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The parallelization and vectorization of Monte Carlo algorithms for mod-

elling charge transport in semiconductor devices are considered. The standard en-

semble Monte Carlo simulation of a three parabolic band model for GaAs is first

presented as partial verification of the simulation. The model includes scattering

due to acoustic, polar-optical and intervalley phonons. This ensemble simulation

is extended to a full device simulation by the addition of real-space positions, and

solution for the electrostatic potential from the charge density distribution using

Poisson's equation. Poisson's equation was solved using the cloud-in-cell scheme

for charge assignment, finite differences for spatial discretization, and simultaneous

over-relaxation for solution. The particle movement (acceleration and scattering)

and the solution of Poisson's are both separately parallelized. The parallelization

techniques used in both parts are based on the use of semaphores for the protection

of shared resources and processor synchronization. The speed increase results for

parallelization with and without vectorization on the Ardent Titan II are presented.

The results show saturation due to memory access limitations at a speed increase of

approximately 3.3 times the serial case when four processors are used. Vectorization

alone provides a speed increase of approximately 1.6 times when compared with the

nonvectorized serial case. It is concluded that the speed increase achieved with

the Titan II is limited by memory access considerations and that this limitation is

likely to plague shared memory machines for the forseeable future. For the pro-

gram presented here, vectorization is concluded to provide a better speed increase
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per day of development time than parallelization. However, when vectorization is

used in conjunction with parallelization, the speed increase due to vectorization is

negligible.
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Chapter 1

Introduction

Design, fabrication and testing of new solid state devices are very time con-

suming and expensive processes. It is therefore desirable to be able to simulate a

device before the cost associated with fabrication and testing is incurred. Such sim-

ulations based on the drift-diffusion (DD) model have been in use for a number of

years. The DD model operates by solving the continuity equations coupled with the

drift-diffusion equations. Implicit in the DD approach is the assumption of a local

relationship between the electric field and the carrier velocity. Hence, the DD model

ignores the time required for the carriers to accelerate to their steady state velocity.

This model works acceptably well for devices where the carrier transport proper-

ties are dominated by the steady state velocity-field characteristics. This property

is normally true for devices with channel lengths greater than approximately 1pm.

Present fabrication technology allows quantity production of integrated circuits con-

taining devices with 0.7pm channel lengths. If simulation is to remain an effective

tool, other techniques must be resorted to. The Monte Carlo (MC) particle method

of modelling carrier transport is often resorted to when the DD model fails. In this

method, the random number generation is used to simulate the random walk of

carriers in the crystal. The MC method has the advantage that transient, nonsta-

tionary properties of the carriers are modelled, at least semiclassically. The primary

disadvantage of MC is that it has much greater computational requirements than

the DD model. One of the most important causes of the large computational re-

quirements is the fact that the error scales as where N is the number of
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particles simulated. Due to computer limitations, a typical number particles for a

simulation is 105, which seems large until it is compared with the approximately

108 particles that actually exist.

Some developments in computer architecture in recent years hold promise to

be able to more effectively meet the computational requirements of MC simulations.

These architectures fall into two general categories: Single Instruction Multiple Data

stream (SIMD), or Multiple Instruction Multiple Data stream (MIMD). The SIMD

architecture is best typified by vector processors. Vector processors are typically

capable of rapidly performing a variety of simple mathematical operations on one

dimensional arrays of numbers, i.e. vectors. The variety of MIMD machines makes

it impossible to present any one example that adequately represents the majority of

such machines. Generally such machines can be put into two subcategories, shared

memory machines and distributed memory machines. Shared memory machines are

distinguished by having the memory accessible by all the processors. Distributed

memory machines are the converse, the memory is associated locally with each

processor.

This research considers the effectiveness of two ways of meeting these re-

quirements. First, a MC device simulation was developed to exploit the parallel

processing capability of a multi-processor shared memory computer, the Ardent Ti-

tan II. The Titan is described in detail in section 3.2. Second, the simulation was

extended to exploit the vector processor associated with each of the four parallel

processors. The parallelization was implemented by dividing certain tasks into in-

dependent parts which can be arbitrarily assigned to any of the processors. The

exact techniques used are discussed in detail in section 3.3. Vectorization was ac-

complished by identifying loops with complicated expressions and reducing them to

a series of loops simple enough for the vector processor to deal with.

The results, presented in sections 4.4 and 4.5, show saturation that is char-

acteristic of shared memory computers. Both the vectorized and the non-vectorized

case show a speed increase of about 3.3 times that for the non-vectorized single pro-
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cessor case. This saturation is due to memory access limitations. The saturation,

however, gives a distorted view of what vectorization can accomplish. For the single

processor case, vectorization provided a speed increase of 1.6 times.
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Chapter 2

Monte Carlo Simulation of Semiconductor Devices

2.1 Overview

The drift-diffusion and Monte Carlo (MC) techniques introduced in chap-

ter 1 represent different approaches for solving the more general Boltzmann Trans-

port Equation (BTE). The BTE is a kinetic equation for the single particle carrier

probability distribution function which accounts for all possible mechanisms by

which the function may change. The drift diffusion approach represents the solu-

tion to the BTE through the first two moments of this equation, which gives the

so called drift-diffusion equation commonly used in analytical semiconductor the-

ory. For the MC method, carrier transport is modelled by subjecting each particle

to a random walk process. The random walks consist of two parts, free-flight in-

terrupted by instantaneous scattering events. During free-flight, the changes in the

particle position and wavevector are governed by electric and magnetic fields as well

as internal forces due to spatial inhomogenaities. Scattering events are assumed to

instantaneously change the wavevector of the particle, but not the position. Scat-

tering occurs due to random imperfections in the crystalline lattice such as ionized

impurities, vibrations (phonons), or othe carriers. These rates at which the various

scattering events occur are, in general, functions of energy. The scattering rates

are the topic of section 2.2.2. For device simulation, both solution techniques con-

sist of two main elements, solution of the transport equation and solution of the

electrostatic potential over the spatial domain.

When the MC method is applied to a homogeneous bulk material, it is re-
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ferred to as a rc-space or an ensemble simulation. In such a simulation, it is not

necessary to solve for the electric field since every particle will be subject to the

same average accelerating field. In an actual device simulation, it is necessary to

solve for the electric field at every point in the device. Assuming that a quasi-static

approximation is valid, the electric field is related to the gradient of the electrostatic

potential which is the solution to Poisson's equation for the known charge density

distribution. There are at least two general schemes for discretizing Poisson's equa-

tion on to a mesh; finite differences and finite elements. Both methods produce a

set of simultaneous linear equations which may be solved by a variety of techniques

discussed in section 2.3. The electric field computed from the potential is used to

accelerate the particles during one time step when they are in free-flight. After all

the particles have completed a particular time step, the new charge configuration

due to the movement of the particles is assigned to the mesh. Poisson's equation

is then updated in order to calculate the new electric field over the next time step.

The general flow of a typical MC device simulation based on this algorithm is shown

in figure 2.1.

2.2 Particle Movement

Figure 2.2 is a flow chart of the essential elements of particle movement. The sub-

sections which follow deal with various aspects of the process shown in figure 2.2.

Subsection 2.2.1 begins by introducing the method of selecting the random free-flight

durations. The selection of these times is the basis of the Monte Carlo method. The

free-flight durations are determined from the scattering rates which are presented

in subsection 2.2.2. Subsection 2.2.3 presents how free-flight and the various scat-

tering mechanisms are performed. In subsection 2.2.4, the real space considerations

associated with device simulation are discussed. These considerations can be gener-

ally described as a specification of what happens to a particle when it attempts to

exit the simulated region. Subsections 2.2.5 and 2.2.6 present two interesting, but

less essential portions of the transport portion of the simulation. Subsection 2.2.5
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Figure 2.1: Basic flow chart of a Monte Carlo device simulation.
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details the initial k-space and real space distributions of particles. Subsection 2.2.6

presents the random number generator used throughout the simulation.

2.2.1 Free Flight Times

One of the most important parts of the MC method is the determination of

when scattering events should occur, or equivalently how long the free flights should

last. The flight time is a function of the scattering rates to which the particle is

subject (see section 2.2.2). As will be shown in section 2.2.2, these scattering

rates are functions of energy in general. This fact is accounted for by expressing

the probability of scattering in an interval dt about t as a general function of the
ti

wavevector 140,

P[rc(t)]dt. (2.1)

Now, a large number of particles with identical wavevectors beginning free

flight at t = 0 are considered. The rate of initial scatterings will be proportional to

the number of surviving particles and the current scattering probability,

Bn(t) -
(t)jn(t),at

= P[k (2.2)

where n(t) is the number of particles surviving at time t. The general solution to

equation 2.2 is

n(t) = K exp { ft: P[k.(ti )]dtil, (2.3)

where K is a constant. K is easily determined to be n(0). The number of particles

surviving at time t is simply

n(t) = n(0) exp { jot P[k(ti )]dti 1. (2.4)

The probability of a single particle surviving to time t is found by normalizing

equation 2.4 with respect to n(0),

Q(t) = 2 . exp { fot PAtiAdtil. (2.5)
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Figure 2.2: Flow chart of particle movement.
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The probability of the first scattering event since t = 0 happening during an

interval dt about t is simply the joint probability of the particle surviving to time t

and scattering at time t,

or equivalently,

R(t)dt = Q (t)P[rc(t)]dt (2.6)

R(t) = exp { I P[k(t )]dt 1 P[k(t)]dt.
o

(2.7)

Random flight times sampled from the nonuniform probability distribution R(t)

may be obtained from a uniform random variable r in the range [0,1) by the direct

technique given in [3] . This procedure gives

V) R(ti)dtir = (2.8)fo' R(t' )dt"

or equivalently,

El'. exp { fit: P[E(t")] dt" 1 P[k(ti )]dti
r = (2.9)

fo° ° exp { fif P[k(t")]dt" 1 Ilic(ti Ade

where tr is a random number satisfying the nonuniform distribution given in equa-

tion 2.6 and r is a uniform random variable in the range [0, 1). Since P[1C(t)] as a

function of time is not known apriori, 2.9 is not easily evaluated. There is, however,

a remedy for the complexity of equation 2.9. If the total scattering rate, P[ic], is a

constant, say F, then equation 2.9 reduces to

r = 1 exp (rtr). (2.10)

This can easily be solved for the flight time in terms of a uniform random variable,

tr = r-1 In (r). (2.11)

Now, the problem that remains is how to force P[k(O] to be a constant

without altering the physics. Suppose that ppoi is written as

P[rc(t)] = PReadic(t)] + Psef[rc(t)], (2.12)
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where the physical scattering mechanisms are accounted for in pReca[kv)]. PSel f[k(t)]

represents the scattering rate for an artificial scattering mechanism defined by

rCfinal = kinitial (2.13)

This mechanism, known as self scattering, does not affect the trajectory of the

particles and hence the physics of the simulation. Thus, Pse/f[ic.(t)] can be arbitrarily

defined. The constant nature of P[ic.(t)] is achieved by defining

P.seu[k(t)] = r pRea,[k(t)]. (2.14)

The result is that equation 2.11 is the expression used for generating flight times.

The cost of this simplification is that self scattering may account for over 90% of

the scattering events, which can represent a significant amount of computer time.

A technique that may help reduce this cost by the use of a piecewise constant r is

presented by Yorston in [4].

2.2.2 Scattering Rate Calculations

As a carrier moves through the crystalline lattice of the semiconductor, it

experiences a periodic potential due to the lattice, and a random potential due to

imperfections in the lattice. The periodic potential gives rise to the renormalized

mass. The lattice imperfections can be due to other carriers, impurities, and/or

lattice vibrations (phonons). In the simulation presented here, only scattering

mechanisms due to lattice vibrations are considered for simplicity. The types of

mechanisms included are acoustic phonon scattering, polar optical phonon scatter-

ing, and intervalley scattering. Briefly, GaAs has three conduction band minima

(valleys) of importance which are centered at the I', L, and X points in k- space,

shown schematically in figure 2.3. The scattering mechanisms included for each

valley are listed in table 2.1, and discussed briefly below. The interested reader can

refer to chapter 2 of [5] for more details of the scattering rate derivations.

In the simulation presented here, spherical parabolic bands were assumed.
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(100) X Gamma L (111)

Number Descriptions Number Descriptions

1 F to X Intervalley Absorption 5 X to L Intervalley Absorption

X to F Intervalley Emission L to X Intervalley Emission

2 I' to X Intervalley Emission 6 X to L Intervalley Absorption

X to F Intervalley Absorption L to X Intervalley Emission

3 F to L Intervalley Absorption 7 L to L Intervalley Absorption

L to F Intervalley Emission L to L Intervalley Emission

4 F to L Intervalley Absorption 8 X to X Intervalley Absorption

L to F Intervalley Emission X to X Intervalley Emission

Figure 2.3: GaAs intervalley scattering mechanisms.
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r Valley Acoustic Phonon

Polar Optical Phonon Absorption

Polar Optical Phonon Emission

I' to L Intervalley Absorption

I' to L Intervalley Emission

r to X Intervalley Absorption

1' to X Intervalley Emission

L Valley Acoustic Phonon

Polar Optical Phonon Absorption

Polar Optical Phonon Emission

L to r Intervalley Absorption

L to I' Intervalley Emission

L to L Intervalley Absorption

L to L Intervalley Emission

L to X Intervalley Absorption

L to X Intervalley Emission

X Valley Acoustic Phonon

Polar Optical Phonon Absorption

Polar Optical Phonon Emission

X to r Intervalley Absorption

X to r Intervalley Emission

X to L Intervalley Absorption

X to L Intervalley Emission

X to X Intervalley Absorption

X to X Intervalley Emission

Table 2.1: Scattering mechanisms included in the simulation.
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where m* is given by
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The particle velocity is defined by
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v == _.

h dk
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(2.15)

(2.16)

(2.17)

Since the relationship between E and k is assumed to be given by 2.15, equation 2.17

simplifys to ti
v = (2.18)

m*

There are two assumptions which are usually used in deriving the acoustic

phonon scattering rates. The first assumption is that, at room temperature, it

is an elastic isotropic process due to the small energy of acoustic phonons. That

is to say, acoustic phonon scattering can randomly change the direction, but not

the magnitude of the carrier wavevector. The second assumption, known as the

equipartition assumption, is that the acoustic phonon energy is less than the thermal

energy so that the phonon occupancy, Ng, may be written as

kBTLN '---s N +1 --q q hug ' (2.19)

where hwq is the acoustic phonon energy. With these two assumptions, the scatter-

ing rate due to acoustic phonons may be written as

1 = DileBTL(2m*)3/2 n1/2
El ,

TAC 27rh4v.,p
(2.20)

where DA is the acoustic deformation potential, TL is the lattice temperature, vs is

the sound velocity, and p is the mass density. Since the quantity DA is somewhat

subjective, it is worth noting that values of 7.0eV, 9.2eV, and 9.0eV were used for

the I', L and X valleys, respectively [5] .
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Scattering by polar optical phonons is an important mechanism for com-

pound semiconductors like GaAs. Polar optical scattering results from the fluctuat-

ing dipole moment of the cation-anion pairs. For the case of a phonon absorption,

the scattering rate is given by

1
q2wu 1

No sinh-1 {\I 1] , (2.21)-
TPOPABS 27ricocoha; TWO

where Ko is the low frequency dielectric constant, K,,,, is the high frequency dielectric

constant, rico° is the optical phonon energy and No is the Bose-Einstein distribution

given by
1

No =
exp n---''g-kB7,1,1 1

For the case of a carrier emitting a phonon, the scattering rate is given by

1
=

q2wo ('`ciL°
+ 1) sinh-1 }1

TPO P EM S 2'71- kofoh APS, nWO

(2.22)

(2.23)

where it is understood that the condition E > hwo must be met for emission to be

possible.

Intervalley scattering corresponds to absorption or emission of a phonon

which scatters a carrier from one valley to another. This process may occur be-

tween equivalent minima of the same valley or non-equivalent minima of different

valleys. As mentioned earlier in this section, for electrons in GaAs, there are three

conduction band minima (valleys). The F point in the Brillouin zone is the central

valley is the central valley and has the lowest base energy. The L and X valleys are

0.29eV and 0.48eV above the F valley, respectively, as shown in figure 2.3.

The intervalley scattering rates are given by

1 irD?1Z1

2
-1

2
-) gc(E ±hwif AEfi), (2.24)Tv

pwif

where Dif is the intervalley deformation potential between the initial and final

valleys, Z1 is the degeneracy of the final valley, dew;f is the energy of the intervalley

phonon, AEfi is the energy offset of the final valley relative to the initial valley, gc
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Figure 2.4: 1' valley scattering rates.

is the density of states for the final valley, and Ni is the number of phonons with

energy ruvif again given by the Bose-Einstein factor,

r = 1

exp f (2.25)

As shown by the above scattering rate formulas, there are a large number

of material parameters that are required. For the simulation presented here, the

parameters for GaAs were taken from section 2.12 of [5]. The scattering rates

calculated for the conduction band according to the rates presented above are shown

in figures 2.4, 2.5 and 2.6.

2.2.3 Acceleration and Scattering

The flight of a particle can be interrupted by three events, a scattering

event, a collision with a device boundary, or the end of a simulation time step.

The three types of interruptions to the free-flight are shown in figure 2.7. Boundary

collisions may represent an actual physical events depending on the type of boundary
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B - Collision with device boundary

Figure 2.7: Particle flights

encountered. Scattering was discussed in section 2.2.2. The simulation time step is

nonphysical and is imposed to allow for the completion of certain necessary tasks.

The most notable of these tasks is solving Poisson's equation in the device (discussed

in section 2.3.2). If the simulation time step is chosen too large, then the simulation

will no longer provide an accurate model. Specifically, the simulation may become

unstable when too large of a time step is chosen [2]. The simulation time step used

here was 0.01ps also as suggested in [2].

Two of the variables that must be tracked for each particle in the simulation

are the wavevector and position. Assuming the particle is subject to a constant

electric field, e, during the interval t1 to t2, and drawing on equation 2.15, the



change in the particle's wavevector can be written as

k(t2) = k(ti) eq(t2 ti).
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(2.26)

Now applying equation 2.18 and the acceleration therom to equation 2.26 give the

solution for the particle position as

I(t2) = i(t1) + hij(ti)(t2 t1) + eq(t2 t1)2
(2.27)

m* 2m*

These equations govern the motion of the particles during the free-flight periods.

When a free-flight ends due to a scattering event, it is necessary to decide

which scattering event occurs. At the end of the free-flight, the energy and valley

for the particle are known. Associated with these quantities is a specific set of

scattering probabilities. These probabilities are found by normalizing the scattering

rates shown in figures 2.4, 2.5, and 2.6, relative to the maximum scattering rate, F.

The type of scattering event terminating the free flight (including self-scattering)

is determined by comparing a uniform random number in the range [0,1) with the

normalized scattering rates.

Once a real scattering event is chosen, it is necessary to choose the final

wavevector. This process involves selecting changes to all three polar coordinates of

the wavevector, licl, 9, (0, relative to the initial wavevector according to the quantum

mechanical scattering rate. The polar coordinate system is defined as shown in

figure 2.8. Figure 2.8 also defines other angles relative to the fixed coordinate

systems. The change in Ircl is chosen to conserve both energy and momentum in

the particle-phonon system. In scattering events where the energy of the particle

changes, the new wave vector is calculated as

V2m*(E ± AE)
lk.1 = , (2.28)

h

assuming parabolic bands. In the case of elastic scattering, AE is zero by definition.

For the case of isotropic scattering mechanisms, the angles 0, and 0 are chosen at

random,

0 = 2irr1 (2.29)
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Figure 2.8: Polar coordinate system used for wavevectors, after [1]

0 = arccos (2r2 1),

19

(2.30)

where r1 and r2 are uniform random numbers in the range [0,1).

In the case of anisotropic scattering such as that due to polar optical phonon

scattering, the choice of 0 is the same, but 9 must be chosen according to

sin(0)d0P(0)d0 = (2.31)
2E ± Ep0p VE(E ± Epop) cos(9)

which favors small angle scattering. Here Epp], is the optical phonon energy. For a

derivation of 2.31, the reader can refer to chapter 2 of [3]. The rejection technique

given in appendix B of [3] is used for selection of 9 given equation 2.31. The choices
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Acoustic Intervalley Polar Optical Phonon

Elastic

Isotropic

P(0)

P(9)

Ik21

Yes

Yes

2
I
w

sin (9)

Iq

No

Yes

1

2w

sin (9)

No

No

1

2w

sin 0

2E±EpOp E(E±EpoP) cos(e)

.V2m*(h E±AE) -V2m*(E±AE)

Table 2.2: Properties used for selecting the wave vector after a scattering event.

of the components of k are summarized in table 2.2.

2.2.4 Contacts and Boundary Conditions

At every point on the boundary of a simulated device there exist conditions

which govern the behavior of particles incident on that boundary. There are several

types of boundary conditions that may exist in a given device. These include artifi-

cial internal boundaries with the bulk semiconductor, boundaries with an insulator,

Ohmic contacts and Schottky barrier contacts.

Internal bulk boundary conditions are artificial and necessitated by the finite

domain required in any numerical simulation involving a mesh. By definition, at

such a boundary, there should be no effect to the device behavior in terms of particle

flux or electric field. Thus such a boundary is usually assumed to be far removed

from the area of interest. Although particles will routinely be incident on such

a boundary, there should be no net flux of particles across the boundary. This

condition is accomplished by introducing an artificial scattering mechanism which

reflects the component of the momentum perpendicular to the boundary. The
validity of this approach can be easily seen by considering the reflection as two

separate events. The first is a particle with a wavevector (kx,ky,k,) exiting the

device. The second event is a particle with wavevector (kx,ky,k,) entering the
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device. Hence there is no energy or particle transfer across the boundary.

In the simulation presented here, boundaries between the simulated device

and insulating materials were treated identically to boundaries with the bulk re-

gions. The MESFET simulated here is discussed in section 4.3 For such a device,

boundaries with insulating materials exist only in the regions between the contacts

on the top surface. Since the conducting channel in a MESFET does not abut

this area, the treatment of these boundaries is not particularly important to the

device simulation. However, in the case of a device such as a MOSFET where the

entire conducting channel abuts such a boundary, considerably more care should be

taken in how the boundary is modelled. For such a device, treatment might include

scattering due to surface roughness and/or interface states.

A Schottky barrier contact presents an interesting problem to model. The

model used in this simulation treats it as an absorbing, but noninjecting contact

with a negative potential offset due to the barrier height. The justification for this

treatment is quite simple. Since the barrier height is more than 20k BT above the

Fermi level in the metal, there are essentially no electrons with enough energy to

surmount the barrier, except under strong forward bias conditions. The negative

potential offset models the Schottky barrier for the electrons in the semiconductor.

Although it is a rare event, should a carrier reach the Schottky contact, it is assumed

to be absorbed out. This treatment is also convenient since the absorption routines

are also required for any Ohmic contacts in the simulation.

A relatively simple model is used for Ohmic contacts. At an Ohmic contact,

the potential is defined exclusively by the externally applied potential. Unlike a

Schottky barrier contact, there is no offset voltage. An Ohmic contact is capable

of both injecting and absorbing carriers (in this case electrons). The injection is

accomplished by adding particles at the end of each simulation time step to force the

region immediately under the contact to be charge neutral. Charge neutrality is only

forced when more majority carriers are needed under the contact. It is assumed

that if there is already a surplus of majority carriers, then some will quickly be
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removed by reaching the boundary and being absorbed out of the simulation.

A brief discussion of the carriers is helpful at this point. The number of

carriers in the simulation is not a fixed quantity. In fact, in the case of the MESFET

simulation, the total number of carriers in the device decreases by about 20% during

the course of the simulation due to the formation of the depletion region under the

gate. The charge per carrier is considered to be fixed. It is defined at the beginning

of the simulation to be
Q FIXED

Q PARTICLE = (2.32)N '

where QFIX ED is the total fixed charge in the device and N is the total number of

carriers initially in the simulation.

When charge neutrality is enforced under the ohmic contacts, the number of

carriers injected will most closely neutralize the fixed charge in that region. Hence,

when charge neutrality is enforced, the resulting net charge under the contact will

be in the range [-QP/TICLE C2PAIT"E1J. Note that for the condition of charge

neutrality to be successfully maintained, the simulation time step must be small.

The carriers should only be able to move a fraction of the thickness of the charge

neutral region in a given time step.

Finally, there is another property of both the Schottky and Ohmic ontacts

that is important. Since the electric field is discontinuous at the metal semicon-

ductor interface, there must be an interface charge there. When computing the

terminal currents, it is essential that changes in this charge be accounted for. If this

is not done, then Kirchoff's current law will be violated for the device. The stored

charge is computed as

(2Interface = i I I Ez(x,y,t)(iXdy.
Contact

(2.33)

This effect was found to be particularly important with the gate contact of the

simulated MESFET.



23

2.2.5 Initial Distribution

To begin the simulation, an initial distribution must be assumed for the

particles in the device. For the simulation presented here, the state of a particle

is determined by four variables: position, wavevector, conduction band valley and

flight-time remaining. Initially these variables are chosen in a manner consistent

with the device being under no applied biases with charge neutrality enforced every-

where in the device. This distribution is neither unique, nor the best distribution

in terms of time required to for the device to reach steady state. It is, however,

quite simple to implement and works acceptably well. A better alternative is to use

the final state from a previous simulation as the inital state for future simulations.

Typical initial and final spatial distributions are shown later as figures 4.5 and 4.3.

Initially all the particles are assigned to be in the r valley since with no applied

bias, over 99% of the carriers reside there.

The initial positioning of the particles for the condition of no applied bias

seems very simple. The probability of a particle being at a given position in the

device should depend only on the doping concentration in that region. Hence, a

random distribution weighted according to the doping concentration should provide

a reasonable initial distribution. This method was literally implemented and was

found to cause a problem. Since each particle carries a charge much larger than that

of an electron, any accumulation or depletion of particles in the initial distribution

of particles results in artificially high local electric fields. The problem manifested

itself in the form of electrons with energies greater than 4eV which is unrealistic for

the simulated device and bias conditions.

The solution to the problem required two changes. First, the charge assign-

ment technique was changed from the "nearest grid point" method to the "cloud-

in-cell" method. See section 2.3.1 for more details regarding these methods. The

second part of the solution required smoothing out the distribution of particles.

This smoothing was accomplished by assigning the number of particles that would

most closely neutralize the fixed charge associated with a point in the grid which
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is used for solving Poisson's equation. See section 2.3.1 for more details regarding

the mesh. These two items, in combination, removed the problem of locally high

electric fields.

When the initial wavevector for a particle is selected, only the magnitude is

constrained; the direction is chosen at random. The magnitude is selected according

to the Maxwell-Boltzmann distribution for the given lattice temperature. These

assumptions are again consistent with the assumption of no applied bias. The

procedure for selecting ik*I is more easily applied to the energy of the particle rather

than the wavevector directly. Once the energy is determined, the wavevector can

easily be determined by

(2.34)

A brief derivation of how the Maxwell-Boltzmann distribution was imple-

mented is in order at this point. The density of electrons residing at an energy, E,

is given by

n(E) = f(E)g,(E), (2.35)

where n is the density of electrons, f is the Fermi function, and g, is the density of

conduction band states. Assuming nondegenerate statistics, the Fermi function is

given by
f 1

f (E) exP 1

E EF
kBT f ' (2.36)

where EF is the Fermi energy, kB is the Boltzmann constant, and T is the absolute

temperature. The density of states for the conduction band is given by

(rn. )3/21/"-
g,(E) = ' ";270 (E Ec)1/2 . (2.37)

Assigning Ec = 0,

A = (m` )3/2f
720

and substituting 2.36, 2.37, and 2.38 into 2.35 yields

n(E) = A \rt exp f EF El
1 kBT f

(2.38)

(2.39)
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It is advantageous to normalize 2.39 with respect to its maximum value. Taking

the derivative of equation 2.39 and setting it equal to zero to find the value of E

for which n is a maximum yields:

Substituting back gives,

Normalizing gives,

nmax

p(E) =

E_ kBT
2

= A
kBT

exp 2

kBT

n(E) j 2E in E
nmaz V kBT exP kBT f

(2.40)

(2.41)

(2.42)

This probability is plotted for T = 300K in figure 2.9.

Random energy values may be selected according to the distribution shown

in figure 2.9 using a rejection technique like that given in [3]. First an energy

in the range [0, Emax) is chosen. A second random number in the range [0, 1)

serves as an acceptance factor. These numbers corresponds to selecting a point

at random on figure 2.9. Once the point is selected, it must be compared with

the probability distribution. If the point lies above the curve, then it is rejected.

Otherwise it is accepted and the energy is considered valid for the particle. When the

energy has been selected, the magnitude of the wavevector is calculated according

to equation 2.34. The polar angles 01 and -yz (see figure 2.8) are chosen so that the

direction is uniformly random. Finally, kz, kr, and kz are calculated by converting

from spherical to Cartesian coordinates.

Although specific method used for selection of Ikl is not particularly impor-

tant because of the very small amount of computer time it uses, it is worth noting

that the rejection is accomplished by the combined technique given in Appendix

B of [3]. This technique involves using the line AB (shown in figure 2.9) to make

the first cut at rejection. This first cut is done because the equation for AB can be

much more quickly than the probability distribution.
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Figure 2.9: Maxwell-Boltzmann probability distribution for electrons at 300K.

2.2.6 Random Number Generation

As the name Monte Carlo implies, the generation of psuedo random numbers

is an essential part of any simulation of this type. Ideally, the pseudo random

number generator should meet four criteria. First, it should have no correlation to

the simulation program. This criterion means that the simulation program should

give statistically the same results regardless of the psuedo random number generator

used. Second, it should contain no sequential correlations. Third, it should have an

infinite period, i.e. it will never repeat itself. Finally, it must be very fast. With

these criteria in mind, an algorithm was selected from [6].

The algorithm is based on the use of three integer linear congruential gener-

ators. A linear congruential generator is based on the formula

ri+i = M odulo(Ari + C, M), (2.43)

where A,C and M are constants. The use of a single linear congruential generator

is inappropriate in the case of Monte Carlo. It will contain sequential correlations
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in the low order bits, and have a short period compared to the 108 random numbers

typically required. To correct these problems, the chosen algorithm uses one linear

congruential generator to generate the high order bits, and one to generate the low

order bits. The use of two linear congruential generators in this manner has the

effect of extending the period and reducing the sequential correlation. A third linear

congruential generator is used to control a shuffling array. By shuffling the random

numbers, the statistical correlation is further reduced, and the period becomes

effectively infinite. It may seem like the use of three linear congruential generators

would be prohibitively slow. This is not the case, since most of the calculations are

performed on integers.

In addition to the four conditions above, the random number generator cho-

sen must also be parallelizable so that it will not be a bottleneck when the code is

run in parallel. This topic is discussed in section 3.3.1.

2.3 Potential Solution

As described in section 2.2.3, an electric field is present which accelerates the

carriers. The electric field is obtained from the electrostatic potential distribution

determined by numerically solving Poisson's equation. There are four steps in the

process of determining the electric field. First, the solution region is discretized

into a three-dimensional grid of points. Second, the point charges of the particles

are assigned to the grid points in order to calculate the charge density distribution

(section 2.3.1). Third, Poisson's equation is solved numerically on the same grid

used for charge assignment (section 2.3.2). Finally, the electric field is calculated at

arbitrary points as it is needed from the gradient of the potential.

The grid used for discretization has two requirements placed on it in the

simulation presented here. First, the grid is defined by the set of points common

to three mutually perpendicular sets of parallel planes. The parallel planes within

a set are not required to be uniformly spaced. There are, however, some consider-

ations regarding how much the plane-to-plane spacing should vary in one direction
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A - Nearest Grid Point B - Cloud in Cell C - Extended cloud in Cell

Figure 2.10: Charge assignment methods.

discussed in [2]. Second, boundaries of the simulation region must include the out-

ermost points of the grid.

2.3.1 Charge Assignment

To utilize the difference equation to be derived in section 2.3.2, the charge

density must be determined at each point in the mesh. There exist two basic

methods for accomplishing this task. In both methods, the fixed charge is assigned

to the grid point to which it is nearest. The simplest method is known as the

"nearest grid point" method. The other is known as the "cloud-in-cell" method.

Recently, there has been an interesting variation on the cloud-in-cell method used

by [7]. The three methods are diagramed in figure 2.10.

With the nearest grid point method, the charge carried by each particle is

assigned to the grid point closest to the particle. The sum of the fixed and mobile

charges assigned to a point is then divided by the volume defined by all points where

it is the nearest grid point. Since the mesh points are set up in a regular array,

this volume is defined by a box whose sides are half way to the six planes of points

around the given point. This method was used initially and was found to create

two important problems. First, it was possible to obtain too much charge assigned

to a single grid point, resulting in unphysically high local electric fields for the

simulated device and bias conditions. The second problem is that a small change in
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the position of a particle can cause a significant change in the local charge density

distribution. This change occurs when the particle crosses a boundary between two

mesh points.

The cloud-in-cell method uses a box around the particle to smear out the

charge over a region. The fraction of the box that overlaps with the volume assigned

to a grid point is the fraction of the charge that will be assigned to that grid

point (see part B of figure 2.10). In the case of non-uniform grid spacing the eight

surrounding grid points are used. For non-uniform grid spacing, this distribution

creates problem. The effective charge density represented by a particle will change

with grid spacing. An "extended cloud-in-cell" method, which cures this problem,

has been used by [7] .

The extended cloud-in-cell method uses a fixed cloud (box) size about the

particle. The charge associated with the particle is then assigned to each grid point

whose region overlaps with the cloud in proportion to the amount of overlap. This

method is shown in part C of figure 2.10. The extended cloud-in-cell method has

none of the problems associated with the nearest grid point method or the cloud-

in-cell method.

2.3.2 Solution of Poisson's Equation

Solving Poisson's equation is an integral part of any semiconductor device

simulation. Poisson's equation is written in mks units as:

V +
8 v22

v2v =
0 2v.

+
(9

= p(x, y, z)
(2.44)axe aye az2 E

where V is potential, p(x, y, z) is charge density, and E is permittivity. The solution

of such a differential equation is referred to as a boundary value problem. There

are two types of boundary conditions possible at every grid point on the edge of the

device. Either the potential, V, is explicitly defined, or the electric field is defined

(usually to be zero). The usage of these conditions is discussed in section 2.2.4.

Since, in general, it is not possible for a computer to obtain closed form

solutions to equation 2.44, approximate methods must be resorted to. The first
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do

0 B A C 1

Figure 2.11: Definition of terms for finite difference method.

approximation is to only determine the solution for V at the discrete grid points.

It will prove useful if the grid is split into two categories. Those points where

the sum of the array indices is even are referred to as red points and those points

where the sum is odd are referred to as black points. This process produces a three

dimensional checkerboard pattern. Any red point is surrounded by black points and

any black point is surrounded by red points.

Now that the set of solution points is defined, an approximation to Poisson's

equation must be found. For the program developed here, the finite difference

scheme was chosen. The derivation presented here introduces the notation used in

sections 3.3.2 and 3.4. Part of the notation used is defined in figure 2.11. In figure

2.11, point B is defined to be the midpoint of OA and point C is defined to be the

midpoint of Al.

Applying the difference equation to the x component of Poisson's equation

gives

a2v
av

8x C
axe 1(do +do (2.45)

Applying the approximation a second time gives
492

di do 2 Vo V V
axe 1(do + di) dodo + di) di(do + di)] (2.46)

The subscripts 2 and 3 are similarly used for the y direction and 4 and 5 for the z

direction. Poisson's equation becomes, in the difference approximation,

v2v P 2 [ VoV
E do(do + di)

V3 V
d3(E/2 d3)

V1 V V2

(2.47)

di(do + di)

V4 V

d2(d2 + d3)

V5 V
El4(d4 d5) d5(d4 d5).1



To simplify the notation, the following substitutions are made

to = [dO(d0 C]-'
t2 = [d2(d2 d3)] -1

t4 = [d4(d4 d5)]-1
5

412345 = E ti
i=0

ti = [d1(d0 C11)]

t3 = [d3(d2 d3)] 1

t5 = Id5(C14 d5)]-1

Substituting into equation 2.47 and rearranging gives

101234517 = 2 10170 t1V1 t2V2 t3V3 t4174 t5V5
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(2.48)

(2.49)

(2.50)

Using equation 2.50, a system of simultaneous equations can be written. The most

obvious idea is to write the coefficient matrix and invert it. The coefficient matrix is

very sparse and will not occupy a significant amount of memory. Unfortunately, its

inverse is not sparse and would require a huge amount of memory. If there are 8000

points to be solved for, the inverse matrix would require in excess of 512 megabytes

of memory. Although this is not currently practical, it may be a viable alternative

one day.

Since a direct solution technique is not possible, an iterative technique known

as Simultaneous Over-Relaxation (SOR) was chosen. This technique has minimal

memory requirements (64 kilobytes for 8000 points) and is acceptably fast. In

addition, it is both parallelizable and vectorizable. These topics will be discussed

in sections 3.3.2 and 3.4. The SOR method is an iterative process that consists of

alternately solving for the potentials at the red points with the potentials at the

black points held constant and vice versa. The iteration formula used at each step is

a weighted average of the potential given by solving equation 2.50 and the potential

from the previous iteration over the current color. Mathematically, this iteration

formula is written as

VNew (1 CV)Void + WV, (2.51)

where w is known as the relaxation factor.

If a relaxation factor less than unity is chosen, the resulting effect is termed

under-relaxation. Similarly, a relaxation factor greater than unity is said to pro-
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duce over-relaxation. It has been shown ([6]) that over-relaxation is always faster

than under relaxation. The over-relaxation factor is not constant and is updated

according to the prescription

0)(1/2)

1 P2

W(n+1/2) =
1

"GA'L4

WOO woptimal

n = 1/2,1, ,00

(2.52)

This scheme is known as Chebyshev acceleration (see reference [6] for more details).

Through experimentation, a good value for ',Jacobi was found to be 0.99970.

The SOR method is implemented by calculating residuals. The residual at

a point is defined to be

6 = + toVo + ti + t2V2 + t3V3 + t4V4 + t5V5 to12345vo1d

VNew in terms of the residual is given by

VNew = VOld W
1012345

(2.53)

(2.54)

This particular method of computation was chosen because the residuals are also a

convenient way to determine if convergence has been reached.

The test used to detect convergence is based on the idea of globally reducing

the residuals. After each full iteration, the sum of the absolute value of the residuals

is calculated. The condition used to detect convergence is a total reduction by a

factor 0.001 in the residual. This idea is written as

all < 0.001.
EE initial

all

(2.55)

This test has been found to be a reliable criterion for convergence. The complete

process of solving Poisson's equation is presented in figure 2.12.
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prescription

\./
Compute the
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Figure 2.12: Flowchart of solution to Poisson's equation.
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Chapter 3

Formulation of the Problem

When designing any simulation program, one must consider the capabilities

of the computer the program is intended to run on. The speed and memory capabil-

ities of the machine are primary considerations when deciding what approximations

and assumptions are to be used. This fact is especially true for Monte Carlo solid

state device simulations. Monte Carlo simulations have traditionally had several

limitations imposed by computer capabilities. These limitations included simplified

band structures (parabolic bands), two dimensionality, single carrier type and sin-

gle material type (no quantum effects). Even with these constraints, Monte Carlo

simulations are still extremely computer intensive. In some recent publications ([8])

authors have given execution times on mini-supercomputers that are measured in

hours. It is obvious from such times that a large increase in computational require-

ments cannot be accommodated by such computers.

One approach to accommodate future computational requirements is to pur-

chase machines that are sequentially faster. Unfortunately, the cost of such machines

is exponentially related to the speed. The alternate approach being considered here

is the use of parallel computers. There are two primary advantages of parallel com-

puters over fast sequential computers. First, the cost of parallel computers tends to

be linear with the computational power of the machine. Hence, such machines will

be less expensive than their sequential counterparts. Second, the parallel computer

may be able to achieve computational speeds not presently available on sequential

machines at any price. For these advantages to be of any benefit, the problem of in-
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terest must be suitable for parallelization. The advantages of parallel computers are

offset by one major disadvantage. The software development tools currently avail-

able on parallel computers are not very advanced. Efficient parallel programming

still depends largely on the efforts and creativity of the programmer.

3.1 Parallel Computers Applied to Monte Carlo

Simulation

It was noted above that the benefits of using a parallel computer are only

realized if the problem being considered is parallelizable. For the Monte Carlo device

simulation discussed in chapter 2, both the particle movements and the solution of

Poisson's equation are individually parallelizable.

In the case of the particle flights, it is easy to see the parallelism that is

present. The particles interact with each other only through the electric field. First,

the electric field is determined using the charge distribution. Then the electric field

that was determined is used to accelerate the particles for a short time step. The

important consequence of this is that during a simulation time step, all of the

particle flights are independent. Since they are independent events, they can be

processed simultaneously by different processors.

With the derivation in section 2.3.2, the parallelism in the solution of Pois-

son's equation is also fairly easy to see. It was noted in section 2.3.2 that the

red-black ordering scheme was chosen. More importantly, it was also noted that

during an iteration over the red or black points, the other color is held constant.

Thus, the solution at a given point does not directly depend on any other points

of the same color. Hence, the points considered in any half sweep can be processed

simultaneously by different processors. It should be noted from this brief discussion

that it is essential for all the processors synchronize between half sweeps. Otherwise

one processor might still be working on red while the others have gone onto black.

Synchronization is discussed in section 3.3

There are additional parts to the solid state device simulation such as the
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generation of the scattering rate tables. Some of these parts of the simulation may

be parallelizable. However, due to the tremendous effort required and the very

small speed increase possible in this case, no parallelism was implemented in these

portions of the program. If the number of processors were increased substantially,

then these sequential routines would eventually become a bottleneck. At such a

point, it would be worth considering them for parallelization.

3.2 Ardent Titan 1500 System

Parallel computers usually fall into two categories based on how memory is

accessed. The memory can be shared such that all of the processors can directly ac-

cess it. Machines of this type are referred to as shared memory parallel computers.

The other type of architecture has memory exclusively associated with each proces-

sor. These machines are referred to as distributed memory parallel computers. The

computer used for the simulation presented here was an Ardent (Stardent/Kubota

Pacific Computer) Titan II. The Titan II is a shared memory parallel computer

with four processors. An alternate study of the implementation of this simulation

on a distributed memory parallel computer was performed by Udaya Ranawake at

Oregon State University [9].

The Titan II has the additional capability of efficiently processing vectors.

Each of the four processors is equipped with a vector processing unit. These units

are capable of most simple comparison and arithmetic functions, except division.

There are three important facts about the shared memory and vector units that

must be presented here. First, if stride-one (see [10, 11]) access to memory is

achieved, then the maximum access rate to the shared memory is 64MHz. The

Ardent's memory is arranged in 16 interleaved banks. Stride one access refers to

accessing these banks in a rotating manner, 0, 1, 2, ... 15, 0 ... Stride-one access

is the most efficient way to access memory in the Ardent. Second, each vector

processor (see [10]) is capable of accessing memory at 32MHz. Third, the processors

themselves can only access memory at 16MHz. From these numbers, it is obvious
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that there will be a problem with heavy memory access. For example, suppose all

four vector processors are attempting to access memory at 32MHz. This situation

implies a total access rate of 128MHz is being attempted when only 64MHz is

possible. A second example is also worth presenting. Suppose the processors are

all trying to access memory in some random manner. In this situation, stride-one

access is not maintained, significantly decreasing the possible memory access rate.

Hence, the memory is again a bottleneck. These two examples are typical of the

Poisson solution and the particle flights, respectively.

The next important item regarding the Titan II is the interprocessor commu-

nication facilities that are available. Interprocessor communication may seem like a

simple matter since all the memory is accessible to all the processors. It is, in fact a

very difficult problem. The problem is that the processors must communicate in or-

der to synchronize when necessary. In the case of the Titan II, this synchronization

is accomplished with the use of semaphores. Semaphores are boolean variables that

should only be set or cleared by an atomic operation known as locking. Because of

the atomic nature of the modification, erroneous read-modify-write operations such

as the one shown in figure 3.1 are not possible. In figure 3.1, the modification to x

by processor 2 is lost. Figure 3.2 shows how this can be avoided with the use of a

semaphore. All synchronization problems in the present work were solved with the

use of semaphores. Synchronization will be discussed in more detail in sections 3.3.1

and 3.3.2.

Finally, a word about the compiler and development tools is in order. The

Titan II compilers are able to recognize some opportunities for parallelization in

simple cases. Unfortunately, it is far beyond the capabilities of these compilers to

recognize high-level parallelism in C. In fact, they will not try to parallelize anything

that uses pointers. This fact means that essentially all the parallel considerations

are the programmer's responsibility. The compiler only provides certain tools like

shared variables and the atomic locking operation mentioned above.

The compiler is not much better with recognizing vectorization opportunities.
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processor 1 processor 2

read in x

read in x
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modify x

modify x

write x

write x

Figure 3.1: Unsynchronized access to a shared variable.
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Figure 3.2: Synchronized access to a shared variable.
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Again, if there are pointers involved, the compiler must be forced using a directive

to implement vectorization. Although the Titan Programmer's Guide [10] discusses

how to use compiler directives, it is a very poor manual. Most of the information

needed to accomplish both vectorization and parallelization came from the support

staff at Stardent Computer Inc. [11].

3.3 Parallelization

There are three general topics which should be discussed before proceeding

to a detailed discussion of how parallel aspects of the Monte Carlo simulation were

implemented. First, the concept of the level of parallelism used should be discussed.

Usually three levels of parallelism are defined. The lowest level is referred to as

fine grain parallelism. This form is applicable to virtually all programs on shared

memory computers, but is not as effective as the next two levels. Usually fine grain

parallelism is implemented by the compiler without assistance from the programmer.

The Titan II compilers implement fine-grain parallelism in this manner.

The second level of parallelism is referred to as medium grain parallelism.

This form is usually thought of as applying to loops where each iteration is clearly

independent of other iterations. Depending on the complexity of the loop contents,

and the sophistication of the compiler, this parallelizing may be done automati-

cally. Often direct intervention from the programmer is required to recognize the

opportunity for parallelization. Intervention is usually required with the Titan II

compilers.

The last level is referred to as course grain parallelism. Typically, large blocks

of the program are independent. This level is never achieved by a compiler without

significant help from the programmer. However, as one might suspect, it is the most

efficient form of parallelism.

The second topic is local and shared variables. Synchronization of accessing

a shared variable is discussed in section 3.2. There is another method for protecting

some shared variables which does not rely on semaphores. If each processor can be
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assigned a task before the program begins parallel execution, then competition for

some shared variables may be avoided entirely. However, this case is the exception,

not the rule. In the case of variables used in subroutines, either semaphore protected

shared variables or local variables are necessary. Local variables are those that are

allocated in memory reserved for use by only one processor. In C these variables can

take several forms. They can be dynamically allocated as the function is entered,

or by a semaphore protected call to malloc, the UNIX system memory allocator,

or by a threadlocal variable declaration. The full set of declarations possible is too

large to describe here. The interested reader can refer to [10] for more details.

The final topic before addressing the details of implementation is synchro-

nization. At some points in the program, synchronization is necessary to synchronize

all the processors. Since the only efficient means of interprocessor communication

are semaphores and shared variables, it is a non-trivial problem. The solution

that was devised is presented in figure 3.3. The solution depends on the use of a

shared variable that counts the total number of processor-iterations completed. A

processor-iteration is defined to be the work required of one processor before syn-

chronization is required. The definition of a processor-iteration will be discussed

further in section 3.3.2. Each processor also tracks how many processor-iterations

it has completed. Synchronization is accomplished by only letting the processors

proceed when the toal number of processor-iterations is greater than or equal to

the number of processor-iterations completed by the processor multiplied by the

number of processors. Put simply, it is a way to verify that all the other processors

have completed their share of the work.

3.3.1 Acceleration and Scattering

As previously noted in section 3.1, within a scattering time step, all particle

flights are independent. Each particle may be arbitrarily assigned to any of the

processors for processing. Hence, other considerations will determine which proces-

sor a particle is assigned to. The first, and most important, of these considerations
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atomic operation

\Z
do any
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operation
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=Nx iter?

clear
synch_lock

increment
iter

\./

atomic operation

at this point the previous parallel
section is guaranteed to be
completed. The processors can
proceed with the next parallel
section

N = number of processors (constant)

iter = iteration number (local variable)

count = the total number of processor iterations completed (shared variable)

synch_lock = a semephore used for protecting count

Figure 3.3: Synchronization of all processors.
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is load balancing. The second consideration is the data structure used to hold the

particle information.

Load balancing is extremely important on the Titan II. A brief anecdote will

serve to illustrate this point. One of the test versions of the Monte Carlo simulation

attempted to balance the load by allocating one fourth of the particles to each

processor. This scheme worked acceptably well if there were no other jobs being

run on the system. When there was an additional one processor job running on the

system, then the four processor parallel simulation took longer to run than the serial

simulation. Obviously there must be some more intelligent form of load balancing

incorporated in the simulation directly.

The technique implemented in the present work divides the particles up into

groups. The processors continually choose groups for processing until there are

no more groups to be processed. With this algorithm, the idle time of any of

the processors is usually kept quite small. There is one unusual and interesting

circumstance that has been observed to cause a slight delay in program execution.

If three of the four processors have acknowledged completion of all groups, and the

fourth one is extremely busy (e.g. running the tape drive), then there may be a

pause before the fourth processor acknowledges completion. Again, this event is

quite rare and is not very significant.

The choice of groups comes from the data structure that contains the par-

ticles. The particles are contained in linked lists that originate in the structure of

the grid point they are closest to. Through experimentation, a reasonable group

was found to be all particles attached to grid points in a line in the x direction.

This division provides a good trade off between the overhead of dealing with a large

number of groups and having enough groups to make the load balancing effective.

The groups are implemented with one shared boolean variable per row to indicate

whether it requires processing. The ability to search these flags is protected by a

semaphore.

It is useful while discussing parallelizing the acceleration and scattering to
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discuss one scattering mechanism in detail as an example. This discussion may

prove helpful to anyone attempting to add additional scattering mechanisms in the

future. The sample function is presented in figure 3.3. The function declaration

is a standard C declaration. The variable declarations must all be preceded by a

threadlocal declaration. A threadlocal declaration guarantees that each processor

has a private variable to work with. Without such a declaration, unpredictable

results will occur. The #pragma is a compiler directive that tags the function as

safe for parallel execution. See [10, 11] for more information about this. Finally,

note that the function finalk is called by the shown function. Any function called

by a parallel function must also be tagged as safe for parallel execution.

As a closing note about acceleration and scattering, the generation of random

numbers should be briefly addressed. Two approaches were looked at. First, the

random number generator described in section 2.2.6 was protected by a semaphore.

This technique of having four processors share one random number generator re-

quired about 10% of the total processor time to generate random numbers. The

second approach was to give each processor a copy of the random number generator

with different seeds. This approach was found to reduce the processor time required

for random number generation to about 1.5% of the total processor time. The re-

duction is better than a factor of four because there is no overhead for semaphores.

The percentages given here are approximations based on output from the profile

option of the compiler.

3.3.2 Solution to Poisson's Equation

Parallelization of the solution to Poisson's equation was accomplished in

much the same manner as for acceleration and scattering (see section 3.3.1). The

load balancing considerations are essentially the same in either case. Since each

point iterated on during a half sweep is independent, they can be arbitrarly grouped.

As with acceleration and scattering, the solution groups are lines of points in the x

direction. The processors continue to choose groups for processing until all points



/*

Acoustic:

Acoustic scattering is elastic and isotropic and the azimuthal angle,

theta is calculated using the direct technique.

*/

void acoustic(particle,dummy)

PARTICLE *particle;

INT32 dummy;

{

threadlocal FLOAT64 eki,ki,kf,phi,theta;

#pragma pproc acoustic

/* Compute energy of particle */

eki=PARTICLE_ENERGY(particle);

/* Compute magnitude of wave vectors */

ki=WAVENECTOR_MAGNITUDE(eki,particle---valley);

kf=ki;

/* Choice of theta by the direct technique */

theta=ACOS(1.0-2.0*ILRANDO);

/* Choice of phi randomly between 0 and 360 degrees */

phi=2.0*pi*ILRAND();

/* Get x, y and z components of final wave vector */

finalk(particle,ki,kf,theta,phi);

return;

}

Figure 3.4: Acoustic scattering parallelized function.
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of the specified color have been iterated on. When there are no more points to

iterate on, the processors will synchronize. While three of the processors are in the

waiting loop (see figure 3.3), the fourth tests for convergence and informs the other

processors through a shared boolean variable. The processor-iteration count is then

incremented and all the processors are free to proceed. This sequence of events is

shown in figure 3.5. The choice of groups used in parallelizing this portion of the

program has the additional advantage of being highly compatible with vectorization,

as discussed further in section 3.4.

3.4 Vectorization of Solution to Poisson's Equation

On the Titan II, a vector is defined as a regularly spaced sequence of double

precision values. It is not necessary that these values be adjacent in memory, only

regularly spaced. The vector processing units in the Titan II can efficiently perform

a number of simple arithmetic operations on such vectors. Note that division cannot

be performed, but operations between vectors and scalars are allowed. These vector

operations are very powerful tools when an iteration according to equation 2.51 is

being applied to a line of grid points parallel to any of the three coordinate axes.

For a line of points parallel to an axes, all the values required occur as scalars or a

regular array of double precision values. Since the groups chosen for parallelization

(see section 3.3.2) are lines of grid points parallel to the x axis, these will also be

the units considered for vectorization. When equation 2.51 is partially expanded,

it can be written as

VNew = Vold +
w

n + t0V0 ± t1V1 + t2V2 + t3V3 + t4V4 + t5V5 t012345VO/d}
t0123456 { G

p

E

(3.56)

Now it must be determined whether each variable is a vector or a scalar

in the x direction. The results are shown in Table 3.1. In the remainder of this

section, vector quantities will be shown with vector notation. The astute reader may

notice that there are problems with two of the vectors being short by one value.

Special processing is required for points at either end in the x direction. All the
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NO otherother NO processor- YES
processors iteration count
ynchromze complete?

choose a
goup and
process it

check

for convergence
?

completion
flag set?

increment the

processor-iteratio
count

set completion-
flag

Poisson solution
is complete

YES

Figure 3.5: Flow chart of solution to Poisson's equation.

Neumann and Dirchlet boundary conditions on the other four sides of the device

are efficiently handled in the setup for the vector loops. Beyond this attention in

the loop setup, no special action is required to deal with them. The sequence of

calculations performed to implement vectorization is shown in figure 3.7.

The implementation of the vector equations is extremely messy. It was nec-

essary to use pointers, pointer arithmetic, and compiler directives to force vector-

ization to occur. It will undoubtedly be useful to anyone attempting to understand

this code, if one of the vector loops is examined in detail. The loop presented in

figure 3.6 performs the calculation 412345 = to + ii + t2345.. temp_vector is an array

of five vectors of length N. The definitions of the five vectors are given in table 3.2.

starts represents the lowest index in the x direction to be processed for the given

line. tpl, tp2, and tp3 are temporary pointers used to step through the vectors.
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Variable Vector/

Scalar

Len Variable Vector/

Scalar

Len Variable Vector/

Scalar

Len

VNew Vector N t4 Scalar - do Vector N-1

Void Vector N t4 Scalar - d1 Vector N-1

w Scalar - t5 Scalar - d2 Scalar -

t012345 Vector N Vo Vector N-1 d3 Scalar -

p Vector N V1 Vector N-1 d4 Scalar -

to Vector N V2 Vector N d5 Scalar -

t1 Vector N V3 Vector N

t2 Scalar - V4 Vector N

t3 Scalar - V5 Vector N

Table 3.1: Table of vector and scalar variables in the Poisson solver.

The compiler directive, preceding the for loop, instructs the compiler to ignore any

possible dependencies and proceed with vectorization.

The actual vector loop must be of a very simple structure. It should consist

of an equation (or equations) followed by each vector pointer being increased by

a value that is constant within the loop. For more details regarding this loop

structure, the reader should refer to [10].

Finally, the concept of stride should be revisited. Stride refers to the distance

temp_vector index Description

1 dm

2 ro

3 ri

4 412345

5 r

Table 3.2: Definition of temporary vectors used in the Poisson solver.
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/*
Calculate the vector denominator=t0+tl+t2345.

tpl=temp_vector+3*grid_dimensions[0] +startl;

tp2=temp_vector+grid_dimensions[0]+start1;

tp3=temp_vector+2*grid_dimensions[0]+start1;

#pragma ivdep

for(x=start1;x<grid_dimensions[0];x++) {

(*tp1)=(*tp2)+(*tp3)+t2345;

tp1+=2;

tp2+=2;

tp3+=2;

}

Figure 3.6: Example of a vectorized loop

(in terms of double words) between memory accesses. The Titan II memory boards

are 16 way interleaved. That is to say, they are divided into banks with the lowest

four bits of an address determining the bank. A stride value larger than 15 is

equivalent to that stride modulo 16. After access to a bank, some time is required

before another access to that bank can be done. This recovery time is equivalent to

two access cycles. Two examples can illustrate how the stride used can affect vector

unit performance. First, suppose that a vector is arranged in memory such that the

stride between elements is one. This spacing will cause the vector unit to access

the banks with a delay of seven access cycles between accesses to the same bank of

memory. Seven access cycles represent more than enough time for the memory to

recover. Now, suppose instead that the elements are spaced with a stride of 16 (or

equivalently, zero). The vector processor will have to wait two access cycles between

accesses to the bank. Hence, it will take three times as long to transfer the vector

from the memory into the vector unit. Note, however, for the parallelized vectorized
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Special processing at the extreme end points is required because

dm = do + di

.. do
to = -.

d01

... di
t 1 = _.

d01

Select a line of grid points if there are any remaining. If not, then synchronize.

d23 = d2 + d3

d45 = d4 + d5

d2
t2 = ..,

u23

d3
t3 =

d23

d4
t4 =

d45

d5
t5 =

d45

t2345 = t2 + t3 + t4 + t5

ti
1012345 = ro+ t1 + t2345

r
{P-. .- -. ,-. - 7- _..,,,-. -. ,-. - ,-. -.

+tovo+tivl+ t2 V2 + t3 V3 ± t4 V4 + t5 V5 412345VOld2
ti

or VI may not

exist there. Set all elements of r where a Dirchlet condition exists to zero.

norm = norm + > 11
allelement8

CV

VNew = VOld 4- 6.,-
6012345

Synchronize and decide if more iterations are necessary.

Figure 3.7: Vector Parallel process for solving Poisson's equation.
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case stride is not much of a concern. Even if a poor choice of stride should occur,

the other processors will be accessing the other banks so not very much processor

time is actually lost.
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Chapter 4

Simulation Results

The first three sections of this chapter are included as verification of the func-

tionality of the simulation. Section 4.1 briefly reviews the scattering rates presented

in section 2.2.2 and compares them to published rates. Section 4.2 presents sim-

ulated velocity field characteristics and compares to published experimental data.

Section 4.3 presents the simulated device and the current-voltage characteristics

for it. These results are compared to results for a very similar device presented

in [2]. Sections 4.4 and 4.5 contain speed increase results from the parallelization

and vectorization of the program.

4.1 Scattering Rates

The calculated scattering rates were presented in figures 2.4, 2.5, and 2.6.

Figure 2.4, the r valley scattering rates, can be compared to figures 2.15 and 2.17

in [3]. No published rates were found to compare with the L and X valleys. The I'

valley polar optical scattering rates compare very closely with those in [3]. In fact,

there is no distinguishable difference. For the intervalley scattering mechanisms,

the form of the curves are the same, but the magnitudes differ by as much as 50%.

Since the formula used in each case is the same, it is likely that this difference

arises from the choice of the intervalley deformation potentials. The deformation

potential appears to the second power in the rate calculation and it is not a directly

measured quantity. Because of these facts, it is not considered significant that the

magnitudes are not identical.
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No published data was found for acoustic deformation potential scattering in

GaAs. The final comparison was for the total scattering rate. In figure 2.21 of [5],

the total scattering rate for GaAs at 300K is presented. The form of this curve

is the same as that shown in figure 2.4. A difference in magnitude of about 50%

exists at an energy of 1eV. Since the same physical parameters were used, this is

attributed to the fact that non-parabolic bands were considered in [5].

4.2 Velocity Field Characteristics

The characteristic relationship between electric field, e, and the steady state

carrier velocity if in a semiconductor is an experimentally measurable quantity.

Because of this fact, it is one of the most useful tests of a solid state Monte Carlo

simulation. Since the e 17 characteristics do not depend on the device being

simulated, it is possible and desirable to divorce the simulation from all real space

considerations. The simulation that is left is referred to as a ic-space or ensemble

Monte Carlo simulation. The divorce from real space means that there is no tracking

of positions, no boundary conditions, no contacts, and no solution to Poisson's

equation. The K ii relationship is determined by subjecting every particle to the

same electric field, allowing them to reach steady state, and then calculating the

average velocity of the particles in the direction of the field. The results from the k-

space simulation are shown in figure 4.1. These simulated results compare favorably

with the experimental results given in [12]. The noise in figure 4.1 is due to the fact

that the ensemble average rather than the time ensemble average was used.

4.3 MESFET Description and Simulated Characteristics

The device simulated was a n-type GaAs MESFET as shown in figure 4.2.

The geometric parameters of the device were chosen to match those used by [2]. The

reader is reminded that under normal operating conditions the gate is negatively

biased. The conducting channel will exist between the space charge region under
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Figure 4.1: Simulated velocity field curve for GaAs.

the gate and the undoped substrate. The device simulated is actually intended to

be a small portion of a much larger device. The larger device has a gate width of

200pm and the source and drain pads are 200pm square. The currents presented

are scaled to represent the 200pm gate width. The simulation parameters are given

in table 4.1.

The purpose of the simulations presented in this section is to verify that the

MESFET exhibits reasonable characteristics. The carriers are initially distributed

as shown in 4.4. At the start of the simulation a set of fixed potentials is applied to

the contacts. The simulation is then allowed to run to steady state. Steady state

is defined by equal and opposite source and drain currents. Figure 4.3 shows the

time integral of each of the terminal currents for a typical set of applied voltages.

Notice that steady state occurs after approximately 6ps. Figure 4.5 shows a typical

spatial distribution of particles at steady state.

A number of bias points were simulated to determine their drain currents.

The results were compiled into the set of characteristic ID - VD curves shown in
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Figure 4.2: Cross-sectional view of simulated device, after [2]
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Figure 4.3: Integral of the current through each contact for a typical bias point.
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Source

Figure 4.4: Typical initial spatial distribution of particles.

Gate Drain

Figure 4.5: Typical final spatial distribution of particles.
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Parameter Description Parameter Value

Simulation Time Step 0.01ps

Time Steps Between Poisson Solutions 5 (0.05ps)

Initial Number of Particles 8000

Poisson Accuracy 0.001

Length of Simulation 15 ps

Lattice Temperature 300K

Maximum Energy Included in Scattering Rate Tables 3eV

Number of point in Scattering Rate Tables 600

Table 4.1: Simulation parameters.

figure 4.6 and the ID VG curve presented in figure 4.7. The set of bias points

were chosen to match those used in [2]. Figure 4.6 can be compared with figure

10-15 in [2]. The ID VD curves have the expected form, but the currents are 20 to

30% smaller than those presented in [2]. This result is not particularly surprising

or worrisome since [2] does not include descriptions of the scattering mechanisms or

physical parameters used. These results are considered proof that the simulation is

functioning correctly.

4.4 Speed Improvements with Parallelization

The speed improvement as a function of the number of processors used was

measured. To assure reliable results, the system was run in single user mode with a

minimum number of system processes active. The one processor case used the code

compiled for serial execution. The code used did not exploit the vector capabilities

of the computer. The same bias point was, of course, used for all timings. Figure 4.8

shows both the ideal speed increase and the observed speed increase. The deviation

from the ideal case comes from two factors. First, as discussed in section 3.2, the

Titan's bus will saturate as more processors are used. This effect represents most of
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the deviation from the ideal case. The second effect arises from those parts of the

simulation which are not parallelized. As the number of processors increases, this

effect becomes more important. However, with four processors, the serial portions

of the program represent less than 1% of the total computer time. Hence, this effect

is not considered significant.

4.5 Speed Improvements with Vectorization

The speed improvement using the vector units was also investigated. The

measurement conditions were identical to those presented in section 4.4, except that

the code was allowed to exploit the vector capabilities of the machine. The results

are presented in figure 4.9 with the serial-vector case assigned to be unity. Table 4.2

gives the times for these simulations.

Comparing figures 4.8 and 4.9, it is seen that the use of the vector units

saturates the bus more quickly. This behavior is exactly what is expected from the

discussion presented in section 3.4. The specific fact that there is very little speed

increase in going from two to four processors is also expected from the discussion

in section 3.4.

Figure 4.10 shows both the vectorized and non-vectorized cases, normalized

to the non-vectorized serial case. The reader should observe that the two curves

converge to approximately the same point. This result lends support to the idea

that the non-ideal behavior is due to bus limitations.
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# Proc. Non-Vectorized

(Hours)

Vectorized

(Hours)

1 21.2 13.5

2 11.6 7.7

3 8.2 6.8

4 6.7 6.5

Table 4.2: Simulation times.
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Figure 4.10: Comparison of the speed increase for the vectorized and non-vectorized

cases.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions Regarding Parallelization

The speed increase achieved with parallelization on the Titan II is primar-

ily limited by memory access. This conclusion is based on two observations. First,

both the vectorized and non-vectorized cases exhibit approximately the same speed

increase for the four processor case. Second, when the simulation is being executed,

the status lights on Titan II indicate an increased number of memory access colli-

sions. Considering that contemporary single processor workstations are beginning

to exhibit memory access limitations, it is unlikely this problem will be adequately

and inexpensively resolved in the near future. This limitation will at least limit the

number of processors in shared memory machines in the forseeable future.

Parallel programming on the Titan is a difficult and time consuming task

largely due to the lack of good development and debugging tools. Due to this
fact, care must be taken in deciding whether or not to parallelize future programs.

Specifically, there are four points that should be given close consideration when

making the decision. First, how much will the program be used. Second, will the

program be used in a manner where the results from one simulation will determine

the input parameters to the next. Third, what is the current state of the parallel

debugging tools. Finally, what speed increase can be expected from the given

computer.
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5.2 Conclusions Regarding Vectorization

When vectorization is used with parallelization on the Titan II, there is very

little speed increase from it. However, when used alone, vectorization can provide a

significant speed increase. As a reminder to the reader, it is noted again here that

only the potential solution portion of the program was vectorized. An additional

speed increase factor would be gained if the particle movement could be vectorized.

The time and effort required to achieve vectorization in the Poisson solver was

substantial, but it was not nearly as tedious as parallelizing both the Poisson solver

and particle movement. The vector debugging facilities on the Titan II function

considerably more reliably than the parallel debugging facilities. For the specific

case of the Titan II, vectorization provided a much better speed increase per day

of development time than parallelization. In general, the decision to vectorize a

program should be based on four criteria. First, how much will the program be

used. Second, what speed increase, if any, can be expected from vectorization.

Third, what is the current state of the vector debugging facilities. Finally, will

parallelization defeat any benefit from vectorization.

5.3 Recommendations for Future Work

Several ideas for improving the program should be presented here. First, the

code could be modified to use previous final states at the initial state for later runs.

This could significantly reduce the time required for the simulation to reach steady

state. Second, vectorization could be extended to include the particle movement

portion of the program. Third, in some cases it may be possible to avoid the

effort required to parallelize code by simply running multiple copies of the program.

Finally, it may be possible to implement multitasking. Multitasking refers to using

processors in parallel to perform different tasks. For example, since the fourth

processor does not provide much of a speed increase in the vectorized case, it might

be possible to use that processor to relieve the other three processors of a task that
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does not require much memory access. One possibility for this would be to use the

fourth processor to generate all the random numbers for the simulation.

A few comments regarding this Monte Carlo simulation and such simulations

in general may be useful. The first two comments are particularly important. First,

the simulation implemented by Udaya Ranawake [9] on a 64 node N-Cube com-

puter shows considerably more promise for expansion of the simulation. Second,

the development of advanced, reliable development tools on a particular parallel

computer should have a substantial influence on whether that machine is used for

parallel program development. Finally, regarding the simulation presented here,

maintenance of the parallel code when small modifications are made is probably

a good use of time. However, if major modifications are made, the decision to

maintain the parallel code should be made with great care.
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