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ABSTRACT

Tide–topography interactions dominate the transfer of tidal energy from large to small scales. At present, it

is poorly understood how low-mode internal tides reflect and scatter along the continental margins. Here, the

coupling equations for linear tides model (CELT) are derived to determine the independent modal solutions

to Laplace’s Tidal Equations (LTE) over stepwise topography in one horizontal dimension. CELT is

(i) applicable to arbitrary one-dimensional topography and realistic stratification without requiring numer-

ically expensive simulations and (ii) formulated to quantify scattering because it implicitly separates incident

and reflected waves. Energy fluxes and horizontal velocities obtained using CELT are shown to converge to

analytical solutions, indicating that ‘‘flat bottom’’ modes, which evolve according to LTE, are also relevant in

describing tides over sloping topography. The theoretical framework presented can then be used to quantify

simultaneous incident and reflected energy fluxes in numerical simulations and observations of tidal flows that

vary in one horizontal dimension. Thus, CELT can be used to diagnose internal-tide scattering on continental

slopes. Here, semidiurnal mode-1 scattering is simulated on the Australian northwest, Brazil, and Oregon

continental slopes. Energy-flux divergence and directional energy fluxes computed using CELT are shown to

agree with results from a finite-volume model that is significantly more numerically expensive. Last, CELT is

used to examine the dynamics of two-way surface–internal-tide coupling. Semidiurnal mode-1 internal tides

are found to transmit about 5% of their incident energy flux to the surface tide where they impact the con-

tinental slope. It is hypothesized that this feedback may decrease the coherence of sea surface displacement

on continental shelves.

1. Introduction

The sun and moon generate tides in the ocean via the

astronomical tide-generating force (ATGF; Newton

1687). Laplace (1776) derived the modern theory of

linear inviscid tides for depth-uniform currents in an

ocean of constant density [i.e., Laplace’s Tidal Equa-

tions (LTE)]. In the early twentieth century, subsurface

measurements of temperature revealed that the ocean is

vertically stratified (e.g., Nansen 1902) and tidal-frequency

motions vary with depth (Pettersson 1907). Miles (1974)

formally rescaled the equations of motion to describe

tides in a stratified ocean and allow for depth-varying

currents. He found that depth-varying tidal motions

separate into uncoupled vertical modes over a flat bot-

tom (e.g., Rayleigh 1883), which individually obey LTE

scaled by an equivalent depth. The zeroth mode, also

known as the surface tide, has an equivalent depth that is

very close to the actual ocean depth. It is effectively the

depth-uniform motion originally described by Laplace.

Higher modes (n $ 1) have group speeds and vertical

structures that are sensitive to density stratification.

These modes are collectively known as the internal tide

(e.g.,Wunsch 1975) andhave only beenheavily researched

for the last 50 years.

In many deep-ocean basins, where the ocean floor is

mostly flat, it is useful to decompose tidal motions into

vertical modes that evolve according to LTE because

they have known horizontal wavelengths and group
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speeds (e.g., Alford and Zhao 2007). However, in regions

of sloping topography, vertical modes can be incon-

venient because (i) they do not accommodate nonzero

vertical velocity at sloping bottoms1 and (ii) they

become coupled where the water changes depth.

Vertical-mode coupling over steep topography is evi-

dent in laboratory experiments (e.g., Zeilon 1912), an-

alytical theories (e.g., Rattray 1960), numerical models

(e.g., Baines 1982), and observations (e.g., Rudnick et al.

2003), which all display energy transfer between surface

and internal tides.

Many investigations of tides in a stratified ocean

avoid the complication of interpreting flat-bottom

modes over sloping topography by simply examining

the dynamics of the full, depth-dependent equations of

motion. These models employ frameworks that do not

require a flat bottom, such as ray tracing (e.g., Baines

1982), Green’s functions (e.g., Echeverri and Peacock

2010), and finite-volume formulations (e.g., Carter

et al. 2008). However, analyses of these models almost

always return to concepts, such as surface–internal-tide

decomposition, that are only well defined in terms of

the modes that evolve according to LTE. A widespread

reluctance to decompose tides over a sloping bottom

into flat-bottom modes has produced diverse and

nonstandardized definitions of surface and internal

tides, which have led to ambiguous descriptions of tidal

dynamics (see, e.g., Kelly et al. 2010; Gerkema 2011;

Kelly and Nash 2011).

Fortunately, several studies have examined the be-

havior of flat-bottom modes over regions of sloping to-

pography, which enables an unambiguous surface–internal-

tide decomposition. Llewellyn Smith and Young (2002)

coupled the modes that evolve according to LTE over

small-scale topography with small gradients by linear-

izing the bottom-boundary condition. Later, Griffiths

and Grimshaw (2007) coupled these modes over arbi-

trary topography. Most recently, Shimizu (2011) and

Kelly et al. (2012) derived coupled energy balances for

flat-bottom modes over arbitrary topography and Kelly

et al. (2012) verified their accuracy in numerical simu-

lations and observations.

While previous studies have demonstrated that tidal

flows can be mathematically decomposed into flat-

bottom modes over arbitrary topography, a conceptual

model is desirable to interpret how these modes couple

and evolve differently in domains with variable depth.

Here, we present a semianalytical model that can

accommodate arbitrary topography in one horizontal

dimension but confines all variation in bottom depth

to thin topographic steps. At all locations, the bottom

is locally flat and motion evolves as uncoupled modal

solutions to LTE (in Cartesian coordinates). The

model is fundamentally similar to that of Griffiths and

Grimshaw (2007), except that we have confined modal

coupling to the matching conditions at each topo-

graphic discontinuity.

Several models have been developed that match the

modal solutions to LTE at a single step (e.g., Rattray

1960; Rattray et al. 1969; Chapman and Hendershott

1981; St. Laurent et al. 2003; Klymak et al. 2011a).

However, the model presented here accommodates an

arbitrary number of steps and arbitrary depth-varying

stratification. And, unlike the multistep model used by

Sj€oberg and Stigebrandt (1992), which was criticized by

St. Laurent et al. (2003) because it did not couple the

solutions between steps, the model presented here in-

cludes complete coupling between all steps (e.g., it ex-

hibits resonance between double ridges; Echeverri et al.

2011; Klymak et al. 2013). Specifically, Sj€oberg and

Stigebrandt (1992) linearly superimposed the solutions

from independent single-step solutions to estimate the

cumulative energy flux radiating from complicated to-

pographic shapes. In the model presented here, the

matching conditions at each step are coupled to those at

neighboring steps and the entire solution is obtained

simultaneously (i.e., all steps within the domain are ef-

fectively coupled to one another).As a result, the radiating

energy flux depends nonlinearly on the configuration of all

topographic steps.

Ourmodel is formulated to obtain solutions over locally

flat regions by matching pressure and velocity at topo-

graphic discontinuities (Chapman andHendershott 1981).

The matching conditions produce the coupling equa-

tions for linear tides model, which we refer to as CELT.

CELT is unique because it (i) unambiguously separates

the modal solutions to LTE in regions of arbitrary one-

dimensional topography, (ii) explicitly solves for left-

ward- and rightward-propagating tides, and (iii) easily

accommodates two-way surface–internal-tide coupling.

a. Resolving incident and reflected tides

Internal tides are generated (e.g., Rattray et al. 1969;

Baines 1982), reflected (e.g., Chapman andHendershott

1981; Nash et al. 2004; Klymak et al. 2011a), scattered

(e.g., M€uller and Liu 2000; Thorpe 2001; Kelly et al.

2012), and dissipated along the continental margins

(e.g., Kunze et al. 2002; Legg and Adcroft 2003; Nash

et al. 2007). CELT can be used to determine the am-

plitudes of transmitted and reflected internal tides,

rather than more traditional quantities like velocity and

1Note that there is only a pointwise mismatch exactly at the

bottom. The projection of any depth profile onto the complete set

of vertical modes is uniformly convergent.
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pressure. The theoretical framework of the model also

enables the separation of directional energy fluxes in

both observations and simulations of realistic flows that

vary in approximately one horizontal dimension. Di-

rectional energy fluxes can determine the exact loca-

tions of internal-tide generation, reflection, scattering,

and tidally driven mixing over arbitrary topographic

shapes. We demonstrate the practical utility of CELT

by simulating internal-tide scattering and reflection on

the Australian northwest, Brazil, and Oregon conti-

nental slopes, which are approximated as along-slope

uniform.

b. Modeling two-way surface–internal-tide coupling

Historically, most analytical and numerical models

have been developed to individually model surface (e.g.,

Egbert et al. 2004) or internal (e.g., Baines 1982) tides

without including two-way surface–internal-tide coupling.

These models assume a priori that tide–topography in-

teractions only transfer energy from the surface to the

internal tides. The essence of this approximation is

summarized by Hendershott (1981):

I speculate that if oceanic internal modes are suffi-
ciently inefficient as energy transporters that they
cannot greatly alter the energetics of the [mode-0]
solution unless their amplitudes are resonantly in-
creased beyond observed levels, and if they are suffi-
ciently dissipative that they effectively never are
resonant, then an extension of this analysis to realistic
basins and relief would probably confirm LTE [for the
0th vertical mode] as adequate governors of the surface
elevation. . . . With appropriate allowance for various
dissipative processes (including all mechanisms that put
energy into internal tides), I regard [LTE for mode-0] as
an adequate approximation for studying the ocean sur-
face tide.

However, over the last 30 years, internal tides have

been observed to transport energy thousands of kilo-

meters (e.g., Zhao and Alford 2009) and resonate

across ocean basins (Dushaw and Worcester 1998) and

between ridges (Buijsman et al. 2010). Furthermore,

Egbert et al. (2004) estimated global surface-tide en-

ergy dissipation using a data-assimilating model and

found regions of inexplicable surface-tide energy gain

(i.e., work done on the surface tide that could not be

explained by the ATGF alone). Although Egbert et al.

(2004) dismissed these gains in surface-tide energy as

errors, regional numerical simulations have identified

regions of surface-tide energy gain that are associated

with internal-tide energy loss (e.g., Kurapov et al. 2003;

Hall and Carter 2011). In addition, Kelly and Nash

(2010) observed energy transfer from an internal tide

to the surface tide when an incident internal tide

shoaled on the New Jersey continental slope (a process

they referred to as internal-tide destruction). There-

fore, models of two-way surface–internal-tide coupling

are presently necessary to investigate the physics, effi-

ciency, and global significance of internal-to-surface-

tide energy conversion.

At present, regional numerical simulations can be used

to quantify internal-to-surface-tide energy conversion, but

surface-tide dynamics in these models are heavily dictated

by boundary conditions (Carter and Merrifield 2007).

Conversely, surface tides are well represented in global

simulations, but internal tides are not fully resolved and

surface–internal-tide coupling is usually subsidized by ar-

tificial parameterizations (Arbic et al. 2010). Using CELT,

surface and internal tides are represented as waves and

surface–internal-tide coupling can be modeled over

high-resolution topography. Because CELT treats tide–

topography interaction as a scattering problem (i.e., it

accepts incident tides and solves for reflected and

transmitted tides) and is inherently energy conserving

(section 2a), it can accurately estimate the efficiency of

internal-to-surface-tide energy conversion over ideal-

ized and realistic continental slopes. CELT’s most sig-

nificant limitation is that it only accommodates one

horizontal dimension, so it cannot explicitly account for

scattering over three-dimensional topography, the gen-

eration of coastal-trapped waves, or the reflection of

obliquely incident internal tides.

This paper is organized as follows. In section 2, the

modal decomposition of LTE is reviewed and CELT

is derived. In section 3, the convergence of CELT is

examined in terms of vertical modes and topographic

steps. In section 4a, CELT is used to make tidal pre-

dictions, which are verified by a finite-volume numerical

simulation. In section 4b, directional energy fluxes are

computed from the finite-volume simulations and CELT

solutions. In section 4c, the physics of internal-to-surface-

tide energy conversion are investigated along the conti-

nental margins. A discussion of the results and applications

is presented in section 5.

2. Methods

Over a flat bottom on an f plane (Thomson 1879),

LTEs for each vertical mode n are

›Un

›t
2 f Vn 52

›Pn

›x
, (1a)

›Vn

›t
1 fUn 5 0, and (1b)

›Pn

›t
1 gHn

›Un

›x
5 0, (1c)
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where t is time, x and y are the horizontal coordinates,

gradients in the y direction are approximated as zero,

g is gravity, f is the inertial frequency, and Hn is the

equivalent depth. Horizontal velocities and reduced pres-

sure (i.e., pressure divided by reference density) are

defined as

ðu, yÞ5 �
‘

n50

�
Un, Vn

�
fn and p5 �

‘

n50

Pnfn , (2)

respectively. By Fourier transforming (1a)–(1c),Un, Vn,

and Pn may be regarded as complex harmonic ampli-

tudes and time derivatives may be rewritten ›/›t52iv,

where v is the tidal frequency. The vertical structure

functions fn and equivalent depths are determined by

the eigenvalue problem

›

›z

�
1

N22v2

›fn

›z

�
1

1

gHn

fn 5 0, (3)

where z is the vertical coordinate (positive upward), and

N is the buoyancy frequency. The boundary conditions are

a free surface and flat bottom. The flat bottom requires the

vertical velocity to equal zero at z 5 2H, which dictates

›fn/›z5 0 at z 5 2H, via the buoyancy and vertical

momentum balances (not shown). The quantity v2 is re-

tained in (3) to improve the accuracy of the model by

including linear nonhydrostatic effects (a slight departure

from LTE). Group speed and horizontal wavenumber

for each mode are given as cn 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12 f 2/v2)

p ffiffiffiffiffiffiffiffiffi
gHn

p
and

kn 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12 f 2/v2)

p
v/

ffiffiffiffiffiffiffiffiffi
gHn

p
, respectively.

In the deep ocean, the nondimensional parameter

2 5N2H/g, which measures the bottom-to-surface

density difference, is normally less than 1%, allowing us

to approximate the surface tide with an equivalent depth

H0 ’H and depth-uniform vertical structure (Pedlosky

2003). This also allows us to approximate the free sur-

face as a rigid lid (›fn/›z5 0 at z 5 0) when computing

the internal-tide modes (i.e., n $ 1). A result of these

approximations is that the vertical structure functions

are orthogonal over the depth of the water column and

do not produce spurious internal-tide generation through

the free surface (Kelly et al. 2010).

In practice we solve (3) numerically for modes n $

1, using the rigid-lid approximation and second-order

finite differences. For all modes, the resulting verti-

cal structure functions are orthogonal and scaled so

that

1

H

ð0
2H

fmfn dz5 dmn , (4)

where m and n are modal indices, and dmn is the Kro-

necker delta function. The structure functions are also

complete [see (2)], so that projections of pressure and

velocity onto this basis are uniformly convergent (i.e.,

variance conserving).

Combining (1a)–(1c) with our definition for kn pro-

duces a one-dimensional Helmholtz equation

›2Un

›x2
1 k2nUn5 0, (5)

which has a general solution

Un 5 ane
ik

n
x1 bne

2ik
n
x , (6)

where an and bn represent the complex harmonic am-

plitudes of waves traveling to the right and left, respec-

tively. Substituting (6) into (1c) produces the general

solution for pressure

Pn 5 cn(ane
ik

n
x2 bne

2ik
n
x) , (7)

where fn, cn, and kn can be computed a priori from N2

andH. It is possible to determine the system [(1a)–(1c)]

in terms of either Un and Pn or an and bn. We will solve

for an and bn because they provide information about

the direction of wave propagation.

a. Matching solutions at a discontinuity

Horizontal variability in H, N2, and/or f creates

horizontal gradients in the vertical structure func-

tions, group speeds, and horizontal wavenumbers.

Here, we model continuous topography as a series of

discrete steps, thus creating discontinuities in struc-

ture functions, group speeds, and horizontal wave-

numbers. A general procedure for matching the

wavefield across these discontinuities is to ensure that

u and p are continuous (Chapman and Hendershott

1981)

u( j) 5 u( j11) at x( j) for z 2 [2H(d) 0] and (8a)

p( j) 5 p( j11) at x( j) for z 2 [2H(s) 0] , (8b)

where the index j identifies the discontinuity and de-

notes the solution to the left of the discontinuity.2 The

index j 1 1 denotes the solution to the right of the

2When N is horizontally constant, this procedure is equivalent

to matching u and w [i.e., horizontal and vertical velocity, e.g.,

St. Laurent et al. (2003)]. When N is horizontally variable,

matching p generally leads to discontinuous w and vice versa.

However, matching p is always dynamically and numerically

preferable because it avoids infinite pressure-gradient forces at the

steps and converges with fewer modes.
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discontinuity (Fig. 1). The superscripts (d) and (s)

denote quantities on the deep and shallow sides of the

discontinuity, respectively. For example, the values

H(d) 5max½H( j), H( j11)� and H(s) 5min½H( j), H( j11)�
are the fluid depths on the deep and shallow sides of the

discontinuity. Here, we define velocity as zero below the

bottom ½i:e:, u( j) 5 0 for z,H( j) for arbitrary j� so that
thematching condition for velocity, which extends to the

depth of the deeper step, requires u 5 0 along the ver-

tical wall. The matching condition for pressure, which

only extends to the depth of the shallower step, does not

constrain pressure along the vertical wall.

Using the orthogonality of the structure functions (4),

we project (8a) and (8b) onto each mode m

U( jL)a( j)1U*( jL)b( j)5U( jR)a( j11)1U*( jR)b( j11) and

(9a)

P( jL)a( j)2P*( jL)b( j)5P( jR)a( j11)2P*( jR)b( j11) , (9b)

where a and b are vectors of an and bn, and U and P are

matrices of coefficients defined as

U( jL)
m,n 5 eik

( j)
n x( j)

ð0
2H(d)

f( j)
n f(d)

m dz , (10a)

U( jR)
m,n 5 eik

( j11)
n x( j)

ð0
2H(d)

f( j11)
n f(d)

m dz , (10b)

P( jL)
m,n 5 c( j)n eik

( j)
n x( j)

ð0
2H(s)

f( j)
n f(s)

m dz, and (10c)

P( jR)
m,n 5 c( j11)

n eik
( j11)
n x( j)

ð0
2H(s)

f( j11)
n f(s)

m dz . (10d)

Here, thematricesU andP are all denoted by the index j

because they are associated with the discontinuity j. The

jL and jR superscripts denote whether U and P are as-

sociated with the solutions to the left ½a( j) and b( j)� or

right ½a( j11) and b( j11)� of the discontinuity. Each entry

in these matrices is the projection of the nth mode of

the rightward-propagating component of u or p onto the

mth structure function, which is either taken from the

shallow or deep side of the discontinuity. The projection

of the leftward-propagating components of u or p is

given by the complex conjugates of these matrices.

When the nth andmth structure functions are calculated

on the same side of the step, the integrals of their

products are zero except when n5m. When the nth and

mth structure functions are calculated on different sides

of the step, every integral of their product is nonzero

because structure functions at different depths do not

have special orthogonality relationships.

By truncatingm and n atM, (9) reduces to 2M linearly

independent equations. For a single step, prescribing the

incident-wave amplitudes ½a( j) and b( j11)� leaves 2M un-

knowns ½b( j) and a( j11)�, which represent the radiated-

wave amplitudes (Fig. 1). Therefore, the system can be

written as

"
U*( jL) 2U( jR)

2P*( jL) 2P( jR)

#"
b( j)

a( j11)

#
5

"
2U( jL)a( j) 1U*( jR)b( j11)

2P( jL)a( j) 2P*( jR)b( j11)

#
,

(11)

and the radiated-wave amplitudes can be obtained via

a matrix inversion. This formulation is more general

than previous solutions at a topographic step (e.g.,

Chapman and Hendershott 1981; St. Laurent et al.

2003; Klymak et al. 2011a) because it (i) incorporates

arbitrary stratification and structure functions, (ii)

generalizes the forcing function to include waves of

any mode from either direction, and (iii) explicitly

represents the surface tide as a freely propagating

wave [i.e., surface-tide velocity varies spatially and is

not prescribed a priori, e.g., St. Laurent et al. (2003)].

The system (11) is energy conserving provided the

structure functions on each side of the step are dis-

cretized on the same (over resolved) vertical grid. When

this is true, velocity and pressure are matched at the

discontinuity to the precision of the eigenvalue solver.

As a result, total energy flux, which is the product of

velocity and pressure summed over all modes, is non-

divergent across the discontinuity.

b. Matching solutions at multiple discontinuities

The matching conditions extend to multiple dis-

continuities inH,N2, and f by treating radiated waves

at the interior steps as incident waves at the adjacent

steps. For three discontinuities ( j5 1, 2, 3; Fig. 1), the

coupling equation is only forced by incoming waves at

the boundaries

FIG. 1. Schematic of waves propagating over stepwise topography

(the variables are defined in the text).
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2
6666666664

U*(1L) 2U(1R) 2U*(1R) 0 0 0

2P*(1L) 2P(1R) P*(1R) 0 0 0

0 U(2L) U*(2L) 2U(2R) 2U*(2R) 0

0 P(2L) 2P*(2L) 2P(2R) P*(2R) 0

0 0 0 U(3L) U*(3L) 2U(3R)

0 0 0 P(3L) 2P*(3L) 2P(3R)

3
7777777775

2
6666666664

b(1)

a(2)

b(2)

a(3)

b(3)

a(4)

3
7777777775
5

2
6666666664

2U(1L)a(1)

2P(1L)a(1)

0

0

U*(3R)b(4)

2P*(3R)b(4)

3
7777777775
, (12)

which illustrates the general form of the equation. For

an arbitrary number of discontinuities, we write the

system as

Cs5 f . (13)

The matrix of coupling coefficients is C. It contains 2M

rows for each discontinuity, which arise from the equa-

tions matching an and bn. For a system with L disconti-

nuities,C has rank 2LM. The forcing vector is f, which is

predetermined by incident tides at the boundaries, and s

is the vector of complex wave amplitudes (i.e., magni-

tudes and phases) that satisfy the system. It contains the

amplitudes of all leftward- and rightward-propagating

waves between the steps, and the radiating waves at the

boundaries. The system (13) represents CELT, a gen-

eralized expression that describes coupling between the

vertical modes that evolve according to LTE in one

horizontal dimension.

c. Vertical viscosity

Although CELT can be solved without viscosity, lin-

ear inviscid internal-tide solutions contain velocity and

pressure singularities at critical slopes or where topo-

graphic geometry facilitates internal-wave attractors

(e.g., Maas et al. 1997). Singularities are not observed in

oceanic internal tides because they are attenuated by

nonlinear and viscous processes. Here, singularities are

removed from solutions by including vertical eddy vis-

cosity, which acts on velocity shear and preferentially

attenuates high vertical modes. Eddy viscosity is chosen

to be depth dependent and inversely proportional to

buoyancy frequency squared

Az5 n
N22v2

N22v2
, (14)

where N2 is the depth-averaged buoyancy frequency

squared, and n is equivalent to eddy viscosity when

stratification is depth constant. Although this parame-

terization oversimplifies the vertical distribution of tur-

bulence in the ocean, it has a convenient form that is

separable by mode in arbitrary stratification (McCreary

1981), that is,

Dn5
1

H

ð0
2H

fn

›

›z

�
Az

›u

›z

�
dz52n

N22v2

gHn

Un . (15)

Between steps, the horizontal momentum equation de-

scribes a balance between deceleration and viscous

damping

›Un

›t
52n

N22v2

gHn

Un , (16)

which is satisfied provided Un decays exponentially in

time. Given the local group speed cn and step width Dx,
the tidal amplitudes (an or bn) that are incident at each

step are reduced by the fraction:

dn 5 e2n[(N22v2)/gH
n
](Dx/c

n
) , (17)

which is incorporated in C for each mode n at each step.

In the tidal solutions presented here, n 5 1023m2 s21

unless otherwise noted. This viscosity attenuates the

high modes, associated with sharply defined beams, but

not the low modes, which transport most tidal energy.

d. Neglected dynamics

In formulating CELT, we have made several ap-

proximations that have simplified or omitted known

internal-tide dynamics. Most blatantly, we have re-

moved three-dimensional tidal dynamics, which are

relevant for curved and rough topography (e.g., Thorpe

2001; Kunze et al. 2002; Legg 2004), as well as topog-

raphy that receives obliquely incident internal tides

(e.g., Martini et al. 2011; Kelly et al. 2012). However,

two-dimensional models are locally applicable along

many continental margins andmid-ocean ridges because

internal tides refract and often propagate roughly nor-

mal to large-scale isobaths. In practice, omitting three-

dimensional dynamics simplifies the mathematics of

CELT and allows for the unique separation of leftward-

and rightward-propagating wavefields.

CELT also neglects nonlinear dynamics. At large

spatial scales, weak nonlinear interactions between in-

ternal tides and mesoscale currents contribute to in-

ternal-tide incoherence (Rainville and Pinkel 2006). At
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smaller scales, nonlinearity becomes important where in-

ternal tides propagate at speeds similar to their induced

currents, steepen, and break (when they obtain super-

critical Froude numbers; Legg and Adcroft 2003;

Klymak et al. 2008, 2011b, 2013). At the smallest scales,

tide–topography interactions can directly produce in-

tensely turbulent bottom-boundary layers that dominate

kinetic-energy dissipation (e.g., Gayen and Sarkar 2010).

Here, we have omitted these dynamics to ensure that

CELT is computationally inexpensive and its solutions

have a straightforward interpretation as a superposition

of linear waves. Therefore, CELT solutions in regions of

strong mesoscale dynamics, large tidal excursions, and

near-critical topography should be interpreted with

prudence.

3. Results

CELT relies on a finite number of vertical modes M

and topographic steps L to approximate tidal solutions

for continuous vertical stratification over continuous

topography. Here, CELT solutions are presented for

idealized flows with variable values of M and L. These

solutions are then examined to verify known aspects of

tidal dynamics. All of the solutions presented here

consist of an incident mode-1 internal tide that im-

pacts a continental slope. For convenience, the flows

are nondimensionalized with depth H 5 1, f 5 0, and

an incidentmode-1 amplitude a1 5 1. The forcing frequency

and constant stratification are chosen so that internal-tide

beamshave slopea5 1 ½wherea5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(v2 2 f 2)/(N2 2v2)

p
�

making the topographic slope critical when s5 1 (where s5
2›H/›x). Viscosity is chosen so that it would equal n 5
1023m2s21 for semidiurnal waves in an ocean that is 2000m

deep. The reflection (transmission) coefficients, r (t), are

defined as the total reflected (transmitted) energy flux in

all modes divided by the incident mode-1 energy flux.

The reflection and transmission coefficients that are as-

sociated with an individual mode have a mode-number

subscript.

a. Modal resolution

The number of vertical modes M used in CELT de-

termines the vertical resolution of the flow field. For

a single-step continental slope, incident mode-1 internal

tides are reflected in a band of enhanced horizontal

velocity that is bordered by upward- and downward-

propagating internal-tide beams (Figs. 2a–d). As the

height of the slope DH/H decreases, less of the incident

internal tide is reflected (Fig. 2e), the band of reflected

velocities becomes narrower (Figs. 2a–d), and more

vertical modes are needed for the CELT solution to

converge (Fig. 2e,f). For slopes with DH/H , ½, CELT

requires approximately M $ H/DH modes to resolve

mode-1 reflection from topographic steps (Fig. 2f). For

slopes with DH/H . ½, CELT requires approximately

M $ H/(1 2 DH) modes to resolve mode-1 reflection

from topographic steps (Fig. 2f). These conditions in-

dicate that CELT must include modes with vertical

wavelengths that are smaller than both twice the height

of the slope and twice the depth of the shelf. However,

when DH/H, 1/16 only 2% of the incident energy flux is

reflected from the step (Fig. 2e). This result suggests that

little energy is transported by the high modes (n $ 16)

that are needed to resolve the step.

b. Topographic resolution

The number of topographic steps (i.e., L) used in

CELT determines whether the solutions over stepwise

topography will resemble those over sloping topogra-

phy. For instance, CELT horizontal velocity and energy

flux converge to those of an analytical model of an in-

ternal wave propagating up a slope (Wunsch 1969) as

L increases (Fig. 3).3 In effect, the solution of Wunsch

(1969) over a continuously sloping bottom is recover-

able from a step-wise topographic profile that does not

contain any sloping topography per se.

Mode-1 internal-tide reflection coefficients obtained

from CELT are also consistent with those obtained by

M€uller and Liu (2000) using a ray-tracing model. For

supercritical slopes, reflection coefficients increase with

slope height (Fig. 4). For very tall slopes, results from

CELT and M€uller and Liu (2000) diverge by about 5%

because CELT solutions transmit energy in the surface

mode (i.e., mode 0). Omitting the surfacemode from the

CELT computations removes this disagreement.

Although CELT results agree with those of M€uller

and Liu (2000) for low-mode reflection, M€uller and Liu

(2000) also provide extensive analysis of high-mode re-

flection. CELT solutions for high-mode incident tides

are impractical because they only converge with ex-

tremely large numbers of topographic steps L, and the

numerical cost of solving (13) is proportional toL cubed.

In this respect, the scattering model presented byM€uller

and Liu (2000), which utilizes ray tracing over smooth

topography, may be better suited to examine high-mode

scattering. However, themodel presented byM€uller and

Liu (2000) may be less accurate in regions of compli-

cated topography, because unlike CELT, it does not

account for internal-tide attractors, which result in

closed ray paths.

3 The incident mode-1 ‘‘slope mode’’ derived by Wunsch (1969)

is not a puremode-1 flat-bottommode, although its projection onto

flat-bottom modes is dominated by mode 1.
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In general, the interaction of an incident mode-1 tide

on a linear slope can be resolved with relatively few steps

(e.g., L # 16; Fig. 5). As a topographic slope is repre-

sented by an increasing number of steps, the reflection

coefficients for subcritical (s/a , 1) slopes decrease to

zero (r 5 0), while the reflection coefficients for super-

critical (s/a. 1) slopes remain nearly constant (r’ rstep).

The reflection coefficients at critical slopes decrease with

the number of topographic steps, but do not converge to

zero. Reflection coefficients for modes 1 and 2 converge

after only a few steps and display trends that are similar to

total reflection coefficients (Figs. 5d–i).

These results indicate that the total reflection co-

efficient at a supercritical slope may be approximated by

that of a single topographic step (see, e.g., Garrett and

Kunze 2007; Klymak et al. 2011a). Analogously, the

reflection coefficient at a subcritical slope (resolved with

sufficiently large L) may be approximated as zero, as

suggested by ray theory. These results also indicate that

inadequately resolved subcritical slopes can produce

spurious internal-tide reflection. A pragmatic approach

for selecting sufficiently large L, is to ensure that the

topographic steps are smaller than the wavelengths of

the energy-transporting modes. For an incident mode-1

tide at a single topographic step,O(95%) of the energy is

transported in modes 0–16. To retain this accuracy, L

should be increased until individual steps are smaller

than the wavelength of the mode-16 vertical-structure

function.

Last, CELT can be solved with or without viscosity.

Removing viscosity with L 5 64 has a minimal effect

on low-mode transmission and reflection. However,

FIG. 2. (a)–(d) CELT model horizontal velocities for an incident mode-1 internal tide at a continental slope ap-

proximated by a single topographic step (M5 128). Velocities are scaled so that the incidentmode-1 amplitude is one

(i.e., a1 5 1). Reflection coefficients (i.e., r) decrease with step height and are negligible when DH/H , 1/16. (e) For
each topographic step, reflection coefficients increase as more modes (i.e., M) are included in the solution. (f) The

reflection coefficients approximately converge when M* $ 1, where M* 5 M/H 3 min(DH, 1 2 DH).
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horizontal velocities computed without viscosity contain

high-mode noise that is not present in the viscous solu-

tions (i.e., n 5 1023m2 s21; Fig. 6).

4. Applications

a. Tidal solutions in realistic settings

CELT can be configured with realistic forcing, topog-

raphy, and depth-varying stratification. Here, we predict

the reflection of a 250Wm21 mode-1 internal tide that

is incident on the Australian northwest (at 198S in the

Browse Basin; Rayson et al. 2011, 2012), Oregon (at

438N; Moum et al. 2002; Nash et al. 2007; Martini et al.

2011; Kelly et al. 2012; Martini et al. 2013), and Brazil

(108S) continental slopes, which are subcritical, near

critical, and supercritical, respectively. CELT is con-

figured with realistic N2 and f, Dx5 1 km,M5 16, and

n 5 1023m2 s21. For comparison, the Massachusetts In-

stitute of Technology general circulation model (MITgcm;

Marshall et al. 1997) is also used to simulate the flows.

The MITgcm is configured with 500-m horizontal and

10-m vertical resolution, and n 5 1023m2 s21. Although

the model is written in z coordinates, it employs shaved

cells to include piecewise-linear topographic slopes. It

enforces free-slip and no-normal flow bottom-boundary

conditions. The simulations are analyzed after 30 tidal

cycles, when they have reached a semisteady state. A

flow relaxation condition is used at the lateral bound-

aries to prevent the reflection of internal tides that are

radiating out of the numerical domain. In practice, the

MITgcm simulations take O(1000) times longer to

compute than comparable CELT solutions.

For all three slopes, horizontal velocities from CELT

and the MITgcm are similar (Figs. 7a–f). Both models

indicate that the incident mode-1 internal tides are re-

flected offshore in several beams. However, CELT solu-

tions are slightly smoother because they have less vertical

resolution than the MITgcm solutions. The MITgcm so-

lutions also contain a few steeper beams as a result of

higher tidal harmonics generated by finite tidal excur-

sions (Bell 1975; Legg and Huijts 2006) that are explicitly

neglected in CELT.

A unique feature of CELT is that solutions can be

separated into components that are associated with inci-

dent (onshore) and reflected (offshore) wave propagation

FIG. 3. (a–e) CELT model horizontal velocities (s5 1/4,M5 128, a1 ’ 1) for a mode-1 ‘‘slope mode’’ converge to

(f) the analytical solution (Wunsch 1969) as the number of steps L increases. This convergence is quantified by the

decreasing rms difference between the CELT model and analytical solution velocities. Also, as the number of steps

increases, reflected energy flux decreases. When L $ 64, negligible energy flux reflects from the slope.
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(Figs. 8a–f). Snapshots of horizontal velocity in the in-

cident wavefields indicate that onshore-propagating

mode-1 tides become bottom intensified and form up-

slope beams where the continental slopes first approach

critical steepness (e.g., near the 1800-m isobath on the

Australian andOregon slopes). The reflected wavefields

are also intensified over near-critical slopes, indicating

that these regions are also the location of partial wave

reflection. TheAustralian slope produces simultaneous

incident and reflected propagating beams between the

upper and lower shelf breaks, which form a standing

wave that was previously identified by Rayson et al.

(2012).

Recently, Shimizu (2011) and Kelly et al. (2012) de-

rived a tidally averaged energy balance for individual

modes of the internal tide:

r0
2

›HUn
*Pn

›x
5

r0
2

ð0
2H

�
u*

›(Pnfn)

›x
2 (Un*fn)

›p

›x

�
dz ,

(18)

where the left-hand side is the mode-n energy-flux di-

vergence, and the right-hand side is energy conversion

into mode n. Only the real component of each term is

physically relevant, r0 is the reference density, and the

factor of ½ arises by averaging over a tidal period.

On all three continental slopes, the MITgcm simula-

tions indicate that the incident mode-1 tide loses energy

by scattering energy to other modes (gray, Figs. 7g–i),

which results in mode-1 energy-flux convergence (red,

Figs. 7g–i). (Isolated patches of mode-1 energy-flux di-

vergence indicate locations where higher-mode internal

tides transfer energy back to the mode-1 tide.) On the

Australian northwest and Brazil slopes, most mode-1

scattering occurs onshore of the 1000-m isobath. On the

Oregon slope, scattering occurs at three locations where

the slope is near critical. In all three MITgcm simula-

tions, mode-1 energy-flux convergence exceeds scatter-

ing to other modes because additional tidal energy is lost

to nonlinear effects and viscous dissipation. Dissipation

and nonlinear processes play the most significant role on

the Australian slope because it is wide and known to

nonlinearly steepen onshore propagating internal tides

(e.g., Van Gastel et al. 2009; Bluteau et al. 2011).

Remarkably, mode-1 energy-flux divergence in CELT

(black, Figs. 7g–i) quantitatively balances the magni-

tudes and spatial distributions of energy conversion to

other modes in the MITgcm simulations. The most no-

table difference between the energy balances of the

MITgcm and CELT is that CELT dissipates less energy.

CELT dissipates 8%, 5%, and 8% of incident energy

flux on the Australian northwest, Oregon, and Brazil

slopes, respectively. The MITgcm dissipates 42%, 10%,

and 14%of incident energy flux on the respective slopes.

b. Directional energy fluxes in a numerical simulation

One benefit of writing velocity and pressure in terms

of leftward- and rightward-propagating waves [(6) and

(7)] is that these expressions can be rearranged to solve

for depth-integrated directional energy fluxes in both

numerical simulations and observations that vary in one

horizontal dimension. Using CELT, we have shown that

flows over sloping topography can be locally approxi-

mated as flows over a flat bottom between closely spaced

steps. Therefore, full-depth time series of velocity and

pressure that are obtained from a mooring or numerical

simulation can be decomposed into flat-bottom modes

and (6) and (7) can then be inverted to determine the

amplitude squared of the left- and right-going wave in

each mode. Multiplying these amplitudes by the local

group speed produces the right- and left-going energy

fluxes:

F(R)
n 5

r0
2
cnHa2n 5

r0
8
cnHjUn 1Pn/cnj2 and (19)

F(L)
n 5

r0
2
cnHb2n5

r0
8
cnHjUn 2Pn/cnj2 , (20)

respectively, where j � j represents the complex modulus.

Depth-integrated directional energy fluxes quantify

the gross incident and reflected energy fluxes. They

FIG. 4. Reflection coefficients for an incident mode-1 internal

tide on a supercritical slope of varying height (s5 1.725,M5 128,

L 5 64, n 5 0). CELT (squares) underestimates the model of

M€uller and Liu (2000) (circles; cf. their Fig. 7) except when the

surface mode is omitted (triangles).
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can be used to determine the strength and location of

internal-tide reflection on a slope. Directional energy

fluxes ½F(R)
n and F(L)

n � that are computed from MITgcm

u and p agree with those from CELT (Figs. 8g–i). The

most significant disagreement occurs in the offshore

energy flux on the Australian slope. Here, the MITgcm

simulation has a smaller offshore flux than the CELT

solution because dissipation is significantly higher in the

MITgcm thanCELT (i.e., 42%versus 8%of the incident

energy flux). On the Australian northwest and Brazil

slopes, most reflection occurs onshore of the 1000-m

isobath. On the Oregon slope, reflection occurs gradually

over the entire slope. The MITgcm simulations indicate

that 44%, 51%, and 84% of incident mode-1 energy flux

is reflected in mode 1 by the Australian northwest, Or-

egon, and Brazil slopes, respectively. Similarly, CELT

predicts that 55%, 53%, and 83% of incident energy

flux is reflected by these respective slopes. The Oregon

slope reflectivity is similar to that obtained in a more

realistic three-dimensional simulation of an obliquely

incident mode-1 internal tide (r1 ’ 60%; Kelly et al.

2012).

FIG. 5. (a)–(c) Total, (d)–(f) mode-1, and (g)–(i) mode-2 reflection coefficients as a function of topographic steps (i.e.,L) and total slope

height (i.e., DH/H). At subcritical slopes (s5 ½,M5 64, n5 0) reflection asymptotes to zero as the number of steps increases. At critical

slopes (s5 1,M5 64, n 5 0) reflection asymptotes to a constant as the number of steps increases. At supercritical slopes (s5 2,M5 64,

n 5 0) reflection is approximately constant as the number of steps increases.
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c. Surface–internal-tide coupling

Internal tides generally extract energy from the sur-

face tide, but they can also supply energy (e.g., Kurapov

et al. 2003; Hall and Carter 2011; Kelly and Nash 2010).

At present, it is unknown what role internal-to-surface-

tide energy conversion plays in the global tidal-energy

balance. Here, we examine mode-1 internal-tide scat-

tering on continental slopes that are not forced by a

surface tide [in contrast to Kelly and Nash (2010)]. In

each solution, some energy is transferred from the in-

cident mode-1 tide to a mode-0 tide, producing negative

internal-tide generation and spawning a local surface

tide.

To estimate the global relevance of internal-to-surface-

tide energy conversion, incident mode-1 internal tides

were scattered on continental slopeswith different heights,

depth-uniform stratifications, linear slopes, and conti-

nental shelf widths (Fig. 9). These experiments indicate

that, when the continental shelf is infinitely wide, the

maximumefficiency of frommode-1 tomode-0 scattering

is about 5%. Surface-tide generation by incident mode-1

tides is most efficient when the height of the continental

slope is about 80% of the total water depth (Fig. 9a),

stratification is strong (Fig. 9b), and the topographic gradi-

ent is extremely steep (i.e., supercritical; Fig. 9c).

Truncating the width of the continental shelf and in-

cluding a reflection condition at the coast dramatically

alters these results (Fig. 9d). Given optimal slope height,

stratification, and steepness, internal-to-surface-tide en-

ergy conversion is (i) negligiblewhen the shelf is very thin

or close to ½ of a mode-0 wavelength wide and (ii) as

large as 15%when the shelf is 1/4 of amode-0 wavelength

wide. These results indicate that internal-to-surface-tide

energy conversion is sensitive to shelf width, but it is

difficult to extend these results to observations because

(i) mode-0 wavelengths are variable across realistic con-

tinental shelves and (ii) surface tides typically propagate

along continental shelves not across them.

Internal-to-surface-tide energy conversion was also

estimated on the Australian northwest, Oregon, and

Brazil slopes, which have Wentzel–Kramers–Brillouin

(WKB)-scaled heights (e.g., Klymak et al. 2011a) of about

70%, 70%, and 90% of the total water depths and top-

to-bottom density differences Dr of 3, 3, and 4kgm23,

respectively. Estimates of scattering efficiencies frommode

1 to mode 0 for these slopes (with infinitely wide shelves)

are 3%, 5%, and 8%, respectively, which roughly agree

with the idealized solutions. Therefore, the efficiency of

internal-to-surface-tide generation in the absence of

surface-tide forcing appears to be on the order of 5%,

unless the shelf width facilitates surface-tide resonance.

FIG. 6. CELT model horizontal velocities for an incident mode-1 internal tide are weakly affected by viscosity

(M5 128, L5 64, a1 5 1). (a),(b) Solutions without viscosity display a few high-mode beams and no viscous energy

dissipation (i.e., D 5 0). (c),(d) Solutions with viscosity have smoother horizontal velocity and dissipate a small

percentage of the incident energy flux.
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Where continental slopes are forced by surface and

incident mode-1 tides, the efficiency of internal-to-

surface-tide energy conversion is modulated by the

phase difference between the surface and mode-1 tide

and can be either negative ormuch larger than 5% (Kelly

and Nash 2010). Therefore, internal-to-surface-tide en-

ergy conversion can be highly variable in both space and

time. However, we hypothesize that the phase differ-

ences between surface and mode-1 tides are uniformly

distributed when sampled around the world. As a result,

modulation of internal-to-surface-tide energy conver-

sion by local surface-tide forcing is probably negligible

in globally integrated energy balances.

5. Discussion

a. The universality of flat-bottom modes

Horizontal velocities and energy fluxes computed

between closely spaced steps using CELT agree with

those computed over continuously sloping topography

(Figs. 3, 7, and 8). As a result, all tidal motions can be

interpreted as a superposition of flat-bottom vertical

modes that are evolving according to LTE over very

small distances. This conceptual viewof tidal flow is useful

because decomposing tides into the modal solutions of

LTEprovides a naturalmethod for separating surface and

internal tides, examining the vertical structure of energy

fluxes (Kunze et al. 2002; Nash et al. 2005), and de-

termining the conversion of tidal energy between quan-

tized vertical wavenumbers (Shimizu 2011; Kelly et al.

2012). Furthermore, only a few vertical modes are needed

to efficiently represent the large-scale (e.g., Alford et al.

2007) and energy-transporting portion of the internal

tide (e.g., Nash et al. 2006).

Interpreting tides in terms of the modal solutions to

LTE is also useful because it permits the separation of

leftward- and rightward-depth-integrated energy fluxes

in numerical simulations (Fig. 8) and observations of

tidal flow in one horizontal dimension. An analogous

methodology has been used to separate energy fluxes

FIG. 7. Horizontal velocity from the MITgcm simulations of a mode-1 internal tide incident on the (a) Australian northwest, (b) Oregon,

and (c) Brazil continental slopes compare favorably with (d)–(f) those from the CELT model solutions (M 5 16, L 5 75). (g)–(i) In the

MITgcm simulations, energy conversion out of mode 1 (gray line) drives mode-1 energy-flux convergence (red shading). The black line

indicates the mode-1 energy-flux divergence computed using CELT.
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in observations of shallow-water surface waves (e.g.,

Sheremet et al. 2002). However, a comprehensive error

analysis of contamination by obliquely propagating in-

ternal tides is desirable before this method is widely

applied to three-dimensional tidal flows.

b. Tides and bathymetric resolution

Like previous investigations (e.g., St. Laurent and

Garrett 2002; Nash et al. 2006; Griffiths and Grimshaw

2007), results from CELT indicate that most energy is

transported by low modes (i.e., n # 16). Analysis of

CELT also indicates that bathymetric steps produce

scattering intomodes that have vertical wavelengths less

than twice the height of the step. Combining these re-

sults, and approximating the mode-n vertical wave-

length as ’2H/n, implies that variations in topographic

height greater thanH/16 dictate the linear tidal response.

For example, useful bathymetry for a 4000-m-deep ocean

should resolve changes in depth greater than 250m (in

a WKB-stretched sense). This resolution is on par with

that currently available (Smith and Sandwell 1997).

Therefore, it is unlikely that higher-resolution bathym-

etry will greatly improve predictions of the linear tide at

most locations in the deep ocean. However, many global

numerical simulations have horizontal grid spacings that

areO(10) km (or greater) and do not resolvemotionswith

mode-16 horizontal wavelength. Tidal predictions from

these simulations are likely to improve with increased

horizontal resolution (Niwa and Hibiya 2011).

A caveat of CELT and other linear models is that they

fail to properly describe dissipative processes, which are

fundamentally nonlinear and turbulent. The spatial and

temporal distribution of tidal-energy dissipation un-

doubtedly depends on small-scale topography (e.g.,

Nash et al. 2007; Iwamae and Hibiya 2012) and high-

mode tides (e.g., Klymak et al. 2011b). High-resolution

topography and fully nonlinear models are necessary to

accurately predict tidal dissipation, which drives dia-

pycnal mixing that may affect large-scale ocean circu-

lation (Munk and Wunsch 1998).

FIG. 8. (a)–(c) Incident and (d)–(f) reflected horizontal velocities from the CELT model solutions indicate the exact locations of

reflection andwhere standingwaves develop. (g)–(i)Directional energy fluxes from theMITgcm simulations (shading) are similar to those

produced by the CELT model (lines). Net fluxes are the sum of the incident and reflected fluxes.
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c. The global tidal-energy balance

Previous estimates of the global tidal-energy balance

have examined a one-way energy cascade from surface

to internal tides (e.g., Jayne and St. Laurent 2001).

Here, we suggest that internal-to-surface-tide energy

conversion also occurs, but that its effects are relatively

small. Solutions from CELT indicate that, for large

continental slopes with strong stratification and in-

finitely wide shelves, 5% of incident mode-1 energy is

transferred to the surface tide. If 85% of internal tides

radiate away from their origins (e.g., the Hawaiian

Ridge; Rudnick et al. 2003) and eventually strike the

continental margins, as much as 2.5% of gross internal-

tide generation (i.e., ’50GW; Egbert et al. 2004) may

be returned to the surface tide. As speculated by

Hendershott (1981), this feedback loop is sufficiently

weak so that it is unlikely to alter deep-ocean surface-

tide predictions. However, surface-tide generation by

internal tides could alter surface tides on some conti-

nental shelves. For instance, if a 1000Wm21 incident

internal tide strikes a continental slope adjacent to a

100-m-deep continental shelf, it could excite a 35Wm21

surface tide that propagates onto the shelf (see Fig. 9). If

the surface tide propagates freely, it would have a ve-

locity of 0.03m s21 and sea surface displacement of

0.1m, which are measurable. Furthermore, if the phase

of the incident internal tide drifts in time because of

temporal variability in the mesoscale current field

(Rainville and Pinkel 2006), the resulting surface tide

would also be incoherent and may contribute to obser-

vations of incoherent sea surface displacement (e.g.,

Colosi and Munk 2006). However, careful investigation

of tidal observations is necessary to determine to what

FIG. 9. CELT predictions (H 5 3000m, M 5 128, L 5 64) of internal-to-surface-tide energy conversion by an

incident mode-1 internal tide (solid lines) increase with (a) slope height, (b) stratification, and (c) slope steepness

when the shelf is infinitely wide. The locally generated surface-tide energy flux is primarily directed toward the coast

in (a)–(c) (dotted lines). When the continental shelf is truncated by including tidal reflection at the coast, internal-

to-surface-tide energy conversion is sensitive to the width of the shelf (which is normalized by the mode-0

wavelength l0).
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extent, if any, incoherent surface tides are the result of

incoherent internal tides.

At present, there is no unified theory to explain the

decay of the deep-ocean internal tide. As internal tides

propagate across ocean basins (Ray andMitchum 1996),

they might decay through wave–wave nonlinear inter-

actions (e.g., St. Laurent and Garrett 2002; MacKinnon

and Winters 2005) or scattering at mid-ocean ridges

(Johnston et al. 2003) and small-scale roughness (B€uhler

and Holmes-Cerfon 2011). Alternatively, internal tides

may cross the ocean basins with relatively little dissipation

(Alford et al. 2007) and then scatter (M€uller and Liu 2000;

Thorpe 2001; Kelly et al. 2012) and dissipate (e.g., Legg

and Adcroft 2003; Martini et al. 2013) along the con-

tinental margins. Testing this hypothesis requires

knowledge of the incident energy flux and scattering

efficiency at each continental slope. CELT is useful in

this regard because it can be used to make rapid esti-

mates of tidal scattering in regions of complicated

stratification and one-dimensional topography. It could

also be used to rapidly examine how varying the phase

of an incident internal tide affects internal-tide gener-

ation, reflection, transmission, and scattering (Kelly

and Nash 2011; Klymak et al. 2011a).
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