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mechanisms controlling habitat selection and the scales at which these operate and to 

evaluate the representation of fisher habitat in existing protected areas. These insights 

may be valuable in designing conservation reserve networks that insure the long-term 
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Predicting the Distribution of the Fisher (Riulles pennanti)
 
in Northwestern California, U.S.A.
 

Using Survey Data and GIS Modeling
 

1. Introduction 

1.1 Problem Definition 

Forest carnivores such as the fisher (illartes pomanti) have frequently been the 

target of conservation concern due to their association with older forests and assumed 

sensitivity to landscape level habitat fragmentation. The fisher possesses a variety of life 

history attributes that make it sensitive to anthropogenic habitat alteration. These include 

a large home range. low fecundity. and limited dispersal ability across open habitat 

(Buskirk et al. 1994). The same characteristics that make the fisher of conservation 

concern also make it an ideal study organism for investigating the effects of landscape 

composition and pattern on dispersal dynamics and population viability. Forest carnivores 

such as the fisher can be seen as integrating habitat characteristics at levels ranging from 

microscale (presence of large woody debris for denning and resting sites) to macroscale 

(connectivity within and between metapopulations)(Thompson 1991. Buskirk 1992, 

Powell and Zielinski 1994). 

This study uses fisher survey data and a GIS vegetation layer created from 

satellite imagery to develop a multiple logistic regression model to predict fisher 

distribution across northwestern California. The model was developed by means of a 

i.etrospective analysis using existing survey data and then validated with new field data. 

in addition to its use for prediction. this type of modeling may also help generate 

hypotheses as to the mechanisms controlling habitat selection and the scales at which 



these operate. These insights may be critical to the design of conservation reserve 

networks that insure the long-term viability of forest carnivore populations. 

1.2 Population Status 

historically, fishers were distributed across North America from the latitude of 

Hudson's Bay southward to Tennessee and Virginia in the east (Buskirk et al. 1994). 

Their range in the western U.S. extended down the Rocky Mountains to Yellowstone and 

along the west coast to the Klamath mountains and down the Sierra Nevada. By 1900 

trapping and logging had led to extirpation of fishers from most of the eastern U.S.. In 

this century regrowth of forest in New England and the northern Great Lakes states, as 

well as regulation of trapping. has allowed the fisher to recolonize those areas. 

Populations in the western U.S., however, have continued to decline (Powell and 

Zielinski 1994). In recent decades the scarcity of sightings from Washington. Oregon, 

and the northern Sierras point to the fisher's extirpation from these areas (Aubry and 

Houston 1992, Zielinski et al. 1996). The population in the Klamath Province 

(northwestern California and southwestern Oregon) may be the largest remaining in the 

western U.S. (Powell and Zielinski 1994). 

Efforts to supply data on the population status of fishers in the west have been 

hampered by the difficulties inherent in studying such a rare and secretive organism. 

ilow.ever, the majority of studies show hat fishers, especially in the western U.S., 

preferentially use late-successional forests, stimulating concern over the long-term 

viability of populations in areas subject to extensive logging (Powell and Zielinski 1994, 



Buskirk et al. 1994). Selection by fishers for late-successional forests may be related to 

several habitat resources. Structure in the form of large woody debris and snags provides 

donning and resting sites. The energetic cost of foraging is lower in late-successional 

forest due to increased density of preferred prey species. increased prey vulnerability 

associated with downed logs. as well as easier winter movement due to lighter snow 

accumulation in closed-canopy forests (Powell and Zielinski 1994). Fishers have a well-

documented preference of areas with high canopy cover (Powell and Zielinski 1994). 

However, it is not known if this is related to predation risk or other factors associated 

with open areas. 

These factors have led some researchers to propose that habitat suitability is 

mediated by forest structure rather than species composition. Use of second-growth forest 

by fishers in the eastern U.S. has been attributed to eastern forests achieving the 

necessary structural complexity at an earlier age (Powell and Zielinski 1994. Buskirk et 

al. 1994). 

l lowever, several factors make it difficult to have confidence in these 

characterizations of the effects on fishers of habitat alteration such as logging. First, 

fishers arc difficult to study because of their low densities and other traits that violate the 

assumptions of most population estimation methods (Powell and Zielinski 1994). Second. 

fishers respond to habitat quality at spatial scales that may not be incorporated into the 

study design. Third, most studies have been conducted in the east and may not generalize 

well to the western U.S.. 
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Concern over the status of fishers in the western U.S. has resulted in closure of 

trapping seasons in all western states but Montana. The fisher is listed as a "sensitive!' or 

"management indicator" species by the US Forest Service in all regions where it occurs 

(with the exception of Region 6 (Oregon and Washington))( Powell and Zielinski 1994). 

This concern has also prompted two petitions for listing of the western fisher subspecies 

(Martes pennanli pacifica) as "threatened- under the Endangered Species Act 

(ESA)(Sierra Audubon 1991, Carlton 1995). Both petitions were denied by U.S. Fish and 

Wildlife Service (t JSFWS) (USD1 Fish and Wildlife Service 1996). The agency felt that 

evidence was lacking to demonstrate that fisher populations in the west were declining, 

and that it was not evident that fishers in the western U.S. belonging to the M. p. pacifica 

subspecies were geographically or genetically distinct from the more abundant eastern 

populations of .1/ p. pennanti. This decision has been criticized as showing a lack of 

awareness of recent research findings on the subject. The controversy demonstrates the 

need to establish a better understanding of the distributional dynamics of the fisher in the 

western U.S.. 

1.3 Goals of Study 

Four broad research topics motivate this study: What is the status of the Klamath 

fisher population? Why do fishers seem to have persisted here but not in other regions of 

the west? What can this tell us about the Klamath populations' prospects for long term 

viability civen current trends in land use'? And what lessons can we draw that can be 

applied to predict the viability of forest carnivores in other regions'? Although the results 
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presented here only begin to answer these questions, but will hopefully form a foundation 

for further research. 

These four questions were addressed through the development of a multi-scale 

habitat model. The modeling approach was designed to fulfill the following goals: 

1) Predict fisher distribution in unsuryeyed areas 

2) Analyze the regional distribution to identify potential reasons for concern over 

population viability (e.g. barriers to dispersal) 

3) Generate hypotheses as to mechanisms controlling habitat selection and the scales at 

which these operate 

4) Delineate important habitat areas for the fisher in the Klamath region for use in 

prioritizing conservation strategies. 

5) Develop models and modeling, techniques that can be applied to other regions 



6 

2. Literature Review 

2.1 Conceptual Framework 

Interaction across multiple scales has become a major topic in landscape ecology 

as the increasing rate of anthropogenic habitat alteration and the resulting extinction crisis 

has forced ecology and conservation biology to broaden the scale at which systems are 

studied (Dunning et al. 1992. Wiens et al. 1993, Wiens 1995). Theoretical concepts such 

as metapopulation dynamics and source-sink dynamics have focused attention on 

landscape-level processes as critical to long-term population persistence (Pulliam 1988, 

Hastings and Harrison 1994). Applied problems such as the conservation planning 

process for the northern spotted owl (Strix occidentalis caurina) have also emphasized 

the significance of landscape-level processes such as dispersal success (Murphy and 

Noon 1992. McKelvey et al. 1993). 

I lierarchv theory provides a means of conceptualizing the links between processes 

operating at multiple scales (Allen et al. 1984). Processes at a particular scale integrate 

the effects of events at finer scales and are themselves constrained by processes operating 

at coarser scales (Wiens 1989b). This produces a landscape composed of a hierarchy of 

nested patches (Kotliar and Wiens 1990). Feotones, or transition zones between patches, 

may also form a scale-dependent hierarchy (Gosz 1993). 

/lolling 1992) proposed that habitat alteration at a particular spatial scale would 

strongly affect only those species that sample the landscape at that scale, due to 

interactions between morphological constraints and the spatial structure of the 
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environment. "Grain response" is the term used to characterize the scale-dependent 

response of an organism to landscape structure (McGarigal 1993). The effects of coarse-

scale fragmentation may only be evident through a focus on species with extensive area 

requirements. These "umbrella species" may therefore make effective targets for 

conservation planning (Noss and Cooperrider 1994, Noss et al. 1996). 

Only by analyzing environmental variation from the perspective of the organism 

can we build robust models that can predict species' responses to ecosystem change 

(Kotliar and Wiens 1990, Dutilleul et al. 1993). Rather than measurinv, ecological 

heterogeneity with metrics that are obvious or easily-measured from the investigator's 

perspective, it is important to identify factors leading to "functional heterogeneity" 

(Kolasa and Rollo 1991). This requires an understanding of the spatial and temporal 

scales at which an organism most strongly responds to environmental variation. Habitats 

that appear heterogeneous to one species may appear homogeneous to others if they select 

habitat based on coarser scale perceptions. Heterogeneity at scales below this minimum 

grain size may be de-emphasized in order to simplify modeling (Dutilleul et al. 1993). 

2.2 Spatial Population Dynamics 

It is increasingly evident that the species inhabiting a site may be determined as 

much by dispersal and other extrinsic factors as by intrinsic interactions such as 

competition. This has led to renewed interest in the concepts of metapopulation and 

source-sink dynamics, which relate the local abundance of an organism to larger-scale 

population processes. The classic metapopulation model conceives of a group of transient 
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populations interconnected by dispersal (I,evins 1970). While any one population is 

doomed to extinction, the metapopulation as a whole persists through recolonization 

events. However. these classic metapopulation models may be rare in nature (11arrison 

1994. Hastings and I larrison 1994). The concept has since been broadened from the 

classic "island-island" model to account lbr other combinations of patch size and 

isolation (Harrison 1994). "Mainland-island" metapopulations contain at least one 

population large enough to have low extinction risk. -Non-equilibrium" metapopulations-

lack the connectivity that allows for recolonization, hence they are doomed to extinction. 

"Patchy" metapopulations, on the other hand, have such frequent interchange that they 

function as one population. Real populations may show a combination of these scenarios 

(Stith et al. 1996). 

Some authors have proposed that fishers are best managed as a metapopulation 

with priority given to maintaining corridors between patches or populations (Heinemeyer 

1993, Heinemeyer and Jones 1994). However, data on dispersal, which are difficult to 

gather, will be necessary to help determine which of the various metapopulation models 

is most descriptive of fisher population dynamics. Different types of metapopulation 

structure lead to varying recommendations as to conservation priorities (Stith et al. 19961. 

The concept of source-sink dynamics recognizes that the spatial juxtaposition of 

habitat patches. in addition their habitat suitability. can determine the actual distribution 

of organisms. Sink populations may persist despite a negative population growth rate due 

to dispersal from adjacent source populations in higher quality habitat (Pulliam 1988). 

Thus source-sink dynamics can lead to an "expanded niche" that includes habitats 
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occupied only due to immigration (Pulliam 1996). The majority of some populations may 

occur in such sink habitat, and other, more suitable habitat may remain unoccupied due to 

isolation (Pulliam 1996). The source-sink concept may be strengthened by expanding its 

focus to multiple scales of habitat patchiness (Kotliar and Wiens 1990). 

Populations of relatively long-lived organisms may commonly show such non 

equilibrium population dynamics in response to rapid habitat degradation. In the case of 

the northern spotted owl, local density remained at high levels in some areas in the face 

of larger-scale population declines due to an influx of non-reproductive "floaters" 

displaced from more degraded habitat (Harrison et al. 1993). 

Early conceptual models of landscape structure focused on patches embedded in 

an inhospitable matrix and connected by corridors of favorable habitat. More recently, 

attention has focused on how organisms use the landscape mosaic as a whole (Wiens 

1996). The concept of functional connectivity has replaced an emphasis on linear 

corridors (Noss and Cooperrider 1994). Landscapes can be portrayed as a surface of 

cost/benefit contours representing the ratio of costs such as predation risk to benefits such 

as food (Wiens 1996). Landscape composition and landscape pattern thus combine to 

create a "topography" that influences the movement decisions and distribution of 

organisms in a more complex manner than suggested by the patch/matrix model. 
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2.3 Fishers as Candidates for Landscape Level Analysis 

In response to growing concern over the status of forest carnivore populations in 

the western U.S.. Ruggiero et al. (1994) proposed a comprehensive strategy to coordinate 

research on four species: fisher, American marten Wailes americana), lynx (Lynx 

canadensis), and wolverine ((Arlo galo). Extensive studies of species occurrence (i.e. 

using GIS) were called for in order to address information gaps in the areas of habitat 

requirements at multiple scales. The key to the success of efforts to conserve these 

species was thought to he a broader, landscape-level approach (Ruggiero et al. 1994). 

The fisher's vulnerability to the effects of anthropogenic habitat alteration results 

from a high trophic position that leads to a variety of life-history characteristics such as 

large home range. low density. and low reproductive rate. Most previous studies of 

fishers have used telemetry to examine habitat associations at the within-home-range 

scale. Ilowever. it is hypothesized that dispersing juveniles may make decisions on where 

to establish a home range by integrating perceptions of landscape quality over a wide area 

(Powell and Zielinski 1994). This might result in the effects of habitat selection being 

most evident at above-home-range scales. 

Fisher distribution thus may he influenced by processes operating at various 

spatial scales. At the patch level, these might include foraging site selection and denning 

and resting site selection. At the landscape level. the effects of home range selection by 

dispersing individuals and source/sink effects would dominate. At the regional level, 

variation in forest composition due to climate and regional patterns in land use play 

important roles. Regional scale processes might also include source/sink and 
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metapopulation dynamics, as regional barriers to dispersal may affect gene flow and 

recolonization of areas after extirpation. Because their distribution is likely to be strongly 

influenced by such coarse-scale landscape processes. fishers are good candidates for 

umbrella species. 

2.4 Fisher Habitat Ecology 

The fisher is the largest member of the genus Mares, which comprises 7 species 

of small to medium-sized carnivores that are distributed throughout the forests of the 

northern hemisphere. They tend to be generalist predators. feeding on small to medium-

sized mammals and birds, as well as carrion (Powell and Zielinski 1994). 

The fisher is sexually dimorphic with adult males weighing 3.5-5.5 kg and adult 

females 2.0-2.5 kg.. Fishers exhibit intrasexual territoriality, with one male sharing his 

home range with two to three females (Powell and Zielinski 1994). Young are horn in the 

spring and are raised by the females in protected den sites. Large snags are often preferred 

as den sites to provide protection from predators while the mother is hunting. Mean litter 

sizes are between 2 and 3. but only one half to one third of the adult females breed in any 

one year. Juvenile fishers disperse from their natal area in their first winter (Powell and 

Zielinski 1994). Males disperse farther than females, with reported dispersal distances of 

10 to 100 km. (Powell and Zielinski 1994). The spatial structure of fisher populations 

varies over time. Territories fluctuate in size seasonally (between breeding and non-

breeding seasons) and between years (due to prey cycles and habitat change). 
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Habitat selection at the home range scale might be expected to be most evident at 

low densities' (Wiens 1989a). As fishers became more abundant, they would be expected 

to disperse and fill in the intervening suboptimal habitat. Powell (1994b) proposes the 

following continuum of population structure from very low to very high habitat quality: 

"transient -> exclusive territories. decreasing in size -> intrasexual territories, decreasing 

in size -> extensive home range overlap". If territory size is correlated with habitat 

quality, forest fragmentation may increase predation risk and the energetic cost of 

foraging by requiring larger home range sizes (Buskirk et al. 1994). 

2.5 Landscape Level Dynamics of Fisher Populations 

Although much has been written on the sensitivity of forest carnivores to 

landscape fragmentation, almost all of it is based on extrapolation from studies of habitat 

selection by animals at the within-home-range scale. An exception is a study in 

northwestern California that found occurrence of fisher to be strongly correlated with 

increasing forest stand area (up to 100 ha) and decreasing stand insularity (Rosenberg and 

Raphael 1986). 

More compelling evidence is provided by a recent study of the American marten 

in the intermountain west that looked at marten abundance in 18 nine km landscapes. 

The landscapes were composed primarily of mature conifer forests, and varied in both the 

portion of the landscape in openings (both natural and due to logging) and the degree of 

1. However, in situations of low density, measurements of local density might show high 
temporal variability despite constant regional scale density if home range boundaries 
were more free to shift with time (Wiens 1989a). 
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fragmentation associated with habitat loss. Landscape-level habitat loss was negatively 

correlated with marten abundance, and landscape pattern (fragmentation) had an 

secondary additive negative effect (Hargis and Bissonette in press). 

In assessing the effects of landscape structure on the distributional dynamics and 

genetic structure of fishers, it is important to recognize the differences between historical 

and current landscape dynamics in the forests of the region. The effects of anthropogenic 

fragmentation on forest carnivores may be qualitatively different from the effects of the 

natural disturbance regime driven by processes such as fire. A recent study in the Oregon 

Cascades found that current landscape conditions on public forest lands managed for 

timber production were distinct from those caused by pre-settlement disturbance regimes 

(Wallin et al. 1996). Reconstruction of pre-settlement landscapes based on fire history 

showed not only a greater abundance of older stands but also much larger patch size and 

higher spatial and temporal variability in age-class distribution. 

Similar conclusions would probably hold for the Klamath region. However, its 

fire disturbance regime is somewhat less dominated by stand-replacing fires and effects 

of fire disturbance vary with fire intensity (Agee 1993). Species that prefer the interior of 

forest patches will be negatively affected by severe fires that fragment older forests. In 

contrast, they may be positively affected by moderate or low intensity fires that increase 

old-growth structure. 

Landscape grain affects the viability of species that must disperse between 

patches of preferred habitat. Percolation theory predicts a critical threshold below which 

habitat specialists will have difficulty "percolating" or traveling across the landscape 
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(With and Crist 1995). This threshold might occur when the landscape shifts from a 

matrix of older forests to a matrix of early seral patches caused by logging or fire. During 

initial stages of fragmentation the effect of habitat loss (landscape composition) might be 

expected to dominate. In later stages, landscape pattern in the form of habitat isolation 

might become important (Wiens 1996). Studies of the effects of habitat loss on mustelids, 

however, have shown declines in abundance long before a 'percolation threshold' is 

reached (Hargis and Bissonette in press). The dispersal dynamic found in the fisher may 

have been adaptive in pre-settlement landscapes. However, it may become non-adaptive 

as human-induced fragmentation increases. In highly fragmented landscapes, dispersal to 

sink habitat may further reduce population viability (Pulliam 1996). 

2.6 Simulation Modeling 

Simulation models incorporating parameter estimates from intensive studies of 

mustelids have been used to explore the effects of habitat change on population 

dynamics. Several generally available simulation models, such as VORTEX (Lacy 1993) 

and RAMAS (Akcakava 1994). can he used to simulate the effects of genetic. 

demographic, environmental, and catastrophic stochasticity, as well as deterministic 

pressures. and predict extinction probabilities. Lacy and Clark (1993) used VORTEX to 

simulate the effect of varying levels of trapping and logging on American marten. 

Trapping was modeled as a harvest of 20% of the population annually. Logging was 

modeled as a loss of 1% of habitat per year over 50 years. Mean annual population 

growth rate was 29.2% in entrapped populations and 3.4% in trapped populations. 
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However, despite their positive growth rate, isolated populations of 50 or 100 animals 

had high probabilities of extinction due to stochastic processes. pointing, to the 

importance of dispersal in ensuring population persistence. 

Schneider and Yodzis (1994) developed a model that used the concept of 

"Optimum Territory Size" to address the influence of spatial dynamics (i.e. habitat 

quality and heterogeneity) on energy balance and reproductive output. A 32 year record 

from standardized trapping of Peremyscus species in Algonquin Park. Ontario was used 

to parameterize a marten population model and successfully mimic the cycles of marten 

abundance taken from trapping records during the same period (Schneider 1994). As prey 

abundance and/or habitat area decreased, martens increased territory size and associated 

energy cost, resulting in lower fectmdity. Three types of extinction scenarios were 

demonstrated by the model: 

1) Extinction due to negative growth rate 

2) In populations with strongly positive growth rate, deterministic extinction due to 

habitat loss. The extinction threshold was reached at N = 75-125. 

3) In populations with a slightly positive growth rate, stochastic processes result in 

significant probabilities of extinction even in large populations. 

The effect of increasing habitat fragmentation on dispersal and predation risk was 

identified as a missing parameter in this study. Accurate parameter estimation in these 

type of models often requires long-term data on difficult to measure quantities such as 

prey abundance or dispersal distance. 
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2.7 Statistical Habitat Models 

Although habitat selection studies have been a research topic since the era of 

Grinnell, they gained increasing popularity with the focus on niche theory by MacArthur 

and his colleagues (Wiens 1989a). Due to the inability of univariate analyses to resolve 

the intercorrelations among habitat variables, multivariate models were increasingly 

favored. Using a variety of regression and ordination techniques, these models explored 

correlations between the distribution or abundance of a species at a series of sites and 

habitat variables measured at these locations. Significant correlations were often detected, 

as might be expected when examining a large number of variables. However, models 

constructed from one data set often proved unable to predict the presence or abundance of 

a species at other sites. They also often perlbrmed poorly at prediction at the same site at 

a later date. In a study of shrubsteppe birds, Wiens (1989a) found correlations of over 

70% between abundance of seven species and habitat floristics. Only two of the seven 

models performed well when applied to other nearby sites in similar habitat. Experiences 

such as this led to some disenchantment with multivariate habitat modeling. 

One problem with models based on abundance is that density may often be an 

inaccurate measure of habitat quality (Van !tome 1983). This is more likely to be the case 

when "environments are strongly seasonal, temporally unpredictable, or spatially patchy, 

and in species that are ecological generalists and have a social dominance structure and a 

nigh reproductive capacity (Wiens 1989a). Of these characteristics. social dominance 

structure and habitat patchiness are most applicable to fishers. Density in sink habitats is 

expected to show higher temporal variability than that in source habitats (Wiens I 989b). 
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Thus models developed from data collected in these habitats will have poor temporal 

predictive power. The difficulties in inferring habitat suitability from distribution or 

abundance have prompted criticisms of GAP analysis and similar rapid biodiversity 

assessment startegies that use this approach (Conroy and Noon 1996). 

To explain the low generality of the observed correlations between species and 

their habitat in his shrubsteppe study. Wiens (1989a) suggested the following factors: 

1) Interspecific interactions (competition, predation, etc.) 

2) Dispersal from other areas 

3) Environmental stochasticity (e.g. weather extremes) 

4) Temporal variation in habitat resources 

5) Temporal lags in response to habitat change 

6) Habitat factors acting at a scale not measured in the study 

All of these factors. except for the first. can be grouped as due either to inappropriate 

temporal or spatial scale. Thus if habitat data could be gathered on a larger spatial scale, it 

is possible that model generality could be significantly improved. 

2.8 Spatial Statistical Habitat Models 

Spatial heterogeneity is often seen as an obstacle to the understanding of 

ecological processes, to be avoided through proper selection of study sites or ignored 

through simplifying assumptions. Many spatial analysis techniques seek only to account 

for and remove the effects of spatial autocorrelation in order to prevent misleading 

conclusions about the significance of variables. Recently, there has been increased 
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recognition that incorporating spatial pattern into ecological analysis can provide more 

powerful insights into process questions (Karieva and Wennergren 1995, Dutilleul and 

Legendre 1993). If the interest is in robust prediction and a functional understanding of 

the process, it is important to find a model that explicitly represents the spatial correlation 

structure of the data (Haining 1990). Unfortunately, there is usually more than one 

plausible model available, a situation that is compounded by the correlative, rather than 

experimental, nature of the analysis. "[M]odels... for representing spatial variation will 

often provide only crude approximations to the real patterns of variation encountered and 

the analyst needs to consider the extent to which results may prove sensitive to different 

but equally plausible representations of this variation" (Haining 1990). 

The evaluation of multiple plausible models requires an integration of exploratory 

and confirmatory data analysis into a process termed "data-adaptive modeling" (Haining 

1990). Exploratory data analysis (EDA) seeks to find patterns in the structure of the data 

using a variety of methods that are robust and resistant to data outliers and violations of 

parametric assumptions (Tukey 1977). EDA may be especially useful in ecology, where 

data often violate the assumptions of parametric tests (e.g. multivariate normality). 

Confirmatory data analysis (CDA) refers to what is traditionally thought of as statistical 

inference, e.g. providing p-values and confidence intervals. 

Many advocates of the strict Popperian hypothetico-deductive method feel that 

EDA is equivalent to "data-dredging and should play only a minor role in analysis. 

Inductive inference, in which falsifiable predictions, or pattern hypotheses, are derived by 

means of statistical analysis and tested on new data, is not considered a legitimate form of 
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hypothesis testing by Popperian standards (Wiens 1989a). Others feel that, on the 

contrary. alternating between FDA and CDA in the course of analysis is preferable to 

relegating EDA to a purely preliminary role (Ilaining 1990). 

Because it may be difficult to choose between multiple plausible models, 

validation is a critical component of this type of analysis. If the model successfully 

predicts the pattern when compared with new data or a portion of the data that was not 

used in the initial analysis. we can be more confident of its generality. The validation 

conclusions will he more robust if the validation data set encompasses a range of the 

possible environmental and spatial variation in the population. This highlights the 

importance of a sampling design tailored to the questions being asked. In addition, 

although the generality of the observed pattern may be validated. it is more difficult to 

conclude that this has confirmed any process hypotheses about the causes of that pattern 

(Wiens 1989a). A model may have high predictive power but lack a clear functional 

interpretation. This may or may not limit its usefulness, depending on the goals of the 

analysis. 

A strict Popperian approach may be problematic when the process being studied 

occurs at a large spatial scale. Possible experimental manipulations may be so difficult as 

to make replication impractical. An alternative is a comparative study that takes 

advantage of the range of conditions already present on the landscape due to natural or 

anthropogenic "experiments'. (Carpenter 1990, Walters and Rolling 1990). 

In a recent symposium volume on large-scale ecology, Robert May criticized the 

tendency for ecological studies to focus exclusively on smaller spatial scales. 



20
 

Many such studies are entirely appropriate to the questions being asked, 
but others derive more from the financial and time constraints of grants 
(often reinforced by current fashions for Popperian 'falsifiable 
hypotheses', which themselves owe more to philosophical musings than 
any real appreciation of how physical scientists actually work), than from 
careful assessment of the spatial scales that govern the system in question. 
...While there are many interesting and practically important questions that 
can sensibly be pursued on these scales, many others cannot. I fear that, in 
recent years, too many ecologists have yielded to the temptation of finding 
a problem that can be studied on a conveniently small spatial and temporal 
scale, rather than striving first to identify the important problems, and then 
to ask what is the appropriate spatial scale on which to study them (and 
how to do this if the scale is large)(May 1994). 

2.9 Retrospective Modeling 

The strength of the statistical inferences drawn from a habitat association study 

depends, to a large degree, on the attention paid prospectively to sampling design. 

However, pre-existing survey information collected for other purposes may often be the 

only data available for such analysis. The use of such data requires the analyst to confront 

the problems created by variations in protocols and sampling strategies. The 

heterogeneous character of such data sets may violate assumptions of standard statistical 

tests, such as random sampling. Generalizations of the correlations between species 

presence/absence and habitat characteristics to the entire study population must be model-

based due to the lack of a probability-based sampling design. 

Several distinct strategies have been used to investigate habitat selection using 

survey data. A basic choice is between comparisons of survey locations where the 

organisms were detected to either 1) random points or 2) those survey locations without 

detections. The first option requires the choice of the area considered available habitat 
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from which random points are drawn (Manly et al. 1993). The second option also benefits 

from defining the comparison data, though in a different way. Absence records from areas 

outside of the range boundaries or environmental tolerance of the species may distort the 

analysis and may need to be excluded (Austin and Meyers 1996). 

The use of random points approximates the case-control retrospective design 

common in medical applications. It is most useful when the study organism selects for 

rare habitat types or resources (Ramsey et al. 1994). The use of random points 

circumvents the question of whether survey intensity was sufficient to detect the 

organism at all survey locations. However, it assumes that the organisms are rare enough 

that random points are probably unoccupied (Ramsey et al. 1994). A comparison of sites 

with detections versus sites without detections avoids this assumption, but at the cost of 

reducing the generality of the observed habitat associations. The latter approach seems 

preferable when the surveys have the potential to detect animals over most of their home 

range (e.g. during foraging) as is the case with bait stations. The former approach may be 

more appropriate when the sites represent nesting locations. Habitat data from foraging 

locations has inherently less biological significance than that from nesting site locations. 

However, it may be he best alternative when studying species (such as fishers) that 

require intensive telemetry studies to detect denning locations. 

Organisms that are difficult to detect due to inaccessible habitat and cryptic or 

nocturnal behavior may be good candidates for retrospective analyses. These constraints 

were encountered in the case of the marbled murrelet (Brachyramphus marmoratus). A 

retrospective analysis of murrelet survey data was used to generate hypotheses as to 
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selection of nesting habitat at the landscape scale (Raphael et al. 1995). "Occupied sites 

were compared to sites where transient birds were detected and to sites without 

detections. Two scales of analysis were employed: large watersheds and circular 2 km' 

landscapes delineated around survey sites. Both landscape composition and pattern were 

analyzed through the use of the FRAGSTAIS program (McGarigal and Marks 1995). 

The circular landscapes around occupied sites contained more older forest than those 

around comparison sites. Watershed level and landscape pattern analyses proved 

inconclusive (Raphael et al. 1995). 

FRAGS1 A.FS was also used to examine correlations between the abundance of 

various breeding bird species and metrics of landscape composition and pattern 

(McGarigal 1993). The low explanatory power of landscape pattern found in this study. 

as in Raphael et al. (1995), was attributed to the effects of regional scale dynamics, as 

well as to differences between measured and functional heterogeneity. 

A similar retrospective analysis was performed using data on the northern spotted 

owl and a variety of other species (Ramsey et all 994). Logistic regression was found to 

be a widely applicable method for analysis of species-environment relationships. 
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In a comparison of landscape composition and pattern in circular landscapes of 3 

sizes around owl nest sites and random sites, Lehmkuhl and Raphael (1993) found that 

circles of 36 km2 around a nest site approximated the landscape characteristics of the 

owl's home range better than larger or smaller circles. The authors used a moving average 

(MA) function in GIS to model average habitat quality within an owl's foraging radius. 

Landscapes around owl sites had a significantly higher percentage of suitable habitat and 

a larger mean patch size than those at random sites. 

In order to develop a map of predicted sighting potential, Agee and Stitt (1989) 

analyzed historic sighting records of grizzly bears in the North Cascades. An MA 

function was used to measure interspersion of habitat types. Land-cover type and 

interspersion at sighting locations were compared to those at random locations. 

Contingency table analysis demonstrated that sightings were more common than 

expected in certain habitats and at higher interspersion levels. These findings were 

incorporated in a non-statistical scoring process to create the predictive map. Use of this 

type of sighting data risks selection and detection bias but was perhaps the only data 

available in this instance. 

In a analysis of winter habitat of deer (Odocoileus virginianus), Milne (1989) 

found that the accuracy of the model was highly dependent on choosing the scale at 

which the organisms perceived resource distribution. Since this scale might not be known 

beforehand or might change with time, the use of indices such as fractal dimension that 

are theoretically scale-invariant was advocated. However, other landscape metrics have 

been proposed as more robust and biologically meaningful than fractal dimension 
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(Schumaker 1996). In addition, metrics derived from edge measurements are inherently 

sensitive to fine scale error in the delineation of patch boundaries. Metrics derived from 

area (such as patch size) might be expected to be robust for this type of analysis 

Researchers in Australia have made widespread use of predictive modeling to 

study relationships between species distribution and environmental variables. Most 

efforts have sought to relate plant distributions to abiotic variables (e.g. Austin and 

Meyers 1996). The method has also been applied to examining associations between 

birds and a variety of biotic variables including vegetation structure and floristics, as well 

as abiotic variables such as minimum temperature and topographic position (Neave et al. 

1996). Model performance was improved by deriving synthetic variables such as 

insolation from raw variables such as topography and latitude. These synthetic variables 

are thought to be more process-oriented and less location-specific (Austin and Meyers 

1996). 

These studies have also helped demonstrate the value of several lesser-known 

analytical techniques for ecological research. Generalized linear modeling (GLM), of 

which logistic regression is a special case, allows regression analyses of a variety of non­

linear relationships (Hastie and Pregibon 1993). Generalized additive modeling (GAM) is 

an even more flexible method that fits smoothed curves to the data with few assumptions 

as to the form of the response (Hastie 1993). 

A Bayesian approach was used by Aspinall and Veitch (1993) to model 

associations between bird survey data and environmental variables. Correlations between 

bird presence/absence and both elevation data and spectral bands of unclassified satellite 
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imagery were analyzed iteratively to produce maps of conditional probabilities of species 

presence for each environmental layer. These were then combined using Bayes' Theorem 

to produce a composite probability map. By directly modeling species distribution from 

raw imagery, this method avoids a additional source of classification error. The cost is a 

loss of the ability to interpret the functional relationship between land-cover and species 

distribution. Bayesian modeling is a widely used technique in remote sensing 

applications, and is increasingly popular in ecological studies (Johnson 1989, Link and 

Ilahn 1996). 

A model combining multiple logistic regression with Bayesian modeling was used 

to develop a multi-scale model of the distribution of the Mt. Graham red squirrel 

(Tamiasciums hdyouiciLs. grahaeasl.$) (Periera and Itami 1991). The study is unusual 

in that it explicitly addresses the spatial context of the habitat model. The model 

combined first-order trend surface and second-order environmental variation through the 

development of two separate models representing large-scale spatial trends and 

environmental variation. respectively. Their conditional probabilities were then combined 

by means of Bayes' theorem. Squirrel activity sites were compared with sites 

systematically "sampled- from the GIS layers. The spatial autocorrelation structure of the 

environmental variables was used to specify a lag distance between sampled points large 

enough to avoid autocorrelation problems. Elevation, slope. aspect, and canopy closure 

class were retained as variables in the best environmental model. The predominance of 

abiotic variables was partially attributed to the low resolution of the biotic data. 
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\ regional scale analysis of wolf distribution in the north central U.S. used 

multiple logistic regression to compare landscape composition and pattern within wolf 

pack territories against that within areas of similar size (153 km') randomly chosen from 

the remaining region (MladenotT et al. 1995). The variables analyzed included human 

population density. prey density. road density, land cover, and land ownership. as well as 

5 landscape pattern indices. The final model included only road density. although fractal 

dimension was marginally significant. The road density model was used to predict 

potential wolf habitat in the region in order to devise a conservation strategy to aid 

recovery of this threatened species. The study produced significant insights into regional 

scale population dynamics and the importance of coordinating conservation planning 

across multiple ownerships. 

2.10 The Role of Modeling in Conservation Planning 

As the preceding examples demonstrate. spatial statistical habitat modeling is an 

attractive alternative to other methods such as analytical or simulation modeling. 

Parameterization of analytical models such as age-structured matrices requires data 

gathered from intensive demographic studies. Recently. the development of spatially 

explicit population models (SEPM) has allowed demographic data to be combined with 

GIS maps of landscape composition and pattern (Murphy and Noon 1992, McKelvey et 

al. 1993), Despite the attraction of SEPM's for predicting the impacts of landscape 

change, they may he too 'data-hungry' for use with all but the most well-studied of 

species. This, coupled with the need for multi-species conservation planning, has led to 
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the search for modeling techniques that can use coarser-resolution data such as 

presence/absence records (Hanski 1996. Karieva 1996). 

The type of spatial modeling used in this study has the potential to play a 

important role in conservation planning in these data-poor. situations. An example is the 

use of statistical modeling of the predicted distribution of endemic species to perform 

"GAP analysis- in northern Mexico (Bojorquez-Tapia et al. 1995). Faced with a lack of 

detailed survey data. the analysis used modeling based on geo-referenced collection site 

data and maps of climatic variables to produce maps prioritizing the relative conservation 

value of lands in the region. 

A recent study of the endangered red-cockaded woodpecker (Picoides borealis) 

used the term "Species-Centered Environmental Analysis- to refer to their use of 

statistical modeling in a similar context (James et al. 1997). By regressing the viability of 

a focal species on a variety of biotic and abiotic factors at multiple sites, they hoped to 

relate population-level trends to changes in landscape and ecosystem-level processes such 

as fire disturbance regimes. 

Recently, ecosystem management strategies have been advocated in a move away 

from a focus on single species (Grumbine 1994). However. incorporation of species level 

analysis into ecosystem management may provide insights into the "functional integrity" 

of landscapes that is not available by other means (Murphy and Noon 1992, McKelvey et 

al. 199 R D . This suggests that an approach to conservation planning that integrates species-

level and ecosystem-level analysis will be most successful in maintaining biodiversity 

and ecosystem integrity (Franklin 1993. Noss and Cooperrider 1994). 
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3. Methods 

3.1 Study Region 

3.1.1 General Description 

The area analyzed in this study consists of the California portion of the Klamath 

Ranges and adjacent portions of the northern California coast (Figure 3.1). The analysis 

area, which covers 26,600 km of public and private lands, was defined based on current 

knowledge of the distribution of the Klamath fisher population, probably the most 

abundant in the western U.S. (Powell and Zielinski 1994). The extent of the retrospective 

data set is approximately 15,000 km' , or 56% of the analysis region. The model created 

in this analysis was also extrapolated southward into the northern California Coast Range 

as well as northward to encompass the Oregon portion of the Klamath ranges. These 

regions presently lack substantial survey data, so conclusions for these areas are more 

speculative in nature. 

The Klamath region of southwest Oregon and northwest California lies at the 

junction of several biogeographic provinces. Its high plant diversity (3500 taxa, 280 

endemic) has been attributed to its -central.' location at the hub of several mountain 

ranges, each with its characteristic forest communities (Whittaker 1961. Vance-Borland 

et al. 1996). High topographic. climatic, and edaphic diversity lead to steep 

environmental gradients that bring together forest types that elsewhere are widely 

separated. The survival in this region of forest types that were widespread during the 
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Figure 3.1 Map of study area 
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warmer and wetter climate of the Miocene (26 to 7 million years B.P.) is due to a 

combination of factors (Whittaker 1961): 

1) Maritime influence insuring adequate moisture 

2) Sufficient warmth due to its latitude and coastal location 

3) lack of recent geologic upheaval due to glaciation or volcanism 

4) Haphic (parent material) diversity, especially the presence of serpentinite and 

peridotite 

Average precipitation is highest at over 3000 mm a year in the coastal ranges near 

the northwest corner of the region. It decreases sharply eastward and less strongly 

southward, reaching a minimum of around 500 mm in the southeast corner of the region 

(Whittaker 1961. Daly et al. 1994). Orographic effects on precipitation are strong due to 

the dissected topography. Heaviest rainfall occurs in the winter months. 

Many of the endemic flora of the region occur on ultrabasic parent material such 

as serpentinite and peridotite. The forests on these soils often show a low tree canopy 

cover due to the effects of the chemical content of these minerals. However. the scattered 

trees may attain a large size and often co-occur with a well-developed shrub layer. These 

unique plant communities present a problem both for remote sensing classification (W. 

Cohen, pers. comm.) and for habitat analysis. 

The Douglas-fir (Psendolsuga mcnziesii) type is the most extensive forest 

community in the Klamath region. The Douglas-firimixed conifer type can be 

distinguished from a Douglas-fir/mixed evergreen type containing a greater hardwood 

component Sawyer et al. 1977). Douglas-fir is also an important member of neighboring 
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forest types. Ups lope it becomes a member of the white fir (Ahies concolor) forests and 

other high elevation types that have little hardwood component (Sawyer and Thornburgh 

1977). To the east it grades into forests dominated by ponderosa pine (Pima ponderosa) 

and gray pine (P sabiniana). These forests also have a stronger component of deciduous 

oaks such as Oregon white oak (Ouercus gariTana) and California black oak (0. 

kelloggii). To the west it becomes a member of the redwood (Sequoia 

.s'empervirens)lwestem hemlock (Tsuga heterophylla) forest (Linke 1977). The redwood 

forest is often part of a landscape mosaic with patches of oak woodlands. To the north, 

the boundary of the Klamath Province marks a transition to the western hemlock/Sitka 

spruce (Picea si /chensis) forests of the Oregon Coast Ranges (Franklin and Dyrness 

1973). The hardwood species of these forests are primarily deciduous and form a minor 

component when compared to their role in the Klamath region. To the south, the 

Douglas-fir/mixed evergreen type loses its conifer component to become a mixed 

evergreen hardwood forest (Sawyer et al. 1977). 

The Klamath region experiences twice the frequency of lightning ignitions found 

in the Cascade Range to the north (Agee 1993). The fire regime is composed of a higher 

proportion of low to moderate intensity fires than Cascade forests. Thus fire disturbance 

in the Klamath has a more important role in creating old-growth structure than do the 

stand-replacing fires in more northern forests. 

The spatial and temporal variability of fire frequency and intensity created by the 

diverse plant communities of the region in turn leads to further diversity in landscape 

pattern and composition. The dominant conifer species of these forests (Douglas -fir. 
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ponderosa pine. sugar pine Wilms lantherhana and incense cedar (( "alocedrus 

decurrens)) become fire "resisters- with age (Agee 1993). Their hardwood associates 

(madame (AlbllillS 117C17ZieS17), tanoak (Lithocalpits. demi/forms), chinquapin (Chr)'soiepis 

("luso/VW/a). and canyon live oak (Ouercus chusolepis) are fire "endurers- by means of 

epicormic sprouting. This. along with the predominantly evergreen nature of the 

hardwood species. makes these landscapes more resilient to fire disturbance. This has 

important habitat implications for forest wildlife. 

3.1.2 Ownership and Landuse Patterns 

The majority of the analysis area is comprised of public forest lands administered 

by three national forests, the Six Rivers. Klamath and Shasta-Trinity. as well as a small 

proportion of lands administered by the Bureau of Land Management. Public forest lands 

administered by the Forest Service comprise approximately 62% of the analysis region. 

Public forest lands are divided into three main management categories: 

1) Protected areas (wilderness, research natural areas) where no timber harvest takes 

place. These areas cover 26% of Forest Service land, or 16% of the region. 

2) Late-Successional Reserves (LSRs). where some timber harvest may occur but where 

non-timber resources are nominally the primary management concern. These are of recent 

designation (1995) and so may have more or less extensive previous logging history. 

They cover 27% of Forest Service land, or 17% of the region. 

3) General forest or matrix, where timber is the primary management emphasis. These 

lands cover the remaining 47% of Forest Service land, or 30% of the region. 



The coastal portion of the study area contains the redwood parks. administered by 

either the National Park Service or the California State Parks. Although these areas cover 

only 3% of the region, they play a critical role in protecting remnants of the old-growth 

redwood ecosystem. They are primarily composed of older forest. However, much of the 

Redwood National Park addition of 1978 was logged prior to acquisition. 

Private landholdings comprise 35% of the region. Most of the coastal section is in 

private ownership, primarily large timber holdings. Private timber inholdings in the 

eastern section of the study area form part of a -checkerboard" ownership pattern with 

public lands. Some areas of primary forest (such as the Headwaters Forest area) still 

remain on private lands. However, timber management practices on private lands are 

generally more intensive than on public lands. Shorter rotations and less retention of 

older trees creates a more simplified forest structure. 

Second growth stands of redwood, however, often retain significant amounts of 

residual structure in the form of snags and downed logs. This may help explain the 

presence of late-successional forest associated species such as the spotted owl and the 

fisher in these areas (Noon and McKelvey 1996b). Redwoods, as stump sprouters, also 

recover canopy closure more quickly after logging than do non- sprouting conifers. 

However. this residual habitat value has not been sufficient to prevent the decline of the 

Humboldt marten (alarics huntholdtensis). This congeneric to the fisher was 

once widespread in the redwood region (Slauson et al. 1996). Although trapping appears 

responsible for its decline before 1946, logging is implicated as the most likely cause of 

the lack of population recovery in the last 50 years (Zielinski and Golightiv 1996). 



34 

3.2 Study Design 

Fhe data used in this study consisted of field survey data used in the retrospective 

analysis. GIS data on environmental variates. and validation field data collected to test 

the results of the retrospective model. 

3.2.1 Survey data 

The retrospective survey data were collected under several protocols that differed 

in the type of survey apparatus, the duration of the survey and the dispersion of sampling 

sites. Survey stations were of three types; 35mm cameras. 110 cameras, and track plate 

stations (Zielinski and Kucera 1995). 35mm camera stations are designed to take photos 

automatically when an infrared sensor is triggered by an animal investigating the bait. 

Multiple events can be recorded between visits, so these cameras only need to be checked 

weekly. 110 line-triggered cameras, however, must be reset after each photo. Similarly, 

sooted track plate stations must be visited regularly to replace bait and trackplate. These 

types of stations are more labor-intensive and are left in place for shorter periods. Types 

of bait and the use of lure also varied between surveys. 

Average duration for the retrospective surveys was 18.4 days. Most trackplate and 

line-triggered camera surveys run under Forest Service protocols (Zielinski 1991. 

Zielinski and Kucera 1 995 ) ranged in duration from 12 to 18 days (Zielinski et al. in 

press). Trackplate surveys run under a non Forest Service protocol lasted 22 days (Beyer 

and Golightly 1995). 35mm camera stations were generally left in place for longer 

periods of 30 days or more. 
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The sampling design of surveys varied according to the goals of the study. Most 

surveys were performed by Forest Service and Hoopa Indian Reservation biologists, 

rather than by research biologists. Funding was primarily due to project-level planning 

needs, often connected with timber sales. Early surveys, therefore, dispersed stations on 

roads throughout the project area (Zielinski 1991). As awareness of the need for 

landscape-level planning grew, the focus shifted to dispersing stations throughout a 10 

kin' survey unit (Zielinski and Kucera 1995). An alternate protocol dispersed stations 

along roadside transects (Beyer and Golightly 1995). 

This variation in sampling methods reduces the power of the retrospective 

analysis to detect habitat associations. Analysis of the effect of increased survey duration 

in both the retrospective data and in the validation study indicates that there is little effect 

of increased duration after 12 days (Figures 3.3 and 4.8). Therefore, rather than adding 

duration as an additional variable to the model, the 84 locations with surveys of less than 

12 days were removed from the analysis. These locations were primarily from sites 

surveyed in the early 1980s (Raphael 1988). Their age relative to the other data could 

have introduced temporal effects, as significant habitat change due to logging occurred in 

the decade leading up to the spotted owl injunction in 1991. Data from the survey 

locations used in the retrospective analysis were collected during the period 1991-1995 

(Zielinski et al. in press). 
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The distribution of the survey locations across the study area is highly non­

uniform (Figure 3.2). Some areas have high concentrations of survey effort while large 

regions such as the Shasta-Trinity National Forest and private lands lack survey data. A 

non-uniform distribution of detections is also evident from the figure. Detections appear 

to be most concentrated in the central part of the region. and to decline to the north. Due 

to the large areas without survey data, it is difficult to generalize this conclusion to the 

region as a whole before model development. 

3.2.2 GIS data 

A variety of GIS data sources were available for analysis of the data. These 

included layers containing information on vegetation, roads. hydrology, precipitation. 

elevation. and land management category. One of the vegetation layers available was the 

Land Management Plan (LMP) data developed by individual national forests from timber 

type records as part of the forest planning process. and later standardized for use in the 

development of the Northwest Forest Plan (U.S. Forest Service, unpublished data). This 

data set covered only Forest Service lands. The second layer was developed as part of the 

Timberland Task Force (TTF) study (Cal. Timberland Task Force 1993) This vegetation. 

layer is based on an unsupervised classification of Landsat Thematic Mapper (TM, 

imagery combined with "groundtruthing," of vegetation attributes. The extent of the TTF 

layer is California north of San Francisco and west of Interstate Highway 5. The 

classification includes both continuous and categorical vegetation attributes. The 

classification accuracy was estimated at 60-80% for each categorical attribute, based on 
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validation plots sampled by the contractor. Its intended use is limited to regional and 

landscape-level analysis such as performed here. rather than project level analysis (e.g. 

estimation of stand volume) (Cal. Timberland Task Force 1993). 

GIS vegetation layers derived from satellite imagery have several advantages and 

limitations when compared to traditional vegetation maps based on ground surveys. The 

advantages include seamless coverage of multiple ownerships, standardized and 

replicable classification techniques, and current and updatable mapping that allows 

multitemporal analyses. The limitations include the fact that these layers are more 

appropriate for landscape and regional-level than for patch-level analysis. and that 

attempts to extract more than a few size or closure classes or floristic (species) 

differences will seriously reduce accuracy (Cohen et al. 1995). 

A qualitative comparison of the two vegetation layers showed good agreement at 

the coarse scales used in the landscape analysis. The LMP layer. although based on 

ground surveys, was gathered over an extended period and intended primarily for timber 

inventory purposes (II.S. Forest Service. unpublished data). For these reasons. it also 

lacks the level of accuracy that would permit its use in patch-level analysis. 

A third vegetation layer was used to extrapolate predicted habitat suitability to the 

Oregon Klamath lcoprovince. This layer was supplied in a draft form by researchers at 

Oregon State university (W. Cohen. unpublished data). Vegetation was classified as a 

categorical attribute following the classes of Cohen et al. (1995). Because of the 

differences between these classes and the Ill' class attributes, as well as the draft lOrm of 

the data. predictive modeling in the Oregon Klamath is expected to have larger errors. 



40 

The attributes analyzed in the retrospective analysis included the following from 

the TTF data layer: density (canopy closure), TTF tree size class (Table 3.1), percent 

conifer. quadratic mean diameter at breast height (QMDBI I) of hardwoods. CW1IR Type. 

and CWHR Closure Class. These were analyzed at both point (or "patch ") and landscape 

levels. 

Table 3.1 TTF Size Classes. 

Class Average Tree Size 
1 0 14 cm qmdbh 
2 14 25 cm qmdbh 
3 25 60 cm qmdbh 
4 60 90 cm qmdbh 
5 90 cm qmdbh 

The CWIIR. or California Wildlife I labitat Relationships system, uses current 

knowledge of wildlife habitat associations to assign habitat values to vegetation types 

(Meyer and Laudcnslaver 1988). The vegetation is classified into four closure classes. six 

tree size classes, and a variety of forest and non-forest floristic types. Since this system is 

commonly used by agency and private wildlife biologists to evaluate fisher habitat 

suitability for planning purposes, CWHR types were evaluated in the analysis. 

Other TT1 attributes that were not analyzed arc: percent hardwood. QMDBI 1, and 

QMDBI I of conifers. These were redundant with variables already in the analysis. In 

addition. several attributes from other GIS data sources were evaluated. A late-

successional forest data layer was developed based on a MA of "old growth- habitat 

selected from the 1_.M1' layer. 
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Hydrologic data was available from the 3 national forests at 1:24.000 scale. It was 

analyzed as distance from streams. Road data for national forest lands was also available 

at 1:24,000 scale. This was analyzed as road density using, a MA function. Road data for 

the entire region was only available at a coarser scale (1:100,000) and was not used in 

this analysis. Differences in the quality and resolution of the available data for public and 

private lands would have created problems for predictive modeling if these variables 

(roads and streams) had proved significant. 

A digital elevation model (DEM) at 90 meter resolution was used to derive the 

elevation of survey locations (I1.5. Geological Survey, unpublished data). Other 

variables, such as aspect and slope, could also have been derived from this source. 

Mean annual precipitation was derived from a precipitation layer of the U.S. at 6 

km resolution (Daly et al. 1994). This model interpolates values for the area based on 

weather station data and modeled effects of elevation and other variables. Because of the 

scarcity of weather stations in the region, its complex topography, and the coarse 

resolution of the layer. it is likely that the precipitation estimates contain substantial error. 

This would pose an obstacle to the development of predictive models for species (e.g. 

plants) whose distributions are more directly limited by climatic factors. 

GIS layers containing information on land ownership. as well as management 

categories for public lands, were available at 400 meter resolution (U.S. Forest Service. 

unpublished data). Management category information (e.g. 1.SR. matrix) may be 

isonal due to ongoing modifications to the Northwest Forest Plan. 
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3.3 Analytical Approach 

3.3.1 Multiple Logistic Regression (MLR) 

Multiple logistic regression was chosen as the appropriate method for the 

statistical analysis due to the binary nature of the response variable (presence/absence). 

MLR, unlike discriminant function analysis, is robust to violations of multivariate 

normality in the predictor variables (Ramsey et al. 1994). Species distributions along 

environmental gradients may be expected to be show a variety of non-normal 

distributions for theoretical reasons, so such violations may be frequent in these types of 

analyses (Austin 1985). 

The potential predictor variables derived from the GIS analysis were first assessed 

for significance in a univariate analysis. Generalized Additive Modeling (GAM) was then 

used to assess the need for polynomial terms in the model. GAM fits smoothed curves to 

the data without assumptions as to the linearity of the response (Hastie 1993). 

The best multivariate model does not necessarily contain the variables that are 

most significant in the univariate analysis. This may be due to correlation between 

variables, or it may indicate that these variables have a more complex effect due to 

interactions with other variables. Variables that lack significance in the univariate 

analysis may be included in the final model due to their significance in a multivariate 

context. However. this would suggest caution in assigning a functional interpretation to 

these variables. 
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Stepwise model fitting, using both backward and forward selection, was used to 

help construct a model with good fit to the data. However, to create the final model, 

output from the stepwise procedure was assessed with other diagnostics as well as 

according to criteria such as biological significance. In addition to seeking a model with 

good fit to the data, the following goals influenced model selection: 

1) Simplicity: models with fewer variables are better.
 

2) Generality: variables that are available for the entire study area and can be expected to
 

be available for other areas are preferable. In addition, variables such as elevation and
 

trend surface variables whose effect cannot be generalized to other areas are undesirable.
 

3) Interpretability: Process variables, in addition to generality, also have better
 

interpretability. This facilitates making process hypotheses about the observed patterns.
 

Although p-values for the significance of individual variables were produced, the 

Cr statistic for inclusion of the variables provides a better comparison of sets of nested 

models as it controls for reduced degrees of freedom (Statistical Sciences, Inc. 1995). 

However, not all the comparisons in this study are between nested models. Therefore the 

use of other diagnostic statistics was explored. 

A measure that has been used in the literature to compare alternative MLR models 

is a version of the R2 statistic commonly encountered in linear regression (e.g. Bojorquez-

Tapia et al. 1995). The formula is: 

R2 = 100Wog-likelihood of null model] of model k]) /[log likelihood of null model] 
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However, this statistic actually compares the fitted values of two models without 

reference to the observed data, and is thus not recommended as a measure of goodness-

of-lit in the case of logistic regression (1- losmer and Lemershow 1989). 

Recently, the Bayesian Information Criterion (BIC) has gained popularity as a 

measure for comparing non-nested models (Raftery 1994). Like the Cr statistic, BIC 

assesses penalties for inclusion of too many variables. Its formula is BICk= Lek (ilk log n 

where 1,2k is the deviance. n is the sample size, and dtk is the number of residual degrees 

of freedom in the model. More negative BIC values indicate better models. 

3.3.2 Spatial Autocorrelation Analysis 

Analysis of spatially structured data raises problems not normally addressed in 

multivariate analyses (Legendre 1993). If locations near one another are more similar (or 

different) than locations far from one another, the data violate one of the central 

assumptions for parametric statistical tests; the assumption of independence. Each new 

observation contributes less than a full degree of freedom to the analysis. This can result 

in spurious correlations, as "successive aggregation of regionalized variables tends to 

increase correlations even though correlation at the disaggregated level is zero- (Majure 

et al. in press). The attention focused on "pseudo-replication- in the design of field 

experiments recognizes the problems caused by spatial autocorrelation in environmental 

variables (Hurlbert 1984). However, the solutions proposed to remedy this problem, such 

as randomized blocks, only account for spatial structure at the scale of the block size 

employed (Fortin and Gurevitch 1993). 
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Due to these problems, various methods have been developed to detect spatial 

structure in ecological data. Among these is the Mantel test, which tests the degree of 

association between two or more distance matrices. one of which may be based on 

geographic distance while the others are based on dissimilarities in some other variable. 

Since the values in a distance matrix are not independent. randomization methods must 

be used to test the significance of the observed association between the matrices. This 

involves permuting the rows and columns of one matrix many times (usually 1000 or 

more) and remeasuring the correlation between the matrices. In this manner, a 

distribution is created against which the observed correlation value can be compared for 

significance (Manly 1991). 

In this study. the Mantel test was used as an exploratory tool to assess the 

significance of the correlation between the individual variables and species presence. The 

test was implemented using a routine in Splus (Statistical Sciences, Inc. 1995 and J. Van 

Sickle. unpublished). Both the simple two-matrix test and the partial Mantel test were 

performed. 

The partial Mantel statistic allows the correlation to be tested for significance with 

and without the effects of geographic distance (Smouse et al. 1986). This allows the 

partitioning of the correlation into components of "spatially structured" environmental 

variation and "non-spatial" environmental variation (Figure 3.4)(Borcard et al. 1992). 

Dominance of the spatial component would be a warning sign that the observed 

correlation may he spurious due to the effects of other variables with a common spatial 

structure. 
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for example, simple and partial Mantel tests have been used to assess the 

correlations between regional scale landscape patterns and the population trends of 

neotropical migrant birds Mather and Sauer 1996). Because of strong spatial structure in 

the population densities of such highly vagile species, it was important to test for 

correlations both with and without the effects of geographic distance. 

A second method for testing for significance in the presence of spatial 

autocorrelation is the CRH method (Cliford et al. 1989). The CRH method involves a 

modified test for the significance of the correlation between two variables at a network of 

sites whose spatial coordinates are known. The effective sample size used in the test is 

reduced (for cases of positive autocorrelation) based on a measure of the spatial 

covariance of the variables. This method has proved useful in distinguishing between 

alternate hypotheses when environmental variables show strong patchiness (Thomson et 

al. 1996). However, the CR11 test assumes stationarity in the spatial correlation structure 

and should be applied with caution if strong trend or anisotropy is suspected (Cliford et 

al. 1989). In addition, the correlation coefficient is an aggregate measure and cannot 

provide information on a process that has distinct effects at different scales (Cliford et al. 

1989). 

The CRII modified t-test was used here to assess the significance of the observed 

correlations between fisher presence and environmental variables after accounting for 

spatial autocorrelation (Cliford et al. 1989). It was implemented by means of a Fortran 

routine (N. Oden and B. Thomson, unpublished). Spearman rank correlation coefficients 

(rs) were chosen due to the non-normal distributions of some variables. 
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3.3.3 Models of Spatial Structure 

Methods such as described above are helpful as exploratory tools and when the 

goal is limited to testing for significance in the presence of spatial autocorrelation. 

However, it is often more useful to create an explicit model of the spatial correlation 

structure of the data. This structure may be modeled as a combination of large-scale trend 

and small-scale variation. referred to as first and second-order effects. These are similar 

to the components of "spatially structured" and "non-spatial environmental" variance 

used by Borcard et al. (1992). However, this division of the process into first-order and 

second-order effects is somewhat arbitrary (Bailey and Gatrell 1995). 

irst-order trend may be modeled through the use of linear and higher-order 

polynomial functions of the spatial coordinates a technique known as trend surface 

analysis (Haining 1990). Environmental variables be included as covariates at this stage. 

However, it may be more realistic to model them as spatially autocorrelated mesoscaie or 

second-order variation. 

The covariance structure of this second-order variation is commonly modeled by 

either a simultaneous autoregressive (SAR), conditional autoregressive (CAR). or moving 

average (MA) function (Haining 1990). The distinction between the covariance structure 

of a SAR and MA model is illustrated in Figure 3.5. These are counterparts of the better-

known autoregressive and ARIMA models used in time-series analysis (Mathsoft. Inc. 

996i 

In the majority of analyses, both the first and second-order components are 

unknown and must be estimated from the data. This presents difficulties in that the mean 

I 



48 

or trend of a spatial process cannot he accurately estimated without a knowledge of the 

spatial covariance structure and this structure cannot be estimated without a knowledge of 

the mean (Bailey and Gatrell 1995). This problem can be circumvented by performing the 

analysis iteratively. The first-order trend may be extracted by ordinary regression of the 

response on variables consisting of spatial coordinates with or without environmental 

covariates. Then the residuals are used to estimate the covariance structure through the 

use of a variogram. 

A variogram plots the semivariance between points separated by different lag 

distances (Figure 3.6). The semivariance is lowest at a lag of zero. This nugget variance 

represents within-site variation. In geostatistics, the nugget effect is often attributed to 

measurement error. However. in ecological studies a variety of sources are possible. such 

as temporal variation in habitat resources. The semivariance increases from the nugget 

until it reachs a maximum at the sill at a lag distance termed the range. Points separated 

by distances greater than the range are not spatially autocorrelated. A theoretical 

variogram drawn from one of several models (spherical, circular, exponential. Gaussian, 

linear) is then fit to the empirical variogram derived from the data. The accuracy of the 

covariance structure estimation may depend on choosing the correct theoretical variogram 

model (Bailey and Gatrell 1995). 
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Figure 3.5 Spatial covariance structure of SAR and MA 
models (from Haining 1990). 
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Figure 3.6 Theoretical variogram (from Bailey and 
Gatrell 1995). 
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This covariance structure may then be used to construct a weights matrix which is 

incorporated back into the regression model to improve the estimation of the first-order 

trend (Bailey and Gatrell 1995). The process is iterated until parameter estimates stabilize 

(Ver Hoef and Cressie 1993). This method is referred to as generalized least squares 

(GLS)-variogram estimation. 

Kriging is an alternate method of spatial interpolation that, like GLS-variogram 

estimation, involves fitting a theoretical variogram to the data. Ordinary kriging requires 

an assumption of stationarity, that is the removal of any large-scale trend. Universal 

kriging relaxes this requirement and models trend and second-order effects in one step. 

However. if the object of the analysis is not only prediction but a functional or descriptive 

understanding of trends, it is better to follow a two-step process and obtain an explicit 

estimate of the trends (Bailey and Gatrell 1995). 

Ideally, it would he possible to extend logistic regression and other forms of the 

generalized linear model to spatial data within the context of a spatial autoregressive 

model. For example. the spatial autologistic model is the spatial counterpart to logistic 

regression (Haining 1990). However, the non-diagonal weight matrices used in these 

models present problems for the model-fitting algorithms used in statistical programs 

(Bailey 1993). These programs use a maximum likelihood estimator (Chambers and 

1-lastie 1993). Although the likelihood in the spatial autologistic function is intractable, it 

may be possible to create a model-fitting algorithm using the "pseudo-likelihood" (B. 

Riple pers. comm.). However, currently such functions are unavailable in spatial 

statistical software packages. 
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One possible solution is to perform non-spatial logistic regression incorporating 

spatial coordinates as trend surface variables, with the awareness that spatial 

autocorrelation may present problems for tests of significance (Bailey and Gatrell 1995). 

110\N:ever. this approach of modeling second-order spatial dependence as a first-order 

spatial trend is not ideal. The future development of spatial generalized linear models will 

allow more robust prediction and functional interpretation of spatial effects such as are 

now possible with spatial linear regression models (Mathsoft, Inc. 1996). 

3.3.4 Moving Average Models 

The "moving- window" functions found in some GIS software (e.g. Arc-Info) 

provides a method of incorporating the MA model within the logistic regression analysis 

(ESRI, Inc. 1996). These functions allow the analyst to specify the shape and size of a 

"window" around each cell within which the averaging of cell values will be performed. 

Each cell in the input raster GIS layer is evaluated and a new layer is produced containing 

the output values. 

In this study, the MA function in Arc-Info (FOCALMEAN) was used to average 

vegetation characteristics over a "landscape" whose size was varied during the analysis. 

A series of multivariate models was created that contained vegetation variables averaged 

over landscapes of varying scales. FOCALMEAN's of 10, 30, 50, 100, and 1000 km= in 

size were evaluated., along with a model based on site level vegetation. Moving average 

models were also created using the fisher habitat suitability values assigned to vegetation 

types by the CWI IR system. These models were then compared with the BIC statistic. 
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The variance in habitat suitability within the area of the ''moving window- may be 

as biologically significant as the mean. The FOCALSTD function in Arc-Info computes 

the standard deviation within the analysis window in a similar fashion as FOCALMEAN 

computes the mean value (ESRI, Inc. 1996). This FOCALSTD value was used as a crude 

estimate of landscape diversity. However. it does not measure another aspect of landscape 

structure, the degree of spatial aggregation of similar patch types. This would require use 

of a landscape pattern analysis program such as FRAGSTATS (McGarigal and Marks 

1995). 

The MA model has weaknesses when compared with a SAR or CAR model. It is 

difficult to integrate the effects of multiple scales of habitat selection in the MA model as 

correlation quickly decays to zero with distance (Figure 3.5) (Haining 1990). The MA 

approach might be expected to work best for organisms that select strongly at a particular 

scale such as the home range and only weakly at scales above and below that. 

It might seem possible to perform a multi-scale analysis by incorporating sets of 

variables derived from a particular attribute averaged over multiple window sizes. This 

approach, however. results in the creation of groups of highly collinear variables. This 

creates serious problems in interpretation of the coefficients. Although it would also have 

been possible to build models where each separate vegetation variable was averaged at a 

different scale. this would have limited interpretability of the results. MA analysis is also 

possible using a annulus. or ring-shaped window (ESRI, Inc. 1996). This would extend 

the technique used in Ramsey et al. (1994) to analyze landscape pattern around spotted 

owl nest sites and might be expected to reduce but not eliminate problems of collinearity. 
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A more promising method uses an "irregular- moving window which derives its 

size and the weighting given to various parts of the window'. from a kernel file created 

by the user (ESR1, Inc. 1996). This would allow the incorporation of weight matrices 

derived from variograms or other spatial analyses. The integration of these spatial 

statistical methods with GIS, however, is still in its initial stages (Bailey 1993). 

3.3.5 Combining MLR and Spatial Modeling 

'rile final strategy used in this analysis is a hybrid of several methods. In order to 

model fisher distribution at multiple scales, the following type of spatial model was 

employed. The probability of fisher detection. p, is modeled as a logistic function of three 

scales of variation and two sources of error. 

logit (p) =
 
regional trends (trend surface) +
 
landscape (mesoscale) environmental attributes ±
 
point ( "patch ") level attributes +
 
spatially autocorrelated error +
 
non- autocorrelatcd error (nugget variance)
 

The output of the MA analysis of the environmental variables was added to the 

MLR model to predict fisher distribution at the scale of the home range. The spatial 

coordinates (in a Universal Transverse Mercator (UTM) projection) were added as 

covariates to the environmental model to create a trend surface component corresponding 

to regional scale first -order variation. Models with and without the trend surface 

component were fitted for all environmental models. 
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If accurate plot level habitat measurements are available, they can also be 

incorporated in to the MLR equation to increase predictive power. In this study, accurate 

plot scale data were available for the validation field data, but not for the retrospective 

data set. An approximation of site or "patch" scale vegetation characteristics was derived 

by overlaying the survey locations on the TTF layer. These variables were assessed for 

significance during model fitting. However, these values can be expected to have low 

accuracy due to two factors: 1) inaccurate recording of the survey location, and 2) fine-

scale error in the TTF layer. These fine-scale errors become less significant when the data 

are averaged to a landscape scale, due to the effects of the Central Limit Theorem. In the 

retrospective analysis, it is not possible to distinguish between lack of biological 

significance or data inaccuracy as the cause of any lack of significance of "patch"-level 

vegetation in the retrospective analysis. 

If the species of interest exhibits hierarchical habitat selection, it is possible that 

the same resource may have contrasting effects in different habitat types (Ramsey et al. 

1994). In that case. analysis of fine-scale habitat features might be performed separately, 

or with a method such as regression tree analysis that allows for such hierarchical effects 

(Clark and Pregibon 1993). In the MLR model used here, this type of cross-scale effect 

would be incorporated through interaction terms. 

The error component can be broken into a spatially autocorrelated term as well as 

a non-autocorrelated nugget effect. Because a spatial covariance structure was not directly 

incorporated into the analysis, the residuals from the MLR model might be expected to be 

autocorrelated. Although this presents a problem for parameter estimation, it also means 
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that the residual values at a data point provide information about values at neighboring 

points. This information can be extracted through spatial modeling of the residuals, either 

through spatial autoregressive models or through kriging. Although spatial autoregressive 

modeling requires use of a specialized spatial statistical software (Mathsoft, Inc. 1996), a 

kriging function is available in some GIS software. 

Residuals from the retrospective model were interpolated across the region using 

the KRIGING function in Arc-Info (ESRI, Inc. 1996). The exponential model was chosen 

as the best theoretical variogram based on examination of the empirical variogram values. 

The interpolated residual values obtained through kriging were then added to the 

predicted values from the MLR model. Results from the validation surveys were 

compared with the values predicted by the "MLR plus kriging" model to see if this model 

performed better than the MLR model alone. 

3.3.6 Additional Details of Analysis 

Many methods of spatial modeling are best suited for analysis of a regular lattice 

of points such as might result from a systematic sampling design. In retrospective studies, 

the data set usually consists of irregularly spaced sample sites. This may result in the 

model being primarily a characterization of heavily surveyed areas. One option to remedy 

this problem is to weight the data points during the model-fitting process. Points in areas 

of high sampling intensity would be weighted less than those in sparsely sampled areas. 

Dirichlet tesselation is an optimal method of dividing a surface into "tiles" surrounding a 

set anoints (Figure 3.7) (Bailey and Gatrell 1995). Simple spatial smoothing methods 
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often interpolate values across regions defined by such Dirichlet tiles. The corners of the 

tiles are the midpoints of lines connecting a point with its nearest neighbors. By 

weighting points based on the area of their Dirichlet tiles, the effect of densely clustered 

points is reduced. In this study, data points were differentially weighted in the model-

fitting algorithm based on the area of their Dirichlet tile. The tile area was computed by 

means of a function in Splus (T. R. Turner, unpublished). 

However, if spatial autocorrelation drops to zero after a certain distance, we might 

want to place an upper limit on the weight allowed isolated points. The maximum value 

allowed for a Dirichlet tile in this analysis was the area of a tile surrounding a validation 

sample unit (approximately 60 km2). This was an estimate of the area any one survey 

station could be thought to represent. This weighting method unavoidably gives high 

leverage to isolated points, so they should be examined during exploratory data analysis 

and model fitting. Cook's distance was used to assess the robustness of the model to 

outliers (Hastie 1993). 
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Figure 3.7 Dirichlet tesselation (from Bailey 
and Gatrell 1995). 

Figure 3.8 Design of trackplate stations; plastic on left, wooden on right 
(from Zielinski and Kucera 1995). 
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3.4 Validation of Retrospective Model 

3.4.1 Selection of Survey Area 

A portion of the analysis region was selected as a target of the validation surveys 

based on lack of previous survey effort. Since little data from such an area would have 

been incorporated into the retrospective analysis, it would represent a stronger validation 

test. The area chosen covers 20% of the total area covered by the retrospective data set, 

but holds only 7% of the survey points in that data set (48 out of 682) (Figure 3.1). 

The area covered in the 1996 validation surveys lies near the center of the analysis 

region. It covers approximately 2300 km', or about 9% of the total region and 14% of the 

total Forest Service land. Elevation in the survey area ranges from about 120 meters 

along the Klamath River to 2600 meters at the summit of Thompson Peak in the Trinity 

Alps. Survey station elevations ranged from 120 to 1900 meters. 

The topography of the survey area is dominated by the valleys of three rivers, the 

Klamath, Trinity, and the Salmon, and their numerous tributaries. The higher elevations 

lie in four protected areas, the Trinity Alps, Marble Mountains, the Siskiyou, and the 

Russian Wilderness Areas. Few sample units were placed in these and other roadless 

areas due to logistical constraints. Large areas of the survey area burned in 1977 and 

1987, particularly in the Salmon River basin. 

Because over 95% of the validation survey area is in public ownership, human 

population density is low and there are few paved roads. The survey area is bisected in 

the south by State Highway 299 (2 to 4 lane) running east to west, in the north by State 
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Highway 3 (1 to 2 lane) running east to west, and by State llighway 96 (2 to 3 lane) 

running north to south. Willow Creek is the largest town in the survey area, with a 

population of approximately 1000 people. 

3.4.2 Sampling Design and Protocol 

Survey protocol generally followed Zielinski and Kucera (1995). Tracks were 

recorded on a Contact paper surlhce as animals approached the bait after crossing a 

sooted aluminum plate. The station enclosure was constructed of either flexible plastic 

with a metal base or plywood (Figure 3.8) (Zielinski and Kucera 1995). Stations were 

checked every other day, with an occasional delay until the third day on 17% of the visits. 

Sites were checked 8 times after setup, for an nominal survey duration of 16 days. Bait 

consisted of chicken. A commercial trapping lure was applied on the lburth visit to 

sample units that had not received a fisher detection at any of the 6 stations. This delay 

was intended to avoid weakening inferences about plot-level habitat associations due to 

long-distance attraction by the lure. 

the sampling design used in the validation surveys was a nested design based on 

a systematic grid. The National Forest Inventory (NFI) grid is a system of locations 

covering all public forest lands in the U.S (U.S. Forest Service. unpublished data). It is 

similar to the sampling designs developed by other agencies (e.g. the U.S. Environmental 

Protection Agency's [MAP program) in that it is based on a surface of hexagonal cells 

(Stevens 1994). The cells form a nested hierarchy so that different sampling scales can be 

chosen by selecting a systematic subset of the cells. The smallest cells have a diameter of 
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1.35 km. Point locations are randomly selected within these smallest cells to permit 

probability-based inference about the cell as a whole and to avoid coincidence of multiple 

points with linear landscape features such as ownership boundaries. This has been termed 

a tesselation stratified design. The randomization element incorporated into the NFI grid 

allows incorporation of some of the benefits of random sampling, such as design-based 

estimates of variance (Stevens 1994). 

The NFI grid itself contains points separated by 5.4 km.(Figure 3.9). Our 

validation sampling design selected alternate NFI points, resulting in a interpoint distance 

of approximately 10.8 km.. This distance was selected to insure that the same individual 

fisher would not be detected at more than one sample unit. This assumption was most 

critical for a companion objective of the surveys, to test a statewide monitoring program 

(Zielinski and Stauffer 1996). 

Systematic sampling was chosen over the alternative of random or stratified 

random sampling because of its superiority in estimating spatial trends. Haining (1990) 

states that "I allthough in certain cases systematic sampling may prove impractical or too 

costly, the theoretical evidence stresses the superiority of systematic sampling in a variety 

of spatial situations"(Haining 1990). Simple random sampling is rarely optimal in these 

types of surveys (Neave et al. 1996). Stratified random sampling may be preferable when 

spatial variation is highly discontinuous or periodic, allowing the area to be divided a 

priori into dissimilar regions (Haining 1990). Due to the lack of a priori knowledge of 

habitat associations, it is doubtful that this type of stratification would be optimal. 
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The "12radsect- concept proposes that in order to optimize the information content 

of a survey, survey locations should be arrayed in a transect located along the steepest 

environmental gradients in the region (Austin and Heyligers 1991). These gradients are 

identified based on auxiliary data or the results of pilot surveys. The approach used in this 

study is an attempt to combine the strengths of systematic sampling with those of the 

gradsect approach. Although a priori knowledge of an optimal stratification was lacking, 

it was possible to identify several gradients from the retrospective analysis that could be 

incorporated into such a gradsect sampling design. 

The gradients sampled include the decline in regional mean as one moves from 

the central to northern parts of the region, the coastal to inland gradient, and a mid to high 

elevation gradient. The latter two gradients sample a transition in forest community type, 

allowing investigation of how habitat associations change with floristics. 

Six trackplate stations were arrayed in a regular pattern around each NFI sample 

unit surveyed. Five stations were arrayed at equal intervals alom2, the perimeter of a circle 

with a 500 meter radius centered on the Nil point, which held the sixth station (Figure 

3.10). This improved the likelihood that fishers whose home ranges contained the sample 

unit would not escape detection. This hierarchical sampling design also allowed the 

multiple-scale analysis of landscape versus plot-level habitat selection. Systematic-cluster 

designs such as this one are effective at detecting spatial structure when the scale of 

-variation is not known a priori (Fortin et al. 1989). 



63 

A significant weakness of the retrospective analysis was the inability to analyze 

the importance of point or "patch"-level habitat association due to the poor fine-scale 

resolution of the GIS vegetation layers. This was a motivation to gather detailed 

vegetation data at each station location. Vegetation data collected at validation survey 

locations could be used to assess the significance of plot-level habitat associations, albeit 

with limitations caused by the smaller data set. It is also difficult to say how well data 

gathered at a plot scale of approximately 0.05 ha represents the characteristics of a patch, 

either as defined by the human observer or as perceived by the organism. This may be 

expected to vary between attributes (e.g. the downed log resource may be perceived at a 

different scale than canopy closure). 

Site variables were measured at one of two scales (Table 3.2). Two perpendicular 

25-meter transects were placed at a arbitrary azimuth and centered on the trackplate 

station (Figure 3.11). Canopy closure (measured with a densiometer) and log tally by size 

class were measured at this scale. DBH and condition of all snags and trees by species 

were measured for a variable radius plot consisting of the "in trees" recorded by a 20 

factor prism (Wenger 1984). An estimate of basal area was derived from the prism count. 

Ocular estimates of tree and shrub cover by species, CWHR type, size class and closure 

class, approximate distance to water, logged areas, and roads were also recorded, as were 

aspect and slope. The geographic coordinates of station location were recorded either by 

means of a geographic positioning system (GPS) or by visual referencing to a Digital 

Ortho Quad (DOQ). 
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Figure 3.10 Multi-level forest carnivore sampling design. 
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Figure 3.11 Vegetation sampling transect layout. 
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Table 3.2 Plot-level vegetation attributes measured in validation surveys 

Attribute Measuring device 
Location GPS or DOQ 
Elevation altimeter 
Slope clinometer 
Aspect compass 
Tree composition of variable radius plot wedge prism (20 factor American) 
Tree diameter at breast height dbh tape 
Canopy closure concave densiometer, 25m transects 
Log tally 25m transects (see Figure 3.11) 
Ocular Estimates of: 
CWFIR Type, CW1IR Size Class. and CWIIR Closure Class 
Potential Natural Vegetation (PNV) Series/Sub-series 
Micro-slope position 
Canopy closure of overstory trees 
Canopy closure of understory trees 
Shrub cover, total and of three most abundant shrubs by species 
Species, height, and condition class of trees in variable radius plot 
Distance to water. road, and logged areas 

The detailed plot-level data collected at the validation sites allows an assessment 

of the significance of plot-scale habitat association that was not possible with the TTF 

data used in the retrospective analysis. When comparing sites with and without 

detections. three types of comparison are possible. Their appropriateness depends on the 

nature (tithe question being asked. 

Comparisons can be made: 

1) Across all 40 sample units (Stis). This looks at whether plot-level attributes alone are 

useful to predict fisher presence. 

2 Across the 27 St.,'s that received a detection at one or more station. This examines the 

significance of plot-level variation in predicting which stations in an occupied Stt will 

receive detections. 
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3) Across the 17 SUs where lure was not applied (because they received detections before 

approximately the fourth visit). Long-distance attractants may obscure the effects of plot-

level habitat selection. However, along with the reduction in sample size comes a loss of 

power to detect associations. 

3.5 Prediction to the Oregon Klamath 

The distributional limits of the regional population of fishers encompass both 

northwestern California and southwestern Oregon (Powell and Zielinski 1994, Zielinski 

et al. 1996). In order to understand the regional dynamics and viability of this population, 

an estimate of fisher distribution in Oregon is required. Although there are incidental 

sightings in southern Oregon. survey data of the type used in the retrospective analysis in 

California are lacking. Therefore distribution must be predicted based on California data. 

Unfortunately, the vegetation layer available for Oregon uses a different vegetation 

classification scheme than the California TTF layer. Therefore, although extension of the 

predictive model to Oregon is a valuable exercise, the accuracy of the predictions may be 

limited. 

The categorical attributes in the Oregon vegetation layer were assigned values for 

the three TTF vegetation attributes (density (canopy closure), tree size class, and percent 

conifer) based on the mean value shown by the retrospective data falling in that class. 

Classes are as described in Cohen et al. (1995). For example, a pixel that belonged to the 

class of "closed mixed- -lass would receive a canopy closure value of 91.0% based on 

the California data (Table 3.3). FOCALMEAN's were then performed on the grids of 
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reclassified values. The resulting MA values were then entered into the California-based 

model to derive a predictive map. 

Validation of the Oregon predictions will be performed in the 1997 field season 

through extension of the NIA-based sampling design to the Siskiyou National Forest 

lands in coastal southwest Oregon. The results of this validation will improve our 

functional understanding of the predictive model, especially the regional component, and 

will strengthen efforts to manage for regional viability of forest carnivore populations in 

the Klamath region as a whole. 

Table3.3 Crosswalk between Oregon and TTF GIS vegetation data. Values were 
assigned based on the mean value of sites in that class in the retrospective data set. 
Class boundaries for the Oregon data are as described in Cohen et al. (1995). 

TTIT value assigned fbr: Density Tree size class Percent conifer 

Oregon vegetation class: 

Background, cloud. toposhadow no data no data no data 
Water 0 0 0 

Open 16.8 0.86 45.6 
Semi-closed 63.0 2.50 74.9 
Closed mixed 91.0 2.94 60.0 
Closed young conifer 90.6 2.7 94.5 
Closed mature conifer 89.8 4 94.9 
Closed old conifer 89.8 5 94.9 
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4. Results 

4.1 Univariate Analysis 

The data set used in the retrospective analysis consisted of data from 682 survey 

locations. As an initial comparison. descriptive statistics (median, mean. standard 

deviation) were used to compare locations with detections to those without detections 

(Table 4.1). These were tested for significance by means of a t-test and the non-

parametric Wilcox rank sum test. 

Among the vegetation variables, density (canopy closure). percent conifer, and 

quadratic mean diameter at breast height (QMDBH) of hardwoods showed significance at 

both point ("patch") and landscape scales. Among the abiotic variables. elevation and 

precipitation Were significant. There was a significant spatial gradient represented by 

UTM Northing. IJIM Casting was significant only in the non-parametric test. 

4.2 Results of Correlation Analysis and CRH Test 

A matrix of Spearman correlations between the variables was created and tested 

for significance with both standard and CRI I modified tests (Table 4.2). As expected, 

moving average indices for landscapes of different sizes were highly intercorrelated, 

though this was not as true of their correlations with the "patch" level variate (Table 4.3). 

QMDBH of conifers was highly correlated with overall QMDBH. None of the other 

correlations between variables was greater than 0.72. However, eight combinations of 

variables showed correlations greater than 0.6 (table 4.4). Most of these have self-evident 

explanations. Density and precipitation decrease along the West-east gradient. Conifers 
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increase and the QMDBH of hardwoods decreases as elevation increases. Density and 

percent conifer are positively correlated with tree size class at the "patch" level. More 

interestingly. density is correlated with tree size class and hardwood QMDBH at the 

landscape level. 

Several of the correlations between these variables are highly significant using the 

uncorrected sample size. However, when tested for significance using the effective 

sample size derived by the CRI I method, many of these correlations lose their 

significance. Density is the only attribute that remains significantly correlated with fisher 

presence in the CRI-1 test (p = 0.05). This is despite the fact that the magnitude of the 

correlation of density with fisher presence is less than that of the density or hardwood 

QMDBH MAs before the MI correction. The reduction in effective sample size is 

greatest in the MA variables due to the effects of the spatial averaging process. This 

suggests caution when interpreting the significance of correlations between variables 

derived from the MA models. Increased correlation at coarser scales may be due to 

increased biological significance of landscape-level effects or to high apparent 

predictability (svii.s7( Wiens 1989c) due to increased autocorrelation. 
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Table 4.1. Univariate comparisons of variables for survey locations with and without 
fisher detections from retrospective analysis. Medians are followed by means with 
standard deviations in parentheses. 

Sites with detections Sites without detections 

Vegetation: 
Density ( %) 76.3. 65.6 (27.7)".' 63.7. 58.2, (25.5) 
III' Tree Size Class 2.00. 2.32. (1.13) 2.00, 2.30 (1.09) 
Percent Conifer 67.4, 63.9, (24.9)".' 74.0, 69.0 (25.9) 
Quadratic Mean DBH (cm) 48.8, 49.5 (18.8) 47.8, 49.5 (17.8) 
QMD1314 Conifer (cm) 54.9. 56.1 (21.1) 52.8. 54.4 (19.1) 
QN/1DBH Hardwood (cm) 18.5. 18.3 (11.7)''' 13.0. 14.2 (11.2) 
10 km2 MA's: 
Density MA 69.6, 66.7 (11.5)".' 61.9, 60.5 (1 .2) 
Tree Size Class MA 2.25. 2.29 (0.34) 2.28. 2.28 (0.36) 
Percent Conifer MA 64.3. 65.7 (9.6)" 67.8, 67.4 (9.6) 
QMDBH Hardwood MA 18.8, 17.8 (5.6)"I' 16.0. 15.7 (5.3) 
LMP Old Growth MAI.= 0.16, 0.21 (0.19) 0.15. 0.19 (0.15) 
Abiotic: 
Elevation (meters) 1008, 987 (404) "" 1137, 1122 (375) 
Annual precipitation (mm) 1493, 1438 (424)'''' 1550, 1551 (517) 
Road density MA' (km/km=) 1.99, 2.09 (0.82) 1.85, 1.93 (0.80) 
UTM Casting 451510, 465592 (26664)" 462105, 468245 (24637) 
UTM Northing 4552680. 4554976 (48386)h 4588455. 4570093 (62429) 
Distance to water' (meters) 188. 234 (183) 242, 269 (191) 
Survey duration 22. 24.4 (8.3) 24.0, 26.8 (13.0) 

n = 682. 174 (25.5%) with detections 
Superscripts indicate siunificance at 0.05 level for 
a t-test. b Wilcox rank sum test 
1 Data only available for locations on Forest Service lands (n = 551, 94 (17.1%) with 
detections) 
2 Expressed as proportion of area in selected "old-growth- timber types 
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Table 4.2 (Following page) Correlation analyses for the sites used in the retrospective 
model (n=682). Spearman correlation coefficients are below the diagonal, while 
above it are the uncorrected significance values, followed by the values derived by 
the CRH test. Values retaining significance at the 0.05 level are marked in 
boldface. Effective sample size determined by the CRH test in is parentheses 
below each comparison. Fifteen distance classes were used for the CRH analysis. 
The upper boundaries of the classes increased in 15 km increments from 15 km to 
a maximum of 225 km. 



Table 1.2. 

1 4 

1)Fishei. pr(..;enc 0.000->0.050 
(114) 

0.000 >f101 
(34) 

0.026->0.186 
(233) 

0.043-50.529 
(64) 

0.205-50.514 
(191) 

0.970--H0.991 
(62) 

0.000->0.093 
(60) 

2 )Densit 0.194 0.000->0.000 
(52) 

0.000->0.000 
(444) 

0.096->0.436 
(162) 

0.000->0.000 
(273) 

0.000->0.001 
(124) 

0.000->0.003 
(71) 

3 Mensit \ MA 0.286 0.523 0.258->0.494 
(262) 

0.00 l ->0.321 
(63) 

0.000->0.017 
(106) 

0.000->0.000 
(41) 

0.000->0.003 
(17) 

4)Percent Conifer -0.086 0.201 -0.044 0.000->0.000 
(203) 

0.000->0.000 
(461) 

0.000->0.001 
(243) 

0.000-A.000 
(679) 

5)Conifer MA -0.079 -0.064 -0.124 0.401 0.000->0.004 
(198) 

0.000->0.000 
(62) 

0.000->0.000 
(148) 

offtee size class 0.049 0.652 0.251 0.561 0.209 0.000->0.000 
(157) 

0.000->0.048 
(126) 

7)Size Class MA -0.001 0,315 0.607 0.225 0.508 0.386 0.000->0.005 
(59) 

8)1 lardwood MA 0.217 0.372 0.708 -0.151 -0.398 0.191 0.372 
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Table 4.3 Correlations (Pearson's) between vegetation variables at different scales 

Density 10km= MA 30km= MA 50km= MA 
10km2 MA 0.4718717 
30km= MA 0.4116558 0.9489205 
50km= MA 0.3806065 0.8975936 0.9772796 
100km= MA 0.3540646 0.8504375 0.9434282 0.9789827 

Tree Size Class 10km= MA 30km= MA 50km= MA 
10km2 MA 0.3779005 
30km= MA 0.3221103 0.9397629 
50km= MA 0.3039179 0.8704566 0.9577382 
100km= MA 0.2659872 0.8120712 0.9096405 0.9552665 

Percent Conifer 10km= MA 30km= MA 50km= MA 
10km= MA 0.3705977 
30km= MA 0.3242036 0.9521109 
50km= MA 0.3077279 0.8943232 0.9676776 
100km= MA 0.2853937 0.8369026 0.9282571 0.9660954 

Table 4.4. Largest correlations between model variables. 

Correlation coefficient: ,S'pearman's Pearson's 
Density: Tree size class 0.66 0.71 
Density MA: UTM Fasting -0.69 -0.68 
Density MA: Tree size class MA 0.61 0.62 
Density MA: QMDB1-11-1DW MA 0.71 0.71 
Percent conifer: 'Free size class 0.57 0.61 
Percent conifer MA: Elevation 0.68 0.70 
QMD1311 Hardwood MA: Elevation -0.50 -0.58 
QMD131-1: QMDBH Conifer 0.96 0.96 
Annual Precipitation: UTM Fasting -0.60 -0.67 
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4.2 Results of Mantel Test 

The results of the Mantel tests indicate a strong spatial structure to the 

environmental data (table 4.5). All three of the distances derived from the vegetation 

attributes are significantly correlated with geographic distance, although this is not true of 

the fisher presence variable. In addition, these three variables show significant 

intercorrelation even after the effects of geographic distance are subtracted. Thus they 

show both -non-spatial- and "spatially-structured" variation in the sense of Borcard et al. 

(1992). Density is the only attribute whose attribute distance is significantly correlated 

with fisher presence, both with and without the effects of geographic distance. This 

confirms the results of the CRI-I analysis. However, the regression coefficients in a non­

linear model such as multiple logistic regression (MLR) may show higher significance 

values than those evident in univariate correlation tests such as used above, due to the 

binary nature of tthe presence/absencce variable. 

These results indicate that the use of more than one of the vegetation attributes in 

a multivariate model may create multicollinearitv problems. They also indicate that 

spatial autocorrelation is likely to reduce the accuracy of the standard significance tests 

used in model fittimi Spatial structure common to the three vegetation variables increases 

the difficulty of isolating the cause of any correlations with fisher presence. 
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Table 4.5. Results of simple and partial Mantel tests on retrospective data. Simple two-
matrix Mantel correlation statistics on distance matrices and associated 
probabilities are reported below the diagonal. Partial Mantel statistics (derived by 
the Smouse-Long-Sokal method (Smouse et al. 1986)) and associated 
probabilities are reported above the diagonal. In the partial Mantel tests the 
residuals from regression on the geographic distance matrix were used in order to 
test for correlation after accounting for the effects of geographic distance. 

Fisher presence Density Percent Conifer Tree size class 

1)Fisher presence 0.0539 
0.002 

0.0033 
0.409 

-0.0250 
0.913 

2 )Density 0.0515 
<0.001 

0.1271 
(1001 

0.3670 
-0.001001 

3)Percent Conifer 0.0028 
0.432 

0.1311 
<0.001 

0.3004 
<0.001 

4)Tree size class -0.0028 
0.943 

0.3551 
0.001 

0.3026 
0.001 

5)Geographic Distance -0.0142 
0.875 

0.1333 
<0.001 

0.0993 
0.001 

0.0392 
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4.4 MLR Model Fitting 

The density MA consistently showed high statistical significance in the 

multivariate models. This confirms the results of the CRI1 and Mantel tests. After the 

addition of this variable, several other variables such as the QMDBI I hardwood MA and 

elevation variables became non-significant (p = 0.59 and 0.48, respectively). 

Seasonal effect as measured by the survey starting date was highly significant in a 

univariate logistic regression model. Modeled as a quadratic function, the lowest 

predicted probabilities of detection occurred during the summer months. The univariate 

seasonal model achieves a Cp reduction of 8.2% from the null model. However_ when 

added to the multivariate model, it reduces the Cp by only 0.3-0.7%, becoming non­

significant in the spatial model and marginally siunificant in the non-spatial model. The 

residual plot also shows no pattern due to season after the effects of vegetation variables 

are accounted for. both for the retrospective data (figure 4.1). and for the validation 

survey data (figure 4.2). 

The MA variables selected in final MLR model were functions of canopy closure, 

tree size class and percent conifer. GAM assessment suggested that regional variation 

should he modeled with a linear term for UTM Fasting and a quadratic function for UTM 

Northing. An alternate model was created containing the annual precipitation variable in 

place of UTM Lasting. This alternate model did not give as high a level of fit to the data. 

BIC o1 he alternate model was -3918 versus -3951 for the UTM Lasting model. BIC of 

null model was -3738. However, since the substitution ol a more 
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Figure 4.1 Survey start date versus residuals from MLR Model 1
 
(retrospective data set)
 

I
 I I
 I
 

150 200 250 300
 

SURVEY START DATE AS DAYS FROM JAN 1ST
 

Figure 4.2 Survey start date versus residuals from validation data 
(observed values - predicted values from MLR Model 1) 
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process-oriented variable may result in improved generality (Austin and Meyers 1996), 

both models were retained for further evaluation. 

Two interaction terms were included in the model: canopy closure with percent 

conifer and tree size class with either UTM Fasting or precipitation. The equations for the 

final models were: 

Model I: logit (p) = DENMA + SIZEMA + CONMA + UTME + UTMN + UTMN2 

+ DENMA*CONMA + SIZEMA*UTME 

Model 2: logit (p) = DENMA + SIZEMA + CONMA + PRECIPANN + UTMN 

+ UTMN2 + DENMA*CONMA + SIZEMA*PRECIPANN 

where DENMA = density MA, SIZEMA = tree size class MA, CONMA = percent 

conifer MA. and PRECIPANN = annual precipitation. Model coefficients and 

significance values are reported in table 4.7 and table 4.6, respectively. The probability 

values are then calculated from the logit value by the equation: p = 1 /(1 + e.' "'j') ). 

The best fitting model (Model 1) achieves a 35% reduction in the Cp statistic.' 

Models using MA variables without the trend surface component achieved a 23% 

reduction. Trend surface models achieved 21 to 24% reduction, depending on the order of 

polynomial. Evaluation with the BIC gave a similar result, with the combined model 

(BIC = -3951) superior to either the MA or trend surface model alone ( BIC = -3901 and 

3894, respectively). BIC of the null model was -3738. 

While the C,, statistic does not give as intuitive a sense of the strength of a single model 
as does the R2 statistic in linear regression. it is useful for comparisons between 
alternative nested models. 
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Table 4.6 Significance values of model coefficients derived from Chi-squared test. 

Model 1 Model 2 

Density MA 0.00000000 0.00000000 
Size Class MA 0.00151813 0.00151813 
Conifer MA 0.05587638 0.05587638 
UTM Fasting 0.00000000 
Precipitation 0.00000122 
UTM Northing 0.01557176 0.01080693 
UTM Northing' 0.00000013 0.00930940 
Density MA * Conifer MA 0.00355502 0.00016618 
Size Class MA * I ATM Fasting 0.00000696 
Size Class MA * Precipitation 0.00063786 

BIC values were used lbr comparisons of the series of non-nested models 

representing different scales. The best (most negative) BIC was achieved by the 

combined model at the 10 km2 scale (figure 4.3). The "patch--level model had the lowest 

explanatory power. WI-IR models performed poorly at all scales when compared to the 

vegetation MA models. 

Comparison of models at multiple scales showed density to be significant at all 

scales. Tree size class was only significant at landscape scales. These conclusions are 

tentative for "patch'' scales due to the inaccuracy of the TTF vegetation data. The 

FOCALSTD attributes did not prove to be significant, either as main effect terms or in 

interaction with the FOCALMILAN variables. 
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Figure 4.3 Model scale versus BIC value. Trend surface models 
include both UTM Easting (linear term) and 
UTM Northing (quadratic term). 
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Table 4.7. Comparison of variable coefficients of alternate models. BIC values and 
validation correlations of models at both 10 km' and 30 km' are given at tthe 
bottom of the table. BIC of null model = -3738. Models 1 and 2 are as in the text. 
Model 1 is a MA and trend surface model, with weights, and Model 2 is similar, 
but with precipitation substituted for UTM Easting. Model 1 a is a version of 
Model 1 without weights, whereas Model lb is a version with weights and 
without outliers. Model 3 is similar to Model 2, but without the SIZE MA 
interaction term. Model 4 is a weighted model with only the MA attributes and no 
trend surface variables. 



Table 4.7 

1/ode/ 1 la lb -) 3 4 

Variable 
Intercept : 
Density MA : 
Tree Size Class MA : 
Percent Conifer MA : 
Annual Precipitation: 
UTM Easting : 
UTM Northing : 
ITEM Northing 2: 
Den. MA* Con. MA: 
Size MA* UTME 
Size MA* Precip.: 

-4894 
0.6169 
44.24 
0.4282 

2.972*10-4 
2.089*10-3 
-2.310*10-10 
-5.264*10-3 
-1.079*10-4 

-5040 
0.5654 
51.49 
0.4208 

3.184*10-4 
2.152*10-3 
-2.382*10-10 
-4.761*10-3 
-1.228*10-4 

-4727 
0.7539 
39.24 
0.5415 

2.789* 10 -4 
2.014*10-3 
-2.226*10-10 
-6.693*10-3 
-9.864*10-5 
5.004*10-3 

-2401 
0.6023 
-12.07 
0.4911 
-0.01307159 

1.059*10-3 
-1.176*10-10 
-6.251*10-3 

-1591 
0.5320 
-3.992 
0.4322 
-1.348*10-3 

6.946*10-4 
-7.719*10-11 
-5.726*10-3 

-30.76 
0.5630 
-3.650 
0.4439 

-1.53* 10 -3 
-

-

-6.161 * 10 -3 

BIC 
Correlation with 
validation data 

-3951 

0.58 

-3832 

0.61 

-3880 

0.56 

-3918 

0.54 

-3913 

0.55 

-3917 

0.48 

Version with 301:m2 MA's: 
BIC 
Correlation with 
validation data 

-3949 

0.68 

-3826 

0.54 

-3868 

0.54 

-3922 

0.60 

-3914 

0.60 

-3915 

0.51 
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Assessment of outliers was conducted using Cooks distance for the best fitting 

model Mastic and Pregibon 1993). Fifteen sites with the highest leverage were identified. 

They were isolated points located on the eastern and northwestern edges of the data set. 

Removal of these points from the original data set of 682 locations increased the fit of the 

model. In order to assess the influence of data weighting and outlier removal, the 

magnitude of the coefficients in the alternate models can be compared (table 4.6). 

Data weighting increased the explanatory power of the model substantially, and 

outlier removal did so to a lesser extent. Outlier removal generally increased the 

magnitude of the variable coefficients. However, the UTM northing trend surface 

component decreased in magnitude. All variables retain their significance in alternate 

models, with the exception of the percent conifer MA main effect. This variable should 

be retained, however, because of the significance of its interaction term. 

Outlier removal may be helpful in some instances in order to generate a more 

robust estimation of parameters. However, it is necessary to examine the outliers to 

understand limitations on the generality of the model. if influential points are part of the 

population of interest. they may be indicating that the model poorly represents those 

portions of geographic or environmental space. In this case. the outliers lie on the spatial 

extremes of the data set. They owe. their influence to non-linearities in the trend surface 

components of the model, especially the west/east gradient. These trends may weaken at 

the boundaries of the study region, and removing outliers would magnify errors in 

extrapolating to these boundary areas. 
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To measure classification accuracy for a binary response, a cutpoint predicted 

probability is chosen that gives the lowest errors of commission and omission (1- losmer 

and Lemershow 1989). A rate of correct classification can then be calculated. At an 

optimal cutpoint 01'0.24. Model 1 and Model 2 had correct classification rates of 78.9% 

and 80.4%, respectively (Table 4.8)'. It can be seen from the table that sites predicted to 

have detections are more likely to be misclassified than are those predicted to be without 

detections. This low "positive predictive value" is an inevitable consequence of the 

relative rarity of the sites with detections (Sokal and Roh111995). 

However, this type of model diagnostic ignores the magnitude of the 

misclassification errors. If a station with no detections has a high predicted probability, it 

represents a more serious error than if it has a predicted probability just above the 

cutpoint. For that reason, alternate diagnostic statistics such as the Cp statistic may be 

more informative. 

Table 4.8 Classification table showing performance results for Model land Model 2 (in 
parentheses) with retrospective data. Cutpoint = 0.24 

Classified 
Observed Presence Absence 'fowl 

Presence 102(98) 72(76) 174 
Absence 72(58) 436(450) 508 

Total 174(156) 508(526) 682 

For comparison, a random model with the observed detection ratio (0.26) would 
result in a 62% correct classification rate. Such a random model, however, would be 
expected to perform much more poorly with the validation data set, which is likely to 
liar e a different detection ratio. 
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Examination of the empirical variogram of the residuals showed spatial 

autocorrelation to a range of 11 km (figure 4.4). Nugget variance was 0.1 and sill 

variance was 0.2. A dropoff in the semivariance at distances beyond the range may 

indicate residual periodic trend or patchiness not incorporated in the model (Legendre and 

Fortin 1989). However, the small difference between nugget and sill variance may instead 

suggest that autocorrelation is not significant. An exponential model was chosen as the 

theoretical variogram. although no variogram model fit the empirical values well. The 

GIS layer of interpolated residual values shows large areas of high estimation error 

(Figure 4.6). This indicates that autocorrelation at the scale demonstrated in the kriging 

analysis, while possibly useful for fine-scale interpolation in areas with substantial survey 

effort. will not be useful in improving accuracy of model estimates in the large regions 

without any survey effort. Incorporation of the kriged residuals did not significantly 

improve predictive ability for the validation survey area. A plot of the kriged residuals 

against the observed validation residuals shows non-significant correlation (Figure 4.5) 

(r,= -0.10 and -0.15 for Model 1 and Model 2. respectively). This absence of significant 

residual spatial autocorrelation, indicating that the spatial structure of the response 

variable has been satisfactorily explained by the model_ has been found in other studies 

(e.g. Jager and Overton 1993). 

4.4 Validation Results 

Validation of MLR model was performed with new data from 1996 surveys, as 

well as more qualitatively with watershed level data from areas which lacked available 
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station-level survey data. The watershed level data appears qualitatively consistent with 

the model. For example. trackplate sample units surveyed in Redwood National Park, an 

area of high detection probability in our model. all received detections (Beyer and 

Go lightly 1995). The coastal timber lands where fishers were detected by R. Klugh 

(unpublished data) also appear to have relatively high probability of fisher presence in 

our model (Figure 4.7 and Figure 5.7). Additional support is provided by trackplate 

surveys conducted near Trinity Lake (central eastern Klamath). which had a mean 

detection rate of 0.13 to 0.18 (Dark 1997). Model 2 correctly predicts a detection rate of 

0.1 to 0.2 in this area. Model 1. however, assigns this area a higher probability value (> 

0.7) due to extrapolation errors associated with the linear ti"I'M Easting variable. This 

emphasizes the greater generality of Model 2 for regional prediction. 

In the 1996 validation surveys, fishers were detected at 33.7% of the sites and at 

67.5% of the sample units (Table 4.9). Average latency to first detection, including only 

the Slis or stations with detections, was approximately 7.0 days and 9.1 days, 

respectively. The histogram of latency by SU demonstrates that a 16 day survey duration 

is sufficient if the goal is to establish fisher presence /absence at a SU scale (Figure 4.8). 

Differences in detection rates between the two station types (plywood and plastic) were 

non-sh.r,nificant (fable 4.10). 
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Figure 4.4 Empirical variogram of residuals from models 1 and 2 
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Figure 4.5 Comparison of residuals predicted from kriging with 
observed residuals (Model 1) 
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Figure 4.6 Relative level of variance in kriging analysis. Darker areas have higher levels 
of uncertainty. 
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Figure 4.7 Fisher survey results by watershed. (Does not include validation survey data). 
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Figure 4.8 Histogram of latency to first detection of fisher by sample unit. 
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Table 4.9. Detection data by species. 

Species: MAPE BAAS SPUR URCI DRAM' 

Total detections 212 104 106 213 412 
Detections per 
station 2.62 2.97 2.72 3.20 2.86 

Stations with 
detection 81 35 39 67 144 

Stations per SU 
with detection 3.00 2.92 2.05 3.53 3.89 

SUs with 
detection 27 12 19 19 37 

Average latency 
by SU (days) 6.96 5.16 6.64 3.58 3.36 

Average latency 
by station (days) 9.12 8.80 7.84 6.50 6.36 

1- Includes all visits where station was rendered inoperable by animals plus visits with 
intact station but bear tracks on plate. Of the 412 total detections, 164 were without hear 
tracks, whereas 32 had tracks and an undamaged station. 
MAPE = pennant', BAAS = Bas.sari.svms u.sliaus, SPUR = Spilogale 
URCI = Urocityni chiereoargolieu.s., URAM = (hsus americanus 

Table 4.10. Detection rate by station type 

Wooden Plastic 
URCI MAPE URCI MAPE 

1) Stations with detection .35 .24 .32 

2) Average detections/station 
97(averaged over all stations) .90 81 .87 

3) Average detections/station 
(averaged over all stations 
with one or more detections) 3.03 3.38 2.69 

4) Average latency to detection (days) 6.78 9.04 6.14 9.18 
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4.5.1 Model Performance 

The mean probability of detection in the retrospective data set was 0.255 (174 

detections out of 682 sites). The probability of receiving no detections at six randomly 

selected sites from the retrospective data set would be (1 0.255)' or 0.171. However, 

the optimal cutpoint for the validation data analyzed at the sample unit level was between 

0.02 and 0.09. For a cutpoint of 0.082, the correct classification rate was 77.5% and 

75.0% for Model 1 and Model 2, respectively (Table 4.11). 

Table 4.11. Classification table based on validation results by sample unit. 
Results for Model I are followed by results for Model 2 in parentheses. 
Cutpoint = 0.082. 

Classified 
Observed Presence Absence Total 

Presence 22(24) 5(3) 27 
Absence 4(7) 9(6) 13 

Total 26(31) 14(9) 40 

The original goal had been to predict presence or absence at a sample unit, 

because it was thought that the retrospective model might he unable to predict the number 

of stations per sample unit receiving detections. This was under the assumption that 

detection probabilities within a sample unit would be highly correlated due to their spatial 

proximity. 

Contrary to expectations, the validation data also showed a significant 

relationship between predicted probability and number of stations in a sample unit with 

detections (Figures 4.9 and 4.10) A linear regression of the stations per SU with 
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Figure 4.9 Predicted versus observed fisher detection rates (Model 1). 
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Figure 4.10 Predicted versus observed fisher detection rates (Model 2). 
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Figure 4.11 Validation survey data overlaid on predicted detection probability (Model 1) 
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Figure 4.12 Validation survey data overlaid on predicted detection probability (Model 2) 
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detections on the predicted probability value was highly significant (df = 38, p < .0001. 

R2= 0.33 for Model 1 and p = .0003, R2 = 0.29 for Model 2). When the 13 SU's with no 

detections are excluded from the analysis. the relationship was still significant (df = 25.p 

= .0023, R2 = 0.19 for Model 1, and p = 0.007, R2 = 0.26 for Model 2). 

This effect of increasing predicted probaility on within-SU detection ratio can be 

also be seen in a map of the validation results overlaid on predicted probabilities (Figures 

4.11 and 4.12). The binary classification accuracy of the model at the station level was 

similar to that in the retrospective data set. The correct classification rate at an optimal 

cutpoint of 0.27 was 71.3% and 70.4% for Model 1 and Model 2. respectively (Table 

4.12). The cutpoint value is close to that used in the retrospective data set (0.24). 

Table 4.12. Classification table based on validation results by station. 
Results for Model 1 are followed by results for Model 2 in parentheses. 
Cutpoint = 0.27. 

Classified 
Observed Presence Absence Total 

Presence 48(56) 33(25) 81 

Absence 36(46) 123(113) 159 

Total 84(102) 156(138) 240 

. The correlation between predicted probability and observed stations per sample 

unit with detections is an alternate validation statistic for station level effects. Pearson's 

correlation coefficients for this relationship for model I and model 2 were 0.58 and 0.54. 

For alternate models incorporating the same variables averaged at a 30 km2 scale. 

correlations were 0.68 and 0.60. 



Table 4.13. Univariate comparisons of attributes of validation survey stations with and without detections of fisher. Means are 
followed by standard deviations in parentheses. 

All SUs' SUs 1i/detection2 SUs lure' 
Detection: Yes No Yes No Yes ,No 

CIS attributes.: 
Density MA 71.6(8.3) "" 64.3(10.0) 71.6(8.3)" 67.1(9.8) 73.6(6.9) 71.1(7.4) 

Percent Conifer MA 62.9(10.6) 64.1(10.0) 62.9(10.6) 65.0(8.4) 61.9(10.6)" 64.8(8.4) 
Tree Size Class MA 2.46(0.24) "'' 2.29(0.35) 2.46(0.24)' 2.37(0.29) 2.49(0.23) 2.46(0.26) 
Annual Precipitation (mm) 1289(208) "," 1219(249) 1289(208)"b 1184(200) 1354(152)'" 1219(216) 

Field measurements: 
Elevation (m) 863(410) 903(365) 863(410) 959(336) 786(369)h 922(332) 

Canopy Closure 88 6(11.9)" 81.6(21.4) 88.6(11.9)" 81.5(23.7) 88.9(13.0)" 79.9(28.4) 
Basal Area (m2/ ha) 47.6(20.0)" 42.6(20.4) 47.6(20.4) 42.6(19.4) 47.5(20.5) 40.8(21.8) 

Percent Conifer 63.1(26.5) 60.4(30.5) 63.1(26.5) 64.1(29.1) 57.7(27.5) 54.1(31.0) 
Bear damage (°/'") of visits) 12.5(17.8) "" 23.5(26.1) 12.5(17.8) 17.9(24.0) 12.9(19.1) 20.1(27.8) 

Conifer Count 5.7(3.4) 5.3(4.1) 5.7(3.4) 5.8(4.1) 5.1(3.3) 4.9(4.2) 

Snag Count 1.0(1.5) 1.1(1.6) 1.0(1.5) 0.9(1.4) 0.9(1.3) 0.9(1.7) 
Hardwood Count 3.6(3.4) 2.8(3.3) 3.6(3.4)1' 2.6(3.5) 4.3(3.7) 3.0(3.2) 

Mean DBH (cm) 55.4(26.4) 54.9(26.6) 55.4(26.4) 57.4(26.4) 50.8(25.2) 56.1(28.2) 

Conifer DBH (cm) 61.6(38,1) 66.9(41.4) 61.6(38.1) 67.1(39.4) 57.7(39.9) 69.3(45.7) 
Snag DBH (cm) 33.6(45.5) 27.3(38.1) 33.6(45.5) 22.0(35.0) 37.8(48.5) 21.6(35.3) 
Hardwood DBH (cni) 26.3(24.9)"" 17.0(17.8) 26.3(24.9)"' 14.7(16.0) 26.7(23.9)"' 16.8(16.8) 

Conifer QMDBH (cm) 65.5(38,9) 70.3(42.4) 65.5(38.9) 70.3(40.1) 61.7(41.1) 72.4(46.2) 

Snag QMDBH (cm) 35.4(47.5) 28.3(39.1) 35.4(47.5) 23.0(36.3) 39.6(50.8) 22.6(36.8) 

Hardwood QMBDH (cm) 28.1(26.2) "" 18.2(19.1) 28.1(26.2)" 15.9(17.8) 28.7(25.4)"" 18.5(18.8) 

Log Count (Total) 3.75(3.79)",1' 6.37(5.77) 3.75(3.79) 4.21(3.59) 3.67(3.82) 3.61(3.08) 

Log Count (15-30cm class) 2,01(2 56)"" 3.56(3.77) 2.01(2.56) 2.10(2.17) 1.81(2.32) 1.63(1.70) 

Log Count (30-60cm class) 1.00(1.49) "" 1.66(2.07) 1.00(1.49) 1.30(1.63) 1.02(1.62) 1.05(1.55) 

Log Count (60-90cm class) 0.46(0.83) 0.68(1.14) 0.46(0.83) 0.43(0.76) 0.48(0.82) 0.48(0.85) 
Log Count (> 90cm class) 0.28(0,83)" 0.48(0.81) 0.28(0.83) 0.38(0.77) 0.36(0.95) 0.45(0.79) 

1 n = 240, 81 (33.7%) with detections 2 17 = 162. 81 (50.0%) with detections 3 n = 102, 58 (56.9%) with detections 

a significance at 0.05 level for t-test b significance at 0,05 level for Wilcox rank sum test 
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Two of the sample unit's with the lowest predicted probability each received a 

total ()lone detection at one station during the 16 day protocol. This suggests that the 

number of detections at a station may be useful in separating out the detection of transient 

from resident animals. I however, this variable would show high degrees of temporal as 

well as spatial autocorrelation and was not analyzed here. Future re-analysis of the track 

data may focus on distinguishing individuals and sexes. This would improve estimates of 

density from the crude "number of stations visited- metric used here. 

4.5.2 Station-Level Attributes 

I lardwood DB1-I and hardwood QMDBH were significantly higher at detection 

sites under all three comparisons (all Stis, Sus with detections, and Sus without lure) 

(Table 4.13). Density was higher at detection sites under all comparisons using the 

parametric test for significance. Other attributes showed significant differences only when 

compared over all 40 SM. Basal area was higher and bear damage and count of small 

logs were lower at detection sites. The lack of significance when less than 40 SUs were 

compared may indicate that although measured at the plot level, these attributes are 

correlates of landscape-scale variation. Or it may mean that the difference was too small 

to be significant at reduced sample sizes. 

In addition to assessing plot variable significance through univariate tests, plot 

level MLR models were also evaluated. Bear activity and QMDBH of hardwoods were 

highly significant (p < .01). Percent conifer was significant at thep = 0.05 level. Other 

variables that were marginally significant (.05 <p < .10) with positive correlations were 
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density, QMDBH of snags. distance from road and distance from logged area. The latter 

two variables were recorded as categorical attributes. 

CWHR canopy closure class, tree size class, and cover type were also analyzed as 

categorical variables. CWHR closure class was highly significant (p < .001) with 

increasim!, closure showing a positive correlation with detections. CWHR size class and 

cover type were non-significant (p > .10). 

However, addition of these plot-level variables to the landscape-level model did 

not result in significant improvement in model performance. An appropriate comparison, 

giving that the plot-level model was elaborated after the validation surveys, is between a 

plot-level model and a new model containing landscape variables alone. Plot-level 

variables alone achieved a reduction in the Cp statistic of only 10.0%. compared to the 

27.6% achieved by a new landscape-level model. BIC was -1020 for the plot-level 

model. -1074 for the landscape model, and -1063 for a combined plot/landscape model. 

BIC of tthe null model was -1002. 

Addition of plot-level variables to a model containing the predicted probability 

value from the retrospective landscape model resulted in an additional reduction of 3.9% 

in the Cp statistic (from 17.0% to 20.9%). Bear damage and QMDB1-1 of hardwoods were 

highly significant (p < .01) in both the plot-level and combined models. Density was 

significant in the plot-level model, but became non-significant in the combined plot 

ley el / landscape model. 
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4.5.3 Data on Sympatric Carnivores 

The validation surveys also provided data on sympatric carnivores. Other 

mustelids were detected at a few sample units: marten at one, and weasel (Muste spp.) 

at four. The majority of non-target carnivore detections were of ringtail (Bas'siriscay 

aslutus)(Figure 4.12), gray fox (Uocyon cinereoargenteus)(Figure 4.13), spotted skunk 

(Spilogale gracilis)(Figure 4.14), and black bear (Ursus americanus)(Figure 4.15). 

Table 4.14. Correlations (Pearson's) among carnivores of percentage of stations per SU 
with detections. 

MAPE URCI BAAS SPGR 

MAPE 
URCI 0.05457543 
BAAS 0.12539607 0.06788839 
SPGR -0.17836687 -0.02161354 0.21953070 
URAM -0.29556513 0.08890129 -0.04213172 -0.19038422 
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Table 4.15. Station attributes of sites with and without detections of ringtail. 
Means are followed by standard deviations in parentheses. 

.1// S(A' srs' w/detection2 

Detection: Yes No Yes No 

GIS attributes: 
Density MA 69.6(8.7) 66.3(10.2) 69.6(8.7) 64.7(13.8) 
Percent Conifer MA 56.0(8.6) " 65.0(9.9) 56.0(8.6)1' 59.3(7.0) 
Tree Size Class MA 2.27(0.25) 2.36(0.34) 2.27(0.25) 2.24(0.27) 
Annual Precipitation (mm) 1208(176) 1248(247) 1208(176W 1104(166) 
Field measurements: 
Elevation (m) 596(371)".' 939(360) 596(371)b 723(340) 
Canopy Closure (%) 86.6(24.7)' 83.5(17.9) 86.6(24.7) 84.0(23.9) 
Basal Area (m2/ha) 41.4(17.1) 44.8(20.9) 41.4(17.1) 40.4(19.2) 
Percent Conifer 46.0(27.6y0 64.0(28.7) 46.0(27.6) 53.1(26.4) 
Bear damage (% of visits) 18.9(27.9) 20.0(23.6) 18.9(27.9) 30.0(29.4) 
Conifer Count 3.83(3.48)",' 5.74(3.92) 3.83(3.48) 4.38(3.14) 
Snag Count 0.66(1.03) 1.12(1.66) 0.66(1.03) 0.84(1.64) 
Hardwood Count 4.49(3.18)"' 2.83(3.32) 4.49(3.18) 3.54(2.94) 
Mean DBH (cm) 49.8(19.3) 55.9(27.4) 49.8(19.3) 49.5(24.9) 
Conifer DBH (cm) 57.7(42.4) 66.5(34.9) 57.7(42.4) 57.9(39.4) 
Snag DBH (cm) 21.1(34.3) 31.2(41.7) 21.1(34.3) 24.1(39.9) 
Hardwood DBH (cm) 31.2(18.3)".'' 18.3(20.8) 31.2(18.3) 25.4(23.6) 
Conifer QMDBH (cm) 60.2(43.2) 70.1(40.6) 60.2(43.2) 70.0(40.9) 
Snag QMDBH (cm) 21.8(35.6) 32.2(42.9) 21.8(35.6) 24.9(40.9) 
Hardwood QMBD11 (cm) 34.0(19.6) ",b 19.6(22.1) 34.0(19.6) 27.4(24.9) 
Log Count (Total) 3.40(3.88) ".'' 5.84(5.46) 3.40(3.88) 3.84(3.23) 
Log Count (15-30cm class) 1.91(2.54)" 3.23(3.59) 1.91(2.54) 2.32(2.25) 
Log Count (30-60cm class) 0.89(1.51)1' 1.52(1.97) 0.89(1.51) 0.87(1.50) 
Log Count (60-90cm class) 0.46(0.66) 0.63(1.09) 0.46(0.66)" 0.19(0.40) 
Log Count (> 90cm class) 0.14(0.43) ".n 0.46(0.87) 0.14(0.43) 0.32(0.53) 

1 n = 240. 35 (14.6%) with detections = 72. 35 (48.6%) with detections 

a significance at 0.05 level for t-test h significance at 0.05 level for Wilcox rank sum test 
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Table 4.16. Station attributes of sites with and without detections of gray fox. 
Means are folllowed by standard deviations in parentheses. 

,-1/1Srs' SUS 1r /detection 

Defection: Yes No Yes No 

GLS attributes: 
Density MA 68.0(9.9) 66.2(10.1) 68.0(9.9) 69.6(8.4) 
Percent Conifer MA 60.6(8.7)"I' 64.9(10.5) 60.6(8.7) 59.9(8.1) 
Tree Size Class MA 2.34(0.31) 2.34(0.34) 2.34(0.31) 2.32(0.28) 
Annual Precipitation (mm) 1293(196)"I' 1223(250) 1293(196) 1256(189) 
Field measurements: 
Elevation (m) 751(311)a.h 943(392) 751(311) 805(354) 
Canopy Closure (%) 83.9(21.8) 84.6(17.9) 83.9(21.8) 86.6(19.2) 
Basal Area (m2/ha) 44.5(21.3) 44.2(20.0) 44.5(21.3) 43.9(21.4) 
Percent Conifer 47.4(27.2)'.l' 66.8(28.1) 47.4(27.2) 55.1(28.1) 
Bear damage (% of visits) 16.0(18.0) 21.2(26.1) 16.0(18.0) 19.9(23.3) 
Conifer Count 4.46(3.74)" 5.84(3.92) 4.46(3.74) 5.02(3.88) 
Snag Count 1.00(1.48) 1.07(1.64) 1.00(1.48) 0.81(1.21) 
Hardwood Count 4.18(3.27)".' 2.65(3.28) 4.18(3.27) 3.68(3.13) 
Mean DBH (cm) 54.0(28.8) 55.4(25.6) 54.0(28.8) 55.1(25.3) 
Conifer DBH (cm) 70.1(48.7) 63.2(36.4) 70.1(48.7) 64.6(42.0) 
Snag DBH (cm) 33.5(45.5) 28.1(38.8) 33.5(45.5) 32.3(41.7) 
lardwood DBI I (cm) 25.5(17.0)" 18.1(21.9) 25.5(17.0) 27.2(24.9) 

Conifer QMDBI I (cm) 73.1(49.7) 66.99(37.4) 73.1(49.7) 68.7(43.6) 
Snag QMDBH (cm) 34.6(46.5) 29.3(40.3) 34.6(46.5) 33.4(43.6) 
I lardwood QMBDH (cm) 27.1(18.1)''' 19.5(23.4) 27.1(18.1) 29.5(26.7) 
Log Count (Total) 5.01(4.44) 5.66(5.63) 5.01(4.44) 6.30(6.58) 
Log Count (15-30cm class) 2.99(3.26) 3.06(3.58) 2.99(3.26) 3.55(4.25) 
Log Count (30-60cm class) 1.04(1.52) 1.58(2.03) 1.04(1.52) 1.45(2.10) 
Log Count (60 -90cm class) 0.57(0.87) 0.62(1.10) 0.57(0.87) 0.83(1.39) 
Log Count (> 90cm class) 0.42(0.92) 0.41(0.78) 0.42(0.92) 0.47(0.75) 

1 n = 240. 67 (27.9%) with detections 2 n = 114, 67 (58.8%) with detections 

a significance at 0.05 level for t-test b significance at 0.05 level for Wilcox rank sum test 
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Table 4.17. Station attributes of sites with and without detections of spotted skunk. 
Means are followed by standard deviations in parentheses. 

.41/Stis' w/detection2 

Detection: Yes Yes No 

GIS attributes: 
Density MA 61.5(9.0)"." 67.7(9.9) 61.5(9.0) 62.6(10.4) 
Percent Conifer MA 60.5(10.6)" 64.3(10.0) 60.5(10.6) 61.4(10.8) 
Tree Size Class MA 2.20(0.29)". 2.37(0.33) 2.20(0.29) 2.21(0.36) 
Annual Precipitation (mm) 1132(214)" 1264(237) 1132(214) 1142(188) 
Field measurements: 
Elevation (m) 802(463)1' 906(361) 802(463) 886(413) 
Canopy Closure (%) 79.6(21.6) 84.8(18.4) 79.6(21.6) 83.5(22.8) 
Basal Area (m2/ha) 41.2(21.4) 44.9(20.1) 41.2(21.4) 45.7(19.5) 
Percent Conifer 53.2(28.3)' 62.9(29.7) 53.2(28.3) 60.8(29.7) 
Bear damage (% of visits) 18.6(27.3) 20.0(23.6) 18.6(27.3) 22.8(26.1) 
Conifer Count 4.28(3.52)". 5.69(3.95) 4.28(3.52) 5.56(3.87) 
Snag Count 0.97(1.97) 1.06(1.52) 0.97(1.97) 1.40(1.90) 
Hardwood Count 3.67(3.62) 2.96(3.29) 3.67(3.62) 2.93(3.20) 
Mean D1311 (cm) 52.2(24.3) 5.55(2.69) 52.2(24.3) 54.6(23.8) 
Conifer DBH (cm) 61.9(42.5) 65.8(39.9) 61.9(42.5) 62.7(37.4) 
Snag DISH (cm) 18.5(30.1) 31.8(42.2) 18.5(30.1) 31.0(38.1) 
Hardwood DBH (cm) 24.5(17.6)' 19.3(21.4) 24.5(17.6) 23.0(23.1) 
Conifer QMDBH (cm) 64.9(44.3) 69.4(40.6) 64.9(44.3) 66.0(38.3) 
Snag QMDBH (cm) 19.1(30.7) 33.0(43.6) 19.1(30.7) 32.3(39.8) 
Hardwood QMBD1-1 (cm) 26.3(18.7)' 20.7(27.8) 26.3(18.7) 24.5(24.3) 
Log Count (Total) 5.95(4.99) 5.39(5.39) 5.95(4.99) 5.59(6.13) 
Log Count (15-30cm class) 3.46(3.13) 2.96(3.55) 3.46(3.13) 3.31(4.20) 
Log Count (30-60cm class) 1.72(1.92) 1.37(1.92) 1.72(1.92) 1.52(2.18) 
Log Count (60-90cm class) 0.59(0.79) 0.61(1.08) 0.59(0.79)" 0.44(1.11) 
Log Count (> 90cm class) 0.18(0.45) 0.46(0.87) 0.18(0.45) 0.32(0.60) 

1 n = 240, 39 (16.3%) with detections 2 n = 114, 39 (34.2%) with detections 

a significance at 0.05 level for t -test b significance at 0.05 level for Wilcox rank sum test 
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Table 4.18. Station attributes of sites with and without detections of black bear. 
Means are folllowed by standard deviations in parentheses. 

/l1/SliA ' SUs 1t/deteclion2 

Detection: es Yes Aro 

GIS attributes: 
Density MA 66.6(10.4) 67.0(9.5) 66.6(10.4) 66.5(9.2) 
Percent Conifer MA 62.9(10.0) 64.8(10.4) 62.9(10.0)" 66.9(10.4) 
Tree Size Class MA 2.32(0.35) 2.38(0.30) 2.32(0.35) 2.39(0.31) 
Annual Precipitation (mm) 1239(245) 1248(229) 1239(245) 1200(224) 
Field I71C US' ure 111 ents: 

Elevation (m) 863(361) 930(406) 863(361)"' 1008(391) 
Canopy Closure ( %) 86.3(17.0)" 80.3(21.2) 86.3(17.0)"J' 80.2(21.5) 
Basal Area (nC/ha) 44.9(20.5) 43.4(20.2) 44.9(20.5) 42.3(20.9) 
Percent Conifer 60.8(28.7) 62.2(29.9) 60.8(28.7) 65.7(30.7) 
Bear damage (% of visits) 33.0(23.2) 33.0(23.2) 
Conifer Count 5.38(3.81) 5.57(4.07) 5.38(3.81) 5.81(4.17) 
Snau Count 0.97(1.42) 1.18(1.82) 0.97(1.42) 1.23(1.96) 
Hardwood Count 3.37(3.36) 2.64(3.29) 3.37(3.36)(''' 2.12(2.97) 
Mean DBH (cm) 53.3(26.6) 57.5(26.3) 53.3(26.6) 57.2(26.9) 
Conifer DBH (cm) 63.7(39.7) 67.2(41.1) 63.7(39.7) 63.4(38.6) 
Snag DBH (cm) 26.9(39.3) 33.7(42.8) 26.9(39.3) 33.2(41.6) 
Hardwood DB11 (cm) 21.8(21.0) 17.8(20.5) 21.8(21.0)" 15.4(20.8) 
Conifer QMDBH (cm) 67.3(40.9) 70.7(41.6) 67.3(40.9) 67.1(39.2) 
Snag QMDBH (cm) 28.1(40.9) 34.8(43.7) 28.1(40.9) 34.3(42.7). 

Hardwood QM BDH (cm) 23.2(22.3) 19.2(22.0) 23.2(22.3)"'1' 16.4(22.2) 
Lou Count (Total) 5.76(5.29) 5.06(5.36) 5.76(5.29) 5.17(5.45) 
Log Count (15-30cm class) 3.18(3.42) 2.82(3.59) 3.18(3.42) 2.77(3.53) 
Log Count (30-60cm class) 1.48(2.04) 1.35(1.73) 1.48(2.04) 1.38(1.77) 
Lou Count (60-90cm class) 0.65(1.09) 0.54(0.95 ) 0.65(1.09) 0.60(1.01) 
Log Count (> 90cm class) 0.46(0.86) 0.34(0.77) 0.46(0.86) 0.41(0.83) 

17 = 240, 144 (60.0%) with detections 2 n = 2 "), 144 (64.9%) with detections 

a significance at 0.05 level for t-test h significance at 0.05 level for Wilcox rank sum test 

http:0.41(0.83
http:0.46(0.86
http:0.34(0.77
http:0.46(0.86
http:0.60(1.01
http:0.65(1.09
http:0.54(0.95
http:0.65(1.09
http:1.38(1.77
http:1.48(2.04
http:1.35(1.73
http:1.48(2.04
http:2.77(3.53
http:3.18(3.42
http:2.82(3.59
http:3.18(3.42
http:5.17(5.45
http:5.76(5.29
http:5.06(5.36
http:5.76(5.29
http:2.12(2.97
http:3.37(3.36
http:2.64(3.29
http:3.37(3.36
http:1.23(1.96
http:0.97(1.42
http:1.18(1.82
http:0.97(1.42
http:5.81(4.17
http:5.38(3.81
http:5.57(4.07
http:5.38(3.81
http:2.39(0.31
http:2.32(0.35
http:2.38(0.30
http:2.32(0.35


105 

6
 

2° 

°. 
o ' 

tot-

.° 4 p-c 
,7 

P. 

pB
 

Ringtail Detection Rate
 
(Out of 6 Stations per Sample Unit)
 

No Detection 

1 

2 

3 

4 

O 

National Forest Boundary 

0 0 10 c 

=r-1 KM 

Urnionts1 Sommers. y0.10, Zero 10 

Figure 4.13 Detections of ringtail by sample unit. 
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Figure 4.14 Detections of gray fox by sample unit. 
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Figure 4.15 Detections of spotted skunk by sample unit. 
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Figure 4.16 Detections of black bear by sample unit. 
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5. Discussion 

5.1 Spatial Dynamics of the Klamath Fisher Population 

Inferences drawn from a correlative approach such as used in this study have 

limitations when compared with those drawn from an experimental study (Wiens 1989a). 

It is important to explicitly recognize the limitations both on prediction and on the 

functional interpretations given to observed patterns. The resulting conclusions may only 

be an artifact of the power of multivariate methods to detect pattern in chance 

associations in the data set (James and McCulloch 1990). Validation results may lend 

added support to pattern hypotheses. However, any process interpretations must continue 

to be framed as hypotheses until alternate processes are rejected by other methods. 

Prior knowledge of subject theory may be critical in distinguishing among 

competing models, as is recognized explicitly in Bayesian statistics. I lowever. this may 

expose the analysis to criticisms of subjectivity. As Haining (1990) concludes, "good data 

analysis seeks a balance between being theoretically informed and letting the data speak. 

Balance is essential in order to avoid the twin problems of on the one hand usine, data 

analysis merely to confirm existing prejudices and on the other reporting ambiguous data 

patterns-. 

Limitations on prediction may stem from the complex nature of the observed 

spatial structure. which is only crudely approximated by the models used. In addition. 

extrapolation of spatial trends beyond the extent of the data set is based on the 

assumption that the spatial trends continue into adjacent regions. This assumption is 
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problematic without a good functional understanding of the processes responsible for the 

trend. An additional source of uncertainty is the untested relationship between fisher 

distribution and habitat suitability as expressed in individual survival and reproduction. 

However. if conducted in the spirit of exploratory data analysis, this type of spatial 

modeling may he a fruitful source of hypotheses that can then be explored by more 

intensive methods. 

5.1.1 "Patch--Scale Dynamics 

Although plot-level variables in general show low significance. variables 

measuring the size of hardwoods consistently show high significance in all comparisons. 

They show similar significance in the retrospective data set. Recent studies of other taxa 

have emphasized the role of large hardwoods in promoting complex structure in western 

forests. They may form a reservoir of biodiversity in young managed forests for taxa such 

as lichens (Neitlich and McCune 1997). The general importance to carnivores of 

hardwood habitat resources is evident from the data on sympatric carnivores, all of which 

show significant associations with hardwoods. 

Two plausible hypotheses are apparent to explain the positive correlation of fisher 

detection with large hardwoods. Older hardwoods provide a much greater volume of mast 

in the form of nuts and fruits. This may lead to increased abundance of fisher prey. The 

prev /hardwood interaction is the most plausible explanation tbr strong associations at the 

olot scale. At the landscape scale, large hardwoods also provide structure in the form of 

cavities for resting and denning. Telemetry studies in both the Klamath region and the 
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southern Sierras have shown that hardwood cavities are frequently used for these 

purposes by fishers (W. Zielinski. unpublished data). Because cavities have little value 

below a certain size, the habitat value of hardwoods for fishers may increase non-linearly, 

with high resource value only occurring after a certain size threshold. 

Bear damage is significant for the obvious reason that it reduces the possibility of 

fishers being detected by rendering the station inoperative. This effect operates at the 

landscape scale due to the generalist nature of habitat use by foraging bears. The negative 

correlation with small log count also seems to operate at the landscape scale. Small log 

count is negatively correlated with the tree size class moving average (MA) (rp = -0.25) 

but may also reflect a history of disturbance by fire, logging, or thinning. 

Percent conifer is significant in the univariate analysis. It shows moderate 

correlation (R = 0.45) with the landscape level conifer MA. and is not significant in the 

multiple scale model. Plot-level canopy closure also loses significance in a multiple scale 

model. This may be due to correlations with both the density MA and quadratic mean 

diameter at breast height (QMDBI-I) of hardwoods (R = 0.28 and 0.34, respectively). 

The low explanatory power of the plot-level model when compared with 

landscape model supports the hypothesis that fishers select habitat more strongly at the 

landscape scale. It is encouraging that detailed plot-level vegetation or prey data may not 

be necessary for predicting fisher distribution. If this were not the case, conservation 

planning for forest carnivores on a regional scale would be difficult. However, data on 

line-scale habitat selection will still be useful both for ruling out the effects of other plot-

level habitat variables and for obtaining a fitnctional understanding of the processes 
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driving landscape-level associations. The challenge is learning how to scale up from 

patch to landscape levels, and from individual to population-level responses. 

5.1.2 Landscape-Scale Dynamics 

The explanatory power of the three vegetation MA variables supports the 

hypothesis that fishers select habitat based on perceptions of landscape-level habitat 

quality as represented by vegetation structure or its correlates. While somewhat 

correlated, the three vegetation variates quantify substantially distinct elements of 

vegetation structure. The density MA shows the highest significance and the clearest 

biological interpretation. Landscapes with higher density and overhead cover provide 

increased protection from predation and lower the energetic costs of traveling between 

foraging sites. High density provides a cooler microclimate in summer and more 

favorable snow conditions in winter. Abundance or vulnerability of preferred prey species 

may be higher in areas with higher canopy closure (Buskirk and Powell 1994). 

The percent conifer MA is only marginally significant in its main effect, but 

retains significance through its interaction term. Given the importance of hardwoods, it 

might seem contradictory that the percent conifer MA is an increasing, function. in tact. in 

the retrospective data set. univariate comparisons show that detection sites have 

significantly lower percent conifer. However, in the multivariate model the effect 

becomes complex through the negative interaction with the density MA. This suggests 

that the effect of increasing density is more positive in mixed hardwood/conifer 

landscapes than in purely conifer landscapes. Dense conifer landscapes are often 
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composed of homogeneous young or early mature forests. Dense mixed landscapes, 

however, typically owe their canopy closure to the hardwood component and may include 

late seral stands. 

The tree size class MA has the most complex and difficult to interpret correlations 

of the three vegetation variables. This attribute shows a higher level of measurement error 

than other vegetation attributes (Cal. Timberland Task Force 1993). Detection of changes 

in tree size with remote sensing imagery is inherently challenging (Cohen et al. 1995). A 

univariate CAM plot of the tree size class MA in the retrospective data shows an 

increasing cubic function (Figure 5.1). However, a multivariate model incorporating the 

size class MA as a cubic function is not significantly better fitting than one using a 

decreasing linear function. The fact that most values fall near the "dip' of the cubic curve 

at values of 1.7 to 2.7 raises suspicions about the generality of the cubic curve. However. 

if this curve is not an artifact of factors such as selection bias in the retrospective data set, 

it suggests that mustelids show a threshold response to decreasing percentages of large 

trees in the landscape. as has been proposed (Bissonette et al. 1989) but not demonstrated 

in a field study (I largis and Bissonette in press). 

1Jnivariate analysis of the validation data set lends some support to the existence 

of such a threshold. The validation survey data shows a highly significant positive 

correlation between tree size class MA and fisher detection (p = .0001). A CAM plot of 

die validation data shows a curve similar to that in the retrospective data (Figure 5.2). 

These types of curves are difficult to model accurately with generalized linear models 
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(Hastie 1993). and. in general, the analysis of thresholds and limiting factors is a 

challenge to traditional statistical analysis (Thomson et al. 1996). 

In the final model selection, a negative interaction of the size class MA with UTM 

Fasting was chosen as a better fitting alternative over the cubic function of size class. The 

interaction term of size class MA and UTM Fasting is highly significant in multivariate 

models and its addition results in a lower Bayesian Information Criterion (BIC) (-3951 

versus -3880 for the cubic model). This would suggest a pronounced regional gradient in 

habitat association patterns. The cubic curve of the size class MA disappears when the 

interaction of the size class MA and UTM Fasting is incorporated in the model. 

A bivariate plot of size class versus UTM Fasting for the retrospective data set 

shows detections in a range of size class MA values (Figure 5.3). Size class of all sites 

generally declines from west to east in the retrospective data. This may represent 

selection bias, as this trend is not evident in the systematic validation surveys (Figure 

5.4). The positive coefficient of the size class MA main effect combines with the negative 

interaction to result in a net positive predicted correlation of detections with size class 

anywhere west of UTM Fasting 410000. 

In the alternate model incorporating precipitation. the tree size class MA main 

effect has a negative coeflicient.lhe interaction term with precipitation is positive. 

resulting in a positive predicted correlation of detections with size class where 

precipitation is greater than 2400 mm. 
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The generally negative net contribution of size class in the multivariate model is 

misleading if interpreted as if it were a univariate effect. An increase in other covariates 

such as density in older stands may actually result in a quite different univariate 

correlation. The relatively high correlation of the size class MA with the density and 

percent conifer MA's (rp = 0.63 and 0.55, respectively) strongly suggest that 

multicollinearity effects may be limiting the interpretability of the coefficients. This is 

supported by the decrease in magnitude of the coefficients of the other MA's when the 

size class MA variable is removed from the model. The less rich model may be more 

interpretable, but it has a higher BIC (-3922 versus -3951). This argues for the retention 

of the size class MA in the model. 

Since the most westerly site in the retrospective or validation data set has an 

UTM Fasting of 419000, it can be seen that the positive correlation of detection with size 

class predicted in coastal areas is based on extrapolation. This is one of the reasons for 

focusing validation surveys in coastal areas during the 1997 field season. 

Extrapolation of the size class MA UTM Easting interaction term to areas east of 

the extent of the retrospective data set increases the magnitude of the interaction effect to 

a biologically implausible extent. The model incorporating precipitation gives much more 

plausible extrapolated values due to the fact that precipitation does not decrease linearly 

across the region. Incorporation of the UTM Fasting variable and its interaction term 

provides a better fit to the data within the study area. Its poor performance outside the 

extent of the retrospective data set highlights the difficulty of extrapolating complex 

spatial trends (FlaininiLi 1990). 
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In summary, it appears that landscape-level tree size class has a positive 

correlation with fisher detection in the more mesic forests of the Douglas-fir/mixed 

evergreen zone, at least up to a certain threshold. The relationship between tree size and 

fisher distribution in the more xeric pine and oak Idrests of the eastern Klamath is 

uncertain. This has interesting parallels with the findings of habitat studies of the northern 

spotted owl, which have revealed stronger selection for large diameter stands in more 

coastal areas (Noon and McKelvey 1996b). 

The lack of significance of the FOCALSTD attributes indicates that variance in 

habitat value at the landscape scale is not significantly correlated with fisher distribition 

in this data set. Public forest lands in this region may show similar levels of habitat 

contrast (e.g. between late-successional forest and clearcut) and pattern (e.g. 16 ha 

dispersed cutblocks) due to similar management practices and planning guidelines on all 

National Forests. This conclusion might not hold if a fisher data from a wider range of 

land-use categories (e.g. private timber land, wilderness areas) were available for 

analysis. 

Variables not found to be significant in the multivariate model include elevation 

and road density. Elevation is correlated with the vegetation variables, particularly 

percent conifer. The fact that vegetation has more explanatory power than elevation 

suggests that the often noted correlation of fisher distribution with elevation may be due 

to the effects of vegetation, either directly or as a mediator of snow condition. This will 

aid in the generalization of the model to areas such as the Sierra Nevada where the 

median elevation of fisher habitat differ from that in the Klamath region. 
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Road density at the landscape level was not significant in either univariate or 

multivariate analyses. Direct human persecution of fishers is low in the Klamath due to 

low trapping intensity (C. Carroll. pers.obs.). Therefore, road density could be expected 

to have an effect on fisher distribution primarily through a correlation with habitat 

alteration through logging. In fact, sites in the retrospective data set on public forest lands 

show a significant negative correlation (R = 0.33, r = 0.26) between road density 

andlate-successional forest at the landscape level. However, the correlation between the 

"old-growth" MA attribute and fisher presence, like that between the road density MA 

and fisher presence. is non-significant in this data set. 

Although little broad-scale comparitive data are available, there is evidence tthat 

public lands in the Klamath have not experienced the magnitude of logging that has 

occurred in other parts of the Pacific Northwest. For example, the amount of northern 

spotted owl habitat may be a useful analogue to the amount of late-successional forest in 

a region. It is apparent from Figure 5.5 (Noon and McKelvey 1996b) that the Oregon 

Cascades and Coast Ranges have lost between 65 and 70% of this habitat type in the last 

four decades, whereas the Klamath region has lost 35 to 40%. 

Because of this. "natural" gradients in habitat quality due to regional gradients in 

forest structure and productivity may be as significant as the effects of human impact. 

This is, of course. one of the explanations proposed for the survival of fishers in the 

region. Analysis of data from a wider range of road densities such as found on private 

lands or wilderness areas might reveal correlations that are not evident in our study. It 

seems likely, however. that fishers are better indicators of "landscape integrity in the 
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form of forest composition than in the form of "wildness". For that purpose, species 

sensitive to human presence (e.g. wolverines or grizzly bears (Ursus arclos)) or directly 

persecuted by man (e.g. wolves (Canis lupus) or black bears) may be better candidates 

(Mladenoff et al. 1995). Legal and illegal hunting pressure on black bears is high in the 

region (C. Carroll, pers. obs.). Their high densities in the Klamath region (Table 4.9) may 

be related to the existence of large roadless areas (Figure 5.6), as has been found in other 

regions (Powell et al. 1996). 

5.1.3 Regional-Scale Dynamics 

The trend surface component of the model shows high levels of statistical 

significance. However, interpretation of its biological significance is more difficult than 

with the vegetation variables. The UTM Easting variable, which is modeled as increasing 

linearly from west to east, corresponds in the Klamath to a coastal to inland gradient. The 

climatic gradients in precipitation and temperature associated with this transect are, along 

with elevation, the most influential abiotic factors controlling the distribution of the 

region's diverse flora. These floristic changes can be expected to change the relationship 

of forest structure to fisher distribution. Although early studies of niche partitioning 

emphasized the importance of structure, it is now evident that both structure and floristics 

play a role in affecting the composition of animal communities (Wiens 1989a). 

Floristic changes can be expected to influence prey species composition. The 

west east climatic gradient may also influence vegetation structure variables unmeasured 

in this study, such as shrub cover. Fisher were detected more frequently than predicted at 
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validation sites with low tree canopy closure but high cover percentages of the shrubby 

huckleberry oak (Quercus 

The alternate model which substituted precipitation for the UTM Easting variable 

showed less explanatory power (BIC of -3918 versus -3951). The correlation between 

these two variables is high (R = -0.67, r = -0.60), and the addition of one of the terms to 

the model rendered the other non-significant. Multiple climatic factors may be 

responsible for the correlation of fisher detection with UTM Easting. In addition to 

annual precipitation, these might include temperature and less aggregated variables such 

as summer precipitation. 

However, comparison of model predictions for the watershed data (Figure 4.7)(R. 

Klugh and R. Golightly, unpublished) and for sightings data from Oregon (Siskiyou 

National Forest, unpublished data) suggests that the precipitation model may have greater 

generality. For this reason, it will be used to evaluate fisher distribution on a regional 

level in order to reduce the magnitude of extrapolation errors. Differences between the 

maps created by the two models may give a general idea of the degree of uncertainty in 

the model predictions (Figures 5.7 and 5.8). 

The quadratic function of UTM Northing lacks a plausible abiotic interpretation, 

as gradients in climate and fioristics are much less evident from north to south than from 

west to east within the Klamath region. Lack of data from Oregon or Mendocino County 

make it uncertain how well this trend extrapolates to the northern and southern margins of 

the region. Gates et al. (1994) noted the high significance of trend surface variables in 

their MLR models of the distribution of British bird species. They attributed this to the 



124 

persistence of historical effects due to poor recolonizing ability. In the case of the fisher, 

this effect might be attributed to the existence of dispersal barriers. Periera and Itami 

(1991) proposed that the trend surface component of their model of the distribution of the 

Mt. Graham red squirrel was due to intraspecific interactions that caused aggregation of 

occupied sites beyond that predicted by the environmental variates. 

In the case of fishers, this aggregation may be due to population-level processes 

such as source-sink effects. Fishers may disperse from large regional concentrations of 

favorable source habitat to occupy adjacent sink areas. Smaller concentrations of 

potentially suitable habitat may remain unoccupied due to isolation. Detection of fishers 

in a wide range of landscapes in the validation surveys indicates that they will travel 

through habitat that may be unable to support long-term survival. Therefore, barriers to 

dispersal may be less significant than source-sink processes on the intra-regional scale. 

Testing of the source-sink hypothesis against alternate explanations (such as a 

purely climatic or floristic gradient or the effects of dispersal barriers) is difficult due to 

the inherently non-replicable nature of regional-scale biogeographic processes. The most 

persuasive evidence would come from intensive studies of dispersal, as well as 

survivorship and reproduction. An alternative would be to collect survey data from the 

same locations over time to determine if sink areas could be identified by high temporal 

variability in detection. If source-sink effects are important in determining fisher 

distribution, regional-scale conservation planning may be necessary to insure the 

continued viability of the Klamath fisher population. 
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Figure 5.8 Map of predicted probability of fisher detection (Model 2) (following page). 
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Without a functional understanding of the factors driving the trend surface 

component of the model. it is difficult to extrapolate these variables to adjacent regions. It 

might be expected that the Oregon Klamath would experience a coastal to interior 

climatic gradient similar, although not identical to, the California Klamath. This provides 

support for the extrapolation of the effects of climatic factors such as precipitation. as 

well as the UTM Fasting component. The quadratic UTM northing component was more 

difficult to extrapolate to Oregon. It is possible that regional source-sink dynamics show 

different spatial structure in Oregon due to aggregations of habitat in areas such as the 

Grassy Knob and Kalmiopsis Wilderness Areas. 

5.2 Comparisons of Predicted and Observed Distribution 

This study demonstrates that conclusions drawn from habitat selection studies 

may be highly dependent on the scale at which selection is measured. Whereas a plot-

level analysis of our validation data might indicate that there is no significant association 

between fishers and tree size class, a landscape level analysis reaches the opposite 

conclusion. Analysis at multiple scales may be especially critical for understanding the 

distribution of wide-ranging carnivores such as the fisher. 

Although the level of agreement between model and data is encouraging. it is 

likely that the complexity of fisher distributional dynamics is only crudely approximated 

by the trend surface and moving average components. Ile non-systematic nature of the 

retrospective data inevitably leads to regions with large estimation error. Spatial trends 

must be extrapolated to areas without survey effort. These areas are highlighted on a map 
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of kriging error structure (Figure 4.6). Private lands and the southeastern Klamath region 

(Shasta-Trinity National Forest) have the highest levels of kriging error. 

In addition. poorly sampled portions of attribute space are evident. For example. 

few surveys have been conducted in areas of low road density due to logistical 

constraints. This results in poor sampling of high-elevation areas and their characteristic 

forest types (e.g. red fir (Abies magnifica shasiensis)). 

Comparison of the probability maps produced under alternate models can serve as 

a type of "sensitivity analysis" of the robustness of predictions to variations in model 

structure. A comparison of the MLR model map with that produced by a landscape 

version of the CWI-IR model shows that the CWIIR model underemphasizes areas in the 

eastern part of the region (Figure 5.9). In addition, CWI-IR models without the UTM 

Northing component do not accurately predict detection probability in the northern part of 

the region. CWI -IR modeling is usually conducted with patch-level information, which 

further weakens its accuracy. 

The model incorporating 30 km' scale MA variables has slightly less explanatory 

power than the 10 km= scale model in the retrospective analysis (BIC of -3949 and -3951. 

respectively). However, it gives significantly better predictions for the validation data set 

(r = 0.68 rather than 0.58). A coarser-scale model may be less sensitive to fine-scale error 

and variability in the main data set and thus may have greater generality. The 30 km.= 

scale model cannot be considered to have been validated by the 1996 surveys since it was 

elaborated after examining the validation survey data. Its predictions will be compared 

with the results off the 1997 surveys. 
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The explanatory and predictive power of the model is high for landscape-scale 

models using retrospective data (Austin and Meyers 1996, Neave et al. 1996). However, 

approximately two thirds of the variance remains unexplained in both retrospective and 

validation data sets. Various possible sources of unexplained variance exist. Measurement 

error in the GIS vegetation laver is known to range from 60-80°A for categorical attributes 

(Cal. Timberland Task Force 1993). The effect of this fine-scale error is reduced, but not 

eliminated, by the MA modeling. The nature of the GIS data available for the entire 

region limited the choice of landscape-scale variables. This may mean that some 

important landscape-level variates are not included in the model. 

Other sources of variance include effects at scales not incorporated in the model. 

The plot-level vegetation variables I examined had little explanatory power, but other 

fine-scale variation such as spatial and temporal variation in prey abundance may be 

important. Prey abundance may not be directly correlated with the forest structure 

variables measured in this study. The randomization incorporated into the NFI grid 

sampling design insures that validation stations will not necessarily be placed in the 

"best- habitat as in previous surveys. This will increase the amount of unexplained 

variation. 

Landscape pattern (e.g. habitat fragmentation) may also have an effect on fisher 

distribution that is additive to the effects of habitat area alone (Hargis and Bissonette in 

(press)_ Variance in habitat quality (analyzed by means of the FOCALSTD function) 

proved to be non-significant. but other aspects of landscape structure were not 

incorporated into the m ode]. These include metrics such as patch area or habitat 
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contagion. which can be measured by landscape analysis programs such as FRAGSTATS 

(McGarigal and Marks 1995). However, the computationally-intensive nature of these 

programs prevent their incorporation into a moving-window analysis. 

Stochastic variability in habitat occupancy due to events such as the death of 

resident animal and temporal shifts in home range boundaries adds an additional 

component of unexplained variance. However, the degree of explanatory power achieved 

demonstrate that, at least for wide ranging carnivores such as the fisher, spatial habitat 

modeling can be a useful tool for increasing our understanding of the factors influencing 

distribution. 

5.3 Sympatric Carnivore Data 

Correlations among carnivores of percentage of stations per SU with detections 

show low values (Table 4.14). However. correlation coefficients will not reveal non­

linear relationships between species or between species and environmental variables. The 

strongest correlation (between bear and fisher) can be attributed in part to the fact that 

bears often render the station unable to detect other carnivores (until the next station 

check) by rolling or collapsing the station. The low correlation strengths suggest that the 

various carnivores are using different habitat resources or scales of selection. The 

differences between the species in latency to first detection and stations per sample unit 

with detections also suggest differences in grain response. Gray fox was detected at fewer 

SUs than was fisher. but at those Stis was detected earlier and at more of the stations. 

This is in agreement with the smaller home range size of gray fox (Zeiner et al. 1 988). 
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Comparisons of environmental variables at detection and non-detection sites also 

support the hypothesis that the different species select resources at different scales. As 

was the case in the fisher data. significant comparisons across all sites may reflect 

landscape-level association, whereas significant comparisons between stations in 

occupied sample units may indicate patch-level association. 

I labitat generalists should select at a fine scale because they can locate preferred 

microscale resources in a variety of landscapes (Pedlar et al. 1997). Black bears show 

significant station-level association with patches of mixed forest with large hardwoods. 

Unlike the other carnivore species, they show less evidence of landscape-scale 

association, at least at the 10 km' scale (Table 4.18). Ringtails and gray fox show 

significant association with mid-elevation mixed hardwood/conifer landscapes with large 

hardwoods (Tables 4.15 and 4.16). Spotted skunk also associates with mixed 

hardwood/conifer landscapes, but these are the drier and more open conifer/deciduous 

oak forests of the eastern Klamath (Table 4.17). No species other than fisher show a 

significant positive association with landscape-level tree size class. Spotted skunk show a 

negative association with this variate that may be due to their abundance in the smaller 

forests of the eastern Klamath. 

5.4 Future Uses of the Model 

Future uses of the model include prediction of habitat suitability in other regions 

such as the Sierra Nevada. The distribution of fishers in the Sierra Nevada is presently 

limited to the southern portion of the range (Zielinski et al. 1996). Comparisons with 
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historical trapping records show that this represents a fairly recent range contraction. It is 

not known whether the extirpation of fishers from the northern Sierra Nevada resulted 

from habitat alteration, direct human impacts such as trapping. or a combination of 

factors. Predictive modeling of fisher distribution in the Sierra Nevada using the model 

developed in the Klamath would help determine whether habitat is significantly poorer in 

the northern Sierra than in the southern part of the range. This information would be 

useful in planning recovery efforts such as reintroduction. 

Extrapolation of the model to other regions will encounter several difficulties. It 

is necessary to use models without trend surface variables. Precipitation is a acceptable 

substitute for Ul N4 Fasting, but modeling fisher distribution in the Sierra Nevada without 

incorporating substitutes for the UTM Northing variable will lower prediction accuracy. 

Floristic differences between the Klamath and Sierras are also likely to complicate 

modeling. Douglas-fir, the most abundant conifer in the Klamath, is absent from the 

southern Sierra. and deciduous hardwoods are more prevalent than evergreen species. The 

north-south orientation of the Sierra range produces a strong westieast orographic effect 

on precipitation, as well as distinct elevational zonation of plant communities. This may 

create barriers to dispersal not encountered in the more topographically complex Klamath 

ranges. Differences in historical human impact. such as the prevalence of selective 

logging in the Sierra Nevada. present additional challenges to model extrapolation. 

The development of multi-species models through spatial habitat modeling is 

another promising avenue for research. Individual models can be developed for each of 

the forest carnivore species commonly detected at survey stations. Comparisons of the 
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predictions of these models with those of a multi-species model may help separate the 

effects of habitat alone from the effects of forest carnivore community interactions. 

5.5 Research Implications 

5.5.1 Tools Required for Regional Spatial Analyses 

Analysis of regional spatial data sets requires data sources and analytical tools 

distinct from those traditionally used in wildlife research. The use of remote sensing data 

allows analysis and planning on a similar scale to that of the anthropogenic stressors 

which affect plant and animal distributions. Multitemporal analyses of such data sets are 

useful in detecting such large-scale trends, especially if other data such as wildlife 

surveys are incorporated. The GIS and data storage capability needed for these analyses is 

becoming more widely available, allowing its use by groups outside of government and 

academia. 

Geostatistical software is increasingly available to supplement traditional 

non-spatial statistical analysis. The analysis used here has the advantage of incorporating 

functions such as MA and kriging that are already available in some GIS packages. These 

functions represent the first steps in the increased integration of GIS and spatial statistical 

software (Bailey 1993). As this type of analysis becomes more common, it is hoped that a 

wider variety of spatial modeling methods will be incorporated into GIS software. 

Coordination of the design of field surveys is needed to allow data from many 

areas to he analyzed in common for multiple purposes. For example, ground-based 

vegetation surveys on public lands could he designed to gather additional information 
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useful for monitoring forest health trends. The National Forest Inventory (NFI) program 

of the U.S. Forest Service represents an initial step towards broadening the utility of 

traditional Forest Inventory and Analysis (PIA) plots. The fact that the surveys 

incorporate a systematic sampling design also enhances their usefulness in detecting 

spatial trends. Linkage of wildlife surveys to such a systematic sampling design. such as 

was used in this study will also improve coordination of data collection. 

5.5.2 Applications to Monitoring 

The relevance of this type of spatial analysis to monitoring efforts is high. The 

cost of a extensive monitoring program makes the choice of a optimal sampling design 

critical. Analysis of spatial correlation structure of pilot survey data may provide 

direction as to the optimal distance between sampling sites (1-laining 1990). 

Spatial analysis can also aid in the identification of the areas where regional 

environmental gradients are steepest. A gradsect sampling approach has recently been 

used to design a long-term study to detect responses of vegetation to climate change in 

forests of the Rocky Mountains (Stohlgren and Bachand 1997). Areas of highest 

estimation error for both spatial and environmental variates (i.e. "holes" in current data) 

can also be identified and targeted for survey effort. 

Spatial analysis of retrospective or pilot survey data may also help in the selection 

of candidates for indicator species based on the concept of grain response (McGarigal 

1993). -labitat alteration and fragmentation at a particular spatial scale is expected to 

affect strongly only those species that sample the landscape at that scale. Species tend to 
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group into a limited number of locations along the continuum of possible scales due to 

interactions between morphological constraints and the spatial structure of the 

environment (1- lolling 1992). Monitoring of habitat change at multiple scales is facilitated 

by selecting representative species from among these spatial "guilds". 

Designing an optimal multi-species monitoring program using spatial analysis 

presents challenges due to the variety of scales at which focal species respond to 

environmental change. An interpenetrating grid sampling design such as is used in the 

NH program can incorporate multiple scales of sampling (Stevens 1994). Sampling sites 

at the coarsest scale would cover the whole region. The sites would be "densified" in 

areas identified by spatial analysis in order to improve trend detection for species 

responding to fine scale processes (Noss 1990). The existence of coarse-scale data for 

these species throughout the region would facilitate scaling up from the fine-scale data. 

in an effort to avoid the regulatory -train wrecks" brought about by the listing of 

endangered species, a shift from species to -ecosystem management- has been advocated 

(Grumbine 1994). In this context, it may seem more efficient to monitor aggregate 

indicators of ecosystem -health" or functional integrity rather than continuing to monitor 

individual species. However, well-selected focal species or groups of species may serve 

as sensitive "bioindicators" of landscape change at scales not evident to the human 

observer (Karr 1981. Noss 1990) If focal species are to fulfill this role. monitoring. 

programs must be carefully designed. In the past, monitoring programs have been 

implemented without a clear understanding of scale, statistical power, and other sampling 

design issues (Noss 1990. NRC 1995). Increasingly, these considerations are being 
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incorporated into the planning stages of monitoring programs. However, the need to 

revisit these questions after initial monitoring data has been collected is not often 

recognized. Although it is important to maintain consistency of effort over time, it should 

be possible to refine sampling programs based on spatial and temporal trends detected in 

the course of pilot monitoring programs (Legendre et al. 1989). This "adaptive 

monitoring" could play an important role in "adaptive management" strategies. 

5.6 Conservation Implications 

5.6.1 Regional Characteristics and Fisher Population Dynamics 

The persistence of fishers in the Klamath region focuses attention on regional-

scale patterns that distinguish this region from other parts of the western U.S. from which 

fishers have been extirpated. The ecology and land-use patterns of the Klamath region 

may help explain current patterns of fisher distribution. The sprouting ability of both 

evergreen hardwoods and redwoods helps these forests recover canopy closure more 

rapidly after disturbance, making their habitat resources more resilient to logging. This 

would make these landscapes more similar to eastern forests than to other western forests 

and might help explain the persistence of fishers in both the eastern U.S. and in this 

region. 

The Klamath region can be seen as representing a continental-scale "ecotone" 

between the evergreen hardwood forests of the Madrean flora to the south and the 

coniferous forests to the north (Whittaker 1961. Sawyer et al. 1977). The late semi 

Douglas-fir/mixed evergreen hardwood forests of the region may produce landscapes 
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with an optimal combination of habitat resources for fishers: high levels of canopy 

closure. large wood provided by the conifers and mast provided by the hardwoods. 

Due to its steep topography. the Klamath region has also lost less of itslate­

successional forest than have forest lands in the Oregon Coast and Cascades (Figure 5.5). 

The late-successional forest that remains in the region is predominantly on public lands. 

This means that late-successional forest in low-elevation forest types is scarce. This has 

disproportionately impacted coastal taxa such as the Humboldt marten. However, the 

predominantly early seral character of coastal forests may create landscape connectivity 

problems for other taxa. especially if current trends towards shorter harvest rotations 

continue. 

While high-elevation forest types are well represented in protected areas, mid-

elevation types are not. Our results suggest that these mid-elevation Douglas-fir/mixed 

evergreen types are among the most valuable fisher habitat in the region. Recent 

designation of Late-Successional Reserves (LSRs) has improved representation of these 

types. albeit in a semi-protected management category. 

5.6.2 Spatial Distribution of Fisher Habitat 

The distribution of habitat predicted by the final model incorporating precipitation 

provides a coarse evaluation of the representation of fisher habitat in various 

management categories (Table 5.1 ). Although the mean probability values vary between 

Model 1 and 2, the relative rankings of the landuse categories is similar. It can be seen 

from the table and the associated map (Figure 5.10) that existing reserves provide 
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relatively poor representation of fisher habitat. Although the redwood parks are an 

exception. most protected areas are dominated by high-elevation forests. Late-

Successional Reserves provide significantly better representation of fisher habitat, which 

is not suprising given that were designed to protect another late-seral associated species, 

the northern spotted owl (McKelvey et al. 1993). However, the spatial structure of fisher 

distribution is more aggregated than the distribution of LSRs. This means that some LSRs 

in the margins of the region have low probability of being used by fishers, while other 

non-LSR areas close to the central "mainland" of fisher distribution are likely to be 

important habitat. Protection of fisher viability in this mainland area may require higher 

levels of representation in protected or semi-protected categories. 

These conclusions also call attention to the need to supplement traditional 

conservation goals with an awareness of the biological importance of non-wilderness 

lands. Many of the areas highlighted as predicted habitat are biologically productive low 

to mid-elevation forests that have experienced some degree of human impact. Species-

rich low to mid-elevation forests where logging began earlier may retain only highly 

fragmented LSOG habitat. However, these patches may be more valuable as nuclei for 

biodiversity reserves than their size or connectivity would indicate (Franklin 1993, Spies 

et al. 1994). 

In the past. the "non-pristine" nature of these areas would have made them 

gain the public support necessary for their protection. In the past decade. 

conservationists have increasingly become aware of the role of these areas in sustaining 
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biodiversity. However. the somewhat artificial dichotomy between "wildness" and 

"biodiversity" continues to be a source of conflicting priorities in the face of limited 

resources for conservation. 

`Fable 5.1. Mean predicted probability value vs. ownership and management category. 
Values for Model 1 are followed by values for Model 2 in parentheses. 

Overall 0.185 (0.148) 
All Forest Service land 0.202 (0.147) 

Matrix 0.206 (0.145) 
Late-Successional Reserves 0.242 (0.176) 
Forest Service reserves (wilderness) 0.146 (0.119) 

Non-Forest Service reserves (parks) 0.361 (0.231) 
Private land 0.213 (0.179) 

5.6.3 Implications for Population Viability 

This study further documents the discontinuous distribution of fishers in the 

Pacific coastal states that has become evident from previous work in California (Zielinski 

et al. 1996), Oregon (Aubry 1997) and Washington (Aubry and Houston 1992). The 

nearest neighboring fishers to the Klamath population are the small reintroduced 

population near Crater Lake in Oregon and the southern Sierran population (Aubry 1997. 

Zielinski et al. 1996). Dispersal between the Klamath and these populations is likely to be 

infrequent in the former case and non-existent in the latter. This poses concerns for 

population viability in the face of environmental and genetic stochasticity that need to be 

adequatelv addressed in the future conservation planning for the species. 

These concerns apply equally. if not more strongly. to the coastal population of 

marten in these states. which belong to the subspecies Mantes americana humholdlensis 
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and A/ a. cctarina (Clark et al. 1987). Marten in coastal California were once widespread 

throughout the redwood zone north of Santa Rosa (Grinnell et al. 1937. Zielinski and 

Golightly 1996). The single detection of marten in the course of our study represents the 

only confirmed detection of marten in the range of Al a. humbolthensis since the 1940's 

(Slauson et al. 1996). Marten are more frequently detected in coastal Oregon (L. Webb, 

pers. comm.). Marten detections in coastal Oregon have been primarily in areas identified 

as fisher habitat in a version of our model that does not include the north/south spatial 

trend variables. "Ibis is not surprising, since martens have been found to be linked to 

forest structure to an even greater extent than fishers (Thompson 1991, Buskirk 1992, 

Buskirk and Ruggiero 1994, Thompson and Harestad 1994). Present data, while 

incomplete, suggest that coastal marten may be relatively common in the region only in 

the northern and central Siskiyou National Forest, with remnant populations occurring 

south into California. If this is the case, the results of our study should raise concerns 

over the viability of the coastal marten populations in both states. 

5.6.4 Suggested Conservation Strategy 

The clearest lesson to be drawn from the present study is the importance of 

planning on a regional scale. This reinforces the conclusions of the conservation planning 

process for another umbrella species, the northern spotted owl. The population modeling 

studies that formed part of the reserve design process for the Northwest Forest Plan 

emphasized the parallels between the processes that occur within a population (births and 

deaths) and those that occur between populations in a metapopulation (immigration and 
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emigration)(Noon and McKelvey I996a). Lande's (1987) model had predicted the 

existence of extinction thresholds as the proportion of suitable habitat in an area declined. 

A population inhabiting an area below the threshold level could be on an extinction 

trajectory even if habitat degradation was halted. Similarly. the regional metapopulation 

might show non-linear responses to the size and spacing of habitat clusters. If these 

clusters were too small or isolated, the imbalance between immigration and emigration 

might limit long-term viability despite the presence of suitable habitat (McKelvey et 

1993. Noon and McKelvey 1996a). The decline in distribution of the fisher in the western 

tl.S. may be due to similar regional-level dynamics. Existing land management planning 

processes are poorly adapted to decision making across administrative boundaries. The 

survival of the fisher, like that of other wide-ranging carnivores such as the timber wolf. 

may depend on multi-ownership cooperative management at the regional scale 

(Mladenolf et al. 1995). 

Designing regional conservation networks for forest carnivores is difficult without 

data on the distribution of source and sink habitat. If core refugia are expected to be a 

source of recolonizers that maintain metapopulation viability, the reserves need to be 

located primarily in source habitat (the exception being areas designed to enhance 

connectivity). Reserves must be spatially distributed in such a way as to insure 

connectivity with populations needing recolonization (Buskirk 1995). Although 

distribution is used as a surrogate for habitat quality in this study, future research is 

needed to explore the relationship between distribution and fitness. Initial reserve designs 

arising from exploratory studies such as this one may be expected to be modified as more 
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information becomes available. In the context of adaptive management, these reserve 

designs become testable hypotheses in an iterative process of refinement by future studies 

(Rolling 1978, Murphy and Noon 1992, McKelvey et al. 1993). 

Concerns over the viability of the Klamath fisher population arise from specific 

aspects of the spatial distribution of predicted habitat. The Klamath population may 

conform to a "mainland- island" metapopulation because of the concentration of habitat in 

the Trinity River area. Maintenance of the mainland area as a robust source of dispersers 

is the highest priority in these situations. This study has also called increased attention to 

areas of eastern Klamath, such as the Trinity and Whiskeytown Lake areas, as potential 

habitat. These more xeric forests had not been classified as highly suitable by existing 

habitat models such as CWHR. 

The Klamath population may conform to a "patchy" metapopulation due to the 

long-range dispersal ability of fishers (Stith et al. 1996). Well-defined dispersal barriers 

such as agricultural lands on the margins of the region may limit recolonization of 

adjacent regions. Within the region, however. habitat threshold effects that are not 

identified with dispersal barriers may be driving the reduction in distribution. That this 

reduction is ongoing is suggested by the existence of large portions of the validation area 

where fishers were not detected (Figure 4.10). 

Real-world metapopulations may resemble more than one type of metapopulation 

model. in such a "mixed" metapopulation, "central patches are united by dispersal into a 

single population, slightly more isolated ones undergo extinction and recolonization, and 

still more isolated patches are usually vacant" (Harrison and Taylor 1997). 
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Connectivity between the central "mainland- areas and outlying populations is 

necessary if the reduction in distribution is to be reversed. Connectivity between 

Redwood National Park and the floopa Indian Reservation and Six Rivers National 

Forest may be further impacted in the future due to the lack of public land in this area. 

Maintenance and restoration of habitat linkages between the central Klamath and remnant 

coastal habitat in the Kings Range and Headwaters Forest area may be critical for 

persistence of fishers in these areas. The near extirpation of fishers from the middle 

Klamath River corridor above the confluence with the Salmon River poses problems for 

dispersal to the Oregon Klamath region. Fires and subsequent salvage logging also seem 

to have extirpated fisher from much of the lower Salmon River watershed. Restoration of 

habitat connectivity in the northeastern Klamath would help recreate regional-scale 

habitat linkages to the Cascades and Sierra Nevadas. This would facilitate natural 

recolonization of these areas. 

The study data also highlight the role of large hardwoods as a keystone resource 

in the forests of the region. Forest management has traditionally seen hardwoods as 

competitors with timber producing conifers and has sought to eliminate them. Their role 

in maintaining soil productivity (Perry et al. 1989), biodiversity (Neitlich and McCune 

1997), as well as wildlife habitat resources. suggests that the largest hardwoods on a site 

should be retained after logging. 

This study forms part of a larger research effort to develop a Klamath/Siskiyou 

Biodiversitv Conservation Plan (Vance Borland et al.1996). This project is a regional 

assessment of conservation needs based on analysis of physical habitat diversity, 
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assessment of representation of vegetation types, mapping of the distribution of rare 

species' habitats and other biological "hotspots-. analysis of aquatic habitats, and habitat 

modeling of forest carnivores. The goal is to use species-level and ecosystem-level 

research in a complementary fashion to determine conservation priorities for the region. 

Although this goal is widely held. few examples currently exist of the successful 

integration of the results of habitat modeling of umbrella species with other planning 

priorities such as ecosystem representation. The methods used in this study should he 

widely applicable in addressing reserve design questions in other regions. 
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