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There seems to be a consensus that future Massively Parallel Architectures

will consist of a number nodes, or processors, interconnected by highspeed network.

Using a von Neumann style of processing within the node of a multiprocessor system

has its performance limited by the constraints imposed by the controlflow execution

model. Although the conventional controlflow model offers high performance on

sequential execution which exhibits good locality, switching between threads and syn-

chronization among threads causes substantial overhead. On the other hand, dataflow

architectures support rapid context switching and efficient synchronization but require

extensive hardware and do not use highspeed registers.

There have been a number of architectures proposed to combine the instruction-

level context switching capability with sequential scheduling. One such architecture

is Threaded Abstract Machine (TAM), which supports finegrain interleaving of multiple

threads by an appropriate compilation strategy rather than through elaborate hardware.

Experiments on TAM have already shown that it is possible to implement the dataflow

execution model on conventional architectures and obtain reasonable performance.

These studies also show a basic mismatch between the requirements for finegrain
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parallelism and the underlying architecture and considerable improvement is possible 

through hardware support. 

This thesis presents two design modifications to efficiently support finegrain 

parallelism. First, a modification to the instruction set architecture is proposed to 

reduce the cost involved in scheduling and synchronization. The hardware modifications 

are kept to a minimum so as to not disturb the functionality of a conventional RISC 

processor. Second, a separate coprocessor is utilized to handle messages. Atomicity 

and message handling are handled efficiently, without compromising perprocessor 

performance and system integrity. Clock cycles per TAM instruction is used as a 

measure to study the effectiveness of these changes. 
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FineGrain Parallelism On Sequential Processors 

1. INTRODUCTION 

In the early days of computing, the issue of constructing a multipleprocessor com­

puting system was viewed as little more than an interesting intellectual exercise; after all, 

it seemed clear that machines could be made to operate faster simply by increasing the speed 

of the underlying technology. Given this view, it seemed that the style of machine organiza­

tion for potential multiprocessing was not of overriding importance. The von Neumann or­

ganization, because of its sequential nature, was conceptually simple and easy to realize. 

Hence, it is not surprising that an entire academic community and industry was born with 

a builtin bias towards sequential computing. While understandable, this assumption about 

machine organization has inherent limits which, from our present vantage point, sit just be­

yond the horizon. 

Attention has been focused in the recent past on constructing multiprocessor systems 

attention derived from a desire for more performance. There seems to be little debate that 

the general purpose supercomputers of the future will be massively parallel architectures 

consisting of a number of nodes interconnected a high speed interconnection network [15]. 

What has not been done sufficiently is a reevaluation of the underlying assumptions. This 

is painfully clear when one observes that von Neumann style of processing still forms the 

building block for the majority of multiprocessor projects or proposals. Many variations on 

. the von Neumann theme have been explored (e.g., pipelining, multiple functional units, vec­

tor instructions), but not much has been done with the sequential control required for instruc­

tion execution. 
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1. 1. Motivation 

Using a von Neumann style of processing within the node of a multiprocessor system 

has its performance limit imposed by the constraints of the controlflow execution model 

[2]. One serious problem with distributing work over several von Neumann processors is 

the implied shared memory. A single processor can mask the time to fetch an item from 

memory with a variety of techniques such as registers, caches, etc. However, when there are 

multiple processors in a system, parallel tasks, which are executed on different nodes, may 

require simultaneous access to a shared memory cell or one task may require the result of 

another task. Hence, a node has to fetch the contents of the memory on a remote node. The 

latency of remote memory access typically grows with the machine size. 

Classically, caches are used to mask memory latency, and a cache can be added to 

hold copies of remote locations. However, cache coherence then becomes a significant prob­

lem. Further, a processor may still idle when there is a cache miss. Although caches can be 

used to alleviate the remote memory access latency to some extent, it does not offer anything 

for the synchronizing load problem. To illustrate this problem, let us consider the case where 

a process running on a node requires the result from another process running on a remote 

node. To ensure that the remote load reads the value only after the correct value is written, 

some form of synchronization is required. Unlike the remote load problem, the latency here 

is not just an architectural property it also depends on scheduling, and the time it takes to 

compute the result, which may be much longer than the transit latency. 

Another problem with the von Neumann style of processing is that of programming 

for parallel execution. Compilers can be used to analyze and transform sequential programs 

into parallel ones. However, antidependence and aliasing detection by compilers has been 

achieved only on very few programs with simple structures, thus restraining parallelism in 

most cases. 
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Due to these limitations, von Neumann model of computation does not readily carry 

over to multiprocessors. An alternative to the von Neumann model of computation is the 

dataflow model of computation. The dataflow model of computation can maximally exploit 

parallelism in a program [11]. In addition, the functional and asynchronous characteristics 

of the dataflow model of computation overcome many of the problems associated with the 

controlflow method of exploiting parallelism. First, there is no concept of a shared storage. 

Instead, operands are communicated as tokens of values rather than addresses of variables. 

Thus, the dataflow model of computation does not produce sideeffects such as the inadver­

tent modification of a shared variable. Second, since the data is transmitted between instruc­

tions in the form of tagged tokens, where the tag carries control information (the context) 

for the destination instruction, there is no overhead involved in context switching. Hence, 

-context switching can be effectively used to mask the memory latency. 

Although, dataflow model of computation offers several advantages such as rapid 

context switching and sideeffect free execution as well as exploits maximum parallelism 

by executing any operation on any processor, it has some shortcomings which prevent it 

from being practical alternative to the traditional methods of parallel computing [8]. First, 

it requires a matching store to hold the state of the overall computation. Given its associative 

nature, it is impractical to make the matching store extremely large, so deep recursion or ex­

tensive parallelism cause the store to fill up and the program to deadlock. Second, the pipe­

line of the dataflow processor tends to be inefficient. Third, it does not use the highspeed 

registers. 

In light of this discussion, there have been a number of architectures proposed to 

combine the instructionlevel context switching capability with sequential scheduling [11]. 

Multithreaded architectures retain the advantages of the dataflow model, like fast context 

switching and cheap synchronization [4]. In addition, by allegating the task of scheduling 

to compiler, multithreaded architectures based on the dataflow model require little hardware 

modifications to support the efficient thread scheduling and synchronization. In the context 
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of multithreading, a thread is a sequence of statically ordered instructions where once the 

first instruction in the thread is executed, the remaining instructions execute without inter­

ruption. As a result, a thread defines the basic unit of work from the dataflow pointofview 

that requires synchronization only at the beginning of a thread. Observations of current data­

flow projects show that there is a trend towards adopting multithreading as a viable method 

to build hybrid architectures that combine features of dataflow and controlflow execution 

models [ 1 1]. 

One such project at UC Berkeley, called Threaded Abstract Machine (TAM), sup­

ports finegrain interleaving of multiple threads by an appropriate compilation strategy rath­

er than through elaborate hardware [7]. Experiments on TAM have already shown that it 

is possible to implement the dataflow execution model on conventional architectures and ob­

tain reasonable performance [7]. These studies also show a basic mismatch between the re­

quirements for finegrain parallelism and the underlying architecture and considerable im­

provement is possible through hardware support. 

Based on the aforementioned discussions, this work presents two design modifica­

tions required to efficiently support finegrain parallelism on a conventional RISC architec­

ture. First, a modification to the instruction set architecture is proposed to reduce the cost 

involved in scheduling and synchronization. The hardware modifications are kept to a mini­

mum so as not to disturb the functionality of a conventional RISC processor. Second, a sepa­

rate coprocessor is utilized to handle messages. Atomicity and message handling are han­

dled efficiently, without compromising perprocessor performance and system integrity. 

Clock cycles per TAM instruction is used as a measure to study the effectiveness of these 

changes. Although the discussion is based on the SPARC architecture, the design issues ap­

ply to other RISC processors as well. 
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1. 2. Thesis Organization 

Chapter 2 starts with an overview of dataflow architectures. It further discusses the 

advantages and disadvantages of the dataflow model of execution. Then an overview of hy­

brid architectures are provided and these discussions unfold the architectural features re­

quired of modern parallel machines. 

Chapter 3 describes the Threaded abstract machine (TAM), developed at University 

of California, Berkeley. It describes the program structure, storage model, and execution 

model in detail. In addition, compilation of highlevel parallel language to TAM is ex­

plained. 

Chapter 4 explains the issues involved in mapping of TAM to traditional processor 

architectures. In addition, it also presents the dynamic measurements from running bench­

mark programs on TAM. 

Chapter 5 presents our work to reduce the overhead involved in thread scheduling. 

It also presents the measurements obtained from the proposed change. 

Chapter 6 discusses the overhead involved in message handling. It also discusses 

the issues involved in message handling like atomicity and coherence. It then presents our 

implementation for efficient message handling and then discusses the results. 

Chapter 7 summarizes the hardware modifications required for the proposed 

changes and concludes with the brief overview of the work. 
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2. WHY MULTITHREADING
 

von Neumann style of sequential execution is not very efficient for scalable multipro­

cessing because of its inability to tolerate increased latencies and to handle greater synchro­

nization requirements [2]. In recent years research has been focused on alternative architec­

tures for scalable multiprocessing. In this chapter, a general description of these 

architectures is provided. The advantages and shortcomings of these machines are also dis­

cussed. 

2. 1. Dataflow Architectures 

Dataflow machines can directly execute dataflow graphs [11]. Dataflow graph is a 

directed graph in which vertices or nodes correspond to instructions and the data dependen­

cies which exist between these instructions are represented by edges connecting these nodes. 

The data values are carried by tokens. These tokens travel along the arcs to the destination 

instructions. To distinguish between the different instances of a node, a tag is associated with 

each token that identifies the context in which a particular token was generated. Thus, typi­

cally a taggedtoken has processor address, codeblock name, initiation number to identify 

the instance of the node and the address of the instruction with in the code block appended 

to the data value. A node can be executed or said to be fired when all its input arcs contain 

a set of tokens with identical tags. 

Dataflow models can be in turn classified as either static or dynamic. The static data­

flow model exploits only a limited amount of parallelism and lacks the general support for 

programming constructs essential for any modern programming environment (e.g., proce­

dure calls and recursion) [11]. On the other hand, dynamic dataflow model exploits all the 

parallelism in the program. For example, a loop can be unfolded dynamically, thus allowing 
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the execution of the multiple instances of the loop concurrently. For this reason, current data­

flow research efforts indicate a trend towards the dynamic dataflow model. 

The general organization of the dynamic dataflow machine is shown in Figure 2.1 

[11]. Tokens are received by the Matching Unit, which is memory containing a pool of to 

kens waiting for their partners. The basic operation of the Matching Unit is to bring together 

the tokens with identical tags. If a match exists, the corresponding token is extracted from 

the Matching Unit and the matched token set is passed on to the Fetch Unit. If no match is 

found, the token is stored in the Matching Unit to await a partner. In the Fetch Unit, the tags 

of the token pair uniquely identify an instruction to be fetched from the Program Memory. 

A typical instruction consists of an operational code, a literal/constant field, and destination 

fields. The fetched instruction together with the token pair is sent to the Processing Unit. 

The Processing Unit executes the enabled instructions and produces result tokens to be sent 

to the Matching Unit via Token Queue. 

The simplicity of this model derives from the implicit allocation of storage and 

scheduling associated with each message arrival. Any operation can execute on any proces­

sor, simply by sending the tokens to that processor. 

The dataflow model of execution offers many attractive properties for parallel pro­

cessing. First, the dataflow model of execution is asynchronous, i.e., the execution of an 

instruction is based on the availability of its operands. Thus, it exposes all the parallelism 

in the program. Second, data is appended with the address of the destination instruction. 

Therefore, the synchronization of parallel activities is implicit in the dataflow model. More­

over, since the data carries with it the control information (the context) with it, context 

switching is fast. This allows efficient exploitation of finegrain parallelism at instruction 

level. 
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Figure 2. 1. Organization of a dynamic dataflow machine 

Although the dataflow model offers several advantages like rapid context switch­

ing, cheap synchronization, and exposes all parallelism in a program, it has several short­

comings which prevent it from being practical. 

2.2. Shortcomings of dataflow model 

Several shortcoming have been identified with the dataflow model of computing. 

These shortcomings include: 

Overhead involved in matching tokens is heavy; 

Inefficient resource allocation; and 

The dataflow instruction cycle is inefficient. 
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Detection of matching tokens belonging to the same instance of an instruction is one 

of the most important aspects of the dataflow computation model. A failure to find a match 

implicitly allocates memory within the matching hardware. Thus, when a codeblock is 

mapped to a processor, an unspecified commitment is placed on the matching unit of the pro­

cessor. Given its associative nature, it is impractical to make the matching store extremely 

large, so deep recursion or extensive parallelism cause the store fill up and the program to 

deadlock [5]. 

Another subtle problem with the dataflow model is, it does not not utilize the high 

speed registers for computation. So there is no means by which the compiler can organize 

the program to make efficient use of processor resources [8]. 

A more general criticism leveled at dataflow model is the inefficiency in its instruc­

tion cycle. For example, matching tokens is more complex than simply incrementing a pro­

gram counter. Similarly, generating and communicating result tokens impose inordinate 

amount of overhead compared to simply writing the result to a memory location or a register. 

These inefficiencies in the pure dataflow model tend to degrade performance for programs 

having a lowdegree of parallelism. 

2.3. ETS Model 

In the past few years, there have been several proposals which try to overcome the 

shortcomings of a pure dataflow model. For example, The ETS model embodied in Mon­

soon is a partial remedy to these problems [16]. Implicit allocation of the matching store 

'is eliminated by explicitly allocating a storage, called an activation frame, to hold the local 

storage for each function invocation. Synchronization bits are associated with each frame 

location to support a dyadic match. 

To illustrate the operations of direct matching in more detail, consider the token 

matching scheme used in Monsoon. An example of the ETS codeblock invocation and its 
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corresponding Instruction and Frame Memory is shown in Figure 2.2. In a direct matching 

scheme, any computation is completely described by a pointer to an instruction (IP) and a 

pointer to an activation frame (FP). The pair of pointers, <FP.IP>, is called a continuation 

and corresponds to tag part of a token. When a token arrives at an actor (e.g., ADD), the IP 

part of the continuation points to the instruction that contains an offset r as well as displace­

ment(s) for the destination instruction(s). The actual matching is achieved by checking the 

slot in the Frame Memory pointed to by FP+r. If the slot is empty, the value of the token is 

written in the slot and its presence bit is set to indicate that the slot is full. If the slot is full, 

the value is extracted, leaving the slot empty, and the corresponding instruction is executed. 

The result token(s) generated from the operation is communicated to the destination instruc­

tion(s) by updating the IP according the displacement(s) encoded in the instruction (e.g., 

execution of the ADD operation produces two result tokens <FP.IP+1, 3.55> and <FP.IP+2, 

3.55 >L). 

Thus, in the ETS model, the implicit allocation of the Associative Matching Store 

is eliminated. However, the token buffer remains. When a message arrives, storage is allo­

cated for it in a large queue. Although Monsoon allows short instruction threads to be sched­

uled, using frame slots and a small set of registers to convey the data between instructions 

in a thread, the arbitrary interleaving of tokens in the queue is unlikely to provide any useful 

locality. Furthermore, the machine cycle time is limited by the readmodifywrite on the 

frame synchronization bits and the frame access per instruction. 
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Instruction Memory 
CodeBlock Activation opcode r dests 

IP ADD 2 +1, +2L 

NEG +6 

SUB 3 +1 

Frame Memory 

FP 

: FP+2 v 
V 4.24 

Presence Bits 

Figure 2. 2. Illustration of Codeblock invocation, Instruction and Frame memory in 
Monsoon 

2.4. Hybrid Architectures and Multithreading 

As mentioned in section 2.1, one major advantage of architectures based on the data­

flow model of computation is the instructionlevel contextswitching capability. That is, 

contextswitching can occur on a perinstruction basis since each datum carries context 

identity with it (i.e., in the form of a tag). This provides the ability to tolerate long and unpre­

dictable memory latencies. On the other hand, the processor resources like registers are not 

used in the dataflow model. The instructionlevel contextswitching capability combined 
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with sequential scheduling, which provide a different perspective on dataflow architectures 

multithreading, combines the advantages of the both. In the context of multithreading, a 

thread is a sequence of statically ordered instructions where once the first instruction in the 

thread is executed, the remaining instructions execute without suspending. As a result, a 

thread defines the basic unit of work from the dataflow model pointofview that requires 

synchronization only at the beginning of a thread. 

2. 4. 1. Hybrid Architectures 

The Hybrid proposal was the first to observe the interplay between register allocation 

and thread scheduling [10]. This model provides a machine language of multiple threads 

operating against an activation frame and registers. However, each frame slot includes pres­

ence bits, like the ETS. A thread is suspended upon access to a frame slot marked notpres­

ent. The suspension is accomplished by building a queue of instruction pointers into waiting 

threads. The queue is rooted in the frame slot, so the eventual store of the value enables the 

threads. Since no registers are saved upon suspension, the compiler is required to evacuate 

the registers across any potential point of suspension. This elaborate suspension, queuing 

and scheduling mechanism is part of the basic model and required in any machine that imple­

ments it. Moreover, scheduling is outside the programming model, so there is no means by 

which the compiler can organize the program to make efficient use of processor resources. 

2. 4. 2. PRisc 

PRisc observed that presencebits can be kept in the frame like local data, rather 

than as special tags, and that matching could be simulated by toggling the tag bit atomically 

and suspending on the result [14]. This means that for synchronizing threads, rather than 

checking the presence bits a count, which is stored in the frame memory like data, is checked 

to see whether the thread is ready for execution. This eliminates the need for including pres­
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ence bits with each slot and results in efficient machine cycle. In addition, PRisc eliminated 

the notion of suspension with in a thread. Thus synchronization is required only at the start­

ing of a thread. However, PRisc failed to retain the distinction between registers and frames 

of the Hybrid model. Instead the entire frame is viewed as a set of registers. Like the hybrid 

model, scheduling is outside the execution model. Thus when a thread completes, any en­

abled thread could execute next, so there is no means by which the compiler can develop a 

higher level strategy for utilizing processor resources while tolerating latency. 

2. 4. 3. TAM 

Dataflow research has focused on the obvious costs: scheduling and synchronizing 

threads. However as seen in the above sections, optimizing scheduling costs while ignoring 

the effects on the storage hierarchy leads to unrealistic solutions. Instead, the Threaded Ab­

stract Machine (TAM) exposes the scheduling of threads so that the compiler can coordinate 

scheduling with the usual management of the storage hierarchy [7]. To aid in this coupling, 

TAM allows groups of related threads to be scheduled together. This reduces the cost of 

scheduling and permits the compiler to manage storage resources, e.g., registers and local 

variables, across several threads. Finally, giving priority to related threads tends to improve 

cache behavior. Overall, the effect is that data can be kept at smaller and faster levels of the 

storage hierarchy. 

Thus TAM supports asynchronous parallelism while tolerating memory latency and 

overcomes the shortcomings which are inherent in the dataflow model like: 

Matching Overhead: Matching is done by checking a count rather than using 

associative memory or presence bits. Since the count is stored in the memory like 

any other data, matching overhead is reduced. 
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Inefficient resource allocation: Since the scheduling of threads is storage driven 

and managed by the compiler, related threads can be scheduled together. Hence, 

data can be passed in registers across several threads. 

Inefficient Instruction Cycle: The processor pipeline is uniform and does not in­

clude the inefficient operations like token matching or checking and updating 

presencebits. In addition, TAM can mapped effectively onto a sequential RISC 

processor. 
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3. THREADED ABSTRACT MACHINE (TAM) 

The Threaded Abstract Machine (TAM), developed at University of California, 

Berkeley, refines dataflow execution models to address the critical constraints that modern 

parallel architectures place on the compilation of generalpurpose parallel programming 

languages [7]. TAM defines a selfscheduled machine language of parallel threads, which 

provides a path from dataflowgraph program representations to conventional control flow. 

The most important feature of TAM is the way it exposes the interaction between the han­

dling of asynchronous message events, the scheduling of computation, and the utilization 

of the storage hierarchy. 

Since our work is based on TAM, this chapter provides a complete description of 

TAM and codifies the model in terms of a machine language TLO. Issues in compilation from 

a high level parallel language to TLO are discussed in general and specifically in regard to 

the Id90 language [13]. 

3. 1. TAM Program Structure 

A TAM program consists of a collection of codeblocks where each codeblock typi­

cally represents a loopbody or a function. Each codeblock comprises of several threads 

and inlets. The activation frame, which is analogous to the stack frame for conventional sub­

routine calls, is the central storage resource. Invoking a codeblock involves allocating an 

activation frame, depositing argument values into the frame and enabling threads forexecu­

tion within the context of the frame. Initialization also consists of setting the values of syn­

chronization counters stored within the frame. The caller does not suspend upon invoking 

a child codeblock so it may have multiple concurrent children. Thus, as shown in Figure 3. 

1, the dynamic call structure forms a tree, rather than a stack, represented by a tree of frames. 
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Activation tree	 Activation frame Code segment 

Ready	 Function
 
Foo
Queue 

Inlet 1 
Local 
variables 

ead 2 

[read 5 

Synchronization 
counters 

Thread 15 

Ready frame link 

Continuation 
vector 

Figure 3. 1. TAM activation tree and embedded scheduling queue 

An activation frame may be in one of three states: idle, ready, or running. Every 

processor has exactly one running (or current, or resident) frame, the frame pointed by the 

FP register. All local memory accesses that occur either in threads or inlets are relative to 

the current frame. 

To support thread level scheduling, every frame has a remote continuation vector, the 

RCV, and the processor has a local continuation vector, the LCV. The LCV holds the en­

abled1 threads for the running frame. On the other hand, the RCV contains the enabled 

1. Threads are said to be enabled if they are ready for execution. 
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threads for a ready frame. Every codeblock specifies the size of the continuation vector 

that must be allocated for a new frame. The highlevel language compiler is responsible for 

determining the size by analyzing the structure of the threads in the codeblock. 

An idle frame is one which has no threads in its RCV. A ready frame has at least one 

thread in its RCV and is waiting to be scheduled, or, in other words, waiting to become the 

running frame. There may be zero or more idle or ready frames per processor. 

The ready frame queue is maintained using the frame slots of the ready frames. The 

head of the queue is kept in the QP register. Every other frame in the queue points to the next 

ready frame. Thus, all the data structures needed for both scheduling levels are maintained 

in the frames; once a frame is allocated all its scheduling resources have been allocated as 

well. 

A thread is a collection of nonsuspending instructions. Two instructions are in the 

same thread if they can be statically ordered. There are no jumps or branches within a thread, 

and synchronization occurs only at the beginning of a thread. FORK attempts to enable a 

thread in the current activation. If the thread is an unsynchronizing one, it pushes the pointer 

to the thread onto the LCV, which contains pointers to the all enabled threads. If the thread 

requires synchronization, the counter associated with the thread is decremented and if it's 

zero then the thread is pushed on the LCV; otherwise, the decremented count is stored back. 

A SWITCH instruction forks one of two threads depending on a condition. A STOP instruc­

tion stops the current thread and causes some other enabled thread to begin execution. This 

is done by poping a thread from the LCV. When there are no enabled threads or it has 

executed the current codeblock completely, the processor executes a swap instruction, 

which transfers control to a frame from the ready frame queue. A quantum is the set of 

threads executed during a single residency of the frame. 

The arguments to the codeblock, results from other frames and responses to the 

global heap accesses are received by inlets. Inlets, as shown in Table 3.1, are compiler gene 
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'Table 3. 1. A brief description of some of the most important TAM concepts 

Code Structures 

Codeblock A collection of threads and inlets that corresponds to a 

single function (or loop body) in the original program. 

Thread A sequence of instructions with a single entry and sing 

le exit point that can be executed without suspension. 

Inlet A sequence of instructions tailored to handle the receipt 

of a message for a target frame. 

Data Structures 

Activation Frame Similar to an stack frame in a sequential language, it is 

the unit of storage of each codeblock invocation. 

Continuation Vector The data structure used to store enabled threads. 

Ready Queue The data structure used to keep track of frame that are 

ready to execute, i.e., frames with enabled threads that 

are not running. 

Synchronization Counters Counters used to enforce synchronization between 

threads. 

Operations 

Fork The FORK instruction is used to enable threads for the 

currently running frame. 

Post The POST instruction is executed in inlets and is used 

to enable threads for the target frame. It will also, if 

necessary, enqueue the frame on the ready queue. 

Swap The SWAP instruction schedules a frame from the ready 

queue. 
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rated message handlers that copy the arguments into the frame and enable computation de­

pending on the message. The SEND operation delivers a sequence of data values to an inlet 

relative to the target frame. The inlet specified in the message receives the message through 

a RECEIVE instruction and stores the data into the specified location and enables a thread 

by executing a POST instruction. Enabling a thread from inlet is slightly different from en­

abling one from a thread. An inlet can enable a thread for execution in a different frame 

where as the one enabled from a thread is with in the current frame and is closely coupled 

to the current processor state. Inlets may preempt threads, but they may not preempt other 

inlets. 

3. 2. Storage Model 

The TAM storage model includes four distinct regions: code storage, frame storage, 

registers, and heap storage. TAM code storage contains codeblocks representing the com­

piled form of the program. It appears identical to all processors and is accessible through 

fast local operations. 

Frame storage is assumed to be distributed over processors, but each frame is local 

to some processor and only accessed from that processor. Work is distributed over proces­

sors on a frame invocation basis. Interframe communication is potentially interprocessor 

communication and is realized by sending values to inlets relative to the target frame. 

A TAM processor contains data registers of various types and four special address 

registers: FP, the address of the current frame, IP, the address of the current thread instruction, 

IFP, the address of the target frame for the current inlet while it is executing, and HP, the ad­

dress of the current inlet instruction. A frame is running on a processor when it is referenced 

by the FP. Instructions can access registers or frame slots, relative to FP. 

Heap storage contains objects that are not local to a codeblock, including statically 

and dynamically allocated arrays. Accessing the global heap does not cause the processor 
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to stall, rather it is treated as a special form of message communication. A request is sent 

to the memory module containing the accessed location while threads continue to execute. 

The request specifies the frame and inlet that will handle the response. If the response returns 

during the issuing quantum, the inlet integrates the message into the ongoing computation 

by depositing the value in a frame or register and enabling a thread. However, if a different 

frame is active when the response returns, the inlet deposits the value into the inactive frame 

and posts a thread in that frame without disturbing the register usage of the currently active 

frame. 

Global data structures in TAM provide synchronization on perelement basis to sup­

port Istructure and Mstructure semantics [3]. If the Istructure element is empty, a read 

is deferred until the corresponding write takes place. A remote Istructure operation gener­

ates a request for a particular heap location and the corresponding response is received by 

an inlet. Meanwhile, the processor continues with other enabled threads. In TAM, these 

splitphase transactions are supported by instructions, such as IFETCH and I STORE, which 

are used to read and write to the data structures, respectively. 

3. 3. Execution Model 

The processor executes instructions within the current thread sequentially until a 

STOP is executed. At that point a thread address is removed from the LCV and loaded into 

IP, initiating the next thread. When no threads remain in the LCV, STOP transfers control 

to a leavethread specified in the frame. The leavethread typically loads the next frame 

pointer into FP, loads the enterthread address from that frame into the LCV and performs 

a STOP. The enterthread typically copies the threads accumulated in the RCV to the LCV 

and performs a STOP, thereby starting the new quantum. 
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The TAM scheduling queue is a data structure obtained by linking together frames. 

The compiler defines the representation of this frame level structure by the code it places in 

the leavethread. The compiler can also insert register saves in the leave thread and restores 

in the enter thread, if register values are carried across quanta. 

In translating TAM to a conventional machine, the LCV is simply a stack. The leave 

thread address is placed at the bottom of the stack. FORK pushes an instruction address; 

STOP pops an address and jumps to it. Code generators will typically combine the last fork 

in a thread with the stop, producing a simple branch instead of pushpopjump. 

Inlet execution may preempt the current thread when a message arrives. The address 

of the inlet is loaded into the register IIP and the frame address specified in the message is 

loaded into the register IFP. If the message is for the current activation (i.e., if IFP = FP) 

the thread registers can be used in the inlet to deliver the data into registers instead of frame 

slots. However, if IFP 0 FP, the POST enables a thread in the target frame. In addition, if 

the frame was not ready before the POST, the frame has to be linked to the ready frame list. 

Invoking a codeblock involves first allocating a frame. The caller sends arguments 

to inlets in the codeblock relative to the newly allocated frame. The inlets are executed upon 

message arrival (possibly interrupting a thread on the processor holding the frame), store the 

values in the frame, and post threads of the codeblock for later execution. The activation 

thereby becomes ready, meaning that it has threads waiting to be executed, and it is linked 

into a pool of ready frames. Execution then continues with the interrupted thread. Eventual­

ly, the new frame is scheduled when there are no enabled threads in the running frame by 

executing a SWAP instruction. The SWAP instruction removes one of the ready frames from 

the ready list and enables it by making it the current frame and executing the enterthread 

as described above. The state transitions taken by the frames is shown in Figure 3. 2. 
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Figure 3. 2. State transitions taken by frames due to POST and SWAP instructions 

Depending on its communication pattern, an invocation goes through one or more 

scheduling quanta. At some point it usually sends return values back to inlets of its caller. 

The frame is explicitly released when it is no longer required. The means of determining 

when frames are allocated and released depends on the highlevel language; no automatic 

management is embedded in TAM. 

3. 4. Compiling to TAM 

The overall goal in compiling to TAM is to produce code that is latency tolerant, yet 

obtains processor efficiency and locality. TAM exposes parallelism, scheduling, and corn­

munication to the compiler and makes each cost explicit. Exposing the costs gives the com­

piler a clear optimization goal and allows it to map the various constructs of the parallel lan­

guage to the best suited TAM primitives. On the other hand, TAM places the responsibility 

for correctly resolving several issues, such as management of frames, ordering of threads, 

and usage of local storage on the compiler. Although the source language for the compiler 



23 

is the dataflow language Id90, the TAM parallel execution model is well suited for imple­

menting other parallel languages. This section discusses the key aspects of the compilation 

process from a highlevel parallel language down to TAM, including the representation of 

parallelism, communication, synchronization, scheduling, storage management, and the use 

of the storage hierarchy. These issues are addressed both in general and in the context of 

1d90. 

3. 4. 1. A simple program in TLO 

To illustrate some of the TLO conventions and present a concrete TLO program, we 

consider the following trivial program which computes the Fibonacci numbers. The recur­

sive calls to fib are the sources of parallelism. Arguments must be communicated to these 

parallel calls and the final result requires synchronization of the partial results. 

The code for calculating a Fibonacci number recursively, 

def fib n = if (n < 2) then 1 else fib (n-1) + fib (n-2)
 

is compiled into the TLO code, which is shown below. 

CBLOCK FIB.pc 

FRAME_BODY RCV=3 LCV=5 % frame layout, RCV size is 3 threads, LCV 
% size is 5 threads 

islotO.i islotl.i islot2.i %argument and two results 
pfslotl.pf pfslot2.pf %frame pointers of recursive calls 
sslotO s %synch variable for thread 6 
retfp.pf retip.j %return frame pointer and inlet 

REGISTER %registers used 

bregO.b iregO.i %boolean and integer temps 

INLET 0 %recv parent frame ptr and return inlet 
RECEIVE retfp.pf retip.j 

FINIT %initialize frame 
SET_ENTER 7.t %set enteractivation thread 
SET_LEAVE 8.t %set leaveactivation thread 
SEND retfp.pf [retip.j+-1.i] <- fp.pf %send back the address to caller 
STOP 

INLET 11 %receive argument 
RECEIVE islot0.i 
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POST 0.t "default"
 

STOP
 

INLET 14 %receive frame pointer of first recursive call 

RECEIVE pfslotl.pf 

POST 3.t "default" 

STOP 

INLET 15 %receive result of first call 

RECEIVE islotl.i 

POST 5.t "default" 

STOP 

INLET 16 %receive frame pointer of second recursive 
RECEIVE pfslot2.pf %call 

POST 4.t "default" 

STOP 

INLET 17 %receive result of second call 
RECEIVE islot2.i 

POST 5.t "default" 

STOP 

. THREAD 0 %compare argument against 2 

LT bregO.b = islotl.i 2.i 

SWITCH bregO.b 1.t 2.t 

STOP 

THREAD1 %argument is < 2 

MOVE ireg0 = 1. i %result for base case 
FORK 6.t 

STOP 

THREAD 2 %argument >=2, allocate frames for calls. 
MOVE sslotO.s = 2.s %initialize synchronization counter 
FALLOC 14.j = FIB.pc "default" %invoke first child 
FALLOC 16.j = FIB.pc "default" %invoke second child 
STOP 

THREAD 3 %got FP of first call, send its arg 
SUB iregO.i = islotO.i 1.i %argument for first call 
SEND pfslotl.pf[0.i/FIB.pc] <- ireg0.i %send it 

STOP 

THREAD 4 %got FP of second call, send its arg 
SUB iregO.i = islotO.i 2.i %argument for second call 
SEND pfslot2.pf [0.i/FIB.pc] <- ireg0.i %send it 

STOP 

THREAD 5 %got results from both calls 
SYNC sslotO . s %synchronize 
ADD ireg0.i = islotl.i islot2.i %add results 

FORK 6.t 

STOP 

THREAD 6 %done
 

http:0.i/FIB.pc
http:pfslot2.pf
http:pfslotl.pf[0.i/FIB.pc
http:pfslot2.pf
http:pfslotl.pf
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SEND retfp.fp[retip.j] <- iregO.i %send result to parent 

FFREE fp.pf "default" %deallocate own frame 

SWAP "default' %swap to next activation 

STOP 

THREAD 7 %enteractivation thread 
STOP %no registers to restore 

THREAD 8 %leaveactivation thread 
SWAP "default" %swap to next activation 

STOP %no registers to save 

Consider the execution after the invocation of some framefof the function fib. The 

first thread to be executed is Thread 0 which contains the conditional expression, with a test 

of the integer argument contained in the frame location is 1 ot 1 and a fork of either 

Thread 1 or Thread 2 based on the result of the comparison. 

Thread 2 generates parallelism by allocating two frames for the recursive calls. 

The FALLOC sends a request to a system inlet that handles frame allocation. FALLOC is a 

splitphase operation, because the allocation may require sending a request to another pro­

cessor. The responses to the frame allocations are returned to inlets 14 and 16, respec­

tively. Let's assume that the first allocation request completes before Thread 2 finishes. 

Then inlet 14 is likely to interrupt Thread 2. Inlet 14 enables Thread 4 for execution. There­

fore, at the end of Thread 2,f will continue with Thread 4, after which f will have no more 

enabled threads (unless the other allocation has already returned), so a SWAP is performed 

(via Thread 8) to another ready frame on the local processor (possibly the newly allocated 

frame). Eventually, Inlet 16 will be triggered to receive a pointer to the remotely allocated 

frame into the frame pf s lot 1. Inlet 16, posts Thread 3 using the default frame scheduling 

policy and enables the frame. 

Thread 3 computes argument value in a register and sends it to Inlet 11 of the frame 

for the first recursive call. The argument/result linkage of a parallel call can be viewed as 

a very general form of splitphase operation; eventually, the result will return to Inlet 15. 

In the meantime, the argument message triggers Inlet 11 for the callee frame, which receives 
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the three values into the frame, initializes the frame with an empty RCV, sets the enter and 

leave threads and posts Thread 0, where our description began. Eventually the callee sends 

back its result. 

The results from the recursive calls trigger Inlets 15 and 17, both of which post 

Thread 5, a synchronizing thread using s s lot 0 as a counter. The second post is successful, 

so whenf is run the addition is performed and the result is sent back to the caller in Thread 

6. This final thread also releases the frame f 

The register usage policy in this example is to have the registers vacant across poten­

tial suspension points. However, the result value is carried in a register from either Thread 

1 or Thread 5 to Thread 6, since no synchronization point intervenes in either case. 

This simple example illustrates the interplay between representation of parallelism, 

communication, synchronization, scheduling, storage management and the use of the stor­

age hierarchy. 



27 

4. IMPLEMENTATION OF TAM 

This chapter describes an implementation of TAM on the CM-5 multiprocessor. 

TAM is codified in a pseudo machine language TLO. TLO is a machine independent assem­

bly language for TAM and the concrete target for the compilation from a high level parallel 

language. By dividing up the compilation process into two separate phases, from high level 

parallel language to TLO and then from TLO to native machine code, high level compilation 

issues can be isolated from the specific hardware support for threaded execution. 

A TLO program is composed of codeblocks. Codeblocks in turn consist of the ac­

tivation frame layout, registers, and the code for the threads and inlets which execute relative 

to the frame. Each frame slot and register is statically typed. The TLO storage hierarchy 

consists of an unlimited number of machine registers, frame storage and the global heap. 

TLO instructions can operate directly on registers or on the activation frame. TLO has five 

different instruction categories. 

ALU instructions have threeaddress format and can operate on variables in registers and 

the local frame. 

Network Access is provided by SEND and RECEIVE instructions. SEND is used in threads 

to send values to an inlet of another frame. RECEIVE instruction, which appears in an inlet, 

stores the message data fields into frame slots or registers. 

Thread control is achieved by FORK and SWITCH instructions, and each thread is tenni­

nated by a STOP instruction. 

Frame scheduling is expressed using POST and SWAP instructions. 
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Heap access is provided by IFETCH and I STORE instructions. These instructions sim­

ply send a message to the memory controller holding the designated location. The response 

for a fetch is received by an inlet, but there are no explicit acknowledgments of stores. 

The remainder of this chapter presents the mapping of the storage model and the im­

plementation of these instruction categories on the CM-5 processor. 

4. 1. TLO on the CM-5 multiprocessor 

The CM-5 is a massively parallel MIMD computer based on the SPARC RISC pro­

cessor chipset (including FPU, MMU and 64 KByte directmapped writethrough cache), 

8 MBytes of local DRAM memory and a network interface. The nodes are interconnected 

in two identical disjoint hypertrees. 

4. 1. 1. Storage model 

Program code is placed on every processor and the activation frames are allocated 

in local memory which can be kept in the cache. The heap is divided into two regions, one
 

for small arrays which are allocated local to a node and the other for large arrays which are
 

. spread across the nodes such that logically consecutive elements are mapped onto different
 

processors. 

TLO registers are mapped onto SPARC registers. Since TLO does not limit the num­

ber of available registers, it is the responsibility of the code generator to spill excess TLO 

registers to the activation frame. Since TLO instructions allow frame relative addressing, 

operands to instructions residing in the frame must be temporarily loaded into registers. 

Table 4.1, summarizes the cost of accessing operands at the various levels of the storage hier­

archy. 

The TLO registers are implemented on the CM-5 as a flat register file in a single reg­

ister window. The single register window is divided into three categories: specialfunction 
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registers, thread registers and inlet registers. The specialpurpose registers are (g0g7), as 

shown in Table 4.2, hold important variables and constants used by the TLO implementation. 

The TIM IP and IIP registers are both mapped to the SPARC Program Counter (PC) register. 

There are sixteen thread registers (i0i7 and 10-17) which are fully under control of the reg­

ister allocator. The eight inlet registers (00-07) are generally reserved for inlets but may be 

used by the register allocator between successive network polls to hold thread temporaries. 

4. 1. 2. Arithmetic and logic instructions 

Most TLO arithmetic and logic operations map into a single machine instruction. In­

teger divition, and multiplication are implemented by calling the appropriate library routine. 

Table 4.3 summarizes the costs of the basic instructions. 

4. 1.3. Sending messages 

The TLO SEND instruction can send a message of arbitrary length to an inlet of anoth­

er frame. Since the CM-5 limits the message to three 32bit words of arguments, the code 

generator will convert a SEND of longer messages into multiple sends. 

The cost of SEND is shown in Table 4.4. The cost of a SEND is relatively high be­

cause the network interface (NI) is attached to the node MBUS and hence access to the NI 

requires uncached loads and stores. For this reason, sends to the local node are specialcased 

in software, even though the CM-5 hardware supports loopback. 



30 

Table 4.1. Access cost to each level of the local storage hierarchy on a SPARC node 

Operand (32bits) location access costs 
instructions cycles 

Register 0 0 

0-2Constant 0-2 

2-3Cache 1 

DRAM 1 20 

Table 4.2. Reserved special purpose registers 

Register Function 

Zero (g0) Hardwired to 0 

LCV (gl) Pointer to top of local continuation vector 

Self (g2) Node ID 

FP (g3) Frame pointer 

Cbbase (g4) Pointer to origin of current codeblock 

Izero (g5) Offset to base of heap tags 

NI (g6) Network Interface base address 

Queue (g7) Pointer to frame scheduling queue 
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Table 4. 3. Mapping of TLO arithmetic and logic instructions to the SPARC 

Operation costs
 
instructions cycles
 

Integer arithmetic
 

Add, sub, logical
 1 1 

Integer multiply 19-54 21-56
 

Divide 15-40 30-100
 

Floatingpoint arithmetic 5-7
1 

4. 1. 4. Receiving messages 

In TLO, when a message is received an inlet is invoked. The first instruction of the 

inlet is a RECEIVE, which specifies the frame slots where the message data is to be stored. 

Arrival of a message can be detected either by enabling message interrupts or by polling the 

network regularly. Dispatching a message interrupt into the user program incurs approxi­

mately 140 cycles of overhead and is expensive. The strategy employed in the CM-5 imple­

mentation is to explicitly poll the network once in every thread. If the thread contains an 

instruction which might access the network, for example SEND, then the poll is combined 

with that instruction. All other threads have an explicit poll inserted at the end of the thread. 

If a message has arrived, the appropriate inlet is called. Table 4.5 shows the cost of polling 

the network and the cost of running an inlet. 
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Table 4. 4. Cost for sending a message limited to three 32bit arguments 

Operation costs
 
instructions cycles
 

Send message to local frame
 

Overhead 4
 4
 

Push word 1 1
 

Send message to remote frame 

Overhead 10 25
 

Push word 1/2 4
 

Table 4. 5. Cost of polling the network and of running an inlet 

Operation costs
 
instructions cycles
 

_ 
Explicit poll 3 9
 

Poll as part of send 2 2
 

Message handling 

Inlet overhead 6 13
 

Receive 32bit word 11/2 6
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4. 1. 5. Thread scheduling 

In TLO, thread control is realized by the FORK, SWITCH, and STOP instructions. 

The synchronizing are distinguished from the non synchronizing threads by including a 

SYNC statement placed at the beginning of synchronizing threads. Although the SYNC dec­

laration is placed at the beginning of the thread, the synchronization test (decrement and test 

for zero) is performed as part of the FORK instruction. Nonsynchronizing FORKS do not 

require the decrement and test and thus are cheaper than synchronizing ones. 

Conditional control flow is implemented in TLO through compare instructions which 

set a boolean variable and a SWITCH instruction which forks one of two threads depending 

on a boolean. 

4. 1. 6. Frame scheduling 

The compiler uses default, local, remote, cyclic policies for frame alloca­

tion and def ault, f if o and 1 if o frame scheduling policies. 

FALLOC instruction allocates the frame for a new activation and passes a number of 

arguments to its inlet 0. The choice of processor is controlled by the policy attached to the 

instruction. The FFREE instruction deallocates a frame, possibly the current frame. Typi­

cally, this is followed by a SWAP which terminates the current activation. 

For the SPARC, the RCV is implemented using 16bit offsets from the codeblock 

base. The pointer to the top of the RCV is kept in the frame, not in a register. As messages 

for the activation arrive, inlets are executed and enable threads into the RCV using the POST 

instruction. The mapping of the various POST instructions onto SPARC are shown in Table 

*4.6. The cost of a POST (shown in Table 4.7 ) is generally higher than that of a FORK and 

depends not only on whether the target thread is synchronizing or not, but also on the state 
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Table 4. 6. Mapping of TAM POST instructions on to SPARC 

Operation SPARC instructions	 Cycle 

POST a non sync. thread 
To a running frame cmp fp, ifp ;is inlet frame running 1 

set Lthr-cbbase, tmp2 ;tmp24thread offset 1 

be isrunning
 1
 

isrunning : 

sth tmp2 , [icy] ;Store the offset 3 
sub icy, 2, icy ;Decrement the pointer 1 

To an idle frame	 cmp fp, ifp ;is inlet frame running 1 

set Lthr-cbbase, tmp2 ;tmp2Athread offset 1 

be isrunning 2 
ld Frcv [ i fp] , tmp3 ;tmp34rcv top 2 
sth tmp2 , [ tmp3 ] ;push thread addr. 3 
cmp tmp3 ,ifp ;was rcv empty? 1 

sub tmp3 , 2 , tmp3 ;update rcv 1 

s t tmp3 , Frcv [ i fp] ;save back rcv 3 
bnz continue ;nz +already enqueued 0 
s t que , Fqueue [ i ;store queue head ptr infp] 3 

frame 
mov ifp, que ;make ifp head of 1 

queue 
jmp continue Ot 

To a ready frame	 cmp fp, ifp ;is inlet frame running 1 

set Lthr-cbbase, tmp2 ;tmp21thread offset 1 

be isrunning 2 
ld Frcv [ ifp] , tmp3 ;tmp3-4rcv top 2 
sth tmp2 , [ tmp3 ] 3 
cmp tmp3 , ifp ;was rcv empty? 1 

sub tmp3 , 2 , tmp3 ;update rcv 1 

st tmp3 fp] 3, Frcv [ i ;save back rcv 
bnz continue ;nzralready enqueued Ot 

POST to a sync. thread 1db sync [ ifp] , tmpl ;Load the count into 2 
reg. tmpl 

subcc tmpl ,1, tmpl ;Decrement the count 1 

bne , a continue 1 or 2 
s tb tmpl, sync [ fp] ;Store the count 3 
code for a nonsync . thread 

tpOST is always the last instruction in the inlet and thus jump or branch would disappear in favor of a ret 1 
instruction from the inlet. Thus it has no cost. 
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Table 4. 7. Cost of TLO frame synchronization and scheduling operations 

Operation 

Post a thread from inlet 

Idle frame 

unsynchronizing 

successful sync. 

unsuccessful sync. 

Ready frame 

unsynchronizing 

successful sync. 

unsuccessful sync. 

Running frame 

unsynchronizing 

successful sync. 

unsuccessful sync. 

Swap to next frame 

first 3 threads 

per extra 4 threads 

costs 
no. of inst. and memory 
accesses(load/store) 

12(1 / 3) 

15(2 / 3) 

4(1 / 1) 

9(1 / 2) 

12(2 / 2) 

4(1 / 1) 

5(0 / 1) 

8(1 / 1) 

4(1 / 1) 

14 

6 

cycles 

18
 

23
 

7 

14 

19 

7 

7 

12 

7 

26 

12 
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of the frame. If the frame is idle (i.e., it has no enabled threads in its RCV), then it has to 

be enqueued onto the ready queue. In addition for both idle and ready frames, the cost of 

manipulating the pointer to the top of the RCV is higher than for the LCV since it is in the 

frame, not a register. 

If the target thread is for the running frame, then instead of pushing onto RCV, the 

POST instruction can push the thread onto LCV. Thus, for the cost of a compare between 

the FP and IFP, the cost of a POST can be brought down to that of a FORK. 

If there are no enabled threads, then the leave thread of the activation is executed; 

it is responsible for switching to the next frame. 

4. 1. 7. Heap access 

TLO provides a special syntax for issuing remote references (e.g., I FETCH and IS 

TORE). Each instruction specifies the base and offset of the I-structure being accessed. The 

expansion first calculates the node and address of the element being accessed. Then, the ex­

pansion determines if the access is a local access and if so, performs it inline. Otherwise, 

a request is sent to the node that contains the element. The costs of the different cases are 

shown in Table 4.8. 



37 

Table 4. 8. Cost of accessing global data structures with synchronization on a perele­
ment basis 

Operation 

Istructure fetch 

Local, data present 

Local, data notpresent 

Remote 

Initiate request 

Service, data present 

Service, data notpresent 

Istructure store 

Local, no waiting fetches 

Local, waiting fetches 

Remote 

Initiate request 

Service 

Istructure allocate (N words) 

instructions 
costs 

cycles 

8 

25 

11 

58 

18 

29 

39 

38 

91 

115 

9 

18 

15 

30 

18 

13 

544[N/8] 

38 

44 

6+7[N/8] 

4.2. Measurements 

In this section measurements obtained from running benchmark programs on a single 

SPARC processor are presented and analyzed. These programs were written in Id and then 

compiled to TAM. The TAM code is then translated to SPARC. Six benchmarks ranging 

from 50 to 1,000 lines are used. QS is a simple quicksort using accumulation lists. GAM­

TEB is a MonteCarlo neutron transport code which is highly recursive with many condition­

als. Paraffins enumerates the distinct isomers of paraffins. Simple is a hydrodynamics and 



38 

heat conduction code. Speech determines cepstral coefficients for speech processing. MMT 

is a simple matrix operation that involves creating two identity matrices, multiplying them 

and subtracting from a third. 

Table 4.9 shows that the control overhead varies from 5% to 48% depending on the 

nature of the program. Message overhead varies from 0.5% to 11%. Message overhead goes 

up to 28%, depending on the scheduling, for the same benchmarks if these are run on a multi­

processor configuration with 64 processors [7]!. 

4. 2. 1. Control Overhead 

As can be seen from Table 4.9, control instructions constitute a significant part of the 

overhead of supporting finegrain parallelism. The control overhead is mainly due to three 

instructions: FORK,SWITCH and STOP instructions. The TAM translator optimizes the 

FORKs and SWITCHes by pushing it to the end of the thread and combining it with STOP 

to form simple branches. If the FORK is to an immediately following thread, the branch be­

comes a fall through. A FORK or a SWITCH that cannot be optimized into a branch will at­

tempt to push a thread onto the LCV before continuing with the execution of the current 

thread. Figure 4.1 shows the transfer of control using FORK. To see the relative cost ofsup­

porting TAM thread scheduling instruction on a conventional processor, Table 4.10 shows 

the mapping of these instructions to SPARC processor. 

The cost and dynamic frequencies of FORK, SWITCH and STOP instructions for 

Gamteb and Paraffins are shown in Table 4.11. The cycle cost for each TAM instruction is 

obtained by adding the clock cycles for the SPARC instructions to which it is mapped. The 

cycle costs for each SPARC instruction is given in Table 4.10. 
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Table 4. 9. Dynamic instruction mix statistics for the benchmark programs 

Gamteb QS MMT Simple Speech Paraffins 

Arithmetic 6.81% 3.34% 16.82% 12% 16% 4.41% 

Operand 39% 33% 74.1% 52% 66% 37% 

Messages 8.01% 11% 0.45% 5.17% 0.43% 5.22% 

Heap 0.37% 0.6% 0.01% 0.15% 0% 1.30% 
contr 

Heap 3.46% 2.7% 3.48% 5.89% 6.14% 5.34% 
msgs 

Control 42% 49.4% 5.12% 25% 11.43% 47% 

fork thread 

Push this thread onto 
LCV and continue 
with the current thread 

fork thread 

This fork is replaced by a branch 

( a ) 

fork thread 

Push this thread onto 
LCV and continue 
with the current thread 

cfork thread 

This fork is replaced by a 
branch and if the condition is 
true this thread is executed or 
else a thread is poped from 
LCV 

( b ) 

'Figure 4. 1. Control transfer using FORK. If the last instruction of the thread is a FORK 
it is replaced by a branch 
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Table 4. 10. Mapping of TAM thread scheduling instructions on to SPARC 

Operation 

Fork a thread 
Fall through 
Branch to thread 

unsync. 

succ. sync 

unsucc. sync 

Push thread 

unsync. 

succ. sync 

unsucc. sync 

Switch 

Stop 

SPARC instructions	 Cycle 

No additional overhead 0 

ba thr_addr	 ;Branch to address 1
 

ldb sync [ fp] , tmpl	 ;Load the count into 2
 
reg. tmpl
 

subcc tmpl , 1, tmpl ;Decrement the count 1
 

be thr_addr ;Branch if count is1
 

zero. Make annullingt 
and put first thread 
inst. here 

ldb sync [ fp] , trap].	 ;Load the count into 2
 
reg. tmpl
 

subcc tmpl ,1, tmpl ;Decrement the count 1
 

be thr_addr ;Branch on zero. 2
 
s tb tmpl, sync [ fp] ;Store the count 3
 

set Lthr-cbbase, tmp2 ; tmp21-thread offset 1
 

addr.
 
sth tmp2 , [lcv] ;Store the offset 3
 
sub lcv, 2, lcv ;Decrement the pointer 1
 

ldb sync [ fp] , tmpl ;Load the count 2
 
subcc tmpl , 1, tmpl ;Decrement the count 1
 

bnz continue ;Test the count 2
 
set Lthr-cbbase , tmp2 ;ftnp2I-duead offset 1
 

addr.
 
sth tmp2 , [ icy] ;Store the offset 3
 
sub lcv, 2, lcv ;Decrement the pointer 1
 

ldb sync [ fp] , tmpl ;Load the count 2
 
subcc tmpl , 1, tmpl ;Decrement the count 1
 

bnz continue ;Test the count 1
 

s tb tmpl , sync [ fp] ;Use annulling to store 3
 
the count 

fork+2 cycles for branching depending on the condition 

lduh [2+1cv] , tmp	 ;Load offset 2
 
add icy, 2 , lcv ;Increment the pointer
 1
 

iIV [ tmp+cbbase]	 ;Add the offset to the 2
 
code-block base and
 
go to the thread
 

tSPARC provides a special bit called annul bit for branch instructions. For conditional branch instructions 
if this bit is 1, then the next instruction in the sequence is executed before transfer of control. 

*cbbase points to the base of the code block. Lthr is an absolute thread address and thr_addr is PC rela­
tive. Lthr -cbbase gives the offset of the thread from the code-block base. 
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Table 4. 11. Cost and frequencies of TLO thread synchronization and scheduling instruc 
tions 

Type Cycle Paraffins Gamteb 
Cost. (% of control instr.) (% of control instr.) 

FORK a thread
 
Fall through 0.0 3.65% 2.64%
 

Branch to thread 
Unsynchronizing 1.0 2.96% 2.10% 
Successful sync. 4.0 6.03% 5.28% 
Unsuccessful sync. 8.0 12% 11% 

Push thread onto LCV 
Unsynchronizing 5.0 0.1% 0.05% 
Successful sync. 10.0 2.71% 5.28% 
Unsuccessful sync. 7.0 5.42% 8.11% 

SWITCH a thread 
Branch to thread 

Unsynchronizing 2.0 3.96% 1.63% 
Successful sync.l. 5.5 0.6% 1.85% 
Unsuccessful sync. 9.5 1.2% 3.70% 

Push thread onto LCV 
Unsynchronizing 6.5 4.81% 2.45% 
Successful sync. 12.0 0.2% 1.21% 
Unsuccessful sync. 8.5 0.4% 2.42% 

STOPs 5.0 20% 24% 

Percentage of control instruc- 64.04% 71.72%
 
tions
 

Percentage of TLO instruc- 30.1% 30.12%
 
Lions
 

Average Cost 5.44 cycles 6.14 cycles 

t The code for switch is 
be thrl ; Branch to the address where the code for branch/push the thread is there. 

(1 cycle if true/ 2 cycles if false) 
code [ thr2 ; Code for branch/ pushing thr2 

'Thus it takes 1 extra cycle for the true case than a fork and two extra cycles when false. Averaging out gives 
1/2 cycles. If the percentage of true cases are more, then one cycle is added to the FORK cost; if the number 
of false cases are more, two cycles are added. 

http:instruc-64.04
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5. DESIGN FOR EFFICIENT THREAD SCHEDULING 

Based on the costs shown in Table 4.11, the main areas for improvement are synchro­

nizing threads and STOPS which typically contribute 30%-40% of the control overhead. 

This is because unsynchronizing FORKS are optimized into fallthroughs and branches, thus 

avoiding the cost of poping a thread from the frame. On the other hand, an unsuccessful syn­

chronizing branch requires that a STOP instruction is executed to pop a new thread from the 

LCV, which requires a total of 13 cycles (8 plus 5). Another source of overhead is SPARC 

processor's lack of postdecrement/preincrement capability to efficiently implement push­

ing/poping of threads. 

This chapter presents a method for decreasing the thread scheduling cost and ana­

lyzes the simulation results with the proposed change. 

5. 1. The Proposed Method 

In order to reduce the overhead of implementing unsuccessful synchronizing 

branches, we propose a method that eliminates the need to access the frame for the LCV, 

thereby decreasing the thread switching time. This is done by allocating a register r_lcv 

to hold the contents of the top location of the LCV. To make use of this register, a new instruc­

tion called conditional double branch and pop, cdbp, has been added. All synchronizing 

thread branches are now translated into the instruction 

cdbp thr_addr 

where thr_addr points to the thread whose synchronization count is in the register 

r_cnt. The cdbpinstuction tests ther_cnt; if it is zero, jumps to the thread at the location 

thr_addr; otherwise, jumps to the address given by r_lcv. If the control transfers to the 

location given by r_i cv, r_i cv register is updated by poping the next enabled thread into 
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it. If the control transfers to the location pointed by r_lcv, then the count is stored back 

in the delay slot. 

5. 2. Implementation for the SPARC 

The proposed double branch instruction can be incorporated into the existing SPARC 

instuction set. The general format for branch and jump instructions of SPARC is shown be­

low. 

op a cond op2 disp22 
(31-30) (29) (28-25) (24-21) (21-0) 

op field is zero for branch instructions and op2 field decodes the several branches 

such as conditional, unconditional and floatingpoint conditional, etc. When the 'a' bit is 

1 in a conditional branch instruction, the delay instruction is executed only if the branch is 

taken. 

The condition op2=3 is not yet implemented, which can be used for the proposed 

double branch instruction. Thus, when the condition is true in the cdbp instruction, i.e. 

when r_cnt has zero, the 22bit displacement is added to PC and the control transfers to 

thr_addr and the delay slot is not executed. If the condition is not true, the r_lcv is 

moved to PC and the delay slot is executed before transferring the control to the address giv­

en by r_lcv. As shown later in Chapter 7, this instruction takes 2 cycles if the count is 

zero otherwise it takes 3 cycles. 

,
In addition to the cdbp we need to implement two more instructions to make push­

ing and poping of threads faster. 

std rd, rs store rd into [rs] and decrement rs;
 

ldi rd, rs ; increment rs and load [rs ] into rd 



44 

These instructions are similar to other load and store instructions except that additional work 

of incrementing and decrementing rs is done in the execute cycle. 

With these modifications, the push thread instructions and branch to thread instruc­

tions are mapped as shown below. 

Branch to synchronizing thread: 

ldb sync [ fp] , tmpl ; load the count (2 cycles) 

subcc tmpl, 1, tmpl ; decrement the count (1 cycle) 

cdbp thr_addr ; branch to thread lthr_addr or thread given by 

r_lcv (2 cycles if tmpl is zero; else 3 cycles) 

stb tmpl , sync [ fp] ; use the delay slot to store back the count if it's not zero 

(3 cycles) 

Push unsynchronizing thread onto LCV: 

std r_lcv, [lcv] ; Push the thread onto LCV (3 cycles) 

set Lthr-cbbase, r_lcv ; Store the thread pointer in r_lcv (1 cycle) 

Push synchronizing thread onto LCV: 

ldb sync [ fp] , tmpl ; load the count (2 cycles) 

subcc tmpl ,1, tmpl ; decrement the count ( 1 cycle) 

bnz , a cont inue2 ; Test the count (1 cycle/2 cycles for taken/not taken) 

stb tmpl, sync [ fp] ; use annuling to store the count (3 cycles) 

std r_lcv, [lcv] ; Push the thread onto LCV (3 cycles) 

set Lthr-cbbase, r_lcv ; Store the thread pointer in r_lcv (1 cycle) 

And the STOP is changed to: 

mov r_lcv, tmpl ; Copy the contents of r_lcv to a temporary register 

(1 Cycle) 

ldi [lcv+2] , r_lcv ; Copy top of the LCV into r_lcv (2 cycles) 

jmp [cbbase +tmpl] ; Jump to the thread cbbase+ tmpl ( 2 cycles ) 

2. "a" indicates that annuling has been used. If the branch is not taken delay slot instruction is annuled. 
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With these changes, a branch to thread on successful synchronization now requires 5 cycles; 

however, unsuccessful synchronization requires only 9 cycles compared to 13 cycles (in­

cluding STOP) without cdbp instruction. The s td also speeds up the pushing of unsyn­

chronizing threads onto the LCV from 5 cycles to 4 cycles. In addition, adding this instruc­

tion reduces the time to implement pushing thread on successful synchronization from 10 

to 9 cycles, while that of unsuccessful synchronization remains unchanged. Table 5.1 sum­

marizes the overall impact of these changes on the cycle cost. 

From comparing Table 4.11 and Table 5.1 it can been seen that there is about 1(19 %) 

cycle reduction in about 30% of the total instructions and the overall execution of the pro­

gram is 6% faster. This improvement can be achieved by simply changing the control unit 

and the datapath itself requires no major modifications. 
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Table 5. 1. Scheduling and Synchronization costs for the modified SPARC 

Type Cycle Cost.	 Paraffins Gamteb 
(% of control (% of control 
instructions) instructions) 

FORK a thread 
Fall through 0.0 3.65% 2.64% 

Branch to thread 
Unsynchronizing 1.0 2.96% 2.10% 
Successful sync. 5.0 6.03% 5.28% 
Unsuccessful sync. 9.0 12% 11% 

Push thread onto LCV 
Unsynchronizing 4.0 0.1% 0.05% 
Successful sync. 9.0 2.71% 5.28% 
Unsuccessful sync. 7.0 5.42% 8.11% 

SWITCH a thread 
Branch to thread 

Unsynchronizing 2.0 3.96% 1.63% 
Successful sync. 6.5 0.6% 1.85% 
Unsuccessful sync. 10.5 1.2% 3.70% 

Push thread onto LCV 
Unsynchronizing 5.5 4.81% 2.45% 
Successful sync. 11.0 0.2% 1.21% 
Unsuccessful sync. 8.5 0.4% 2.42% 

STOPs 5.0 6.8% 9.3% 
STOPS eliminated 0.0 13.2% 14.7% 

Percentage of control instructions	 64.04% 71.72% 

Percentage of TLO instructions	 30.1% 30.12% 

Average Cost	 4.5 cycles 5.19 cycles 
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6. MESSAGE HANDLING 

As discussed in section 4.2, the overhead of handling messages in a multiprocessor 

environment can be as much as 30% of the total instruction execution. Therefore, in this 

. chapter we discuss the various issues involved in handling messages efficiently. The mes­

sage overhead involves the cost of passing arguments and return values for the function calls, 

initializing loop constants and forwarding iteration variables for parallel loops. In TAM, a 

message is formed and issued with a SEND instruction, which sends a number of data values 

to an inlet of a potentially remote frame. The message is received by a RECEIVE instruction 

in the destination inlet which extracts the data from the message and stores it into the frame. 

In TAM, computation and message handling are done by the same processor. 

Sending a message is synchronous with computation, whereas receiving a message 

is not. Since arguments to be sent are in the registers most of the time, it is better to integrate 

sending of a message with computation. To decrease the cost of sending, the network inter­

face must be effectively connected to the ALU bus. 

The asynchronous message reception model can be implemented using interrupts. 

On a message arrival, the network interface signals an interrupt causing a trap to the kernel. 

The kernal forwards the interrupt to the user process by creating a stack frame for the inlet 

and returning to it; however, this is expensive [21]. The other alternative is to opt for syn­

chronous implementation. Here, the messages are stored into an onchip queue. The net­

work is polled for a short time. If there is a message, it dispatches to the code indicated by 

the first word of the message at the head of the queue, i.e., the inlet. The inlet then loads the 

message data one word at a time into the registers. The advantage of polling is that the com­

piler decides when to poll for messages. Hence the atomicity is not a problem. There is a 

tight coupling between the computation and communication. When the message is for the 

currently running frame, updating the LCV or synchronizing counters becomes easy since 

. they are in the registers. On the other hand, there is overhead involved in polling. It might 
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not be tolerable for coarsegrained computation. Moreover, there is a waiting time involved 

for incoming messages before they can be processed. 

Alternative choice is to use a coprocessor for receiving messages. The responsibility 

of the coprocessor is to execute the inlet code. The idea of having a coprocessor to execute 

inlet code was proposed in the *T project by MIT [15]. However, the important issues of 

atomicity among the instructions such as FORK, SWITCH, SWAP and POST were as­

sumed to exist and were not dealt properly. The following section presents a design using 

coprocessor for handling inlets and considers the important topics such as atomicity and co­

herence between the two processors. 

6. 1. Design using a Coprocessor 

The important issues involved in the design of the system with a coprocessor are the 

atomicity among the instructions such as FORK, SWITCH, SWAP and POSTs, and coherency 

between the main processor and the coprocessor. A simple but effective solution for coher­

ency problem is to use a common data cache for the two processors. The block diagram for 

the system is shown in Figure 6.1. 

The coprocessor executes the inlets. A typical Inlet has three instructions RECEIVE, 

POST and NEXT. The RECEIVE instruction extracts the message and stores the data into 

the frame. POST instruction pushes a thread into the LCV or RCV depending on the frame 

to which the message is sent. NEXT instruction checks whether any message is present. 

If a message is present, it extracts the frame pointer, inlet instruction pointer and data into 

the coprocessor's registers. Whenever the coprocessor needs the bus for memory load/store 

operations, it sends a BHOLD signal to the main processor and the main processor enters 

a wait state. 
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Figure 6. 1. Inlet Processor Interface with the system 
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The POST instruction checks the pointer to the frame to which the arriving message 

has to be posted with the frame pointer of the currently executing frame. If they are not equal, 

the thread has to be pushed onto RCV. Moreover, if the frame is idle, it is added to the ready 

frame queue. Since the pointer to the top of the RCV is kept in memory, the coprocessor 

loads and updates this and pushes the thread into the RCV. In this case, since only inlets can 

post to RCV and threads in the current frame never access RCV pointer, the POST operation 

need not be atomic with respect to FORK and SWITCH instructions. 

If the POST is to the currently running frame, more care has to be taken. If the thread 

is a synchronizing thread, the POST instruction reads the entry count from the frame loca­

tion, decrements it and checks whether the thread can be posted. If it cannot be posted, the 

count is stored back in the frame. A problem occurs when the FORK from the currently run­

ning thread accesses the synchronization count from the frame and the POST from the inlet 

accesses the same location before the updated value of the count from the FORK is stored 

back. Then each will decrement the count by one and write it back which is the original value 

decremented by one where as, we need to store the value decremented by two. To avoid this 

problem, these two operations need to be atomic. Atomicity in this design is achieved by 

asserting a LOCK signal whenever the main processor is updating a synchronizing counter. 

The LOCK signal is asserted until the count is stored back or it is zero. This prevents the 

coprocessor from accessing the memory bus. Although this avoids the problem of coproces­

sor accessing the count when the main processor is decrementing it, the problem still remains 

if the count was accessed by the coprocessor before the LOCK signal was asserted and it is 

stored back after the LOCK signal is deactivated. This problem can be avoided if the copro­

cessor checks the count before storing it back. If the decremented count in the coprocessor 

equals the count in the frame location, then the main processor has updated this count. So, 

in this case count is decremented by the coprocessor again before storing it back. 

Another problem is posting a thread to the LCV. Since the LCV pointer and top of 

the LCV are stored in the processor registers, these values need to updated whenever a thread 
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is posted to the current frame. For example, consider the case where the inlet processor has 

just read the LCV pointer from the main processor register to update it and post a thread. 

Main processor now executes a pop instruction and updates the LCV pointer. Now the copro­

cessor writes the decremented value into the LCV register resulting in erroneous value (Fig­

ure 6.2). 

In our design, this problem is avoided by implementing the LCV as a doubleended 

queue. Inlets, instead of pushing threads onto top of the LCV, append the thread pointer to 

the bottom of the LCV. Figure 6.3 shows this implementation of the LCV. Initially we have 

the LCV on top of the leavethread pointer. When there is a POST from the inlet, it is ap­

pended to the bottom of the LCV and the leavethread pointer is pushed down by a slot. The 

I-LCV pointer =10 1LCV pointer =10 

12A 
V 

4411111. 

Inlet processor reads 
this to decrement it 
and post a thread. 

V 
ALU executes a pop 
instruction. It reads the 
LCV register, increments i 
and writes 10+2 into this 
register. 

ILCV pointer =12 

Inlet processor posts a 
thread and writes 8 
whereas this 
must be 10. 

Figure 6. 2. Concurrent POST and FORK instructions resulting in the erroneous 
execution 
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following sequence of instructions are required to implement this modification. 

; reg register points to the thread to be posted 

; ltp register points to the leavethread pointer 

swap3 [ ltp] , reg ; Swaps the thread to be posted and the leavethread 

pointer (4 cycles). 

addcc ltp, 2 , ltp ; Pull the stack down by a slot (1 cycle). 

s t reg, [ltp] ; Store the leavethread pointer in the slot (3cycles). 

With this modification, posting a thread to the LCV takes 4 more cycles since the simple store 

is replaced by a swap instruction to swap the leavethread pointer in the memory and the 

pointer to the thread to be posted which is in the register. This takes one additional cycle 

compared to a simple store. Now, the leavethread pointer, which is in the register, has to 

be stored back in the memory resulting in the additional 3 cycles. But, since this is executed 

by the coprocessor, the execution time of the thread is not affected. 

LCV LCV LCV 

leave posted posted 
thread thread 1 threadl 

leave posted 
thread thread2 

leave 
thread 

Figure 6. 3. LCV implementation 

3. This swap is different from the TLO SWAP. 
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The only other instruction that needs to be atomic with respect to a POST is SWAP. 

SWAP transfers the execution to another enabled frame. The control is transferred to a dif­

ferent frame when there are no ready threads in the current frame4. This SWAP occurs in the 

leavethread. SWAP needs to be atomic with respect to POST because the coprocessor has 

a register to hold the current frame pointer. Every POST compares this with the frame point­

er from the message. Hence, whenever the currently running frame is changed, the frame 

pointer register in the coprocessor has to be changed immediately. Atomicity in this case 

is achieved by stopping the coprocessor. Once SWAP instruction is decoded, the main pro­

cessor sends a STOP signal to the coprocessor. Then the coprocessor stops executing the 

messages until it receives the new value of the frame pointer from the main processor. More­

over, the threads posted to the currently running frame before the SWAP is executed and after 

the leavethread pointer is popped into r_lcv should be executed before executing the 

leavethread. Hence, the starting code of the leavethread should compare the r_l cv with 

the LCV top; if they are equal leavethread is executed; otherwise, the thread at the top of 

the LCV is executed and the r_lcv is changed to point to the thread which is just below 

the top of the LCV. 

6.2. Coprocessor versus Polling for inlets 

As discussed earlier, several factors determine whether to use a coprocessor for inlets 

or to use a single processor that polls for the messages. One important factor is the percent­

age of time which is spent on executing inlets. Using a coprocessor for inlets paysoff when 

the relative work load between two processors is about the same, i.e., they both execute about 

the same number of instructions. The remaining part of this section compares the perfor­

mance of the two choices. 

4. SWAP is also executed whenever the execution of the current frame is completed and this frame can 
be freed. But in this case there will not be any threads posted to this frame. 
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Table 6.1 compares the number of inlet instructions with thread instructions for the 

benchmark programs executed without a coprocessor. The first row shows the average TLO 

instructions per thread and the third row shows the TLO instructions per inlet. There are 

about 3-5 TLO instructions per inlet. The fourth row shows the average inlet instructions 

per thread. This is obtained from multiplying the second and third rows. From this it can 

be seen that the average inlet instructions are slightly less than the thread instructions. A 

better way is to compare the actual times spent by the two processors. To do this, we define 

a new measure, the average clock cycles per TAM instruction (CPT), which is obtained by 

multiplying the instruction frequency of each instruction type with its clock cycles and sum­

ming up these products. 

Table 6.2 shows the work load on the two processors. Depending on the program 

the work load varies from 25% to 75%. Although the work load on the inlet processor is less 

than the main processor, the coprocessor eliminates the overhead due to polling, which con­

tributes about 4% overhead for the benchmark programs [21]. In addition to this, the average 

CPT for the main processor is reduced considerably as shown later. 

Using a coprocessor for handling messages increases the overhead of various opera­

tions. The overhead involved in each instruction type is summarized in Table 6.3. Whenever 

the main processor is updating the entry count, it sends a LOCK signal to the inlet processor. 

Hence, the inlet processor remains idle for this period. This cost is reflected in the third row 

of the Table 6.3 for various synchronization operations. In addition, whenever the inlet pro­

cessor needs the bus it sends a BHOLD signal to the main processor. This cost is reflected 

in the remaining columns of the third row. This cost is obtained my multiplying the number 

of memory accesses(shown in Table 4.6) with the cycles(1 cycle for load and 2 cycles for 

store). The extra cost of posting a thread to the current running frame(because of the double 

ended structure of the queue) is also incuded in the Table. 
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6. 3. Performance 

Table 6.4 compares the CPT on a single SPARC processor used for both computation 

and inlet handling with the CPT for the modified SPARC using a coprocessor. The analysis 

assumes a perfect cache. The CPT for TAM is taken from the Berkeley TAM group. 

Comparing rows one and two from Table 6.4, it can be seen that the main processor CPT is 

reduced by more than 50%. This is achieved with only a slight change in the ISA (adding 

instructions like cdbp etc.) of the SPARC processor and having a coprocessor for the execu­

tion of the inlets. 

As seen from Table 6.3, the overhead due to the inlet processor is 1.26 cycles (1.39 

cycles) for Paraffins (Gamteb). The percentage overhead is obtained by dividing this by the 

total cycle time (which is shown in the first row of the Table 6.4). Hence the percentage over­

head is 1.26/15.5 = 8% for Paraffins (1.39/13 =11% for Gamteb). On the other hand, the 

total improvement due to the changed ISA (6%) and elimination of polling (4%) is 10%. 

Since the overall improvement is almost same as the over head, the combined CPT for the 

design with two processors should be approximately equal to that of the CPT with the unipro­

cessor case. This in turn can be verified from the Table 6.4. 

Though the combined CPT is almost same for both designs, the design with the inlet 

processor allows the division of computation and communication between the processors 

resulting in smaller effective CPT as shown in Figure 6.4. 

Figure 5 compares the cycles per TLO instruction for CM5, Jmachine (modified to 

include a floating point unit and a data cache), CM5 (modified to include an improved net­

work interface) and the current design, i.e., CM5 using the modified SPARC and coprocessor 

for inlets. It can be seen from this figure that by splitting the work between the main proces­

sor and coprocessor there is a significant reduction in the CPT of the main processor. 
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Table 6. 1. Dynamic thread and inlet characteristics under TAM 

Thread Characteris- QS GAM- PAR- Simple Speech MMT
 
tics TEB AFFINS
 

17.6
 
Thread
 
Ave TLO Insts. per 2.6 3.2 3.1 5.3 6.3 

Inlets per Thread 0.3 0.4 0.2 1.1 1.2 1.6 

Ave TLO Insts. per 4.0 5.1 3.0 3.4 3.0 3.0 
Inlet 

Ave Inlet Insts. per 1.2 2.04 0.6 3.74 3.6 4.8 
Thread 

Table 6. 2. Work load distribution between the two processors 

Thread Characteris- QS GAM- PAR- Simple Speech MMT
 
tics TEB AFFINS
 

Ave TLO Insts. per 2.6 3.2 3.1 5.3 6.3 17.6 
Thread 

Ave Inlet Insts. per 1.2 2.04 0.6 3.74 3.6 4.8 
Thread 

CPT for Thread t 4.82 6.14 5.66 7.5 7.72 6.74 

CPT for Inlet 7.57 7.12 7.46 7.67 7.66 6.01 

Ave. clock cycles 12.53 19.65 17.55 39.75 48.64 118.62 
per Thread 

Ave. Inlet clock 9.08 14.52 4.48 28.69 27.58 28.85 
cycles per thread 

Ratio of work load 0.72 0.74 0.26 0.72 0.57 0.24 
on inlet pros. /main 
processor 

t The CPT for thread and inlet are obtained by taking the additional overhead due to the addition of the inlet 
processor. This overhead costs are shown in Table 6.3. In addition the above table includes the performance 
improvement due to the changed ISA of the SPARC. 
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Table 6. 3. Overhead cost due to the addition of a coprocessor 

Type Cycle Cost. Over- Paraffins Gamteb 
Main Proc. Inlet head (% of to­ (% of to-

Proc. (cycle) tal instr.) tal instr.) 

FORK a thread 
Branch to thread 

Successful sync. 5 5 5 2.83% 2.22% 
Unsuccessful sync. 9 9 9 5.64% 4.62% 

Push thread onto LCV 
Successful sync. 9 4 4 1.27% 2.22% 
Unsuccessful sync. 7 7 7 2.55% 3.41% 

SWITCH a thread 
Branch to thread 

Successful sync. 6.5 5 5 0.28% 0.78% 
Unsuccessful sync. 10.5 9 9 0.56% 1.55% 

Push thread onto LCV 
Successful sync. 11 4 4 0.01% 0.51% 
Unsuccessful sync. 8.5 7 7 0.02% 1% 

POST a thread from inlet 
Idle frame 

Unsynchronizing 7 18 7 0.61% 0.54% 
Successful sync. 8 23 8 0.12% 0% 
Unsuccessful sync. 3 7 3 0.12% 0% 

Ready frame 
Unsynchronizing 5 14 5 0.45% 1.57% 
Successful sync. 6 19 6 0% 0.1% 
Unsuccessful sync. 3 7 3 0.23% 0.19% 

Running frame 
Unsynchronizing 5 11 9 0.26% 0.24% 
Successful sync. 6 16 10 0% 0.01% 
Unsuccessful sync. 3 12 9 0% 0.01% 

RECEIVE a message 2 6 2 2.1% 2.79% 

SWAP 26 26 26 0.3% 0.23% 

Increase in combined CPT of the 1.26 1.39 
two processors cycles cycles 

t The main processor cycle cost for posts is obtained from the number of cycles the inlet processor needs the 
bus. For example, for posting an unsuccessful synchronizing thread to the running frame, inlet processor 
needs the bus to load the entry count ( address is on the bus for I cycle) and since the thread is unsuccessful, 
it has to store the count( address is on the bus for 2 cycles). Hence the cost for the main processor is 3 cycles. 
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Table 6. 4. Comparison of a Single processor system with a Inlet coprocessor system 

QS GAM­ PAR- Simple Speech MMT 
TEB AFFINS 

CPT for TAM 15 13 15.5 20 20.5 16.5 

CPT for the main 4.82 6.14 5.66 7.5 7.72 6.74 
processor 

CPT for the Inlet 7.57 7.12 7.46 7.67 7.66 6.01 
processor 
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and modified SPARC 
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Figure 6. 4. Cycles per TLO instruction comparison of the CM5, 
Jmachine (modified to include floating point hardware and cache), 
CM5 (modified to include a better network interface) and the CM5 using 
modified SPARC chip and inlet processor. 
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7. HARDWARE MODIFICATIONS AND CONCLUSION
 

7. 1. Hardware modifications required to implement the proposed changes 

7. 1. 1. SPARC processor pipeline 

The SPARC processor has a fourstage deep pipeline [12]. Each stage of the proces­

sor pipeline performs a subset of operations that are needed to complete the execution of an 

instruction. A brief description of each pipeline stage follows: 

1. Fetch Stage In this stage of the pipeline, a new instruction addressed by the program 

counter is fetched. 

2. Decode Stage In this stage, the instruction is decoded and source operands are read from 

the register file. The source operands read during this stage are passed to both the Execution 

Unit and the Instruction Fetch Unit for execution of the instruction in later stages. The de­

code stage of the pipeline is also used to generate the next instruction address (and in the case 

of branches, the branch target address). 

3. Execute Stage In this stage, the Execute Unit performs arithmetic and logic operations 

on the operands read during the decode stage. The results of these operations are saved in 

a temporary result register before they are actually written into the destination register. For 

loads and stores the effective address for the operands is also calculated in this stage. 

4. Write Stage The write stage marks the end of an instruction execution in the pipeline. 

In this stage a decision is made whether to write the results into the register file, which means 

the instruction has completed successfully, or to prohibit any changes in the state of the pro­

cessor. The write stage will abort if an exception is raised during the execution of that 

instruction. Figure 7.1. shows the working of the fourstage pipeline. 
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Figure 7. 1. SPARC processor's four stage pipeline 

7. 1. 2. Internal Instructions 

The state machine and the controls of the SPARC processor are designed so that each 

multiplecycle instruction behaves like several consecutive singlecycle instructions. This 

is accomplished using internal instructions which are generated automatically by the Fetch 

Unit and are injected into the processor's pipeline as they are needed. Load and store instruc­

tions are examples of instructions that need more than one cycle to complete. Figure 7.2 

shows a singleword store instruction which takes two extra cycles in the pipeline to com­

plete. 
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Bub 18

IF ID EX1
 

Bub BubEX2
 

Bub EX3 WR 

EX1 Stage: Effective Address is calculated
 

EX2 Stage: Address is kept on the bus for checking write access
 

EX3 Stage: Data is kept on the bus
 

Remaining stages of the internal instructions are filled by bubbles as shown 

Figure 7. 2. Execution of the store instruction 

7. 1. 3. Pipeline stages for cdbp instruction 

As seen in Chapter 5, the cdbp thr_addr instructions checks the count; if the 

count is zero control transfers to the thread pointed by thr_addr; else the control transfers 

to the thread pointed by r_lcv and r_lcv has to be updated. 

The operations of a cdbp instruction in the various pipeline stages are as follows. 
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Bub

cdbp IF	 ID EX1 'I 

IF+1 Bub EX2 Bubdelay slot
 

PC+thr_addr. IF 
Bub EX3 WR 

(flushed) 

IF 

r_lcv+cbbase 

EX1 Stage: r_lcv+cbbase is generated and loaded into PC 

EX2 Stage: Calculate icv+2 

EX3 Stage: Put lcv+2 on the bus and load the addressed value 
into temporary ALU register. 

WR Stage: Write back the value into the register r_lcv 

Figure 7. 3. Execution of cdbp instruction when the count is not zero 

i) When the count is not zero: 

a)Fetch Stage: Fetch the cdbp instruction. 

b)Decode Stage: Decode the instruction and compute PC+thr_addr. Operands 

r_lcv and cbbase (which are implied) are read from the register file. 

c)Execute Stage(EX1): By this time the condition code from the previous instruction is 

avail able. Thus, if the condition is not true (r_cnt is not equal to 0), the address 

r_i cv+cbbas e is generated and loaded into PC. If the condition is not true, nothing has 
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to be done in this stage and the following stages are skipped.
 

d)Execute Stage(EX2): Increment the stack pointer. 1cv4--lcv+ 2.
 

e)Execute Stage(EX3): Put the address 1 cv+ 2 on the bus and load the value into the tempo­

rary register.
 

f)Write Back Stage(WR): Write back the value into the register r_lcv.
 

j)Fetch Stage(F2): In this stage the delay slot instruction is fetched.
 

k)Fetch stage(F3): Here the instruction at address r_lcv+cbbas e is fetched.
 

Thus, when the count is not zero, the cdbp instruction, as seen from Figure 7.3, takes 3
 

execute cycles before the next instruction can enter the execute stage.
 

ii) When the count is zero: 

. The execution of this is shown in Figure 7.4. The operation in the pipelineis as follows. 

Fetch Stage: Fetch the cdbp instruction. 

Decode Stage(D 1): Decode the instruction and compute PC+thr_addr. Operands r_lcv 

andcbbase (which are implied) are read from the register file. 

Thus as seen from the Figure 7.4, cdbp instruction takes 2 cycles before the target instruc­

tion can enter the execute stage. 

7. 1. 4. Hardware changes needed to implement the cdbp instruction 

As seen from the above discussion, the cdbp instruction can be supported in the 

fourstage pipeline of the SPARC processor. The only change that needs to be done is to 

redesign the control section to give the necessary control signals when this instruction is de­

coded. In SPARC processor, the register file is decoded from the operand bits of the instruc­

tion. However, in the cdbp instruction the operands r_lcv and icy are implied and are 

not specified in the instruction. Hence, the control unit has to decode the register file in this 

case. The circuit for this is shown in Figure 7.5. Similar circuit is required to decode cbbase. 
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-r -

Bub 1 Bub :

(cdbp) IF ID 

Bub 1 Bub 1 Bub isIF 
(delay slot) i i 

( PC+thr_addr) IF ID I EX 

ID Stage: Compute PC+thr_addr 

Delay Slot fetch: Delay slot instruction is fetched, but since the 
branch is taken to PC+thr_addr this 

instruction has to be flushed 

Figure 7. 4. Execution of cdbp instruction when the count is zero 

MUX
 
Addr. from the register
 
field of the instruction.
 

Addr. of the register 
Decode the register file

r_lcv.
 

Opcode for the cdbp instruction 

Figure 7. 5. Decoding the register file for the cdbp instruction 
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7. 1. 5. Hardware required to implement the ldi and std instructions 

The ldi and s td instructions are similar to other load and store instructions except 

that the register has to be incremented or decremented by 2. This can be easily done in the 

execute stage of the pipeline if the control unit is designed to give the corresponding control 

signals to the execution unit. 

7. 1. 6. Implementation of the Double Ended Queue for the LCV 

As seen in Chapter 6, the LCV in the modified design is implemented as a double 

ended queue. Since the queue grows both sides, care must be taken to see that the available 

memory is not exceeded. As the compiler has an estimate of how big can the LCV be, this 

is not a serious problem. 

7. 1. 7. Hardware to assert the LOCK signal 

As seen in section 6.1, the main processor has to assert the LOCK signal whenever 

it is updating the synchronization count. This has to be asserted until the count is stored back 

or the count is zero. Since the load and decrement instructions are used to manipulate the 

count, these are used in the circuit. The circuit for this is shown in Figure 7.6. 

7.2. Future work and conclusion 

The results from the Figure 6.4 prove that a conventional RISC processor can support 

finegrain parallelism with minimal hardware changes. As seen in chapter 5, a 6% increase 

in the execution speed is achieved by adding the instructions cdbp, ldi and std. These 

can be incorporated in the ISA of the SPARC processor by redesigning the control unit. 

As seen earlier, using a coprocessor for inlets results in a much lower CPT. But, while 

designing a system with a coprocessor for inlets, issues like atomicity and coherency cannot 
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Instuction I 

Opcode for load byte 
instruction 

Comparator 

Instruction I+1 

Opcode for decrement 

Comparator 

LOCK 

Instruction opcode 

Opcode for store byte 
instruction 

Comparator 

R 

SR Flip Flop 

ALU result is zero 

Figure 7. 6. Circuit to assert the LOCK signal 

be ignored. Using a coprocessor for inlets slightly increases the overhead of various dynamic 

scheduling operations. For example, whenever the BHOLD signal is asserted, the main pro­

cessor has to wait for accessing the frame memory. Similarly, if the POST from the coproces­

sor is to the currently running frame and the LOCK signal is asserted by main processor while 

the coprocessor is updating the count, the coprocessor has to check the count from the frame 

location before the decremented count can be stored back. Also as seen in section 6.1, chang­

ing the simple stack structure of the LCV resulted in 4 additional cycles for posting a thread 

to the currently running frame. In addition, whenever the main processor is updating the 
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entry count, the inlet processor is idle. But since the two processors are executing simulta­

neously, this CPT is shared between the processors and the overall execution is faster as 

shown in the Figure 6.4. In addition, the overhead due to polling, which is about 4%, is re­

duced. 

In our design, the LCV is implemented as a double ended queue. Here, the threads 

posted from the inlets are appended at the bottom of the LCV. Another attractive design al­

ternative is to post the threads from inlets to the currently running frame into the RCV of the 

frame rather than the LCV. In this design, the processor executes the current frame until there 

are no enabled threads; then the leavethreads is executed. The leavethread, in this design, 

has to check the size of the RCV of the current frame before swapping to a different frame. 

If the RCV size is not zero, then the RCV is copied to the LCV and the current frame is 

executed; otherwise, execution is transferred to a different frame. 

The attractive features of posting a thread to RCV rather than LCV include the imple­

mentation of the LCV as a simple stack. The additional cost involved in posting a thread 

(like swapping the leavethread pointer with the thread to be posted) are removed. On the 

other hand, the leavethread has to do the extra work of coping the RCV to LCV if the RCV 

size is not zero. 

In either of these design choices for posting a thread to the current frame, the execu­

tion order of the threads from the original implementation (i.e. having a single processor with 

polling) is changed. In the modified design, the threads posted from the inlets are executed 

only when there are no threads enabled by FORKS. This modified scheduling might slightly 

effect the execution time of the program. 

In our design, cache coherency problem is eliminated by using a common cache for 

both the main processor and the coprocessor. While this eliminates the coherency traffic, 

as seen from chapter 6, this choice leaves one of the processors waiting for the bus while the 

other one is using it. Another design choice is to have separate caches for the main processor 
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and the coprocessor. In this case again, the issues of atomicity and coherency have to be ad­

dressed carefully. 

The coprocessor in our design is assumed to be similar to the main processor. Since 

the coprocessor mainly executes only RECEIVE, POST, and NEXT instructions, it can be 

much simpler and can be optimized for these instructions. 

In summary, the results are encouraging and prove that finegrain parallelism can 

be supported on the traditional von Neumann processors with slight hardware modifications. 

These also show that issues like atomicity and message handling are of utmost importance 

and should be considered carefully. 
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