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A MODEL OF PEANO'S AXIOMS
IN EUCLIDEAN GEOMETRY

I. INTRODUCTION

An axiomatic system consists of a collection of un-

defined terms and unproved statements, called axioms,

which concern these terms. An axiomatic system is cane=

consistent if no contradiction can ever occur as a resull

of statements following logically from the axioms. The

proof of the consistency of any axiomatic system is then

a very complex problem. We may, however, prove that the

consistency of an axiomatic system A implies the con-

sistency of a system B by defining a model of B in

That is, by interpreting the undefined terms of B to be

objects in the system A and then showing that the axior15.;

of B can be proved as theorems resulting from the axiom:,-;

of system A . Then any inconsistency in B will imply,

through the model, an inconsistency in A .

The following notation will be used throughout the

thesis.

(1) Capital letters will be used to denote points.

(2) If A and B are distinct points then

(a) AB will denote the unique line incident upon

A and B .
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(b) AB will denote the set of points on AB which

are between A and B .

(c) AB = AB U {A,B} .

(d) A will denote the open ray with origin A

which contains the point B .

(3) A B C will denote that B is between A and C

(4) The triangle incident upon non collinear points

A , B , and C will be denoted AABC .

(5) The phrase such that will be denoted by the symbol

.). .

(6) The usual symbols of set theory and for quantifiers

will be used.

The theorems of Section I will be proved using the

classical "steps-and-reasons" scheme. The reader will

notice that the phrase a lemma will be used to substantia

some steps of proofs in this section. This phrase meani

that the step does not follow immediately from the pre-

ceeding steps, but rather needs a trivial argument for

substantiation. Most generally these lemmas involve a

collinearity argument which is mechanical and uninteref-

ing in nature.



II. SOME THEOREMS OF GEOMETRY

This section consists of a study of some of the prob-

lems of geometry [1) which are related to the betweeriess

relation of Hilberes axioms.

THEOREM 1.

If A and C are distinct points then there is a

point B AC

Proof:
Steps

1. ] a point D not on 1

AC

2. 3 a point

D E CE

), 2.

3. E E AC 3.

4. 3 AACE 4.

5. ] a point 5.

A E EF

6 F D 6.

7. 3 a line DF 7.

8. DF meets

a point B

AACE at

D

8.

9. B 4 CE 9.

Reason

Axiom I 8.

Axiom II 3.

a lemma

def. of triangle

Axiom II 3.

a lemma

Axiom I 1.

Step 2 and Paschs axiom

a lemma



10. B 4 AE 10. a lemma.

11. B E AC 11. steps 8,9, and 10.

QED

THEOREM 2.

Given three distinct collinear points, denoted A ,

B , and C , exactly one of them is between the other two.

Proof:

4

Steps Reasons

1. At most one of A , B ,

and C is between the

other

1. Axiom II - 2.

2. Assume none of ABC ,

* *
2. A proof by contradiction

ACB or BAC is true

3. 3 a point D not on 3. Axiom I - 8.

AB .

4. 3 a point F on 4. Axiom II - 3.
*

Bt *)* BDF

5. B , C, and F are 5. A lemma.

noncollinear
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6.

7.

8.

3 ABCF

D A

AD meets ABCF in a

6.

7.

8.

Definition of triangle

D is not on AB .

step 4 and Pasch's axion,

point P D .

9. If P E BC then 9. A lemma.

P = A .

10. P BC 10. Steps 2 and 9.

11. If P E BF , then 11. A lemma.

BF = AD

12. If BF = AD , then D 12. A lemma.

is on AB

13. 13. Steps 3, 11, and 12.P (t BF

14. P E FC 14. Steps 8, 10, and 13.

15. 3 Q D *)* 15. Symmetry.

Q E FA and Q is on

CD

16. {A, P, F} is a non-

colinear set.

16. A lemma.

17. 3 AAPF 17. Definition of triangle.

18. QD meets LXAPF in 18. Step 15 and Pasch's

axiom.a point R Q .

19. If R E AF then AF = 19. A lemma.

CD , which implies

D is on AC = AB.
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20. R E AF 20. Steps 3 and 19.

21. If R E FP then CF = 21. A lemma.

CR = CD and then

CD = DF = BF , which

implies D is on

BC = AB .

22. 22. Steps 3 and 21.R FP

23. R E AP 23. Steps 18, 20, and 22.

24. R D implies AD = 24. A lemma.

AQ , which implies

D is on AB .

25. R = D 25. Steps 3 and 24.

26. D E AP 26. Steps 23 and 25.

27. 9 AAPC 27. A lemma.

28. DB meets AAPC in 28. Step 26 and Pasch's

axiom.a point T D .

29. T AP 29. A lemma.

30. If T E PC then 30. A lemma.

T = F

31. T E PC 31. Step 14, step 30, and

axiom II - 2 .
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32. T P and T C 32. Step 14, step 30 and

since between is a re-

lation concerning points

and pairs of distinct

other points.

33. T E AC 33. Steps 28, 29, 31, and

32.

34. If T = B then 34. Step 33.

B E AC

35. T B 35. Step 32 and step 2.

36. B and T are points 36. Steps 28 and 33 for T

common to AB and DB and by definition for

B .

37. AB = DB 37. Step 36 and a lemma.

38. D is on AB 38. Step 37.

39. Assumption of step 39. Step 38 contradicts

2 is false. step 3.

QED
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THEOREM 3.

A line incident upon two vertices of a triangle cannct

have a point in common with each side of that triangle.

Proof:

Step Reason

1. Let AABC be a tri- 1. Hypothesis.

angle which has a line

Q incident upon two

of its vertices, say

A and B

2. Assume there is a 2. A proof by contradictio,!

point P on k and

on AC

3. AB = AP = AC 3. Axiom I 2 (used twice).

4. A, B, and C are 4. Def.of triangle.

collinear

6. There is no point P 6. logical consequence.

on both k and on AC
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7. 2, and BC have no 7. symmetry.

point in common

8. Steps 6 and 7 prove the lemma.

QED

THEOREM 4.

If a line 2, contains one vertex of a triangle,

then 2, either contains another vertex or contains at

most one other point of the triangle.

Proof:

Step Reason

1. let 2, contain point 1. assumptions.

B of LABC and no

other vertex of LABC

and further let P B

be on both 2, and

LABC



2. P AB 2. otherwise A is on

3. P q BC 3. otherwise C is on

4. P E AC

5. Suppose there is a

P' E {P,B} on both

2, and AABC

6. P' E AC 6. by symmetry with P

7. 2, and AC have P 7. steps 4, 6.

and P' in common

8. Q = PP' = AC 8. Axiom I - 2 .

9. C is on t 9. since 2, = AC.

10. Step 9 contradicts 10. C and B are on 2,

assumptions of step 1 and AABC .

11. Step 5 and the assump- 11. as proven by contra-

10

Q

4. a process of elimination.

5. A proof by contradiction,

tions of the theorem

are contradictory and

therefore the theorem

is true.

diction.

QED



THEOREM 5.

A line k which is not incident upon a pair of

vertices of a triangle AABC can have at most two points

in common with that triangle.

Proof:

1.

2.

Step

1.

2.

Reason

k AB ; k BC , Axiom I 2.

a supposition, for a

proof by contradiction.

k AC

suppose k meets

AABC in three distinct

points D, E, and F .

3. k has at most one

point on any side of

3. a lemma.

AABC in common with it.

4. A is not an point of k 4. theorem 4 and step 1

5. B and C are not on k 5. symmetry

6. k has exactly one 6. steps 2, 3, 4 and 5.

point in common with

each side of AABC
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7. let D E BC , E E AC ; 7. an arbitrary selection

F E AB

8. 2 a point P ) 8. Axiom II 3.

F E EP

9. P is not on CE 9. a lemma.

10. 3 A PCE 10. Def of triangle.

11. AB has a point 11. step 7; Pasch's axiom.

Q F on A PCE

12. Q PE 12. a lemma.

13. Q CE 13. a lemma.

14. Q E CP 14. steps 11, 12, and 13.

15. Q (t BC 15. a lemma.

16. Q is a point of 16. a lemma.

BC iff Q = B

17. if B Q then

ABQC

17. step 16, Def. of a

triangle.

18. DE has a point R

ABQC

D 18. step 7 and Pasch's

axiom.which is also on

19. R BC 19. a lemma,

20. R BQ 20. a lemma.

21. R E CQ 21. steps 18, 19 and 200

22. PC = CQ 22. step 14, axiom -I 2.

23. R is on CQ 23. steps 21 and 22,

24. R is on PD 24. step 18, since DE = PF
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25. R P 25. a lemma based upon

axiom II 7 2.

26. PC = PD = DE 26. a lemma.

27. C is a point of DE 27. since PC = DE.

28. step 27 contradicts 28. since i = DE .

step 5

29. Supposition of steps 29. as proved, by con-

one and two are tradiction.

impossible together.

QED

Corollary 1

A line cannot have a point in common with each side

of a triangle.

Proof: The corollary follows directly from theorems

3, 4, and 5 .

Theorem 6

Given a triangle LABC there is a line i contain-

ing A and no other point of the triangle.
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Proof:

Step Reason

1. 3 D ) A E CD 1. Axiom II'- 3.

2. D BC

3. 3 ABCD

4. 3 an E E BD

5. AE = k meets ABCD

on two sides, at A

on CD and at E on

BD

2. a lemma.

3. B, C, and D are

noncollinear.

4. Theorem 1.

5. steps 2, 4.

6. Q does not meet 6. corollary 1.

ABCD on BC

7. neither B nor 7. a lemma, based on s eo

C is on k 2.

8. If Q contains 8. a lemma.

a point of AC then

it contains
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9. If k contains a 9. a lemma.

point of AB then it

contains B

10. Q contains no points 10. steps 6, 7, and 8

of AC or of AB

11. Q meets AABC at A 11. steps 4, 5, 6 and 9.

and no other point of

AABC.

QED

Theorem 7

Given four distinct collinear points A, B, C, and

D such that ABC , then a necessary and sufficient con-
* *

dition for BCD is ACD .

Proof of sufficiency:
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Step Reason

1. suppose ABC and ACD 1. a supposition.

hold for the given

points

2. 3 a point E not on 2. Axiom I 8.

AB = AC

3. 2 a point F on DE 3. Axiom II - 1.
*

.). DEF

4. F is not on AB =

BD = AD

4. a lemma.

5. 2 ABFD, AABF, and 5. step 4 and def. of

LADF triangle.

6. CE meets ABFD in a 6. step 3 and Pasch's

point P E axiom

7. P DF 7. a lemma.

8. If P E BD , then P= 8. a lemma.

C , which implies

C E BD

9. suppose P E BF 9. It will be shown that

this is inconsistent

with step 1 and hence-

P E BD .

10. CE meets AABF in 10. steps 6, 9 and Pasch'.

a point Q P axiom.
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11. Q t BF 11. a lemma.

12. Q E AF 12. this would imply CE

contains points of thrc:-

sides of AADF, which

contradicts corollary

13. Q E AB 13. steps 10, 11 and 12.

14. Q E AB implies Q= C 14. a lemma.

15. C E AB 15. steps 13 and 14.

16. step 15 contradicts 16. Axiom II - 2.

step 1

17. step 16 implies that 17. step 8, reason 9.

C E BD

Proof of necessity:

QED

Step Reason

1. suppose ABC and BCD 1. a supposition.

2. steps 2 - 5 of proof

of sufficiency hold

2. as proven above.

3. CE meets AAFD in a 3. step 2 and Pasch's

axiom.point P E

4. P DF 4. a lemma.
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5. If P E AD then P = C 5. a lemma.

and hence C E AD

6. suppose P E AF 6. It will be shown that

this supposition leads

to a contradiction and

hence P e AD .

7. CE meets AABF in

a point Q P

7. Pasch's axiom.

8. Q E AB 8. symmetry from the above

proof.

9. Q E AB = Q= C 9. a lemma.

10. C E AB 10. steps 8 and 9 .

11. step 10 contradicts

step 1.

11. Axiom II - 2.

12. C E AD 12. steps 5, 6, and 117

reason 6.

QED

Corollary 1

Given four distinct collinear points A, B, C, and D

* * * *
such that ABC and ABD , then either BCD or BDC ,

*
but not DBD .

Proof: The corollary is simply the contrapositive state-

ment of Theorem 7, where the sym]Jols A, B, C, and D of

the theorem are renamed by the permutation (BDC).



Theorem 8

Given four distinct collinear points, denoted P,

Q, R, and S , these points may be renamed A, B, C, and

D in exactly two ways such that ABC and BCD (and

* *
hence ACD and ABD).

*
Proof: assume without loss of generality that PQR .

Step Reason

* *
1. Either QRS, QSR, or 1. Theorem 2.

*
RQS

* *
2. If QRS , rename as 2. This gives ABC and

follows: P A ,

Q ÷B,R÷C, S÷ D
*

3. another method of re- 3. This also give ABC

*
BCD.

naming P, Q, R, and S

is found by the per-

mutation (AD) (BC) of

the above names
*

4. In the case QRS ,

naming the points

other than as in steps

2 and 3 is not ap-

propriate.

* *
and BCD , if QRS.

4. trial and error (may

logically be reduced

to three trials, by

use of symmetry.)

19
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5. If QSR , then PQR 5. Theorem 7.
*

implies that PQS

*
6. If QSR , then rename 6. these are the only ap-

P ±A,Q±B,S±C, propriate ways of re-

R D or permute naming the points in

these names by this case, by symmetry

(AD)(BC) from the above cases.
* *

7. If RQS , then either 7. PQS is impossible by
* *

PSQ or SPQ Corollary 2.
* *

8. If PQS and PSQ , then 8. same reason as step 6.

rename P 4- A, S± B,

Q ±C,R±D, or

permute these names by

(AD) (BC)

* *
9. If RQS and SPQ , then 9. same as 8.

rename S 4- A, P± B,

Q ±C, R±D, or

permute these names by

(AD) (BC)

10. all cases have been exhausted and in each case the

theorem was shown to be true.

QED



21

Theorem 9

If P1, P2, ..., Pn are n distinct collinear

points, where n > 4 , then there are exactly two ways in

which these points may be renamed A1, A2, An so1, 2" n
that Ai E Ai Ak iff i < j < k .

Proof:

Step Reason

1. suppose the theorem

is true for n = k - 1 ,

k > 5

2. Given k distinct

collinear points,

P1, P2' Pk , we

may rename P1, P2, ...,

Pk-1 by Al, ..., Ak_i

in exactly two ways ).

A. E A.
1
A
k

iff

i < j < k

3. either Al
A
k-1

P
k '

Al Pk Ak_i , or

Pk Al Ak-1

1. a supposition for a

proof by induction.

2. step 1

3. Theorem 2.



4. If Al Ak-1 Pk , then 4. Theorem 7.

Ai Ai Pk for every

pair (i,j) iff

i < j

5. If Al Ak-1 Pk , nam- 5. step 2 and 4.

ing P
k

A
k

satisfies

the conditions needed

in the renaming of the

points

6. Since there is no choice 6. step 2 and 5.

in naming Pk as Ak ,

there are two renamings

of P1, , P as
1, k

Al, Ak -)- the

theorem conclusion holds

7. If Pk Al A
k-1'

then 7. a renaming.

22

rename A.
1

i = 1, 2, k - 1

and name Pk
Al

8. Step 7 results in exact- 8. There is no choice for

ly two satisfactory re-

namings of Pl, P
k'

depending upon the ori-

ginal two renamings by

Al, Ak of step 2

the new name of P
k
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9. If Ai Pk Ak_i , then 9. renaming by step 1.

suppose Ak_i for

some j ) 1 < j < k

and rename the points

of {P1, .." Pk/

{Pi} by Ai

10.

11.

12.

so that the conditions

of the theorem hold

The we have Ai Ak_1 Pj

Rename Pj by 1sqc

step 9 and 11 constitute

a satisfactory renaming

of Pi, ..., Pk

10.

11.

12.

follows from step 9.

a renaming.

same reason as step 8.

13. In each of the three

cases stated in step 3,

the theorem is true

13. step 6, 8, 12.

14. The truth of the

theorem for n = k - 1

implies the truth for

n = k k > 5

14. step 13.

15. Since the theorem is

true for k = 4 ,

step 14 implies that

the theorem is true

15. axiom of induction.

QED
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Theorem 10

Every line has an infinite number of points upon it,

Proof:

1.

Step

1.

Reason

Every line has at least

two distinct points, A

and C

Axiom I - 5.

2. 3 D ) C E AD 2. Axiom II - 3.

3. 3 B ) B E AC 3. Theorem 1.

4. D B 4. Axiom II - 2, steps 2,3.

5. A, B, C, and D are

distinct

5. steps 2, 3, 4.

6. every line contains at

least 4 distinct points

6. step 5.

7. assume that there is a

line k containing n

points P1, Pn ,

where 4 < n . With n

7. an assumption for a

proof by contradiction.

a finite number

8. The n points may be 8. Theorem 9.

renamed A
l'

A2, ..., A
n

so that A. E A.A. iff

i < j < k



9. 2 P in Q -)- 9. Axiom II - 3.
*

An-1AnP

10.P#A.7 j = 1,2, ..., n 10. since j < n , this

follows from step 8.

11. step 10 contradicts 11. Q contains at least

assumption of step 7 n + 1 points.

12. Theorem is true 12. follows from the

contradiction.

QED

Theorem 11

25

A point P of a line k separates the set of points

on Q into three disjoint nonempty classes ) distinct

points Q and R are in the same class iff P QR .

Proof.

Step Reason

1. 3 a point A # P on 1. Axiom I - 5.

Q
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2. Define two classes of 2. definitions.

point of the set of

points on Q , denoted

S
1

and S
2

as follows:

a point B is in Si

if P E AB and B is

in S
2

if B P and

P AB and define a

3.

third class as {P1

S
1

fl S
2

= 3. Axiom II 2 .

4. P j S
1

4. P E AP .

5. P j s
2

5. P = P .

6. Si , S2 and {P1 are 6. steps 3, 4, 5 .

disjoint (Pairwise)

7. {Pl 7. P E {P1 .

8. 3 a point B ) 8. Axiom II 3 .

P E AB

9. S1 9 step 8 .

10. S
2

1 0 . A. P A A = =q_

A E S
2

11. Let Q be a point of 11. Show that Q E Si

Q Q E S
2

or Q E {p}

12. If Q = P , then 12c Reason 10.

Q E

then

{P1 and if Q = A

Q E S2
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13. If Q P , then either 13. Theorem 2.

P E AQ or P E AQ r

which implies Q E Si

or Q E S2 respectively

14. {P} , Si, and S2 are 14. steps 6, 7, 8, 9, 10,

nonempty, disjoint sets and 13.

whose union consists of

all the points on k

15. Suppose P QR , where 15. show this implies that

Q and R are distinct Q and R are in the

points on k same class.

16. P QR implies PQR 16. Theorem 2.

or PRQ

17. If P = Q then 17. PR = {P,R} U PR

P E PR = QR

18. P Q 18. steps 15 and 17.

19. Q E Si implies APQ 19. step 2.

20. Q E Si and PQR 20. step 19 and Theorem 7.

implies APR , which

implies R E Si

21. Q E Si and PRQ

implies APR , which

implies R E Si

21. step 19 and Theorem 7.
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22. P E QR and Q E S , 22. Steps 16, 20, and 21.

implies R E Si and

R E Si implies Q E Si

(by symmetry)

23. Q E S2 implies P j AQ 23. step 2.

and Q # P

24. Q E S2 and PRQ or 24. a lemma.

PQR implies R E S2

25. Distinct points Q and 25. steps 16, 20, 21, 24.

R are in the same set,

among Si and S2 ,

if P QR

26. Now change the assump- 26. show that this implies

tion of step 15 to read that Q and R are

P E QR , for distinct not in the same set

points Q and R on i among Si , S2 and

{P} .

27. If Q = P then P # R 27. Since R and Q are

and hence R iPl , distinct.

but Q {P}

28. If Q E Si then

QPR and APQ implies

28. Corollary 2.

that P 4 AR .

29. Q E Si implies R E S2 29. step 14 and step 28.

or R E i131
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30. If Q E S2 then QPR 30. Theorem 7.
* *

and PAQ or PQA

implies that P E AR

31. Q E S
2

implies P E AR 31. step 30, step 2.

or P = R and hence

R S2

32. The theorem has been

proven except there is

left to show that the

construction is inde-

pendent of the arbi-

trary point A of

step 1.

33. suppose we choose

A' A of step 1 .

32. remains to be shown.

33. show that replacing A

by A' in step 2 will

separate the points of

Q into the same three

sets, except possibly

for a permutation of

names of sets S
1 ar;



34. A' separates the points 34. A lemma shows that the

of Q into the same

three disjoint sets as

does the point A

30

conditions of step

with A re-olaced 7o7

A' imrply the result

of this step since

Q and R (distinct)

are in the same set iff

P QR .

QED

The sets S
1

and S
2
of theorem 11 are called sides

of Q with respect to P , or rays of Q with origin

Since the sets {PI , S
1

, and S
2

form a partition of

the points on k , any one of these sets may be designated

by designating a point of that set. Hence we may use the

notation PA to designate the ray of Q , with origin

which contains the point A . Special note should be made

of the fact that P

It should be noted that mathematical induction is

used as a method of proof in theorems nine and ten. These

two theorems are introduced simply for intuitive securit'T

and are not used in the development of the model cf Piano's

axioms found in the next section. Noting this, we see that

no circularity of argument results from the use of incict-
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ion found in these proofs.

The purpose of theorem ten is to assure us that the

cardinality of the set of points on a given line is suf-

ficiently large to enable us to find a one-to-cne corres-

pondence between the set of natural numbers and some

subset of this set. Theorem 9 convinces us that, given

such a subset, we may "line up" the points of this sub-

set in a manner analogous to the way the natural numbers

are "lined up".
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III. A GEOMETRIC MODEL OF PEANO'S AXIOMS

In order to develop a model of Peano's axioms in

Euclidean geometry the undefined terms of Peano's axioms

must be defined as objects of Euclidean geometry. This

implies that we must define a set N of Euclidean object:,

the elements of which will be called natural numbers, and

we must define a map 0) from N into N , which will be

known as the successor map. These definitions must be

made such that Peano's axioms, applied to N and JP, may

be proven, using only Hilbert's axioms and Aristotelian

logic, as theorems of geometry. It should be noted that

neither a recursive definition nor any other use of in-

duction may be used to define N or gY, since this would

lead to a circular argument when an attempt is made to

prove Peano's axiom of induction. Keeping this in mind WE

proceed as follows:

Peano's axioms for the natural numbers may be stated

as follows: The undefined terms of Peano's axioms are a

set N , called the set of natural numbers and whose ele-

ments are called natural numbers, and a mapping j9, of N

into N , called the successor map. The image of a natur;

number n under the successor map is called the success°,

of n . Concerning these undefined terms we have the

following axioms.
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I. N

II. ,r is one-to-one.

III. is not onto N (The range of ter is not N

IV. If M is a subset of N such that (1) M con-

tains an element of N which is not in the range

of W' and (2) if n is in M then the suc-

cessor of n is in M , then M = N .

Giving the undefined terms of Peano's axioms concrete

definitions as objects of Euclidean geometry is the next

step in developing a model. Intuitively, the natural

numbers will be defined as "equally spaced" points on a

given half-line with origin P
o

. Then the successor

of a natural number P will be defined as the point Q

among these "equally spaced" points that is "directly

after" P . Figure 1 shows that for a given "spacing"

A
0

Al I H2 A3 A4 A5 rA)6
Iti III I Itli I It'

PO B0P1 B1P2 B2P3 B3P4 B4P5 B5P6 B6P7

Figure 1. Three sets of "equally spaced" points.

there are many different sets of "equally spaced" points
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on a given half-line. The definition of the set of natural

numbers must then select one of these sets of equally

spaced points.

The 'spacing" mentioned above will be defid as

follows. First, given a set M of points, two points A

and B in M are said to be adjacent provided no member

of M is between A and B . Next, a pair of points A

and B are called CD-spaced, where C and D are arbi-

trary points, provided AB == CD . Finally, a set of points

are said to be CD-spaced iff the set is a collinear set and

adjacent points of the set are CD-spaced. Hence a set of

points that are CD-spaced will be equally spaced points

along a line.

Choose now a line 1 and a point Po on 1 P
0

divides the set of points on 1 into three disjoints sets,

the set {Jo} and the two rays along 1 with origin Po .

Choose one of these two rays by choosing arbitrarily a

point P1 Po on 1 , and then considering the ray

containing P1 . This ray, denoted by PoPi , or by r

will be used as the source of points from which the points

destined to be defined as the natural numbers of our modl

will be chosen.

Preliminary to selecting points from the ray r the

following definition will be made.

Definition 1. Define a function T: P
0
P
1

P
0
P
1

by
-
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T(P) = Q , where P
o
PQ and P

0
P
1
= PQ .

To prove that T is a well defined function we must

show that T(P) is uniquely defined, and that the range of

T is in the ray P0P1 . Knowing that P is in the open

line segment P0T(P) is enough to designate the ray of 1

with origin Po to which T(P) belongs. Then axiom

III 1 of Hilbert's axioms assures us that there is a

unique point Q on this designated ray such that P0P1

PQ and hence T(P) = Q is unique. That Q is on the

ray P0P1 follows from the fact that P E P0Q and

P E POP
1

.

1

Now, using the function T and set intersection, the

set N of natural numbers will be defined. Let A be any

subset of the ray P0P1 . Then let A be called a TT-

subset of P0P1 if and only if (1) P1 E A and (2)

P E A implies T(P) E A . Designate the set of all T-

subsets of P
0
P
1 by .7 .

Definition 2. Define the set N of natural numbers by tl

1 To show Q is on the given ray note that P E POP
1

implies that Poly or P0PP1 . Then in the first

case P E P0Q and POP
1P

implies by lemma that

P
1

E P
0
Q and hence Q is on the given ray. In the

second case the conditions P
0
PP

1
and P E P0Q imply

lemma that P
0

is not in QP
1

and hence Q is on

the given ray.
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identity N = n A .

AE.5

Definition 3. Define the successor map : N to

the restriction of the map T to the subset N of PoPi

Intuitively it can be seen that a T-subset of POP,

is a collection of "infinite" PoPi - spaced sets, one of

which is the subset N . Then we might guess that N it-

self is a T-subset, and hence the smallest T-subset, and

also N could be conjectured to be the largest PoPi -

spaced subset of PoPi which contains the point P1 .

Both of these conjectures will prove to be true.

Before proceeding any further we should ask if the

set of natural numbers and the successor map have been well

defined. First, considering the definition of T-subset, it

can be seen that a condition on the points of P
0
P
1

has

been made and this condition specifies certain subsets of

P
0
P
1

to be T-subsets. Then we might ask if 7 is a well

defined set. That is well defined follows from the

fact that it is the subset of the power set of PoPi

whose elements are specified to be T-subsets. Hence the

definition of N as an intersection of T-subsets is well

defined. Next we see that yf is single valued, since

is, and hence the successor map is well defined. We need

also to show that the range of is actually contained

in N , as indicated above. This leads to the following
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theorem.

THEOREM 1. qo maps N into N

Proof. Let P be a point in N . Then the definition of

N implies that T(P) is in N . But since P E N ,

T(P) = Ar(P) and, by definition of xr, !(P) is in N.

Hence for every P E N, j(P) E N.

QED

The set N and the map j: Nt---4.N have been de-

fined from geometric objects and terms without the use of

induction. The proof of Peano's axioms as theorems of

geometry follows. The theorems derived from Peano's axioms

in our model will be called propositions.

Proposition I. N 0 .

Proof. P 6 N, since N= (-) A, where P E A for
1

A Ev..7
1

each A E J.
QED

Proposition II. is one-to-one.

Proof. Suppose vf(R) = Q and aP(p) = Q . This implies

that R and P are in the open line segment P
0
Q and

hence both on the ray QP0 . However, axiom III - 1

assures us that there is a unique point B in QP0 such

that P
0
P
1
= BQ . But since the definition of j implies

that PQ = P0P1 = RQ , it must be the case that P = R

QED
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Proposition III. 4 is not onto.

Proof. Consider the point Pi , which is in N . The

existence of a point P E N such that %nip) = P
1

implies

that P E POP
1

and PP
1
= P0P1 Now P E P

0-1
implies

that P E P
1
P
0

Then axiom III 1 assures us that there

is a unique point B in P1P0 such that BPI_ = P1P0 .

However P
0

E P1P0 and P0 P
1

=P0- P
1

Hence it must be

the case that P = P However P is not in P
0

.

0 OL1

and, since N E P0P1 , P0 E N . Hence there is no point

in N whose image under 4 is P
1

QED

Before proving Peano's axiom of induction the following

lemma will be proved.

Lemma. P
1

is the only element of N not in the

range of JI .

Proof. Suppose Q is a point of N distinct from P1

which is not in the range of J . We need to show that

there is a set A Ej which does not contain Q , thereby

showing that Q is not in the intersection of all T-

subsets of P0P1 , and hence not in N

Case 1. Suppose Q is not in the range of T , which is

defined in definition I. Then let A be any T-subset of

P
0
P
1

which contains Q . Then the set A {Q} will be

a T-subset also, since Pi E A implies P1 E A {0}

and for every P E A , T(P) E A , since Q is not in the



range of T . Hence Q is not in the T-subset A

Hence Q N .

Case II. Suppose Q is in the range of T . Then by

the hypothesis, Q is not in the range of )1 , and it

must be true that T(R) = Q implies that R is not in

Hence, for each such R there is a T-subset which does

not contain R . Then the intersection of all such T-

subsets is obviously a T-subset which does not contain

any element R whose image under T is Q . Denote this;

intersection by AR . Then if A is any T-subset con-

taining Q , then the intersection A with AR will be a

T-subset and also A fl AR {Q1 will be a T-subset. But

A fl AR Q does not contain Q and hence Q is not in

N .

Proposition IV. Let P be an element of N which

is not in the range of , and let M c N such that (1)

P is in M and (2) Q in M implies that ,44r(Q)

is in M . Then M = N .

Proof. By the proceeding lemma, P = P1 . Then P1 is

in M and for every Q in M J(Q) is in M .

Hence M is a T-subset. Thus we have that N = (-)
AC7

and by the hypothesis, M N . Ergo M = N .

QED
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