
AN ABSTRACT OF THE THESIS OF

Sridhar V. Kotikalapoodi for the degree of Master of Science in

Electrical and Computer Engineering presented on September 7. 1994.

Title: FineGrain Parallelism On Sequential Processors

Abstract approved:
Dr. Ben Lee

There seems to be a consensus that future Massively Parallel Architectures

will consist of a number nodes, or processors, interconnected by highspeed network.

Using a von Neumann style of processing within the node of a multiprocessor system

has its performance limited by the constraints imposed by the controlflow execution

model. Although the conventional controlflow model offers high performance on

sequential execution which exhibits good locality, switching between threads and syn-

chronization among threads causes substantial overhead. On the other hand, dataflow

architectures support rapid context switching and efficient synchronization but require

extensive hardware and do not use highspeed registers.

There have been a number of architectures proposed to combine the instruction-

level context switching capability with sequential scheduling. One such architecture

is Threaded Abstract Machine (TAM), which supports finegrain interleaving of multiple

threads by an appropriate compilation strategy rather than through elaborate hardware.

Experiments on TAM have already shown that it is possible to implement the dataflow

execution model on conventional architectures and obtain reasonable performance.

These studies also show a basic mismatch between the requirements for finegrain

Redacted for Privacy

parallelism and the underlying architecture and considerable improvement is possible

through hardware support.

This thesis presents two design modifications to efficiently support finegrain

parallelism. First, a modification to the instruction set architecture is proposed to

reduce the cost involved in scheduling and synchronization. The hardware modifications

are kept to a minimum so as to not disturb the functionality of a conventional RISC

processor. Second, a separate coprocessor is utilized to handle messages. Atomicity

and message handling are handled efficiently, without compromising perprocessor

performance and system integrity. Clock cycles per TAM instruction is used as a

measure to study the effectiveness of these changes.

FineGrain Parallelism On Sequential Processors

by

Sridhar V. Kotikalapoodi

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed September 7, 1994

Commencement June, 1995

APPROVED:

Assistant Professor of Electrical and Computer Engineering in charge of major

Head of Department of lectrical and Computer Engineering

Dean of Graduate

Date thesis is presented: September 7, 1994

Typed by Kotikalapoodi V. Sridhar for : Kotikalapoodi V. Sridhar

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENTS

This thesis is dedicated to my parents and my sister Raju, but for whose

understanding and support it would not have been possible. I am also very grateful

to my brotherinlaw for his unconditional help.

Special thanks to my major professor, Dr. Lee, for his inspiring guidance

and for constantly challenging me to think in new directions. I owe most of the

knowledge that I acquired in this field to his unconditional support and advice. Heart

filled thanks to Dr. Lu for being available always for discussions. Also, special thanks

to my committee members: Dr. Arthur and Dr. Pattee for making time for this defense

amidst their tight schedules.

I extend my gratitude to Sridhar Jasti and Greg for their help in installing

the tools for simulations.

Many thanks to all my very special friends Ravi (Bulky), Satish, Patta,

Sudhi, Praveen, Ashu, Bundy, Sameer, Dutta, Manoj R., Jasleen, Rajeev, Sanjeev and

Sudha for making my stay at Oregon pleasant and unforgettable.

I would also like to thank the TAM group at UC, Berkeley for providing

the TLO to SPARC translator. Special thanks go to Klaus Schauser and Seth Goldstein

for many fruitful interactions. I am also grateful to Computation Structures Group

at MIT, including Andy Shaw and Boon Ang.

Table of Contents

1. INTRODUCTION 1

1. 1. Motivation 2
1. 2. Thesis Organization 5

2. WHY MULTITHREADING 6

2. 1. Dataflow Architectures 6
2. 2. Shortcomings of dataflow model 8

2. 3. ETS Model 9

2. 4. Hybrid Architectures and Multithreading 11

2. 4. 1. Hybrid Architectures 12

2. 4. 2. P-Risc 12

2. 4. 3. TAM 13

3. THREADED ABSTRACT MACHINE (TAM) 15

3. 1. TAM Program Structure 15

3. 2. Storage Model 19

3. 3. Execution Model 20
3.4. Compiling to TAM 22

3.4. 1. A simple program in TLO 23

4. IMPLEMENTATION OF TAM 27

4. 1. TLO on the CM-5 multiprocessor 28

4. 1. 1. Storage model 28

4. 1. 2. Arithmetic and logic instructions 29

4. 1. 3. Sending messages 29

4. 1. 4. Receiving messages 31
4. 1. 5. Thread scheduling 33

4. 1. 6. Frame scheduling 33

4. 1. 7. Heap access 36

4. 2. Measurements 37

4. 2. 1. Control Overhead 38

5. DESIGN FOR EFFICIENT THREAD SCHEDULING 42

5. 1. The Proposed Method 42

43 5. 2. Implementation for the SPARC

6. MESSAGE HANDLING 47

6. I. Design using a Coprocessor 48

6. 2. Coprocessor versus Polling for inlets 53

6. 3. Performance 55

7. HARDWARE MODIFICATIONS AND CONCLUSION 60

7. 1. Hardware modifications required to implement the proposed

changes 60

7. 1. 1. SPARC processor pipeline 60

7. 1. 2. Internal Instructions 61

7. 1. 3. Pipeline stages for cdbp instruction 62

7. 1. 4. Hardware changes needed to implement the

cdbp instruction 64

7. 1. 5. Hardware required to implement the ldi and

std instructions 66

7. 1. 6. Implementation of the Double Ended Queue

for the LCV 66

7. 1. 7. Hardware to assert the LOCK signal 66

7. 2. Future work and conclusion 66

BIBLIOGRAPHY 70

List of Figures

Figure 2. 1. Organization of a dynamic dataflow machine 8

Figure 2. 2. Illustration of Codeblock invocation, Instruction

and Frame memory in Monsoon. 11

Figure 3. 1. TAM activation tree and embedded scheduling

queue. 16

Figure 3. 2. State transitions taken by frames due to POST and

SWAP instructions. 22

Figure 4. 1. Control transfer using FORK. 39

Figure 6. 1. Inlet Processor interface with the system 49

Figure 6. 2. Concurrent POST and FORK instructions resulting in

the erroneous execution. 51

Figure 6. 3. LCV implementation 52

Figure 6. 4. Cycles per TLO instruction comparison of the CM5,

Jmachine and the CM5 using modified SPARC chip
and inlet processor. 59

Figure 7. 1. SPARC processor's four stage pipeline. 61

Figure 7. 2. Execution of the store instruction. 62

Figure 7. 3. Execution of cdbp instruction when the count is not

zero 63

Figure 7. 4. Execution of cdbp instruction when the count is zero. 65

Figure 7. 5. Decoding the register file for the cdbp instruction.... 65

Figure 7. 6. Circuit to assert the LOCK signal. 67

Table 3. 1.

Table 4. 1.

Table 4. 2.

Table 4. 3.

Table 4.4.

Table 4. 5.

Table 4. 6.

Table 4.7.

Table 4. 8.

Table 4. 9.

Table 4. 10.

Table 4. 11.

Table 5. 1.

Table 6. 1.

Table 6. 2.

Table 6. 3.

Table 6.4.

List of Tables

A brief description of some of the most important TAM
concepts 18

Access cost to each level of the local storage hierarchy
on a SPARC node. 30

Reserved special purpose registers. 30

Mapping of TLO arithmetic and logic instructions to
the SPARC. 31

Cost for sending a message limited to three 32bit
arguments. 32

Cost of polling the network and of running an inlet 32

Mapping of TAM POST instructions on to SPARC . . . 34

Cost of TLO frame synchronization and scheduling
operations. 35

Cost of accessing global data structures with synchronization
on a perelement basis. 37

Dynamic instruction mix statistics for the benchmark
programs. 39

Mapping of TAM thread scheduling instructions on to
SPARC. 40

Cost and frequencies of TLO thread synchronization and
scheduling instructions. 41

Scheduling and Synchronization costs for the modified
SPARC. 46

Dynamic thread and inlet characteristics under TAM. . 56

Work load distribution between the two processors. 56

Overhead cost due to the addition of a coprocessor . . . 57

Comparison of a Single processor system with a Inlet
coprocessor system. 58

FineGrain Parallelism On Sequential Processors

1. INTRODUCTION

In the early days of computing, the issue of constructing a multipleprocessor com­

puting system was viewed as little more than an interesting intellectual exercise; after all,

it seemed clear that machines could be made to operate faster simply by increasing the speed

of the underlying technology. Given this view, it seemed that the style of machine organiza­

tion for potential multiprocessing was not of overriding importance. The von Neumann or­

ganization, because of its sequential nature, was conceptually simple and easy to realize.

Hence, it is not surprising that an entire academic community and industry was born with

a builtin bias towards sequential computing. While understandable, this assumption about

machine organization has inherent limits which, from our present vantage point, sit just be­

yond the horizon.

Attention has been focused in the recent past on constructing multiprocessor systems

attention derived from a desire for more performance. There seems to be little debate that

the general purpose supercomputers of the future will be massively parallel architectures

consisting of a number of nodes interconnected a high speed interconnection network [15].

What has not been done sufficiently is a reevaluation of the underlying assumptions. This

is painfully clear when one observes that von Neumann style of processing still forms the

building block for the majority of multiprocessor projects or proposals. Many variations on

. the von Neumann theme have been explored (e.g., pipelining, multiple functional units, vec­

tor instructions), but not much has been done with the sequential control required for instruc­

tion execution.

2

1. 1. Motivation

Using a von Neumann style of processing within the node of a multiprocessor system

has its performance limit imposed by the constraints of the controlflow execution model

[2]. One serious problem with distributing work over several von Neumann processors is

the implied shared memory. A single processor can mask the time to fetch an item from

memory with a variety of techniques such as registers, caches, etc. However, when there are

multiple processors in a system, parallel tasks, which are executed on different nodes, may

require simultaneous access to a shared memory cell or one task may require the result of

another task. Hence, a node has to fetch the contents of the memory on a remote node. The

latency of remote memory access typically grows with the machine size.

Classically, caches are used to mask memory latency, and a cache can be added to

hold copies of remote locations. However, cache coherence then becomes a significant prob­

lem. Further, a processor may still idle when there is a cache miss. Although caches can be

used to alleviate the remote memory access latency to some extent, it does not offer anything

for the synchronizing load problem. To illustrate this problem, let us consider the case where

a process running on a node requires the result from another process running on a remote

node. To ensure that the remote load reads the value only after the correct value is written,

some form of synchronization is required. Unlike the remote load problem, the latency here

is not just an architectural property it also depends on scheduling, and the time it takes to

compute the result, which may be much longer than the transit latency.

Another problem with the von Neumann style of processing is that of programming

for parallel execution. Compilers can be used to analyze and transform sequential programs

into parallel ones. However, antidependence and aliasing detection by compilers has been

achieved only on very few programs with simple structures, thus restraining parallelism in

most cases.

3

Due to these limitations, von Neumann model of computation does not readily carry

over to multiprocessors. An alternative to the von Neumann model of computation is the

dataflow model of computation. The dataflow model of computation can maximally exploit

parallelism in a program [11]. In addition, the functional and asynchronous characteristics

of the dataflow model of computation overcome many of the problems associated with the

controlflow method of exploiting parallelism. First, there is no concept of a shared storage.

Instead, operands are communicated as tokens of values rather than addresses of variables.

Thus, the dataflow model of computation does not produce sideeffects such as the inadver­

tent modification of a shared variable. Second, since the data is transmitted between instruc­

tions in the form of tagged tokens, where the tag carries control information (the context)

for the destination instruction, there is no overhead involved in context switching. Hence,

-context switching can be effectively used to mask the memory latency.

Although, dataflow model of computation offers several advantages such as rapid

context switching and sideeffect free execution as well as exploits maximum parallelism

by executing any operation on any processor, it has some shortcomings which prevent it

from being practical alternative to the traditional methods of parallel computing [8]. First,

it requires a matching store to hold the state of the overall computation. Given its associative

nature, it is impractical to make the matching store extremely large, so deep recursion or ex­

tensive parallelism cause the store to fill up and the program to deadlock. Second, the pipe­

line of the dataflow processor tends to be inefficient. Third, it does not use the highspeed

registers.

In light of this discussion, there have been a number of architectures proposed to

combine the instructionlevel context switching capability with sequential scheduling [11].

Multithreaded architectures retain the advantages of the dataflow model, like fast context

switching and cheap synchronization [4]. In addition, by allegating the task of scheduling

to compiler, multithreaded architectures based on the dataflow model require little hardware

modifications to support the efficient thread scheduling and synchronization. In the context

4

of multithreading, a thread is a sequence of statically ordered instructions where once the

first instruction in the thread is executed, the remaining instructions execute without inter­

ruption. As a result, a thread defines the basic unit of work from the dataflow pointofview

that requires synchronization only at the beginning of a thread. Observations of current data­

flow projects show that there is a trend towards adopting multithreading as a viable method

to build hybrid architectures that combine features of dataflow and controlflow execution

models [1 1].

One such project at UC Berkeley, called Threaded Abstract Machine (TAM), sup­

ports finegrain interleaving of multiple threads by an appropriate compilation strategy rath­

er than through elaborate hardware [7]. Experiments on TAM have already shown that it

is possible to implement the dataflow execution model on conventional architectures and ob­

tain reasonable performance [7]. These studies also show a basic mismatch between the re­

quirements for finegrain parallelism and the underlying architecture and considerable im­

provement is possible through hardware support.

Based on the aforementioned discussions, this work presents two design modifica­

tions required to efficiently support finegrain parallelism on a conventional RISC architec­

ture. First, a modification to the instruction set architecture is proposed to reduce the cost

involved in scheduling and synchronization. The hardware modifications are kept to a mini­

mum so as not to disturb the functionality of a conventional RISC processor. Second, a sepa­

rate coprocessor is utilized to handle messages. Atomicity and message handling are han­

dled efficiently, without compromising perprocessor performance and system integrity.

Clock cycles per TAM instruction is used as a measure to study the effectiveness of these

changes. Although the discussion is based on the SPARC architecture, the design issues ap­

ply to other RISC processors as well.

5

1. 2. Thesis Organization

Chapter 2 starts with an overview of dataflow architectures. It further discusses the

advantages and disadvantages of the dataflow model of execution. Then an overview of hy­

brid architectures are provided and these discussions unfold the architectural features re­

quired of modern parallel machines.

Chapter 3 describes the Threaded abstract machine (TAM), developed at University

of California, Berkeley. It describes the program structure, storage model, and execution

model in detail. In addition, compilation of highlevel parallel language to TAM is ex­

plained.

Chapter 4 explains the issues involved in mapping of TAM to traditional processor

architectures. In addition, it also presents the dynamic measurements from running bench­

mark programs on TAM.

Chapter 5 presents our work to reduce the overhead involved in thread scheduling.

It also presents the measurements obtained from the proposed change.

Chapter 6 discusses the overhead involved in message handling. It also discusses

the issues involved in message handling like atomicity and coherence. It then presents our

implementation for efficient message handling and then discusses the results.

Chapter 7 summarizes the hardware modifications required for the proposed

changes and concludes with the brief overview of the work.

6

2. WHY MULTITHREADING

von Neumann style of sequential execution is not very efficient for scalable multipro­

cessing because of its inability to tolerate increased latencies and to handle greater synchro­

nization requirements [2]. In recent years research has been focused on alternative architec­

tures for scalable multiprocessing. In this chapter, a general description of these

architectures is provided. The advantages and shortcomings of these machines are also dis­

cussed.

2. 1. Dataflow Architectures

Dataflow machines can directly execute dataflow graphs [11]. Dataflow graph is a

directed graph in which vertices or nodes correspond to instructions and the data dependen­

cies which exist between these instructions are represented by edges connecting these nodes.

The data values are carried by tokens. These tokens travel along the arcs to the destination

instructions. To distinguish between the different instances of a node, a tag is associated with

each token that identifies the context in which a particular token was generated. Thus, typi­

cally a taggedtoken has processor address, codeblock name, initiation number to identify

the instance of the node and the address of the instruction with in the code block appended

to the data value. A node can be executed or said to be fired when all its input arcs contain

a set of tokens with identical tags.

Dataflow models can be in turn classified as either static or dynamic. The static data­

flow model exploits only a limited amount of parallelism and lacks the general support for

programming constructs essential for any modern programming environment (e.g., proce­

dure calls and recursion) [11]. On the other hand, dynamic dataflow model exploits all the

parallelism in the program. For example, a loop can be unfolded dynamically, thus allowing

7

the execution of the multiple instances of the loop concurrently. For this reason, current data­

flow research efforts indicate a trend towards the dynamic dataflow model.

The general organization of the dynamic dataflow machine is shown in Figure 2.1

[11]. Tokens are received by the Matching Unit, which is memory containing a pool of to

kens waiting for their partners. The basic operation of the Matching Unit is to bring together

the tokens with identical tags. If a match exists, the corresponding token is extracted from

the Matching Unit and the matched token set is passed on to the Fetch Unit. If no match is

found, the token is stored in the Matching Unit to await a partner. In the Fetch Unit, the tags

of the token pair uniquely identify an instruction to be fetched from the Program Memory.

A typical instruction consists of an operational code, a literal/constant field, and destination

fields. The fetched instruction together with the token pair is sent to the Processing Unit.

The Processing Unit executes the enabled instructions and produces result tokens to be sent

to the Matching Unit via Token Queue.

The simplicity of this model derives from the implicit allocation of storage and

scheduling associated with each message arrival. Any operation can execute on any proces­

sor, simply by sending the tokens to that processor.

The dataflow model of execution offers many attractive properties for parallel pro­

cessing. First, the dataflow model of execution is asynchronous, i.e., the execution of an

instruction is based on the availability of its operands. Thus, it exposes all the parallelism

in the program. Second, data is appended with the address of the destination instruction.

Therefore, the synchronization of parallel activities is implicit in the dataflow model. More­

over, since the data carries with it the control information (the context) with it, context

switching is fast. This allows efficient exploitation of finegrain parallelism at instruction

level.

8

Figure 2. 1. Organization of a dynamic dataflow machine

Although the dataflow model offers several advantages like rapid context switch­

ing, cheap synchronization, and exposes all parallelism in a program, it has several short­

comings which prevent it from being practical.

2.2. Shortcomings of dataflow model

Several shortcoming have been identified with the dataflow model of computing.

These shortcomings include:

Overhead involved in matching tokens is heavy;

Inefficient resource allocation; and

The dataflow instruction cycle is inefficient.

9

Detection of matching tokens belonging to the same instance of an instruction is one

of the most important aspects of the dataflow computation model. A failure to find a match

implicitly allocates memory within the matching hardware. Thus, when a codeblock is

mapped to a processor, an unspecified commitment is placed on the matching unit of the pro­

cessor. Given its associative nature, it is impractical to make the matching store extremely

large, so deep recursion or extensive parallelism cause the store fill up and the program to

deadlock [5].

Another subtle problem with the dataflow model is, it does not not utilize the high

speed registers for computation. So there is no means by which the compiler can organize

the program to make efficient use of processor resources [8].

A more general criticism leveled at dataflow model is the inefficiency in its instruc­

tion cycle. For example, matching tokens is more complex than simply incrementing a pro­

gram counter. Similarly, generating and communicating result tokens impose inordinate

amount of overhead compared to simply writing the result to a memory location or a register.

These inefficiencies in the pure dataflow model tend to degrade performance for programs

having a lowdegree of parallelism.

2.3. ETS Model

In the past few years, there have been several proposals which try to overcome the

shortcomings of a pure dataflow model. For example, The ETS model embodied in Mon­

soon is a partial remedy to these problems [16]. Implicit allocation of the matching store

'is eliminated by explicitly allocating a storage, called an activation frame, to hold the local

storage for each function invocation. Synchronization bits are associated with each frame

location to support a dyadic match.

To illustrate the operations of direct matching in more detail, consider the token

matching scheme used in Monsoon. An example of the ETS codeblock invocation and its

10

corresponding Instruction and Frame Memory is shown in Figure 2.2. In a direct matching

scheme, any computation is completely described by a pointer to an instruction (IP) and a

pointer to an activation frame (FP). The pair of pointers, <FP.IP>, is called a continuation

and corresponds to tag part of a token. When a token arrives at an actor (e.g., ADD), the IP

part of the continuation points to the instruction that contains an offset r as well as displace­

ment(s) for the destination instruction(s). The actual matching is achieved by checking the

slot in the Frame Memory pointed to by FP+r. If the slot is empty, the value of the token is

written in the slot and its presence bit is set to indicate that the slot is full. If the slot is full,

the value is extracted, leaving the slot empty, and the corresponding instruction is executed.

The result token(s) generated from the operation is communicated to the destination instruc­

tion(s) by updating the IP according the displacement(s) encoded in the instruction (e.g.,

execution of the ADD operation produces two result tokens <FP.IP+1, 3.55> and <FP.IP+2,

3.55 >L).

Thus, in the ETS model, the implicit allocation of the Associative Matching Store

is eliminated. However, the token buffer remains. When a message arrives, storage is allo­

cated for it in a large queue. Although Monsoon allows short instruction threads to be sched­

uled, using frame slots and a small set of registers to convey the data between instructions

in a thread, the arbitrary interleaving of tokens in the queue is unlikely to provide any useful

locality. Furthermore, the machine cycle time is limited by the readmodifywrite on the

frame synchronization bits and the frame access per instruction.

11

Instruction Memory
CodeBlock Activation opcode r dests

IP ADD 2 +1, +2L

NEG +6

SUB 3 +1

Frame Memory

FP

: FP+2 v
V 4.24

Presence Bits

Figure 2. 2. Illustration of Codeblock invocation, Instruction and Frame memory in
Monsoon

2.4. Hybrid Architectures and Multithreading

As mentioned in section 2.1, one major advantage of architectures based on the data­

flow model of computation is the instructionlevel contextswitching capability. That is,

contextswitching can occur on a perinstruction basis since each datum carries context

identity with it (i.e., in the form of a tag). This provides the ability to tolerate long and unpre­

dictable memory latencies. On the other hand, the processor resources like registers are not

used in the dataflow model. The instructionlevel contextswitching capability combined

12

with sequential scheduling, which provide a different perspective on dataflow architectures

multithreading, combines the advantages of the both. In the context of multithreading, a

thread is a sequence of statically ordered instructions where once the first instruction in the

thread is executed, the remaining instructions execute without suspending. As a result, a

thread defines the basic unit of work from the dataflow model pointofview that requires

synchronization only at the beginning of a thread.

2. 4. 1. Hybrid Architectures

The Hybrid proposal was the first to observe the interplay between register allocation

and thread scheduling [10]. This model provides a machine language of multiple threads

operating against an activation frame and registers. However, each frame slot includes pres­

ence bits, like the ETS. A thread is suspended upon access to a frame slot marked notpres­

ent. The suspension is accomplished by building a queue of instruction pointers into waiting

threads. The queue is rooted in the frame slot, so the eventual store of the value enables the

threads. Since no registers are saved upon suspension, the compiler is required to evacuate

the registers across any potential point of suspension. This elaborate suspension, queuing

and scheduling mechanism is part of the basic model and required in any machine that imple­

ments it. Moreover, scheduling is outside the programming model, so there is no means by

which the compiler can organize the program to make efficient use of processor resources.

2. 4. 2. PRisc

PRisc observed that presencebits can be kept in the frame like local data, rather

than as special tags, and that matching could be simulated by toggling the tag bit atomically

and suspending on the result [14]. This means that for synchronizing threads, rather than

checking the presence bits a count, which is stored in the frame memory like data, is checked

to see whether the thread is ready for execution. This eliminates the need for including pres­

13

ence bits with each slot and results in efficient machine cycle. In addition, PRisc eliminated

the notion of suspension with in a thread. Thus synchronization is required only at the start­

ing of a thread. However, PRisc failed to retain the distinction between registers and frames

of the Hybrid model. Instead the entire frame is viewed as a set of registers. Like the hybrid

model, scheduling is outside the execution model. Thus when a thread completes, any en­

abled thread could execute next, so there is no means by which the compiler can develop a

higher level strategy for utilizing processor resources while tolerating latency.

2. 4. 3. TAM

Dataflow research has focused on the obvious costs: scheduling and synchronizing

threads. However as seen in the above sections, optimizing scheduling costs while ignoring

the effects on the storage hierarchy leads to unrealistic solutions. Instead, the Threaded Ab­

stract Machine (TAM) exposes the scheduling of threads so that the compiler can coordinate

scheduling with the usual management of the storage hierarchy [7]. To aid in this coupling,

TAM allows groups of related threads to be scheduled together. This reduces the cost of

scheduling and permits the compiler to manage storage resources, e.g., registers and local

variables, across several threads. Finally, giving priority to related threads tends to improve

cache behavior. Overall, the effect is that data can be kept at smaller and faster levels of the

storage hierarchy.

Thus TAM supports asynchronous parallelism while tolerating memory latency and

overcomes the shortcomings which are inherent in the dataflow model like:

Matching Overhead: Matching is done by checking a count rather than using

associative memory or presence bits. Since the count is stored in the memory like

any other data, matching overhead is reduced.

14

Inefficient resource allocation: Since the scheduling of threads is storage driven

and managed by the compiler, related threads can be scheduled together. Hence,

data can be passed in registers across several threads.

Inefficient Instruction Cycle: The processor pipeline is uniform and does not in­

clude the inefficient operations like token matching or checking and updating

presencebits. In addition, TAM can mapped effectively onto a sequential RISC

processor.

15

3. THREADED ABSTRACT MACHINE (TAM)

The Threaded Abstract Machine (TAM), developed at University of California,

Berkeley, refines dataflow execution models to address the critical constraints that modern

parallel architectures place on the compilation of generalpurpose parallel programming

languages [7]. TAM defines a selfscheduled machine language of parallel threads, which

provides a path from dataflowgraph program representations to conventional control flow.

The most important feature of TAM is the way it exposes the interaction between the han­

dling of asynchronous message events, the scheduling of computation, and the utilization

of the storage hierarchy.

Since our work is based on TAM, this chapter provides a complete description of

TAM and codifies the model in terms of a machine language TLO. Issues in compilation from

a high level parallel language to TLO are discussed in general and specifically in regard to

the Id90 language [13].

3. 1. TAM Program Structure

A TAM program consists of a collection of codeblocks where each codeblock typi­

cally represents a loopbody or a function. Each codeblock comprises of several threads

and inlets. The activation frame, which is analogous to the stack frame for conventional sub­

routine calls, is the central storage resource. Invoking a codeblock involves allocating an

activation frame, depositing argument values into the frame and enabling threads forexecu­

tion within the context of the frame. Initialization also consists of setting the values of syn­

chronization counters stored within the frame. The caller does not suspend upon invoking

a child codeblock so it may have multiple concurrent children. Thus, as shown in Figure 3.

1, the dynamic call structure forms a tree, rather than a stack, represented by a tree of frames.

16

Activation tree	 Activation frame Code segment

Ready	 Function

Foo
Queue

Inlet 1
Local
variables

ead 2

[read 5

Synchronization
counters

Thread 15

Ready frame link

Continuation
vector

Figure 3. 1. TAM activation tree and embedded scheduling queue

An activation frame may be in one of three states: idle, ready, or running. Every

processor has exactly one running (or current, or resident) frame, the frame pointed by the

FP register. All local memory accesses that occur either in threads or inlets are relative to

the current frame.

To support thread level scheduling, every frame has a remote continuation vector, the

RCV, and the processor has a local continuation vector, the LCV. The LCV holds the en­

abled1 threads for the running frame. On the other hand, the RCV contains the enabled

1. Threads are said to be enabled if they are ready for execution.

17

threads for a ready frame. Every codeblock specifies the size of the continuation vector

that must be allocated for a new frame. The highlevel language compiler is responsible for

determining the size by analyzing the structure of the threads in the codeblock.

An idle frame is one which has no threads in its RCV. A ready frame has at least one

thread in its RCV and is waiting to be scheduled, or, in other words, waiting to become the

running frame. There may be zero or more idle or ready frames per processor.

The ready frame queue is maintained using the frame slots of the ready frames. The

head of the queue is kept in the QP register. Every other frame in the queue points to the next

ready frame. Thus, all the data structures needed for both scheduling levels are maintained

in the frames; once a frame is allocated all its scheduling resources have been allocated as

well.

A thread is a collection of nonsuspending instructions. Two instructions are in the

same thread if they can be statically ordered. There are no jumps or branches within a thread,

and synchronization occurs only at the beginning of a thread. FORK attempts to enable a

thread in the current activation. If the thread is an unsynchronizing one, it pushes the pointer

to the thread onto the LCV, which contains pointers to the all enabled threads. If the thread

requires synchronization, the counter associated with the thread is decremented and if it's

zero then the thread is pushed on the LCV; otherwise, the decremented count is stored back.

A SWITCH instruction forks one of two threads depending on a condition. A STOP instruc­

tion stops the current thread and causes some other enabled thread to begin execution. This

is done by poping a thread from the LCV. When there are no enabled threads or it has

executed the current codeblock completely, the processor executes a swap instruction,

which transfers control to a frame from the ready frame queue. A quantum is the set of

threads executed during a single residency of the frame.

The arguments to the codeblock, results from other frames and responses to the

global heap accesses are received by inlets. Inlets, as shown in Table 3.1, are compiler gene

18

'Table 3. 1. A brief description of some of the most important TAM concepts

Code Structures

Codeblock A collection of threads and inlets that corresponds to a

single function (or loop body) in the original program.

Thread A sequence of instructions with a single entry and sing

le exit point that can be executed without suspension.

Inlet A sequence of instructions tailored to handle the receipt

of a message for a target frame.

Data Structures

Activation Frame Similar to an stack frame in a sequential language, it is

the unit of storage of each codeblock invocation.

Continuation Vector The data structure used to store enabled threads.

Ready Queue The data structure used to keep track of frame that are

ready to execute, i.e., frames with enabled threads that

are not running.

Synchronization Counters Counters used to enforce synchronization between

threads.

Operations

Fork The FORK instruction is used to enable threads for the

currently running frame.

Post The POST instruction is executed in inlets and is used

to enable threads for the target frame. It will also, if

necessary, enqueue the frame on the ready queue.

Swap The SWAP instruction schedules a frame from the ready

queue.

19

rated message handlers that copy the arguments into the frame and enable computation de­

pending on the message. The SEND operation delivers a sequence of data values to an inlet

relative to the target frame. The inlet specified in the message receives the message through

a RECEIVE instruction and stores the data into the specified location and enables a thread

by executing a POST instruction. Enabling a thread from inlet is slightly different from en­

abling one from a thread. An inlet can enable a thread for execution in a different frame

where as the one enabled from a thread is with in the current frame and is closely coupled

to the current processor state. Inlets may preempt threads, but they may not preempt other

inlets.

3. 2. Storage Model

The TAM storage model includes four distinct regions: code storage, frame storage,

registers, and heap storage. TAM code storage contains codeblocks representing the com­

piled form of the program. It appears identical to all processors and is accessible through

fast local operations.

Frame storage is assumed to be distributed over processors, but each frame is local

to some processor and only accessed from that processor. Work is distributed over proces­

sors on a frame invocation basis. Interframe communication is potentially interprocessor

communication and is realized by sending values to inlets relative to the target frame.

A TAM processor contains data registers of various types and four special address

registers: FP, the address of the current frame, IP, the address of the current thread instruction,

IFP, the address of the target frame for the current inlet while it is executing, and HP, the ad­

dress of the current inlet instruction. A frame is running on a processor when it is referenced

by the FP. Instructions can access registers or frame slots, relative to FP.

Heap storage contains objects that are not local to a codeblock, including statically

and dynamically allocated arrays. Accessing the global heap does not cause the processor

20

to stall, rather it is treated as a special form of message communication. A request is sent

to the memory module containing the accessed location while threads continue to execute.

The request specifies the frame and inlet that will handle the response. If the response returns

during the issuing quantum, the inlet integrates the message into the ongoing computation

by depositing the value in a frame or register and enabling a thread. However, if a different

frame is active when the response returns, the inlet deposits the value into the inactive frame

and posts a thread in that frame without disturbing the register usage of the currently active

frame.

Global data structures in TAM provide synchronization on perelement basis to sup­

port Istructure and Mstructure semantics [3]. If the Istructure element is empty, a read

is deferred until the corresponding write takes place. A remote Istructure operation gener­

ates a request for a particular heap location and the corresponding response is received by

an inlet. Meanwhile, the processor continues with other enabled threads. In TAM, these

splitphase transactions are supported by instructions, such as IFETCH and I STORE, which

are used to read and write to the data structures, respectively.

3. 3. Execution Model

The processor executes instructions within the current thread sequentially until a

STOP is executed. At that point a thread address is removed from the LCV and loaded into

IP, initiating the next thread. When no threads remain in the LCV, STOP transfers control

to a leavethread specified in the frame. The leavethread typically loads the next frame

pointer into FP, loads the enterthread address from that frame into the LCV and performs

a STOP. The enterthread typically copies the threads accumulated in the RCV to the LCV

and performs a STOP, thereby starting the new quantum.

21

The TAM scheduling queue is a data structure obtained by linking together frames.

The compiler defines the representation of this frame level structure by the code it places in

the leavethread. The compiler can also insert register saves in the leave thread and restores

in the enter thread, if register values are carried across quanta.

In translating TAM to a conventional machine, the LCV is simply a stack. The leave

thread address is placed at the bottom of the stack. FORK pushes an instruction address;

STOP pops an address and jumps to it. Code generators will typically combine the last fork

in a thread with the stop, producing a simple branch instead of pushpopjump.

Inlet execution may preempt the current thread when a message arrives. The address

of the inlet is loaded into the register IIP and the frame address specified in the message is

loaded into the register IFP. If the message is for the current activation (i.e., if IFP = FP)

the thread registers can be used in the inlet to deliver the data into registers instead of frame

slots. However, if IFP 0 FP, the POST enables a thread in the target frame. In addition, if

the frame was not ready before the POST, the frame has to be linked to the ready frame list.

Invoking a codeblock involves first allocating a frame. The caller sends arguments

to inlets in the codeblock relative to the newly allocated frame. The inlets are executed upon

message arrival (possibly interrupting a thread on the processor holding the frame), store the

values in the frame, and post threads of the codeblock for later execution. The activation

thereby becomes ready, meaning that it has threads waiting to be executed, and it is linked

into a pool of ready frames. Execution then continues with the interrupted thread. Eventual­

ly, the new frame is scheduled when there are no enabled threads in the running frame by

executing a SWAP instruction. The SWAP instruction removes one of the ready frames from

the ready list and enables it by making it the current frame and executing the enterthread

as described above. The state transitions taken by the frames is shown in Figure 3. 2.

22

Figure 3. 2. State transitions taken by frames due to POST and SWAP instructions

Depending on its communication pattern, an invocation goes through one or more

scheduling quanta. At some point it usually sends return values back to inlets of its caller.

The frame is explicitly released when it is no longer required. The means of determining

when frames are allocated and released depends on the highlevel language; no automatic

management is embedded in TAM.

3. 4. Compiling to TAM

The overall goal in compiling to TAM is to produce code that is latency tolerant, yet

obtains processor efficiency and locality. TAM exposes parallelism, scheduling, and corn­

munication to the compiler and makes each cost explicit. Exposing the costs gives the com­

piler a clear optimization goal and allows it to map the various constructs of the parallel lan­

guage to the best suited TAM primitives. On the other hand, TAM places the responsibility

for correctly resolving several issues, such as management of frames, ordering of threads,

and usage of local storage on the compiler. Although the source language for the compiler

23

is the dataflow language Id90, the TAM parallel execution model is well suited for imple­

menting other parallel languages. This section discusses the key aspects of the compilation

process from a highlevel parallel language down to TAM, including the representation of

parallelism, communication, synchronization, scheduling, storage management, and the use

of the storage hierarchy. These issues are addressed both in general and in the context of

1d90.

3. 4. 1. A simple program in TLO

To illustrate some of the TLO conventions and present a concrete TLO program, we

consider the following trivial program which computes the Fibonacci numbers. The recur­

sive calls to fib are the sources of parallelism. Arguments must be communicated to these

parallel calls and the final result requires synchronization of the partial results.

The code for calculating a Fibonacci number recursively,

def fib n = if (n < 2) then 1 else fib (n-1) + fib (n-2)

is compiled into the TLO code, which is shown below.

CBLOCK FIB.pc

FRAME_BODY RCV=3 LCV=5 % frame layout, RCV size is 3 threads, LCV
% size is 5 threads

islotO.i islotl.i islot2.i %argument and two results
pfslotl.pf pfslot2.pf %frame pointers of recursive calls
sslotO s %synch variable for thread 6
retfp.pf retip.j %return frame pointer and inlet

REGISTER %registers used

bregO.b iregO.i %boolean and integer temps

INLET 0 %recv parent frame ptr and return inlet
RECEIVE retfp.pf retip.j

FINIT %initialize frame
SET_ENTER 7.t %set enteractivation thread
SET_LEAVE 8.t %set leaveactivation thread
SEND retfp.pf [retip.j+-1.i] <- fp.pf %send back the address to caller
STOP

INLET 11 %receive argument
RECEIVE islot0.i

24

POST 0.t "default"

STOP

INLET 14 %receive frame pointer of first recursive call

RECEIVE pfslotl.pf

POST 3.t "default"

STOP

INLET 15 %receive result of first call

RECEIVE islotl.i

POST 5.t "default"

STOP

INLET 16 %receive frame pointer of second recursive
RECEIVE pfslot2.pf %call

POST 4.t "default"

STOP

INLET 17 %receive result of second call
RECEIVE islot2.i

POST 5.t "default"

STOP

. THREAD 0 %compare argument against 2

LT bregO.b = islotl.i 2.i

SWITCH bregO.b 1.t 2.t

STOP

THREAD1 %argument is < 2

MOVE ireg0 = 1. i %result for base case
FORK 6.t

STOP

THREAD 2 %argument >=2, allocate frames for calls.
MOVE sslotO.s = 2.s %initialize synchronization counter
FALLOC 14.j = FIB.pc "default" %invoke first child
FALLOC 16.j = FIB.pc "default" %invoke second child
STOP

THREAD 3 %got FP of first call, send its arg
SUB iregO.i = islotO.i 1.i %argument for first call
SEND pfslotl.pf[0.i/FIB.pc] <- ireg0.i %send it

STOP

THREAD 4 %got FP of second call, send its arg
SUB iregO.i = islotO.i 2.i %argument for second call
SEND pfslot2.pf [0.i/FIB.pc] <- ireg0.i %send it

STOP

THREAD 5 %got results from both calls
SYNC sslotO . s %synchronize
ADD ireg0.i = islotl.i islot2.i %add results

FORK 6.t

STOP

THREAD 6 %done

http:0.i/FIB.pc
http:pfslot2.pf
http:pfslotl.pf[0.i/FIB.pc
http:pfslot2.pf
http:pfslotl.pf

25

SEND retfp.fp[retip.j] <- iregO.i %send result to parent

FFREE fp.pf "default" %deallocate own frame

SWAP "default' %swap to next activation

STOP

THREAD 7 %enteractivation thread
STOP %no registers to restore

THREAD 8 %leaveactivation thread
SWAP "default" %swap to next activation

STOP %no registers to save

Consider the execution after the invocation of some framefof the function fib. The

first thread to be executed is Thread 0 which contains the conditional expression, with a test

of the integer argument contained in the frame location is 1 ot 1 and a fork of either

Thread 1 or Thread 2 based on the result of the comparison.

Thread 2 generates parallelism by allocating two frames for the recursive calls.

The FALLOC sends a request to a system inlet that handles frame allocation. FALLOC is a

splitphase operation, because the allocation may require sending a request to another pro­

cessor. The responses to the frame allocations are returned to inlets 14 and 16, respec­

tively. Let's assume that the first allocation request completes before Thread 2 finishes.

Then inlet 14 is likely to interrupt Thread 2. Inlet 14 enables Thread 4 for execution. There­

fore, at the end of Thread 2,f will continue with Thread 4, after which f will have no more

enabled threads (unless the other allocation has already returned), so a SWAP is performed

(via Thread 8) to another ready frame on the local processor (possibly the newly allocated

frame). Eventually, Inlet 16 will be triggered to receive a pointer to the remotely allocated

frame into the frame pf s lot 1. Inlet 16, posts Thread 3 using the default frame scheduling

policy and enables the frame.

Thread 3 computes argument value in a register and sends it to Inlet 11 of the frame

for the first recursive call. The argument/result linkage of a parallel call can be viewed as

a very general form of splitphase operation; eventually, the result will return to Inlet 15.

In the meantime, the argument message triggers Inlet 11 for the callee frame, which receives

26

the three values into the frame, initializes the frame with an empty RCV, sets the enter and

leave threads and posts Thread 0, where our description began. Eventually the callee sends

back its result.

The results from the recursive calls trigger Inlets 15 and 17, both of which post

Thread 5, a synchronizing thread using s s lot 0 as a counter. The second post is successful,

so whenf is run the addition is performed and the result is sent back to the caller in Thread

6. This final thread also releases the frame f

The register usage policy in this example is to have the registers vacant across poten­

tial suspension points. However, the result value is carried in a register from either Thread

1 or Thread 5 to Thread 6, since no synchronization point intervenes in either case.

This simple example illustrates the interplay between representation of parallelism,

communication, synchronization, scheduling, storage management and the use of the stor­

age hierarchy.

27

4. IMPLEMENTATION OF TAM

This chapter describes an implementation of TAM on the CM-5 multiprocessor.

TAM is codified in a pseudo machine language TLO. TLO is a machine independent assem­

bly language for TAM and the concrete target for the compilation from a high level parallel

language. By dividing up the compilation process into two separate phases, from high level

parallel language to TLO and then from TLO to native machine code, high level compilation

issues can be isolated from the specific hardware support for threaded execution.

A TLO program is composed of codeblocks. Codeblocks in turn consist of the ac­

tivation frame layout, registers, and the code for the threads and inlets which execute relative

to the frame. Each frame slot and register is statically typed. The TLO storage hierarchy

consists of an unlimited number of machine registers, frame storage and the global heap.

TLO instructions can operate directly on registers or on the activation frame. TLO has five

different instruction categories.

ALU instructions have threeaddress format and can operate on variables in registers and

the local frame.

Network Access is provided by SEND and RECEIVE instructions. SEND is used in threads

to send values to an inlet of another frame. RECEIVE instruction, which appears in an inlet,

stores the message data fields into frame slots or registers.

Thread control is achieved by FORK and SWITCH instructions, and each thread is tenni­

nated by a STOP instruction.

Frame scheduling is expressed using POST and SWAP instructions.

28

Heap access is provided by IFETCH and I STORE instructions. These instructions sim­

ply send a message to the memory controller holding the designated location. The response

for a fetch is received by an inlet, but there are no explicit acknowledgments of stores.

The remainder of this chapter presents the mapping of the storage model and the im­

plementation of these instruction categories on the CM-5 processor.

4. 1. TLO on the CM-5 multiprocessor

The CM-5 is a massively parallel MIMD computer based on the SPARC RISC pro­

cessor chipset (including FPU, MMU and 64 KByte directmapped writethrough cache),

8 MBytes of local DRAM memory and a network interface. The nodes are interconnected

in two identical disjoint hypertrees.

4. 1. 1. Storage model

Program code is placed on every processor and the activation frames are allocated

in local memory which can be kept in the cache. The heap is divided into two regions, one

for small arrays which are allocated local to a node and the other for large arrays which are

. spread across the nodes such that logically consecutive elements are mapped onto different

processors.

TLO registers are mapped onto SPARC registers. Since TLO does not limit the num­

ber of available registers, it is the responsibility of the code generator to spill excess TLO

registers to the activation frame. Since TLO instructions allow frame relative addressing,

operands to instructions residing in the frame must be temporarily loaded into registers.

Table 4.1, summarizes the cost of accessing operands at the various levels of the storage hier­

archy.

The TLO registers are implemented on the CM-5 as a flat register file in a single reg­

ister window. The single register window is divided into three categories: specialfunction

29

registers, thread registers and inlet registers. The specialpurpose registers are (g0g7), as

shown in Table 4.2, hold important variables and constants used by the TLO implementation.

The TIM IP and IIP registers are both mapped to the SPARC Program Counter (PC) register.

There are sixteen thread registers (i0i7 and 10-17) which are fully under control of the reg­

ister allocator. The eight inlet registers (00-07) are generally reserved for inlets but may be

used by the register allocator between successive network polls to hold thread temporaries.

4. 1. 2. Arithmetic and logic instructions

Most TLO arithmetic and logic operations map into a single machine instruction. In­

teger divition, and multiplication are implemented by calling the appropriate library routine.

Table 4.3 summarizes the costs of the basic instructions.

4. 1.3. Sending messages

The TLO SEND instruction can send a message of arbitrary length to an inlet of anoth­

er frame. Since the CM-5 limits the message to three 32bit words of arguments, the code

generator will convert a SEND of longer messages into multiple sends.

The cost of SEND is shown in Table 4.4. The cost of a SEND is relatively high be­

cause the network interface (NI) is attached to the node MBUS and hence access to the NI

requires uncached loads and stores. For this reason, sends to the local node are specialcased

in software, even though the CM-5 hardware supports loopback.

30

Table 4.1. Access cost to each level of the local storage hierarchy on a SPARC node

Operand (32bits) location access costs
instructions cycles

Register 0 0

0-2Constant 0-2

2-3Cache 1

DRAM 1 20

Table 4.2. Reserved special purpose registers

Register Function

Zero (g0) Hardwired to 0

LCV (gl) Pointer to top of local continuation vector

Self (g2) Node ID

FP (g3) Frame pointer

Cbbase (g4) Pointer to origin of current codeblock

Izero (g5) Offset to base of heap tags

NI (g6) Network Interface base address

Queue (g7) Pointer to frame scheduling queue

31

Table 4. 3. Mapping of TLO arithmetic and logic instructions to the SPARC

Operation costs

instructions cycles

Integer arithmetic

Add, sub, logical
 1 1

Integer multiply 19-54 21-56

Divide 15-40 30-100

Floatingpoint arithmetic 5-7
1

4. 1. 4. Receiving messages

In TLO, when a message is received an inlet is invoked. The first instruction of the

inlet is a RECEIVE, which specifies the frame slots where the message data is to be stored.

Arrival of a message can be detected either by enabling message interrupts or by polling the

network regularly. Dispatching a message interrupt into the user program incurs approxi­

mately 140 cycles of overhead and is expensive. The strategy employed in the CM-5 imple­

mentation is to explicitly poll the network once in every thread. If the thread contains an

instruction which might access the network, for example SEND, then the poll is combined

with that instruction. All other threads have an explicit poll inserted at the end of the thread.

If a message has arrived, the appropriate inlet is called. Table 4.5 shows the cost of polling

the network and the cost of running an inlet.

32

Table 4. 4. Cost for sending a message limited to three 32bit arguments

Operation costs

instructions cycles

Send message to local frame

Overhead 4
 4

Push word 1 1

Send message to remote frame

Overhead 10 25

Push word 1/2 4

Table 4. 5. Cost of polling the network and of running an inlet

Operation costs

instructions cycles

_
Explicit poll 3 9

Poll as part of send 2 2

Message handling

Inlet overhead 6 13

Receive 32bit word 11/2 6

33

4. 1. 5. Thread scheduling

In TLO, thread control is realized by the FORK, SWITCH, and STOP instructions.

The synchronizing are distinguished from the non synchronizing threads by including a

SYNC statement placed at the beginning of synchronizing threads. Although the SYNC dec­

laration is placed at the beginning of the thread, the synchronization test (decrement and test

for zero) is performed as part of the FORK instruction. Nonsynchronizing FORKS do not

require the decrement and test and thus are cheaper than synchronizing ones.

Conditional control flow is implemented in TLO through compare instructions which

set a boolean variable and a SWITCH instruction which forks one of two threads depending

on a boolean.

4. 1. 6. Frame scheduling

The compiler uses default, local, remote, cyclic policies for frame alloca­

tion and def ault, f if o and 1 if o frame scheduling policies.

FALLOC instruction allocates the frame for a new activation and passes a number of

arguments to its inlet 0. The choice of processor is controlled by the policy attached to the

instruction. The FFREE instruction deallocates a frame, possibly the current frame. Typi­

cally, this is followed by a SWAP which terminates the current activation.

For the SPARC, the RCV is implemented using 16bit offsets from the codeblock

base. The pointer to the top of the RCV is kept in the frame, not in a register. As messages

for the activation arrive, inlets are executed and enable threads into the RCV using the POST

instruction. The mapping of the various POST instructions onto SPARC are shown in Table

*4.6. The cost of a POST (shown in Table 4.7) is generally higher than that of a FORK and

depends not only on whether the target thread is synchronizing or not, but also on the state

34

Table 4. 6. Mapping of TAM POST instructions on to SPARC

Operation SPARC instructions	 Cycle

POST a non sync. thread
To a running frame cmp fp, ifp ;is inlet frame running 1

set Lthr-cbbase, tmp2 ;tmp24thread offset 1

be isrunning
 1

isrunning :

sth tmp2 , [icy] ;Store the offset 3
sub icy, 2, icy ;Decrement the pointer 1

To an idle frame	 cmp fp, ifp ;is inlet frame running 1

set Lthr-cbbase, tmp2 ;tmp2Athread offset 1

be isrunning 2
ld Frcv [i fp] , tmp3 ;tmp34rcv top 2
sth tmp2 , [tmp3] ;push thread addr. 3
cmp tmp3 ,ifp ;was rcv empty? 1

sub tmp3 , 2 , tmp3 ;update rcv 1

s t tmp3 , Frcv [i fp] ;save back rcv 3
bnz continue ;nz +already enqueued 0
s t que , Fqueue [i ;store queue head ptr infp] 3

frame
mov ifp, que ;make ifp head of 1

queue
jmp continue Ot

To a ready frame	 cmp fp, ifp ;is inlet frame running 1

set Lthr-cbbase, tmp2 ;tmp21thread offset 1

be isrunning 2
ld Frcv [ifp] , tmp3 ;tmp3-4rcv top 2
sth tmp2 , [tmp3] 3
cmp tmp3 , ifp ;was rcv empty? 1

sub tmp3 , 2 , tmp3 ;update rcv 1

st tmp3 fp] 3, Frcv [i ;save back rcv
bnz continue ;nzralready enqueued Ot

POST to a sync. thread 1db sync [ifp] , tmpl ;Load the count into 2
reg. tmpl

subcc tmpl ,1, tmpl ;Decrement the count 1

bne , a continue 1 or 2
s tb tmpl, sync [fp] ;Store the count 3
code for a nonsync . thread

tpOST is always the last instruction in the inlet and thus jump or branch would disappear in favor of a ret 1
instruction from the inlet. Thus it has no cost.

35

Table 4. 7. Cost of TLO frame synchronization and scheduling operations

Operation

Post a thread from inlet

Idle frame

unsynchronizing

successful sync.

unsuccessful sync.

Ready frame

unsynchronizing

successful sync.

unsuccessful sync.

Running frame

unsynchronizing

successful sync.

unsuccessful sync.

Swap to next frame

first 3 threads

per extra 4 threads

costs
no. of inst. and memory
accesses(load/store)

12(1 / 3)

15(2 / 3)

4(1 / 1)

9(1 / 2)

12(2 / 2)

4(1 / 1)

5(0 / 1)

8(1 / 1)

4(1 / 1)

14

6

cycles

18

23

7

14

19

7

7

12

7

26

12

36

of the frame. If the frame is idle (i.e., it has no enabled threads in its RCV), then it has to

be enqueued onto the ready queue. In addition for both idle and ready frames, the cost of

manipulating the pointer to the top of the RCV is higher than for the LCV since it is in the

frame, not a register.

If the target thread is for the running frame, then instead of pushing onto RCV, the

POST instruction can push the thread onto LCV. Thus, for the cost of a compare between

the FP and IFP, the cost of a POST can be brought down to that of a FORK.

If there are no enabled threads, then the leave thread of the activation is executed;

it is responsible for switching to the next frame.

4. 1. 7. Heap access

TLO provides a special syntax for issuing remote references (e.g., I FETCH and IS

TORE). Each instruction specifies the base and offset of the I-structure being accessed. The

expansion first calculates the node and address of the element being accessed. Then, the ex­

pansion determines if the access is a local access and if so, performs it inline. Otherwise,

a request is sent to the node that contains the element. The costs of the different cases are

shown in Table 4.8.

37

Table 4. 8. Cost of accessing global data structures with synchronization on a perele­
ment basis

Operation

Istructure fetch

Local, data present

Local, data notpresent

Remote

Initiate request

Service, data present

Service, data notpresent

Istructure store

Local, no waiting fetches

Local, waiting fetches

Remote

Initiate request

Service

Istructure allocate (N words)

instructions
costs

cycles

8

25

11

58

18

29

39

38

91

115

9

18

15

30

18

13

544[N/8]

38

44

6+7[N/8]

4.2. Measurements

In this section measurements obtained from running benchmark programs on a single

SPARC processor are presented and analyzed. These programs were written in Id and then

compiled to TAM. The TAM code is then translated to SPARC. Six benchmarks ranging

from 50 to 1,000 lines are used. QS is a simple quicksort using accumulation lists. GAM­

TEB is a MonteCarlo neutron transport code which is highly recursive with many condition­

als. Paraffins enumerates the distinct isomers of paraffins. Simple is a hydrodynamics and

38

heat conduction code. Speech determines cepstral coefficients for speech processing. MMT

is a simple matrix operation that involves creating two identity matrices, multiplying them

and subtracting from a third.

Table 4.9 shows that the control overhead varies from 5% to 48% depending on the

nature of the program. Message overhead varies from 0.5% to 11%. Message overhead goes

up to 28%, depending on the scheduling, for the same benchmarks if these are run on a multi­

processor configuration with 64 processors [7]!.

4. 2. 1. Control Overhead

As can be seen from Table 4.9, control instructions constitute a significant part of the

overhead of supporting finegrain parallelism. The control overhead is mainly due to three

instructions: FORK,SWITCH and STOP instructions. The TAM translator optimizes the

FORKs and SWITCHes by pushing it to the end of the thread and combining it with STOP

to form simple branches. If the FORK is to an immediately following thread, the branch be­

comes a fall through. A FORK or a SWITCH that cannot be optimized into a branch will at­

tempt to push a thread onto the LCV before continuing with the execution of the current

thread. Figure 4.1 shows the transfer of control using FORK. To see the relative cost ofsup­

porting TAM thread scheduling instruction on a conventional processor, Table 4.10 shows

the mapping of these instructions to SPARC processor.

The cost and dynamic frequencies of FORK, SWITCH and STOP instructions for

Gamteb and Paraffins are shown in Table 4.11. The cycle cost for each TAM instruction is

obtained by adding the clock cycles for the SPARC instructions to which it is mapped. The

cycle costs for each SPARC instruction is given in Table 4.10.

39

Table 4. 9. Dynamic instruction mix statistics for the benchmark programs

Gamteb QS MMT Simple Speech Paraffins

Arithmetic 6.81% 3.34% 16.82% 12% 16% 4.41%

Operand 39% 33% 74.1% 52% 66% 37%

Messages 8.01% 11% 0.45% 5.17% 0.43% 5.22%

Heap 0.37% 0.6% 0.01% 0.15% 0% 1.30%
contr

Heap 3.46% 2.7% 3.48% 5.89% 6.14% 5.34%
msgs

Control 42% 49.4% 5.12% 25% 11.43% 47%

fork thread

Push this thread onto
LCV and continue
with the current thread

fork thread

This fork is replaced by a branch

(a)

fork thread

Push this thread onto
LCV and continue
with the current thread

cfork thread

This fork is replaced by a
branch and if the condition is
true this thread is executed or
else a thread is poped from
LCV

(b)

'Figure 4. 1. Control transfer using FORK. If the last instruction of the thread is a FORK
it is replaced by a branch

40

Table 4. 10. Mapping of TAM thread scheduling instructions on to SPARC

Operation

Fork a thread
Fall through
Branch to thread

unsync.

succ. sync

unsucc. sync

Push thread

unsync.

succ. sync

unsucc. sync

Switch

Stop

SPARC instructions	 Cycle

No additional overhead 0

ba thr_addr	 ;Branch to address 1

ldb sync [fp] , tmpl	 ;Load the count into 2

reg. tmpl

subcc tmpl , 1, tmpl ;Decrement the count 1

be thr_addr ;Branch if count is1

zero. Make annullingt
and put first thread
inst. here

ldb sync [fp] , trap].	 ;Load the count into 2

reg. tmpl

subcc tmpl ,1, tmpl ;Decrement the count 1

be thr_addr ;Branch on zero. 2

s tb tmpl, sync [fp] ;Store the count 3

set Lthr-cbbase, tmp2 ; tmp21-thread offset 1

addr.

sth tmp2 , [lcv] ;Store the offset 3

sub lcv, 2, lcv ;Decrement the pointer 1

ldb sync [fp] , tmpl ;Load the count 2

subcc tmpl , 1, tmpl ;Decrement the count 1

bnz continue ;Test the count 2

set Lthr-cbbase , tmp2 ;ftnp2I-duead offset 1

addr.

sth tmp2 , [icy] ;Store the offset 3

sub lcv, 2, lcv ;Decrement the pointer 1

ldb sync [fp] , tmpl ;Load the count 2

subcc tmpl , 1, tmpl ;Decrement the count 1

bnz continue ;Test the count 1

s tb tmpl , sync [fp] ;Use annulling to store 3

the count

fork+2 cycles for branching depending on the condition

lduh [2+1cv] , tmp	 ;Load offset 2

add icy, 2 , lcv ;Increment the pointer
 1

iIV [tmp+cbbase]	 ;Add the offset to the 2

code-block base and

go to the thread

tSPARC provides a special bit called annul bit for branch instructions. For conditional branch instructions
if this bit is 1, then the next instruction in the sequence is executed before transfer of control.

*cbbase points to the base of the code block. Lthr is an absolute thread address and thr_addr is PC rela­
tive. Lthr -cbbase gives the offset of the thread from the code-block base.

41

Table 4. 11. Cost and frequencies of TLO thread synchronization and scheduling instruc
tions

Type Cycle Paraffins Gamteb
Cost. (% of control instr.) (% of control instr.)

FORK a thread

Fall through 0.0 3.65% 2.64%

Branch to thread
Unsynchronizing 1.0 2.96% 2.10%
Successful sync. 4.0 6.03% 5.28%
Unsuccessful sync. 8.0 12% 11%

Push thread onto LCV
Unsynchronizing 5.0 0.1% 0.05%
Successful sync. 10.0 2.71% 5.28%
Unsuccessful sync. 7.0 5.42% 8.11%

SWITCH a thread
Branch to thread

Unsynchronizing 2.0 3.96% 1.63%
Successful sync.l. 5.5 0.6% 1.85%
Unsuccessful sync. 9.5 1.2% 3.70%

Push thread onto LCV
Unsynchronizing 6.5 4.81% 2.45%
Successful sync. 12.0 0.2% 1.21%
Unsuccessful sync. 8.5 0.4% 2.42%

STOPs 5.0 20% 24%

Percentage of control instruc- 64.04% 71.72%

tions

Percentage of TLO instruc- 30.1% 30.12%

Lions

Average Cost 5.44 cycles 6.14 cycles

t The code for switch is
be thrl ; Branch to the address where the code for branch/push the thread is there.

(1 cycle if true/ 2 cycles if false)
code [thr2 ; Code for branch/ pushing thr2

'Thus it takes 1 extra cycle for the true case than a fork and two extra cycles when false. Averaging out gives
1/2 cycles. If the percentage of true cases are more, then one cycle is added to the FORK cost; if the number
of false cases are more, two cycles are added.

http:instruc-64.04

42

5. DESIGN FOR EFFICIENT THREAD SCHEDULING

Based on the costs shown in Table 4.11, the main areas for improvement are synchro­

nizing threads and STOPS which typically contribute 30%-40% of the control overhead.

This is because unsynchronizing FORKS are optimized into fallthroughs and branches, thus

avoiding the cost of poping a thread from the frame. On the other hand, an unsuccessful syn­

chronizing branch requires that a STOP instruction is executed to pop a new thread from the

LCV, which requires a total of 13 cycles (8 plus 5). Another source of overhead is SPARC

processor's lack of postdecrement/preincrement capability to efficiently implement push­

ing/poping of threads.

This chapter presents a method for decreasing the thread scheduling cost and ana­

lyzes the simulation results with the proposed change.

5. 1. The Proposed Method

In order to reduce the overhead of implementing unsuccessful synchronizing

branches, we propose a method that eliminates the need to access the frame for the LCV,

thereby decreasing the thread switching time. This is done by allocating a register r_lcv

to hold the contents of the top location of the LCV. To make use of this register, a new instruc­

tion called conditional double branch and pop, cdbp, has been added. All synchronizing

thread branches are now translated into the instruction

cdbp thr_addr

where thr_addr points to the thread whose synchronization count is in the register

r_cnt. The cdbpinstuction tests ther_cnt; if it is zero, jumps to the thread at the location

thr_addr; otherwise, jumps to the address given by r_lcv. If the control transfers to the

location given by r_i cv, r_i cv register is updated by poping the next enabled thread into

43

it. If the control transfers to the location pointed by r_lcv, then the count is stored back

in the delay slot.

5. 2. Implementation for the SPARC

The proposed double branch instruction can be incorporated into the existing SPARC

instuction set. The general format for branch and jump instructions of SPARC is shown be­

low.

op a cond op2 disp22
(31-30) (29) (28-25) (24-21) (21-0)

op field is zero for branch instructions and op2 field decodes the several branches

such as conditional, unconditional and floatingpoint conditional, etc. When the 'a' bit is

1 in a conditional branch instruction, the delay instruction is executed only if the branch is

taken.

The condition op2=3 is not yet implemented, which can be used for the proposed

double branch instruction. Thus, when the condition is true in the cdbp instruction, i.e.

when r_cnt has zero, the 22bit displacement is added to PC and the control transfers to

thr_addr and the delay slot is not executed. If the condition is not true, the r_lcv is

moved to PC and the delay slot is executed before transferring the control to the address giv­

en by r_lcv. As shown later in Chapter 7, this instruction takes 2 cycles if the count is

zero otherwise it takes 3 cycles.

,
In addition to the cdbp we need to implement two more instructions to make push­

ing and poping of threads faster.

std rd, rs store rd into [rs] and decrement rs;

ldi rd, rs ; increment rs and load [rs] into rd

44

These instructions are similar to other load and store instructions except that additional work

of incrementing and decrementing rs is done in the execute cycle.

With these modifications, the push thread instructions and branch to thread instruc­

tions are mapped as shown below.

Branch to synchronizing thread:

ldb sync [fp] , tmpl ; load the count (2 cycles)

subcc tmpl, 1, tmpl ; decrement the count (1 cycle)

cdbp thr_addr ; branch to thread lthr_addr or thread given by

r_lcv (2 cycles if tmpl is zero; else 3 cycles)

stb tmpl , sync [fp] ; use the delay slot to store back the count if it's not zero

(3 cycles)

Push unsynchronizing thread onto LCV:

std r_lcv, [lcv] ; Push the thread onto LCV (3 cycles)

set Lthr-cbbase, r_lcv ; Store the thread pointer in r_lcv (1 cycle)

Push synchronizing thread onto LCV:

ldb sync [fp] , tmpl ; load the count (2 cycles)

subcc tmpl ,1, tmpl ; decrement the count (1 cycle)

bnz , a cont inue2 ; Test the count (1 cycle/2 cycles for taken/not taken)

stb tmpl, sync [fp] ; use annuling to store the count (3 cycles)

std r_lcv, [lcv] ; Push the thread onto LCV (3 cycles)

set Lthr-cbbase, r_lcv ; Store the thread pointer in r_lcv (1 cycle)

And the STOP is changed to:

mov r_lcv, tmpl ; Copy the contents of r_lcv to a temporary register

(1 Cycle)

ldi [lcv+2] , r_lcv ; Copy top of the LCV into r_lcv (2 cycles)

jmp [cbbase +tmpl] ; Jump to the thread cbbase+ tmpl (2 cycles)

2. "a" indicates that annuling has been used. If the branch is not taken delay slot instruction is annuled.

45

With these changes, a branch to thread on successful synchronization now requires 5 cycles;

however, unsuccessful synchronization requires only 9 cycles compared to 13 cycles (in­

cluding STOP) without cdbp instruction. The s td also speeds up the pushing of unsyn­

chronizing threads onto the LCV from 5 cycles to 4 cycles. In addition, adding this instruc­

tion reduces the time to implement pushing thread on successful synchronization from 10

to 9 cycles, while that of unsuccessful synchronization remains unchanged. Table 5.1 sum­

marizes the overall impact of these changes on the cycle cost.

From comparing Table 4.11 and Table 5.1 it can been seen that there is about 1(19 %)

cycle reduction in about 30% of the total instructions and the overall execution of the pro­

gram is 6% faster. This improvement can be achieved by simply changing the control unit

and the datapath itself requires no major modifications.

46

Table 5. 1. Scheduling and Synchronization costs for the modified SPARC

Type Cycle Cost.	 Paraffins Gamteb
(% of control (% of control
instructions) instructions)

FORK a thread
Fall through 0.0 3.65% 2.64%

Branch to thread
Unsynchronizing 1.0 2.96% 2.10%
Successful sync. 5.0 6.03% 5.28%
Unsuccessful sync. 9.0 12% 11%

Push thread onto LCV
Unsynchronizing 4.0 0.1% 0.05%
Successful sync. 9.0 2.71% 5.28%
Unsuccessful sync. 7.0 5.42% 8.11%

SWITCH a thread
Branch to thread

Unsynchronizing 2.0 3.96% 1.63%
Successful sync. 6.5 0.6% 1.85%
Unsuccessful sync. 10.5 1.2% 3.70%

Push thread onto LCV
Unsynchronizing 5.5 4.81% 2.45%
Successful sync. 11.0 0.2% 1.21%
Unsuccessful sync. 8.5 0.4% 2.42%

STOPs 5.0 6.8% 9.3%
STOPS eliminated 0.0 13.2% 14.7%

Percentage of control instructions	 64.04% 71.72%

Percentage of TLO instructions	 30.1% 30.12%

Average Cost	 4.5 cycles 5.19 cycles

47

6. MESSAGE HANDLING

As discussed in section 4.2, the overhead of handling messages in a multiprocessor

environment can be as much as 30% of the total instruction execution. Therefore, in this

. chapter we discuss the various issues involved in handling messages efficiently. The mes­

sage overhead involves the cost of passing arguments and return values for the function calls,

initializing loop constants and forwarding iteration variables for parallel loops. In TAM, a

message is formed and issued with a SEND instruction, which sends a number of data values

to an inlet of a potentially remote frame. The message is received by a RECEIVE instruction

in the destination inlet which extracts the data from the message and stores it into the frame.

In TAM, computation and message handling are done by the same processor.

Sending a message is synchronous with computation, whereas receiving a message

is not. Since arguments to be sent are in the registers most of the time, it is better to integrate

sending of a message with computation. To decrease the cost of sending, the network inter­

face must be effectively connected to the ALU bus.

The asynchronous message reception model can be implemented using interrupts.

On a message arrival, the network interface signals an interrupt causing a trap to the kernel.

The kernal forwards the interrupt to the user process by creating a stack frame for the inlet

and returning to it; however, this is expensive [21]. The other alternative is to opt for syn­

chronous implementation. Here, the messages are stored into an onchip queue. The net­

work is polled for a short time. If there is a message, it dispatches to the code indicated by

the first word of the message at the head of the queue, i.e., the inlet. The inlet then loads the

message data one word at a time into the registers. The advantage of polling is that the com­

piler decides when to poll for messages. Hence the atomicity is not a problem. There is a

tight coupling between the computation and communication. When the message is for the

currently running frame, updating the LCV or synchronizing counters becomes easy since

. they are in the registers. On the other hand, there is overhead involved in polling. It might

48

not be tolerable for coarsegrained computation. Moreover, there is a waiting time involved

for incoming messages before they can be processed.

Alternative choice is to use a coprocessor for receiving messages. The responsibility

of the coprocessor is to execute the inlet code. The idea of having a coprocessor to execute

inlet code was proposed in the *T project by MIT [15]. However, the important issues of

atomicity among the instructions such as FORK, SWITCH, SWAP and POST were as­

sumed to exist and were not dealt properly. The following section presents a design using

coprocessor for handling inlets and considers the important topics such as atomicity and co­

herence between the two processors.

6. 1. Design using a Coprocessor

The important issues involved in the design of the system with a coprocessor are the

atomicity among the instructions such as FORK, SWITCH, SWAP and POSTs, and coherency

between the main processor and the coprocessor. A simple but effective solution for coher­

ency problem is to use a common data cache for the two processors. The block diagram for

the system is shown in Figure 6.1.

The coprocessor executes the inlets. A typical Inlet has three instructions RECEIVE,

POST and NEXT. The RECEIVE instruction extracts the message and stores the data into

the frame. POST instruction pushes a thread into the LCV or RCV depending on the frame

to which the message is sent. NEXT instruction checks whether any message is present.

If a message is present, it extracts the frame pointer, inlet instruction pointer and data into

the coprocessor's registers. Whenever the coprocessor needs the bus for memory load/store

operations, it sends a BHOLD signal to the main processor and the main processor enters

a wait state.

49

Local Memory

Common Cache

Addr. S.N.
Bus

A<

Inlet Instruction
Address

Main Processor

BHOLD

LOCK

STOP

Inlet Instruction Cache

. Inlet Instruction

I Data Bus

Inlet Processor

Network Interface

From Network

Figure 6. 1. Inlet Processor Interface with the system

50

The POST instruction checks the pointer to the frame to which the arriving message

has to be posted with the frame pointer of the currently executing frame. If they are not equal,

the thread has to be pushed onto RCV. Moreover, if the frame is idle, it is added to the ready

frame queue. Since the pointer to the top of the RCV is kept in memory, the coprocessor

loads and updates this and pushes the thread into the RCV. In this case, since only inlets can

post to RCV and threads in the current frame never access RCV pointer, the POST operation

need not be atomic with respect to FORK and SWITCH instructions.

If the POST is to the currently running frame, more care has to be taken. If the thread

is a synchronizing thread, the POST instruction reads the entry count from the frame loca­

tion, decrements it and checks whether the thread can be posted. If it cannot be posted, the

count is stored back in the frame. A problem occurs when the FORK from the currently run­

ning thread accesses the synchronization count from the frame and the POST from the inlet

accesses the same location before the updated value of the count from the FORK is stored

back. Then each will decrement the count by one and write it back which is the original value

decremented by one where as, we need to store the value decremented by two. To avoid this

problem, these two operations need to be atomic. Atomicity in this design is achieved by

asserting a LOCK signal whenever the main processor is updating a synchronizing counter.

The LOCK signal is asserted until the count is stored back or it is zero. This prevents the

coprocessor from accessing the memory bus. Although this avoids the problem of coproces­

sor accessing the count when the main processor is decrementing it, the problem still remains

if the count was accessed by the coprocessor before the LOCK signal was asserted and it is

stored back after the LOCK signal is deactivated. This problem can be avoided if the copro­

cessor checks the count before storing it back. If the decremented count in the coprocessor

equals the count in the frame location, then the main processor has updated this count. So,

in this case count is decremented by the coprocessor again before storing it back.

Another problem is posting a thread to the LCV. Since the LCV pointer and top of

the LCV are stored in the processor registers, these values need to updated whenever a thread

51

is posted to the current frame. For example, consider the case where the inlet processor has

just read the LCV pointer from the main processor register to update it and post a thread.

Main processor now executes a pop instruction and updates the LCV pointer. Now the copro­

cessor writes the decremented value into the LCV register resulting in erroneous value (Fig­

ure 6.2).

In our design, this problem is avoided by implementing the LCV as a doubleended

queue. Inlets, instead of pushing threads onto top of the LCV, append the thread pointer to

the bottom of the LCV. Figure 6.3 shows this implementation of the LCV. Initially we have

the LCV on top of the leavethread pointer. When there is a POST from the inlet, it is ap­

pended to the bottom of the LCV and the leavethread pointer is pushed down by a slot. The

I-LCV pointer =10 1LCV pointer =10

12A
V

4411111.

Inlet processor reads
this to decrement it
and post a thread.

V
ALU executes a pop
instruction. It reads the
LCV register, increments i
and writes 10+2 into this
register.

ILCV pointer =12

Inlet processor posts a
thread and writes 8
whereas this
must be 10.

Figure 6. 2. Concurrent POST and FORK instructions resulting in the erroneous
execution

52

following sequence of instructions are required to implement this modification.

; reg register points to the thread to be posted

; ltp register points to the leavethread pointer

swap3 [ltp] , reg ; Swaps the thread to be posted and the leavethread

pointer (4 cycles).

addcc ltp, 2 , ltp ; Pull the stack down by a slot (1 cycle).

s t reg, [ltp] ; Store the leavethread pointer in the slot (3cycles).

With this modification, posting a thread to the LCV takes 4 more cycles since the simple store

is replaced by a swap instruction to swap the leavethread pointer in the memory and the

pointer to the thread to be posted which is in the register. This takes one additional cycle

compared to a simple store. Now, the leavethread pointer, which is in the register, has to

be stored back in the memory resulting in the additional 3 cycles. But, since this is executed

by the coprocessor, the execution time of the thread is not affected.

LCV LCV LCV

leave posted posted
thread thread 1 threadl

leave posted
thread thread2

leave
thread

Figure 6. 3. LCV implementation

3. This swap is different from the TLO SWAP.

53

The only other instruction that needs to be atomic with respect to a POST is SWAP.

SWAP transfers the execution to another enabled frame. The control is transferred to a dif­

ferent frame when there are no ready threads in the current frame4. This SWAP occurs in the

leavethread. SWAP needs to be atomic with respect to POST because the coprocessor has

a register to hold the current frame pointer. Every POST compares this with the frame point­

er from the message. Hence, whenever the currently running frame is changed, the frame

pointer register in the coprocessor has to be changed immediately. Atomicity in this case

is achieved by stopping the coprocessor. Once SWAP instruction is decoded, the main pro­

cessor sends a STOP signal to the coprocessor. Then the coprocessor stops executing the

messages until it receives the new value of the frame pointer from the main processor. More­

over, the threads posted to the currently running frame before the SWAP is executed and after

the leavethread pointer is popped into r_lcv should be executed before executing the

leavethread. Hence, the starting code of the leavethread should compare the r_l cv with

the LCV top; if they are equal leavethread is executed; otherwise, the thread at the top of

the LCV is executed and the r_lcv is changed to point to the thread which is just below

the top of the LCV.

6.2. Coprocessor versus Polling for inlets

As discussed earlier, several factors determine whether to use a coprocessor for inlets

or to use a single processor that polls for the messages. One important factor is the percent­

age of time which is spent on executing inlets. Using a coprocessor for inlets paysoff when

the relative work load between two processors is about the same, i.e., they both execute about

the same number of instructions. The remaining part of this section compares the perfor­

mance of the two choices.

4. SWAP is also executed whenever the execution of the current frame is completed and this frame can
be freed. But in this case there will not be any threads posted to this frame.

54

Table 6.1 compares the number of inlet instructions with thread instructions for the

benchmark programs executed without a coprocessor. The first row shows the average TLO

instructions per thread and the third row shows the TLO instructions per inlet. There are

about 3-5 TLO instructions per inlet. The fourth row shows the average inlet instructions

per thread. This is obtained from multiplying the second and third rows. From this it can

be seen that the average inlet instructions are slightly less than the thread instructions. A

better way is to compare the actual times spent by the two processors. To do this, we define

a new measure, the average clock cycles per TAM instruction (CPT), which is obtained by

multiplying the instruction frequency of each instruction type with its clock cycles and sum­

ming up these products.

Table 6.2 shows the work load on the two processors. Depending on the program

the work load varies from 25% to 75%. Although the work load on the inlet processor is less

than the main processor, the coprocessor eliminates the overhead due to polling, which con­

tributes about 4% overhead for the benchmark programs [21]. In addition to this, the average

CPT for the main processor is reduced considerably as shown later.

Using a coprocessor for handling messages increases the overhead of various opera­

tions. The overhead involved in each instruction type is summarized in Table 6.3. Whenever

the main processor is updating the entry count, it sends a LOCK signal to the inlet processor.

Hence, the inlet processor remains idle for this period. This cost is reflected in the third row

of the Table 6.3 for various synchronization operations. In addition, whenever the inlet pro­

cessor needs the bus it sends a BHOLD signal to the main processor. This cost is reflected

in the remaining columns of the third row. This cost is obtained my multiplying the number

of memory accesses(shown in Table 4.6) with the cycles(1 cycle for load and 2 cycles for

store). The extra cost of posting a thread to the current running frame(because of the double

ended structure of the queue) is also incuded in the Table.

55

6. 3. Performance

Table 6.4 compares the CPT on a single SPARC processor used for both computation

and inlet handling with the CPT for the modified SPARC using a coprocessor. The analysis

assumes a perfect cache. The CPT for TAM is taken from the Berkeley TAM group.

Comparing rows one and two from Table 6.4, it can be seen that the main processor CPT is

reduced by more than 50%. This is achieved with only a slight change in the ISA (adding

instructions like cdbp etc.) of the SPARC processor and having a coprocessor for the execu­

tion of the inlets.

As seen from Table 6.3, the overhead due to the inlet processor is 1.26 cycles (1.39

cycles) for Paraffins (Gamteb). The percentage overhead is obtained by dividing this by the

total cycle time (which is shown in the first row of the Table 6.4). Hence the percentage over­

head is 1.26/15.5 = 8% for Paraffins (1.39/13 =11% for Gamteb). On the other hand, the

total improvement due to the changed ISA (6%) and elimination of polling (4%) is 10%.

Since the overall improvement is almost same as the over head, the combined CPT for the

design with two processors should be approximately equal to that of the CPT with the unipro­

cessor case. This in turn can be verified from the Table 6.4.

Though the combined CPT is almost same for both designs, the design with the inlet

processor allows the division of computation and communication between the processors

resulting in smaller effective CPT as shown in Figure 6.4.

Figure 5 compares the cycles per TLO instruction for CM5, Jmachine (modified to

include a floating point unit and a data cache), CM5 (modified to include an improved net­

work interface) and the current design, i.e., CM5 using the modified SPARC and coprocessor

for inlets. It can be seen from this figure that by splitting the work between the main proces­

sor and coprocessor there is a significant reduction in the CPT of the main processor.

56

Table 6. 1. Dynamic thread and inlet characteristics under TAM

Thread Characteris- QS GAM- PAR- Simple Speech MMT

tics TEB AFFINS

17.6

Thread

Ave TLO Insts. per 2.6 3.2 3.1 5.3 6.3

Inlets per Thread 0.3 0.4 0.2 1.1 1.2 1.6

Ave TLO Insts. per 4.0 5.1 3.0 3.4 3.0 3.0
Inlet

Ave Inlet Insts. per 1.2 2.04 0.6 3.74 3.6 4.8
Thread

Table 6. 2. Work load distribution between the two processors

Thread Characteris- QS GAM- PAR- Simple Speech MMT

tics TEB AFFINS

Ave TLO Insts. per 2.6 3.2 3.1 5.3 6.3 17.6
Thread

Ave Inlet Insts. per 1.2 2.04 0.6 3.74 3.6 4.8
Thread

CPT for Thread t 4.82 6.14 5.66 7.5 7.72 6.74

CPT for Inlet 7.57 7.12 7.46 7.67 7.66 6.01

Ave. clock cycles 12.53 19.65 17.55 39.75 48.64 118.62
per Thread

Ave. Inlet clock 9.08 14.52 4.48 28.69 27.58 28.85
cycles per thread

Ratio of work load 0.72 0.74 0.26 0.72 0.57 0.24
on inlet pros. /main
processor

t The CPT for thread and inlet are obtained by taking the additional overhead due to the addition of the inlet
processor. This overhead costs are shown in Table 6.3. In addition the above table includes the performance
improvement due to the changed ISA of the SPARC.

57

Table 6. 3. Overhead cost due to the addition of a coprocessor

Type Cycle Cost. Over- Paraffins Gamteb
Main Proc. Inlet head (% of to­ (% of to-

Proc. (cycle) tal instr.) tal instr.)

FORK a thread
Branch to thread

Successful sync. 5 5 5 2.83% 2.22%
Unsuccessful sync. 9 9 9 5.64% 4.62%

Push thread onto LCV
Successful sync. 9 4 4 1.27% 2.22%
Unsuccessful sync. 7 7 7 2.55% 3.41%

SWITCH a thread
Branch to thread

Successful sync. 6.5 5 5 0.28% 0.78%
Unsuccessful sync. 10.5 9 9 0.56% 1.55%

Push thread onto LCV
Successful sync. 11 4 4 0.01% 0.51%
Unsuccessful sync. 8.5 7 7 0.02% 1%

POST a thread from inlet
Idle frame

Unsynchronizing 7 18 7 0.61% 0.54%
Successful sync. 8 23 8 0.12% 0%
Unsuccessful sync. 3 7 3 0.12% 0%

Ready frame
Unsynchronizing 5 14 5 0.45% 1.57%
Successful sync. 6 19 6 0% 0.1%
Unsuccessful sync. 3 7 3 0.23% 0.19%

Running frame
Unsynchronizing 5 11 9 0.26% 0.24%
Successful sync. 6 16 10 0% 0.01%
Unsuccessful sync. 3 12 9 0% 0.01%

RECEIVE a message 2 6 2 2.1% 2.79%

SWAP 26 26 26 0.3% 0.23%

Increase in combined CPT of the 1.26 1.39
two processors cycles cycles

t The main processor cycle cost for posts is obtained from the number of cycles the inlet processor needs the
bus. For example, for posting an unsuccessful synchronizing thread to the running frame, inlet processor
needs the bus to load the entry count (address is on the bus for I cycle) and since the thread is unsuccessful,
it has to store the count(address is on the bus for 2 cycles). Hence the cost for the main processor is 3 cycles.

58

Table 6. 4. Comparison of a Single processor system with a Inlet coprocessor system

QS GAM­ PAR- Simple Speech MMT
TEB AFFINS

CPT for TAM 15 13 15.5 20 20.5 16.5

CPT for the main 4.82 6.14 5.66 7.5 7.72 6.74
processor

CPT for the Inlet 7.57 7.12 7.46 7.67 7.66 6.01
processor

59

CM5 III CMS' M J nCM5 with inlet processor
and modified SPARC

25

20

15

10

5

0

QS GAMTEB PARAFFINS SIMPLE SPEECH MMT

Figure 6. 4. Cycles per TLO instruction comparison of the CM5,
Jmachine (modified to include floating point hardware and cache),
CM5 (modified to include a better network interface) and the CM5 using
modified SPARC chip and inlet processor.

60

7. HARDWARE MODIFICATIONS AND CONCLUSION

7. 1. Hardware modifications required to implement the proposed changes

7. 1. 1. SPARC processor pipeline

The SPARC processor has a fourstage deep pipeline [12]. Each stage of the proces­

sor pipeline performs a subset of operations that are needed to complete the execution of an

instruction. A brief description of each pipeline stage follows:

1. Fetch Stage In this stage of the pipeline, a new instruction addressed by the program

counter is fetched.

2. Decode Stage In this stage, the instruction is decoded and source operands are read from

the register file. The source operands read during this stage are passed to both the Execution

Unit and the Instruction Fetch Unit for execution of the instruction in later stages. The de­

code stage of the pipeline is also used to generate the next instruction address (and in the case

of branches, the branch target address).

3. Execute Stage In this stage, the Execute Unit performs arithmetic and logic operations

on the operands read during the decode stage. The results of these operations are saved in

a temporary result register before they are actually written into the destination register. For

loads and stores the effective address for the operands is also calculated in this stage.

4. Write Stage The write stage marks the end of an instruction execution in the pipeline.

In this stage a decision is made whether to write the results into the register file, which means

the instruction has completed successfully, or to prohibit any changes in the state of the pro­

cessor. The write stage will abort if an exception is raised during the execution of that

instruction. Figure 7.1. shows the working of the fourstage pipeline.

61

Figure 7. 1. SPARC processor's four stage pipeline

7. 1. 2. Internal Instructions

The state machine and the controls of the SPARC processor are designed so that each

multiplecycle instruction behaves like several consecutive singlecycle instructions. This

is accomplished using internal instructions which are generated automatically by the Fetch

Unit and are injected into the processor's pipeline as they are needed. Load and store instruc­

tions are examples of instructions that need more than one cycle to complete. Figure 7.2

shows a singleword store instruction which takes two extra cycles in the pipeline to com­

plete.

62

Bub 18

IF ID EX1

Bub BubEX2

Bub EX3 WR

EX1 Stage: Effective Address is calculated

EX2 Stage: Address is kept on the bus for checking write access

EX3 Stage: Data is kept on the bus

Remaining stages of the internal instructions are filled by bubbles as shown

Figure 7. 2. Execution of the store instruction

7. 1. 3. Pipeline stages for cdbp instruction

As seen in Chapter 5, the cdbp thr_addr instructions checks the count; if the

count is zero control transfers to the thread pointed by thr_addr; else the control transfers

to the thread pointed by r_lcv and r_lcv has to be updated.

The operations of a cdbp instruction in the various pipeline stages are as follows.

63

Bub

cdbp IF	 ID EX1 'I

IF+1 Bub EX2 Bubdelay slot

PC+thr_addr. IF
Bub EX3 WR

(flushed)

IF

r_lcv+cbbase

EX1 Stage: r_lcv+cbbase is generated and loaded into PC

EX2 Stage: Calculate icv+2

EX3 Stage: Put lcv+2 on the bus and load the addressed value
into temporary ALU register.

WR Stage: Write back the value into the register r_lcv

Figure 7. 3. Execution of cdbp instruction when the count is not zero

i) When the count is not zero:

a)Fetch Stage: Fetch the cdbp instruction.

b)Decode Stage: Decode the instruction and compute PC+thr_addr. Operands

r_lcv and cbbase (which are implied) are read from the register file.

c)Execute Stage(EX1): By this time the condition code from the previous instruction is

avail able. Thus, if the condition is not true (r_cnt is not equal to 0), the address

r_i cv+cbbas e is generated and loaded into PC. If the condition is not true, nothing has

64

to be done in this stage and the following stages are skipped.

d)Execute Stage(EX2): Increment the stack pointer. 1cv4--lcv+ 2.

e)Execute Stage(EX3): Put the address 1 cv+ 2 on the bus and load the value into the tempo­

rary register.

f)Write Back Stage(WR): Write back the value into the register r_lcv.

j)Fetch Stage(F2): In this stage the delay slot instruction is fetched.

k)Fetch stage(F3): Here the instruction at address r_lcv+cbbas e is fetched.

Thus, when the count is not zero, the cdbp instruction, as seen from Figure 7.3, takes 3

execute cycles before the next instruction can enter the execute stage.

ii) When the count is zero:

. The execution of this is shown in Figure 7.4. The operation in the pipelineis as follows.

Fetch Stage: Fetch the cdbp instruction.

Decode Stage(D 1): Decode the instruction and compute PC+thr_addr. Operands r_lcv

andcbbase (which are implied) are read from the register file.

Thus as seen from the Figure 7.4, cdbp instruction takes 2 cycles before the target instruc­

tion can enter the execute stage.

7. 1. 4. Hardware changes needed to implement the cdbp instruction

As seen from the above discussion, the cdbp instruction can be supported in the

fourstage pipeline of the SPARC processor. The only change that needs to be done is to

redesign the control section to give the necessary control signals when this instruction is de­

coded. In SPARC processor, the register file is decoded from the operand bits of the instruc­

tion. However, in the cdbp instruction the operands r_lcv and icy are implied and are

not specified in the instruction. Hence, the control unit has to decode the register file in this

case. The circuit for this is shown in Figure 7.5. Similar circuit is required to decode cbbase.

65

-r -

Bub 1 Bub :

(cdbp) IF ID

Bub 1 Bub 1 Bub isIF
(delay slot) i i

(PC+thr_addr) IF ID I EX

ID Stage: Compute PC+thr_addr

Delay Slot fetch: Delay slot instruction is fetched, but since the
branch is taken to PC+thr_addr this

instruction has to be flushed

Figure 7. 4. Execution of cdbp instruction when the count is zero

MUX

Addr. from the register

field of the instruction.

Addr. of the register
Decode the register file

r_lcv.

Opcode for the cdbp instruction

Figure 7. 5. Decoding the register file for the cdbp instruction

66

7. 1. 5. Hardware required to implement the ldi and std instructions

The ldi and s td instructions are similar to other load and store instructions except

that the register has to be incremented or decremented by 2. This can be easily done in the

execute stage of the pipeline if the control unit is designed to give the corresponding control

signals to the execution unit.

7. 1. 6. Implementation of the Double Ended Queue for the LCV

As seen in Chapter 6, the LCV in the modified design is implemented as a double

ended queue. Since the queue grows both sides, care must be taken to see that the available

memory is not exceeded. As the compiler has an estimate of how big can the LCV be, this

is not a serious problem.

7. 1. 7. Hardware to assert the LOCK signal

As seen in section 6.1, the main processor has to assert the LOCK signal whenever

it is updating the synchronization count. This has to be asserted until the count is stored back

or the count is zero. Since the load and decrement instructions are used to manipulate the

count, these are used in the circuit. The circuit for this is shown in Figure 7.6.

7.2. Future work and conclusion

The results from the Figure 6.4 prove that a conventional RISC processor can support

finegrain parallelism with minimal hardware changes. As seen in chapter 5, a 6% increase

in the execution speed is achieved by adding the instructions cdbp, ldi and std. These

can be incorporated in the ISA of the SPARC processor by redesigning the control unit.

As seen earlier, using a coprocessor for inlets results in a much lower CPT. But, while

designing a system with a coprocessor for inlets, issues like atomicity and coherency cannot

67

Instuction I

Opcode for load byte
instruction

Comparator

Instruction I+1

Opcode for decrement

Comparator

LOCK

Instruction opcode

Opcode for store byte
instruction

Comparator

R

SR Flip Flop

ALU result is zero

Figure 7. 6. Circuit to assert the LOCK signal

be ignored. Using a coprocessor for inlets slightly increases the overhead of various dynamic

scheduling operations. For example, whenever the BHOLD signal is asserted, the main pro­

cessor has to wait for accessing the frame memory. Similarly, if the POST from the coproces­

sor is to the currently running frame and the LOCK signal is asserted by main processor while

the coprocessor is updating the count, the coprocessor has to check the count from the frame

location before the decremented count can be stored back. Also as seen in section 6.1, chang­

ing the simple stack structure of the LCV resulted in 4 additional cycles for posting a thread

to the currently running frame. In addition, whenever the main processor is updating the

68

entry count, the inlet processor is idle. But since the two processors are executing simulta­

neously, this CPT is shared between the processors and the overall execution is faster as

shown in the Figure 6.4. In addition, the overhead due to polling, which is about 4%, is re­

duced.

In our design, the LCV is implemented as a double ended queue. Here, the threads

posted from the inlets are appended at the bottom of the LCV. Another attractive design al­

ternative is to post the threads from inlets to the currently running frame into the RCV of the

frame rather than the LCV. In this design, the processor executes the current frame until there

are no enabled threads; then the leavethreads is executed. The leavethread, in this design,

has to check the size of the RCV of the current frame before swapping to a different frame.

If the RCV size is not zero, then the RCV is copied to the LCV and the current frame is

executed; otherwise, execution is transferred to a different frame.

The attractive features of posting a thread to RCV rather than LCV include the imple­

mentation of the LCV as a simple stack. The additional cost involved in posting a thread

(like swapping the leavethread pointer with the thread to be posted) are removed. On the

other hand, the leavethread has to do the extra work of coping the RCV to LCV if the RCV

size is not zero.

In either of these design choices for posting a thread to the current frame, the execu­

tion order of the threads from the original implementation (i.e. having a single processor with

polling) is changed. In the modified design, the threads posted from the inlets are executed

only when there are no threads enabled by FORKS. This modified scheduling might slightly

effect the execution time of the program.

In our design, cache coherency problem is eliminated by using a common cache for

both the main processor and the coprocessor. While this eliminates the coherency traffic,

as seen from chapter 6, this choice leaves one of the processors waiting for the bus while the

other one is using it. Another design choice is to have separate caches for the main processor

69

and the coprocessor. In this case again, the issues of atomicity and coherency have to be ad­

dressed carefully.

The coprocessor in our design is assumed to be similar to the main processor. Since

the coprocessor mainly executes only RECEIVE, POST, and NEXT instructions, it can be

much simpler and can be optimized for these instructions.

In summary, the results are encouraging and prove that finegrain parallelism can

be supported on the traditional von Neumann processors with slight hardware modifications.

These also show that issues like atomicity and message handling are of utmost importance

and should be considered carefully.

70

BIBLIOGRAPHY

[1] Arvind, D. E. Culler, R. A. Iannucci, V.kothail, K. Pingali, and R. E. Thomas, "The
tagged token dataflow architecture," Technical report, MIT Laboratory for Computer Sci­
ence, 545 Technology Square, Cambridge, August 1983.

[2] Arvind, and R. A. Ianucci, "Two Fundamental Issues in Multiprocessing," Proceedings
of DFVLR Conference 1987 on Parallel Processing in Science and Engineering, Bonn
Bad Godesberg, W. Germany, SpringerVerlag LNCS 295, June 25-29 1987.

[3] Arvind, R. S. Nikhil, and K. K. Pingali, "Istructures: Data Structures for Parallel Com­
puting," Proc. of the Graph Reduction Workshop, Sante Fe, NM. October 1986.

[4] D. E. Culler, "Multithreading: Fundamental Limits, Potential Gains, and Alternatives,"
Proc. of the Supercomputing '91, Workshop on Multithreading, 1992.

[5] D. E. Culler and Arvind, "Resource Requirements of Dataflow Programs," Proc. of the
15th Annual Int. Symp. on Comp. Arch., pages 141-150, Hawaii, May 1988.

[6] D. E. Culler and G. M. Papadopoulos, "The Explicit Token Store," Journal of Parallel
and Distributed Computing, pages 289-308, January 1990.

[7]D. E. Culler et al., "TAM A Compilercontrolled Threaded Abstract Machine," Jour­
nal of Parallel and Distributed Computing, June 1993.

[8] D. E. Culler, K. E. Schauser, and T. von Eicken, "Two Fundamental Limits on DataFlow
Multiprocessing," Proceedings of the IFIP WG 10.3 Working Conference on Architectures
and Compilation Techniques for Fine and Medium Grain Parallelism, Orlando, FL. North
Holland, January 1993.

[9] V. Grafe and J. Hoch, "The Epsilon-2 Multiprocessor System," Journal of Parallel and
Distributed Computing, 10, 1990, pp. 131-140.

[10] R. A. Iannucci, "Toward a Dataflow/von Neumann Hybrid Architecture," Proc. 15th
Int. Symp. on Comp. Arch., pages 131-140, Hawaii, May 1988.

[11] B. Lee, A. R. Hurson, "Dataflow Architectures and Multithreading," IEEE computer,
August 1994.

[12] M. Namjoo and A. Agrawal, "Implementing SPARC: A High Performance 32bit
RISC Microprocessor," Sun Microsystems Technical Publications, Sun Microsystems, Inc.,
1987.

[13] R. S. Nikhil, "ID Language Reference Manual Version 90.1," Technical Report CSG
Memo 284-2, MIT Lab for Comp. Science, Cambridge, MA, 1991.

[14] R. S. Nikhil and Arvind, "Can Dataflow Subsume von Neumann Computing ?," Proc.
of the 16th Annual Int. Symp. on Comp. Arch., Jerusalem, Israel, May 1989.

[15] R. S. Nikhil, G. M. Papadopoulas, and Arvind, "*T : A Multithreaded Massively Paral­
lel Architecture," Proc. 19th Annual Int'l. Symposium on Computer Architecture, 1992, pp.
156-167.

71

[16] G. M. Papadopoulos, and D. E. Culler, "Monsoon: an Explicit TokenStore Architec­
ture," Proc. of the 17th Annual Int. Symp. on Comp. Arch., Seattle, Washington, May 1990.

[17] S. Sakai et al., "An Architecture of a Dataflow Single Chip Processor," Proc. 16th
Annual Int'l. Symposium on Computer Architecture, 1989, pp. 46-53.

[18] M. Sato et al., "ThreadBased Programming for EM-4 Hybrid Dataflow Machine,"
Proc. 19th Annual Int'l Symposium on Computer Architecture, 1992, pp. 146-155.

[19] K. E. Schauser, D. Culler, and T. von Eicken, "Compilercontrolled Multithreading for
Lenient Parallel Languages," Proceedings of the 1991 Conference on Functional Program­
ming Languages and Computer Architecture, Cambridge, MA, August 1991.

[20] Sparc International, Inc., Menlo Park, California, "The SPARC Architecture Manual,
version 8," Prentice Hall, 1992.

[21] E. Spertus, S. C. Goldstein, K. E. Schauser, D. Culler, and T. von Eicken, and W. J. Dal­
ly, "Evaluation of Mechanisms for Finegrained Parallel Programs in the JMachine and
the CM-5," Proc. of the 20th Intl Symposium On Computer Architecture, San Diego, CA,
May 1993.

