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Developing accurate predictive distribution models requires adequately representing relevant 

spatial and temporal scales, as these scales are ultimately reflective of the relationships between 

distributions and influential environmental conditions. In this research, we considered both 

spatial and temporal scale and the influence each has on predicting broad-scale distributions of 

two disparate but related phenomena: land cover and bird distributions. Employing machine-

learning algorithms, we first developed land cover time series datasets covering all of California, 

Oregon, and Washington with a model that simultaneously reflects local-scale heterogeneity and 

broad-scale homogeneity. We then used these and other land cover time series datasets to 

investigate the effects of temporal resolution on species distribution models. 

 

In the second chapter, we focused on the importance of accurately representing the spatial scale 

of relationships between predictors and a response variable for broad-scale predictive models. 

Using both a novel machine-learning algorithm and a novel predictor dataset, we developed 

dense time series forest canopy cover (FCC) and impervious surface cover (ISC) datasets at a 30-

meter spatial resolution for all of California, Oregon, and Washington. To develop both datasets, 

we employed a spatial ensemble modeling method using a population of locally defined and 



 

spatially overlapping decision trees, making it both appropriate at continental-scales and 

sensitive to local variation in predictor-response relationships. Our predictor variables were 

products of LandTrendr, a tool for developing time series images and derivatives from the 

Landsat archive. To develop the most accurate time series of FCC and ISC, we first tested two 

model parameters, sample size and estimator size. Using the best-performing configuration of 

each, we then compared our models with locally defined estimators to bagged decision trees, the 

most comparable model with globally defined estimators. Using the best-performing models and 

LandTrendr imagery, we developed yearly FCC and ISC maps, spanning 1990-2012. To test the 

temporal extensibility of our models, we compared our predicted 2011 maps to 2011 maps from 

the National Land Cover Database. We found that model performance for both FCC and ISC 

decreased with increasing estimator size and that models with locally defined estimators 

outperformed bagged decision trees. We also found that our models performed well when 

extending learned predictor-response relationships to predict 2011 FCC and ISC distributions. 

These results, in concert with several novel byproducts of the models that we developed, 

demonstrate that representing local-scale spatial relationships is critical to producing accurate 

broad-scale distribution models. 

 

In the third chapter, we investigated the influence of temporal scale on an avian species 

distribution model (SDM) by comparing models developed with different temporal resolutions of 

land cover predictor data. We expressed temporal resolution as the time interval between 

representative dates of predictor data. By adjusting the temporal resolution of land cover 

predictors but still using yearly response data, models at coarser resolutions were potentially 

trained with bird observations that did not match the land cover contemporaneous with 



 

observations. We tested different temporal resolutions for five bird species to capture how 

habitat preference may affect SDM response to temporal resolution. Our results confirmed that 

temporal resolution has a noticeable effect on SDMs, but in unexpected ways. For three of the 

five species, the best-performing models were produced at the coarsest temporal resolution, with 

other species showing better performance at moderate resolutions. We also found only subtle 

evidence supporting the idea that habitat preference influenced SDM response to temporal 

resolution. These results indicate that 1) temporal dynamics of avian species-environment 

relationships are highly complex and specific to individual species and 2) that representation of 

temporal scale has a prominent effect on model outcome. 
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CHAPTER 1: INTRODUCTION 

 

Understanding the spatial and temporal distributions of environmental phenomena is a common 

challenge in ecology. Accurately predicting distributions requires developing a model that can 

decipher the relationships between influential conditions and these distributions. To adequately 

estimate such predictor-response relationships, proper representation of the spatial and temporal 

scales important to a phenomenon is necessary; the scale at which a model is developed can have 

prominent effects on the outcome of the model (Austin and Van Neil 2011; Gottschalk et al. 

2011; Song et al. 2013). For many applications, differences in the scale of a model are often 

expressed as the resolution, or grain size, of some element of the model. Many authors have 

argued that resolution must match scales important to the phenomena considered (Addicott et al. 

1987; Betts et al. 2006; Mitchel et al. 2001).  

 

Increasingly, managers and conservation strategists must address problems at continental and 

global scales. Adequately meeting this challenge requires data processed in a consistent manner, 

making broad-scale data particularly valuable (Gray and Song 2013; White et al. 2014; Wang et 

al. 2015). Furthermore, as the extent of a modeling region under consideration increases, the 

relationships between predictors and a response variable are likely to vary across the entire 

region (Fink et al. 2010). For instance, individuals of a local subpopulation of a given species 

may exploit certain local resources, but others in a different part of its range may occupy a 

different niche (Murphy and Lovett-Doust 2007; Peterson and Holt 2003; Quevedo, Svanba, and 

Eklo 2009), indicating that some predictor-response relationships are scale-specific. Practically, 

the spatial scales important to a particular phenomenon can be understood as the distance beyond 



 2 

which the relationships between that phenomenon and the environmental conditions that affect it 

have changed. Modeling and analysis methods must, therefore, account for such local-scale 

effects to avoid spuriously applied relationships (Fink et al. 2010; Ashcroft et al. 2011). Most 

spatial distribution models, however, ignore local-scale patterns and, instead, apply the same 

predictor-response relationships across an entire modeling region.  

 

In the temporal domain, the question of an appropriate scale is similar to spatial scale: how much 

time can pass (i.e., temporal distance) before the state of a phenomenon is no longer related to 

some set of original environmental conditions? Spatial patterns are often indelibly tied to 

temporal patterns (Adler and Lauenroth 2003; Ives and Klopfer 1997), so consideration of 

temporal scales is of equal importance as spatial scales. This is particularly true with models that 

describe distributions of phenomena that are highly temporally dynamic or that may respond to 

temporally dynamic predictors, such as land cover (see Homer et al. 2015). Ecologists have long 

recognized the importance of spatial resolution on species-environment analyses, but the 

influence of temporal resolution remains generally unexplored (Elith and Leathwick 2009, 689; 

Radchuk et al. 2014). The logistical limitations of field data collection and the unavailability of 

dense time series data, however, often require that researchers develop spatial distribution 

models using predictor data with temporal resolutions or extents that do not match response data 

(e.g., Fink et al. 2010; Gschweng et al. 2012; Gutzwiller and Barrow 2001; Rullman and 

Marzluff 2014). The potential effects of coarse or mismatched temporal resolutions for 

predictive models are largely unexamined. 
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Both spatial and temporal scales are therefore of fundamental importance when developing 

predictive models of distributions, but there are many questions concerning how best to express 

them across broad spatial and temporal extents. This thesis explored the dynamics of predictive 

models covering broad extents by considering scale in both the spatial and temporal domains. In 

Chapter 2, we focused on the importance of accurately representing the spatial scale of 

relationships between predictors and a response variable for broad-scale predictive models. We 

applied a machine-learning ensemble algorithm in a novel context and with a novel dataset to 

develop land cover models. We ultimately used those models to develop time series land cover 

maps, spanning more than two decades. Chapter 3 was an investigation of temporal scale and its 

influence on species distribution models. We used the land cover time series developed in 

Chapter 2 and other land cover data to examine how the temporal dynamics of land cover affect 

model performance. Together, both chapters represent an effort to develop more accurate 

representations of spatiotemporal distributions. 

 

In Chapter 2, we addressed the problem of variable predictor-response relationships at broad 

scales by using a spatial ensemble model comprised of a population of locally defined, spatially 

overlapping estimators (i.e., base models). By constraining the spatial extent of each estimator, 

each one makes a prediction using predictor-response relationships from a limited area, 

producing a broad-scale model that remains sensitive to local variation in those relationships. 

The optimal estimator size is a reflection of the spatial scale important to the phenomenon under 

consideration. The predictor data we used in this chapter were mostly derived from LandTrendr, 

an approach for developing time series images and land cover change maps from the Landsat 

archive (Kennedy et al. 2012). Leveraging this novel modeling method and spectral time series 
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dataset, we developed yearly time series of two influential land cover metrics, forest canopy 

cover (FCC) and impervious surface cover (ISC), for all of California, Oregon, and Washington 

at a 30 m spatial resolution. Spanning from 1990 to 2012, yearly datasets depicting these 

phenomena at such fine spatial resolution and broad spatial extent did not previously exist. These 

data will ultimately aid managers and researchers in understanding how these influential metrics 

of land cover patterns affect a wide range of ecological, geochemical, and social processes. 

 

Chapter 3 explored the influence of differing temporal resolutions between land cover predictors 

and response data on a species distribution model (SDM). Land cover is often central to the 

development of SDMs (Manel et al. 2000; Mitchel et al. 2001; Rullman and Marzluff 2014). 

Land cover is also temporally dynamic, so accurately representing changes in land cover at an 

appropriate temporal scale is critical for an SDM. We again used LandTrendr data and another 

novel dataset, eBird, to examine the effects of temporal resolution on an SDM. eBird is a citizen 

science project comprising an online database of bird observation checklists submitted by users 

worldwide (Dickinson et al. 2010). This dataset is unique among bird observation databases in 

both its fine resolution and broad extent—both spatial and temporal (Hochachka and Fink 2012). 

In this chapter, we applied a random forest, another machine learning ensemble algorithm, to 

model breeding season distributions of five different bird species. Although a random forest uses 

global estimators that apply predictor-response relationships across the entire modeling region, 

Fink and others (2010) found that for representing bird distributions when they are more stable 

(e.g., the breeding season), a model with globally defined estimators performed comparably to a 

locally sensitive model. Using the random forest algorithm, we developed multiple SDMs with 

differing temporal resolutions of predictor data. By adjusting the time interval between predictor 
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datasets but still training each random forest on yearly bird response data, we evaluated how the 

disparity between the two can affect model performance. We modeled distributions for multiple 

species to determine if habitat preference was related to performance with differing temporal 

resolutions, as different land cover types exhibit varied rates of disturbance (Homer et al. 2015). 

This work will hopefully shed new light on species-environment relationships, and provide 

insight on appropriate temporal resolutions for SDMs and bird monitoring programs. 

 

Modeling distributions at broad spatial and temporal extents is necessary for effective 

conservation and management of a variety of resources, but developing such expansive datasets 

presents unique challenges. This research attempted to resolve two issues concerning appropriate 

representations of scale for broad-scale models. Spatial and temporal resolutions are 

demonstrably significant model considerations because, ultimately, they are a reflection of 

ecological reality. This thesis demonstrated that the development of any distribution model must 

offer considerable attention to both of these influential parameters. 
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CHAPTER 2: GLOBAL PATTERNS FROM LOCAL SIGNALS: NOVEL METHODS FOR 
PREDICTING A BROAD-SCALE LAND COVER TIME-SERIES 

 

Introduction 

Forest canopy cover (FCC) and impervious surface cover (ISC) are two continuous metrics of 

land cover that are essential to understanding numerous socio-ecological processes. Changes in 

forest cover are attributed to climatic variation at both regional (Bonan 1997) and global scales 

(Nemani and Running 1995), and accurate forest cover estimates that are both spatially and 

temporally explicit are necessary for understanding such processes (Defries et al. 2000). 

Martinuzzi and others (2009) demonstrated that accurate estimations of FCC improve species 

distribution predictions. ISC is an easily understood metric of development intensity (Arnold and 

Gibbons 1996), yielding a strong influence on hydrologic dynamics including flood risk (Suriya 

and Mudgal 2012; Campana and Tucci 2001; Sheeder, Ross, and Carlson 2002).  ISC also has a 

demonstrable influence on microclimatic variation from the heat island effect, increasing 

temperature and reducing evapotranspiration (Carlson and Arthur 2000).  

 

FCC and ISC, then, each exert significant influence on ecosystem function, and data that 

adequately represent them at fine spatial resolutions can be especially informative. Both metrics, 

however, are subject to change over time, making fine temporal resolution just as critical to 

accurate analyses as fine spatial resolution. Assessing changes in land cover requires data 

representing multiple time periods (Jepson 2005), particularly because the times at which 

changes may occur is usually unknown. Temporally sparse data, therefore, will not likely 

represent changes in land cover accurately (Cohen and Goward 2004; Masek et al. 2008). 
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Several studies have demonstrated the utility of data that are both spatially and temporally 

detailed (e.g. Goward et al. 2008; Turner et al. 2007). Lunetta and others (2004) recommend a 

temporal resolution of 1–2 years to adequately assess land cover change. 

 

Predicting spatial distributions for any phenomenon requires discerning relationships between 

predictor and response variables. In the absence of a priori knowledge of such relationships, 

spatial distributions are generally modeled using a supervised classification algorithm that, in the 

process of constructing the model, estimates predictor-response relationships from patterns in 

training samples. For most models, these learned relationships are then used to interpolate for all 

other locations, with the same predictor-response relationships applied globally across the entire 

modeling region.  

 

Models developed at both fine resolutions and over large extents, however, present a unique 

modeling challenge: variability in relationships between predictor and response variables is 

likely to increase along with the extent of a modeling region, potentially making learned 

relationships from one area of the modeling region invalid for another. Increasingly, researchers 

and managers face problems at continental and larger scales (e.g., climate change [Schimel et al. 

1997] or animal migrations [Bull et al. 2013]), and adequately meeting this challenge requires 

distributional data produced in a consistent manner, making broad-scale data particularly 

valuable (Gray and Song 2013; White et al. 2014, Wang et al. 2015). Modeling and analysis 

methods must, therefore, account for predictor-response variability to avoid spuriously applied 

relationships (Fink et al. 2010; Ashcroft et al. 2011).  
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Among various efforts to produce FCC and ISC maps at broad scales, there is little agreement on 

the effect of local-scale variability in predictor-response relationships. Coulston and others 

(2012) determined that a single model defined for the entire conterminous United States 

predicted FCC nearly as well as a locally trained model, but other research suggests an approach 

sensitive to local variation may be better suited for such broad extents. Homer and others (2007), 

Kim and others (2014), and Townshend and others (2012) all employed discrete, locally fit 

models to classify national or global land cover that were later mosaicked to generate a final 

dataset.  

 

Offering a more seamless approach, Fink and others (2010) developed the spatiotemporal 

exploratory model (STEM). A STEM is a framework for generating predictions at continental 

scales, which that study used to model species distributions for the conterminous United States. 

A STEM aggregates over an ensemble of locally defined, spatially overlapping estimators (i.e., 

base models). Each pixel in the final prediction map is the average or mode of all overlapping 

pixels from each estimator, producing a broad-scale map that reflects local-scale variability. 

Although the main goal of Fink and others (2010) was to develop a model that could effectively 

predict species distributions with intra-annual spatiotemporal variability, this ensemble approach 

with estimators limited in spatial extent represents a promising approach for predicting FCC and 

ISC across broad extents.  

 

The motivation for this study, then, was to develop a broad-scale, fine-resolution land cover 

model that remains sensitive to local variation. Here, we adapted the STEM algorithm to apply 

both this novel algorithm and a novel time-series predictor dataset for developing yearly FCC 



 12 

and ISC maps for California, Oregon, and Washington spanning 1990–2012, a time-series 

dataset that did not previously exist for such a broad extent and fine resolution. These data will 

ultimately aid researchers and conservation practitioners in understanding how these influential 

metrics of land cover patterns affect a wide range of ecological, geochemical, and social 

processes. 

 

Methods 

Study area 

We conducted this study using data covering the west coast of the conterminous United States, 

including all of California (CA), Oregon (OR), and Washington (WA). Although this region does 

not span an entire continent, the ecological and anthropogenic landscapes together represent the 

diversity found across a continental extent, making it suitable for testing our methods. Elevations 

across the study area range from sea level to 4400 m. Both OR and WA are broadly 

characterized by two vegetation zones, forest and steppe (Franklin and Dyrness 1988), generally 

corresponding to maritime and continental climatic zones, respectively. Vegetation zones are 

similarly divided by the southern Cascades and Sierra mountains in California, although more 

xeric vegetation communities are common in southern California with coastal chaparral in the 

west (Ashbaugh and Alwin 1994, 110) and desert scrublands throughout much of southeastern 

California (Miller and Hyslop 1983). Moreover, the entire region exhibits a wide variety of forest 

types, including wet temperate rainforests along the Pacific coast; highly productive, temperate 

coniferous forests throughout mid-elevation areas; subalpine coniferous forests; broadleaf forests 

in frequently disturbed areas and riparian zones; and mixed conifer and broadleaf in southern 

Oregon and Northern California (Franklin and Dyrness 1988; Ashbaugh and Alwin 1994).  
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Like the forests throughout the study area, the anthropogenic landscape exhibits broad diversity. 

Agricultural land dominates much of the low-elevation central valleys throughout the study area, 

with a wide variety of crop types, including cotton, wheat, vegetables, feed crops, and tropical 

evergreens (e.g. avocados, citrus trees, olives) (Miller and Hyslop 1983). Across OR and WA, 

hay, wheat, and potatoes are among the prevailing field crops, while orchard crops make up large 

proportion of production in WA and grass seed is more common in OR (Ashbaugh 1994, 326–

333).  Most urban development throughout OR and WA is relegated to major urban centers and 

highway travel corridors (Ashbough 1994, 382). The same general pattern is found in CA, 

although development intensity and extent are generally greater across the state. The ecological 

and population density diversity makes the area ideal for testing this ensemble model, designed 

to handle globally variable relationships between predictor and response variables. 

 

Overview of methods 

Developing our time series of maps first required establishing a properly specified and accurate 

model of predictor-response relationships. For the STEM algorithm we employed, two 

parameters constrain a model’s ability to estimate those relationships: the number of samples and 

the size of locally defined estimators. To ensure our model accurately estimated predictor-

response relationships, we first tested multiple numbers of samples. With the best sample size, 

we tested three sizes of locally defined estimators. Using both the best performing sample size 

and estimator size, we then compared the STEM algorithm to a bagged decision tree, the most 

comparable model with globally defined estimators. In our last test, we used the best performing 

STEMs to generate the complete time series and tested the temporal extensibility of the models. 
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For evaluating the models, we primarily relied on confusion matrices and several derived 

summary statistics. We additionally developed several maps to inform per-pixel predictions. In 

summary, our methods involved 5 steps for developing and evaluating our models: 1) testing 

multiple sample sizes; 2) testing multiple sizes of estimators; 3) comparing our STEMs to 

conventional models with globally defined estimators; 4) evaluating the time series; and 5) 

developing per-pixel evaluation maps. Details of these steps are described below. 

 

Training data 

Our training data came from the 2001 National Land Cover Database (NLCD) maps. These maps 

were constructed with predefined discrete modeling regions, generally corresponding to 

ecoregion boundaries (Homer et al. 2004). The response variable in that study was derived from 

high-resolution orthophotos, which were classified as either a forest/non-forest or 

impervious/non-impervious surface and resampled to a 30 m resolution to produce percent cover 

estimates (Homer et al. 2007). To develop NLCD maps, these percent cover estimates were then 

related to Landsat composites from imagery ranging from 1999–2002, finally resulting in maps 

that range from 0–100% cover. Reported accuracy from ten-fold cross-validation for each 

modeling region across our study area ranged from 79–91% for FCC and 83–93% for ISC (ibid). 

Using these data for training assumed that NLCD maps represent accurate cover estimates, 

although we recognized that misclassified pixels introduced error into our training data. While 

independent assessments have revealed errors in NLCD FCC and ISC data (Greenfield, Nowak, 

and Walton 2009; Nowak and Greenfield 2010), NLCD maps are considered to be high quality 

products and are widely used in ecological modeling (e.g., Fink et al. 2010; Pidgeon et al. 2007; 

Theobald et al. 2009; Wickham, Wade, and Norton 2014; Wilson, Lister, and Riemann 2012). 
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For accurate classification from remotely sensed spectral imagery, different materials must be 

separable by their appearance in different portions of the electromagnetic spectrum––that is, their 

spectral signatures must be distinct. Non-forest and non-impervious pixels occur with a wide 

range of spectral signatures, so we needed more samples from this class to capture the variability 

of such occurrences. To ensure training samples adequately represented the full range of percent 

cover values, we used random samples stratified by decile with an additional stratum reserved 

for 0-value (i.e., non-forest or non-impervious) pixels. Our intent was to offer each estimator 

enough information to accurately predict for the various situations that might result in non-forest 

or non-impervious pixels, while avoiding oversampling 0-value pixels that may be misclassified 

or for which there could be an error in either the predictor or training data. Still, providing 

enough 0-value samples for each estimator to adequately handle such variability is a known 

challenge for broad-scale FCC and ISC predictions (Huang et al. 2001).  

 

Predictor data 

Spectral predictor data were all products of LandTrendr, a tool for developing time series images 

and landscape change maps from the Landsat archive (Kennedy et al. 2012). LandTrendr is 

unusual among land cover change detection algorithms in that it employs temporal segmentation, 

which allows for detection of both abrupt changes (i.e., short, fast disturbances such as wildfire) 

and gradual trends (i.e., long, slow disturbances like insect damage). The spectral trajectory of 

each pixel is idealized as a series of fitted straight-line segments, which omits noise while 

retaining essential detail. For every year in the time-series stack, fitted images are created by 

interpolating each pixel’s value to the appropriate time step along these segments. Each pixel is 
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ultimately fitted to its own trajectory (Kennedy et al. 2015). LandTrendr outputs we used in this 

study included fitted tasseled-cap brightness, greenness, and wetness; normalized burn ratio 

(NBR); change from the previous year in brightness, greenness, wetness, and NBR; the number 

of years since the last detected disturbance; and the mean squared error of each yearly image.  

 

Other predictors we used included elevation and several derivatives from a 30-meter digital 

elevation model (Gesch et al. 2002). Elevation derivatives included slope represented as percent 

and cosine-transformed aspect (Beers, Dress, and Wensel 1966). Aspect represented in this way 

is useful because the maximum value represents the maximum distance in data space from the 

minimum value, whereas the same is not true for aspect ranging from 0° to 360°.  

 

Model description 

The STEM algorithm we used is a discrete ensemble model, composed of a population of 

independent estimators. As a general class, ensemble models aim to improve predictions by 

aggregating over numerous estimations using a common base model algorithm. Each estimation 

“represents a possible state that the real system might be in at some specified time” (Araújo and 

New 2007). All ensemble methods can be broken down into two separate tasks: establishing a 

population of estimators, and combining those estimators to determine the final prediction 

(Hastie et al 2009, 605).  

 

The spatiotemporal boundaries of estimators are delineated by support sets, which define the 

spatial and temporal domains of each estimator. For most ensemble models, each support set 

spans the entire spatial extent of the modeling region, offering global spatial support to each 
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estimator. To avoid long-range learning from spurious relationships at broad extents, however, 

support sets of a STEM are all limited in spatial and temporal extent, establishing only local 

support for each estimator. Support sets are geographically stratified, randomly located, and 

spatially overlapping (see Figure 2.1). Each estimator of the STEM produces predictions for the 

spatiotemporal extent defined by its support set. Because support sets overlap, the value of each 

pixel at a fixed geographic location is estimated multiple times by different estimators. A final 

prediction is determined by calculating either the mean or mode for each spatiotemporally 

overlapping pixel. This local aggregation reinforces both local scale homogeneity and global 

scale heterogeneity (Fink et al 2010). In this study, we calculated both the mean and the mode of 

all overlapping pixels and compared the resultant predictions. The temporal extent of estimators 

in our STEMs was fixed by using training and predictor data only from 2001 for developing the 

model.  

 

The STEM framework is intended to be flexible, allowing for any base model algorithm to 

predict within support sets. We elected to use a decision tree as our base model algorithm for 

several reasons. Decision trees are a nonparametric machine-learning method designed to 

efficiently partition a large number of predictors to develop classes with the greatest 

discrimination between each class, according to a given information criterion (Breiman 1984, 56; 

Fink et al. 2010). The training data are recursively split, building a tree-like structure. One 

commonly cited weakness of decision trees is their tendency to overfit training data (Bramer 

2002). While an overfit tree favors specific portions of the data space, an ensemble of overfit 

trees can potentially fill and adequately represent the full data space (Dietterich 2000). 

Aggregating over a large population of estimators can have a similar effect to other methods of 
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generalizing trees (Breiman 2001); thus, an aggregated population of overfit trees is one method 

to achieve an optimal prediction. 

 

Another known weakness of decision trees is their instability (Breiman 1998; Opitz and Maclin 

1999). That is, predictions are highly susceptible to changes in the training data (Breiman 

1996b). Breiman (1996a) introduced the concept of bagging (bootstrap-aggregating) to stabilize 

predictions for such sensitive procedures. Like other ensemble methods, bagging combines 

multiple, slightly varied estimators. Each of these is trained on a bootstrap sample of training 

data, i.e., sampled with replacement (Johnson 2001). Bagging can potentially improve 

performance for unstable base models like decision trees, as each estimator receives limited 

information about the data space. This ultimately produces a highly diverse population of 

decision trees. Indeed, the strength of a bagged model relies on the diversity of the ensemble 

(Dietterich 2000), as each member may favor different predictor-response relationships. It is 

reasonable to assume, then, that bagging would improve predictions at broad scales if 

relationships between predictors and a response variable vary across the modeling region. Thus, 

we used bagged estimators to more effectively estimate these relationships. 

 

Evaluating map agreement 

The general goal of map evaluation is to compare a sample of predicted values to values believed 

to represent reality. In our case, we evaluated our predictions against NLCD maps at locations 

not used to train the models. Following the recommendations of Foody (2002), we employed 

assessment methods that describe the types, spatial distribution, magnitude, and frequency of 

error. Riemann and others (2010) and Strahler and others (2006) insist that an adequate 
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assessment should also include multiple evaluation methods, as each may provide different 

information. We primarily relied on confusion matrices with map classes defined by decile and 

summarized them with several different statistics to assess agreement between STEM and NLCD 

maps. We calculated user’s and producer’s accuracy for each stratum, and overall accuracy and 

Cohen’s kappa coefficient (1960) to summarize the agreement for the entire test sample set. 

Kappa compares the observed overall accuracy to the expected accuracy, taking into account the 

random chance of agreement between a reference map and a prediction map. Although kappa is a 

common metric used to evaluate land cover classifications, its efficacy has been questioned 

(Foody 1992; Liu, Frazer, and Kumar 2007; Pontius and Millones 2011; Oloffson et al. 2013). 

We therefore calculated two alternative metrics of disagreement recommended by Pontius and 

Millones (2011): quantity disagreement and allocation disagreement. Quantity disagreement can 

be understood as the difference in the amount of each class in a prediction map as compared to a 

reference map. Allocation disagreement considers the number of times a map class is misplaced. 

Both quantity and allocation disagreement range from 0 to 1, where 0 represents perfect 

agreement. 

 

In the process of assessing our models, we discovered pixel misalignment errors of up to one 

pixel in the source LandTrendr data. Because these data were processed by Landsat scene, the 

offset varies by scene (Figure 2.2), preventing correct alignment of the source data before 

training and predicting. We compensated for this error by adjusting our sampling scheme when 

generating both training and test samples. Our training sample values were derived from the 

average of a 3 x 3 pixel kernel centered on each randomly generated sample. For evaluating the 

models, we used two different sampling schemes using a 3 x 3 kernel also centered on testing 
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samples: 1) the average of the nine reference and prediction values (hereafter, “average” 

method), and 2) the pixel of the reference data with the smallest difference from each center 

pixel test sample (hereafter, “best-match” method). By using the best-match pixel, it is more 

likely that the pixel-to-pixel comparison necessary for map scale assessments would be 

performed on the correct pixels. Results from both methods are reported below. 

 

Sample size 

The selection of an appropriate sample size for a modeling task can have a prominent effect on 

prediction accuracy (Foody 2002), as training samples must represent the full range of variability 

in predictor-response relationships. Too much of the same information, moreover, can produce 

an overfit model, a common occurrence with decision trees (Bramer 2002). While statistical 

methods exist for estimating an appropriate sample size, the number required varies by 

prediction task and modeling method. Therefore, we tested the effect of sample size on multiple 

models trained on samples of varying sizes from 100,000 (< 0.1% of total pixels) to 1,500,000 

(~1.5% of total pixels) total samples. For each sample size, we trained the model on 80% of the 

total samples and reserved 20% for model evaluation.  

 

Support set size 

Optimal support set size is a balance between limiting the complexity of predictor-response 

relationships while still offering enough information for each estimator to make adequate 

predictions. Ultimately, the optimal size is a reflection of the scale important to the response 

variable—that is, the distance beyond which learned relationships from one location are no 

longer valid. Since that distance is unknown for FCC and ISC in our modeling region, we tested 
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three support set sizes for both FCC and ISC: 200 x 100 km (small), 400 x 300 km (medium), 

and 800 x 600 km (large) (see Figure 2.1).  

 

Comparison of a STEM to a conventional bagged decision tree model 

Since reasonable expectations of accuracy vary by modeling task and research objectives (Foody 

2008), the value of any new modeling method is best compared to a next-best method (Pontius 

and Millones 2011). Using the sample size and support set size that produced the best performing 

model we compared STEM predictions to predictions made with a bagged decision tree (BDT), 

the most comparable bagged ensemble model with global support for all estimators. A BDT is 

essentially a STEM but with all support sets covering the entire modeling region.  

 

Temporal extensibility 

As described above, the purpose of this study was not only to demonstrate the utility of a STEM 

for creating FCC and ISC maps, but also to leverage a novel yearly time series dataset to produce 

temporally dense FCC and ISC time series data as well. In our last test, we used the best 

performing FCC and ISC models developed with 2001 NLCD training data and predicted both 

variables for all years from 1990 to 2012. To evaluate the temporal extensibility of the model, we 

also compared 2011 STEM predictions to 2011 NLCD maps, the only other year of NLCD data 

with both FCC and ISC maps. 

 

Spatial assessment of error, uncertainty, and variable importance 

In addition to using measures of map agreement, we evaluated model error, uncertainty, and 

explored prediction results with three per-pixel assessment methods. Foody (2002) and Riemann 
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and others (2010) note the importance of demonstrating the spatial variability of model accuracy, 

as a data user may only be interested in a particular area of a prediction map. Such specific use is 

even more likely for broad-scale, fine-resolution datasets.  

 

First, we introduce a novel method to evaluate model performance across the modeling region 

and to illustrate the spatial variation in predictive performance. Our evaluation method is a 

modification of a common assessment strategy for bagged models, the out-of-bag (OOB) score. 

For a typical bagged model, the OOB score is calculated by assessing the error of each estimator. 

Since each estimator is trained on a random subset of the training data, a prediction is made with 

the training samples not used to train that estimator, and the classification accuracy, or OOB 

accuracy rate, is calculated. The OOB score for a typical bagged model is the average of the 

OOB accuracy rates of all estimators (Breiman 2001), ranging from 0 to 1, where an OOB score 

of 1 indicates a perfect classifier (Breiman 1996b). For our STEMs, we still determined OOB 

accuracy per estimator, but each estimator was limited in spatial extent by it’s support set, so the 

average OOB accuracy varied across the modeling region. Leveraging this variability, we 

averaged all overlapping accuracy values to determine the OOB score for each pixel, resulting in 

an OOB score map that illustrates how accuracy varies across the modeling region (Figure 2.3). 

We summarized the overall OOB score for the whole STEM by averaging all pixel values.  

 

Uncertainty is distinguished from error in that it is a measure of the confidence in a prediction 

rather than simply the difference between known and predicted values. For decades, researchers 

have called for more explicit assessments of uncertainty and spatial assessments of uncertainty, 

in particular (MacEachren 1992; Foody and Atkinson 2002). Spatially explicit information on 



 23 

uncertainty can provide crucial information on proper use of a map. Since bagged models rely on 

a population of independent predictions, they provide a straightforward platform for calculating 

uncertainty for each pixel (Sanyal et al. 2010). In the same way that we aggregated predictions 

per pixel, we calculated the standard deviation of all spatially overlapping pixels. These standard 

deviation maps provide critical information for interpreting prediction results. 

 

Another advantage of decision-tree-based ensemble approaches is that, in the process of 

constructing such models, the relative importance of each predictor is easy to compute. Relative 

importance is determined per estimator by calculating the increase in information gain (i.e., the 

increase in the model’s discriminatory ability) after including that predictor in the model. For 

each predictor variable, importance scores are averaged for all estimators to determine 

importance for the entire ensemble. Although there are some limitations to calculating variable 

importance with this method (Strobl et al. 2007), importance remains an informative byproduct 

of decision-tree-based models. Moreover, a typical ensemble model can only assess variable 

importance for the entire extent of the modeling region. With locally fit estimators, however, we 

estimated variable importance per pixel in much the same way that we calculated per-pixel OOB 

scores and standard deviation. Here, we determined the most important predictor variable for 

each estimator and aggregated by mode to approximate the most important variable per-pixel.  

 

Results 

Overall model performance 

In general, FCC and ISC STEMs performed well, with overall accuracies of 89.6% and 98.0%, 

respectively. Kappa scores also indicated general agreement between our models and NLCD 
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maps, with FCC scoring 0.82 and ISC scoring 0.71. Per-stratum accuracy metrics for both FCC 

and ISC followed a similar pattern throughout all model iterations. For the best performing FCC 

model (Table 1), user’s and producer’s accuracies were highest for the 0–10% value stratum, 

with a user’s accuracy of 97.6 % and a producer’s accuracy of 98.2%. User’s accuracy was 

lowest for the 11–20% stratum at 46.8%, and producer’s accuracy was lowest for the 21-30% 

stratum at 63.3%. As with FCC, the best performing ISC model (Table 2) yielded the highest 

user’s and producer’s accuracies in the 0–10% stratum at 99.6% and 99.1%, respectively. The 

lowest user’s and producer’s accuracies occurred in the 11–20% stratum at 49.9% and 35.9%, 

respectively. Overall, the models struggled more to predict mid-range values than either 

extremely low or extremely high values. 

  

Predictions aggregated by the mode of all overlapping pixels consistently agreed with the 

reference map more than the predictions determined by the mean. The overall accuracy of FCC 

mode predictions for all models was approximately 7% higher than FCC mean predictions, and 

the kappa was consistently greater by 0.06–0.07. The accuracy of ISC mode predictions for all 

models exceeded mean predictions by 5–11% for overall accuracy and 0.07–0.14 for kappa. The 

decrease in performance was largely attributable to commission errors in the 0–10% stratum. 

Mean predictions consistently predicted high impervious values in areas where no impervious 

pixels exist in the NLCD reference map. As a result, producer’s accuracies for mean predictions 

for this stratum were as much as 11% lower than the mode predictions. Because the mode 

predictions yielded consistently better results, all model results reported here are from those 

maps and we used only the mode predictions to create the time series.  
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The best-match sampling method yielded considerably better results than the average method, as 

demonstrated by the narrow, concentrated plots of two-dimensional histograms (Figure 2.4). This 

is to be expected, considering that the average method inevitably drew from pixels in both the 

reference and the prediction maps that did not represent the same locations on the ground. We 

ultimately adopted the best-match method for evaluating model parameters and for other tests. 

All results discussed below are, therefore, drawn from the best-match method. 

 

Sample size 

Most evaluation metrics improved nearly monotonically with increasing sample sizes for both 

FCC and ISC (Table 3). In general, sample size had a greater influence on ISC models than FCC, 

as overall accuracy, kappa, and OOB scores for FCC varied less than for ISC. All accuracy 

metrics show that FCC and ISC models trained with oversampled 0-value pixels performed 

better than models trained with an even number of samples in all strata. The best-performing 

sample size for both models was 1,500,000 (the largest tested) with ten times the number of 0-

value pixels as all other strata. 

 

Support set size 

For both FCC and ISC, model performance decreased as support set size increased, although this 

was clearer in the FCC models than ISC. For FCC models, this effect was demonstrated by the 

accuracy, kappa, and average OOB score, but for ISC it only affected the average OOB score 

and kappa. We attribute this lack of response in ISC accuracy to the uneven distribution of map 

values. For all support sizes, ISC user’s and producer’s accuracies in the 0–10% stratum were 

relatively constant, with differences of < 0.2% between support set sizes. This map stratum also 
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covers over 95% of the modeling region, so it has an overwhelming influence on overall 

accuracy. For nearly all other map strata, however, the smaller support size outperformed the 

larger with an increase in producer’s accuracies between 0.2–10% and an increase in user’s 

accuracies between 0.3–2.6% (see Appendix A). Since kappa accounts for the random chance of 

agreement, it gives greater consideration to the accuracy of these rare classes than overall 

accuracy does. Thus, the uneven distribution of performance in different strata had a clear effect 

on kappa, but it was not reflected in the overall accuracy. We, therefore, used the smallest 

support set size for comparing to BDTs and generating the time series. 

 

Comparison of a STEM to a BDT 

As anticipated, both FCC and ISC STEMs with locally defined estimators outperformed BDTs 

with globally defined estimators across all evaluation metrics (Figure 2.5). For the best 

performing FCC STEM, we achieved an overall accuracy of 89.6% with a kappa coefficient of 

0.82, a quantity disagreement of 0.01, an allocation disagreement of 0.09, and an average OOB 

score of 0.80. In comparison, the FCC BDT produced an overall accuracy of 84.9% with a kappa 

coefficient of 0.74, a quantity disagreement of 0.02, an allocation disagreement of 0.13, and an 

OOB score of 0.73.  For the best performing ISC STEM, we calculated an overall accuracy of 

98.0% with a kappa coefficient of 0.71 and an average OOB score of 0.85. The ISC BDT 

showed an overall accuracy of 97.2% with a kappa coefficient of 0.65 and an average OOB score 

of 0.79. Both models achieved the same quantity and allocation disagreement scores of 0.00 and 

0.02, respectively.  
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Geographically, the FCC BDT tended to over-predict percent cover in wet forests (the Coast 

Mountains in northwestern CA and southwestern OR) and under-predict in dry forests (e.g., 

Sierra Nevada Mountains in CA). The ISC BDT model generally over-predicted around some 

urban centers like Seattle, WA and Los Angeles, CA and under-predicted in agricultural areas. 

For STEMs the mean squared error predictor helped improve predictions only in these areas, but 

since the BDT needed to learn predictor-response relationships for the whole modeling region, 

the information offered by the mean squared error was overshadowed by more prominent 

relationships. Difference images between STEMs and BDTs illustrate these spatial patterns of 

BDT performance (Figure 2.6). 

 

Temporal extensibility 

After determining the best sample size, support set size, and aggregation method, we used the 

best performing model to create maps for the entire time series from 1990-2012. Evaluating our 

2011 ISC and FCC maps with 2011 NLCD data, our ISC prediction performed nearly as well as 

our 2001 prediction with overall accuracy of 97.8% (0.3% lower than 2001) with a kappa score 

of 0.69 (0.02 lower than 2001). The 2011 STEM FCC prediction, however, exhibited markedly 

less agreement with 2011 NLCD reference data. That prediction, when compared to NLCD, 

yielded an overall accuracy of 76.2% (13% lower than 2001) and a kappa coefficient 0.61 (0.21 

lower than 2001). The potential reasons for the difference in 2011 prediction accuracy between 

FCC and ISC are discussed below. 
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Spatial assessment of error, uncertainty, and variable importance 

While map-scale assessments provided information on overall model performance, prediction 

accuracy and uncertainty inevitably varied across the modeling region. We assessed this 

variability by calculating per-pixel OOB scores and standard deviations (Figure 2.7). For both 

FCC and ISC, the highest OOB scores coincided with areas consisting of mostly 0-value pixels, 

with some support sets achieving an OOB accuracy rate of 1. Where the majority of pixels had a 

value of 0, the predictor-response patterns within estimators were far less complex. Although 

these 0-value pixels likely represent a wide range of actual materials, most of the training 

samples all corresponded to a single percent cover value so the spectral differences were 

inconsequential. In comparison, FCC and ISC predictor-response patterns in forested and 

developed areas were much more complex, potentially with different materials represented by 

the same percent cover value. The OOB maps show that estimators in these areas struggled more 

to classify FCC and ISC correctly (Figures 2.7c and 2.7d). The lowest OOB scores for FCC were 

west of the Cascade Range in OR and WA, with a prominent depression in southwestern OR and 

northwestern CA. Major depressions in ISC OOB scores were centered on Seattle, WA and 

Sacramento, CA with a moderate depression around San Diego, CA.  

 

Standard deviation maps (Figures 2.7a and 2.7b) complimented the OOB maps, providing crucial 

information on ensemble prediction structure. Standard deviation tended to be highest for pixels 

representing materials that are spectrally similar to either forests or impervious surfaces. For 

FCC, standard deviation ranged from 0-47% cover with a mean of 4.76%. The highest standard 

deviations were most common in agricultural areas, which bear strong spectral resemblance to 

trees. High standard deviations were also found in forest subject to logging and other high 
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magnitude, high frequency disturbances. FCC standard deviation was only moderate, however, 

in densely forested areas less subject to disturbances, such as areas in and around Olympic 

National Park in WA and higher elevation forests in WA, OR, and CA. The lowest FCC standard 

deviations consistently occurred in non-forested areas such as the deserts east of the Cascade 

Range and in southern CA. Standard deviation for ISC also ranged from 0-47% cover but with a 

mean of 3.44%. Standard deviation values were highest in areas dominated by agriculture, such 

as the Willamette Valley in OR, much of central WA, and the Central Valley, Salinas River 

valley, and Coachella Valley in CA. Standard deviation was also high in bare ground desert 

areas, particularly near population centers. Standard deviation was lowest in regions far from 

population centers and areas dominated by forest, a dark land cover that is easily contrasted with 

bright impervious surfaces.  

 

Perhaps the most useful spatially explicit method for understanding model dynamics that we 

employed was calculating variable importance maps (Figure 2.8). In general, importance maps 

demonstrated that predictor-response relationships differ regionally and that STEMs were 

sensitive to this local-scale variability. Importance maps additionally revealed several 

unexpected relationships between predictor and response variables, which we discuss in greater 

detail below.  

 

Discussion 

Our ultimate goal in this study was to develop dense time series FCC and ISC datasets at a broad 

scale. Doing so required assessing the appropriate training sample size by testing different 

numbers of samples and addressing the wide variability in predictor-response relationships found 
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at broad scales. The STEM method addresses the latter problem with an ensemble of locally 

defined estimators, limiting the predictor-response variability per estimator but representing the 

entire data space (and geographic space) across the whole ensemble. With only local predictor-

response relationships influencing the final prediction for each pixel, the STEMs were able to 

represent local scale homogeneity, while remaining sensitive to global scale heterogeneity. Also 

recognizing that a novel method is only worth adopting if it improves upon existing methods, we 

compared our predictions to that of a BDT. Similarly, the time series dataset we developed will 

only be useful to others if it depicts an equally accurate representation of reality as other 

comparable products. To test this, we compared our 2011 STEM maps to 2011 NLCD maps. 

Lastly, we developed additional maps to inform per-pixel predictions and to qualitatively 

describe results. 

 

Sample size 

Selection of an appropriate sample size is a common challenge for any predictive modeling task. 

After testing increasing sample sizes, we found consistent gains in model performance with each 

increase and no signs of diminishing accuracy with larger sample sizes. These findings are 

contrary to Coulston and others (2012), which concluded that a relatively small sample size of 

1,000 was adequate for predicting FCC for the conterminous United States, and more samples 

yielded negligible gains. The methods of that study, however, differ from ours in several 

important ways. Most importantly, the training data were photo-interpreted samples from high-

resolution imagery. The NLCD data we used to train our models, in contrast, were modeled data 

that used either a forest or urban mask to assign a value of 0 to any pixels determined to be non-

forest or non-impervious. The masks effectively created a highly diverse class of 0-value pixels 
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representing a wide range of actual materials, some of which were not easily separated 

spectrally. Indeed, the intent of the original forest and urban masks was to remove commission 

errors from the NLCD predictions at locations that should have had a percent cover of 0. While 

we observed increased overall performance with larger sample sizes, we saw the largest gains in 

the lowest map stratum of values ranging from 0–10%. Furthermore, oversampling 0-value 

pixels proved to be the most effective sampling scheme, presumably because the total training 

set more adequately represented the variability in predictor-response relationships. This 

underscores the point that an appropriate sample size is one that sufficiently represents the entire 

data space. The exact number of samples necessary to achieve that sufficiency will inevitably 

vary with different training data, predictor data, and modeling tasks. 

 

Another important difference contributing to disparities between our results on sample size and 

that of Coulston and others (2012) is the model algorithm used. That study employed a random 

forest model, a model similar to a BDT with globally defined decision trees, but it is recognized 

as a marked improvement over the BDT algorithm (Breiman 2001). Each estimator of a random 

forest is defined globally, drawing support from the entire modeling region. With this global 

support, each estimator shares more of the same training samples, requiring a relatively small 

total number of samples. With the limited spatial extent of each estimator for a STEM, however, 

fewer samples are shared across each estimator. Since each one requires an adequate 

representation of the data space, a STEM demands a larger total number of samples; the smaller 

the support sets are, the larger the total number of samples must be. This is one potential 

weakness of the STEM algorithm, as a large training set may not be available depending on the 

source of the training data. 
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Size of support sets 

The size of support sets of a STEM controls the potential variability of predictor-response 

relationships within an estimator. The degree to which support set size affects a STEM is largely 

dependent on the predictor-response variability across the entire modeling region and the scale of 

those relationships. The scale important to a phenomenon is considered small if those 

relationships change over short distances. Expecting a wide range of predictor-response 

variability, we anticipated that a model more sensitive to small-scale change would be most 

appropriate for predicting FCC and ISC in our study, as CA, OR, and WA collectively represent 

considerable ecological diversity.  

 

As expected, we generally found decreasing model performance for both FCC and ISC with 

increasing support set size. Although this effect was subtle, it suggests that small-scale predictor-

response relationships exercise primary influence. FCC models exhibited this trend more clearly, 

with a monotonic decrease in accuracy across all evaluation metrics. As support set size grew, so 

did the complexity of predictor-response patterns contained within each support set. The 

corresponding estimators struggled to tease out differences in spectral signatures of different 

materials, ultimately leading to misclassification. 

 

While set size had a similar effect on ISC models, the results were more nuanced. The average 

OOB score and kappa coefficient decreased with increasing set size, but the overall accuracy 

remained constant for all sizes. This varied response of accuracy metrics was the result of uneven 

accuracies across different map strata and the differently sized areas that those strata represent. 
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As described above, medium and large set models struggled with higher ISC values, showing 

frequent commission errors. This is largely due to the spectral similarity of impervious surfaces 

to some non-impervious surfaces such as bare ground. Urban areas with high concentrations of 

impervious surfaces (i.e., high ISC values) are highly localized across the study area. With small 

support sets, estimators that at least partially covered these dense concentrations of impervious 

surfaces needed to also predict for only a small number of low-value ISC pixels, limiting 

confusion of non-impervious surfaces with impervious surfaces. Larger support sets, however, 

forced each estimator to learn predictor-response relationships with materials that were not easily 

separated by spectral characteristics. Put more simply, smaller support sets resulted in less 

complex predictor-response patterns per estimator, so each individual ensemble member 

produced more accurate predictions. We only tested three support set sizes, so the optimal 

support set size of a STEM remains a topic for further study. 

 

It is important to note that decreasing support set size may not always produce better-specified 

models. The optimal size likely depends on both the modeling task and the spatial distribution of 

training data. The size of support sets is a rough approximation of a scale important to the 

phenomenon; greater model accuracy with smaller support sets indicates that small-scale 

predictor-response relationships predominate, but for phenomena with lower spatial frequency 

smaller support sets may not offer each estimator enough information to adequately make 

predictions. The same may be true if training data are unevenly distributed across the modeling 

region. Fink and others (2010) used a STEM to model intra-annual bird distributions with 

spatially biased data. That study concluded that larger support sets increased model performance, 

as estimators in areas containing sparse training samples may not have received enough training 
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samples to make accurate predictions. Independent exploration of the appropriate support set size 

of a STEM is, therefore, necessary for any new modeling task.  

 

STEM vs. BDT 

The BDT models we developed are essentially global-support STEMs, as all estimators cover the 

entire extent of the modeling region. Thus, the patterns of differences in accuracy between the 

BDTs and the small set-sized models are even more evident than with medium and large set-

sized STEMs. For instance, user’s and producer’s accuracy for the 0–10% strata of ISC BDT 

models were only 0.3% and 0.2% lower, respectively, than the small support set STEM. For all 

other strata, the average difference in user’s and producer’s accuracy was > 7%. The same 

pattern exists in per-stratum accuracy for FCC models. Here again, the support from broad 

extents presents each estimator with predictor-response patterns that are too complex to 

adequately learn. The decrease in all other accuracy metrics between small-set STEMs and BDTs 

further illustrates the poor performance of models with broad-extent estimators. Interestingly, 

these results comparing STEMs to BDTs contradict the findings of Coulston and others (2012), a 

pilot study that developed the methodology for creating 2011 NLCD FCC data. That study 

concluded that a single model for the entire conterminous United States only slightly 

underperformed locally defined models. The differing results may be a product of either 

sampling intensity (discussed above) or model algorithm (discussed below). 

 

Temporal extensibility 

The ultimate goal of this study was to develop yearly maps of FCC and ISC, two yearly time 

series datasets that did not previously exist at a broad scale. We assessed the temporal 
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extensibility of our models by comparing our predictions to 2011 NLCD FCC and ISC maps, the 

only comparable FCC and ISC maps that overlap spatially and temporally with our modeling 

region. Our 2011 ISC map showed only a slight decrease in agreement with 2011 NLCD as 

compared to 2001 maps, but our FCC data showed a considerable drop in agreement. Here again, 

the difference is attributable to methodological disparities between our study and that of 

Coulston and others (2012). The random forest model and sampling scheme used to create the 

2011 NLCD FCC maps departed so significantly from methods used to create the 2001 NLCD 

FCC data that the authors concluded they could not adequately compare their results with that of 

the 2001 effort (ibid). Our 2011 predictions are similar in character to 2001 NLCD maps, since 

we relied on 2001 NLCD data to train our models. Additionally, we found that predictions 

aggregated by mode produced maps that agreed most with 2001 NLCD maps, so we also 

aggregated all time series predictions by mode. The 2011 NLCD FCC map was aggregated by 

mean, which dramatically reduces the number of low- and high-value pixels. To make a more 

appropriate comparison with 2011 FCC NLCD maps, we also calculated the mean prediction for 

the 2011 STEM FCC model. The differences in maps aggregated by mean and mode are evident 

in a comparison of cumulative distribution functions between NLCD, STEM mode, and STEM 

mean predictions (Figure 2.9). All three maps agree most in the middle of the distribution, but 

the NLCD and STEM mean contain far fewer pixels with FCC < 20% and > 90% than the STEM 

mode. Overall, the STEM mean shows greater agreement with NLCD than the STEM mode, 

which is to be expected considering the greater similarity in methods. Whether or not the mean 

or the mode better represents actual FCC––or ISC, for that matter––can only be determined with 

an independent test sample. 
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Spatial assessment of error, uncertainty, and variable importance 

All predictive models carry inherent error and uncertainty, as models are only representations of 

real systems. This can be particularly true of maps created from reference data that are also 

modeled rather than directly measured on-site, a common practice in the development of 

geospatial data. Although all data collection methods introduce some error, error in modeled data 

can be markedly larger. Errors also are usually not evenly distributed, particularly for spatially 

explicit broad-scale models. Spatially quantifying both error and uncertainty are, therefore, 

integral to adequate map assessment (Foody 2002, Riemann et al. 2010) to ensure map products 

are used and interpreted appropriately.  

 

In our study, both training and predictor data were sourced from modeled predictions, and both 

potentially introduced error to the modeling process. Nowak and Greenfield (2010) assessed 

2001 NLCD FCC and ISC using independently derived estimates from manual photo 

interpretation. That study found up to a 28% difference between predicted FCC and photo-

interpreted estimates and up to 6% difference in ISC estimates. 2001 NLCD FCC and ISC 

products also include estimates of error obtained from ten-fold cross-validation with average 

errors per modeling region between 9–21% for FCC and 7–17% for ISC (Homer et al. 2007). 

Additionally, most of the predictor variables in our study were products of LandTrendr, a tool for 

modeling yearly time series images and extracting information about landscape change. 

Smoothing the time series is essential for reducing noise, but it can be difficult to distinguish 

between noise and true signal. The error introduced in the smoothing process can be represented 

as a map with the mean squared error of each pixel. We used this map explicitly as a predictor to 

help estimators distinguish between predictor patterns from materials that may have otherwise 
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looked similar in the data space. This error map also indicates potential areas of uncertainty in 

the final predictions. Both the 2001 NLCD errors per modeling region and the LandTrendr mean 

squared error are shown in Figure 2.10.  

 

Another potential source of error from LandTrendr data in our FCC and ISC predictions is the 

pixel misalignment discussed above. We adjusted our sampling schemes for generating training 

and testing data to account for this inherent error in the predictor data. The differences in our 

results between the average and best-match sampling scheme indicate that the best-match 

method sufficiently handled the misalignment. This may have led to overly optimistic 

assessments, however, as the best-match sampling scheme may not have always produced a 

match with what would have been the correct pixel if the data were properly aligned.  

 

To spatially assess the error in our maps, we implemented a modification of the OOB score, 

leveraging the limited spatial extent of estimators in a STEM. The result of this was an OOB 

map with per-pixel approximations of accuracy (Figures 2.7c and 2.7d ). While OOB scores 

corresponded positively with complexity in predictor-response relationships, artifacts of the 

training data and the process used to develop them may have also contributed to the patterns in 

these maps. Nowak and Greenfield (2010) found the highest difference between 2001 NLCD 

FCC maps and photo-interpreted points in southwestern OR and northwestern CA, the area with 

the lowest FCC OOB scores for our models. NLCD cross-validation error for this region was not 

reported in its metadata so it is unclear if that error could have contributed. For ISC, the lowest 

OOB scores were centered on Seattle, WA and Sacramento, CA with a moderate depression 

around San Diego, CA. In this case, it is conceivable that these depressions are an artifact of how 
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the training data were processed. 2001 NLCD data relied on imagery spanning from 1999–2002 

(Homer et al. 2007), so depending on cloud cover or image availability, different pixels may 

have represented different years. Our time series shows some increasing development during this 

time period, but it is likely not enough to explain the magnitude and highly localized nature of 

error in these areas. Either way, these more dramatic low OOB scores are inconsistent across 

population centers, more suggestive of locally driven causes than systematic prediction errors. 

 

To represent the uncertainty of each per pixel FCC and ISC estimate, we calculated the standard 

deviation of all overlapping pixels from different support sets (Figures 2.7a and 2.7b). Much like 

the OOB maps, standard deviation was highest in areas with more complex predictor-response 

relationships. Standard deviation was also high for pixels representing materials that were 

spectrally similar to either forests or impervious surfaces. For FCC, this was mostly in 

agricultural areas where vegetated fields bear strong spectral resemblance to forests. Other areas 

of high standard deviation included frequently disturbed forests, such as those managed for 

timber production. Here too, multi-year composite imagery used to develop NLCD maps may 

have confused the signal that indicated what should have been low or high FCC in these areas. 

For ISC, materials that were not easily separated spectrally included most bare ground desert 

areas, but high standard deviations were more common for bare ground pixels near large 

population centers. The estimators in these areas likely received training samples representing 

both impervious surfaces and bare ground desert, two materials that are difficult to separate from 

their spectral signals. This also included agricultural areas because many agricultural plots may 

go fallow in a given year or are only partially covered by crops, exposing large areas of bare 

ground that appear bright like impervious surfaces. Bare ground desert pixels outside of 
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developed areas generally had low standard deviations, since the estimators in those areas would 

not have received the confusing signal of high ISC in the training data. Pixels representing some 

large bodies of water also had high standard deviations. Not only do these standard deviation 

maps provide useful information for future data users, they also inform prediction results and 

provide transparency for interpreting STEM dynamics. 

 

Variable importance maps (Figure 2.8) also revealed interesting and unexpected relationships 

between predictor and response variables. In western OR and WA, for instance, it was wetness—

not greenness—that was the most important predictor of FCC. While forests are overwhelmingly 

green, so are many agricultural areas. Often agricultural fields that require irrigation are still dry, 

though, so separating green forest cover from green agricultural cover relied more on wetness. 

This same relationship is found in the agricultural area south of the Salton Sea near the CA-

Mexico border. Only in the desert of southeastern CA, where there is relatively little agriculture 

and other non-forest vegetation, was greenness most important. East of the cascades and in the 

Central Valley of CA, brightness was the most salient FCC predictor. Here again, agricultural 

areas could not be easily differentiated from forests by greenness alone, but rather the darkness 

of forest contrasted with the brightness of bare ground and distinguished these materials best. 

NBR was otherwise the most important predictor.  

 

ISC importance maps revealed similarly interesting relationships. For much of the northern half 

of the study area, greenness was the most salient predictor, presumably because most of the non-

impervious areas surrounding development were green and impervious surfaces were not. Much 

like greenness could not distinguish forest from non-forest, impervious surfaces share brightness 
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characteristics with other non-impervious materials. In drier areas and a few other local regions, 

elevation was most important. The reason for this is likely that development is most commonly 

in low-lying areas. In some mountainous regions, estimators relied on slope for a similar reason. 

In desert regions of southeastern CA and southeastern OR, mean squared error provided the 

greatest information gain. In these areas, estimators used the error in LandTrendr data to separate 

impervious surfaces from similar surrounding desert bare ground. The most intriguing 

relationship in the ISC importance map is also in southern CA near the Salton Sea. Here is the 

only place where the change in wetness from the previous year was the most salient predictor. 

Around the edges of the Salton Sea and in the surrounding agricultural fields, there was marked 

change in wetness between 2000 and 2001. Without considering wetness from the previous year, 

pixels that were dry in 2001 would have otherwise resembled adjacent impervious surfaces. 

Impervious surfaces, however, would not have been wet in the previous year, so estimators could 

distinguish these materials with the additional landscape change information. Change in wetness 

presumably influenced predictions in areas with similar landscape dynamics, but it was not the 

most important anywhere else. Interestingly, wetness was the third most salient predictor for the 

entire model, but it was never most important for any single pixel. This further illustrates the 

exploratory value of an ensemble of locally defined estimators for understanding these complex 

spatial and temporal landscape dynamics.  

 

Conclusion 

With increasing awareness of large-scale ecological and social problems, the demand for data 

that are produced at both broad scales and fine resolutions has only increased. Making 

predictions at broad scales, however, presents unique modeling challenges, as we have 
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demonstrated here. A model must be able to address the full range of complexity in predictor-

response relationships, and this complexity increases with the extent of a modeling region. If this 

can be executed successfully, continental or global scale models produced in a consistent manner 

but that remain sensitive to local patterns can be useful for a multitude of other applications 

including other broad scale analyses or comparing phenomena in geographically disparate areas.  

 

We have shown that the STEM approach is not only appropriate for developing broad scale land 

cover maps, but also that it outperforms a typical bagged ensemble that relies on globally defined 

estimators. Overall, we found that the more localized estimators were, the better the entire 

ensemble performed. Furthermore, our results using these models in conjunction with 

LandTrendr data to generate time series are encouraging. Together, this novel algorithm and 

predictor dataset enable accurate representation of both spatial and temporal patterns.  

 

While we introduced two methods that leverage the local expression that defines a STEM, OOB 

maps and variable importance maps, there are always potential improvements for any novel 

modeling approach. We implemented a STEM bearing strong resemblance to a BDT, but other 

decision-tree-based ensemble models have proven more effective than BDTs. Random forests, 

for instance, are designed to avoid overfitting, which is still a concern with BDT-like STEMs 

such as ours. Random forests achieve this by randomly subsetting predictor variables when 

determining splits of a decision tree (Breiman 2001), an approach that may yield similar benefits 

as bootstrapping for a STEM. Since the STEM framework allows for any base model algorithm, 

other base models may be more appropriate for developing land cover maps or for other 

applications. Support vector machine algorithms, for example, have been used to classify land 
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cover, with some studies yielding better results than decision trees (Huang, Davis, and 

Townshend 2002; Shao and Lunetta 2012). These models, however, are known for their stability 

(Townshend et al. 2012), and bagging is known to actually decrease the accuracy of stable 

models (Breiman 1996b). Much like the base model algorithm, though, the per-ensemble 

sampling scheme of a STEM is not necessarily prescribed, meaning bagging is not a prerequisite 

for the STEM algorithm.  

 

Finally, it is doubtful that ecosystem gradients would ever align with geometrically abstracted 

boundaries like the rectangles we used to define support sets in our STEMs. Ecoregions are 

commonly used for the delineation of modeling regions to address this problem (Homer et al. 

2007, Coulston et al. 2012). Ecoregions might still not represent ecological reality, particularly 

because scales and gradients important for various ecological processes are likely different. One 

potential approach might be to iteratively randomize the delineation of ecoregions to define the 

limits of ensemble members. This would effectively make the boundaries of the support sets 

fuzzy, as with a typical STEM, and simultaneously root their delineation and placement in 

ecological reality. Existing algorithms for automating ecoregion boundaries could easily be 

modified for this purpose (Hargrove and Hoffman 2004). Fink and others (2014) improved upon 

the STEM approach by delineating support set boundaries with quadtrees. This introduced 

differently sized support sets enabling a STEM that reflects processes at multiple scales. Either 

ecoregional or quadtree-based support sets may yield better results for predicting FCC and ISC.  

 

The ultimate goal of any of these modifications to the STEM algorithm would be to tailor the 

modeling process to more adequately reflect ecological relationships and their spatial variability 
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in particular. As the need for data produced consistently across broad extents and at fine 

resolutions increases, these methods may prove useful for creating such data while accurately 

reflecting ecological reality. The STEM approach explored here already represents a significant 

step in that direction.  
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Figures 

 
Figure 2.1.  Examples of small (a), medium (b), and large (c) support sets. Support sets must be 
large enough to provide adequate information to estimators but also small enough to limit the 
complexity of the per-estimator data space. Areas of support sets outside the modeling region are 
ignored when training the model and predicting. 

(a) (c) (b) 
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Figure 2.2. Difference images between STEM and NLCD maps in San Francisco, CA (a) and 
Seattle, WA (b). The embossed pattern is indicative of pixel misalignment in the source 
LandTrendr data. Pixel offsets differed through the modeling region, so this error could not be 
directly corrected in the source data.  
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Figure 2.3. Illustration of computing an OOB map from a STEM. All pixels of each support set 
are first assigned the value of its OOB accuracy rate (a). Each pixel in the final OOB map (b) is 
the average of all overlapping pixels from support sets. Although many support sets extend 
beyond the modeling region, only data within the modeling region are used to construct the 
model and, thus, calculate the OOB accuracy rate for each estimator.  
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Figure 2.4. Two-dimensional histograms comparing STEM predictions of FCC (top row) and 
ISC (bottom row) to NLCD reference samples using the best-match method (left column) and 
average method (right column). The narrow concentrated plots of the best-match method showed 
better agreement with NLCD reference data for both FCC and ISC.   
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Figure 2.5. All five summary statistics for the FCC and ISC BDTs and the best performing 
STEMs. Quantity and allocation disagreement are both subtracted from 1 to make their scales 
comparable to other metrics. STEMs outperformed BDTs according to every evaluation metric.  
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Figure 2.6. Difference of STEM and BDT maps averaged by 35,000 ha hexagons. Negative 
values occur where the BDT prediction was higher, and positive values indicate that the STEM 
prediction was higher. The FCC BDT (a) generally over-predicted in dry forests and under-
predict in wet forests. The ISC BDT (b) under-predicted near some urban centers and over-
predicted in some agricultural areas. 
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Figure 2.7. Standard deviation (top row) and OOB score maps (bottom row) for FCC (left 
column) and ISC (right column) models. Standard deviation is shown here averaged by 35,000 
ha hexagons so it only ranges from 0-25%.  
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Figure 2.8. Variable importance maps for FCC (a) and ISC (b). We derived variable importance 
per pixel to assess how predictor-response relationships changed across the modeling region. 
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Figure 2.9. Cumulative distribution functions for 2011 FCC STEM mode, STEM mean, and 
NLCD. The 2011 STEM mean prediction agreed much more with 2011 NLCD than the STEM 
mode. We found that that the 2001 STEM mode, however, agreed much more with 2001 NLCD 
than STEM mean. 
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Figure 2.10. Error in source data: (a) FCC NLCD cross-validation error, (b) ISC NLCD cross-
validation error, and (c) 2001 LandTrendr mean squared error. NLCD error for FCC was not 
reported for the modeling region colored gray (Homer et al. 2007). LandTrendr mean squared 
error maps are in units of squared rescaled spectral values.  
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Tables 

Table 2.1. Area-estimated confusion matrix for the best performing FCC model. All cells in the matrix are represented as a 
percent of the total area of the reference map. NLCD reference classes are columns and STEM predicted classes are rows. Overall 
accuracy for this model was 89.6% and the kappa coefficient was 0.82. 
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Table 2.2. Area-estimated confusion matrix for the best performing ISC model. All cells in the matrix are represented as a 
percent of the total area of the reference map. NLCD reference classes are columns and STEM predicted classes are rows. Overall 
accuracy for this model was 98.0% and the kappa coefficient was 0.71.  
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Table 2.3. Summary statistics for all FCC and ISC models. We found decreasing accuracy with 
smaller sample size and increasing support set size.  
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CHAPTER 3: INFLUENCES OF TEMPORAL RESOLUTION ON AVIAN SPECIES 
DISTRIBUTION MODELS 

 

Introduction 

Understanding the distribution of a species is critical for effective conservation planning and 

land management. To mitigate the effects of habitat degradation, climate change, and other 

deleterious impacts, conservationists and land managers must know how and why species 

distributions change over time. Species distribution models (SDMs) are one of the most widely 

used tools for such habitat analysis. These models must be applicable across broad extents of a 

species’ range in space and time to be effective for conservation and management (Betts et al. 

2006; Schröder and Richter 2000). 

 

As with many issues in landscape ecology, development of an SDM requires careful 

consideration of spatial and temporal scale. Improper selection of scale can lead to erroneous 

species-environment relationships and a poorly specified SDM (Mitchel et al. 2001). Many 

studies have demonstrated that the spatial scale used to develop an SDM can significantly 

influence the outcome of a model (e.g., Austin and Van Neil 2011; Ferraz et al. 2012; Franklin 

and Miller 2009, 59; Gottschalk et al. 2011; Mitchel et al. 2001; Scott 2002; Seo et al. 2009; 

Song et al. 2013). Differences in scale for an SDM are often expressed as the resolution of 

response and predictor data used to develop the model. Moreover, SDMs must be produced at a 

scale relevant to their application, and many authors have argued that the spatial resolution of 

predictor data must match spatial scales important to the species considered (Addicott et al. 

1987; Betts et al. 2006; Mitchel et al. 2001). 
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Although spatial resolution of SDMs has received significant attention, few studies have offered 

temporal resolution the same consideration. In the present study, we express temporal resolution 

as the time interval between representative dates of predictor or response data. Many studies rely 

on field data from wide temporal extents, often including data from multiple years. Rarely, 

however, are field data from different years accompanied by concomitant predictor data of a 

comparable temporal resolution or extent (e.g., Fink et al. 2010; Gschweng et al. 2012; 

Gutzwiller and Barrow 2001; Rullman and Marzluff 2014). Indeed, the influence of differences 

in temporal resolution and extent between predictor and response data remains largely 

unexamined (Elith and Leathwick 2009, 689; Radchuk et al. 2014). Ives and Klopfer (1997) and 

Adler and Lauenroth (2003) argue that understanding spatial patterns of species distributions 

often requires understanding temporal patterns. 

 

Nevertheless, a relatively small number of studies have investigated the temporal dynamics of 

SDMs. Bulluck and others (2006) found that temporal variation of SDMs of breeding birds in the 

Great Basin had greater influence on model outcomes than spatial variation. Consequently, they 

concluded that temporal patterns of distribution were more varied than spatial patterns. Other 

studies have also documented high year-to-year variability in species occurrences in desert 

ecosystems. For instance, Gutzwiller and Barrow (2001) found dramatic inter-annual differences 

in bird distributions in the Sonoran Desert. Much of this variation was due to yearly changes in 

environmental conditions. Gschweng and others (2012) determined that a model of Elonora’s 

falcon winter distributions in Madagascar produced with a normalized difference vegetation 

index (NDVI) at a monthly resolution predicted better than a model with NDVI for the whole 
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winter. Gschweng and others note that Eleonara’s falcons and other species may respond 

especially strongly to phenological changes, and a more temporally coarse model may be 

suitable for species with distributions more closely related to variables such as land cover, which 

show less intra-annual variation. Vierling and others (2014) developed avian SDMs trained on 

predictors that were contemporaneous with field observations and compared them to SDMs 

trained on predictors with a six-year lag. They found a slight decrease in model accuracy with 

predictors representing vegetation structure six years before the response data were collected. In 

contrast, Sheeren, Bonthoux, and Balent (2014) found that SDMs produced with NDVI derived 

from an image with an acquisition date that most accurately reflects vegetation structure, rather 

than an image contemporaneous with the date of bird observation, produced the best model. This 

previous body of research clearly demonstrates a strong relationship between the representation 

of temporal dynamics in an SDM and model performance. 

 

Despite limited investigation of the influence of temporal dynamics of predictors in SDMs, these 

models often rely on land cover and other spatially explicit data that are highly temporally 

dynamic. Indeed, a well-established relationship exists between species prevalence and land 

use/land cover (Manel et al. 2000; Mitchel et al. 2001). Rullman and Marzluff (2014) found that 

SDMs based only on land cover performed better for some species than those that included other 

predictors like prey abundance. Models examined by that study that excluded land cover 

consistently performed lowest for all species modeled. Moreover, land cover changes frequently; 

the innumerable studies in the field of land change detection are a testament to this (e.g., Cohen 

et al. 2010; Homer et al. 2015; Huang et al. 2010; Kennedy et al. 2012, Kim et al. 2014; Masek 

et al. 2008; Pielke et al. 2011; Wang et al. 2015, Xin et al. 2013). A comparison of two years of 
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data from the National Land Cover Database also demonstrates this highly dynamic quality 

(Figure 3.1). For SDMs, inaccurate training data can lead to erroneous estimations of species-

environment relationships (Vaughan and Ormerod 2003), and variable environmental conditions 

can cause significant changes in species distributions (Gutzwiller and Barrow 2001; Hejl and 

Beedy 1986; Johnson 1995).  Additionally, variability in predictor data is likely to increase with 

the spatial and temporal extents of a modeling region (Fink et al. 2010).  

 

A likely reason for the small number of studies investigating temporal resolution is the lack of 

available predictor data at fine temporal resolutions. Much of these data are products of remotely 

sensed phenomena, and in developing remote sensing instruments, designers usually must 

address a tradeoff between spatial resolution or extent and temporal resolution (Wang et al. 

2015; Xin et al. 2013). This, in combination with previously unavailable computer processing 

capabilities, has made broad scale data at both fine spatial and temporal resolutions rare (Zhu and 

Li 2013). For example, the most commonly used land cover data in the United States, the 

National Land Cover Database, is only produced in full every five to eight years. Recent 

developments in digital computational efficiency and the public release of the entire Landsat 

archive have made possible many broad-scale, fine-resolution mapping initiatives (e.g., Cohen 

and Goward 2004; Gray and Song 2013; Huang et al. 2010; Kennedy et al. 2012; Kim et al. 

2014, Townshend et al. 2012). 

 

Our study leveraged the fine spatial and temporal resolution of two novel datasets to assess the 

influence of temporal resolution of predictor data on avian SDMs. We elected to model 

distributions of birds to specifically take advantage of the unique combination of broad extent 
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and fine resolution observations from eBird, a citizen science project comprising an online 

database of birding checklists submitted by users worldwide (Dickinson et al. 2010). Predictor 

data were mostly derived from LandTrendr, an approach to mapping yearly land cover and land 

cover change (Kennedy et al. 2015). By adjusting the time interval between predictor datasets 

but still training models with yearly bird response data, we evaluated how the disparity between 

the two can affect model performance. We anticipated that response to changes in temporal 

resolution would vary for different species, but overall, finer temporal resolutions that 

represented environmental conditions contemporaneous with observations would produce more 

accurate models. We anticipate this work will shed new light on species-environment 

relationships, and provide insight on appropriate temporal resolutions for SDMs and sample 

design of bird monitoring programs. 

 

Methods 

Study area 

Our study area covered all of California, Oregon, and Washington on the west coast of the 

conterminous United States. Both Oregon and Washington are broadly characterized by two 

vegetation zones, forest and steppe (Franklin and Dyrness 1988), generally corresponding to 

maritime and continental climatic zones, respectively. Vegetation zones are similarly divided in 

California by the southern Cascades and Sierra mountains, although more xeric vegetation 

communities are common in southern California with coastal chaparral in the west (Ashbaugh 

1994, 110) and desert scrublands throughout much of southeastern California (Miller and Hyslop 

1983). Elevations across the study area range from sea level to 4400 m. Agricultural land 

dominates much of the low-elevation central valleys throughout the study area with a wide 



 68 

variety of crop types. Most urban development throughout Oregon and Washington is relegated 

to major urban centers and highway travel corridors (Ashbough 1994, 382). The same general 

pattern is found in CA, although development intensity and extent are generally greater across 

the state. 

 

Bird observation data 

The response data we used in this study came from the eBird reference dataset (ERD), a subset 

of the eBird citizen science project (Munson et al. 2013). Each record of the ERD is a checklist 

from a separate sampling event uploaded by one or more volunteers who reported counting all 

species present at the time of observation. In this way, the ERD represents presence-absence 

data, as all species not detected are presumed absent during the sampling event. eBird data are 

unique in North America in both their fine resolution and broad extent—both spatial and 

temporal (Hochachka and Fink 2012). Leveraging the power of crowd-sourced information, the 

ERD provides species occurrence data that would otherwise be impractical to collect. 

 

Our primary goal in this study was to test the effect of temporally coarse predictor data on the 

performance of SDMs. Because there are numerous stochastic factors that could influence an 

SDM, we attempted to simplify our models to limit the influence of anything that might affect 

performance other than annual temporal resolution. We therefore restricted observations to the 

month of June from 2002–2012. The breeding season represents a time of relative stability in 

species occurrence (Fink et al. 2010), so the influence of seasonal dynamics on SDM 

performance would be minimal. Land cover predictors (discussed below) were also developed 

using summer Landsat imagery, so land cover would also be contemporaneous with these bird 
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observations. We also used only observations reported by observers adhering to eBird’s “point 

count” protocol whereby observers remain in a single location during the sampling event. 

 

Despite the unprecedented scope and utility of eBird data, there is much uncertainty about the 

ability of non-experts to accurately identify bird species (Yu, Wong, and Kelling 2014). 

Uncertainty in detection probability, in particular, can have prominent effects on SDM accuracy 

(McClintock et al. 2010). Multiple eBird participants frequently record observations at the same 

locations either at different times of the same day or different days within the same month. A 

potential result of this is that both positive (species was present) and negative (species was 

absent) observation co-occurred, potentially making predictor-response patterns indiscernible. To 

resolve this, we made the simplifying assumption that if a bird was observed at a location in a 

given year, it was suitable habitat for that species during that year. We removed any negative 

observations from any locations where a positive observation had also been reported in the same 

year. This likely had the consequence of flattening any diurnal patterns of detection (Johnson 

2008), but since we were mostly concerned with adequately representing species habitat quality 

in our training data, this would not affect our results. These curatorial steps on the training data 

left 17,544 observations from 5,728 unique locations (Figure 3.2). 

 

We modeled breeding season distributions for five migratory bird species: 1) White-crowned 

Sparrow (Zonotrichia leucophrys), 2) Barn Swallow (Hirundo rustica), 3) Hermit Thrush 

(Catharus guttatus), 4) Western Meadowlark (Sturnella neglecta), and 5) Black-headed 

Grosbeak (Pheucticus melanocephalus). All five species are easily identifiable birds with few, if 

any, co-occurring species similar in appearance or sound. We intentionally selected two species 
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associated with forests (Hermit Thrush and Black-headed Grosbeak) and two birds more 

commonly found in anthropogenic habitats that are more persistent from year to year during the 

temporal extent of the study, such as urban and agricultural environments (Barn Swallow and 

Western Meadowlark). We were interested in seeing if habitat preference was related to 

performance with differing temporal resolutions, as different land cover types exhibit varied 

rates of disturbance (Homer et al. 2015). White-crowned sparrows are commonly associated with 

urban and agricultural landscapes outside the breeding season, but during the breeding season 

isolated populations are common in disturbed forests of the conterminous United States. We 

selected this species as a more complex example of habitat preference. Additionally, actual 

occurrence of Black-headed Grosbeaks is anecdotally stochastic, with birds often unexpectedly 

absent in locations they inhabited in previous years. We, therefore, expected model performance 

for this species to deteriorate more with decreased temporal resolution.  

 

Predictor data 

Because we modeled distributions for multiple species, we used a set of predictors generic 

enough to represent ecological relationships with environmental conditions for all species 

considered. Land cover is often central to an SDM (Manel et al. 2000; Mitchel et al. 2001; 

Rullman and Marzluff 2014), as it is in some sense a coarse description of habitat. Our model 

relied heavily on various land cover metrics derived from products of LandTrendr, an approach 

for mapping yearly land cover information from Landsat time-series data (Kennedy et al. 2010). 

LandTrendr is unusual among land cover change detection algorithms in that it employs 

temporal segmentation, which allows for detection of both abrupt changes (i.e., short, fast 

disturbances such as wildfire) and gradual trends (i.e., long, slow disturbances such as insect 
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damage). The spectral trajectory of each pixel is idealized as a series of fitted straight-line 

segments, which omits noise while retaining essential detail. For every year in the time-series 

stack, fitted images are created by interpolating each pixel’s value to the appropriate time step 

along these segments. Each pixel is ultimately fitted to its own trajectory (Kennedy et al. 2015). 

The end product is a smoothed time series of spectral images that can be used for developing 

other yearly land cover datasets. 

 

The land cover maps we used as predictors for our models included canopy cover and 

impervious surface represented as a percent of coverage for each pixel (see Chapter 2). We also 

described habitat with classified land cover data separated into seven discrete classes: water, 

snow/ice, urban, bare ground, deciduous forest, coniferous forest, and shrub (unpublished 

LandTrendr data). Since a single scale is often insufficient to represent ecological preference of a 

species (Betts et al. 2006), we additionally evaluated the percent of cover within 1.2 ha (5-pixel 

diameter) and 13.5 ha (15-pixel diameter) circular neighborhoods for each land cover class and 

for forest canopy cover and imperviousness. Fink and others (2010) found these neighborhood 

sizes to be effective for a generic avian SDM.  

 

In addition to yearly land cover predictors, we also used several variables for which we did not 

adjust the temporal resolution, meaning we represented each with a single map for all years. 

These included elevation from the National Elevation Dataset (Gesch et al. 2002), ecoregion 

boundaries (US Environmental Protection Agency 2012), human population density (US Census 

Bureau 2013), and three climatic variables from 30-year averages: mean annual precipitation, 

mean annual minimum temperature, and mean annual maximum temperature (PRISM 2012). 
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Although inter-annual climatic variation can dramatically impact spatiotemporal variation in bird 

occurrence (Gutzwiller and Barrow 2001), our intent in including climatic variables was to offer 

a more detailed description of habitat across the study area. For this purpose, 30-year averages 

more adequately described ecoregional differences in habitat types across such a broad extent. 

Similar to climatic variables, changes in population density could affect distributions of certain 

species. Population densities were calculated from census tracts, and the effective differences in 

inter-annual population densities are likely minimal at that spatial scale. The intent of including 

ecoregions in the model was to further describe spatial variation in species occurrence. 

Ecoregions offered a coarse description of geographic position while simultaneously reflecting 

potentially important changes in ecological gradients. All predictors are listed in Table 1.  

 

Lastly, we included two predictors provided with each record in the ERD. To account for 

variation in detection rates we included the amount of time spent for each observation, as the 

detection probability increases with observation duration (Diefenbach et al. 2007). To explain 

inter-annual differences in occurrence, we included the year of the observation as a predictor in 

all models. 

 

Model description 

We developed predictive models of bird distributions using a random forest model (Breiman 

2001). A random forest is an ensemble model, meaning the final prediction is an aggregation of a 

population of estimators. Random forests, like many ensemble methods, rely on randomization 

to approximate different states of a system (Araújo and New 2007). By averaging over an 

ensemble of slightly randomized estimators, a random forest can, in theory, achieve a final 



 73 

prediction that is highly representative of the actual system. For modeling probabilities of species 

occurrence with binary response data, our final predictions ranged continuously from 0 to 1, with 

a value of 0 indicating the species was absent. 

 

The base estimator algorithm of a random forest is a decision tree, an algorithm that builds a 

model by recursively splitting training samples and constructing rules for how to separate the 

samples at each split (Breiman 1984). The goal of all predictive models is to determine the 

patterns between predictor variables and a response variable, and use those patterns to interpolate 

for ‘out-of-sample’ locations. Each rule of a decision tree can be considered an estimation of the 

relationship between a given predictor and the response variable. The ‘best’ split is determined 

according to a given information criterion commonly referred to as impurity. At each split, a 

decision tree uses a single variable that produces the lowest impurity (ibid) (i.e., establishes the 

greatest discrimination between resulting classes of the split). 

 

The random forest algorithm introduces randomness into each decision tree estimator in two 

ways: 1) each estimator is trained on a random subset of approximately 63% of all training 

samples (i.e, a bootstrap sample), and 2) at each split, a random subset of predictors is selected, 

and the ‘best’ split is determined from this subset (Breiman 2001). The process of training 

estimators on bootrstrap samples and aggregating is known as “bagging” (bootstrap-aggregating) 

(Breiman 1996a). With a bagged model, each training subset likely excludes some outliers or 

corrupt samples. Thus, over multiple iterations the training data come to more closely represent 

the actual system (Breiman 1996b; Dietterich 2000). Additionally, the strength of an ensemble 

method lies in the diversity of the estimator population, and training each estimator on a different 
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set of samples introduces such diversity. Random selection of predictors at each split, also 

known as the random subspace method (Ho 1998), facilitates diverse estimators for similar 

reasons (Deitterich 2000). We developed and evaluated our models in the Python programming 

language and used the Scikit-learn implementation of the random forest regressor algorithm 

(Pedregosa et al. 2011). 

 

A concern with modeling spatial distributions of any phenomenon across large extents is that the 

relationships between predictor and response variables are likely to change with the extent of a 

modeling region. Modeling approaches that are sensitive to local scale variation, then, may be 

more appropriate for broad-scale models (see Chapter 2). Fink and others (2010) demonstrated 

that an ensemble of locally defined estimators may be better suited for predicting intra-annual, 

broad-scale distributions for migratory birds, but only for modeling distributions for certain 

times of the year. For times when bird distributions were more stable (e.g., the breeding season), 

a model with globally defined estimators performed comparably to a locally sensitive model. 

Since we modeled June distributions, a random forest with globally defined estimators should 

perform equally well for our study. 

 

Adjusting temporal resolution 

The optimal temporal resolution of an SDM is likely dependent on several factors including the 

behavior, habitat preferences, and tolerance to disturbance of the species considered. For this 

reason, our study compared multiple temporal resolutions for each species of which we modeled 

occurrence probabilities. We expressed temporal resolution as the time interval between years of 

predictor data, but for all temporal resolutions, we used bird observations from all years. For 
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observations from a year that did not match a year of predictor data, we simply used the closest 

year for that resolution. For instance, if we used only predictors from 2002, 2007, and 2012 

(representing a 5-year resolution) and an observation occurred in 2005, the predictor values for 

that training sample would be drawn from 2007 data. If an observation was equidistant from two 

years of predictor data, we used the earlier year. For all species we tested resolutions of 1, 2, 5, 

and 10 years.  

 

Once we trained the models, we used only 2011 land cover maps to make predictions, effectively 

producing species occurrence maps representing 2011. This year is well represented in the ERD 

observations (see Figure 3.7), but only the 1-year resolution model used training data with 

predictors drawn from this year. We believed this would adequately demonstrate each model’s 

ability to generalize for temporal patterns in response and predictor data. 

 

Model evaluation 

Effective model evaluation requires an independent set of samples not used to train the model. 

The intent is to assess how well a model can generalize for locations and predictor-response 

patterns not seen during model training. A common criticism of eBird data is that they are more 

likely to be collected near roads, trails, and other developments (Hochachka and Fink 2012). 

Also many of the same locations in the ERD are repeatedly sampled on different dates. To 

address these spatial biases, users are encouraged to visit locations with little data coverage 

(Boakes et al. 2010). Nevertheless, any evaluation of a model trained on and validated with these 

data must address the inherent spatial bias to ensure the entire modeling region is represented in 

the evaluation process. Our sampling scheme addressed these spatial biases in the ERD in two 
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ways. First, we split training and evaluation sets such that they did not share any common 

locations, reserving 20% of locations for evaluation and 80% for training. Second, Fink and 

others (2010) proposed a straightforward subsampling algorithm for model evaluation that relies 

on a geographically stratified design. First, a grid of a specified, uniform cell size is randomly 

located across the modeling region. From each grid cell, a specified number of samples are 

randomly drawn from the test set. These random samples are used to statistically evaluate the 

model. The process of sampling and evaluating is repeated for a given number of Monte Carlo 

iterations, averaging the statistical evaluation metric(s) across all iterations. We used a grid cell 

size of 25 x 18 km, a per-cell sample size of 2, and 200 Monte Carlo iterations. Geographically 

stratifying the subsampling scheme effectively offers more even coverage across the modeling 

region than other random sampling schemes might. 

 

To compare results from models of differing temporal resolutions, we used only testing samples 

from 2011 observations, since we made predictions for 2011 occurrences. For statistical 

evaluation, we relied on three measures of performance: the out-of-bag (OOB) score, the area 

under the receiver operating curve (AUC), and the root mean square error (RMSE).  

 

From a bagged model like a random forest, the OOB score is calculated by assessing the error of 

each estimator in the ensemble. Since each estimator is trained on a random subset of the training 

data, a prediction is made with the training samples not used to train that estimator, and the 

classification accuracy is calculated. For a random forest regressor such as the one we employed, 

the classification accuracy is assessed with the r2  (coefficient of determination). The final OOB 

score is the average r2 of all estimators (Breiman 2001), ranging from 0 to 1 where an OOB score 
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of 1 indicates a perfect classifier (Breiman 1996b). The OOB score is most useful as a first order 

estimate of model performance because it is calculated during the model training process and 

does not require generating a final prediction. Because of this, the OOB score could not be 

assessed using the geographically stratified subsampling scheme described above, but it still 

provides useful information on model fit. 

 

The AUC score is a more formal evaluation method for assessing performance and requires 

testing predicted values against reserved testing samples. AUC is a measure of a model’s overall 

discriminatory ability. It is derived from comparing the rate of false presences to true presences, 

as the cutoff changes for what is considered a positive or negative classification. AUC ranges 

from 0 to 1, where 1 indicates a perfect classifier and a value less than 0.5 indicates a classifier 

that is worse than random (Hosmer, Lemeshow, and Sturdivant 2013).  

 

While AUC only addresses the frequency of error, RMSE is useful for assessing the magnitude. 

Ji and Gallo (2006) and Riemann and others (2010) contend that RMSE is less useful than root 

mean square percentage error because RMSE is dependent on the units of the data and is 

consequently not bounded or scaled. Our prediction maps ranged from 0 to 1, representing the 

probability of occurrence. In our case, then, RMSE also ranges from 0 to 1, and can therefore be 

easily understood as percent of possible error. Because RMSE decreases and the AUC and the 

OOB score increase with model accuracy, we subtracted RMSE from 1 to maintain a consistent 

scale for all metrics. 
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In addition to assessing agreement across the entire study area, we stratified both AUC and 

RMSE by land cover type. To do so, we calculated both metrics for each land cover class in the 

land cover predictor data, although we only report the performance for land cover types relevant 

to species we selected. Stratifying assessments in this way offered information about where 

models were making errors and how those errors relate to specific attributes of each species’ 

distribution and temporal dynamics of different land cover types.  

 

Lastly, we used information on variable importance to assess model structure and dynamics. In 

the process of constructing decision-tree-based models, the relative importance of each predictor 

is easy to compute. Relative importance for each predictor is determined per estimator by 

calculating the increase in the model’s discriminatory ability (i.e., the information gain) after 

including that predictor in the model. For each predictor variable, importance scores are 

averaged for all estimators to determine importance for the entire ensemble. Importance ranges 

from 0 to 1, where a theoretical score of 1 indicates that predictor was the only variable that 

allowed the model to split all training samples. Although there are some limitations to 

calculating variable importance with this method (Strobl et al. 2007), importance remains an 

informative byproduct of decision-tree-based models. 

 

Results 

In general, model performance for all species was clearly influenced by temporal resolutions, but 

the best performing resolutions did not agree between species. Western Meadowlark, Hermit 

Thrush, and Barn Swallow models seemed least affected by changes in temporal resolution, 

while Black-headed Grosbeak models were most sensitive. RMSE was generally less responsive 
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than AUC, but both showed similar patterns of performance across all resolutions for each 

species except Hermit Thrushes. 

 

To compare models of different temporal resolutions, coarser resolution models used land cover 

time series with larger time steps than finer resolution models. Yearly observations that did not 

match a year of predictor data were related to the closest year. For three species, Black-headed 

Grosbeaks, Barn Swallows, and White-crowned Sparrows, coarser resolution models 

unexpectedly performed better than finer resolution models, with 10-year models outperforming 

all others (Figure 3.3). For these species, the 2-year models were consistently the lowest-

performing SDMs, and the 5-year models were generally comparable to the 1-year models. 

Differences in accuracy were most apparent in the AUC scores with an average increase between 

1- and 10-year models of 24%. While performance for 10-year models markedly increased over 

finer resolution models for all three species, the Black-headed Grosbeak 10-year model showed 

dramatic improvement. 

 

Western Meadowlark and Hermit Thrush SDMs, however, did not follow the same pattern. For 

Meadowlarks, the 2-year model was most accurate, but the 1-year model was comparable, with 

only a slightly lower AUC score. Meadowlark RMSE remained nearly constant for all 

resolutions with a decrease of only 0.5% between 1- and 10-year models. For Hermit Thrush 

models, the 5-year resolution had the highest AUC score, and the 1-year model had the lowest. 

According to RMSE, however, the 2-year model performed the best, and the 10-year model was 

the worst.  
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Unlike AUC and RMSE, the OOB score decreased slightly with each coarser resolution for all 

species. Although the decrease was subtle, it was monotonic for nearly all species. Since the 

OOB score is derived from training samples, it is essentially a measure of how well a model is fit 

to its training data, but not necessarily a reflection of a model’s ability to generalize across the 

modeling region. In other words, the slight decrease in OOB score shows that the models with 

coarser temporal resolutions were less fit for making predictions at locations the models had 

already seen.  

 

Model performance per land cover class (Figure 3.4) did not follow a consistent pattern between 

species, but it did tend to follow the same patterns as overall performance for each species. There 

were a few exceptions to this, however, where accuracy in certain land cover types contradicted 

the overall accuracy trends. For instance, both AUC and RMSE for Black-headed Grosbeak 

models dramatically improved in all land cover types with the 10-year model except for 

deciduous forest. For this land cover, AUC showed an overall decline with decreasing temporal 

resolution, and RMSE was highest for the 2-year model, but was otherwise constant. For Hermit 

Thrush models, the majority of testing samples occurred in urban land cover, which showed a 

slight decline in AUC with resolution below 2-years. That these urban samples did not seem to 

exert more influence on overall AUC scores is surprising. Similarly, White-crowned Sparrow 

AUC scores were highest in urban land cover with the 2-year model, whereas overall AUC was 

lowest for this resolution. Here, too, these urban samples did not have a strong influence on 

overall AUC.  
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Variable importance also revealed some interesting relationships between model behavior and 

species dynamics. In general, constant predictors (i.e., those that we did not adjust temporal 

resolution for) provided more information than yearly predictors (i.e., land cover), but the year 

that the observations were made was most frequently the most important predictor. A pattern 

shared by all species was an increased reliance on constant predictors with decreasing temporal 

resolution, and consequently, less reliance on yearly land cover predictors (Figure 3.6). In other 

words, yearly predictors provided less useful information to be able to distinguish between 

positive and negative observations. This pattern was consistent across all species, regardless of 

the optimal temporal resolution for that species. In comparing relative importance of land cover 

predictors, those processed with a 13.5 ha neighborhood consistently provided greater 

information gains than smaller neighborhoods and predictors at the native 30 m pixel size.  

 

Discussion 

The aim of this study was to examine the effects of temporal resolution on SDMs. We did so by 

training multiple models with yearly bird observations from an 11-year time period, but using 

land cover predictor data from years that were increasingly sparse. This meant that models of 

coarser resolutions were potentially trained with observations that did not match the 

contemporaneous land cover. We tested different temporal resolutions for five species to capture 

how differences in species-environment relationships may attenuate or amplify the effects of 

resolution. We expected some variation in SDM response to temporal resolution for different 

species, but also that finer temporal resolutions would generally perform better for all species. 

We also anticipated that SDM response would be vary by habitat preference (i.e., forest or 

anthropogenic landscapes). Our results, however, did not generally conform to these 
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expectations. Instead, we found some SDMs improved at the coarsest resolution of 10 years, 

while others performed better at moderate resolutions of 2 or 5 years. Among different species, 

we also found few discernable patterns related to habitat preference. These results raise several 

intriguing questions about the temporal dynamics of SDMs and their relationship to land cover, 

which we address below. 

 

Potential sources of error 

As with any predictive modeling task, it is important to consider the sources of error that may 

have contributed to the responses of SDMs to temporal resolution that we report here. Although 

every response dataset introduces some error to the modeling process, error present in citizen 

science data may be markedly larger and more frequent than data collected by experts (Yu, 

Wong, and Kelling 2014). While many studies have demonstrated that citizen science data are of 

high enough quality to use for developing SDMs (e.g., Abolafya et al. 2013; Fink et al. 2010; 

Johnston et al. 2015; Nagy et al. 2012), uncertainty in identification and positional accuracy 

poses potential barriers for accurate estimations of species occurrence.  

 

A known challenge with using eBird data, in particular, for any kind of spatial analysis is the 

inevitable spatial bias in the data (Hochachka and Fink 2012). Rather than adhering to a more 

rigorous protocol, crowd-sourced data collection efforts are almost inevitably going to be 

opportunistic. This presented several challenges in our study, including adjusting our sampling 

scheme and choosing performance metrics that adequately reflected the models’ overall 

capabilities to generalize for locations not seen in the training data. Although our test samples 

did not share any common locations with the training data, and we attempted to equitably draw 
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test samples from across the modeling region, the inherent spatial bias in eBird data still might 

have prevented our evaluations from adequately assessing predictions for locations where eBird 

participants are less likely to make observations.  

 

In addition to accurate response data, adequately estimating species-environment relationships in 

an SDM requires predictor data that sufficiently represent environmental conditions. Our SDMs 

relied heavily on land cover maps for that purpose, but these maps, too, introduced error to the 

modeling process. This was most apparent in misclassification of land cover in certain areas. For 

instance, many observations of Western Meadowlarks coincided with pixels classified as 

deciduous forest. Meadowlarks are notoriously open-space and grassland birds, frequenting 

agricultural areas. Some of the Meadowlark observations from deciduous forest pixels were 

actually made in agricultural areas that were misclassified in the land cover data. Such 

commission errors could have obscured the relationships between bird observations and 

environmental conditions. Nevertheless, these data are the only available land cover maps that 

cover the entire spatial and temporal extents of our modeling region, and overall, they represent 

actual landscape patterns sufficiently well. 

 

SDM response to temporal resolution 

For SDMs that decreased in accuracy with coarser temporal resolutions (i.e., Western 

Meadowlark and Hermit Thrush models), intentionally coarsening the resolution may have had 

the effect of introducing corrupt samples to the training set, as many training samples offered 

erroneous representations of species-environment relationships. In spatial modeling, a sample is 

considered corrupt if it contains error such that it misrepresents relationships between predictors 
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and a response variable. Decision trees are highly susceptible to perturbations in the training 

data, which is the main reason why bagging decision trees improves predictions (Breiman 

1996b). In theory, aggregating over numerous decision trees trained on bootstrap samples should 

improve predictions on a corrupt training set (Deitterich 2000), but there are other non-

parametric models that are more stable. Support vector machines, for instance, are known for 

being relatively immune to moderate training sample corruption (Huang, Davis, and Townshend 

2002). Such models may not be affected by the moderate changes in training data that coarse 

predictor temporal resolutions introduce. When modeling distributions for Western 

Meadowlarks, Hermit Thrushes, and other species for which more contemporaneous predictors 

may yield better predictions, more stable models like support vector machines may be better 

suited if the available predictor data do not match the years of observations. 

 

Corrupt samples can only be considered corrupt, however, if they erroneously represent 

relationships between predictors and a response variable. If altering predictor values improves an 

SDM, it is reasonable to assume that the altered predictor values are more representative of 

species-environment relationships for that species. For species with higher accuracy from coarse-

resolution models, adjusting the temporal resolution––instead of corrupting the samples––may 

have more accurately represented temporal scales important to these species with respect to land 

cover. Indeed, Knick and Rotenberry (2000) and Ernoult and others (2005) both demonstrated 

that for some bird species, past landscape patterns might be more related to species occurrence 

than present patterns, suggesting a time lag between landscape change and species response. 

Attributing the performance of coarse resolution to a time lag response in some species for this 

study, however, ignores the occasions when observations were related to land cover more recent 
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than the observations. Still, time lags may have at least partially contributed to model 

performance. One way to test this would be to explicitly increase the time lag (rather than 

temporal resolution as we have expressed it here) between observations and predictors. Although 

such a test would be outside the scope of this study, understanding time lag responses of varying 

bird species remains an important area for future research (Vierling et al. 2014).  

 

Another potential explanation for why coarser-resolution models performed better for certain 

species may have had less to do with ecological relationships and more to do with the training 

data and the model algorithm we used. As described above, random forest models rely on two 

sources of randomization to create a diverse ensemble of decision trees: bagging and the random 

subspace method. Mechanically, this results in a model that can ignore uninformative training 

samples and their relationships to predictor variables and exploit more informative ones. 

Additionally, the temporal distribution of the ERD is unequal, with an increasing number of 

observations each year (Figure 3.7). Since there are far more samples in later years, it is 

conceivable that if a model adequately represents samples from later years, the model will attain 

high accuracy scores. In concert with a random forest’s tendency to gravitate toward patterns that 

provide the greatest discriminatory ability, it is possible that misrepresenting observations from 

earlier years might have boosted the importance of patterns from later years. With coarser 

resolution for all species, models relied especially heavily on the year that the observation was 

made. This is likely because the year allowed the models to separate later observations from 

earlier ones. To test this hypothesis, we trained a Black-headed Grosbeak model using only 

observation from 2010–2012 and using yearly predictors. This, however, yielded a model with 

an AUC of only 0.61, much lower than the AUC of 0.98 achieved by the 10-year model. The 
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underlying mechanisms leading to more accurate models with coarser resolutions remain 

unknown and represent an area in need of further study. 

 

Regardless of the reason why coarser temporal resolution models performed better for certain 

species, the occurrence maps themselves support the results from statistical evaluation. It is 

reasonable to assume that within a single map, occurrence probabilities from pixels near to one 

another should be more similar than pixels further away. Maps where nearby pixels are 

dissimilar to one another are likely indicative of a noisy model with poor discriminatory ability, 

as such a model may not have been able to discern broad-scale patterns that define distributions 

across large extents. Summarizing the agreement among pixels in the same area with the 

standard deviation is one way to assess this. Figure 3.8 shows the difference in standard 

deviations within 35,000 ha hexagons between the 10-year Black-headed Grosbeak occurrence 

map and the 1-year map. Negative values occur where the 1-year standard deviation was higher 

than the 10-year deviation. With an overwhelming number of negative values, it is clear that the 

10-year model’s discriminatory capabilities were higher. White-crowned sparrow and Barn 

Swallow occurrence maps show a similar reduction of noise in the 10-year maps.  

 

SDM response across habitat preferences 

Our intent in modeling distributions for multiple species was to see if habitat preference was 

related to an SDM’s response to temporal resolution. We found little evidence of such 

relationships according to habitat preferences, but model performance for different species did 

show subtle signs of such an effect. This was only evident in the magnitude of changes in 

accuracy with different temporal resolutions for each species. AUC changed much less for both 
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species commonly found in agricultural and urban landscapes (i.e., Barn Swallows and Western 

Meadowlarks) than it did for forest-adapted species. The average difference in AUC for these 

two species between the worst and best models was 0.09, whereas the average change for Black-

headed Grosbeaks, Hermit Thrushes, and White-crowned Sparrows was 0.25. 

 

It is important to note, as well, that Hermit Thrushes model performance was much less affected 

by temporal resolution, despite its associations with forest habitats. This is likely a product of the 

relatively few positive observations of this species and the effect that had on statistical 

evaluation. The low number of positive observations of this species resulted in an occurrence 

map with far more pixels with low occurrence probability values. Hermit Thrush AUC only 

changed by 0.08 because most testing samples with a value of 0 agreed with the maps’ low pixel 

values. This meant that it was more likely for this species that models from each temporal 

resolution would statistically agree with training samples than likelihood of agreement for other 

forest birds. Hence, there was far less variation in models of different temporal resolutions. 

  

In addition, White-crowned Sparrows are not necessarily a forest bird, and in the non-breeding 

season they are common in agricultural and urban landscapes. However, in the breeding season, 

while most individuals migrate north to Canada and Alaska, some isolated populations remain in 

coniferous forests in California, Oregon, and Washington, frequenting disturbed area such as 

clear-cuts. Sparrows that remain in the conterminous United States in the breeding season are, 

therefore, likely to be affected by changes in these forests. Although this species is not truly a 

forest bird, for the time of year for which we considered bird distributions, it is appropriate to 

consider its relationship to this land cover type. 
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Still, the comparatively small response of Barn Swallow and Western Meadowlark models to 

temporal resolution might have resulted from the relative inter-annual stability of the urban and 

agricultural landscapes in which both species are commonly found. Although intra-annual 

temporal patterns for agricultural lands can be quite dynamic, agriculture and urban land covers 

tend to be more consistent year to year than other land covers like forests (Homer et al. 2015). 

Since both Swallows and Meadowlarks are common in these land covers, it is conceivable that 

changes in temporal resolution would have less of an effect on these species. For agricultural 

landscapes, it is difficult to confirm this from a comparison of model performance by land cover 

type (Figure 3.4) because these landscapes are not explicitly represented as a single land cover 

class in the data we used; agricultural land is a designation of land use rather than explicitly land 

cover. Instead, agricultural lands are represented by a mixture of mostly bare ground and shrub, 

with some misclassified deciduous forest. As such, there is little discernable pattern in these land 

covers as they relate to agriculture. In urban landscapes, Barn Swallow AUC remained fairly 

consistent with a change of only 0.05 between the best and worst models, and Western 

Meadowlark models only differed by 0.08 in AUC. White-crowned sparrows and Hermit 

Thrushes also demonstrated similar consistency in urban areas across temporal resolutions, so 

this pattern is not necessarily unique to the two urban and agriculturally adapted species (i.e., 

Barn Swallows and Western Meadowlarks).  

 

Considering that differences in the magnitude of responses could not definitively be separated by 

habitat preferences, it is worth noting that responses to disturbances and other changes in 

environmental conditions are notoriously inconsistent among different bird species (Knick and 
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Rotenberry 2000; Simon, Schwab, and Otto 2002; Stephens and Alexander 2011). Considering 

that we have only developed models for five species, generalizations about habitat preference 

and its relationship with responses to temporal resolution are likely difficult to make, if not 

inaccurate. The most compelling reason to make such generalizations would be to aid the 

selection of an appropriate temporal resolution for another species that may exhibit similar 

habitat preferences. Rather than making that choice from some generalized relationship, 

however, consideration of a combination of bird behavior (e.g., sensitivity to disturbance or site 

fidelity) and the qualities of the landscape across a modeling region (e.g., land cover diversity or 

rates and magnitudes of disturbance) are likely to produce a better-specified model.  

 

Model performance across different evaluation metrics 

The use of multiple evaluation metrics is critical when assessing predictive models, since each 

metric offers different information about errors present in a model (Foody 2002; Riemann et al. 

2010; Strahler et al. 2006). In this study we used AUC and RMSE to provide information on the 

frequency and magnitude of errors. The OOB score was also useful for indicating how well the 

models were fit to their training data. 

 

Perhaps one of the most compelling reasons to use multiple assessment methods is that some 

evaluation metrics might present overly optimistic results, depending on the nature of the 

training data or the prediction. Models trained on data that are spatially biased, such as eBird, 

may be particularly susceptible to this. In our study, the OOB score presented the same trend of 

model performance for all species decreasing with coarser resolution, regardless of the 

performance according to AUC and RMSE. Breiman (1996a) introduced the OOB score as an 
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efficient and unbiased estimation of model accuracy for bagged models. This assertion, however, 

assumes an unbiased training set, with the probability that two random samples from the training 

set share no more of a relationship than a single sample from the training set and a single sample 

from the test set. As mentioned above, the OOB score is a measure of how well a model is fit to 

its training data, information that could be useful for calibrating model parameters regardless of 

any spatial biases present. For tasks such as this, the OOB score may still have some utility for 

developing models with spatially biased datasets, but model assessment using the OOB score 

should be selective.  

 

The diverse information that multiple metrics provide can also reveal systematic errors that 

would otherwise go unnoticed with only a single metric. For instance, Hermit Thrush AUC and 

RMSE showed opposing responses to temporal resolution, with AUC suggesting increased 

performance with coarser resolutions and RMSE indicating increased performance with finer 

resolutions. Although all models predicted absences better than presences, this difference was 

greatest for Hermit Thrush models. For this species, this particularly uneven performance 

resulted in a discrepancy between AUC and RMSE, with AUC showing the 5-year model 

performing the best and RMSE showing the 2-year model performing the best. This discrepancy 

also points to the different information gleaned from each metric. Hermit Thrush occurrence 

probabilities were lower on average than for any other species, so the potential magnitude of 

error was relatively high for positive observations. As such, RMSE was sensitive to false 

absences, and it indicated that coarse-resolution models were less capable of predicting 

presences than absences. Since AUC is a measure of the frequency of error and there were far 

more absences reported, AUC largely ignored the increased rate of false absences. Whether 
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coarse resolution or fine resolution models ultimately performed better for this species depends 

on whether predicting presences or absences is more important for a particular application of an 

SDM. Either way, the differences in AUC and RMSE results underscore the importance of using 

multiple assessment metrics when statistically comparing model products. 

 

Conclusion 

A central concern in ecology is determining the scales important to a particular phenomenon. 

Spatially, these can be understood in part as the distance beyond which the relationships between 

a phenomenon and the environmental conditions that affect it have changed. Temporally, the 

question is the same: how much time can pass before the state of a phenomenon is no longer 

related to some set of original environmental conditions? 

 

We attempted to address this question by training avian SDMs with land cover predictors that 

were increasingly temporally sparse, essentially comparing the performance of SDMs of 

different temporal resolutions. This meant that for many observations of birds for coarse-

resolution models, land cover at those locations was not contemporaneously represented. Since 

land cover is strongly related to bird distributions (Manel et al. 2000; Mitchel et al. 2001; 

Rullman and Marzluff 2014), we anticipated that coarser temporal resolution would produce a 

less accurate model. For two species, this held true. For the three other species considered here, 

the coarsest resolution produced the most accurate models.  

 

These results suggest that temporal interactions between bird occurrence and land cover are more 

complex than we originally anticipated. Previous research demonstrates that the responses to 
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disturbances vary among different species (Simon, Schwab, and Otto 2002; Stephens and 

Alexander 2011). Some species may also show a time lag between the timing of a disturbance 

and use of a site, while others are more likely to respond to current environmental conditions 

(Ernoult et al. 2005; Knick and Rotenberry 2000). Much like spatial scales, however, there are 

likely multiple temporal scales important to a given species. Including multi-temporal predictors 

for each observation of a training set could prove to be an effective way to represent temporal 

patterns for certain species.  

 

The potential influence of lag time and the degree to which it influenced our results was further 

complicated by the uneven temporal distribution of the training data we used. Because of this, 

models might have favored certain temporal patterns over others. We decided to use eBird 

observations as training data because of the broad spatial and temporal extent combined with fine 

resolution that they offer. Reducing the extent of our modeling region, however, may have been 

more appropriate for addressing our central question about temporal resolution. With a smaller 

extent, other bird occurrence datasets without this temporal bias might have been appropriate. 

 

This research represents one of only a few studies of temporal resolution and its effect on SDMs. 

Our complex results demonstrate this will likely be a fruitful area for future research. Further 

investigation of temporal resolution and its relationship with not only other bird species, but also 

other taxa could reveal other unexpected species-environment relationships. Our models relied 

on unique yearly land cover, but such multi-temporal datasets are becoming increasingly 

common. This will hopefully make analyses of temporal resolution more accessible to other lines 

of questioning.  
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Figures 

 

Figure 3.1. Land cover change by area between 2001 and 2011 from the National Land Cover 
Database (Homer et al. 2015). For display, we calculated the percent of pixels that exhibited a 
change of land cover within 35,000 ha hexagons. 
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Figure 3.2. Density of ERD observations within a 1 km radius. Observations are mostly 
clustered around roads, trails, and population centers.  
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Figure 3.3. Model performance according to the OOB score, AUC, and RMSE for four different 
temporal resolutions. 
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Figure 3.4. RMSE and AUC by land cover type for four different temporal resolutions for a) 
Hermit Thrush, b) Barn Swallow, c) Black-headed Grosbeak, d) Western Meadowlark, and e) 
White-crowned Sparrow. 
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Figure 3.5.  Occurrence probabilities for all five species averaged within 35,000 ha hexagons. 
Occurrence maps were developed with a 30 m raster cell size, but we aggregated here for visual 
display. Range of occurrence probabilities differed for each species, so values next to the color 
ramp for each map indicate the range of averaged values. 
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Figure 3.6.  Mean relative importance for all species of constant predictors (red) and yearly land 
cover predictors (blue) for each temporal resolution. Vertical ticks show the range of importance 
for all species. 
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Figure 3.7.  Temporal distribution of June observations in the ERD.  
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Figure 3.8.  Difference of standard deviations between 1-year and 10-year Black-headed 
Grosbeak model. Standard deviations were calculated within 35,000 ha hexagons. Negative 
values (purple) occur where 1-year model standard deviations were higher. 
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Tables 

Table 3.1. Predictors used for SDMs. Ecoregion and population density predictors were sourced 
from vector data, and thus, do not have a native resolution. 
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CHAPTER 4: CONCLUSION 

 

In this research, we have explored the effects of scale on distribution models by considering 

spatial and temporal scales important to two different phenomena across broad extents: land 

cover and bird species occurrence. While the mechanisms that affect each of these phenomena 

are quite different, the influence of scale is nonetheless an equally important consideration. 

Chapter 2 was primarily an investigation of spatial scale and how best to represent it in a broad-

extent land cover model. The objectives of in that chapter were 1) to demonstrate the importance 

of representing local-scale patterns when making predictions for large areas, and 2) to use the 

models we developed to create yearly land cover time series that did not previously exist. 

Chapter 3 focused on the effects of temporal scale for modeling species distributions. Our 

primary objective in this chapter was to determine the appropriate temporal resolution(s) of land 

cover data for predicting species distributions. Although each chapter represented a discrete 

effort to explore the dynamics of scale, spatial patterns are closely related to temporal patterns 

(Adler and Lauenroth 2003; Ives and Klopfer 1997), and these two inter-related issues are 

therefore best considered together. 

 

To examine spatial scale in Chapter 2, we applied an existing model algorithm, the 

spatiotemporal exploratory model (STEM) (Fink et al. 2010), in a novel context to develop 

yearly time series maps of forest canopy cover (FCC) and impervious surface cover (ISC). The 

STEM algorithm employs an ensemble of locally defined, spatially overlapping estimators to 

produce a map that reflects both local- and global-scale patterns across the modeling region. A 

model that remains sensitive to local-scale heterogeneity is vital for accurately predicting 
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distributions across broad extents because the variability in predictor-response relationships is 

likely to increase along with the extent of a modeling region. We ultimately used the FCC and 

ISC models to develop yearly time series maps of each, spanning 1990-2012.  

 

To develop the most accurate time series of FCC and ISC, we first tested two model parameters, 

sample size and estimator size. Using the best-performing configuration of each, we then 

compared our STEMs to bagged decision trees, the most comparable model with globally 

defined estimators. We then used the best-performing STEM and LandTrendr, a novel time 

series of spectral imagery, to develop yearly maps of FCC and ISC, spanning 1990-2012. To test 

the temporal extensibility of our models, we compared our predicted 2011 maps to 2011 maps 

from the National Land Cover Database. Lastly, we developed several byproducts of our 

STEMs, variable importance maps, out-of-bag score maps, and standard deviation maps, which 

not only demonstrated the utility of the STEM methodology, but also provided important insights 

into predictor-response relationships of our models. 

 

Our results comparing models trained on different numbers of samples showed an increase in 

performance with increasing sample size. We attributed the majority of performance gain to 

accuracy in predicting non-forest and non-impervious pixels. A training set will likely be 

adequate for developing a model if it sufficiently represents the variability of predictor-response 

relationships found throughout the entire modeling region. In Chapter 2, non-forest and non-

impervious pixels represented a highly diverse class of materials representing a wide range of 

predictor-response patterns. A larger sample size, and greater number of non-forest and non-

impervious samples in particular, was capable of adequately representing such diversity. These 
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results on sample size conflicted, however, with Coulston and others (2012), who found that a 

relatively small sample size was sufficient for making continental-scale FCC predictions. That 

study used a model with global estimators covering the entire modeling region, so more training 

samples could be shared across estimators. With the limited extent of estimators in a STEM, 

each estimator still required a sufficient number of samples to make predictions so more samples 

were necessary. This represents a considerable tradeoff with the STEM algorithm, as a large 

training set may not always be available for certain modeling tasks. 

 

Since predictor-response patterns are likely to be more variable with a large modeling region, we 

expected to find decreasing model performance with increasing estimator size. We found this to 

be true for models of FCC and ISC. Estimator size is a reflection of the spatial scale important to 

the phenomenon modeled. These results demonstrated that predictor-response patterns changed 

over relatively short distances. Taking this comparison of estimator size further, the bagged 

decision tree models that we compared to STEMs were essentially a STEM, except that each 

estimator covered the entire extent of the modeling region. Bagged decision trees clearly 

performed worse than STEMs, as each estimator was forced to learn predictor-response patterns 

that were too complex to represent with a single estimator. Another way to interpret this is that 

larger estimators (and especially global estimators) did not properly reflect the spatial scale of 

predictor-response relationships for FCC and ISC. 

 

While we used a STEM with a fixed estimator size, many processes may operate on multiple 

spatial scales (Swanson et al. 1988). A STEM that can represent multiple scales may be better 

suited to estimate distributions for phenomena that are influenced by such processes. In Chapter 
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2, we suggested that estimators defined by randomly delineated ecoregions could be one 

approach to achieve this, while also bounding the limits of estimators to by ecological gradients. 

A less computationally expensive method that might achieve a similar objective would be to 

randomly select the sizes of estimators from a range of heights and widths. This could allow a 

STEM to reflect processes at multiple scales. 

 

The ultimate goal of developing accurate models of FCC and ISC predictor-response 

relationships was to create a time series of each, yearly datasets that did not previously exist at 

both a broad spatial extent and fine spatial and temporal resolution. To determine each models’ 

ability to temporally extend those learned relationships to other years, we compared 2011 STEM 

predictions to 2011 predictions from the National Land Cover Database (NLCD), the only 

available land cover data at the same spatial resolution and broad extent. Although 2011 and 

2001 ISC STEM and NLCD maps showed nearly equal agreement, the 2011 STEM FCC maps 

showed a marked drop in agreement. We showed, however, that this was likely the result of 

differences between the methods used to create 2001 and 2011 NLCD FCC maps.  

 

This disparity in agreement also demonstrated differing qualities of maps produced when 

aggregating an ensemble by the mean or the mode. In developing our STEMs, we calculated 

both the mean and the mode of all spatially overlapping pixels to produce to different final maps 

for FCC and ISC each. We found that the maps created by the mode outperformed maps created 

by mean for all model iterations, however, 2011 NLCD FCC maps were developed with the 

mean of overlapping pixels. When we compared the 2011 STEM mean map with the 2011 

NLCD FCC map, the two maps showed comparable agreement as the 2001 mode maps did. For 



 113 

regression tasks where the final map is a continuous variable like FCC or ISC, the standard 

aggregation method is calculating the mean; the mode is more common for classification tasks, 

where predicted values represent discrete classes. Our results comparing the differences in mean 

versus mode predictions suggest that the mean might not always produce the most accurate final 

prediction. Since ISC and FCC generally represented as integers ranging from 0–100%, our use 

of the mode to aggregate estimations from an ensemble treated each integer value as a unique 

class. Whether this method ultimately produces more accurate predictions than the mean should 

be tested on an independent dataset, and it represents a topic for further study. 

 

In our last investigation of spatial scale and its influences on FCC and ISC models, we developed 

three novel byproducts of our STEMs, all of which leverage the locally defined estimators that 

comprise a STEM: out-of-bag (OOB) score maps, standard deviation maps, and variable 

importance maps. OOB scores usually only yield a single evaluation score for an entire model, 

but with the each estimator of a STEM limited in spatial extent, we calculated an OOB score for 

each pixel. The result of this was a map estimating accuracy for each pixel of the map and that 

demonstrates the spatial variability in model performance. Similarly, we calculated the standard 

deviation for each pixel, which provided information on the uncertainty of final prediction 

values. Both of these maps generally showed error and uncertainty was higher in places where 

error and uncertainty in the source data was also higher. We created variable importance maps in 

much the same way as OOB score maps, except rather than calculating the OOB score for each 

pixel, we instead calculated the most important variable for determining that pixel’s value in the 

final prediction map. Variable importance maps further supported the results of tests of estimator 

size, showing that importance varied across the modeling region for both FCC and ISC. 
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Furthermore, importance revealed patterns in predictor-response relationships that would have 

otherwise been obscured with an ensemble of globally defined estimators. Standard deviation, 

OOB score, and variable importance maps represent promising evaluation methods for assessing 

models of other phenomena and explaining local variation in predictor-response patterns. 

 

In Chapter 3, we investigated the influence of temporal scale on an avian species distribution 

model (SDM) by comparing models developed with different temporal resolutions of predictor 

data. We were specifically interested in knowing how temporal resolution of land cover 

predictors would affect model performance. For fine-resolution models, the model training set 

contained bird observations with land cover predictor values that were contemporaneous with the 

observation. For coarse-resolution models, however, many training observations were related to 

land cover representing different years than the year the bird observation was made. Since 

different land cover types experience different rates of disturbance (Homer et al. 2015), we tested 

resolutions for SDMs of multiple species to see if habitat preference was related to SDM 

response to temporal resolution. We also calculated variable importance for each model to assess 

the structure and dynamics of models with differing resolutions. 

 

We anticipated that coarse temporal resolution would generally produce less accurate models, 

but that SDM response would vary among species. Although SDMs for some species were less 

accurate at coarser resolutions, our results generally did not confirm this supposition. For many 

species, the best performing models were those produced at the coarsest resolution of 10 years. 

We suggested that the cause of this may be twofold: 1) time lags of species response to 

disturbances may have made coarse resolutions more reflective of ecological patterns important 
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to these species, and 2) coarser resolutions may have simplified models that were otherwise 

noisy at finer resolutions. Although some studies have shown that certain species may respond 

more than others to past landscape patterns (Ernoult et al. 2005; Knick and Rotenberry 2000), 

this could not alone explain our results. For every temporal resolution we tested, some 

observations were contemporaneous with land cover predictors, and at coarse resolutions, some 

observations were related to land cover representing more recent years. Thus, coarser temporal 

resolution did not always represent a time lag in the training data. Our other potential 

explanation, that coarse resolution models simplified predictor-response patterns, was supported 

by trends in variable importance for each model. With decreasing resolution, the importance of 

the year of the observation increased, suggesting that separating models by year was increasingly 

beneficial. Coarser resolution models, then, may have more easily been able to separate 

informative patterns (i.e., where the year of the observation was close to the year of land cover 

data) from uninformative ones (i.e., where the year of the observation did not match the year of 

land cover data). For fine-resolution models, there may have simply been too much variation in 

bird occurrence and land cover values to discern true signal from noise. 

 

We also expected that species more commonly associated with habitats covering more inter-

annually stable land cover types (e.g., anthropogenic landscapes such as urban and agricultural 

areas) would respond less to temporal resolution than species from land covers with higher 

frequencies of disturbance (e.g., forest). We found little evidence to support this proposition, 

although there were subtle indications that habitat preference may have influenced performance. 

For the two species associated with anthropogenic landscapes, Western Meadowlarks and Barn 

Swallows, the magnitude of difference between the best and worst performing models was lower 
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on average than two of the other species associated with forests, White-crowned Sparrows and 

Black-headed Grosbeaks. This effect was minor, however, and there were not any other results 

supporting the idea that habitat preference would influence SDM response to temporal 

resolution.  

 

While we did not observe much difference in performance associated with habitat preference, it 

is possible that that other birds species may have been more responsive than those we selected. 

Modeling habitat for generalist species is usually more difficult than for specialists (Betts et al. 

2006), and none of the species we modeled distributions for were true habitat specialists. 

Additionally, we used bird observations from eBird, a database of citizen science bird checklists 

(Dickinson et al. 2010). A commonly cited weakness of eBird is that bird observations are more 

likely to be collected in places where participants want to go (e.g., near popular birding hotspots, 

roads, and trails) rather than places that might offer a fuller picture of species occurrence 

(Hochachka and Fink 2012). As a result, the full effects of disturbances such as wildfire or clear-

cutting may not be captured by these data. Whether or not the species or response data we 

selected in this study influenced our results are both topics for further study. Overall, our results 

from Chapter 3 demonstrate that temporal resolution can have a dramatic effect on SDM 

performance, but often in unexpected ways.  

 

A common theme throughout both Chapters 2 and 3 was the importance of applying multiple 

evaluation metrics to assess model performance. A single metric can often provide an incomplete 

view of performance, as most metrics do not consider all possible types of error or they may be 

more influenced by certain types of error (Foody 2002; Ji and Gallo 2006; Riemann et al. 2010; 



 117 

Strahler et al. 2006). In both chapters, we could only properly understand model performance by 

considering the results offered by multiple metrics. In Chapter 2, the kappa score decreased for 

ISC models with increasing estimator size, but the overall accuracy remained constant. This was 

largely because ISC models performed reasonably well when predicting for non-impervious 

pixels, and there are far more non-impervious pixels across the modeling region than impervious 

pixels. Kappa is essentially a ratio of the actual accuracy over the expected accuracy, which is 

generally higher with large map classes. Overall accuracy does not take into account the 

expected accuracy as kappa does, so the changes in performance were not reflected in just this 

one metric. Similarly, in Chapter 3, the OOB score showed nearly monotonic decreases 

performance with decreasing temporal resolution, regardless of how the models performed 

according to other metrics. This was likely because the OOB score was calculated with 

observations from the same geographic locations as the training samples. With spatial biases 

present in the eBird response data, the OOB score was more a measure of how well the models 

performed when predicting for locations similar to those typically visited by eBird participants. 

These results further confirm that multiple evaluation metrics are critical for any model 

evaluation, a practice that many authors have suggested become a regular part of model 

assessment (ibid). 

 

 Finally, the research presented in both Chapters 2 and 3 was only possible with source predictor 

data that were of fine resolution and broad extent––both spatial and temporal. The LandTrendr 

data we used here have opened up possibilities for exploring spatial and temporal dynamics of a 

range of environmental phenomena. LandTrendr represents only one of such ambitious efforts to 

develop spatiotemporal maps with broad applicability across disciplines (Hansen et al. 2013; 
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Huang et al. 2010; Kim et al. 2014, Townshend et al. 2012). In addition, recent improvements in 

computational efficiency including widespread cloud computing resources have made these 

initiatives even more accessible, enabling the processing of decades of global fine-resolution 

imagery in a figurative blink of the eye (Warren et al. 2015). In Chapter 2, we improved upon an 

existing algorithm for modeling distributions at a continental scale. This algorithm was 

computationally expensive, however, significantly impeding fast-paced model development. 

With cloud computing resources available to process in seconds what would normally take hours 

or days with conventional computing resources, the barrier of processing time and hardware cost 

no longer represents a significant impediment. The investigation of temporal resolution in 

Chapter 3 was also only possible with yearly time series data covering a broad extent. Publicly 

available platforms such as Google Earth Engine provide nearly complete multi-temporal 

datasets like the entire Landsat and MODIS archives, enabling unprecedented temporally explicit 

spatial analyses (Hansen et al. 2013; Pekel et al. 2016; Trianni et al. 2015). In concert with the 

methodological developments we have contributed and the considerations of temporal resolution 

that our research highlights, these novel computing platforms hold promise for powerful 

explorations of environmental systems and processes. 

 

As these systems and processes continue to change as a result of global climate change, 

development pressure, and other deleterious impacts, understanding the distribution of 

environmental phenomena will be critical for effective conservation and management. The 

variability of predictor-response patterns for broad-extent models and nuanced SDM responses 

to temporal resolution that our research demonstrates are both illustrative of the complexity of 
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these phenomena. This research represents another step toward building tools and understanding 

for effective conservation of vital and potentially fragile systems. 
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APPENDIX A: CONFUSION MATRICES FOR STEM MODELS WITH MEDIUM AND LARGE SUPPORT SETS 

Table A.1. Confusion matrix for medium-sized (400 km x 300 km) forest canopy cover model. 
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Table A.2. Confusion matrix for large-sized (800 km x 600 km) forest canopy cover model. 

 

 

 



 136 
Table A.3. Confusion matrix for medium-sized (400 km x 300 km) impervious surface cover model 
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Table A.4. Confusion matrix for large-sized (800 km x 600 km) impervious surface cover model. 



 

 

 

 

 

 

 


