AN ABSTRACT OF THE THESIS OFMICKEY ALTON MCCLENDON for the MASTER OF SCIENCE(Name)(Degree)

Title: A MODEL OF PEANO'S AXIOMS IN EUCLIDEAN GEOMETRY Redacted for privacy

Harry E. Goheen

The purpose of this paper is to show that arithmetic is consistent if Euclidean geometry is. Specifically, a model of Peano's axioms [2] is defined in the space of Euclidean geometry, where Hilberts axioms [3] are taken to be the axioms of Euclidean geometry.

A Model of Peano's Axioms

 in Euclidean Geometryby
Mickey Alton McClendon

A THESIS
submitted to
Oregon State Universityin partial fulfillment ofthe requirements for thedegree of
MASTER OF SCIENCE
June 1969

Redacted for privacy

Professor Jof Mathematics
in charge of major
Redacted for privacy
Acting Chairman of Department of Mathematics

Redacted for privacy

Dean of Graduate School

Date thesis is presented \qquad

Typed by Eileen Ash for \qquad

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Ir. SOME THEOREMS OF GEOMETRY 3
III. A GEOMETRIC MODEL OF PEANO'S AXIOMS 32
BIBLIOGRAPHY 40

A MODEL OF PEANO'S AXIOMS

 IN EUCLIDEAN GEOMETRY
I. INTRODUCTION

An axiomatic system consists of a collection of undefined terms and unproved statements, called axioms, which concern these terms. An axiomatic system is called consistent if no contradiction can ever occur as a result of statements following logically from the axioms. The proof of the consistency of any axiomatic system is then a very complex problem. We may, however, prove that the consistency of an axiomatic system A implies the consistency of a system B by defining a model of B in A. That is, by interpreting the undefined terms of B to be objects in the system A and then showing that the axioms of B can be proved as theorems resulting from the axions of system A. Then any inconsistency in B will imply, through the model, an inconsistency in A.

The following notation will be used throughout the thesis.
(1) Capital letters will be used to denote points.
(2) If A and B are distinct points then
(a) $\underline{A B}$ will denote the unique line incident upon A and B.
(b) $A B$ will denote the set of points on $A B$ which are between A and B.
(c) $\overline{A B}=A B \cup\{A, B\}$.
(d) $\overrightarrow{A B}$ will denote the open ray with origin A which contains the point B.
(3) A ${ }_{B}^{*}$ C will denote that B is between A and C.
(4) The triangle incident upon non collinear points A, B, and C will be denoted $\triangle A B C$.
(5) The phrase such that will be denoted by the symbol
.) • .
(6) The usual symbols of set theory and for quantifiers will be used.

The theorems of Section I will be proved using the classical "steps-and-reasons" scheme. The reader will notice that the phrase a lemma will be used to substantiat some steps of proofs in this section. This phrase means that the step does not follow immediately from the preceeding steps, but rather needs a trivial argument for substantiation. Most generally these lemmas involve a collinearity argument which is mechanical and uninterest.ing in nature.
II. SOME THEOREMS OF GEOMETRY

This section consists of a study of some of the problems of geometry [1] which are related to the betweeness relation of Hilbert's axioms. THEOREM 1.

If A and C are distinct points then there is a point $B \in A C$.

Proof:
Steps

1. \exists a point D not on

AC
2. J a point \quad).
$D \in C E$
3. $\mathrm{E} \ddagger \overline{\mathrm{AC}}$
4. ヨ $\triangle \mathrm{ACE}$
5. ヨa point F •).
$A \in E F$
6. $F \neq D$
7. \exists a line $D F$
6. a lemma
7. Axiom I - 1 .
8. DF meets $\triangle A C E$ at
8. Step 2 and Paschs axiom
9. $B \notin \overline{\mathrm{CE}}$
9. a lemma
10. $B \notin \overline{\mathrm{AE}}$
11. $B \in A C$
10. a lemma.
ll. steps 8,9 , and 10 .

OED

THEOREM 2.

Given three distinct collinear points, denoted A, B , and C , exactly one of them is between the other two.

Proof:
Steps
Reasons

1. At most one of A, B, 1. Axiom II - 2 . and C is between the
other
2. Assume none of $A \stackrel{\star}{B} C$, 2. A proof by contradiction. $A{ }^{\star} B$ or ${ }^{*}{ }^{*} C$ is true
3. \exists a point D not on 3. Axiom I - 8 .

AB.
4. J a point F on 4. Axiom II - 3 .

BD.) • ${ }^{\text {BDF }}$
5. B , C, and F are 5. A lemma.
noncollinear
6. $\exists \triangle B C F$ 6. Definition of triangle.
7. $D \neq A$7. D is not on $A B$.
8. $A D$ meets $\triangle B C F$ in a 8. step 4 and Pasch's axiom.
point $P \neq D$.9. If $P \in \overline{B C}$ then9. A lemma.$\mathrm{P}=\mathrm{A}$.
10. P 末 $\overline{\mathrm{BC}}$ 10. Steps 2 and 9 .
ll. If $P \in \overline{B F}$, then 11. A lemma.
$\underline{B F}=\underline{A D}$
12. If $\underline{B F}=\underline{A D}$, then D 12. A lemma.
is on AB
13. $\mathrm{P} \notin \overline{\mathrm{BF}}$ 13. Steps 3, ll, and 12.
14. $P \in F C$14. Steps 8, 10 , and 13.
15. $\exists Q \neq D \cdot) \cdot$15. Symmetry.
$Q \in F A$ and Q is on
CD
16. $\{\mathrm{A}, \mathrm{P}, \mathrm{F}\}$ is a non- 16. A lemma.colinear set.
17. $\exists \triangle \mathrm{APF}$17. Definition of triangle.
18. QD meets $\triangle \mathrm{APF}$ in 18. Step 15 and Pasch'sa point $R \neq Q$.axiom.
19. If $\mathrm{R} \in \overline{\mathrm{AF}}$ then $\underline{\mathrm{AF}}=$ 19. A lemma.
CD , which implies
D is on $\underline{A C}=\underline{A B}$.
20. $R \in \overline{A F}$ 20. Steps 3 and 19 .
21. If $R \in \overline{F P}$ then $C F=21$. A lemma.
$\underline{C R}=\underline{C D}$ and then
$\underline{C D}=\underline{D F}=\underline{B F}$, which
implies D is on
$\underline{B C}=\underline{A B}$.
22. $R \notin \overline{F P}$
22. Steps 3 and 21.
23. $R \in A P$
23. Steps 18, 20, and 22.
24. $R \neq D$ implies $\underline{A D}=$ 24. A lemma.
AQ , which implies
D is on $A B$.
25. $R=D$
25. Steps 3 and 24.
26. $D \in A P$
26. Steps 23 and 25.
27. $\exists \triangle A P C$
27. A lemma.
28. DB meets $\triangle A P C$ in 28. Step 26 and Pasch's
a point $T \neq D$.
axiom.
29. $T \notin \overline{\mathrm{AP}}$
29. A lemma.
30. If $T \in \overline{P C}$ then30. A lemma.
$T=F$
31. $T \in P C$
31. Step 14, step 30, andaxiom II - 2 .
32. $T \neq P$ and $T \neq C$
33. $T \in A C$
34. If $T=B$ then$B \in A C$
35. $T \neq B$
36. B and T are pointscommon to AB and DB
37. $\underline{A B}=\underline{D B}$
38. D is on $\underline{A B}$
39. Assumption of step2 is false.32. Step 14 , step 30 andsince between is a re-lation concerning pointsand pairs of distinctother points.
32. Step 14 , step 30 and since between is a relation concerning points and pairs of distinct other points.
33. Steps 28, 29, 31, and 32.
34. Step 33.
35. Step 32 and step 2.
36. Steps 28 and 33 for T, and by definition for B .
37. Step 36 and a lemma.
38. Step 37.
39. Step 38 contradicts step 3.

A line incident upon two vertices of a triangle cannct have a point in common with each side of that triangle.

Proof:

Step

1. Let $\triangle \mathrm{ABC}$ be a triangle which has a line
\& incident upon two
of its vertices, say
A and B
2. Assume there is a
point P on ℓ and
on AC
3. $\underline{A B}=\underline{A P}=\underline{A C}$
4. A, B, and C are
collinear
5. There is no point P
on both ℓ and on AC
6. A proof by contradiction

Reason

1. Hypothesis.
 3. Axiom I - 2 (used twice).
2. Def.of triangle.
3. logical consequence.
```
7. & and BC have no 7. symmetry.
    point in common
8. Steps 6 and 7 prove the lemma.
```

QED

THEOREM 4.

If a line ℓ contains one vertex of a triangle, then ℓ either contains another vertex or contains at most one other point of the triangle.

Proof:
Step
Reason

1. let ℓ contain point 1 . assumptions.
B of $\triangle A B C$ and no
other vertex of $\triangle A B C$
and further let $P \neq B$
be on both \& and
$\triangle A B C$
2. $P \notin A B$
3. $\mathrm{P} \notin \mathrm{BC}$
4. $P \in A C$
5. Suppose there is a $P^{\prime} \in\{P, B\}$ on both ℓ and $\triangle A B C$
6. $P^{\prime} \in A C$
7. \& and AC have P and P^{\prime} in common
8. $\ell=\underline{P P^{\prime}}=\underline{A C}$
9. C is on ℓ
10. Step 9 contradicts assumptions of step 1
ll. Step 5 and the assump- ll. as proven by contrations of the theorem are contradictory and therefore the theorem is true.
11. otherwise A is on ℓ.
12. otherwise C is on .
13. a process of elimination.
14. A proof by contradiction.
15. by symmetry with P.
16. steps 4, 6 .
17. Axiom I - 2 .
18. since $\ell=\underline{A C}$.
19. C and B are on ℓ and $\triangle A B C$ diction.

THEOREM 5.

A line ℓ which is not incident upon a pair of vertices of a triangle $\triangle A B C$ can have at most two points in common with that triangle.

Proof:

Step

1. $\ell \neq \underline{A B} ; \ell \neq B C$,
$\ell \neq$ AC
2. suppose ℓ meets
$\triangle A B C$ in three distinct
points D, E, and F.
3. \& has at most one
point on any side of
$\triangle A B C$ in common with it.
4. A is not an point of ℓ 4. theorem 4 and step 1 .
5. B and C are not on ℓ. symmetry
6. \& has exactly one 6. steps $2,3,4$ and 5 .
point in common with
each side of $\triangle A B C$
7. a lemma.

Reason

1. Axiom I - 2 .
2. a supposition, for a proof by contradiction. lemma.
3. let $D \in B C, E \in A C$; 7. an arbitrary selection$F \in A B$
4. ヨ a point P •).8. Axiom II - 3 .
$F \in E P$
5. P is not on CE
6. a lemma.
7. $\exists \triangle \mathrm{PCE}$10. Def of triangle.
1l. $A B$ has a pointll. step 7; Pasch's axiom.
$Q \neq \mathrm{F}$ on $\triangle \mathrm{PCE}$
8. $\mathrm{Q} \ddagger \overline{\mathrm{PE}}$12. a lemma.
9. $Q \notin \overline{\mathrm{CE}}$
10. $Q \in C P$13. a lemma.
11. $Q \notin B C$
12. steps ll, 12 , and 13.
13. a lemma.
14. Q is a point of16. a lemma.
BC iff $Q=B$
15. if $B \neq Q$ then$\triangle B Q C$
16. DE has a point $R \neq D$
17. step 7 and Pasch'swhich is also on $\triangle B Q C$
18. $\mathrm{R} \not \ddagger \overline{\mathrm{BC}}$
19. $\mathrm{R} \ddagger \overline{\mathrm{BQ}}$
20. $R \in C Q$
21. $\underline{\mathrm{PC}}=\mathrm{CQ}$
22. R is on CQ
23. R is on $P D$
24. a lemma.
25. a lemma.
26. steps 18,19 and 20 .
27. step 14, axiom I-2. triangle. axiom.
28. steps 21 and 22.
29. step l8, since $D E=P D$.
30. $R \neq P$
31. $\underline{P C}=\underline{P D}=\underline{D E}$
32. C is a point of DE
33. step 27 contradicts step 5
34. Supposition of steps 29. as proved, by conone and two are 25. a lemma based upon axiom II - 2.
35. a lemma.
36. since $\quad \mathrm{PC}=\mathrm{DE}$.
37. since $\ell=\mathrm{DE}$. tradiction.

QED

Corollary 1

A line cannot have a point in common with each side of a triangle.

Proof: The corollary follows directly from theorems 3, 4, and 5 .

Theorem 6

Given a triangle $\triangle A B C$ there is a line ℓ contain ing A and no other point of the triangle.

Proof:

Step
Reason

1. ヨD.). $A \in C D$
2. $D \not \equiv \overline{\mathrm{BC}}$
3. $\exists \triangle B C D$
4. \exists an $E \in B D$
5. $\mathrm{AE}=\ell$ meets $\triangle \mathrm{BCD}$ on two sides, at A on $C D$ and at E on

BD
6. \& does not meet $\triangle B C D$ on $B C$
7. neither B nor
C is on ℓ
8. If ℓ contains
a point of AC then
it contains. \mathcal{C}^{-}

1. Axiom II- 3 .
2. a lemma.
3. B, C, and D are noncollinear.
4. Theorem 1.
5. steps 2, 4 .
```
9. If & contains a 9. a lemma.
    point of AB then it
    contains B
10. & contains no points 10. steps 6, 7, and 8
    of AC or of AB
11. & meets }\triangleABC\mathrm{ at }A\mathrm{ 11. steps 4, 5, 6 and 9.
    and no other point of
    \triangleABC.
```

QED

Theorem 7

Given four distinct collinear points A, B, C, and D such that $A{ }^{A} B C$, then a necessary and sufficient condition for $B \stackrel{*}{C} D$ is $A \stackrel{*}{C D}$.

Proof of sufficiency:

Step

Reason
9. suppose $P \in B F$
9. It will be shown that this is inconsistent with step 1 and hence $P \in \overline{B D}$.
10. steps 6, 9 and Pasch ${ }^{5}$ axiom.
11. $Q \notin \overline{B F}$11. a lemma.
12. $\in \overline{\mathrm{AF}}$
12. this would imply CE
contains points of threessides of $\triangle A D F$, whichcontradicts corollary 1 ,13. $Q \in A B$13. steps 10,11 and 12.
14. $Q \in A B$ implies $Q=C$ 14. a lemma.
15. $C \in A B$
15. steps 13 and 14.
16. step 15 contradicts 16. Axiom II - 2 .
step 1
17. step 16 implies that 17. step 8, reason 9.
$C \in B D$
QED
Proof of necessity:

Reason

Step

1. suppose $A{ }^{*} C$ and $B^{*} C D$
2. steps 2 - 5 of proof of sufficiency hold
3. CE meets $\triangle A F D$ in a point $P \neq E$
4. $P \notin \overline{\mathrm{DF}}$ 1. a supposition. 2. as proven above. 3. step 2 and Pasch's axiom.
5. a lemma.
```
5. If }P\in\overline{AD}\mathrm{ then }P=C 5. a lemma.
    and hence }C\inA
    6. suppose P G AF
    6. It will be shown that
    this supposition leads
    to a contradiction and
    hence }P\in\overline{AD}
    7. \overline{CE}}\mathrm{ meets }\triangleABF in 7. Pasch's axiom.
    a point Q 
    8. Q AB 8. symmetry from the above
        proof.
    9. Q }QAB=>Q=
    9. a lemma.
10. }C\inA
l0. steps 8 and 9 .
11. step 10 contradicts
11. Axiom II - 2.
    step l.
12. C E AD 12. steps 5, 6, and ll:
    reason 6.
                                    QED
```


Corollary 1.

Given four distinct collinear points A, B, C_{r} and D
 but not $\stackrel{\text { B }}{\mathrm{B}} \mathrm{D}$.

Proof: The corollary is simply the contrapositive statement of Theorem 7, where the symols A, B, C, and D of the theorem are renamed by the permutation (BDC).

Theorem 8

Given four distinct collinear points, denoted P,
Q, R, and S, these points may be renamed A, B, C, and
D in exactly two ways such that $A \stackrel{*}{B} C$ and $B \stackrel{*}{C} D$ (and hence $\stackrel{\star}{A} D$ and $A \stackrel{*}{B} D$).

Proof: assume without loss of generality that $\mathrm{P} \mathrm{Q} R$.

Step

1. Either $Q \stackrel{*}{R} S, Q \stackrel{\star}{S} R$, or RQ*S
2. If $Q \stackrel{\star}{R} S$, rename as follows: $\mathrm{P} \rightarrow \mathrm{A}$, $Q \rightarrow B, R \rightarrow C, S \rightarrow D$
3. another method of re- 3. This also give $A \stackrel{\star}{B} C$ naming P, Q, R, and S
is found by the per-
mutation ($A D$) ($B C$) of
the above names
4. In the case $Q \stackrel{*}{\mathrm{R}} \mathrm{S}$,
naming the points
other than as in steps
2 and 3 is not appropriate.
5. Theorem 2.
6. This gives $A \stackrel{\star}{B} C$ and BC. and $B \stackrel{*}{C} D$, if $Q \stackrel{*}{R} S$.
7. trial and error (may logically be reduced to three trials, by use of symmetry.)
8. If $Q \stackrel{*}{S} R$, then $P Q_{Q}^{*} R$ 5. Theorem 7. implies that P * ${ }^{*}$ S
9. If $Q{ }^{*} R$, then rename
10. these are the only ap$P \rightarrow A, Q \rightarrow B, S \rightarrow C$, propriate ways of re$R \rightarrow D$ or permute naming the points in these names by (AD) (BC)
11. If RQ*S , then either $P \stackrel{*}{P} Q$ or ${ }^{*} P Q$
12. PQ้S is impossible by Corollary 2.
13. If $P \stackrel{*}{Q} S$ and $P \stackrel{*}{S} Q$, then 8. same reason as step 6. rename $P \rightarrow A, S \rightarrow B$,
$\mathrm{Q} \rightarrow \mathrm{C}, \mathrm{R} \rightarrow \mathrm{D}$, or
permute these names by
(AD) (BC)
14. If $\mathrm{RQ}_{\mathrm{Q}} \mathrm{S}$ and SP Q Q , then 9. same as 8.
rename $S \rightarrow A, P \rightarrow B$,
$\mathrm{Q} \rightarrow \mathrm{C}, \mathrm{R} \rightarrow \mathrm{D}$, or
permute these names by
(AD) (BC)
15. all cases have been exhausted and in each case the theorem was shown to be true.

Theorem 9

$$
\text { If } P_{1}, P_{2}, \ldots, P_{n} \text { are } n \text { distinct collinear }
$$ points, where $n \geq 4$, then there are exactly two ways in which these points may be renamed $A_{1}, A_{2}, \ldots, A_{n}$ so that $A_{j} \in A_{i} A_{k}$ jiff $i<j<k$.

Proof:

Step

Reason

1. suppose the theorem is true for $n=k-1$,
2. a supposition for a
$\mathrm{k} \geq 5$
3. Given k distinct
4. step 1
collinear points,
$P_{1}, P_{2}, \ldots, P_{k}$, we
may rename P_{1}, P_{2}, \ldots,
P_{k-1} by A_{1}, \ldots, A_{k-1}
in exactly two ways •).
$A_{j} \in A_{i} A_{k} \quad$ ff
i $<\mathrm{j}<\mathrm{k}$
5. either $\mathrm{A}_{1} \stackrel{\star}{\mathrm{~A}}_{\mathrm{k}-1} \mathrm{P}_{\mathrm{k}}$, 3. Theorem 2 .
$\mathrm{A}_{1} \stackrel{\star}{\mathrm{P}}_{\mathrm{k}} \mathrm{A}_{\mathrm{k}-1}$, or
$P_{k} \stackrel{\star}{A}_{l}{ }_{\mathrm{A}}^{\mathrm{k}} \mathrm{-l}$

$$
\begin{aligned}
& \text { 4. If } A_{l} \stackrel{\star}{A}_{k-l} \mathrm{P}_{\mathrm{k}} \text {, then } \\
& A_{i} \stackrel{\star}{A}_{j} P_{k} \text { for every } \\
& \text { pair (icj) inf } \\
& \text { i < j } \\
& \text { 5. If } A_{l} \stackrel{*}{A}_{k-1} P_{k} \text {, nam- 5. step } 2 \text { and } 4 . \\
& \text { ing } P_{k} \rightarrow A_{k} \text { satisfies } \\
& \text { the conditions needed } \\
& \text { in the renaming of the } \\
& \text { points } \\
& \text { 6. Since there is no choice 6. step } 2 \text { and } 5 . \\
& \text { in naming } P_{k} \text { as } A_{k} \text {, } \\
& \text { there are two renaming } \\
& \text { of } P_{1}, \ldots, P_{k} \text { as } \\
& \left.A_{1}, \ldots, A_{k} \cdot\right) \cdot \text { the } \\
& \text { theorem conclusion holds } \\
& \text { 7. If } P_{k} \stackrel{\star}{A}_{1} A_{k-1} \text {, then 7. a renaming. } \\
& \text { rename } A_{i} \rightarrow A_{i+1} \\
& \text { i }=1,2, \ldots \mathrm{k}-\mathrm{l} \\
& \text { and name } \mathrm{P}_{\mathrm{k}} \rightarrow \mathrm{~A}_{1} \\
& \text { 8. Step } 7 \text { results in exact- } \\
& \text { 8. There is no choice for } \\
& \text { lb two satisfactory re- } \\
& \text { namings of } \mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}} \text {, } \\
& \text { depending upon the mri- } \\
& \text { final two renaming by } \\
& A_{1}, \ldots, A_{k} \text { of step } 2 \\
& \text { 4. Theorem } 7 . \\
& \text { the new name of } \mathrm{P}_{\mathrm{k}} \text {. }
\end{aligned}
$$

9. If $A_{1} \stackrel{\star}{P}_{k} A_{k-1}$, then 9. renaming by step 1. suppose A_{k-1} for
some $j \cdot) \cdot l \leq j \leq k$
and rename the points
of $\left\{P_{1}, \ldots, P_{k}\right\} \quad-$ $\left\{P_{j}\right\} \quad$ by $A_{1}^{\prime}, \ldots, A_{k-1}^{\prime}$
so that the conditions
of the theorem hold
10. The we have $A_{1}^{\prime} \stackrel{*}{A}_{k-1}^{\prime} P_{j}$ lo. follows from step 9.
11. Rename P_{j} by $A_{k}^{\prime} \quad$ ll. a renaming.
12. step 9 and 11 constitute 12 . same reason as step 8.
a satisfactory renaming
of P_{1}, \ldots, P_{k}
13. In each of the three 13. step 6, 8, 12 .
cases stated in step 3,
the theorem is true
14. The truth of the 14. step 13.
theorem for $n=k-1$
implies the truth for
$\mathrm{n}=\mathrm{k} \quad \mathrm{k} \geq 5$
15. Since the theorem is 15. axiom of induction.
true for $k=4$,
step 14 implies that
the theorem is true

Every line has an infinite number of points upon it.

Proof:

Step

Reason

1. Every line has at least 1. Axiom I - 5 . two distinct points, A
and C
2. $\exists \mathrm{D} \cdot) \cdot \mathrm{C} \in \mathrm{AD} \quad$ 2. Axiom $I I$ - 3 .
3. $\exists \mathrm{B} \cdot) \cdot \mathrm{B} \in \mathrm{AC}$
4. Theorem 1.
5. $D \neq B$
6. Axiom II - 2, steps 2,3.
7. A, B, C, and D are
8. steps $2,3,4$. distinct
9. every line contains at 6. step 5.
least 4 distinct points
10. assume that there is a 7. an assumption for a line ℓ containing $n \quad$ proof by contradiction.
points P_{1}, \ldots, P_{n},
where $4 \leq n$. With n a finite number
11. The n points may be 8. Theorem 9. renamed $A_{1}, A_{2}, \ldots, A_{n}$ so that $A_{j} \in A_{i} A_{k} \quad$ iff $i<j<k$
12. $\exists \mathrm{P}$ in $\ell \cdot)$.
13. Axiom II - 3 .
$A_{n-1} \stackrel{*}{A}_{n} P$
14. $P \neq A_{j} j=1,2, \ldots, n$ lo. since $j \leq n$, this follows from step 8.
ll. step 10 contradicts ll. ℓ contains at least assumption of step 7 $n+1$ points.
15. Theorem is true
16. follows from the contradiction.

QED

Theorem 11

A point P of a line ℓ separates the set of points on ℓ into three disjoint nonempty classes .). distinct points Q and R are in the same class iff $P \notin \overline{Q R}$.

Proof.

Step

Reason

1. \exists a point $A \neq P$ on \quad 1. Axiom I - 5 .
ℓ
2. Define two classes of point of the set of points on ℓ, denoted S_{1} and S_{2} as follows:
a point B is in S_{I} if $P \in A B$ and B is in S_{2} if $B \neq P$ and
$P \notin A B$ and define a third class as $\{P\}$
3. $S_{1} \cap S_{2}=\varnothing$
4. $P \notin S_{1}$
5. $P \notin S_{2}$
6. S_{1}, S_{2} and $\{P\}$ are
disjoint (Pairwise)
7. $\{P\} \neq \varnothing$
8. \exists a point B •).
$P \in A B$
9. $S_{1} \neq \varnothing$
10. $\mathrm{S}_{2} \neq \varnothing$
11. Let Q be a point of
ℓ
12. If $Q=P$, then
$Q \in\{P\}$ and if $Q=A$
then $Q \in S_{2}$
13. definitions.
14. Axiom II - 2 .
15. $P \in A P$.
16. $\mathrm{P}=\mathrm{P}$.
17. steps $3,4,5$.
18. $P \in\{P\}$.
19. Axiom II - 3 .
20. step 8 .
21. A $\neq \mathrm{P}, \mathrm{P} \ddagger \mathrm{AA}=\varnothing \Rightarrow$

$$
A \in S_{2}
$$

11. Show that $Q \in S_{1}$ or $Q \in S_{2}$ or $Q \in\{P\}$.
12. Reason 10 .
13. If $Q \neq P$, then either 13. Theorem 2. $P \in A Q$ or $P \in A Q$,
which implies $Q \in S_{1}$ or $Q \in S_{2}$ respectively
14. $\{\mathrm{P}\}, \mathrm{S}_{1}$, and S_{2} are 14. steps 6, 7, 8, 9, 10r nonempty, disjoint sets and 13.
whose union consists of
all the points on ℓ
15. Suppose $P \notin \overline{Q R}$, where 15 . show this implies that Q and R are distinct Q and R are in the points on ℓ same class.
16. $\mathrm{P} \not \ddagger \mathrm{QR}$ implies $\mathrm{P} \mathrm{Q}_{\mathrm{Q}}^{\mathrm{R}}$ 16. Theorem 2. or $P \stackrel{*}{R} Q$
17. If $P=Q$ then 17. $\overline{P R}=\{P, R\} \cup P R$.
$P \in \overline{P R}=\overline{Q R}$
18. $P \neq Q$ 18. steps 15 and 17.
19. $Q \in S_{1}$ implies $A{ }^{*} Q \quad$ 19. step 2.
20. $Q \in S_{1}$ and $P{ }_{Q}^{*} R$ 20. step 19 and Theorem 7. implies $A^{*} R$, which
implies $\quad R \in S_{1}$
21. $Q \in S_{1}$ and $P R Q$ implies $A^{*} \mathrm{P}$, which
implies $\quad R \in S_{1}$
22. step 19 and Theorem 7.
23. $P \neq Q R$ and $Q \in S$,
24. Steps 16,20 , and 21 .
implies $R \in S_{1}$ and
$R \in S_{l}$ implies $Q \in S_{l}$
(by symmetry)
25. $Q \in S_{2}$ implies $P \notin A Q$ 23. step 2 .
and $Q \neq P$
26. $Q \in S_{2}$ and $\stackrel{*}{P Q} Q$ or 24. a lemma. $\mathrm{PQ} R$ implies $R \in S_{2}$
27. Distinct points Q and 25. steps 16, 20, 21, 24. R are in the same set, among S_{1} and S_{2}, if $P \notin Q R$
28. Now change the assump- 26. show that this implies tion of step 15 to read that Q and R are $P \in \overline{Q R}$, for distinct not in the same set points Q and R on ℓ among S_{1}, S_{2} and \{P\}.
29. If $Q=P$ then $P \neq R$ 27. Since R and Q are and hence $R \notin\{P\}$, distinct. but $Q \in\{P\}$.
30. If $Q \in S_{1}$ then 28. Corollary 2 . $\stackrel{*}{Q P R}$ and $A{ }^{A} Q$ implies that $P \& A R$.
31. $Q \in S_{1}$ implies $R \in S_{2}$ 29. step 14 and step 28. or $R \in\{P\}$
32. If $Q \in S_{2}$ then $Q \stackrel{*}{P R}$ 30. Theorem 7.
and PA A or P \&
implies that $P \in \overline{A R}$
33. $Q \in S_{2}$ implies $P \in A R$ 31. step 30 , step 2.
or $P=R$ and hence
$\mathrm{R} \neq \mathrm{S}_{2}$
34. The theorem has been 32. remains to be shown.
proven except there is
left to show that the
construction is inde-
pendent of the rbi-
tracy point A of
step 1.
35. suppose we choose $A^{\prime} \neq A$ of step 1 .
36. show that replacing A by A^{\prime} in step 2 will separate the points of \& into the same three sets, except possibly
for a permutation of names of sets S_{1} arm S_{2}.

QED

The sets S_{1} and S_{2} of theorem 11 are called sides of ℓ with respect to P, or rays of ℓ with origin p. Since the sets $\{P\}, S_{1}$, and S_{2} form a partition of the points on ℓ, any one of these sets may be desionated by designating a point of that set. Hence we may use the notation $\overrightarrow{P A}$ to designate the ray of ℓ, with origin P. which contains the point A. Special note should be made of the fact that $P \neq \overrightarrow{P A}$.

It should be noted that mathematical induction is
used as a method of proof in theorems nine and ten. These two theorems are introduced simply for intuitive security and are not used in the development of the model of piano's axioms found in the next section. Noting this, we see that no circularity of argument results from the use of indrot-
ion found in these proofs. The purpose of theorem ter is to assure us that the cardinality of the set of points on a given line is sufficiently large to enable us to find a one-to-cne correspondence between the set of natural numbers and some subset of this set. Theorem 9 convinces us that, given such a subset, we may "line up" the points of this subset in a manner analogous to the way the natural numbers are "lined up".
III. A GEOMETRIC MODEL OF PEANO'S AXIOMS

In order to develop a model of Peano's axioms in Euclidean geometry the undefined terms of Peano's axioms must be defined as objects of Euclidean geometry. This implies that we must define a set N of Euclidean object:s, the elements of which will be called natural numbers and we must define a map \mathscr{O}° from N into N, which will be known as the successor map. These definitions must be made such that Peano's axioms, applied to N and \varnothing, may be proven, using only Hilbert's axioms and Aristotelian logic, as theorems of geometry. It should be noted that neither a recursive definition nor any other use of induction may be used to define N or $\varnothing 8$, since this would lead to a circular argument when an attempt is made to prove Peano's axiom of induction. Keeping this in mind we proceed as follows:

Peano's axioms for the natural numbers may be stated as follows: The undefined terms of Peano's axioms are a set N, called the set of natural numbers and whose elements are called natural numbers, and a mapping \varnothing, of N into N, called the successor map. The image of a natural number n under the successor map is called the successon of n. Concerning these undefined terms we have the following axioms.
I. $N \neq \varnothing$.
II. \mathscr{S} is one-to-one.
III. $\&$ is not onto N (The range of $\&$ is not N.)
IV. If M is a subset of N such that (1) M con-tains an element of N which is not in the range of \mathscr{S} and (2) if n is in M then the successor of n is in M, then $M=N$.

Giving the undefined terms of Peano's axioms concrete definitions as objects of Euclidean geometry is the next step in developing a model. Intuitively, the natural numbers will be defined as "equally spaced" points on a given half-line with origin P_{o}. Then the successor of a natural number P will be defined as the point Q among these "equally spaced" points that is "directly after" P. Figure 1 shows that for a given "spacing"

Figure l. Three sets of "equally spaced" points.
on a given half-line. The definition of the set of natural numbers must then select one of these sets of equally spaced points.

The "spacing" mentioned above will be defined as follows. First, given a set M of points, two points A and B in M are said to be adjacent provided no member of M is between A and B. Next, a pair of points A and B are called CD-spaced, where C and D are arbitrary points, provided $\overline{A B} \cong \overline{C D}$. Finally, a set of points are said to be CD-spaced iff the set is a collinear set and adjacent points of the set are CD-spaced. Hence a set of points that are CD-spaced will be equally spaced points along a line.

Choose now a line l and a point P_{0} on $1, P_{0}$ divides the set of points on 1 into three disjoints sets, the set $\{\mathrm{P}\}$ and the two rays along 1 with origin P_{0}. Choose one of these two rays by choosing arbitrarily a point $\mathrm{P}_{1} \neq \mathrm{P}_{0}$ on l , and then considering the ray containing P_{1}. This ray, denoted by $\overrightarrow{\mathrm{P}_{0} \mathrm{P}_{1}}$, or by \vec{r} will be used as the source of points from which the points destined to be defined as the natural numbers of our model will be chosen.

Preliminacy to selecting points from the ray \vec{r} the following definition will be made.

Definition 1. Define a function $T: \overline{\mathrm{P}_{0}{ }^{\mathrm{P}} 1} \longmapsto \overline{\mathrm{P}_{0} \mathrm{P}_{1}}$ by
$T(P)=Q$, where $\mathrm{P}_{0}{ }^{*} \mathrm{E} \mathrm{Q}$ and $\overline{\mathrm{P}_{0} \mathrm{P}_{1}} \cong \overline{\mathrm{PQ}}$.
To prove that T is a well defined function we must show that $T(P)$ is uniquely defined and that the range of T is in the ray $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$. Knowing that P is in the open line segment $P_{0} T(P)$ is enough to designate the ray of 1 with origin P_{0} to which $T(P)$ belongs. Then axiom III - l of Hilbert's axioms assures us that there is a unique point Q on this designated ray such that $\overline{P_{0}{ }^{\mathrm{P}} 1} \equiv$ $\overline{P Q}$ and hence $T(P)=Q$ is unique. That Q is on the ray $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$ follows from the fact that $\mathrm{P} \in \mathrm{P}_{0} \mathrm{Q}$ and $P \in P_{0} P_{1} \cdot{ }^{1}$

Now, using the function T and set intersection, the set N of natural numbers will be defined. Let A be any subset of the ray $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$. Then let A be called a $\mathrm{T}-$ subset of $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$ if and only if (1) $\mathrm{P}_{1} \in \mathrm{~A}$ and (2) $P \in A$ implies $T(P) \in A$. Designate the set of all $T-$ subsets of $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$ by \mathcal{J}.

Definition 2. Define the set N of natural numbers by the

1 To show Q is on the given ray note that $P \in \overline{\mathrm{P}_{0} \mathrm{P}_{1}}$
 case $P \in P_{0} Q$ and $P_{0}{ }_{0}{ }^{*}{ }_{1} P$ implies by lemma that $P_{1} \in P_{0} Q$ and hence Q is on the given ray. In the second case the conditions $P_{0}{ }^{*} P_{1}$ and $P \in P_{0} Q$ imply lemma that P_{0} is not in ${ }^{Q P} 1_{1}$ and hence Q is on the given ray.
identity

$$
N=\bigcap_{A \in \mathcal{J}} A
$$

Definition 3. Define the successor map $\mathscr{B}: \mathrm{N} \longmapsto \mathrm{N}$ to be the restriction of the map T to the subset N of $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$

Intuitively it can be seen that a T-subset of $\overline{P_{0}{ }^{P_{1}}}$ is a collection of "infinite" $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$ - spaced sets, one of which is the subset N. Then we might guess that N it. self is a T-subset, and hence the smallest T-subset, and also N could be conjectured to be the largest $P_{0} P_{1}-$ spaced subset of $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$ which contains the point P_{1}. Both of these conjectures will prove to be true.

Before proceeding any further we should ask if the set of natural numbers and the successor map have been well defined. First, considering the definition of T-subset, it can be seen that a condition on the points of $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$ has been made and this condition specifies certain subsets of $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$ to be T -subsets. Then we might ask if \mathcal{J} is a well defined set. That \mathcal{I} is well defined follows from the fact that it is the subset of the power set of $\overline{\mathrm{P}_{0}{ }^{P_{1}}}$ whose elements are specified to be T-subsets. Hence the definition of N as an intersection of T-subsets is well defined. Next we see that $\&$ is single valued, since T is, and hence the successor map is well defined. We need also to show that the range of δ is actually contained in N, as indicated above. This leads to the following
theorem.
THEOREM 1. \mathscr{P} maps N into N .
Proof. Let P be a point in N. Then the definition of N implies that $T(P)$ is in N. But since $P \in N$, $T(P)=\&(P)$ and, by definition of $\&, \&(P)$ is in N. Hence for every $P \in N, \mathcal{S}(P) \in N$.

QED
The set N and the map $\&: N \longmapsto N$ have been defined from geometric objects and terms without the use of induction. The proof of Plano's axioms as theorems of geometry follows. The theorems derived from Peano's axioms in our model will be called propositions.

Proposition I. $N \neq \varnothing$.

Proof. $P_{1} \in N$, since $N=\bigcap_{A \in \mathcal{J}} A$, where $P_{1} \in A$ for each $A \in \mathcal{J}$.

QED
Proposition II. $\&$ is one-to-one.
Proof. Suppose $\ell(R)=Q$ and $\&(P)=Q$. This implies that R and P are in the open line segment $P_{0} Q$ and hence both on the ray $\overline{Q P}_{0}$. However, axiom III - 1 assures us that there is a unique point B in $\overline{Q_{0}}$ such that $\overline{\mathrm{P}_{0} \mathrm{P}_{1}} \cong \overline{\mathrm{BQ}}$. But since the definition of \mathcal{S} implies that $P Q \cong P_{0} P_{1} \cong R Q$, it must be the case that $P=R$.

Proposition III. \& is not onto.
Proof. Consider the point P_{1}, which is in N. The existence of a point $P \in \mathbb{N}$ such that $\not \subset(P)=P_{1}$ implies that $P \in P_{0} P_{1}$ and $\overline{P P}_{1}=\overline{P_{0} P_{1}}$. Now $P \in P_{0} P_{1}$ implies that $P \in \overline{P_{1} P_{0}}$. Then axiom III - l assures us that there is a unique point B in $\overline{P_{1} P_{0}}$ such that $\overline{B P}_{1} \cong \overline{P_{1} P_{0}}$. However $P_{0} \in \overline{P_{1} P_{0}}$ and $\overline{P_{0} P_{1}} \cong \overline{P_{0} P_{1}}$. Hence it must be the case that $P_{0}=P$. However P_{0} is not in $\overline{P_{0} P_{1}}$ and, since $N \in \overline{P_{0}{ }^{P} 1}, P_{0} \in N$. Hence there is no point in N whose image under $\& \mathbb{P}_{1}$.

Before proving Peano's axiom of induction the following lemma will be proved.

Lemma. P_{1} is the only element of N not in the range of $\&$.

Proof. Suppose Q is a point of N distinct from P_{1} which is not in the range of $\$$. We need to show that there is a set $A \in \mathcal{J}$ which does not contain Q, thereby showing that Q is not in the intersection of all $T-$ subsets of $\overline{\mathrm{P}_{0} \mathrm{P}_{1}}$, and hence not in N .

Case 1. Suppose Q is not in the range of T, which is defined in definition I. Then let A be any T-subset of $\overline{P_{0} P_{1}}$ which contains Q. Then the set $\left.A_{-}-Q\right\}$ will be a T-subset also, since $P_{1} \in A$ implies $P_{1} \in A-\{Q\}$ and for every $P \in A, T(P) \in A$, since Q is not in the
range of T. Hence Q is not in the $T-s u b s e t A-\{Q\}$. Hence $Q \notin N$.

Case II. Suppose Q is in the range of T. Then by the hypothesis, Q is not in the range of \mathcal{Q}, and it must be true that $T(R)=Q$ imolies that R is not in N Hence, for each such R there is a T-subset which does not contain R. Then the intersection of all such T subsets is obviously a T-subset which does not contain any element R whose image under T is Q. Denote this intersection by A_{R}. Then if A is any T-subset containing Q, then the intersection A with A_{R} will be a T-subset and also $A \cap A_{R}-\{Q\}$ will be a T-subset. But $A \cap A_{R}-Q$ does not contain Q and hence Q is not in N.

Proposition IV. Let P be an element of N which is not in the range of $\mathcal{\&}$, and let $M \subseteq N$ such that
P is in M and (2) Q in M implies that $\&(Q)$ is in M. Then $M=N$.

Proof. By the proceeding lemma, $P=P_{1}$. Then P_{1} is in M and for every Q in $M, \mathscr{} Q(Q)$ is in M. Hence M is a T-subset. Thus we have that $N=\bigcap_{A \in \mathcal{J}} A \subseteq M$ and by the hypothesis, $M \subseteq N$. Ergo $M=N$.

BIBLIOGRAPHY

1. Goheen, Harry E. Professor, Oregon State University,

Department of Mathematics. Class notes from
Mathematics 431, (Principles of Geometry).
Corvallis, $1967-1968$.

2. Cohen, Leon W. and Gertrude Erlich. The structure of the real number system. Princeton, New Jersey D. VanNostrand Company. 1963. 116 p.
3. Hilbert, David. Foundations of geometry. LaSalle, Illinois, Open Court Publishing Company, 1962. 143 p .
