w() >E (Xi)W()

since g* in K But
t

g*(x1)w(x) = g*(x1)w =
n=1

by (a9). Thus, we have

Gt (alO)
1 1

with strict inequality if the claim fails to hold for some

n , 1 n t1 But a strict inequality in (alO) would

contradict Lemma Al, hence the claim is true.
As a result of Lemma Al and (alO) we have

G= Gt (all)

Thus Lemma A2 holds for i t1
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Since g*(x1) < 1 , Claim 1 implies that < T

If + 1 = T , we are done. So assume t1 + 1 < T .

Define t2 to be the largest member of In ; n .t. + 1}

such that

Claim 2:

minAv(t11,t), tt1i'} = Av(t1+1,t2)

g*(x1) = Av(t1 + 1, t2)

Proof of Claim 2: We have Av(t1 + 1, t) < 1 , since

otherwise, g*(x ) = 1 which implies t1 1 T
1

To complete the proof of Claim 2, it suffices to show that

Av(t1-i-1, t2) > g*(x ) . (a12)
1

Suppose not, then

Gt g*(x )[W ] = g(x1)[wt w I
2 1 1 2 1 2 1

(a13)

by Claim 1. By (a9), Gt = g*(x )W , so (a13) implies
1

1
1

¶1 g*(x1)
t2

But this contradicts (a9) since t2 > t1 . Hence Claim 2

is true.



As a result of Claim 2 and the definition of

we have
Gt-Gt Gt-Gtg*(x1)
\It_Wt

<
Wt_wt
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for t > t2 . We may also note that Claim 2 and (a12)

imply

g*(x1) >

Claim 3: *(x) = g*(x1) for n = t1 + l,...,t2

Hence, Lemma A2 holds for i

(a14)

Proof of Claim 3: The claim is trivial for t2 = t1+l

So assume t2 > t1 + 1 The claim is triiial for

n = t1 + 1 . Now

ti

= + > g*(x)w(x) > + g*(x W.

2 1 ii-1 1 1 2

since g* in K But (all) and (a14) imply

Hence

G* g*(x )[w -W ]=G +G -G

G* a Gt2 t2

with strict inequality if Claim 3 fails to hold for some n
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such that t1 + 1 < n t2 . Since a strict inequality would

contradict Lemma Al, Claim 3 is true and

G* =G
t2

(al 5)

Thus, Lemma A2 holds for i t2 Since t. + 1 < T ,

< T

complete.

etc. if n

terminate

Lemma A2.

1 From

If t2 + 1

Otherwise,

ecessary) in

within T

Claim 3, g*(x ) < 1 Therefore
2

T , the proof of Lemma A2 is

we may define t3 (and t4 , t5 ,

the obvious way. The process must

3teps. This completes the proof of

[1

Lemma A3

Let gO . Then

0 for all f in K

Proof: From Lemma Al, Gk - 0 . If g*(x) = 1 ,

then g*(x) f(xk) 0 , since f in K Thus Lemma A3

is true if g*(x) = 1

If g*(x) < 1 , then g* < 1 implies g* is the

isotonic regression of g Lemma A3 is proved in [Barlow,

Bartholomew, Bremner, and Brunk, 1972] for the case g* is

the isotonic regression of g . [1
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Theorem A4

Let g 0 and g* be defined by (a7) and (a8).

Then g is the bounded isotonic regression of g

(Hence, the I:Iax4iin formula is valad.)

Proof: From (a2), it suffices to show that for each f in K

k
0

1=1

Abel's partial sunimation formula yields

k
[g(x)_g*(x)][gM(x1)_f(x)]w(x) =

i=1

k
1f[f(x)_f(x_1)] - [g*()g*(x1)])[G1

i-1
i=1

+ [g*(x)_f(x)][G_]

where x0 = f(x0) = g*(x0) = G0 = 0

The non-negativeness is now clear from the fact that

1' in K and Lemmas Al, A2, and A3.




