

PHP Cloud Computing Platform

by

Arvind Kalyan

A PROJECT REPORT

submitted to

Oregon State University

in partial fulfillment of

the requirements for the degree of

Master of Science

Presented December, 2008

Commencement June, 2009

AN ABSTRACT OF THE PROJECT OF

Arvind Kalyan for the degree of Master of Science in Computer Science presented on

______________.

Title: PHP Cloud Computing Platform

Abstract Approved: ___

Dr. Bella Bose

Motivation for cloud computing applications are listed. A Cloud Computing framework –

MapReduce – is implemented. A document indexing application is built as an example

MapReduce application on this framework. Focus is given to ease of job submission and

scalability of the underlying network.

TABLE OF CONTENTS

PHP Cloud Computing Platform ... 1

TABLE OF CONTENTS ... 3

1. INTRODUCTION .. 5

1.1. Existing Systems ... 5

1.2. Motivation ... 6

1.3. Cloud Computing ... 6

1.4. MapReduce ... 7

1.5. PHPCloud ... 9

2. FUNCTIONAL COMPONENTS .. 11

1. Data Storage ...11

1.1. Background ..11

1.2. PHPCloud implementation ...12

2. Parallelize data ...13

3. Task Submission ..14

4. Distributing load ..15

5. Consolidate and Filter Results ..18

6. Programming interfaces ..19

7. Monitoring ..20

3. EXAMPLES ... 20

1. Problem definition ...20

2. Implementation ..21

2.1 Spliting by k-means ...21

2.2 Map operations ..22

2.3 Reduce operations ...24

4. CODE LISTINGS... 24

1. Spliter using k-means algorithm ...24

2. File distribution and indexing ...28

3. Application transfer ...30

4. Master Task Launcher ..31

5. Local Task Launcher ...39

6. Task Runner ...44

5. REFERENCES ... 49

1. Introduction

Most applications that run on massively-parallel hardware are written on frameworks or

libraries that abstract the issues associated with communication, data transmission, fault-

detection/recovery and related concerns. Fault tolerance for example is only handled

partially by the framework and the application code itself has to deal with failure,

recovery, load distribution and other non-trivial situations adding to the overall

complexity of the software application.

Since most of the applications within the enterprise would be duplicating code needed to

handle the platform, it would be beneficial to have a platform that takes care of the

complex and repetitive error handling, failure/recovery, and load balancing mechanisms.

PHPCloud is an attempt to make such tasks easier to handle. We then consider a

programming model that allows the developer to use their code over this infrastructure –

the MapReduce model. This project implements a simpler programming model than the

original MapReduce model without compromising on the advantages. Finally, we run an

example application over this cluster.

1.1. Existing Systems

Parallel processing applications use varied approaches to lessen the communication

overhead, which also comprises of network (transport layer and below) level error

detection and correction. This overhead is apart from the application level

synchronization and error handling. Open Source implementations such as OpenMPI

implement the Message Passing Interface [4] (MPI) specification and aim to provide

ways to efficiently communicate between processes; both on same machine and across

the network. OpenMPI has become the standard among distributed memory applications.

Though MPI specification promises to handle communication failures, there is the strong

requirement that the user’s program should co-operatively communicate amongst each

other – this requirement effectively makes the application code handle the logistics by

itself and makes it very difficult to scale the infrastructure later on.

1.2. Motivation
Considering the size of the Internet as of 2007, there are approximately 20 billion web-

pages. Assuming an average of 20 KB of data per page, the total size of the Internet is

approximated to 400 TB. This is a rough approximation, without considering the

overhead of required metadata. To merely read this size of data, with a single computer

reading at 14MB/second, would take around 330 days.

By distributing the processing over a 1000 node network, and by eliminating or reducing

amount of code that can not be run in parallel, we can process the same data in 0.3 days –

about 7 to 8 hours.

But each and every project will not have resources to maintain their own grid or cluster of

computers to run this processing. More over, the resources will be idle when this

application is not using it. So there is a need to separate the processing logic from the

platform needed to run the grid or cluster. Once separated, the processing can then be

changed or added vey easily on the platform. This implies that development costs are

drastically reduced to create a new application or modify an existing one.

1.3. Cloud Computing

Cloud computing is an emerging style of computing. Cloud here merely refers to the fact

that Internet is being used to connect the various nodes in the computing network. By

basing the architecture on Internet, the solutions become very scalable so as to allow

addition and removal of machines very simple and straightforward. Cloud computing

itself does not have any architecture. The underlying architecture can be made up of a

grid or cluster of computers. The management of these computers is done through a

framework that would facilitate such elasticity. One such framework – mapreduce – is

discussed in a later section.

Cloud computing itself can mean different things based on the following dimensions:

1. Layers of abstraction

a. Infrastructure as a service

b. Platform as a Service

c. Software as a Service

2. Types of deployment

a. Public cloud

b. Private cloud

c. Hybrid cloud – i.e., partially private

3. Domain of application

a. High performance computing

b. Increase web throughput

The technologies under the cloud are the key factors that enable such scalability offered

by cloud computing:

1. virtualization technology – VMWare, Sun xVM, etc.,

2. distributed filesystems

3. architecture patterns to provide solutions to common problems

4. new techniques to handle structured/unstructured data, such as MapReduce

1.4. MapReduce

Massively parallel applications that deal with petabytes of data usually distribute the

processing load over thousands of nodes. MapReduce is a framework introduced by

Google which tries to define what such an application should look like. Programmers

then implement appropriate interfaces and plug-in their code onto the mapReduce

framework. This greatly simplifies the task of scaling later on since the framework is

already known to work with well over 20,000 nodes in the network. New well-defined

techniques like these designed to handle large amounts of data are making it easier for

organizations to clearly know what is the required structure of data that can be processed

on a cloud.

Fig 1. overview of the mapreduce execution (taken from original paper)

Advantages of the MapReduce model:

Library handles all parts of cloud computing infrastructure:

1. Main idea borrowed from Functional Programming

2. The Map components are automatically parallelized

3. Dynamic load balancing – machines can go on and off the network

4. Handles all network failures, recovery, etc

Disadvantages:

5. Data split is done at arbitrary boundaries

o This makes some records useless (first and last ones)

o There is no logical grouping of such splits and ‘related’ data can be

present on multiple machines

6. User’s application needs to handle any sub-tasks by itself and this introduces a

strong coupling between each ‘map’ step

7. Users application has to be specifically written with complete prior knowledge of

all the components involved, this is because they need to implement the necessary

interfaces for the mapReduce framework to understand their relationships

8. Data is from a single reader.

1.5. PHPCloud

PHPCloud is an implementation of MapReduce approach. All parts of the following

‘original goals’ have been implemented as part of PHPCloud and details are described in

the later sections of this document. Each sub-section under Functional Components

corresponds to each of these goals and describes my implementation in greater detail.

In summary, PHPCloud tries to address the following issues.

1. High availability large-file storage

1. Should be able to handle data unavailability

2. Should allow data level parallelism

2. User configurable file-splitting algorithm.

1. Since meaning of data might be lost by random splits, user should be able

to configure on what basis records are grouped and split into multiple

buckets

2. If logic is too complicated to be a simple expression, user should be able

to write a separate program to decide the split logic

3. Easy job submission to process those files. Job consists of task(s) with custom

readers/writers.

1. User should not have to write code to glue components together

2. Reading and writing should be handled by user application so that format

of input/output can be flexible

3. Framework only responsible for ensuring stdin and stdout are properly

interconnected between modules

4. Automatically run each task on ‘appropriate’ node.

1. Determine the list of machines where data is available

2. Launch task on machine with lowest load

5. Consolidate results from node(s), run a filter. User configurable ‘consolidate’, and

‘filter’ rules.

1. Each node stores the partial results. Reduce node obtains partial results

from these nodes and reduces all the partial results into one consolidated

result.

2. Multiple operations can be chained at this level too to filter and or

translate the results into a suitable format

6. Implement such that programmer has flexibility in linking with other languages

1. All the computation that needs to be performed can be programmed in any

language

2. Framework should rely on operating system level primitives to

communicate with process

3. No new constraints or API should be used so that developer is not forced

to change their programs

7. Ability to monitor what is going on in the cloud

1. Simple tools that can visually show the cloud activity that can be used for

monitoring

Fig. 2 shows an overview of the PHPCloud.

Fig 2. Execution overview for PHPCloud

2. Functional Components

1. Data Storage

1.1. Background
A distributed file system (DFS) is basically a setup with multiple machines that store

data, and such data is accessed over the network using a standard protocol (such as nfs)

making the file location irrelevant for the purpose of the user or program. A distributed

data store (DDS), is a collection of machines that replicate data amongst themselves to

achieve some goal (examples are p2p networks, high availability storage networks, etc).

Cloud applications use some form of DFS – example Google File System is used by

Hadoop – to store their input and output data. Alternatives to this are approaches by

Amazon’s S3 service (Simple Storage Service - http://aws.amazon.com/s3/) and

Microsoft’s SQL Server Data Service [http://msdn.microsoft.com/en-

us/sqlserver/dataservices/default.aspx] which are essentially highly scalable data-storage

applications that serve and store data on-demand over the Internet.

1.2. PHPCloud implementation

Given the size of these datasets, one of the biggest drawbacks of these approaches is the

network latency. Even with current network speeds of Gigabit Ethernets, the time taken

to transfer a few GB of data over Internet is a big bottleneck when performance is of

importance.

PHPCloud addresses this situation by making use of the available compute nodes

themselves for data-storage. This has a very big advantage since we completely avoid

network latency if all tasks were reading and writing local data.

To achieve this benefit, following is being done in PHPCloud

1. Use a slightly modified/restricted distributed data store (DDS) approach.

2. Maintain a master node which has a map to know what data is present where

3. Replicate the data on multiple machines to increase its availability

The underlying file-system used in PHPCloud is the linux based file-system as

maintained by the host operating system on each of the nodes in the cloud. To achieve the

high-availability aspect of the requirement, each of the split data is duplicated among d

machines; where d is typically between 2 and 4. When data is to be processed later on,

the framework identifies which machine has the data using its internal index.

The main idea behind this is to avoid any single point of failure. Figure 2-1 shows how

PHPCloud’s splits might be duplicated across multiple compute nodes. In the example

shown, there are d = 2 duplicates for each split file. Since the failure probabilities of each

of these d nodes are statistically independent, this setup is comparable to RAID level 1

setup which is the best RAID setup for reliability among RAID levels 1 through 5.

Split Node
Green Node 2

Figure 2-1 Each file split is available in d ≥ 2 compute nodes.

2. Parallelize data

For the nodes to be able to process the data simultaneously without duplicate reads, the

input needs to be clearly separated into chunks. Additionally, it would be preferable to

reduce any inter process communication over the network. Thus by splitting the input

data, the applications do not have to negotiate who needs to process what data.

The number of splits is determined based on 2 conditions, by default:

1. Number of machines available on the network, n

2. Total number of records in the input stream, s

PHPCloud’s default split algorithm takes both the above conditions and determines how

many buckets to spray the data into; which is some number m ≤ n. The number of records

s in the input stream is taken into consideration so that an attempt can be made to equally

distribute the size on each machine. It then breaks up the original file into m such splits.

Each of these m splits are then sent to the m available machines. A more specialized data

splitting algorithm will be discussed in the example section.

Node 3

Blue
Node 1
Node 3

Tan
Node 1
Node 4

Light
Blue

Node 2
Node 3

Ideally the number of partitions is same as the number of compute nodes available. This

helps in optimizing resource utilization since each node can be assigned one partition to

process. But in a huge network, we can not expect all the nodes to be up all the time, and

depending on when there are more nodes (and less nodes) the assignment of partitions is

not always best utilizing the whole network. As a consequence even if more nodes are

available later (after the split), they don’t get to process any data partitions.

Spliter

Split 1 Split 2 Split 3 Split 4

Figure 2-2 Mutually exclusive file splits generated by Spliter

Fig. Spliter used to segregate data that are independent of each other. Each split

individually processable

3. Task Submission

As shown in the following example file, it is very straightforward for the user to list out

the various stages.

Example task definition file:

[task]

name = arv1001

infile = /data/data/filteredspid.5.25k

spliter = /data/bin/spliter.php -t <TASKFILE>

machines = /data/conf/machines.conf

split_condition = "if ($prev_user != $user) return 1; else return 0;"

stages = compute,filter,sort,merge

map_timeout = 60

reduce_timeout = 60

; following attribs are shared among all stages.

 [compute]

command = /data/taskbin/compute.php

type = map

[filter]

command = cat

type = map

[sort]

command = sort -n

type = map

[merge]

command = wc -l

infile = /data/bin/bucketls.php -t <TASKFILE> -s <PREVSTAGENAME>

type = reduce

I have listed out common unix utilities for “command” options above, to emphasize that

the interface between the framework and the application is very minimal and easily

pluggable.

4. Distributing load

Compared to the size of the data, the application code is very small. So to avoid

transferring all data over to a machine in the network and process, map/reduce

encourages processing locally on where ever the data is available. So PHPCloud does the

same – the application is transferred over to the machine where the data is available. The

application then processes only the local data and stores results locally.

To identify what machine has what data, PHPCloud uses the index maintained by the

split module to know the location of the various splits. An example is shown in Table 1.

Taskname Split Machine

task1

1 m1
m2

2 m2
m3

3 m3
m4

4 m4
m1

Table 1 Data Index generated by Spliter

The load distributor checks the machine availability first by connecting to it. If machine

is on the network, it then checks the load on the machine for a certain level of threshold.

After checking if machine is alive and if it can handle more processing load, the

masterTaskLauncher invokes localTaskLauncher on that machine to handle the

commands in sequence on that machine. But for this to happen, the necessary executable

files and environment need to be setup correctly at some point of time before this. Figure

3 shows the control flow in distributing the split files over the cloud.

choose split

Choose machine m

[machine available]

[load heavy]
notify failure

[no machine]
launch(taskname, split) on m

[ok]

[split available]

[no splits]

Figure 3 Load distribution activity by master node

Each of the machines then execute a sequence of commands as specified by the user. The

localTaskLauncher takes care of interconnecting these tasks together such that the input

of each stages the output from previous stage. The typical flow of control is shown in the

activity diagram in Figure 4.

Identify command, input and output

[more stages]

wait

[input not avail]

executeCommand

[success] [no stages] send alert
[fail]

Figure 4 Activity of local master, iterating through list of map/reduce tasks

5. Consolidate and Filter Results

After the distributed tasks have completed, each node would have stored their individual

results locally. The reduce component allows the user to run their own algorithm on all of

those partial data before merging them.

Figure 5 Consolidate all partial results from map node to reduce node

As shown in the Figure 5 the reduce node gets all the computed data once they are

available on map nodes. After this it runs a chain of tasks as configured by the user’s task

definition file. This is depicted in Figure 6.

Run Consolidate rule

Consolidated Map output

Instantiate taskRunner

Configure taskRunner with in/out/err and command info

[filter available]

[no filters]

execute

Figure 6 Reduce node iterating through filters

Once the above chain is over, the complete data is present on the reduce node. On most

cases such data will be used for further processing by other applications.

6. Programming interfaces

PHPCloud has no programming language constraints. Almost all the other API’s have

restrictions at application level when it is time to parallelize. The absence of the language

requirement is a direct consequence of the simplicity of the framework in that it relies on

operating system primitives to establish the necessary communication. Additionally, any

data-structure used by the application is maintained by the application itself and the

framework does not maintain/manage – i.e., shared memory access and other issues are

not done by the framework. This is just another big advantage of making everything local

on the machines – it greatly reduces contention for resources.

Before launching any program, the framework determines what are the best files for

input, ouput and error file-descriptors. The method of determining what to assign is as

follows. First it checks if user has specified any specific file name for this stage for any of

the 3 file-descriptors. If yes, the framework uses the specification as-is. At this point, user

is also allowed to specify templates. The template basically has placeholders for common

tokens like taskName, bucketNumber, etc. These tokens get replaced by the framework

before being used so it becomes seamless to specify patterns for filenames to be used.

The determined file-descriptors are assigned to the program using standard operating

system level redirectors. Since there is no other way the framework interferes with the

actual user-program, the user has maximum flexibility for their system design and does

not add any level of complexity to their code to achieve this parallelism.

7. Monitoring

PHPCloud lends itself to very easy process monitoring since it relies on basic system

tools to accomplish most of its tasks. All parts of the system are completely transparent to

anyone who has access to the master node. Starting from system load, we can easily see

what machine is doing what activity in the whole cloud. Simple wrapper scripts are part

of the framework which lists out the cloud status.

3. Examples

To see the whole framework in action, we will run a data-processing application on the

framework.

1. Problem definition
Given a very large input containing data with attributes, split the data into clusters and

extract a pre-defined set of metrics out of that data

2. Implementation
This is a typical data mining problem, where we first use some logic to group the data

points into various clusters, and then extract information out of it. For the purpose of this

example, we will use a k-means algorithm to group the data points into k clusters.

2.1 Spliting by k-means

PHPCloud by default allows the user to specify a very simple split expression. But, the

user can choose to implement their own data splitting mechanism. As mentioned, we will

go with the k-means algorithm for data splitting:

The most frequently used function for partitional clustering methods is the squared error

function:

V = 2

1
)(i

k

i Sx
j

ij

x µ−∑ ∑
= ∈

For k clusters Ci, 1 <= i <= k. and µi is the centroid for each of those clusters.

The k means algorithm uses this as its objective. For our purposes, we will use data

attributes as co-ordinates and use the Euclidian distance for distance calculation and fit

them in the above equation.

Following is overview of the k-means algorithm:

While (stopping criteria not met):

 Assign next data point to one of the clusters

 Re-calculate centroids by taking Euclidian distance between points for distance

measure

For our purposes, the stopping criteria is basically when the centroid converges to a

constant and does not change, and there are no more data points.

Fig. 4-cluster generated by this spliter

Above figure shows k-means algorithm generating a k=4 clusters. The data points

associated with these data points are then fed into the PHPCloud for map/reduce

operations.

2.2 Map operations

Each of the clusters identified in the previous step is basically a split of data that can be

processed in parallel. The master task launcher then sends the appropriate binaries over to

the machine that has each of these clusters and launches local task launcher. Then the

local task launcher runs the sequence of map tasks. The output of this extraction tasks is

stored locally on all 4 machines in this case.

For now, the example map tasks that I have written are to identify what kind of words

and their count are present in this cluster. Listing 1 Example map operation shown below

shows the simple code that the end-user has to write. There is no library dependency or

restrictions placed on what the user program can do.

#!/usr/bin/php
<?php

$in = fopen("/dev/stdin", "r");

$path = array();
$user = '';

$prev_user = '';

$written = FALSE;
while ($in != FALSE && !feof($in)) {
 $buff = trim (fgets($in));

 if ($buff == '') continue;

 $items = explode(chr(1), $buff);
 $user = $items[0];
 if ($prev_user != '' && $prev_user != $user) {
 showUserPath($prev_user, $path);
 $path = array();
 $path[] = $items[1];
 $prev_user = $user;
 $written = TRUE;
 continue;
 }
 $path[] = $items[1];
 $written = FALSE;
 $prev_user = $user;
}

if (!$written) showUserPath($prev_user, $path);

function showUserPath($prev_user, $path)
{
 $path = removeDups($path);
 $cnt = count ($path);
 if ($cnt > 0) {
 $path_str = implode(',', $path);
 print "$cnt:$path_str:1\n";
 }
}

function removeDups($path)
{
 $pp = '';
 $p = '';

 $ret = array();
 for($i = 0; $i < count($path); $i++) {
 $p = $path[$i];
 if ($pp != '' && $pp == $p) continue;
 $pp = $p;
 $ret[] = $p;
 }
 return $ret;
}

?>
Listing 1 Example map operation

Another interesting example map application is a distributed crawler. The split data

identifies the clusters of URLs and each node processes the documents fetched from

those set of URLs and indexes those documents.

2.3 Reduce operations

Since the data generated in map tasks needs to be aggregated, the reduce task is basically

going to gather all 4 partial results and massage them into a suitable format for

downstream processing. To showcase the simplicity of the framework, I am currently

utilizing standard nix tools – this emphasizes the fact that existing user code does not

have to be re-written to be used on the framework.

4. Code Listings

1. Spliter using k-means algorithm

<?php

error_reporting(E_ALL);
ini_set("display_errors", 1);
class Cluster
{
 public $points;

 public $avgPoint;
 public $nochange;

 function Cluster()
 {
 $this->points = array();
 $this->avgPoint = FALSE;
 $this->nochange = FALSE;
 }
 function calculateAverage($maxX, $maxY)
 {
 if (count($this->points)==0)
 {
 $this->avgPoint->x = 10;
 $this->avgPoint->y = 20;
 return;
 }
 $xsum = 0;
 $ysum = 0;
 foreach($this->points as $p)
 {
 $xsum += $p->x;
 $ysum += $p->y;
 }

 $count = count($this->points);
 $tmp_x = $xsum / $count;
 $tmp_y = $ysum / $count;

 if ($this->avgPoint->x == $tmp_x && $this->avgPoint->y
== $tmp_y) {
 $this->nochange = TRUE;
 }
 $this->avgPoint->x = $tmp_x;
 $this->avgPoint->y = $tmp_y;
 }
}

class Point
{
 public $x;
 public $y;
 public $data;

 function Point($x, $y, $d)
 {
 $this->x = $x;
 $this->y = $y;
 $this->data = $d;
 }

 function getDistance($p)

 {
 $x1 = $this->x - $p->x;
 $y1 = $this->y - $p->y;
 return sqrt($x1*$x1 + $y1*$y1);
 }
}

function kmeans($k, $arr)
{
 $maxX = 0;
 $maxY = 0;
 foreach($arr as $p)
 {
 if ($p->x > $maxX)
 $maxX = $p->x;
 if ($p->y > $maxY)
 $maxY = $p->y;
 }
 $clusters = array();
 for($i = 0; $i < $k; $i++)
 {
 $clusters[] = new Cluster();
 $tmpP = new Point(rand(0,$maxX),rand(0,$maxY), '');
 $clusters[$i]->avgPoint = $tmpP;
 }
 //1. deploy points to closest center.
 //2. recalculate centers
 $converged = FALSE;
 for ($a = 0; FALSE === $converged; $a++)
 {
 foreach($clusters as $cluster)
 $cluster->points = array(); //reinitialize
 foreach($arr as $pnt)
 {
 $bestcluster=$clusters[0];
 $bestdist = $clusters[0]->avgPoint-
>getDistance($pnt);
 foreach($clusters as $cluster)
 {
 if ($cluster->avgPoint->getDistance($pnt) <
$bestdist)
 {
 $bestcluster = $cluster;
 $bestdist = $cluster->avgPoint-
>getDistance($pnt);
 }
 }
 $bestcluster->points[] = $pnt;//add the point to
the best cluster.
 }
 //recalculate the centers.
 $converged = TRUE;

 foreach($clusters as $cluster) {
 $cluster->calculateAverage($maxX, $maxY);
 $converged = ($converged && $cluster->nochange);
 }
 }
 return $clusters;
}

$datapoints = array();
$l = file_get_contents($_GET['fname']);
foreach (explode ("\n", $l) as $line)
{
 $items = explode (",", $line);
 if (count ($items) < 2) continue;
 $p = new Point($items[0], $items[1], $items[2]);
 $datapoints[] = $p;
}

$p = kmeans(4, $datapoints);
if ($_GET['type'] === "image") {
 $gd = imagecreatetruecolor(200, 200);

 $colors = array(
 imagecolorallocate($gd, 255, 0, 0),
 imagecolorallocate($gd, 69,139,116),
 imagecolorallocate($gd, 0,0,255),
 imagecolorallocate($gd, 97,97,97)
);
 $white = imagecolorallocate($gd, 255, 255,255);

 $i = 0;
 foreach ($p as $n => $cluster)
 {
 $c = $colors[$i];
 $i++;
 foreach ($cluster->points as $pnt)
 {
 imagesetpixel($gd, round($pnt->x),round($pnt->y),
$c);
 }
 imagesetpixel($gd, round($cluster->avgPoint-
>x),round($cluster->avgPoint->y), $white);
 imagesetpixel($gd, round($cluster->avgPoint-
>x)+1,round($cluster->avgPoint->y), $white);
 imagesetpixel($gd, round($cluster->avgPoint-
>x),round($cluster->avgPoint->y)+1, $white);
 imagesetpixel($gd, round($cluster->avgPoint-
>x)+1,round($cluster->avgPoint->y)+1, $white);
 }

 header('Content-Type: image/png');

 imagepng($gd);
} else {
 foreach ($p as $n => $cluster)
 {
 $lines = array();
 foreach ($cluster->points as $pnt) {
 $line = "$pnt->x,$pnt->y,$pnt->data";
 $lines[] = $line;
 }
 print_r($lines);
 }
}

?>

2. File distribution and indexing

#!/usr/bin/php

<?php

$taskname = '';
$taskFile = '';

$options = getopt("t:n:");

if (isset ($options['t'])) {
 $taskFile = $options['t'];
}
if (isset ($options['n'])) {
 $taskname = $options['n'];
}

$ini_array = parse_ini_file($taskFile,true);
$indexfile = $ini_array['task']['index'];
$indexfile = str_replace('<TASKNAME>', $taskname,
$indexfile);

$flist = file ("/data/split-files/" . $taskname);
$machines_f =
parse_ini_file($ini_array['task']['machines'],true)
;

$machines = array_keys($machines_f['map']);
$nrmachs = count($machines);

$dups = 2;

$dist_data = array();
for ($start = 0; $start < $dups; $start++) {
 for ($i = 0; $i < count($flist); $i++) {
 $f = trim ($flist[($i + $start) %
count($flist)]);
 $m = trim ($machines[$i]);
 $cmd = "scp $f $m:$f";
 $dist_data[$f][$m]['status'] = 1;
 $dist_data[$f][$m]['cmd'] = $cmd;
 }
}

$f_done = array();
$f_failed = array();
foreach ($dist_data as $file => &$tasks) {
 foreach ($tasks as $m => &$task) {
 $bdir = dirname($f);
 system("ssh $m mkdir -p $bdir", $ret);
 system($task['cmd'], $ret);
 $task['status'] = $ret;
 if ($task['status'] == 0) {
 $f_done[$file][] = $m;
 } else {
 $f_failed[$file][] = $m;
 }
 }
 if (isset ($f_done[$file]) &&
count($f_done[$file]) > 0) $f_done[$file]
= implode(','
 , $f_done[$file]);
 if (isset ($f_failed[$file]) &&
count($f_failed[$file]) > 0) $f_failed[$file]
= implode(','
 , $f_failed[$file]);
}

//print_r($dist_data);
print_r($f_done);

save_index($f_done);

$donedir = $ini_array['task']['done'];
$donedir = str_replace('<TASKNAME>',
$ini_array['task']['name'], $donedir);
touch ("$donedir/distIndex");

function save_index($f_done)
{
 global $indexfile;
 $d = dirname ($indexfile);
 if (!file_exists($d))
 mkdir ($d, 0777, true);
 $if = fopen($indexfile, "w");
 fwrite ($if, "[split]\n");
 foreach ($f_done as $f => $m) {
 fwrite ($if, "$f = $m\n");
 }
 fclose($if);
}

?>

3. Application transfer

#!/usr/bin/php
<?php

$machines = parse_ini_file
("/data/conf/machines.conf");

$dirs = $argv[1];
if ($dirs == '') {
 $dirs =
'/data/bin,/data/bin/inc,/data/conf,/data/taskbin';
}
$dirs = explode (',', $dirs);

foreach ($dirs as $dir)
{
 $files = trim(`ls -1 $dir/*.php $dir/*.sh
$dir/*.conf $dir/*.ini 2>/dev/null| tr '\n' ','`);
 foreach (explode (',', $files) as $f) {
 $f = trim($f);
 if ($f == '')
 continue;
 foreach (array_keys($machines) as $m)
 {
 $m = trim ($m);
 $thismachine = trim (`hostname`);
 if ($thismachine == $m)
 continue;
 $c = "ssh $m mkdir -p `dirname $f`;
scp $f $m:$f";
 print "$c\n";

 system ($c, $ret);
 if (is_executable($f)) {
 system("ssh $m chmod a+x $f");
 }

 }
 }
}
?>

4. Master Task Launcher

<?php

require_once '/data/bin/inc/TaskReader.php';
require_once '/data/bin/inc/ErrorObj.php';
require_once '/data/bin/inc/taskRunner.php';
require_once '/data/bin/inc/Stage.php';

class masterTaskLauncher
{
 private $tf, $tr;

 private $logfile;
 private $e;

 private $allDone;

 function masterTaskLauncher($tf)
 {
 $this->tf = $tf;
 $this->tr = new TaskReader($this->tf);
 $this->e = ErrorObj::getErrorObj($this-
>tf);
 $this->logfile = $this->tr->getLogDir() .
"/" . "master";
 }
 function ping($m)
 {
 foreach ($m as $machine)
 {
 $c = "ssh $machine ls / 2>/dev/null
>/dev/null";
 system($c, $ret);
 if ($ret != 0)
 continue;
 $c = "ssh $machine uptime | tr -s ' '
| cut -d ':' -f 5 | tr -d ' '";
 $o = trim(shell_exec($c));
 $o = explode (',', $o);
 $load = $o[0];

 print "System $machine load is
$load...";
 if ($load > 20) {
 print "High\n";
 continue;
 }
 print "OK\n";
 return $machine;
 }
 return '';
 }
 function waitForFile($f, $timeout, $interval)
 {
 $start = date("U");
 while (!file_exists($f) && ($end =
date("U")) - $start < $timeout) {
 sleep($interval);
 }
 if (file_exists($f)) {
 return TRUE;
 }
 return FALSE;
 }
 function waitForFiles($files, $timeout,
$interval, $hostname = FALSE)
 {
 $start = date("U");
 $notfound = TRUE;
 while ($notfound && ($end = date("U")) -
$start < $timeout) {
 $notfound = FALSE;
 foreach ($files as $f) {
 if ($hostname == FALSE) {
 if (!file_exists($f)) {
 $notfound = TRUE;
 }
 } else {
 $c = "ssh $hostname 'ls $f'
>/dev/null 2>&1";
 system($c, $ret);

 if ($ret != 0) {
 $notfound = TRUE;
 }
 }
 }
 if ($notfound) {
 sleep($interval);
 }
 }

 return ! $notfound;
 }
 function launchReduce()
 {
 $this->logfile = $this->tr->getLogDir() .
"/reduce";
 $c = "date >> $this->logfile";
 system($c, $ret);
 $f = $this->findMapDoneFiles();

 $ret = $this->waitForMapTasks($f);
 if ($ret == FALSE) {
 return FALSE;
 }
 $ret = $this->transferMapoutFiles();
 if ($ret === FALSE)
 {
 $msg['function'] = __FUNCTION__;
 $msg['logfile'] = $this->logfile;
 $msg['msg'] = "Failed copying map out
files to reduce machine";
 $this->e->addError($msg);
 return FALSE;
 }
 $r = $this->tr->getReduceMachine();
 $c = "(ssh $r php
/data/bin/localTaskLauncher.php -r reduce -t $this-
>tf) >/dev/null &";
 print "Launching $c\n";
 system("$c", $ret);

 if ($ret != 0) {
 $msg['function'] = __FUNCTION__;
 $msg['failedcmd'] = $c;
 $msg['retVal'] = $ret;
 $this->e->addError($msg);
 continue;
 }
 return TRUE;
 }
 function createReduceInput()
 {

 }
 function transferMapoutFiles()
 {
 $l = $this->logfile;
 $ret = $this->findMapOutFiles();
 // print_r($ret);
 // print ($this->tr->getLastMapStage());
 $r = $this->tr->getReduceMachine();

 $name = $this->tr->getTaskName();
 $targetd = "/data/$name/map/";
 $waitfiles = array();
 foreach ($ret as $mapoutfiles) {
 $i = explode (':', $mapoutfiles);
 $m = $i[0];
 $f = $i[1];
 $fname = basename ($f);
 $waitfiles[] = "$targetd/$fname.map";
 $c = "(ssh $r mkdir -p $targetd; ssh
$m 'scp $f $r:$targetd/$fname.map') >>$l 2>&1 &"
 ;
 print "$c\n";
 system($c, $ret);
 if ($ret === FALSE)
 {
 $msg['function'] = __FUNCTION__;
 $msg['cmd'] = $c;

 $msg['msg'] = "Failed copying map
out file to reduce machine";
 $msg['retVal'] = $ret;
 $this->e->addError($msg);
 return FALSE;
 }
 }
 $rtimeout = $this->tr-
>getParam('reduce_timeout', 'task');
 $ret = $this->waitForFiles($waitfiles,
$rtimeout, 1, $r);
 if ($ret === FALSE) {
 $msg['function'] = __FUNCTION__;
 $msg['cmd'] = $c;
 $msg['msg'] = "Timed out waiting for
map files to be available. Too huge? try
 increasing timeout.";
 $msg['retVal'] = $ret;
 $this->e->addError($msg);
 return FALSE;
 }
 return TRUE;
 }
 function findMapOutFiles()
 {
 $dirs = $this->findMapDoneFiles();
 $files = array();
 $lastmap = $this->tr->getLastMapStage();
 $name = $this->tr->getTaskName();
 $dir = "/data/$name/$lastmap/";
 foreach ($dirs as $d) {
 $bucket = basename($d);
 $f = trim(shell_exec("ls $d
2>/dev/null"));
 if ($f != '') {
 $files[] = "$f:$dir/$bucket";
 }
 }
 return $files;
 }

 function waitForMapTasks($doneFiles)
 {
 $timeout = $this->tr-
>getParam('map_timeout', 'task');

 $ret = $this->waitForFiles($doneFiles,
$timeout, 1);
 if ($ret === FALSE)
 {
 $msg['function'] = __FUNCTION__;
 $msg['msg'] = "Timedout ($timeout
seconds) waiting for files ". print_r($doneFiles, t
 rue);
 $msg['retVal'] = $ret;
 $this->e->addError($msg);
 }
 return $ret;
 }
 function findMapDoneFiles()
 {
 $ret = array();
 $files = $this->tr->getSplitFiles();
 foreach ($files as $n=>$file)
 {
 $bucket = basename($file);
 $taskName = $this->tr->getTaskName();
 $ret[$bucket] =
"/data/$taskName/map/$bucket";
 }
 return $ret;
 }
 function launchMaps()
 {
 $this->logfile = $this->tr->getLogDir() .
"/map";
 $c = "date >> $this->logfile";
 system($c, $ret);
 $files = $this->tr->getSplitFiles();
 foreach ($files as $n=>$file)
 {

 $bucket = basename($file);
 $m = $this->tr->getMachines('split',
$bucket);
 $m = $this->ping($m);
 if ($m != '')
 {
 $c = "(ssh $m php
/data/bin/localTaskLauncher.php -r map -t $this->tf
-s $fil
 e) >/dev/null &";
 print "Launching $c\n";
 system("$c", $ret);
 if ($ret != 0) {
 $msg['function'] =
__FUNCTION__;
 $msg['failedcmd'] = $c;
 $msg['retVal'] = $ret;
 $this->e->addError($msg);
 continue;
 }
 }
 }
 }
}

$options = getopt("t:r:");
if (!isset($options['t']) || !isset($options['r']))
{
 print "Usage: -t taskFile -r <map|reduce>\n";
 exit;
}
$taskFile = $options['t'];
$run = $options['r'];

$m = new masterTaskLauncher($taskFile);

switch ($run)
{
 case 'map':
 $m->launchMaps();

 break;
 case 'reduce':
 $m->launchReduce();
 break;
}
?>

5. Local Task Launcher

<?php

require_once '/data/bin/inc/TaskReader.php';
require_once '/data/bin/inc/ErrorObj.php';
require_once '/data/bin/inc/taskRunner.php';
require_once '/data/bin/inc/Stage.php';

class localTaskLauncher
{
 private $tf, $tr;

 private $e;

 private $allDone;

 function localTaskLauncher($tf)
 {
 $this->tf = $tf;
 $this->tr = new TaskReader($this->tf);
 $this->e = ErrorObj::getErrorObj($this-
>tf);
 }
 function launchMaps($inputbucket)
 {
 $bucketNumber = basename($inputbucket);
 $stages = $this->tr->getStages();
 $lastDone = '/dev/null';
 $taskRunners = array();
 foreach ($stages as $s) {

 $stage = new Stage($s, $this->tf,
$inputbucket);
 if ($stage->getType() == 'reduce') {
 break;
 }

 $i = $stage->getInputFile();
 $o = $stage->getOutputFile();
 $c = $stage->getCommand();
 $d = $stage->getDoneFile();
 $l = $stage->getLogFile();

 $trunner = new TaskRunner($this->tf,
$i, $o, $l);
 $trunner->setDone($lastDone, $d);
 $trunner->setCommand($c);
 $taskRunners[] = $trunner;
 $lastDone = $d;
 //print "$i\t-> $c\t->$o\n";
 }
 $thishost = trim (`hostname`);
 $taskname = $this->tr->getTaskName();

 $alldone =
"/data/$taskname/map/$bucketNumber/$thishost";
 $this->allDone = array(
 'machine' =>
'slack1',
 'file' =>
$alldone);

 //print count ($taskRunners) . " items in
taskRunners\n";
 $this->clearAllDoneonMaster();
 foreach ($taskRunners as $t) {
 $t->run();
 }
 $this->touchAllDoneonMaster();
 }
 function sendCompleteMail()

 {
 mail($this->tr->getOwnerEmail(),
"$taskName completed: ". date("D M j G:i:s T Y"),
"Process C
ompleted.");
 }
 function launchReduce()
 {
 $name = $this->tr->getTaskName();
 $targetd = "/data/$name/map/";
 $c = "cat $targetd/*.map > $targetd/all";
 print "$c\n";
 system($c, $ret);
 if ($ret != 0) {
 $msg['function'] = __FUNCTION__;
 $msg['failedcmd'] = $c;
 $msg['retVal'] = $ret;
 $this->e->addError($msg);
 return;
 }
 $i = "$targetd/all";
 $o = "/data/$name/reduce/all";

 $stages = $this->tr->getStages();
 $lastDone = '/dev/null';
 $taskRunners = array();
 foreach ($stages as $s) {
 $stage = new Stage($s, $this->tf,
'all');
 if ($stage->getType() != 'reduce') {
 continue;
 }
 $c = $stage->getCommand();
 $d = $stage->getDoneFile();
 $l = $stage->getLogFile();

 $trunner = new TaskRunner($this->tf,
$i, $o, $l);
 $trunner->setDone('/dev/null', $d);
 $trunner->setCommand($c);

 }

 $this->allDone = array(
 'machine' =>
'slack1',
 'file' =>
$d);

 $this->clearAllDoneonMaster();
 $trunner->run();
 $this->touchAllDoneonMaster();
 $this->sendCompleteMail();
 }
 function clearAllDoneonMaster()
 {
 $dfile = $this->allDone['file'];
 $mach = $this->allDone['machine'];

 $cmd = "ssh $mach rm -rf $dfile";
 system($cmd, $ret);
 if ($ret != 0) {
 $msg['function'] = __FUNCTION__;
 $msg['failedcmd'] = $cmd;
 $msg['retVal'] = $ret;
 $this->e->addError($msg);
 return;
 }
 //print "Removed $dfile on $mach\n";
 }
 function touchAllDoneonMaster()
 {
 $dfile = $this->allDone['file'];
 $ddir = dirname($dfile);
 $mach = $this->allDone['machine'];

 $cmd = "ssh $mach mkdir -p $ddir";
 system($cmd, $ret);
 if ($ret != 0) {
 $msg['failedcmd'] = $cmd;
 $msg['retVal'] = $ret;

 $this->e->addError($msg);
 }
 $cmd = "ssh $mach touch $dfile";
 system($cmd, $ret);
 if ($ret != 0) {
 $msg['failedcmd'] = $cmd;
 $msg['retVal'] = $ret;
 $this->e->addError($msg);
 }
 print "Touched $dfile on $mach\n";
 }
 function launchStage($stage, $machine)
 {

 }
 function getStageMachines($stage)
 {
 $c = "/data/bucketls.php -t $this->tf -s
$stage";
 $if = trim(shell_exec($c));
 $if_rows = explode("\n", $if);
 $m = array();
 foreach ($if_rows as $row) {
 $r = explode (':', $row);
 $m[] = $r[0];
 }
 return $m;
 }
}

$options = getopt("t:s:r:");
if (!isset($options['r']) || !isset($options['t']))
{
 print "Usage: -r <map|reduce> -t task file -s
startFile\n";
 exit;
}
$taskFile = $options['t'];
$run = $options['r'];
$m = new localTaskLauncher($taskFile);

switch ($run)
{
 case 'map':
 if (!isset ($options['s'])) {
 print "Usage: -r <map|reduce> -t task
file -s startFile\n";
 exit;
 }
 $startFile = $options['s'];
 $m->launchMaps($startFile);
 break;
 case 'reduce':
 $m->launchReduce();
 break;
}
?>

6. Task Runner

<?php

require_once 'TaskReader.php';
require_once 'ErrorObj.php';

class TaskRunner {
 var $fin, $fout, $ferr;
 var $done_in, $done_out;
 var $cmd, $args;
 var $e;
 function TaskRunner($tf, $i = FALSE, $o =
FALSE, $e = FALSE)
 {
 $this->setInfd($i);
 $this->setOutfd($o);
 $this->setErrfd($e);

 $this->e = ErrorObj::getErrorObj($tf);
 }

 function setInfd($i) {
 $this->fin = $i;
 }
 function setOutfd($o) {
 $this->fout = $o;
 }
 function setErrfd($e) {
 $this->ferr = $e;
 }
 function setCommand($c, $args = FALSE)
 {
 $this->cmd = $c;
 $this->args = $args;
 }
 function run()
 {
 //print "Executing $this\n";
 return $this->ExecuteCommand($this->cmd,
$this->args);
 }
 function setDone($i,$o) {
 $this->done_in = $i;
 $this->done_out = $o;
 }
 function ExecuteCommand($c, $args = FALSE) {
 $wait_time = 10;
 $upstream_available = $this-
>waitForFile($this->done_in, $wait_time, 1);
 if (FALSE == $upstream_available) {
 $m['msg'] = "Timed out
waiting for done file";
 $m['cmd'] = $c;
 $m['donefile'] = $this->done_in;
 $m['waitPeriod']= $wait_time;
 $this->e->addError($m);
 return;
 }
 $ret = $this->ExecuteCommandVanilla($c,
$args);
 if ($ret == 0) {

 $this->touchDoneFile($this->done_out);
 } else {
 $msg['msg'] = "Couldn't execute
command [$c]";
 $msg['stderr'] = $this->ferr;
 $this->e->addError($msg);
 }
 }
 /**
 * proc_open way to invoke child
 *
 * pblm is it doesnt return proper exit code
 *
 * @param string $c command to exec
 * @param array $args array of key-val pairs of
arguments
 */
 function ExecuteCommandPHP($c, $args = FALSE) {
 $descriptors = array (
 0 => array("file", $this->fin,
"r"),
 1 => array("file", $this->fout,
"w"),
 2 => array("file", $this->ferr,
"w")
);
 $cwd = "/data/";
 $env = array();

 $child_process = proc_open($c,
$descriptors, $pipes, $cwd, $env);
 if (is_resource($child_process)) {
 $ret = proc_close($child_process);
 //print "returned $ret\n";
 //print_r($pipes);
 }

 }
 function touchDoneFile($f)
 {

 $cmd = "mkdir -p `dirname $f`";
 system($cmd, $ret);
 if (0 != $ret) {
 $this->e->addError(array("couldn't
create done directory for [$f]"));
 }
 $ret = touch ($f);
 if (FALSE == $ret) {
 $this->e->addError(array("couldnt
touch file [$f]"));
 }
 }
 function waitForFile($f, $timeout, $interval)
 {
 $start = date("U");
 while (!file_exists($f) && ($end =
date("U")) - $start < $timeout) {
 sleep($interval);
 }
 if (file_exists($f)) {
 return TRUE;
 }
 return FALSE;
 }
 function ExecuteCommandVanilla($c, $args =
FALSE) {
 $in = $this->fin;
 $out = $this->fout;
 $err = $this->ferr;
 /*
 $outdir = dirname ($out);
 $errdir = dirname ($err);

 $cmd = "rm -rf $outdir $errdir";
 system ($cmd, $ret);
 if ($ret != 0) {
 $this->e->addError(array("couldn't remove
[$outdir] and [$errdir] with cmd [$cmd]. re
 turn val is $ret"));
 }

 if (FALSE == mkdir($outdir , 0777, true
)) {
 $this->e->addError(array("couldn't create
out directory for [$outdir]"));
 }
 if (FALSE == mkdir(dirname ($errdir) ,
0777, true)) {
 $this->e->addError(array("couldn't create
error/log directory for [$errdir]"));
 }*/

 $cmd = "mkdir -p `dirname $out` `dirname
$err`; $c <$in >$out 2>$err";
 //print "\n\t\t$cmd\n";
 system($cmd, $ret);
 return $ret;
 }
 function __toString()
 {
 //return print_r($this, true);
 $ret = array(
 'command' => $this-
>cmd,
 'args' => $this-
>args,
 'infile' => $this-
>fin,
 'outfile' => $this-
>fout,
 'logfile' => $this-
>ferr,
 'done_in' => $this-
>done_in,
 'done_out' => $this-
>done_out
);
 return print_r($ret, true);
 }
}

//$tr = new TaskRunner('/data/task.ini',
"/data/head", "/tmp/testout", "/tmp/testerr");
//$tr->setDone('//dev/null', '/tmp/do');
//$tr->ExecuteCommand("cat");

?>

5. References

 [1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” Operating System Design and Implementation (OSDI), Usenix Assoc., 2004
 [4] MPI: A Message-Passing Interface Standard, http://www.mpi-
forum.org/docs/mpi21-report.pdf.

	PHP Cloud Computing Platform
	TABLE OF CONTENTS
	Introduction
	Existing Systems
	Motivation
	Cloud Computing
	MapReduce
	PHPCloud

	Functional Components
	Data Storage
	Background
	PHPCloud implementation
	Parallelize data
	Task Submission
	Distributing load
	Consolidate and Filter Results
	Programming interfaces
	Monitoring

	Examples
	Problem definition
	Implementation
	Spliting by k-means
	Map operations
	Reduce operations

	Code Listings
	Spliter using k-means algorithm
	File distribution and indexing
	Application transfer
	Master Task Launcher
	Local Task Launcher
	Task Runner

	References

