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1 Background

1.1 History and Context

The universe in which we reside is governed by complicated and convoluted

processes. From the probabilistic behavior of the quantum world to the

chaotic interactions of global weather systems, there is uncertainty lurking

in every physical process we try to understand. This necessitates the use of

statistical and probabilistic methods that seek to quantify and reduce this

uncertainty. In most systems, one issue is an inability to conceptualize the

entire domain of the system mathematically. For example, weather systems

can only be understood through discrete observations, such as weather sta-

tions and satellite data. This incomplete data set only gives us a sample

of the entire system, from which we need to extrapolate. In this example,

the variables of a weather phenomena, such as wind speed, pressure, and

temperature, may be theoretically expressed as a function, but practically

understood through limited data points. This data points represent a snap-

shot of this entire system however, and can be used to understand the larger

picture.

The infeasibility of studying these systems by hand delayed much of their

mathematical understanding until the development of computers. Early com-

puters, engineered to solve mathematical problems and operated at research

institutes such as Los Alamos National Labs, immediately began to see use

in studying random processes. The term Monte Carlo, named after the fa-

mous casino, originated to describe the process of random processes, and

soon expanded to include Markov Chain Monte Carlo (MCMC) methods in

the 1950s [3]. The breakthrough occurred at Los Alamos due to the work

of Metropolis, Von Neumann and others [7] studying statistical mechanics.

The revelation that a system’s exact dynamics were not needed, only a de-

scription of the random process, allowed these statistically guided methods

to study complicated processes thus far largely untouched. The use of these
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early computers such as the Electronic Numerical Integrator and Computer

(ENIAC) enabled these large calculations to be performed, which led to the

development of theories to model weather, trajectories, and the development

of atomic weaponry [15]. The ensuing decades saw the development of new

and more versatile and powerful algorithms, such as the 1970 extension of the

Metropolis algorithm known as Metropolis-Hastings [3]. Following this was

the invention of Gibbs sampling and further development of these techniques.

Enabling progress in Bayesian inference and allowing these techniques to be

applied to contribute to the growth of modern data and machine learning

methods.

To discuss these methods in more detail let us define some basics of

probability and statistics. In order to discuss sampling from a probability

distribution, we need to defined what distinguishes a probability distribution

from a general function. First let us define a probability space. A Probability

space is defined as the triplet (Ω,F , P ), where Ω is a non-empty set, F is a

σ−algebra on Ω, i.e. a collection of subsets of Ω such that the empty set is

included, and the collection is closed under complement, countable unions,

and countable intersections [Jones]. Finally, P , known as probability, is a

measure on this space such that P (Ω) = 1. Note that this is a particular

case of a measure space under a finite measure. The set Ω may represent the

set of all outcomes of a random system, and the elements of F are particular

events [16]. In the context of weather modeling, a set Ω might represent all

possible weather variables combinations at a particular point, where an event

might comprise a particular range of variables, e.g. temperatures between

10◦C and 15◦C. Then a particular probability would be assigned to that event

occurring.

For a particular probability space, we can define a random variable X as

a measurable function from Ω. Assume for now that X is a real-valued func-

tion. For a given random variable we can define a cumulative density function

(CDF) FX(x) = P [y ∈ Ω : X(y) ≤ x] [14]. Note that this function describes
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the probability that our random variable falls below a particular number, and

that 0 ≤ FX ≤ 1. We can now define a new Lebesgue-measurable function

fX(x), denoted the probability density function (PDF). This function is for-

mally defined as a Radon-Nikodym derivative, but for our purposes we define

it as the derivative of the CDF. Since the CDF is a function over R rather

than Ω, we will integrate with respect to the standard Lebesgue measure.

We thus define fX such that [14]

FX(x) =

∫ x

−∞
fX(y)dy.

With the basics of probability established, let us proceed to define some

basics of sampling. We define a sample as a randomly selected subset of some

set Ω. As the number of samples increases, the sample will clearly converge

to the entire set. However, we can sample in a more informed manner, such

as in the case of inverse transform sampling. Suppose that we have a random

variable with PDF fX and CDF FX . We wish to sample in such a manner

to be representative of the distribution represented by fX . Let us first define

the inverse of FX , denoted F−1
X , such that FX

(
F−1
X (x)

)
= x. Note that FX

is increasing, but potentially not strictly. Therefore it may not be injective,

meaning this may be a one-sided inverse. We claim that if u ∼ U is the

uniform random variable between (0, 1), then the cumulative distribution

function of F−1
X (u) is in fact FX [10].

Proof : The CDF of F−1
X (u) is given by P [u : F−1

X (u) < x]. Applying F to

each side of the inequality results in P [u : u < FX(x)]. This is equivalent

to FX(x). Thus the CDF of F−1
X (u) is FX and F−1

X (u) generates samples

according to X.

Let us now proceed to describe several of the major MCMC and sampling

methods described above. We begin by describing the process of standard

Monte Carlo methods, for example to calculate an integral such as expecta-

tion. Suppose that we have a random variable X on a probability space such
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that X has a probability density function fX . Then the expectation of some

function g(X) can be given by

E[g(X)] =

∫
Ω

g(x)f(x)dx.

If we take a set of N samples {x1, x2, . . . , xN} from the CDF of X in the

previous manner, we can approximate this integral as

E[g(X)] ≈ ḡN =
1

N

N∑
j=i

g(xj).

By the law of large numbers, this will converge to our expected value if we

let N tend to infinity. We can furthermore calculate the variance of ḡN by

another application of this sampling [10]:

Var(ḡN) ≈ 1

N2

N∑
j=1

(
g(xj)− ḡN

)2
.

As mentioned, an extension of Monte-Carlo methods are Markov Chain

Monte Carlo (MCMC) methods. In a standard process of Monte-Carlo sam-

pling, each sample is taken from the same distribution. In an MCMC process,

each new sample may be generated from a different distribution in a type of

walk called a Markov Chain. The definition of a Markov Chain is a sequence

of random variables Xi on a probability space such that they satisfy two

conditions [18]:

a) Markov Property: For all i, P [Xi+1 = xi+1|Xi = xi, . . . , X1 = x1] =

P [Xi+1 = xi+1|Xi = xi].

b) Time Homogeneity: P [Xi+1 = x|Xi = y] = P [Xj+1 = x|Xj = y]

This equivalently means that the value of the next step in a Markov Chain
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only depends upon the value of the previous step, not upon the place in the

chain or the initial values. For an MCMC process, this means that each step

resamples based only upon the previous sample. The process should eventu-

ally converge to the target distribution. A classic example of an MCMC pro-

cess is Metropolis Hastings, which progresses from a starting density g(y|x) to

a target distribution f(x). We begin with a starting sample x0 and generate

a new sample y from g(y, x0). We calculate

A(y, x0) = min

(
1,
f(y)

f(x0)

g(x0|y)

g(y|x0)

)
.

Generating a random number u ∼ U(0, 1), if u ≤ A(y, x0) then we accept

y and let x1 = y. Otherwise we reject at let x1 = x0. We then proceed to

increment and select a new value y to test and select x2 [10].

We will finally discuss the method of importance sampling, which is

utilized in the homotopy process. Importance sampling is an extension of

Monte-Carlo approximation, primarily used when we may not be able to

sample from our intended distribution. Suppose that we are trying to cal-

culate the expectation of some function g(X) where X has PDF f(x). In

the case where we cannot or choose not to sample from f(x), if we can find

another distribution q(x) that is close to proportional to |f(x)| and that

q(x) > 0 when f(x) 6= 0, then we can rewrite our integral and sample from

q as so:

E[g(X)] =

∫
Ω

g(x)f(x)dx =

∫
Ω

g(x)
f(x)

q(x)
q(x)dx = E

[
g(x)

f(x)

q(x)

]
over the distribution q. This can then be approximated as

E

[
g(x)

f(x)

q(x)

]
=

1

N

N∑
j=1

g(xj)
f(xj)

q(xj)

where xj are sampled from q [10].
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2 Homotopy With Importance Sampling

2.1 Motivation

As previously discussed, there are particular issues that may require sampling

using a specific technique. If we cannot directly sample from our target

distribution we must use a technique that samples from another distribution

such as Metropolis-Hastings or Importance sampling. However, with both

these cases, the starting distribution from which we sample must be close to

our target distribution. We theorize that if we are forced to sample from a

distribution that is further away from the target distribution, that we will

see performance decrease shown by a longer burn-in period. We seek to

avoid these problems by moving from our starting distribution to our target

distribution in a more informed manner rather than through a random walk.

To do so, we develop a method of implementing repeated importance

sampling over a homotopy path, in order to perform Monte-Carlo method

integration and calculate normalization constants of nonnormalized distribu-

tions. Suppose we seek the normalization of a distribution β(x) from which

we cannot directly sample. We can however sample from a known distri-

bution α, who resembles β but is distant in mean. We can begin with our

observed distribution α(x) and define a continuous homotopy function φt(x),

where φ0(x) = α(x)/Z0 and φ1(x) = β(x)/Z1 where Z0 and Z1 are the dis-

tribution’s respective normalization constants. Let us explicitly define this

homotopy by φt(x) = (1/Zt)β
t(x)α(1−t)(x), where we define Zt as

Zt =

∫
R
βt(x)α(1−t)(x)dx,

resulting in Z0 being the normalization of α and Z1 the normalization of β

that we seek. Note that φt is a probability density function for every t. From

our definition of Zt, we see that by traveling a step size ε from t we obtain a
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new normalization value of

Zt+ε =

∫
R
βt+ε(x)α1−t−ε(x)dx

=

∫
R

(
β(x)

α(x)

)ε
βt(x)α1−t(x)dx.

Dividing by the previous term results in

Zt+ε
Zt

=

∫
R

(
β(x)

α(x)

)ε
βt(x)α1−t(x)dx∫

R

βt(x)α1−t(x)dx
=

∫
R

(
β(x)

α(x)

)ε
dΦt(x)

where Φt(x) is the Cumulative Distribution Function of φt(x). We can con-

sider this value Zt+ε/Zt as the integral of (β/α)ε taken with respect to the

CDF of the previous step, introducing the notation:

Zt+ε
Zt

=

〈(
β(x)

α(x)

)ε〉
t

.

Assuming that we evaluate our homotopy over the course of M equally sized

steps, we can let ε = 1/M . We can write the quotient Z1/Z0 as

Z1

Z0

=
Z1/M

Z0

·
Z2/M

Z1/M

· · · Z1

Z(M−1)/M

=
M∏
m=1

Zm/M
Z(m−1)/M

=
M∏
m=1

〈(
β(x)

α(x)

) 1
M
〉
m
M

Taking a natural logarithm of each side we obtain

lnZ1 =
M∑
m=1

ln

〈(
β(x)

α(x)

) 1
M
〉
m
M

+ lnZ0. (1)
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Supposing we know Z0, (1) is a recursive schedule for the calculation of Z1

in M homotopy steps. If we use a sample estimate for each of the homotopy

calculations and we assume that each of these is calculated using N samples,

(1) will be approximated as

lnZ1 ≈
M∑
m=1

ln

(
1

N

N∑
j=1

(
β
(
Xm−1,j(u)

)
α
(
Xm−1,j(u)

)) 1
M

)
+ lnZ0,

where [Xm]j is the jth sample from the (m− 1)th distribution

1

Zm/M
βm(x)α1−m(x).

A balanced iterative variant would start with Z0 known and then calculate,

for m = 1, ...,M ,

Zm = Zm−1
1

N

N∑
j=1

(
β
(
Xm−1,j(u)

)
α
(
Xm−1,j(u)

)) 1
M

2.2 Example Calculation

As an example, we will build a homotopy between two Gaussian distributions

centered at different means. Since we will be able to analytically solve for all

intermediate steps of the procedure we can calculate deviations throughout

the process. Let us start with the analytical computations for two arbitrary

distributions and later directly apply the technique to two specific ones. Our

homotopy γt will travel between distributions α, for which we assume the

normalization is known, to a target distribution β, for which we seek to

compute an estimation of Z1 =
∫
β(x) dx. Define β as:

β(x) = e
−

(x− µβ)2

2σ2
β .
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We can however calculate the normalization as:

Z1 =
1√

4πσ2
β

.

This will allow us to determine the accuracy of our technique. We will

examine how the homotopy process proceeds from starting Gaussian

α = e
−

(x− µα)2

2σ2
α .

We will assume knowledge of

Z0 =

∫
α dx =

1√
4πσ2

α

.

Suppose that we have progressed to some intermediate normalization term Zt

(although note this could be the starting normalization Z0). To progress to

the next step Zt+ε for some small change ε, we need to sample from the pre-

vious distribution. We can analytically solve for these values by computing

the integral:

Zt =

∫ ∞
−∞

βt(x)α(1−t)(x)dx =

√
4πσβσα√

tσ2
α − (t− 1)σ2

β

exp

(
−1

4

(µβ − µα)2(t− 1)t(
tσ2
α − (t− 1)σ2

β

) ).
We can find an analytical expression for our CDF at step t by:

∫ x

−∞

βtα(1−t)

Zt
dy =

1

2

1 + erf

(1− t)(x− µα)σ2
β + t(x− µβ)σ2

α

σασβ

√
2
(
(1− t)σ2

β + tσ2
α

)


where erf is the error function.

Assuming we have reached step m, to obtain our samples [Xm]j to proceed

to step m + 1, we can use this CDF to perform inverse transform sampling.
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Suppose that u ∼ U(0, 1), a sample from the uniform distribution. If we

assume that for a given sample [Xm]j, our CDF equals u we have

u =
1

2

1 + erf

(1−m/M)([Xm]j − µα)σ2
β + (m/M)([Xm]j − µβ)σ2

α

σασβ

√
2
(
(1− t)σ2

β + tσ2
α

)
 .

Solving for [Xm]j yields

[Xm]j =
(1−m/M)µασ

2
β + (m/M)µβσ

2
α

(1−m/M)σ2
β + (m/M)σ2

α

+
σασβ erfinv[2u− 1]√

(1−m/M)σ2
β + (m/M)σ2

α

,

where erfinv is the inverse error function. For the case of a shared mean,

µα = µβ = 0, we have the simpler, transformed term:

[Xm]j =
σασβ erfinv[2u− 1]√

(1−m/M)σ2
β + (m/M)σ2

α

.

We may evaluate the sum

1

N

N∑
j=1

(
β
(
[Xm]j

)
α
(
[Xm]j

))ε
to obtain the ratio Zm/Zm−1.

2.3 Optimizing the Algorithm

To test the procedure we implemented the algorithm in Python, utilizing

the Numpy package for generation of random samples. We observed the case

where we calculate the normalization of a target Gaussian based on sampling

a different starting Gaussian at various means, and compared these perfor-

mances to the standard Metropolis-Hastings algorithm. The first stage of

analysis involved comparing how the relative number of steps versus sam-
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Figure 1: Contour lines of constant error for steps vs samples

ples affected the error for a given effort. To establish these numbers, we ran

the algorithm repeatedly for the same number of steps and samples, until it

started to converge. We then compared the running mean of these values

with an analytical value. By cycling through different numbers of samples

and steps we were able to create contours for various errors from the analyt-

ical normalization constants.

By looking at approximate gradients along the plot, we are able to esti-

mate a path of lowest error per effort. We see that as effort increases, the

path of least error tends to favor lower sampling numbers and higher step

sizes, indicating that we may tune our algorithm to emphasize a higher ratio

of steps to samples as we proceed. The decision was made to optimize steps

to minimize variance.
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The next stage in optimization was considering how the variance in our

approximate results changed as a function of stepsizes as the homotopy pro-

gressed. This required a calculation of said variance. We will consider vari-

ance at the mth step (tm−1 + ε) assuming that we have already reached step

m−1 at tm−1. This will be a function of ε and the number of samples. Then

we will be able to calculate the variance of the entire process as a function

of all chosen step sizes and sample numbers.

Let us begin by restating our definitions. We are looking for the variance

of

Zm = Zm−1
1

Nm

Nm∑
j=1

(
β
(
Xm−1,j(u)

)
α
(
Xm−1,j(u)

))ε
where Nm is the number of samples taken to reach step m and Xm−1,j(u),

the jth sample from the (m− 1)th distribution, are defined as

Xm−1,j(u) =
σασβ erfinv[2u− 1]√

(1− tm−1)σ2
β + tm−1σ2

α

where u is uniform on [0, 1).

If we assume that Zm−1 is fixed, we know from properties of variance that

Var

(
Zm−1

1

Nm

Nm∑
j=1

(
β
(
Xm−1,j(u)

)
α
(
Xm−1,j(u)

))ε) = Z2
m−1 Var

(
1

Nm

Nm∑
j=1

(
β
(
Xm−1,j(u)

)
α
(
Xm−1,j(u)

))ε)

Which we can more concisely write as Z2
m−1 Var(Zm/Zm−1). We can express

this as Z2
m−1 Var(Zm/Zm−1) = Z2

m−1 E[(Zm/Zm−1)2] − Z2
m−1 E[Zm/Zm−1]2,

where E[Zm/Zm−1] is the expected value of Zm. Let f(x) be the probability

density function for our uniform distribution over [0, 1) giving us

f(x) =

{
1 if x ∈ [0, 1)

0 otherwise
.
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We can then write our variance as:

Z2
m−1 Var(Zm/Zm−1) = Z2

m−1 Var

(
1

Nm

Nm∑
j=1

(
β
(
Xm−1,j(f(x))

)
α
(
Xm−1,j(f(x))

))ε) .
Since each term in the summand is an identical random variable, we know

that the Covariance between them is simply the variance. Thus this can be

expanded to the form:

Z2
m−1 Var

(
1

Nm

Nm∑
j=1

(
β
(
Xm−1,j(f(x))

)
α
(
Xm−1,j(f(x))

))ε) = Z2
m−1

1

N2
m

N2
m∑

j=1

Var

((
β
(
Xm−1,j(f(x))

)
α
(
Xm−1,j(f(x))

))ε)

= Z2
m−1 Var

((
β
(
Xm−1,j(f(x))

)
α
(
Xm−1,j(f(x))

))ε) .
Since Var(X) = E[X2]−E[X]2, we can write this as the difference of integrals:

Z2
m−1 Var(Zm/Zm−1) = Z2

m−1

∫ ∞
−∞

(
β
(
Xm−1,j(f(x))

)
α
(
Xm−1,j(f(x))

))2ε

dx

− Z2
m−1

[∫ ∞
−∞

(
β
(
Xm−1,j(f(x))

)
α
(
Xm−1,j(f(x))

))εdx]2

,

where

Xm−1,j(f(x)) =
σασβ erfinv[2f(x)− 1]√
(1− tm−1)σ2

β + tm−1σ2
α

To compute these integrals we can make use of the Law of the Unconscious

Statistician, namely that for a random variable X with PDF f(x), the ex-

pectation of a function of X can be computed as E[g(X)] = E[g(x)f(x)]. In
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our case this lets us rewrite our integrals as

Z2
m−1

∫ ∞
−∞

(
β
(
Xm−1,j(x)

)
α
(
Xm−1,j(x)

))2ε

f(x)dx

and

Z2
m−1

[∫ ∞
−∞

(
β
(
Xm−1,j(x)

)
α
(
Xm−1,j(x)

))εf(x)dx

]2

respectively.

Since f(x) is simply the indicator function over the interval [0, 1), these

integrals reduce to

Z2
m−1

∫ 1

0

(
β
(
Xm−1,j(x)

)
α
(
Xm−1,j(x)

))2ε

dx

and

Z2
m−1

[∫ 1

0

(
β
(
Xm−1,j(x)

)
α
(
Xm−1,j(x)

))εdx]2

respectively. It now becomes a matter of solving such integrals. Since β

and α are both Gaussian shaped distributions with different parameters, the
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fraction β/α can be simplified. We see that

β(X)

α(X)
=
e
−

(X − µβ)2

2σ2
β

e
−

(X − µα)2

2σ2
α

= e

(X − µα)2

2σ2
α

−
(X − µβ)2

2σ2
β

= e

σ2
β(X − µα)2 − σ2

α(X − µβ)2

2σ2
ασ

2
β

= e

(σ2
β − σ2

α)X2 + (2µβσ
2
α − 2µασ

2
β)X + (µ2

ασ
2
β − µ2

βσ
2
α)

2σ2
ασ

2
β

Therefore our first integral can be rewritten as:

Z2
m−1

∫ 1

0

e
(σ2

β − σ2
α)X2

m−1,j(x) + (2µβσ
2
α − 2µασ

2
β)Xm−1,j(x) + (µ2

ασ
2
β − µ2

βσ
2
α)

2σ2
ασ

2
β


2ε

dx.

Before making a substitution for Xm−1,j(x) we can write our coefficients as

a =
−ε(µβ − µα)2

[
(1− tm−1)2σ2

β + t2m−1σ
2
α

]
2
[
(1− tm−1)σ2

β + tm−1σ2
α

]2
b =

ε(µα − µβ)σβσα[
(1− tm−1)σ2

β + tm−1σ2
α

]3/2

c =
ε(σ2

α − σ2
β)

2
[
(1− tm−1)σ2

β + tm−1σ2
α

] .
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Making the substitution for Xm−1,j(x) yields an integral

Z2
m−1

∫ 1

0

e2a+2b erfinv(2x−1)+2c erfinv2(2x−1)dx

with the above defined coefficients. We can integrate this via the substitution

y = erfinv(2x− 1) noting that

dy =
√
πeerfinv(2x−1)2dx =

√
πey

2

dx.

Therefore our integral becomes

Z2
m−1√
π

∫ ∞
−∞

e2a+2by+2cy2

ey2
dy =

Z2
m−1√
π

∫ ∞
−∞

ea+by+(c−1)y2dy

which when evaluated yields

Z2
m−1 E[(Zm/Zm−1)2] =

Z2
m−1√

1− 2c
e2a+ b2

1−2c

The second integral can easily be verified to be

Z2
m−1 E[Zm/Zm−1]2 =

(
Z2
m−1√
1− c

ea+ b2

4(1−c)

)2

=
Z2
m−1e

2a+ b2

2(1−c)

1− c
.

Finally we can write the variance of Zm given Zm−1 as

Var(Zm) =
Z2
m−1e

(
2a+ b2

1−2c

)
√

1− 2c
−
Z2
m−1e

(
2a+ b2

2(1−c)

)
1− c

= Var(Zm) = Z2
m−1e

2a

(
e

(
b2

1−2c

)
√

1− 2c
− e

(
b2

2−2c

)
1− c

)
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again where:

a =
−ε(µβ − µα)2

[
(1− tm−1)2σ2

β + t2m−1σ
2
α

]
2
[
(1− tm−1)σ2

β + tm−1σ2
α

]2
b =

ε(µα − µβ)σβσα[
(1− tm−1)σ2

β + tm−1σ2
α

]3/2

c =
ε(σ2

α − σ2
β)

2
[
(1− tm−1)σ2

β + tm−1σ2
α

] .
To understand what this calculation tells us we must look at the rela-

tionship between the variance and the size of ε. Doing so in general becomes

difficult due to how convoluted the term for variance is. Therefore we can look

at a specific case. We will continue to use this case for numerical testing of

the algorithm. Let us define as our target the standard normal β ∼ N (0, 1),

and our starting distribution as α ∼ N (2, 2), a wider Gaussian centered two

deviations from the target. Our variance then reduces to the form:

Var[Zm] = Z2
m−1e

−4ε

(
(1−t)2+4t2

)
(1+3t)2 ·

·

√1 + 3te

(
16ε2

(1+3t)3−3(1+3t)2ε

)
√

1 + 3t− 3ε
− 2(1 + 3t)e

(
16ε2

2(1+3t)3−3(1+3t)2ε

)
2(1 + 3t)− 3ε


We can plot this as function of ε for various t values and observe the following

results:
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This figure depicts Variance on the vertical axis and step size (ε) on the

horizontal axis. Each curve is a constant t value, showing the relation between

variance and ε as the homotopy moves from t = 0 to t = 1. We see that

for lower t values, closer to the beginning of the homotopy process, variance

increases faster than at t values closer to the end of the homotopy process.

This change in variance as a function of t for a fixed ε is similar, exponentially

decreasing. This informs us that if we fix the number of step sizes through

the homotopy process, we can tune the process such that smaller step sizes

are taken towards the beginning, and smaller step sizes are taken towards the

end. Due to the inability to solve our equation for variance, experimentation

was taken to find the step size values. For the mth step we chose a step size

εm =
2m

M(M + 1)

where M is the number of step sizes. If we sum these steps we obtain

M∑
m=1

2m

M(M + 1)
=

2

M(M + 1)

M(M + 1)

2
= 1
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Figure 2: Variance plotted against step sizes

Implementing this optimization leads to the following performance:

We see in this figure variance plotted on the vertical axis verses percent

completion of a homotopy procedure. We see in blue the performance of

the standard homotopy with uniform samples and step sizes. In green we

see a simple bisected sample number optimization, we we increase samples

towards the beginning. In red is shown the tuned step sizes according to the

above method. Notice that the beginning variance is reduced significantly.

The final variance of the untuned process is .002.9693 and of the tuned is

.0012848.

We can compare this performance versus the standard Metropolis Hast-
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Figure 3: Comparison of tuned homotopy versus Metropolis Hastings

ings algorithm as a benchmark. We ran each algorithm 350 times from a

starting distribution of α ∼ N (2, 2) to a target distribution of β ∼ N (0, 1),

and took the average error between them and the analytical normalization

of β. The results are shown below:

On the horizontal axis is given effort, defined for MH as the number of

trials, and for the homotopy procedure as the product of samples per step

and number of steps. On the vertical axis is the relative error. We see in blue

the benchmark algorithm Metropolis Hastings, performing equivalently with

the untuned homotopy procedure in green. In red we see the tuned homotopy

procedure outperforming the other two techniques. This adds credence to our

hypothesis that the homotopy procedure will outperform a standard method

for distributions with distant means.
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3 Transdisciplinary Work on the Dungeness

Crab

3.1 Motivation for Transdisciplinary Research

In addition to research within the math department at OSU, I participated

under NSF grant #1545188: ”Risk and uncertainty quantification and com-

munication in marine science and policy” as part of the NSF Research Trainee-

ship Program (NRT) at Oregon State. This chapter is fulfilling the Inter-

disciplinary Chapter requirements of the Fellowship. As such, I was one of

five members of a transdisciplinary team of graduate students from the fields

of biology, marine resource management, and fisheries genetics. We collabo-

rated to investigate the relationship between changing ocean conditions and

the species of Cancer magister (Dungeness crab), and the resulting impacts

on the Oregon Coastal fishery and communities.

The project was aimed at investigating coupled human-natural systems

that transcended geographic boundaries; merged the public, private and aca-

demic worlds; and incorporated information from numerous fields of study.

As such, it was a candidate for developing research beyond a singular dis-

cipline or even the simple collaboration between them. To effectively study

these complicated relationships through social systems, crab ecology, ocean

conditions, and data statistics, we needed to employ transdisciplinary meth-

ods. We define transdisciplinarity as ”transcending disciplinary world views”

[8], using frameworks for research to bridge academic disciplines and the pub-

lic and private sectors. As stated by Bonebreak et al., ”ecological, conser-

vation and social research on species redistribution can best be achieved by

working across disciplinary boundaries to develop and implement solutions

to climate change challenges” [2]. There have been successful applications of

these transdisciplinary methods in similar marine contexts such as Benham’s

study of the Great Barrier Reef [1]. By employing these transdisciplinary
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methods to our own project we can combine our disciplinary expertise in

such a manner to tackle complex problems involving the environment, crus-

taceans, and people.

The first step in our transdisciplinary process was in our collaboration.

Every member of the group participated in the process of creating questions

and hypotheses, in collecting data sources and in their organization and anal-

yses, and in the interpretations and conclusions we ultimately drew. The

variety of knowledge and experience each of us brought to the table mollified

many of difficulties we had, and allowed all of us to contribute in a balanced

manner. In the end, each of us expanded our knowledge of the Dungeness

crab fishery, ecology, and ecosystems. The general work we produced, which

is outlined in detail in our Transdisciplinary Report, consisted of studying

the relation between ocean conditions and the geographic distribution of

Dungeness crab catch along the West Coast, looking at reliance of coastal

communities on the Dungeness crab in relation to their socio-economic vul-

nerability, and looking at how environmental conditions could impact the

larval stages of Dungeness crab, and the implications for the future catch.

This last objective is presented below as a case study in how mathematics

can be applied to studying a transdisciplinary project, the challenges that

occurred, and the differences between seeing a problem from a mathematical

lens verses a transdisciplinary perspective.

3.2 Biological Background

Dungeness crab is among the most economically important West Coast fish-

eries [9]. However, it has presented a constantly changing distribution along

the coast, leading to varied landings both year-to-year and spatially between

ports. We were seeking to therefore analyze and reduce some of this uncer-

tainty as we looked for the relationship between Dungeness crab distribution

and climate. In particular, understanding this complicated relationship may

be important in the face of changing oceanic conditions and climate change
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[6]. Although Dungeness crab can be legally caught only in the adult stages,

it is in the younger life stages where the crabs are at most influence from

environmental conditions [13][11].

The species of Dungeness crab is distributed as far south as Santa Bar-

bara California to the Pribolof Islands of Alaska. They are organized in

three ecosystems, the California Current off the West Coast of the contiguous

United States, the Salish Sea between Washington state and British Colom-

bia, and in the Gulf of Alaska [17]. For the purpose of this investigation we

group the Dungeness crab into a southern population in the California Cur-

rent ecosystem, and a northern population encompassing the Gulf of Alaska

and Salish Sea ecosystems. Dungeness crab may begin their life cycles in

any of these ecosystems and experience different life-cycle timings depending

on the latitude of their origin. According to Rasmuson in [9], the southern

population of Dungeness crab generally lay their eggs within a given Fall

or Winter leading to hatching within the next December to January. Fol-

lowing this hatching, the crabs spend 3-4 months in a pelagic larval stage

being transported by ocean currents, and finally settle before July of that

year. The movement of larval stages ultimately determines where where the

Dungeness crab mature and reach adulthood. However, the larvae are moved

entirely based upon oceanic conditions. The dispersal of the larvae is jointly

determined by current strength [11], the timing of the spring transition [13],

and upwelling [12]. The northern population of Dungeness crab hatch at a

later time however, and may not settle in the coast until after the beginning

of August, taking as long as October. Since we observe larvae in Coos Bay

through October, it is theorized that the late season larvae, those found after

August 1st, have been transported from a north population. To confirm this

hypothesis, genetic testing was performed by group member Elizabeth Lee,

and it was found that there was a genetic difference between early season

and late season megalopae, indicating that these late season megalopae were

not local.
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As stated above, the environmental forces that drive this megalopae trans-

port are Pacific Decadal Oscillation (PDO) [12], Upwelling[11], and the tim-

ing of the Spring Transition [13]. The way that these environmental condi-

tions impact megalopae transport is primarily through their relation with the

California and Davidson currents. Larvae are transported offshore and then

northward during their winter stage by the Davidson current, but then after

the Spring Transition date they are returned southwards along the California

current. It is during this time that the northern crab populations may be

transported southward [11]. The recruitment patterns that we see are heavily

influenced by the strength of this California current [5]. The megalopae are

brought inshore by upwelling events that occur between April and as late as

September [4][9], and a larger amount of upwelling should be linked to more

megalopae presence in shore. Finally, PDO is a calculated index that de-

scribes changes in temperature anomalies in the mid-latitude Pacific Ocean.

It describes a pattern of change in ocean temperature gradients where a pos-

itive index represents a warmer eastern ocean and colder west ocean and a

negative index represents the opposite pattern. A year with a negative av-

erage PDO index is associated with a stronger California current, which is

expected to increase southward transport of late-season megalopae. A year

with positive average PDO index is associated with a weaker California cur-

rent and therefore expected to transport fewer megalopae to Coos Bay during

the late-season.

To explore the connection between Dungeness crab late season megalopae

abundance and oceanic conditions, the choice was made to investigate sev-

eral predictive models: a multinomial logistic regression model (MNLR), an

Auto-regressive Integrated Moving Average (ARIMA) model with seasonal-

ity and explanatory environmental variables, and a Maximum Entropy model

(MaxEnt). The choice of these three models was to cover a broad predictive

range for varying scalings. The MNLR model was used to provide categoriza-

tion of low (L), medium (M), and high (H) presence of late-season megalopae
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as informed by previous years and environmental conditions for general long

term predicting. The ARIMA and MaxEnt models were designed to produce

near future seasonal predictions of megalopae presence distributions based

on pertinent environmental data and the trendline through previous years.

Unfortunately, success was not obtained with the ARIMA and MaxEnt

models. There was a lack of sufficient geographic data to employ the MaxEnt

modeling. The MaxEnt framework we attempted to utilize was designed to

incorporate geographically distributed data, and trying to substitute tempo-

rally distributed data did not properly function. The ARIMA model looked

for reoccurring trend lines and seasonality, but the high variability due to one

daily sample at one geographic location led to indistinct predictions for late-

season presence. Either more samples were required for each data point to

reinforce relations with climate data, or more sample years were necessary to

extend the trend-line. In particular, with the years 2002-2005 missing from

the dataset, the jump in years lead to difficulty establishing a year-to-year

trend-line that would mirror PDO.

We ultimately chose to focus on the MNLR model, as its simplicity

catered to the limited data. We deemed it better to model the situation

more accurately in a simple manner than provide a detailed but poorly per-

forming forecast. This led to the finalization of a MNLR model to answer

the simple question of whether or not there will be a late season pulse based

on environmental conditions.

The multinomial logistic regression technique is an extension of a binary

logistic regression, which seeks to use maximum likelihood estimation to place

dependent variables into two categories based on independent variables. We

explored both binary and multinomial cases, so we will develop the theory

behind both. We begin with a logistic function of a variable t given by

f(t) =
1

1 + e−t

Assuming that t linearly depends upon n explanatory variables xi, we can
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write t as t = β0 +β1x1 + · · ·+βnxn. Writing our coefficients and variables as

the n dimensional vectors β = [b1 · · · bn] and x = [x1 · · · xn], we then have

logistic function

p(x) =
1

1 + e(−β0−β·x)
(2)

We can interpret p(x) as the probability that the set of explanatory variables

x informs a placement of a dependent variable in the first category. In our

binary case, let this first category be denoted L for low and the second

category H for high. Accordingly, 1− p(x) is the probability of a dependent

variable falling in the category H. Solving for the inverse of (2) yields the

logit equation:

ln

(
p(x)

1− p(x)

)
= β0 + β · x, (3)

which tells us the log-odds of a dependent variable being assigned to the first

category over the second.

For the standard multinomial case, where we will have M categories

C1, . . . , CM , we need to construct M − 1 logit functions to express the log-

odds between every possible category. We therefore require M − 1 vectors

β1, . . .βM−1 each composed of n terms for each explanatory variable i.e.

βi = [βi1 · · · βin]. To produce the logit functions, we can consider one cate-

gory a pivot category and produce M −1 binary logit functions for the other

categories. Allowing CM to be this pivot, we obtain M − 1 equation for i in

{1, 2, . . . ,M − 1} of the form

ln

(
pi(x)

pM(x)

)
= βi0 + βi · x, (4)

where pi(x) is the probability that a dependent variable falls within the ith

category Ci, given independent variable x.

In our case, our categories obey an ordinal relationship, where each in-

creasing category represents a subsequent interval of values corresponding to

the ratio of late season megalopae. In other words for values a < b < c < d,
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we have L = [a, b], M = (b, c], and H = (c, d]. This allows us to produce

new functions with probabilities Pb, Pc, and Pd where Pi(x) is the probability

that our dependent variable y is less than i, meaning it is contained in one

of the categories lower than the border point i. Due to this, we obtain new

logit equations for our ordinal categorization:

ln

(
Pi(x)

1− Pi(x)

)
= βi0 + β · x, (5)

which is equivalent to giving the logodds of a dependent variable being less

than i versus greater than i. For this unique ordinal case, since each prob-

abilistic equation overlaps with those less than it, we can use the same β

parameter for each explanatory variable, although each equation with have

different intercepts.

The ultimate aim of the model is to use training data to produce β pa-

rameters. These can be used to predict the probabilities that a dependent

variable y falls within a category given known explanatory variables x. Our

training data is in the form: X0 and y0, where X0 is a k by n array of n

known explanatory variables for k years, and y0 is a k-vector of dependent

variables for the respective years. In our model, the explanatory variables

were ocean conditions, and our dependent variable was late-season presence.

We can categorize each year based on the presence value of entries in y0.

There are multiple ways to generate our predictive coefficients βi, but

most rely on maximizing log-likelihood in a process called Maximum Likeli-

hood Estimation. For the two category case, we have defined the probability

that y belongs in category L given x as p(x) in (2). If we assume that β

is also a variable in this case, we can write this probability as p(x,β). If

we consider a particular trial year, we obtain a Bernoulli distribution with

probability p(x,β) that y is in category L. Defining the indicator function

χL(y) =

{
1 y ∈ L
0 y ∈ H

(6)
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we can write the likelihood of a particular trial j as

Lj(β) = p(xj,β)χL(yj)
(
1− p(xj,β)

)(1−χL(yj)) (7)

where xj are the explanatory variables from the jth year and yj is the de-

pendent variable from the jth year. To compute the likelihood using all the

training years we take the product of each equation (7) for each j:

L(β) =
k∏
j=1

Lj(β) =
k∏
j=1

p(xj,β)χL(yj)
(
1− p(xj, β)

)(1−χL(yj)). (8)

It then remains to maximize L over the vector β.

3.3 Data Selection and Treatment

Daily counts of Dungeness crab larvae (megalopae), were obtained via light

traps in Coos Bay within the years of 1997 to 2001 and from 2006 to 2017

(provided by Dr. Alan Shanks of the University of Oregon). Additional

daily counts were obtained for the years of 2016 and 2017 in Yaquina Bay

(provided by Elizabeth Lee of Oregon State University). The data is in the

year 1998 1999 2000 2001 2006 2007 2008 2009
LSP 0.0348 0.2382 0.2263 0.1997 0.3844 0.3571 0.2049 0.3040

year 2010 2011 2012 2013 2014 2015 2016 2017
LSP 0.0661 0.3758 0.3155 0.2292 0.2092 0.0978 0.1330 0.1984

Table 1: Late-season presence ratios per year

form of daily count numbers for each year ranging from approximately the

first of April through October or November. I chose to use data from the

first of April through the second of October for each year, as this captured

the majority of all counts. The data was natural log-transformed to reduce
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Figure 4: Late Season Megalopae Proportionsskewing. The division be-

tween late and early sea-

son megalopae was defined

as August 1st, which is 120

days into the gathered data.

To produce its relative abun-

dance, we simply took the

sum of all counts after this

date for a given year and di-

vided over the total count

for the entire year, calculat-

ing the relative abundance of

late-season megalopae each

year. Let us denote this as LSP for Late-Season Proportion.

Using these ratios we produced a simple histogram (seen right) to locate

possible breakages with which to divide the data into categories. Based on

simple analysis of the figure, we postulated that the division between low

and medium levels of megalopae proportion would fall within the interval

(.13, .17), and the division between medium and high late season proportion

would fall in the interval (.25, .29). The exact values of these devisions were

to be determined by optimization over these intervals. We began with by

categorizing our low presence interval L = [0, a], our medium presence in-

terval M = (a, b] and our high presence interval H = (b, .4], where a is the

division between .13 and .17, and b the devision between .25 and .29.

The next task was to select the environmental data to use as explanatory

variables. We know that there is correlation between PDO and megalopae

count from [12]. Our hypothesis for late season megalopae states that in low

PDO (cool) years, we should see a stronger California current, and therefore

a greater transport of the current driven northern megalopae. In high PDO

(warm) years, we should see a weaker California current and a drop in late
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season megalopae presence. We computed a correlation coefficient between

yearly average PDO and late season proportion of −0.6194, indicating a mod-

erate negative correlation, reinforcing the hypothesis that a year of negative

average PDO would lead to larger southern transport of northern megalopae

due to a stronger California Current.

Figure 5: Late Season Proportion Plotted with PDO

Other explanatory variables considered for inclusion in the model were yearly

average El Nĩno Southern Oscillation (ENSO) index values, both Southern

Oscillation Index (SOI) and Multivariate ENSO Index (MEI). We found that

late-season megalopae presence correlated with SOI with coefficient 0.6803

and negatively with MEI with coefficient −0.7084. This may be explained

by how a positive PDO phase can produce climate patterns very similar to

El Niño, accounting for the similarity between these climate variables’ corre-

lations. We also considered offshore temperatures taken outside of Coos Bay

negatively correlated with coefficient r = −0.6542 when considered against

late-season megalopae presence. Since PDO is a function of temperature

variation in the Pacific northern hemisphere, this is unsurprising to see sim-

ilar correlations. In fact, our values for PDO and temperature themselves

had a correlation coefficient of .8755. Therefore we elected to use only one of

these environmental variables as an explanatory variable. Other environmen-
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tal conditions that we tested included upwelling (UW) and Spring Transition

(STI) dates. Both proved to be uncorrelated, with correlation coefficients of

−0.1212 and 0.0999 respectively.

Variable STI UW PDO NPGO SOI MEI SST
Correlation .0999 -.1212 -.06194 -.0899 .6803 -.7084 -.6452

Table 2: Correlations of environmental variables

The data finally chosen to be run against the model were PDO indices and

ENSO MEI.

3.4 Constructing the Model

The model was constructed in MATLAB R2017b to be run as a script. In

setting up the model, optimization was required for several parameters. Fore-

most, determining where to divide categories within our postulated intervals.

We iterated the model along the divisions until we produced the lowest p-

values between our variables and categorizing probabilities. We discovered

that the best placing locations for edges were at a = 1.4 and b = 2.6 yielding

categories L = [0, 1.4], M = (1.4, 1.6] and H = (1.6, .4]. These results were

obtained by running the model on various training sets and comparing the

resulting p-values and confusion matrices. The MNLR framework was run

using the two explanatory variables PDO and ENSO MEI in two different

models and produced the following p-value results:

Variable PDO ENSO MEI
p value med/high .1138 .2010
p value low/med 0.0099 .0337

Table 3: p-values from explanatory variables
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Figure 6: Heat map for one year
predictions on three categories

Testing with single year forecasting over

all years yielded the confusion matrix

on the right. These results show ac-

curate placement in the low category,

but clear issues with categorizations to

medium and high. Combined with the

non-significant p-values for these cate-

gory distinctions, this shows that the

model could not clearly distinguish be-

tween high and medium presence of

late-season megalopae. This might be

due to lack of data, or due to less clear influence from environ-

mental data at that level. Therefore the model was rerun with

only two categories by merging medium and high, resulting in the

Figure 7: Heat map for one year
predictions on two categories

following improved heatmap shown left.

In this case, we the expected merging of

the lower right hand boxes, leading to

almost perfect categorization. However,

the informational output of our model

has been reduced to a binary result, the

least amount of non-trivial information.

This model only answers the question of

whether or not there will be a late-season

presence, giving no greater detail to the

projected magnitude. However, with the

current limited data available, this may

be the most that can be done and reliably dependent upon.
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3.5 Reflection

The NRT program provided me with a novel insight into the world of

transdisciplinary research. An expansive undertaking such as studying the

complex interactions between climate, Dungeness crab and society requires

not only research from various fields, but the integration of those fields.

As alluded to above, an example of this is in data gathering. We learned

that in order to be fully prepared to mathematically model a particular

biological phenomenon, the mathematicians should be involved in the

data gathering process. We learned though this NRT experiment that

transdisciplinary techniques can be very powerful tools for studying and

learning about a subject, but may not cater as well towards individual

disciplinary topics. For example, in our project we spent considerable

time studying the statistical correlations between Dungeness crab catch

data and environmental variables, we looked at how coastal community’s

vulnerabilities would make them susceptible to fluctuations in this catch,

and of course we looked at modeling megalopae late-season presence. This

work however, did not necessarily lend itself to as much mathematical

development as it did towards data and statistical analysis.

In contrast to the tempered mathematical development I experienced during

the NRT program, I learned an incredible amount about other disciplines,

fully embracing the transdisciplinary philosophy. In particular, I studied

oceanography to better understand the systems that drive crab larval trans-

port. I researched the life stages of the Dungeness crab and how they interact

with their environment. I was introduced to the west-coast fishery, an in-

dustry entirely foreign to me, and gained more of an appreciation of the

processes, economics, and social frameworks within these coastal communi-

ties. I learned about the quantitative and qualitative methods of studying

risk, and applied notions of vulnerability and resource reliance to the coastal

communities. Finally, I got to see first hand how data can be used or may
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prove less fruitful, giving me a glimpse beyond the theoretical mathematics I

had been previously experienced with. I believe that this project has led to

me growing as a graduate student and researcher, and helped me understand

what role mathematics can play in relation to other sciences. I realized that

my role in the group transcended my role as a mathematician, and included

a much larger spectrum of work and research.
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