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Abstract. Multiobjective decision analysis (MDA) is a useful assessment method when fishery managers need a
systematic investigation of the trade-offs involved in the selection of alternative policy options. An important
class of techniques within MDA is vector optimization, consisting of mathematical programming models with
vector valued objective functions. From the management perspective vector optimization models are suited for
situations when the decision rule requires that each objective be kept as high (or low) as possible. Solving vector
optimization problems usually entails finding a set of Pareto optimal solutions. If decision makers have
monotonic preferences then these solutions are highly relevant to the decision making process. In this paper a
vector optimization model of the eastern Pacific yellowfin tuna fishery is used to generate Pareto optimal
solutions and evaluate the trade-offs (shadow prices). Three conflicting policy objectives are considered, (a)
minimizing dolphin incidental mortality, (b) minimizing by-catch of all non-dolphin species, and (c) maximizing
total yellowfin tuna catch. Results are presented and discussed by means of non linear trade-off curves.
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1. INTRODUCTION

Historically the yellowfin tuna (Thunnus albacares) fishery in the eastern Pacific Ocean (East of 150°W,
between 40°N and 30°S) has been one of the most important in the world, currently it accounts for approximately
270,000 mt of yellowfin tuna annually, roughly 20% of the YFT global production. The main fishing gear used is
the purse-seine, with longlines occupying a distant second. Purse-seine is a gear designed to fish at the surface on
large schools. This gear is specially useful in the tropical eastern Pacific, where the thermocline is shallow and
the thermally sensitive species of tuna are forced into surface waters. The main target species for the fishery are
yellowfin tuna and to a lesser extent skipjack and bigeye tuna.

Since the end of World War II the nations involved in the fishery have been making joint efforts to preserve and
efficiently exploit the stocks of tuna in the region. With this purpose, in 1949 a Convention for the establishment
of the Inter-American Tropical Tuna Commission (IATTC) was signed. These efforts however have not been
harmonious. The issues of allocation, jurisdiction, access to the resource, and more recently, the incidental
catches of dolphins and several other species have been the main source of conflicts.

Initially, purse-seine fisherman in the eastern Pacific Ocean mostly caught tunas by setting their nets around free
swimming schools, a mode of fishing known as school fishing, or by fishing near floating objects such as tree
trunks under which tunas often congregate, a mode known as log fishing. With the advent of modern purse-seine
vessels, fisherman developed a technique, that took advantage of the association of dolphins with schools of large
yellowfin tuna. In this technique, known as dolphin fishing or fishing on dolphins, the net is set around the tunas
and the dolphins, then an attempt is made to release all the dolphins and tunas are loaded onto the vessels. In the
early years the rate of dolphins incidentally killed was very high. More than 500 thousand dolphins were
estimated dead in the 1960 season (Joseph, 1994).

In 1976 the member governments of the IATTC agreed to address the problem of dolphin mortality in the tuna
fishery in the eastern Pacific, with the following objectives (Joseph, 1994): “(1) to maintain a high level of tuna
production, and also to (2) to maintain dolphin stocks at or above levels that assure their survival in perpetuity,
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(3) with every reasonable effort made to avoid needles or senseless killing of dolphins”. A successful reduction in
dolphin mortality was achieved in the fishery in response to pressure from environmental groups and the U.S.
congress (Joseph, 1994; Hall, 1998). Total dolphin mortality and mortality per set decreased significantly in the
early nineties (Hall, 1998), achieving lower levels than those established in international agreements
(Anonymous, 1999). Present dolphin mortality levels are considered “statistically zero” and not significant in
terms of population effects (Hall, 1998; Anonymous, 1999).

Dolphin incidental mortality has been reduced in two different ways: first, by improvements in the nets and
fishing techniques that have allowed for a declining dolphin morality per set on dolphins. Additionally, mortality
can be reduced by changing the main fishing mode of fishing. This involves a geographical redistribution of the
fishing effort. In spite of the dramatic success in reducing dolphin mortality rates, the industry still faces
considerable pressure to lower this mortality to levels approaching zero. To compile with “dolphin-safe”
requirements an important segment of the fleet changed its fishing patterns (ie. switching to fishing on logs and
free schools). Additionally, new fleets joined the fishery using Fish Aggregating Devices (FADs), a variation of
fishing on logs, resulting in mounting by-catch levels of species other than dolphins (including discarded portions
of the yellowfin tuna catch), as well as reduced yellowfin tuna yields (Joseph, 1994; Hall, 1996; Hall, 1998).

There is currently an obvious management trade-off in the fishery among the main biological policy objectives:
on one side reducing dolphin mortality, on the other maintaining low by-catch levels and a high productivity of
the yellowfin stocks. By means of Multiobjective Decision Analysis (MDA) in particular vector optimization
techniques we estimate the magnitude of the trade-offs associated given current technology and fisherman
behavior.

2. MULTIOBJECTIVE DECISION ANALYSIS IN FISHERIES MANAGEMENT

Multiobjective decision analysis (MDA) is useful in situations where policy decisions must be made upon more
than one objective that cannot be reduced to a single dimension (Meier and Munasinghe, 1994). Its main purpose
is the identification and display of the trade-offs that must be made among objectives when they conflict. An
important class of techniques within MDA is vector optimization. Vector optimization uses mathematical
programming models with vector valued objective functions. From the decision-making point of view vector
optimization problems are useful when the decision rule implies that each objective is to be kept as high (or low)
as possible (Chankong and Haimes, 1983).

The general optimization problem is presented in (1) to (3). Equation (1) is a vector consisting of K (k = 1,2,...,K)
individual objective functions. In fishery problems, these functions may represent objectives such as yield
biomass, net revenues, jobs, food production, maintaining spawning biomass and so on. The decision variables or
policy instruments (eg. fishing effort, quotas, mesh size, season length, number of boats) are represented by the n-
dimensional vector Y = (y1, y2,. . .,yn). In dynamic problems this vector, in addition to the decision variables, is
made up of the state variables (i.e. the variables determining the state of the system through time). Equation (2)
defines a set of m constraints. Equations 2 and 3 define the feasible region in decision space Ωd (defined in the n-
dimensional Euclidian space, (4)). In dynamic problems, the constraint condition typically includes the system's
dynamics, expressed as a system of differential or difference equations (Conrad and Clark, 1989).

(1) 1 2 K 1 2 nMax . Z(Y) = Z( (Y), (Y),..., (Y)) Y = , ,...y y yz z z      

(2) is. t .  (Y)  0      i = 1,2,...,mg ≤

(3) j  0      j = 1,2,..,ny ≥

(4) { }ig ( ) 0,d iy YΩ = | ≤ ∀

Given that vector optimization problems consist of conflicting and often non-commensurate criteria, a single
optimal solution seldom exists. An optimal or superior solution is one which results in the maximum value of each
objective function simultaneously (Evans, 1984). Therefore solving vector optimization problems usually entails
finding their set of Pareto optimal solutions (Lai and Hwang, 1994; Chankong and Haimes, 1983; Evans 1984),
also known as efficient solutions (Evans, 1984), non-dominated solutions and noninferior solutions (Lai and Hwang,
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1994). A feasible solution is Pareto optimal if there exists no other feasible solution that will produce an increase
in one objective without causing a decrease in at least one other objective (Evans, 1984; Cohon, 1978). More
formally, y* is Pareto optimal if there exists no other feasible solution y, such that (5) holds.

(5) * *
k k k k(Y)  ( ),      k = 1,2,...,K,   and (Y) > ( ) for at least one kZ Z Y              Z Z Y       ≥ ∀

An important characteristic of Pareto optimal solutions is that in moving from one Pareto optimal alternative to
another the objectives must be traded-off against each other. A typical multiobjective optimization problem has
many Pareto optimal solutions; the set of all these solutions is known as the Pareto optimal set.

If decision-makers have monotonic preferences, then only Pareto optimal solutions are relevant to the decision
making process. Monotonicity of preferences states that for each objective function zk an alternative having larger
value of zk is always preferred to an alternative having a smaller value of zk, with the value for all other objective
functions remaining equal. In a given policy problem only one of the Pareto optimal solutions can be selected by
the decision-makers. The solution that is actually selected (some times through some additional criteria) among
the set of Pareto optimal solutions is called the best-compromise solution (Cohon, 1978) or preferred solution
(Lai and Hwang, 1994). Note that in the context of vector optimization the selection of the best-compromise
solution among the Pareto optimal solutions is not the result of a formal maximization problem, but rather the
result of a subjective evaluation of the importance of the objectives by the decision-makers.

In the general vector optimization problem presented in (1)-(3), if a solution y* is Pareto optimal then there exists
a set of multipliers λi ≥ 0, i = 1,2,...,m and wk ≥ 0, k = 1,2,...,K, with strict inequality holding for at least one k,
such that the conditions in (6)-(8) hold. Equations (6)-(8) are necessary for Pareto optimality. These conditions
are also sufficient if the K objective functions are concave, Ωd is a convex set, and wk > 0, ∀k (Cohon, 1978).

(6) *
d  Y ∈Ω

(7) *
i i( ) = 0,g Y iλ ∀

(8) * *
i

k i
gY Y ( ) - ( ) = 0ik kW Z λ∆ ∆∑ ∑

In the context of public policy decision making, Ballenger and MacCalla (1983) refer to the Pareto optimal set as
the "policy frontier." The policy frontier explicitly reveals the trade-offs associated with policy alternatives
(Chankong and Haimes, 1983).

2.1. Generating Techniques

An important family of solutions to vector optimization problems are the generating techniques. These
techniques, that follow directly from the Kuhn-Tucker conditions (Equations 6 to 8), are expressly designed for
finding Pareto optimal solutions. Generating techniques do not require prior statements about preferences,
utilities, or any other value judgements about the objectives (Evans, 1984). The articulation of preferences is
deferred until the range of choice, represented by the policy frontier, is identified and presented to decision-
makers. The role of the analyst is to concentrate on the formulation and evaluation of alternatives, and when
results are reported they need not recommend a specific alternative as the best. Analysts, instead, find in the more
comfortable and defensible position of information providers. The responsibility of selection rests with the
decision-makers.

The Weighing Method: Zadeh (1963) shows that the condition given in (8) implies that the solution to the
following problem (9) and (10) is, in general, Pareto optimal where wk ≥ 0 for all k and strictly positive for at
least one k. In essence this means that a multiobjective optimization problem can be transformed into a scalar
optimization problem where the objective function is a weighted sum of the components of the original vector-
valued function (Cohon and Marks, 1975). The optimal solution to the weighted problem is a Pareto optimal
solution to the multiobjective optimization problem, provided that all the weights are nonnegative. The Pareto
optimal set can be generated by parametrically varying the weights wk in the objective function (Gass and Saaty,
1955).
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(9) 
k

.  Z(w, Y) = (Y)k kMax w z∑

(10) ds.t .    Y  ∈Ω

The weighting method is not an efficient method for finding an exact representation of the Pareto optimal set.
However, it is often used to obtain an approximation of this set: a number of different sets of weights are used
until and adequate representation of the Pareto optimal set is obtained.

The Constraint Method: An alternative interpretation of third Kuhn-Tucker condition for Pareto optimality
(Equation 8) implies that Pareto optimal solutions can be obtained by solving (11) and (12). Where Lk is a lower
bound on objective k (Cohon and Marks, 1975). This represents an alternative transformation from a vector-
valued objective function to a scalar objective function. The Pareto optimal set can be found by changing Lk

parametrically. Thus, the constraint method operates by optimizing one objective while all the others are
constrained to some value.

(11) h.  ZMax

(12) d k ks.t .  Y  ,  ,    k  hZ L∈ ≥ ∀ ≠Ω

The Hybrid method: A technique that combines the characteristics of the weighing method and the constraint
method (Zadeh, 1963) can be used to generate Pareto-optimal solutions for a multiobjective optimization
problem. Chankong and Haimes (1983) call this procedure the hybrid method. According to the hybrid method
Pareto-optimal solutions for a multiobjective programming model can be characterized in terms of optimal
solutions of the problem presented in (13) and (14) where wk represents a set of arbitrary positive "weights" (at
least one strictly positive), and Lh is a lower bound on the objective h. Pareto optimal solutions can be generated
by the parametric variation of wk and Lh (see Chankong and Haimes, 1983 for a proof).

(13) kk
k

max.  Z(w,y) =   (y)w z∑

(14) d h hs.t .  y  ,  ,    h  kZ L∈ ≥ ∀ ≠Ω  (14)

3.  A VECTOR OPTIMIZATION MODEL OF THE EASTERN PACIFIC YELLOWFIN TUNA
FISHERY

A three-objective dynamic vector optimization model with fixed technology is developed to analyze the implicit
trade-offs among biological objectives in the eastern Pacific yellowfin tuna fishery. The objectives considered
are: (a) minimizing dolphin mortality; (b) minimizing by-catch levels; and (c) maximizing total YFT yield. These
objectives are represented by 15 to 17, where OBJa is the level of dolphin mortality (to be minimized); OBJb is
the level of by-catch (to be minimized); and OBJc is the yellowfin tuna yield (to be maximized). The description
of the components of these objectives is presented below.

(15) " ", ,
,

b dolphins t w
t w

OBJa TB == ∑

(16) " ", ,
,

b non dolphins t w
t w

OBJb TB = −= ∑

(17) , ,
, ,

t a w
t a w

OBJc CB= ∑

The vector valued objective function incorporating the objectives given in (15) to (17) is presented in (18).

(18) ( ) Z(Y) = Z (Y), (Y), (Y)Max OBJa OBJb OBJc− −
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The population dynamics of yellowfin tuna are represented by (19), where X is the YFT population age structure
in number of organisms; CN is catch in number of organisms; M is the natural mortality coefficient; t is time in
years; a is age in years; w is type of set or fishery (log-sets, school-sets, dolphin-sets and longline); and e is
Euler´s number (c.a. 2.71828).

 (19) 1, 1 , , ,
M

t a t a t a w
w

X X CN e−
+ +

 = − ∑  

The initial age structure was taken from virtual population analysis (Anonymous, 1999). Five main age classes
were considered. An average of the last five available years was taken, with a total of 60,040,040 organisms of
age class 1; 19,700,000 of age class 2; 5,034,000 of age class 3; 575,000 of age class 4; and 27,000 of age class
5. One last age class (5+ or cumulative age class) was considered with 11,000 organisms. M was set as 0.8 and
considered as a constant (Wild, 1994; Anonymous, 1999). Recruitment was considered constant using an
estimated average for the last decade of 85,000,000 (Anonymous, 1999) since no stock-recruitment relationship
has been found yet (Wild, 1994, Anonymous, 1999). Other recruitment schemes will be used for future
approaches.

Catch in number CN is represented by (20), where P is the percentage of organisms caught per age and type set or
fishery (Hall, 1996; Ortega-García, 1996; Anonymous, 1989) for one unit of effort, reflecting the historically
integrated effects of oceanographic phenomena and fisheries on population structure.

(20) , , , ,t a w a w t wCN P NP= ⋅

NP is the number of units of effort generated by the model. NP is the free variable generated by the model to
maximize or minimize the objectives, considering the constraints.

Catch in biomass (mt) CB is given by (21) where wg are average weights per age (Anonymous, 1999): 1.4175 kg
for age class 1; 9.8175 kg for age class 2; 31.7475 kg for age class 3; 64.1825 kg for age class 4; 97.5500 kg for
age class 5; and 124.9725 kg for age class 5+.

(21) , ,
, , 1,000

t a w a
t a w

CN wg
CB

⋅
=

By-catch level TB is represented by (22) where bl is a data base with by-catch levels per 1,000 mt of yellowfin
loaded (Anonymous, 1999); and b is by-catch species sub-divided into “dolphins” and “non-dolphins”. The
“dolphins” by-catch represents the number of dolphins incidentally killed per type of set or fishery per 1,000 mt
of YFT loaded. The “non-dolphins” by-catch is an integrated index representing all non-target and target species
discarded, arbitrarily weighted depending on their trophic level following the theoretical 10% energy-flow rule
(e.g. 100 kg of small fishes = 10 kg of medium fishes = 1 kg of big fish). Since complete by-catch levels for the
longline fishery were not available or not reliable, and since the main focus was on the purse-seine fishery, it was
decided for this exercise not to include the longline by-catch on the by-catch index. However, this will have the
effect of underestimating over-all trade-offs when longline is used as a main fishery option, but not when
estimating trade-offs among purse-seine set-types.

(22) , , , , ,b t w b w t a w
a

TB bl CB= ⋅∑

The constraints used for the exercise described are represented in (23) to (27). Equations (23) and (24) constraint
the YFT biomass (in mt) to be greater than or equal to a certain arbitrary “security” level, (24) does this
specifically for the last year (t=10) of the model. Equations (25) and (26) constraint the catch (mt) to just above
historical records for longline (Anonymous, 1999), and for all types of sets or fisheries to 290,000t representing
the catch quota for the region agreed on meetings of IATTC (Anonymous, 1999). Finally, (28) specifies that each
age-class must have at least one organism on it.
 
(23) ,( )  100,000tt a a

a
x wg⋅ ≥∑
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(24) 10,( )  200,000ta a
a

x wg⋅ ≥∑

(25) , ,
,

  50,000t a w longline
t a

CB t= ≤∑

(26) , ,   290,000t a w
a

CB t≤∑

(27) ,   1t aX ≥

The constraint method was used to trace three arbitrary segments of the policy frontier, given the specification of
the model described above. The trade-offs were calculated on the basis of the marginal values from the output of
the model. Some discrete solutions from the policy frontiers were selected to show average annual values of
selected variables resulting from the optimization exercise. A ten-year time horizon was considered.

3.1. Results and discussion

Figure 1 depicts a two dimensional representation of values for the three policy objectives considered in the
vector optimization problem described in the previous section. The by-catch index and the dolphin mortality are
presented in the “y” and “x” axis respectively, while the “z” axis presents yellowfin tuna yield. The curves in the
figure represent three arbitrary segments of the resulting policy frontier. Each curve in the figure connects points
of equal values of yellowfin tuna yield. This graphical construction highlights the non-linear nature of the trade-
offs between dolphin mortality and by-catch of all other species. Each contains all Pareto optimal combinations
of values for the two objectives while keeping yellowfin tuna yield constant. Since the aim was to minimize both
dolphin mortality and by-catch index the curves of equal yield values are convex to the origin.

Figure 2 shows the segment policy frontier corresponding to an average annual yield of 175,000 mt. The Roman
numerals I to V are used to label particular Pareto optimal solutions that will be used below to make some
remarks about the nature of the solutions of the vector optimization model.

The conflict among the three objectives is clearly shown in Figure 1 and Figure 2, since there is no solution
achieving the lowest values for dolphin mortality and the by-catch index, and at the same time achieving the
greatest values for yellowfin tuna yield.

Average annual dolphin mortality increases from 17 in solution I to 2,700 in solution V (Table 1). The opposite
trend is observed in the values of the by-catch index and the corresponding number of organisms discarded.
Yellowfin tuna biomass reached its lowest level in solution I, and its highest level in solution V.
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Figure 1. Policy frontiers for three different levels of yellowfin tuna yield.

Catch by type of set or fishery is the decision variable or policy instrument. The average catch necessary to



7

achieve a given Pareto optimal solution is shown in Table 2. Solution I was characterized by a high by-catch
index and a low dolphin mortality, and its corresponding yellowfin tuna catch shows the dominance of log-sets.
Solution III is dominated by school-sets, and was characterized by a moderate dolphin mortality and a low by-
catch index. Finally, solution reference point V was characterized by a high dolphin mortality and a low by-catch
index, and the catch was dominated by dolphin-sets. The other two solutions were characterized by transition
trends of their neighbors.
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Figure 2. Policy frontier for the level of 1,750,000 mt of yellowfin tuna yield in 10 years, and five solution
reference points.

Table 1. Average annual dolphin mortality, by-catch indexes, by-catch in terms number or tonnage of organisms,
and yellowfin tuna (YFT) biomass resulting at each of the five reference solutions selected in Figure 2

Reference Dolphin mortality By-catch index Non-dolphin by-catch YFT biomass
number (number) (dimensionless) Non-target (number) Target (mt) (mt)

I 17 1.976 5,995,358 62,655 425,644
II 50 0.793 2,365,383 27,617 629,037
III 100 0.460 1,341,344 17,868 662,267
IV 1,000 0.337 994,096 13,215 679,782
V 2,700 0.106 151,470 2,489 722,305

Table 3 shows the average annual by-catch to give the reader an appreciation of the meaning of the by-catch
index values in terms of numbers of organisms. The same two trends described above (Table 1) holds true for
each species separately.

Table 2. Average annual catch (and its standard deviation) by each type of set for the five reference solutions.
Average catches per year (mt) Catch standard deviation (mt)Reference

number Longline Dolphin-sets Log-sets School-sets Longline Dolphin-sets Log-sets School-sets
I 50,000 0 109,453 15,547 0 0 89,000 34,287
II 50,000 0 27,363 97,637 0 0 48,018 109,381
III 45,005 1,654 3,492 124,848 15,796 5,225 11,044 117,396
IV 45,005 40,868 3,492 85,634 15,796 87,695 11,044 107,426
V 45,005 114,939 3,492 11,564 15,796 122,051 11,044 26,387

In solution I, the marginal cost of reducing dolphin mortality is 108,770 non-target organisms and 1,137 mt of
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target species. However, for solution V the marginal cost drops significantly to only 197 non-target organisms
and 3 mt of target species, given the same level of yellowfin tuna yield. Hall (1998) reported that the differential
cost of fishing of 1 dolphin + 0.1 sailfish + 0.1 manta ray obtained with dolphin sets was approximately 1,833
non-target organisms and 15,620 target organisms (about 8 mt if we assume a weight of 2 kg per individual).

Maximum catch levels per year in the model were constrained by an ad hoc restriction based on catch quotas
agreed on at IATTC meetings. However, there was no restriction regarding the minimal levels of catch per year.
The resulting variation of catches may cause uncertainty, instability and a sense of risk to fishermen. Decision-
makers may wish to explore other model outputs with different constraints.

Table 3. Average annual by-catch (non-target species in number of organisms) for each of the selected reference
solutions.

Reference numbers
Group or group of species I II III IV V
Dolphins 17 50 100 1,000 2,700
Mahi-mahi 1,098,240 338,104 119,332 92,829 8,061
Wahoo 589,909 156,793 31,186 27,456 1,637
Rainbow runner 87,181 27,708 10,624 8,152 733
Yellowtail 127,852 134,657 140,320 97,958 14,405
Other big fish 67,714 150,984 179,976 123,911 16,560
Triggerfish 1,737,810 454,695 82,310 74,101 3,252
Other small fish 2,174,440 1,005,941 683,142 501,934 92,718
Shark and ray 103,575 87,957 85,696 61,376 12,461
Marine turtles 203 286 319 231 60
Unidentified fish 4,522 2,802 2,366 1,762 487
Other fauna 16 95 121 85 15
Sword fish 43 80 93 67 15
Blue marlin 1,310 865 755 547 116
Black marlin 1,163 731 621 453 101
Striped marlin 412 694 798 570 130
Shortbill marlin 18 9 7 7 7
Sail fish 554 2,688 3,404 2,451 648
Unidentified marlin 275 214 202 152 49
Unidentified billfish 121 81 71 53 15
Total non-dolphin species 5,995,358 2,365,383 1,341,344 994,096 151,470

Table 4. Trade-offs between dolphin mortality and the by-catch index for the 10-year simulation period. Trade-
offs are presented both as the by-catch index and as the corresponding number of non-target organisms and
tonnage of target species.

Organisms per marginal unit of dolphin mortality
Reference number

by-catch index units
per marginal unit of dolphin mortality non-target species (number) target species (mt)

I 0.0358417 108,770 1,137
II 0.0358417 106,937 1,248
III 0.000135938 397 5
IV 0.000135938 401 5
V 0.000135938 197 3
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3.2. Conclusions

The resulting policy frontiers are useful in providing guidance to decision-makers and other policy actors to
understand the implication of management decisions, structure the policy debate, and aid policy participants (e.g.,
biologists, lawyers, politicians, environmentalists, commercial and sports fishermen, processors, and consumers)
in developing informed and balanced perspectives.

Results suggest that the marginal cost of reducing dolphin mortality in terms of non-dolphin species does not
increase linearly, rather it increases gradually up to a point after which most fishermen are setting their nets on
logs afterwards it increases rapidly. Solutions away from the extremes in the policy frontier, such as reference
point III ( dominated by school-sets) attain both low dolphin mortality and by catch index. However, information
such as the length of yellowfin tuna caught at each set, availability and readiness to make any type of set,
economic viability, and existing fishery management regulations should be used as additional criteria to make a
selection.

Ballenger and MacCalla (1983) emphasize that changing the set of policy instruments and adding or changing
any parameters to a vector optimization model could shift or redefine the shape of the policy frontier. That is, the
policy frontier for a given fishery policy problem may shift or change shape with changes in technology, policy
instruments, institutional constraints, preferences, environmental conditions etc. As stated before, this exercise
assumes no technological changes in the fishery, adjustments are made on the basis of set-type (ie. dolphin sets,
school sets or log-sets). This assumption represent accurately current fishing practices, which are largely
motivated by the “dolphin safe” principle. Fishermen that want to comply with this principle need not to set their
nets on dolphins.

This paper highlights the usefulness of vector optimization, in particular generating, techniques to evaluate trade-
offs in fisheries management. Rather than suggesting an optimal solution, this approach concentrates on
providing information to the decision makers regarding the range of choice and the consequences of policy
options. Future research includes assessing a broader set of objectives in the eastern Pacific tuna fishery, such as
revenue, profits and employment.
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