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STThSIAATION AND TABlE OF FINITE STJ 

I T}OR! OF FINITE SU1ATION 

To the knowledge of' the writer, no table of' finite sum formulas 

of value as a reference is in existence. For this reason a table 
of such formulas, analogous to a table of' integral formulas, is 
presented here. The formulas for this table were selected with 

their utility in mind. 

A finite sum formula is a relation giving the sum of a finite 
series. Finite suntion is the eluation of a finite series. 
This valuation cari be accomplished by the development and application 
of general sum formulas. These formulas are of closed form and give 

the exact or approximate sum, depending on the type of series. 
The theory of finite sunvation is presented first and is 

followed by the development of finite sun formulas, both general 

and special. Finally the table is presented. 

As we will see, the subject of summation arises as a branch 

of the calculus of finite differences. Uence this treatment of 

finite summation will be throwgh this calculus. 

Throughout this paper numbers enclosed in parentheses refer 
to relationships in the discussion, whereas nwbers not enclosed in 

parentheses refer to formulas in the table. 



2 

Finite calculus analoous to infinitesiiial calculus. 

There is a striking analogy bet'reen the finite calculus, or 

calculus of finite differences, and the infinitesimal calculus. 

Consider the function Ut subjected to these calculi. The two 

fundanntal operations of the infinitesimal calculus are 

differentiation, 

L lim %th'1t 
dt h40 h 

and its inrse, integration. The two fundanental operations of 

the finite calculus aro the ¿ - operation, 

LUt UUt 
h 

and its inverse. The analogy is nt perfect because of the 

additional Uniting operation in differentiation. Results in finite 

calculus may be reduced to the analogous results in infinitesimal 

calculus at any time if we perform this additional limiting operation. 

In fact by stxiying finite calculus gain a greater perspective 

onto and insight into infinitesimal calculus. 

In the finite calculus we may assume, without loss of generality, 

that the linear subatitution, t = hx, haa been made Now, since 

Lt * bx, L X is unity. Hence ¿ performed on u nw gives: 

(1) 

SuDud.n2 as the inverse of performing ¿ 

Let us inveitigate the inverse of the ¿\ operatIon, which 
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George i3oole cafled difference integration. It is represented by 

the srnbo1 ¿. Given u, if a function exists such that 
A 1 A 

= then '-a If we SUYa = for values of x 

from in to n, we obtain: 
n 'n-i.]. 

'-u =VI . (2) 
X Xl 

m 

mus i iç inay be found we niay sun the series whose general 

term is u. 

The constant of suiiniiation. 

Note that the operation is interrogative and hence that 

we have no assurance of the existence or uniqueness of the result 

from perforning it on a function u. 

Consider a case in which exists. Now the uniqueness 

of is not guaranteed. Hence we let V be an expression for 

-1 
and V+ reesent all such expressions. Now to Lind 

an expression for and thereby the relation between possible 

results from ¿ we consider the relation, £v = 

Removing the parentheses we see ¿1&) = O. Thus the expression for 

is a general periodic function of period one (1, p.79-3l). In 

finite calculua x assimies successive values differing by unity so 

we may consider as a constant. Thus = 
v+ c. We use 

the rrre suggestive notation I for Ô1 and have; 

:=v+c. (3) 



If we consider this sum from m to n we have by (2): 

n n+l n+l 

U=Vx+C 

Finite calculus as a branch of mathematics. 

A look at finite calculus as a subject is In order. There 

is some confusion in literature about the technical terms used 

(4) 

(1, p.&L-E2). Due to the close analor with infinitesimal calculus 

many terna are borrowed here. Below is a list of terms from finite 

calculus paired with the analogous terms of infinitesimal calculus. 

From this and previous discussion their meaning is held to be 

self evident. 

Finite calculus Infinitesimal calculus 

Performing ¿\ Differentiating 

Difference integral 

Sum 

Difference calculus 

Sum calculus 

Suinand 

Indefinite integral 

Definite integral 

Differential calculus 

Integral calculus 

Inte grand 

4 

Infinitesima]. calculus includes evaluation of definite integrals 

by other methods than through the indefinite integral. Likewise 

it is convenient to include in finite calculus summation performed 

by other methods than through the difference integral. Sonatines 

it is necessary to define and tabulate a new function in order to 



perform exact evaluation as for the integral, 

and the sum, 

: 

X 
dx = 

=f(n) -fm-1). 

Sometimes approximate evaluation is the beet we can do as in the 

case of the integral, 
(lT _____ 

)Vsinx dx, 
o 

and the sum, 
n 

arc tan x. 
i 
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Summation of infinite series is analogous to evaluation of a definite 

integral with an infinite limit. Hence sunmation of infinite series 

is also included in the calculus of finite differences. 

Applications of finite summation. 

Some of the methods to be discussed in the paper permit the 

summation of convergent infinite series in closed form (3, p.18-23). 

By definition, the sum of the convergent infinite series a 

n 
j:;]. 

is E a Thus to sum the infinite serles is to evaluate 
fl-4 j 

the sum of the first n terms and then the limit of this sum. 

Another application of the sums and swmmation theory here 

developed is in the solution of difference equations. 

We proceed to develop these methods whereby we nay sum anr 

finite series. 
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II DE VEI T OF SU!ATIO' ORULA3 

Methods. 

The two nx,st connon methods for derivation of finite sum 

formulas are : (1) the invorson of a difference relation, and (2) 

iie of the close relation been a sum and an integral. Other 

methods inc1e mathematical induction, operational attacks, 

resolution of difference equations, use of generating functions, 

use of geometric considerations, and use of the calculus of 

probability (4, p.109-141). 

Part III includes formulas, with one exception exact, developed 

by invarsion of a A relation. rart iv inclixles approximating sum 

formulas, hich are derivad by the principle of inversion or by 

using the sum-integral relation. 

In the table, sums appear 5ii form (4) with the limits 

substituted, or in the easier written by equivalent form (3). 

Three enera1 sum formulas. 

The derivations of formulas 2, 3, and 5 of the table come 

under a separate heading. In each case tho sums are expanded and 

the identity of the expansions noted (6, p.9l3). Formula 5 is 

called Dirichlets ' sum-formula. It is useful when one of the 

functions u and V can be suimmed exactly, but the other not. 
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III. 31ThATION TORW1JIAS DERIVED BY THE 

INVERSION OF A A - RELATION 

To sum u by inversion le to find V such that 

and apply (3). For example from ¿ cx = c e have fornula 1, 

e = cx + C. In fact any L- relation uay be inverted to ve 

a sum. 

SummatIon by parts. 

The general formula for summation by parts, 4 is developed 

by this inversion. ?(e have: 

V = + Lux Vx+i, (5) 

whence by summing each side from in to n: 

_tn+l n n vi 
x xl 

lin in in 

Solving for the first sum and substituting EV= V1 we hove tue 

ffrst form of 5, 

n tni-1 n 
=u :v I _2ILu:v+l. L-xx x xi 

in Im in 

Mjuctment of the limits and auxmnand in the first form yLelds the 

second form. The third form is developed from the first by r = i 
reapplications of it to its right.hand sum. The fom'th is derived 

from the second in the same manner. Summation by parts plays a role 

analogous to integration by parts. 



C 

tional fwictiona, 

The factorial (ax + b) is defined for positive ni: 

(ax + b)(ax + b a)...(ax + b am + a), 

for negative ni: 

i 
(ax + b)(ax + b + a)...(ax + b + ma - a)' 

(6) 

and for ni = O as unity. 

If we invert: 

+ b)(m+1) = (ni + l)a(ax + b)(m), (7) 

and divide through by a(rn + 1), we obtain foririula 6: 

Z(ax +b) 
(ax 

a(m+l) +C. 

Evidently ni cannot equal -1. 

Formula 7 is seen to hold if we expand 4)(x) as: 

Aux+ u,cui+ ... + A u u 
ni-1 X 

and reduce the resulting, fractions. The A 's may be determined by 

equating like oowers of x in 4(x) and this expansion. The sums 

resulting from application of 7 may be summed by 6. 

Formula C is proved by use of the relation: 

(a) 
x\ X 

al ' 
() 

for the binomial coefficient. Hence, 

z 
(a) (a+i) +C=ai 'a ai (a + l) 

Evidently a and x must be positive integers such that O<ax. 
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Formula 9 used with 6 enables us to sun the power function 

x11 (4, p.16E3-173). We have as the expansion of x'' by Ne'wton'a 

formula, (23): 

x0 
(m) 

() 

Stirling's numbers of the second kind are defined as: 

G: = ['J, (10) 

arìd hence we have formula 9. From (10) we have the recursion 

relation and initial condition: 

m m-1 

G G +mG i (11) 
n+l n n 

O n 
= 1, G = O for n O. 

O O 

A brief table of G s is included later. 

Gamma and related functions. 

The gamma function r(x) is the accepted generalization of 

the factorial (x - 1)1 For x>0, 

r(x) = QJ ?1 dy. (12) 

Integration by parts yields the recursion relation: 

xr(x) = r(x + 1), (13) 

which defines r() for x 0. The foflowing fundamental relations 

may be found in almost any treatrient of r(): 



lo 

r__'- - X 

[ i+th+ 3- 571 

2c2 - 5l? 24832 + ...] . (34) 

log f(x + 1) = {log ni + (x + l)log n - log(x +v)J . (15) 

The successive derivatis of lor(x) are defined as the 

diganirna, triauxna, tetragamrna, et cetera functions and denoted 

et cetera, respectively. These functions 

are fundamental in the theory of sunirnation of rational fractions. 

If a rational fraction s improper, division 4e1ds a rational 

inteal function and a proper fraction. Hence we need consider 

only rational integral functions and proper rational fractions. 

A rational integral function may be summed by formula 9 or 

by direct expression in factorials and use of 6 (5, p.27-23). 

A proper rational fraction may be expressed as the sun of 

fractions in which the denominator is a povrer of a linear function 

in X and the numerator is a constant. This is affected by the 

theory of rational fractions where the constant term in the linear 

function .s a complex number. Hence our problem is to sum 

3. 

r ' r 2 3-, 2, 3, .., and a comnlex. This sumnation is 
(x a) 

affected by use of the above gamma and related functions. 

Essentially wo are inverting a relation but a more direct 

attack wi].]. be made on this si.vnrnation problem. From the definition 

of the digainma function: 
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f(x) =1ogr(x +1), 

we have by (15): 

n+2 

r (x) = n - L 1 
x+rJ . (16) 

I!enee, 

n 
'- J. 

F( +1) - = L +1' 
ni 

or as Y is a dtnînny variable we have formula 10, 

n 
=F(n + 1) 

ni 

As the trigainina, tetraga!runa, penthgamrna, et cetera functions 

are defined as successive derivatives of log r(x) we have from (16): 

00 

F(x)= .T 's 
1-= 1 (x +Y) 

00 

f(x)=-2 
-r= i (x +T) 

f(x)=6 1 

r:;1 (x +Y)4 

- - e ------ 

Proceeding as with f(x) we obtain formulas U, 12, and 13. 

ñ'om the assnnptotic expansion foi' r(x + 1), (34), we obtain 

the aSsyìnptotic expansion for 
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1(1 1 1 f(x) =nx(x +1) + + 
(x 

i 
+ 210 5)- s.., (17) 

(x + 1) 

and for f(x),Rx), et cetera, by the derivative relation between 

these finctions. 

A table has been prepared which ives Rx),r(x), f(x), and 

f(x) for real x in increments of 0.01 for O <x < i and increments 

of 0.1 for 10 <X <60 (2, p.43-59). This table used with the = = 

following reduction forrnuias, (2, p. XIX-XXII), yields considerable 

accuracy: 
n-1 

lC(nX) =iog n + f(x -/). 

f(.c) =((x - 1) + ir ctn inc. 

n-1 
/(rD:) = -. : rc -i). 

n 
(18) 

f(.x) f(x - 1). 
ein 1cc 

-ç- 
r (rix) 

ç- i 
9(flX) =7 

if 

n-1 

L 

n-i. 

: f(x -/). 

Tables are now being computed for ana and digaa functions 

for inaginary arguments (Ref. 7). 

Formula 14 is proved by reduction of the suimriand to type form: 
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;i. i1 i i -i 

x2+a22ai L(x -ai -l)+]. (x+ai -l)+lJ' 

and application of formula 10. 

Note that formulas 10 to 13 are the one exception to exact 

formulas in this chapter. However, they are exact in the sense that 

the sums are in exact terms of a defined tabulated function. 

Lote that f(x) plays a role in finite calculus analogous to 

that of 9n(x + 1) in infinitesimal calculus. 

Exponential and logarithmic functions. 

Formula 15 is proved by inversion of (a - 1)aX and 

division by a - 1. This division is by zero or inipossible if a = 1. 

Formula 16 is proved by inversion of n r(x) = Rn x. 

1'rjgonontrjc and hyperbolic Lunc tions. 

Formulas 17 to 20 are proved by inversion of the following 

A - relations, adjustment of the argument, arid division by the 

constant coefficient e 

LXcos ax = - 2 sin(ax + ) sin 

a a 
gin ax = 2 cos(nx + ) sin 

(19) 

Acosh ax = 2 sinh(ax + ) sinìi .. 

. 
a a 

¿sinh ax = 2 cosh(ax + ) sinh 



Combinations of elementary functions. 

Fornulas 2]. to 32 are derived by summation by parts and 

previous results. Evidently recursion formulas 30 arid 32 must be 

used as a pair. 

and, 

Formulas 33, 34, arid 35 are proved by the substitutions: 

sin ax coe bx [sin(a + b)x + sin(a - b)xJ , 

sin ax sin bx = [cos(a + b)x - cos(a - b) X] , (20) 

cos ax cos bx = cos(a + b)x + cos(a - b)x , 

and application of formulas 17 and l. 

Fórmulas 36, 37, and 3 are special cases of formulas 33, 34, 

and 35 respectively. They are of common application in practical 

Fourier analysis (4, p.123-129). 

and, 

Formulas 39 and 40 aro proved by the substitutions, 

cos 2 ax, 

cos2ax = + cos 2 ax, 

and application of formulas 17 and 16. 

(21) 

Note that analogous formulas for hiperbolic functions may be 

easily derived by substitution through the relations, 

sin(iz) = i sirth z 

and, 

cos(iz) = cosh z. 

(22) 



IV. STJMM.TION 13! METHOPS OF APPROXIMkTION 

Inversion of a - relation or any exact evaluation of a sum 

is possible in relatively few cases as for iO analogous inrsion 

of a derivative relation or any exact evaluation of an integral in 

infinitesimal calculus. Hence as with infinitesLaal calculus 

evaluation must often be through series exansions. In summation 

those series are assymptotic series so their sum is apnroximated 

by their convergent part, as in the case of the expansion of gimia 

and related functions. Of course convergence and the remainder tern 

must alvys he investigated. 

Newton's formula. 

By Newton's formula we may expand u in a series of factorials 

and cnn terni by tern. It states that: 

k (k) 
L2U t . (23) 

kD ° k. 

For the proof we assn u may be expanded into a series of factorials, 

u = a + a x + a2x(2)+ a3x ... 
X ol 

and evaluate the coefficients by setting x = O in successive 

differences of this relation. 

Extension of partial summation. 

If wo let r- in the fourth form of formula 5 w have formula 

41. 
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Formulas relating a sum to an integral, 

The sum and integral of u over the same interval are closely 

related as may he seen by geometry. Thc integral is th area under 

the curves Y %, a the sum is an approximation to this area. 

Hence a siin may be expressed as the corresponding integral and 

correction terms. If these terms are in the form of differences, 

the formula is Laplace's type, and if in the form of derivatives, 

Euler's type (6, p.104). 

Formula 42 is of Euler's type and is called the Euler-MacLaurin 

formula. It in derived by expanding the operational equivalent of 

'' 
(Q,d/dX...l)_]\, 

in powers of d/dx. The nwnbers of the form 

B+i which appear in the coefficients are called Bernoulli' s 

rnnubers and are of froquent occurrence in approximate sum formulas. 

The recursion relation: 

n-1 

E (-1)(')B i = O (24) 

may be used to evaluate the Bernoullian numbers (4, p.233). This 

relation is consistent with the definition, B2 = O for n 1. A 

brief list of Bernoulli's numbers is included later. This list is 

sufficient for most practical purposes because the magnitude of the 

numbers increases so rapidly that any assymptotic series whose 

coeffIcients contain them has a small convergent part. 

Formula 43 is of Laplace's type and is called Gregory'a formula. 

It is derived by substitution for the derivatives in formula 42 of 

their difference equivalents (, p.62). 
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Sum from every m'th term. 

We have a Woolhouse or Lubback type formula according as 

the correction terma in such a formula are in terms of derivatives 

or differences respectively. Formula 44, a boThouse formula, is 

derived from formula 42 by eliminating the integral between formula 

42 and a formula derived from 42 by subdividing each interval into 

m parts. Formula 45, a Lubback formula, is derived by replacing 

the differences in 44 by their differential equivalents. 

Formulas 46, 47, ax1 48 are derived by applying formula 42 

to x, 1/x, and l/x2 respectively. 

Formula 49 is discussed in Chapter VI. 



V. TALE OF S1Th 

i. c=cx+c. 

2. 
2111 

e x) = f(x). 

f[r(x) ±t:(x) ] f(x) ± g(x) ± 

n 1n+1 ni-1 

4. u11 = I - ¿ 
nl ini mi-1 

'ni-1 n 
- 

X XI 
Im ni 

¡ni-1 mi-2 In+3 
= z y i - u ¿ 

J 

+2u Z. -' ir i 
X xl x-1 x-2 

ni-r ., E x-r x 
rn-fr 

ni-1 

= u E V -u z 2\ 3J. 
¡ 

xi-2 X X X 

+ (1)rL 
x+r. 

ni 

n x n n 
5. : v -T u = u V. 

In nl In X 

(ni-1) 

6. E(x + b)(nl) a(: +1) i- 

3 nl ?ero or any integer - 1. 
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4(x) i 
2: .. "x1c+r 

Ai Z 

1 ax + b, cj)(x) a rational 

integra], function of degree ni - i, A's from expaneion 

of (x), 4'(x) A0ux+ Au+i + ... + 

2: Ç) + C; a, z integers such that O <a <. z. 

9 = Gm 
x ; Values of on page 25. L=iJ 

10. 
1 = Rn + i)- f(m); f(x) = DQn ["(z + i). 

n 
i]. f'(n + 1)+f(m); j'(x) = D f(x). 

ni (x+i)2 

n 
12. 4: 

ni 

n 
1:3. x: r(n + i) + f(m); f(x) = = 

ni (z +i) 

tn4a ln+1 

-2f(x-1+ai)I 14. 
i __ 

Im Im 

X 
15. ZaX a 

C; a + i. a-i 
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16. 2n(x) =nr(x) + C. 

17. sin(ax + b) Cos(ax + b - a/2) 
+ 

- 2 sin a/2 

1L Zcos(ax + b) sin(ax + b - a/2) 
+ c. 

2 sin a/2 

19. sinh(ax + b) cosh(ax + b - a/2) + 
2 sinh a/2 

20. Zcosh(ax + b) sinh(ax + b - a/2) 
+ 

2 sinh a/2 

X 
21. xaX = a 

+ C. 
a -1 - (a - 1)2 

22. (ni) x (ni) aX ma 
X a =x a-i 

23. sin X cos(ax - aJ2) sin ax 

2 sin a/2 + 4 sin2a/2 
+ 

____________ nix sinax 24. (ni) x(m)cos(ax - a/2) (m-1) 
X 8inax= 

2 sin a/2 
+ 4 sin2a/2 

m(m - 1) 

4 sin2a/2 
X(m_2)sin(ax + a). 

25. X sin(ax - a12) 
+ 

cos ax 
+ x cos ax = 

2 sin a/2 4 sin2a/2 
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(in) 
1r« - a/2) in Xs 

26. Zx'cos 
2 sin a/2 

+ 4 sin2a/2 

ni(m - 1) Zx(m_2)cos( + a). 
2 

4 sin a/2 

In formulas 27-32: 

acosb-1 
Ka2+1_2acosb ' 

a cos b 

a2+1_2a cosb 

27. aXsin bx = lÇ1aXsln bx - K2aXcos bx + C. 

2. ZaCcos bx = K2aXsjn bx + IçÍaxcos bx + C. 

29. xasin bx = (K1- K2)xaX(sin bx + cos bx)+(I- 4)a''sin(bx-th) 

+ 2 K1yXtbcos(hc + b) + C. 

(m)x. (m)x. . (m)x 
30. x aslnbx=K1x asinbx-Kx acosbx 

-in K1 Zz(m_asin(bx 4b)+ mK (m-l) x+1 
X a cos(bx + b). 

31. xa%os bx = (K1+ jç)X(5j bx + C05 bx)+(K+ K) 

x+l 
a cos(bx + b) + C. 
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32. ZxaXco bx = Kx(m)axsin bx + jç1x(m)axcos bx 

naK2 Zx(m1)a1sin(bx + b)- mX x1a1cos(bx + b). 

a+bl 
cos[(a+ID)x -j--J eo8(a-.b)x 

+ C. 33. sin ax cos bx - a-b 
2 

4sin-- 

sin [(a..)x -] sin 
a-1 

a.b)x - 
34. Zain ax sin bx = - + + C. 

48m 4am 
2 

.' a-k1 sin [(a-ö)x _ ] sin [(a-bix - -j--J 
:35. cos ax cos hx = 

sin 4 
+- +C. 

A 

k 2d. 
36. L sin ax1cos bx= O; a, h integers < k, x1= - 1ì + -i- . 

k 
37. z in axsin bxi = O. 

k 
:3e. x: os axcos bx1 = O. 

io 

39. : sin2ax = 4c - sin(2ax - a) + C. 
4 in a 

2 1 sin(2ax-G) 
40. : ax = x + 

a 
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00 

41. v= 2(2 
3. 

.+(.)r+1ôr-1 + 
.'. 

' ux = C + 5u& - i u + 
d3u 

2 x L dx I! dx3 
+ 

1du 1d3u d5u 

= C + - 1x 12 dx 720 + 30,240 5 
- 

ValueB 
2n+1 

on page 25. 

n (n+]. 

= 
+) 

udx 
I 

+ 
i + 

[íxu+ ó2u] 
m rn im 

+ 3f2+ 

n n/rn 2 du n m-1 
44. u= m 

2 
[un+ UJ 

ml 
- (° 

i 
d\ in 

I + 
r/203 dx3 lo 

n n/rn 2 n-1 rn-i m-1 
45. in 

2 N - Au 

+A2 (m2-1)(19m2-i) 3 
In-3 

24mL n-2 o 720m3 
o 

(in2- l)( m2_I[A4 +4u} - 
- 



46. C + - + = - n(n - 1)(n - 2) 

47. ZC s-logx 

4i. 2-1-=c -- +---- - ¿rl (2n-1)x'1 2x 1 72Ox2' 

00 

[ 
(1)1()(ra+1)fl] ? 

1nk_ r=). rn. 
LJ. - 

i ki (1z) 
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2 

3 

4 

5 

6 

7 

i 

i 

:i 

i 

i 

I 

1 

i 

1 

Stirling's Nwnbers of the Second Jind, G 

2 3 4 5 6 7 

1 

3 1 

7 6 1 

15 25 10 1 

31 90 65 15 

63 301 350 140 21 

127 966 1701 1050 266 

1 B0= 

i 

1 
133 =55 

1 x 

1 137=55 

Bernoulli's Nuribers 

1 

2 

-11 
691 

2,730 

15 
36i7 
510 

17 
43.867 

798 

174.611 
330 

B 21= 
854.513 

138 

25 
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VI. STJM&TION OF A SPECIAL TYPE POWER SERIES 

The sirnation o1 a power series in which the coefficient of 

the k*th term i a rational integral function of k is 8tudied on 

the following pages. By sunniation iiean here, the replacement 

of the power series or infn1te sum by a finite expression, identical 

for values of the variable in the intercral of convergence of the 

por series. In other rds the problem of approximate evaluation 

of the infinite series is reduced to exact evaluation by 

substitution in an identical finite form. 

We proceed to devalop thin finite expression. Also we develop 

three recursion relationships 'which are of more practical use and 

which iield identical resuJts for this type of sination, Finaily 

e present a triangle, the sutnnation triangle, which, with a simple 

forirmla, nt oily provides the most rapid method for such summation, 

but is also easy to remember. 

The general form of such a series being written: 

s x) (C0k+ C1l+ + c)xk, (p5) 

there the Cs are constants and n Is a non-negativa integer, we 

have immediately the form: 

S (x ) = C : 
kxk+ c : 

+ f '. ¿ Ol 1cl 

Thus the stated problem of summation may be reduced to the problem 

of evaluat4ng sums of the form: 



= E k1xk, (26) 

ithere n is a non-negative integer. In other words rather than 

studying the original power series (25), we str1y the power serios 

(26). 

The interval of convergence of K(x), (-1, + 1), may be 

readily determined by tho ratio test. 

Then n = O, we have: 

K(x) 

which is a geometric series. Hence, 

1Ç0(x) = 
- 

/x/<l. (27) 

We see Çx) is a particular geometric series. 

Now oceeding from (27) we have: 

I%(x) = lk= c1 (x) = 
k=l 

° (l-c) 

(28) 
00 

JL(x) = : 
2= 

:K4 
x(1 + x) 

(x) = 
¿ kl (l-x)3' 

and in general z 

00 

nlc .1 
xP(x) 

K(x)=. kx=xç_1(x)= 
n 

k=l 

')n 
may be seen to be a polynomial of deee n I by luduction. 

Note that P2(x) is a polpiomial of degree one and that if P(x) 

is a polrnoinial of degree n 1, then ?1(x) will be a poljnomial 

of degree n. 



20 

Since K(x) satisfies the recursion relation, 

Ic1(x) = x K (z), (29) 

and since, 
X P (x) 

K(x) 
ii+Ï' 

(30) 

(1 ..x) 

have, 

x?,(x) dfxPn(x)_1 

(1 
L __ X)saJ ' 

vhence we obtain, by perforning the differentiation and removing 

the factor, 
X 

(1 ..x) 

P (x) s (nx +l)P (x) +x(1 x)p1 (x). (31) 
n-s-1 n n 

The successive polynomials, P, P3S ... , can be built up 

easily by repeated use of (31), starting froia th3 known fact tbàt, 

P1(x) = L1 Thus wo haves 

P1(x) = i 

P2 = i + X 

P3(x)s1+4x+x2 (32) 

P4(x) s -s- lix + 11x2+ ¿ 
P5(x) s 26 + 26x+ x4 

It may be noted that the coefficiente in these polynomials are 

smmetrica1, positIve, integral, and that the first arid last 

coefficiente are unity. 

If we assune that: 

:Pn(x) 
=:;l 

fr(fl)Xr_l, (33) 
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and substitute in (31) we obtain the recm'sion relation for the 

coefficients fr(n) as follows: 

= (n - r + 1)1' (n 1)+ r r' - 1). (34) r-1 

Since Ç(ii) -O, we see that f1(n) = i for all n. Since f1(n) = O, 

ie see that f(n) = i for all n. Hence we see that the first and 

last coefficients are always unity. The other iroperties noted for 

the coefficients follow easily fron (34). Their stretry is shown 

later, (47). 

Using (34) w build up a triangular array o± coefficients 

for the polynomials P(x), shown on page 30. 

Looking at the geometrical neaning of (34) with respect to the 

triangle we find a de'vice whereby the law of formation may be easily 

applied and remembered. This law is similar to that of Pascal's 

triangle. Rather than adding t elements to obtain the one below 

we add multiples of the elements. These multiples are determined 

by the number of steps we must take frein the sides of the triangle 

to reach the elements. The ìethod is evident from (34). 
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The next step is to find a finite expression for 'iVe 

have by repeated application of (34): 

(n -r + 1)Ç1(n 1) + r n 1) 

= (n r + i» r(n - r)fr 1(n - 2)+ r2Ç(n - 2) 

= (n -r + 1)f1(n 1)-s. r(ri -r)fri(n - 2) 

+ r2(n -r -1)f1(n 3) + 

+r'(n_r.4+2)Ç_1(n si)+r1fr(n -i); i<n -1. 

Now since f(r) = I, f(n - i) = 1 when n - i = r or when i = n - r. 

Hence, 

= r(n -r -i 
+ 2r-.i( 

- i» r"'Ç,(r), 

or since f (r) = f (r - 1), 
r r-1 

n-r+l 
f (n) = r' (n -r -i + 2)Í'r (n - i) (35) 
r 

Now we substitute r = 2 in (35) and note (n - i) = i for 

i <n to obtain, 
n-]. 

f2(n) = 2'(n - i). 
i=]. 

Summing by parts, formula 4, form 3, in the table, we obtain 

f2(n), f3(n), f4(n), and f5(n) successively, each time depending 

on the previous result and noting f1(n) 1, to obtain: 
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in 

= 
2fl( 

+ 1) 

f3(n) 
3fl_( 

+ 1) 2"+ 
+ 1)n 

(36) 
2Z 

4fl(fl 
+ 1) 

3n (n 1)n 2n (n + l)n(n - li 
3Z 

1'5(n) 5-r + 1) 4n (n +l)n 3n (n + l)n(ri - i) 2n 

31 

(n + i)n(n L)(n -2) . 

+ II 
'4. 

From this an intelligent conjecture for is evidently, 

r 
F (n) = (l)fh(fl+l)(r -ni + i)'. () r ni-1 m. 

The fol1owin inductive proof that Fr(fl) = 'r 
consists in 

showing, 

F(n) = (n - r + l)F1(n - 1)+ r Fr(fl - 2 r < n 

and, (3g) 

F1(n) = F(ri) = 1 

in this order. 

Hence ïe first prove: 

(1)fli+l(fl+l)( 
- 

1)fl_ 
(n -r + 1) (1)m+i. 

n n-1 
r 

rii+i n 1)1 
( )(r-m) +r (-1) ( 1)(r -in+ 

m=1 

We proceed to reduce the express4. un the right to that on the left. 

Changing the sunmiand of the first terni on the right sud adjusting 
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through the limits of summation, we obtain: 

(n r + i) (_l)mÇhl2)(r + 

r 
+ rZ (4)m+1( )(r -in 1)fl1 

ml 
We have the two relations: 

n _m-1 n+l., 
- n + i Ç_i" 

(39) 
I n n -n + 2 ,n 
'm-l' - n + i 

which follow imnecliatelç from the expression of the binomial 

coefficients in their factorial form. Substitution from these 
equations in the above expression ylelds: 

r 
(n -r + i) (_1)rn ni -i n+l 

m 
+ 

r 
+ rL (_1)r n - in + 2 ,n+l n-i )(r-rn+i) ml n+l in-1 

If the exponents of -1 and (r -n + i) are adjusted, this becomes: 

r 
iii+i in-1 ,n+l, _ (n -r + 1) (l) l)(r-'n+l) i)r - in + 

+ r (_1)fl n-in+2 ni-1 1)fl 
( )(r-m+ 

rn-_ (n+l)(r-m+i) in-i 

The limits of siination for the first sum may just as well be for 
nl from i to r as the term corresponding to in = O is zero. Hence 

ir w make this change, includo the constant factors inside the 

swrxrnation, and add sums, we have: 



r ç- I (n-r+l)(m-1 r(n.n+2) 
(n+l)(r-n+l1 + (n+1)(rn+l)j 

(_m1 (:)(r - in 

Upon algebraic reduction this becomes: 

( 
))fl1+l ,n+l 1)fl, - 

mL m-1 

and the first equation of (38) is proved. 

To continue, we evaluate F1(n) by substitutIon in (37) as 

follows: 

s/t 

F1(n) (_l)2(1) (40) 

Finally we show Fa(n) = 1. To do this it will be convenient 

to consider an array which is our triangle augmented by the elements 

F(n - 1), n . 2, thich satisfy the recursion relation of our triangle. 

Hence F(n - 1) must be defined by (37) as this defition causes it 
to satisfy (33). Thus, 

F(n - 1) = (_1)m+l 
m + 1)nl (41) 

Now since = E - 1, 
= (E - 

which becomes by the binomial formula, 

(-l)' 

If we apply the E operator we have, 

n+l 

z (_1)in (1)(x + n - n + 1)fll 
m=l 



Hence we have, 

Afl n-1 I 

n+]. 

( 

1)XTI+1 
( 

n , n-1 )I%n-m+1j , 

xD m1 - m-1 

or as the term Lor ra = n + i equals zero, 

'x'I = 
(1)m+1 

(rn1)(n -m + 
IxJ m=l 

(1, p.l9-20) 

If we compare (41) with (42) we have: 

F(n_1)=xhf 
n 

lx 

Iow 
an-1 

= (n - 1) means 

n n-1 
¿ X =0. 

Ience we have: 

F( n - i) = 0. 

Now from the proved recursion relationship of (38), then r 

F (n) = F (n - i) + n F (n - 1), 
n n-i n 

or as F (n - 1) = 0, n 

F (n) =F (n -1). 
n n-J. 

Since n i3 arbitrary, 

F (n) = F 1(n - 1) = F(n - 2) = ... = F1(1). n n 

Now since F1(1) = 1, 

35 

(42) 

F(n) = i. (43) 
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This completes the proof that, 

or that, 

f(ri) =F(n), 

()Iìi+l (')(r -m (44) 

Now with f(n) we have from (30) arid (33): 

i 
[ 

(-i)()(r m + l)vEJxr_1, (45) 

or in a slightly different form, 

r1, 
, m+in+i. n r 

knXk i I 

Çn_ii(1)] x 
(46) 

k=]. 
(1 - 

The application of ali this information about (26) to (25) 

is Lmnediate. 



37 

A swmary of the results of th1 investigation and a discussion 

of their application is now in order. The methods and relationships 

mentioned at the first of this chapter have now been developed. 

have the finite expression of the swn (25) by applying (45) or (46). 

Wo have the recursion relationships (29), (31), and (34). The 

best method of evaluation of the swn is by use of the stwnation 

triangle with (30) and (33). 

In the suirnnation of (25) the value of oi.r methods depends on 

the following: The magnitude of n, the proxidty of ¡xi to unity, 

and the required deee of accuracy of the evaluation. Indidual 

considerations must be given each series. For example, if n is 

siaU but ¡xi is near unity our nethods are of value, but if n is 

large and ¡xi is snall the convergence of the series is not 

seriously slow and our results are of less value practically speaking. 

The evaluation of (25) for sorne particular value of x may he 

accomplished in various ways such as direct substitution in a finite 

niiher of terms or by expression of the polmornial coefficient of 

xk in factorials followed by sunnation by parts. JJovevr, the 

methods presented here are of gieatest value for this evaluation. 

For clarification we give typical examples where these 

methods are ìarticu1arly suited. 

First, let us evaluate the infinite power series, 

A J. + x + 2+ 27x3+ 64x4+ ... + k3xk + a.., 

for x = 0.90000 to five decimal accuracy. The exact value may be 

found by Í'orrnulas(30)and(33)and the summation triangle and substitution 
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îor x. Thus we have, 

s=i+E k3xk 

= 
(-l)4x (1 + c + x2) 

(z - 

= 43,69l. 

Second, evaluate the convergent irif:Lnite series, 

S = 2.2 + 3.22 2 2.3 332 34 
+ 

2k + 3k2+ k4 
+ + ... 

Again using forrnulas(30)and(33)and the suimiation triangle, we have: 

= 2k +3k2+ i/ 

=2 k()k3 
k=l k=1 

= 172. 

+ L 

Finally, let us find a finite expression for the sum of an 

infinite series whose k'th teri!l1 is the product of the k'th term 

of an arithmetic progression, b, b + d, b + 2d, ..., b + (k - 1)d, 

and the k'th term of a geometric proession, a, ar, 
2, ar. 

The series is convergent for r <1. 
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ab (b + kd)ark 

= ab + ab rk+ ad 1k 

b-br+dr -a 
(1 - r)' 

A study of the siation triangLe. 

Sorne interesting 'operties of the summation triangle follow 

immediately frani its law of formation. 

First, the elents of each ro are syrìetrica]. about the 

element or elements at the middle of the row. That is, 

= n-r+i' i Ç. r <n. (47) 

The proof is inductive with respect to n. It is evidently true for 

n = 1. If it is true for n1 we have the two relations: 

(n -r + 2)2 1(n) = (n -r + 2)f(n), 2 r + 1. 

r = r i r n. 

I_f we add equals to equals in the above relationships, e have: 

(n -r + 2)21(n) + r f (n) r f (n)+(n -r + 2)2 (n), r n-'r+l n-'r+2 

Now by (34) we have: 

2 < r < n. = = 

1) = 
n-r+2 

1), 2 r n. 
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Now since f1(n + 1) = f1(n + 1) = 1, this relation holds for 

J. r <n + 1. Thus the symmetry holds for n + i and the proof of 

(47) is complete. 

Socond, for each line the elements increase from the ends to 

the middle, that is, 

f(n) < 

1' +(r)> f_(n) 

noven 

= j,n_.l nodd 

It is sufficient to prove the first inequality as the second 

inequality follows from the first by the smetry just proved. 

The proof is inductive with respect to n. Evidently the 

(48) 

inequality is true for n = 3. Now we will assume this inequality 

holds for n odd and prove it holds for n + 1. Repeating for n even 

completos the roof. 

Hence fr(fl)<fr+i(fl) for r n ; i and n odd ç4ves us the 

inequalities: 

fr<1r+i( r_i<r' er-i <fr+i')' 

If we multiply the inequalities by r, n r + 1, and 1 respectively, 

add, and use (34) we obtain: 

r+i 1), r n + i 

Now for n even we use the relations fr')<fr+i for 

r -i and = 
for r = This latter equation is 

frorii the srnuetry. Proceeding as above we obtain: 

<fr+i + r (n + l - i 
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Thus the induction is comleted and (48) is proved. 

An Abel sum. 

if a series diverges, it may he possible to use some other 

combination than the first i terms as an approximation to the 

"sum" of the divergent series (9, p.261-265). These sums are set 

up by definition and not by analogy with sums of convergent series. 

cbviously these sums have a different meaning than in the case of 

convergent sanes, but they aro often of practical value. This is 

true especiafly when this sum is regular, that is, the methods used 

to obtain the p fl sum a convergent series to the ordinary sum. 

Now we have an example of Abels sum for the oscillating series 

obtained by setting x = -i in the expression for }Ç1(x). We have 

from the definition of Abe1 sum, 

A = 

and (46), 

00 

= 
x-p-1 

(1 -x)1 ;;i I ;:i 
(_1)m+1. : (_l)kkfl lini n r 

()(r - ni + i)7J r 

= 
':;i =i 

(_l)m+1()(r - mn + l)nJ (_1), (49) 

by the method of Abel. 
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K(x) for negative integral n and O. 

To gain perspective on our previous results arid to obtain some 

new results we will develop a finite expression for K(x) for 

n = 1, and develop a method whereby K(x) may be approximated for 

some particular 'value of x where n -2. e will use recursion 

relation (29), evidently true for any complex number n, in the form: 

II 
kflxk = (xD) klxk, (50) 

with the initial condition, K0(x) = 
, for this extension. 

Hence we have, 

kxk = (xD) 
-1 k 

X 
k=l kl 

= (xP) 

(dx = )(i -x) 

= -.2n(l -x) + C. 

Since klxk O for X O, C = O. This gives, 

l 
klXk -.Qn(l .ix), (51) 

The known expression for the sun of this common series. 

For n - -2 we obtain in the same way a non-finite ex'ession 

in the form of an integral, an expected result for the sum of such 



43 

a series. It is convenient to consider the intea1 in its definite 

form with limits O and x. The constant drops out and we obtain: 

E,-2k 
c X =-\ 

Pn(1-x) 

k1 /o X 

x2n 
= f (52) 

I X 
10 

Repeating this process for successive negative inteers, ve 

obtain a multiple integral of multiplicity (n - 1) for K(x). :re 

have: 

(X (x 

11n ()fl1 (3) E. kxk= x 1x kl /0 I0 10 

From a practical standpoint approximate values of these infinite 

series may be found by numerical integration of (53). The utility 

of (53) decreases as ¡n! increases for two reasons, the integration 

bocomes more tedius and evaluation by other means becoies easier 

due to the increasing convergency of the series. Note that these 

series converge for x = -1 when n - 1. 
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