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Forecasting of ocean waves over a short duration on the order of tens of 

seconds was approached with the optimization of wave energy conversion in mind.  

This study outlines the development of an artificial neural network model, 

specifically the Nonlinear Autoregressive Network with Exogenous Input (NARX), to 

predict a wave-by-wave surface elevation time series based entirely on previous 

observations at the site of interest.  Such a model would be computationally less 

intensive than competing deterministic techniques rooted in wave theory.  

Furthermore, it could potentially fit irregular patterns without some predetermined 

function as would be necessary for many other stochastic approaches.  In principle, 

neural networks can be trained to learn previous patterns based on a recent wave 

record and then utilized in a feedback mode to yield multistep predictions for perhaps 

up to three wave periods (~45 seconds).  The challenge of this approach is error 

accumulation in the intermediary steps that can lead to poor performance for longer 

prediction horizons.  It was hypothesized that filtering the wave record input via 

wavelet or Fourier transformations could enhance model performance and hence, 

explorations of these types of input preprocessing were an integral part of the study.  

The NARX architecture allowed for an exogenous input time series that could 

conceivably mitigate error accumulation by providing an additional degree of signal 

correlation.  Accordingly, the investigation also included potential exogenous inputs 



 
 

 

that could be derived from the original wave record.  The work culminated with a 

band-pass exogenous input delivering a significant forecasting advantage.  Yet, 

providing the zero-phase narrow-band signal posed a challenge when applied in real-

time, without the use of future data.  A two-prong tactical approach was undertaken to 

address this challenge but ultimately proved insufficient.  Consequently, the success 

of the NARX wave-by-wave forecasting method under the conditions of a real-world 

application will depend upon a better solution to the zero-phase filtering challenge. 
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1 Introduction 
 
At present, there is an interest in forecasting ocean waves in the very near term, as it 

is a particular requirement of many wave energy systems under development.  An 

efficient conversion of the energy in waves to electrical power is fundamental to the 

viability of ocean waves as an economical source of renewable energy.  A forecast of 

impending waves would facilitate the tuning of wave energy systems to optimize 

power conversion. 

The aim of this study was to develop a forecasting model utilizing an artificial 

neural network (ANN) that could reliably predict sea elevation data for wave energy 

applications.  Such a model would be capable of obtaining local forecasts based on a 

single wave record.  In this study, special attention was given to the preprocessing of 

input.  It is hypothesized that forecast accuracy could be improved by modifying the 

wave elevation data to be more suitable to an ANN multi-step model.  Several 

preprocessing techniques were investigated including filtering in the frequency and 

time domains, and wavelet transformations. 
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2 Literature Review 
 
The following review is in support of the development of a wave-by-wave forecasting 

model utilizing artificial neural networks (ANN) that can be applied in real-time for 

ocean energy applications.  For the purposes of this investigation, the forecast is 

based solely on a single wave record at the site of interest.  

 This effort crosses into several different disciplines, some with unique 

terminology. Consequently this review contains some general discussion with regard 

to wave energy conversion, stochastic processes, artificial neural networks, filtering, 

and wavelet analysis to provide context.  

2.1 Wave Energy Converters (WEC) 
 
Commercial-scale wave power operation and the industry as a whole are decades 

behind the wind and solar industries.  Yet, wave energy has many auspicious aspects 

and is building momentum.  Nascent projects are worldwide in areas including 

Portugal, Australia, Scotland, and in the United States.  The multiple efforts have lead 

to a variety of wave energy converters (WEC) to suit differing circumstances.  Some 

WECs generate electricity locally and transmit via undersea cables.  Others harvest 

the mechanical energy from the waves to be converted to electricity onshore.   

There are differing methodologies of wave energy conversion, as well.  The 

oscillating water column (OWC) is a device that operates on the principle of air 

compression and decompression.  The attenuator is usually a long device, oriented 

perpendicular to the wave front and uses both vertical and horizontal wave motion to 

drive hydraulic fluid through pumps.  The overtopping device diverts water into a 

basin to create hydraulic head.  The point absorber is a relatively small buoy that 

harnesses the vertical motion of the waves.  And another, the submerged pressure 

differential device, sits on the ocean floor and converts the pressure fluctuations of 

wave motion into electricity.  (Brekken et al., 2009; Drew et al., 2009)  Although 

multiple design types allow for a greater number of potentially suitable wave energy 
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sites, one disadvantage facing the wave industry is that there is no universally 

preferred WEC design to focus efforts.   

2.1.1 WEC System Controllers 
 

Design-specific system controllers enhance the conversion of wave energy into 

electrical energy.  System controllers are no small part of WEC development, as they 

are integral to device safety, operational efficiency, and profitability.  To illustrate 

some control strategies, consider the point absorber variety of WEC, for which the 

system oscillations can be tuned to the incident wave to maximize energy absorption.   

One way of tuning, linear monochromatic control, adjusts the resonant frequency of 

the system to match the dominant wave frequency.  Assuming operation in one 

degree of freedom (vertical motion), the maximum power capture is limited to 50% of 

the incoming wave power. (Brekken et al., 2009)  Alternatively, the system 

oscillations can be stalled at the extremes of movement and released when the waves 

are in phase to maximize energy extraction. (Drew et al., 2009)  

The first is an example of reactive control.  The power takeoff system (PTO) 

is utilizing feedback and reverses power flow during parts of the oscillation cycle to 

better match the dominant frequency.  The second method described (latching) is an 

example of a resistive control, a suboptimal method to approximate phase alignment 

without reversing power flow through the PTO machinery. (Falnes & Hals, 2012)  A 

third strategy, model predictive control (MPC), is an example of advanced reactive 

control.  It accounts for constraints on system forces, velocities, and position in the 

context of desired future velocities and positions.  (Brekken et al., 2009; Brekken, 

2011) 

2.1.2 WEC Forecast Requirements 

 

Generally, optimal and many suboptimal control strategies require some early 

knowledge of the next impending wave. (Fusco & Ringwood, 2012; Hong et al., 

2014; Korde, 1999; Schoen & Hals, 2011; Reikard, 2013)  Quantifying the length of 

forecast necessary is subject to electric control strategy, WEC design, the power 



 
 

 

4 

takeoff system, and of the ocean site.  Fusco & Ringwood (2012), with a focus on 

heaving WECs and reactive-based controller systems, identified typical lead times 

from 30 to 60 seconds (2 - 4 peak periods) depending on the device size.  In this 

study, the focus was on forecasting wave excitation force, which is obtained from 

wave elevation measurements via a system transfer function set at optimal gain.  By 

lowering the system gain in accordance with the excitation force spectral distribution, 

the prediction horizon requirement could be reduced to perhaps 1 peak period in 

many cases, although with a cost to overall performances.   

Further, the existence of a critical horizon was discussed as the horizon at 

which no new wave-by-wave data is helpful to system performance.  The critical 

horizon was deemed dependent on the particular WEC situation and likewise, 

difficult to quantify in a general sense. Although not explicitly stated within the 

study, it could be inferred that improvements in power capture asymptotically 

diminish with given data ~1 peak period beyond an established beneficial forecast. 

(Fusco & Ringwood, 2012) 

In the case of a point absorber type WEC employing bang-bang control (feed-

back control that abruptly switches between two states) with both state and input 

constraints, a two-fold increase in energy output is achieved using sea elevation 

predictions. (Li et al., 2012) The results were based on simulations, but did utilize real 

sea wave data gathered off the coast of Cornwall, UK.  Surface elevation forecasts 

were achieved via deterministic sea wave prediction (DSWP).  The key finding in this 

study was that with regard to this control method, no more than 1 second prediction 

horizon was required to achieve optimal benefit, assuming point measurements could 

be made locally.  However, it was argued that in this case, it would not be possible to 

acquire local data due to the interference created by the WEC motion.  Therefore, 

point measurements must be made at a distance from the WEC and the corresponding 

prediction horizons were recommended to be on the order of ten seconds to allow for 

the propagation delay.  

There are attempts to obviate the reliance on forecasting all together.  Fusco & 

Ringwood (2013) propose a simple suboptimal, but robust control that promises to 

achieve levels of power capture nearly as good as achieved via MPC in most sea 
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states without the need of predictions.  This alternative is specific to bottom-reference 

oscillating WECs, and relies on a novel method of tuning the magnitudes of velocity 

and excitation force in real-time.  

Clearly, the performance requirement of real-time forecasting is tied to the 

state of WEC control.  Success at optimizing power conversion will depend jointly on 

improvements in both WEC controller systems and wave-by-wave forecasting.  Yet, 

attempts to sidestep the forecasting requirement signify a frustration with of the lack 

of a viable forecasting solution, thus far.  Of the small number of documented 

attempts focused on wave-by-wave forecasting, success has remained elusive.  The 

ability to accurately extend the forecast horizons to 3-4 peak wave periods would be 

valuable, allowing for greater flexibility in controller design.  The various 

methodologies explored in recent literature are discussed below and include both 

deterministic (theory based) and stochastic (statistics based) approaches.   

2.2 Deterministic Forecasting and Remote Sensing 

 

When predicting the near-term wave evolution, a deterministic model is the more 

conventional choice.  It is always desirable to model an environmental system 

through the governing laws of nature.  However in this occasion, a solution based on 

physics necessitates both multiple sea surface measurements to detect directional 

variability and mathematical simplifications for complex wave theory.  Many 

solutions have been generally imprecise (phase-averaged) and/or computationally 

intensive.  One approach addresses these constraints by limiting forecasting to 

quiescent intervals.  This has proved useful for maritime tasks such as cargo transfers 

or recovery/deployment of small watercraft.  (Belmont et al., 2014)  Other 

noteworthy deterministic efforts are described in the following paragraphs.   

An alternative to phase-averaged spectral models was proposed by Blondel et 

al. (2008).  The authors utilized a High Order Spectral (HOS) method to predict 

phase-resolved simulations of nonlinear wave dynamics.  To begin, the initial wave 

field was reconstructed from wave elevation measurements via a multi-level iterative 

process.  Analytic calculations for first and second order wave components and HOS 

simulation for higher order components were utilized in the reconstruction.  Once the 
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initial wave field was obtained, the forecast was made either via an analytic wave 

solution based on the initial wave components or a HOS simulation using the 

reconstructed wave field as the initial condition. 

In another study, Halliday et al. (2011) applied the fast Fourier transform (FFT) to 

simulated data to deconstruct the time series into a harmonically related wave vector 

of real and imaginary components yielding wave amplitudes and phase values.  The 

forecast was realized by using this harmonic representation together with the 

following dispersion relationship 

 

!!! = !!!tanh!(!!ℎ)      (2-1) 

 

that relates angular frequency, !!,!to wave number, !!.  The other parameters are 

gravitational acceleration, g, and depth, h.   

Agreement was poor with regard to forecasting in time.  The reconstruction 

imposed an artificial period onto to the generally non-periodic ocean wave history, 

based on the record length of the FFT.  Better correlation was found by instead 

forecasting in both space (50 meters ahead) and time (30 seconds into the future).  

However, the reconstructed wave profile was less accurate at early times since this 

portion of the forecast included the slower traveling higher frequency content that had 

not yet in reality reached its destination.  

Other notable advances take advantage of remote sensing marine radar 

technology.  Nautical X-band radar of phase-resolved incoming waves may fulfill the 

spatial input needs of deterministic prediction models.  Typically, X-band radar has 

been used in conjunction with spectral 3D FFT methods to retrieve statistical wave 

parameters such as mean wave period and wave direction.  Lately, there have been 

strides in relating the X-band radar images to wave elevations. (Gangeskar, 2014 and 

Wijaya & Van Groesen, submitted)  These methods are an improvement over Borge 

et al. (2004) in that they do not require any reference measurements.  

Preliminary work in the reconstruction of sea surface elevation from 

sequences of synthetic radar observations is detailed in Wijaya, Naaijen, Andonowati, 

& Groesen, 2015.  Furthermore, these synthetic reconstructions were transformed into 



 
 

 

7 

the future sea surface elevations with a correlation above 0.9.  In this case, Dynamic 

Averaging-Evolution Scenario (DAES) was employed to reconstruct regions of 

“shadowed” sea elevation due to imperfect radar imagery.  This combined with a 

linear (dispersive) evolution operator determined the future evolution of the waves.  

These results are promising, but require further development to realize a potential for 

real sea applications. 

2.3 Stochastic Forecasting 

 

In the case of near-term forecasting, stochastic models are an attractive alternative to 

deterministic models, since they are the only way of obtaining local forecasts with 

single point measurements.  They are also quick in application and can be relatively 

straightforward to implement.  Speed in application is of particular value to 

successful and profitable WEC operation, since WEC controllers require forecast 

updates in real-time.  Wave-by-wave forecasting via stochastic models is an on-going 

effort, as is demonstrated a growing presence in scientific literature that are described 

in 2.4.1.  Prior to discussing such work and the stochastic time series models used for 

wave-by-wave forecasting, it is useful to start with a brief overview of stochastic 

analysis. 

2.3.1  Stochastic Analysis and Bulk Parameters 

 

As the counterpart to a deterministic system, a stochastic system is characterized by a 

random pattern that cannot be known precisely.  Stochastic ocean-wave forecasting 

employs probabilistic methods based on wave records.  And as a stochastic model 

predicts a set of possible outcomes weighted by probability, it requires little 

knowledge of the physical processes that govern the evolution of the ocean surface.  

Stochastic approaches have been widely employed for decades to analyze the changes 

of bulk parameters such as significant wave height or peak wave period, or to 

estimate the likelihood rogue waves.  Time lengths typically on the order of seasons, 

days, or hours are considered because of the imprecise nature of statistics. (Ochi, 

2005) 
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Stochastic analysis of random ocean waves spans the domains of time, 

frequency, and probability.  Statistical analysis from random observation in the time 

domain has roots in early oceanography.  Careful readings of wave records and 

applying the appropriate probability functions can yield reliable estimates of bulk 

parameters, if the wave records are long enough.  The auto-correlation function in the 

time domain provides the time-average of wave energy.  But more importantly, the 

autocorrelation function is a mathematical link to the frequency domain; the 

autocorrelation function and the spectral density function are Fourier transform pairs.  

Further, the wave spectrum provides a convenient bridge to the probability domain.  

And it is spectral analysis in the frequency domain combined with the appropriate 

probability functions that allow for more rigorous probabilistic predictions of bulk 

properties. (Ochi, 2005) 

2.3.2  Time Series Forecasting Models 
 
Stochastic analysis is not limited to bulk parameters and systems need not be purely 

random to merit stochastic-based forecasting.  Forecasting via time series models is 

generally treated as a stochastic difference problem that involves both deterministic 

and stochastic processes.  

Ocean waves in deep water are considered to be a Gaussian random process in 

that they are normally distributed with zero-mean and constant variance.  All 

Gaussian time series are considered linear and as such, the best forecast approach is a 

linear model.  Examples of linear time series models are autoregressive (AR), 

autoregressive with exogenous input (ARX), and autoregressive moving-average 

(ARMA).  These forecasts are linear combinations of past and present values of the 

time series and are quick and relatively straightforward, but are limited in capability 

to capture the more irregular aspects inherent in the sea.   

In ocean depths less than half a wavelength, waves are often non-Gaussian 

and may be nonlinear.  In this case it may be beneficial to consider a nonlinear 

forecasting approach.  Nonlinear time series models in the form of artificial neural 

networks (ANN) bring in complexities, but also offer potential for greater accuracy.  

Nonlinear autoregressive (NAR) and nonlinear autoregressive with exogenous 
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(external) input (NARX) are two types of ANN specifically suited for nonlinear time 

series forecasting.  The capabilities of NARX to capture irregular patterns in chaotic 

time series analysis are documented in Kim et al. (1999).   The ability of NARX to 

track longer-term variability was demonstrated by Jain et al. (2011), based on 

simulated noisy inputs.    

2.4 Forecast Error Metrics 

 

Two established values to assess the performance of short-term forecasts are the root 

relative error, RRE and the correlation coefficient, R.  They are defined below and 

utilized in previous work on a scaled test model of an oscillating water column, for 

short-term forecasts of airflow and WEC motions. (Sheng & Lewis, 2011)   

 

!!" = ! !!!!! !!
!!!

!!!! !!
!!!

       (2-2) 

 

! = ! !!!! !!!!!
!!!

!!!! ! !!!! !!
!!!

!
!!!

           (2-3) 

 

The predicted and measured values are represented by x and y, respectively. 

 

The RRE value is essentially the root mean square error relative to the root 

mean square amplitude.  It provides a relative measure of the difference in amplitude 

between the predicted and measured values.  Small RRE values are desireable and 

RRE = 0 indicates perfect agreement.  The correlation coefficient R indicates the 

phase relationship between the predicted and measured values.  R values range from 0 

to 1, where  R = 1 indicates perfect agreement.   

 The coefficient of efficiency CE and the goodness-of-fit index F(l) are two 

metrics also cited in relevant literature.  They are the same metric in different form, 

and for each forecasting horizon l, they are related to RRE as follows.  

 

!" ! = !1− !!!" ! !!      (2-4) 
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! ! = 1− !!!" ! ! ∙ 100    (2-5) 

 

CE may range from -∞ to 1, with values close to 1 indicating better agreement 

between observed and forecasted values.  F(l) is CE in percentage form, and a value 

of 100% would indicate perfect agreement.   

 The combination of the correlation coefficient (R) and the coefficient of 

efficiency (CE) gives a rigorous estimate of overall forecast performance.  Figure 2.1 

provides an illustration of how these values relate to differences in amplitude and 

phase.  The errors were computed using two monochromatic signals of identical 

frequency.  It is clear from the left side of Figure 2.1, that the correlation factor does 

not measure differences in amplitude.  A 100% difference in amplitude is however 

indicated by a value of 0 with respect to the coefficient of efficiency.  From the graph 

on the right, phase errors are reflected in both error metrics.  A phase difference of 

~60 degrees corresponds to a coefficient of efficiency of 0 and a correlation factor of 

0.5.  

 
Figure 2.1.  Monochromatic example of the effect of amplitude difference (left) and 
phase shift (right) on the correlation factor and coefficient of efficiency.  

 

2.4.1 Stochastic Time Series Model Comparisons 
 

The following review of previous work regarding wave-by-wave forecasting 

underscores the small number of documented efforts.  First, the work by Fusco et al. 

(2010) is discussed, which offers a good overview of the potential performance of 

1 1.2 1.4 1.6 1.8 2
Relative Amplitude Difference (A2/A1)

0

0.2

0.4

0.6

0.8

1

1.2

C
or

re
la

tio
n 

Fa
ct

or

Mean Errors

0

0.2

0.4

0.6

0.8

1

1.2

C
oe

ffi
ci

en
t o

f E
ffi

ci
en

cy

0 22.5 45 67.5 90
Phase Shift (degrees)

0

0.2

0.4

0.6

0.8

1

1.2

C
or

re
la

tio
n 

Fa
ct

or

Mean Errors

0

0.2

0.4

0.6

0.8

1

1.2

C
oe

ffi
ci

en
t o

f E
ffi

ci
en

cy



 
 

 

11 

many stochastic contenders.  Other studies addressed thereafter include Boren et al. 

(2014), Shoori, et al. (2014), Paparella et al. (2015), and Schoen et al. (2011). 

The principal stochastic approaches were surveyed by Fusco et al., (2010) 

using measured data from two locations.  One set was from the West Coast of Ireland 

and generally represented a narrow-banded sea state (sampling frequency of 2.56 Hz 

and a depth of 20m).  The other was from the Azores Archipelago, and generally 

represented a broader-banded sea state (sampling frequency of 1.28 Hz and a depth of 

40m).  As an additional note, input data was low-pass filtered prior to forecasting, 

which would present a challenge in real-time implementation.  See 2.6 for further 

discussion on input preprocessing. 

The major approaches considered are listed below.  The prediction accuracy 

was measured with the goodness-of-fit index F(l) for each forecasting horizon l, 

which is defined the preceding section.  Note that a 100% value for F(l) is a perfect l-

step ahead prediction.   

 

• Cyclical models are noted as the most straightforward.  Wave elevation is 

expressed as a superposition of linear harmonic components so that the 

forecast is effectively achieved from a multivariate linear regression onto 

these fixed harmonic frequencies.  The choice of frequencies is crucial and 

problematic.   

Broad-banded:   ! ! = 10! ≅ !30%! 
Narrow-banded:  ! ! = 12! ≅ !5− 29% 

 

• Sinusoidal extrapolation with the extended Kalman filter proved more 

challenging, yet offered little actual improvement over the cylical models.  

The wave elevation was treated as a single cyclical component with a time 

varying frequency.   

Broad-banded:   ! ! = 10! ≅ !5%! 
Narrow-banded:  ! ! = 12! ≅ 24% 
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• The AR model provided forecasts of 1 to 1.5 peak wave periods and 

maintained accuracy for more than 2 hours.   

Broad-banded:   ! ! = 10! ≅ !95%! 
Narrow-banded:  ! ! = 12! ≅ 94% 

 

• The extended Kalman filter allowed the nonlinear prediction equations to be 

approximated by a linearized form.  Extending the model to multiple cyclical 

components of variable frequency is under study.   

Broad-banded:   ! ! = 5! ≅ !5%! 
Narrow-banded:  ! ! = 12! ≅ 24% 

 

• ANNs were unfavored in part since the models are completely enclosed in a 

black box and do not allow inspection of inherent characteristics to assess 

process behaviors.  Preliminary attempts found that ANNs did not generate 

the superior results necessary to justify the added model complexities.   

Broad-banded:   ! ! = 10! ≅ !68− 84%! 
Narrow-banded:  ! ! = 12! ≅ 80− 93% 

 

Of all of the approaches considered by the authors, AR was deemed the most capable.  

However, it was cautioned that AR performance was still not adequate to meet most 

current WEC controller needs.   

Beyond the above survey, there are a few other investigations of stochastic 

wave-by-wave forecasting.  Boren et al. (2014) conducted an informal feasibility 

study using an ANN for wave-by-wave forecasting.  Results were optimistic enough 

to lead to a second, more detailed effort.  In this follow-up study, Shoori et al. (2014) 

presented two methods of training a neural network to forecast wave elevations.  The 

data was from the Western Coast of Ireland at the Belmullet Wave Energy Test Site 

(sample rate of 1.28 HZ).  The two models shared similar FFNN architecture, but 

were trained on different datasets.  The first dataset contained the measured wave 

elevation.  The second contained wave elevations reconstructed from the spectral 

analysis of the first dataset.  The primary aim was to assess the scalability and 
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generality of forecasting, and the secondary aim was to assess the capability of 

training from spectral data, which are widely available.  Only single-step forecast 

horizons (0.78 s) were evaluated.   

Both methods of training yielded predictive capability with correlation 

coefficients (R, as defined in 2.4) of 0.761 for the reconstructed data and 0.845 for the 

measured model, averaged over all considered sea states.  However, the model trained 

on reconstructed data did not scale nearly as well to a significantly different sea state 

as the one trained on measured data. 

In a study specific to an oscillating water column (OWC), Paparella et al. 

(2015) used WEC up-wave input to aid in the prediction of wave profiles within the 

OSC chamber.  Four forecasting methods were investigated.  An AR method was 

used first and served as the baseline approach.  The second method was a finite 

impulse response model (FIR) that assumed the chamber wave elevation is a linear 

combination of past up-wave measurements alone.  The third and fourth methods 

were ARX and NARX, where the primary input was the past values of chamber 

elevations and the up-wave input served as the exogenous component.  

Performance was gauged using the goodness-of-fit (as defined in 2.4) relative 

to the AR accuracy.  The FIR model demonstrated far inferior performance relative to 

AR for all prediction horizons.  The ARX model demonstrated similar accuracy for 

shorter horizons, but reduced accuracy at horizons longer than 15 seconds.  NARX 

offered no benefit over ARX, as the sea state was dominated by swell conditions and 

the surface within the chamber was generally linear.  In conclusion, the use of up-

wave exogenous input on the whole was deemed not useful.   

Some other stochastic examples of wave-by-wave forecasting can be found as 

integral parts of various controller strategies.  For example, Schoen et al. (2011) 

focused primarily on WEC controller development, but does address the forecasting 

within.  The authors proposed a hybrid Kautz/AR model, but also considered Kautz 

alone, AR, and ARMA to address forecasting needs of the fuzzy logic/robust 

controller that required only very short forecast horizons (2 s). 
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2.4.2 Related Stochastic Forecasting Efforts 

 

There are a number of other forecasting studies for different but related applications.  

Sheng & Lewis (2011) used an ANN to predict airflow and motions of an oscillating 

water column WEC using a scaled test model in a wave tank.  Correlation R and root 

relative error RRE were approximately 0.7 and 0.8, respectively for 2 second 

forecasts of column water height.  These values corresponded to a sea state with a 

peak wave period of 10 s and a wave height of 5m.  The model performance was 

deemed promising but still inadequate for practical device control.   

 Ling (2015) proposed the use of the WEC itself as both a measurement and 

prediction device via software and motion sensors.  Specifically, the WEC motions 

were used to estimate excitation force by way of the Kalman filter.  Predictions of 

future excitation forces were then obtained with an AR model.  Heave, surge and 

pitch for horizons of up to 20 seconds were predicted, but good performance was 

generally limited to 5-6 seconds, beyond which correlation coefficients were well 

below 0.5 for wave excitation forces.  Prediction accuracy was closely correlated with 

estimation accuracy and was better for high-energy swell dominated sea states as 

opposed to low-energy wind dominated sea states. 

Notable success was found regarding multi-step forecasting of wave power. 

(Hatalis et al., 2014)  It should be stated that forecasting power output is 

fundamentally different from forecating wave elevation in that the power time series 

are non-sinusoidal with hourly time scales.  However, the analysis had some parallels, 

considering the multi-step NAR method.  This study utilized data collected from Nov. 

2011 to Dec. 2011 at Belmullet Berth B, a high wave potential region off the coast of 

Ireland.  Multi-step forecasts were conducted using an ANN nonlinear 

autogregressive (NAR) model and yielded correlations of R = 0.98 at 24 hours into 

the future.  In this case, success was only achievable once the input data was 

smoothed via an exponential moving average, highlighting the importance of the 

preprocessing of input.  Further discussion of input preprocessing is given in Section 

2.6. 
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There are two other nonlinear stochastic studies mentioned for completeness. 

The first employed ANN, genetic programming (GP) and model tree (MT) for hourly 

forecasting of significant wave height based on wind time histories. (Jain et al., 2011)  

All three models demonstrated similar forecast performances.  The second compared 

several stochastic models against the physics-based wave prediction model WAM for 

the short-term forecasting of hourly wave energy flux (Ibarra-Berastegi et al., 2015).  

The random forests (RF) method was found to outperform both the empirical 

orthogonal functions (extended EOFs) and the analogues stochastic methods, and in 

certain conditions RF also out-performed WAM.  

2.4.3 Stochastic versus Deterministic Forecasting  

 

ANN and AR models were assessed relative to Wavewatch III, a physics-based 

prediction model, for short term forecasting of simulated power output for five types 

of WECs. (Reikard, 2013)  Again note that a wave power time series differs in shape 

and time scale from a wave elevation time series.  The accuracy associated with the 

stochastic models was highly dependent on horizon size while the forecast accuracy 

of the physics-based model was less so.  Relatively speaking, the stochastic models 

showed better performance for shorter forecast horizons (less than 8 hours), the 

physics-based model faired better on longer forecast horizons (more than 11 hours), 

and both types demonstrated similar performance in the mid horizon range (8-11 

hours).  

2.5 Artificial Neural Networks (ANN) as Time Series Models!

 

As noted earlier, ANNs (Artificial Neural Networks) are a viable contender in wave-

by-wave forecasting as they have the potential to “learn” model complexities of an 

irregular time series and return results with speed.  They can shortcut the design effort 

in that they do not depend on a physical understanding of the process at hand. Yet, 

ANN modeling comes with its own set of challenges.  The process of optimizing the 

learning algorithm requires familiarity with ANN techniques.  This is usually done by 

hand by testing out different algorithm settings and assessing the resulting 
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performance.  A poorly designed ANN is unstable and inaccurate and can lead to the 

premature conclusion that any ANN approach is unsuitable. (Deo, 2010)  Fortunately, 

some recent inroads toward automating this time consuming process for ANN models 

bode well for the future.  Flores et al. (2012) demonstrate an optimization process, 

Evolutionary Design of Forecasting Models (EDFM), that successfully identifies both 

the specific architecture and the weights of the ANN with no human intervention. 

2.5.1 ANN Architectures 

 

A common approach for time series analysis is a feedforward neural network (FFNN) 

trained with backpropagation.  These networks are relatively easy to use and 

converge quickly.  One drawback of FFNNs is the lack of short-term memory in that 

they repond similarly to a given input, regardless of former inputs.  Time delay neural 

networks (TDNN) are FFNNs with delayed input and can be viewed as autoregressive 

models.  Recurrent neural networks (RNN) are used in similar applications as 

TDNNs, but have the advantage that the neurons send feedback signals to each other 

giving it a short term memory.  Nonlinear autoregressive (NAR) and nonlinear 

autoregressive with exogenous output (NARX) are examples of RNNs with time 

delayed input.  NARX models are typically more robust than TDNNs, but require 

more processing time.  (Hulthén, 2004; Dorffner, 1996; Kondratenko & Kuperin, 

2003) 

2.5.2 Training Algorithms 

 

ANN training algorithms fall into two basic categories according to the type of 

optimization operator:  Deterministic and Stochastic.  (Masters, 1995; Prudêncio, 

2003)  Deterministic operators are fast, but are sensitive to fall into local minima.  

The most common training algorithms use determinstic search operators and include 

back propagating, scaled conjugate gradient method and other gradient-based 

algorithms.  Stochastic algoritms (or evolutionary algorithms) perform global 

searches according to probabilistic criteria.  Stochastic algorithms are less vulnerable 
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to local minima, but can be slow to converge.  Genetic Algorithms (GA) and 

Simulated Annealing (SA) fall in this category.  

There has been some investigations into combining algorithm types to achieve 

a desireable mix of qualities.  Prudencio (2003) utilized hybrid learning by combining 

GA and the gradient-based Levenberg-Marquardt (LM) to yield lower prediction 

errors in shorter executions in preditions of monthy river flow using a time delay 

neural network (TDNN).   Another example of hybrid learning is given by Salami et 

al. (2013) for NARX using differential evolution and GA for the purpose of 

identification (as opposed to time series forecast). 

An incomplete list of optimal state estimators is given below.  (Simon, 2006; 

Wilamowski, 2003) 

 

Linear Systems 

• Least Squares Estimation:  The estimation of a constant vector on the basis of 

linear but noisy measurements.  Least squares serves as the basis of many 

optimal state estimators. 

• Kalman filters (KF):  the optimal state estimator for unconstrained, linear 

systems subject to Gaussian noise.   

Nonlinear Systems 

• Extended Kalman filters (EKF):  Nonlinear state estimator that relies on 

linearization to propagate the mean and covariance state.  The unscented 

Kalman filter (UKF) is a modified version of EKF with reduced linearization 

errors.  

• Moving-horizon Estimation (MHE):  A constrained, nonlinear optimization 

that reduces to the Kalman filter for unconstrained, linear systems.  Moving-

horizon estimation proved better capable than EKE to handle multiple optima 

and is posited as a feasible alternative to the EKE in the context of chemical 

reaction networks. (Haseltine & Rawlings, 2005) 

• Particle filter:  A completely nonlinear state estimator at the price of increased 

computational effort. 
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• Levenberg-Marquardt optimization:  Second-order gradient based technique 

and good choice for many time series problems. (A stock Matlab function for 

nonlinear regression) 

• Bayesian Regulation:  a form of Levenberg-Marquardt that minimizes a linear 

combination of squared errors and weights.  Preferred for noisy data, but 

requires longer processing. (A stock Matlab function for nonlinear regression) 

• Scaled conjugate gradient method:  Utilizes gradient calculations that are 

more memory efficient than the Jacobian calculations used in Levenberg-

Marquardt.  (A stock Matlab function for nonlinear regression) 

• Resilient back propagation:  Eliminates the effects of harmful derivative 

functions.  Relies only on the sign of the derivative (not the magnitude) to 

determine weight updates.  It is generally faster than the standard steepest 

descent algorithm, in exchange for a modest increase in memory 

requirements. (A stock Matlab function for nonlinear regression) 

2.5.3 ANN Forecasting in Related Ocean Applications 
 

Most previous investigations of ANNs with respect to ocean waves have targeted the 

evolution of bulk parameters such as significant wave height (Hs) and peak wave 

period (Tp) on an hourly time scale.  (Balas et al., 2004; Deo et al., 2001; Deo & 

Naidu, 1998; Makarynskyy et al., 2005; Mandal & Prabaharan, 2006)   

Despite the large time scales and non-sinusoidal patterns, recommendations 

based on these efforts can be related to the current application.  In particular, refining 

forecasts by using ANNs in series is suggested in Deo, 2010.  The ability of NARX to 

retain information 2-3 times as long, with respect to conventional recurrent networks, 

is concluded in Lin et al., 1998.  Khalil, 2011 provides a good reference for the inner-

workings of the NARX architecture.  The impact of exogenous input on the overall 

performance of NARX (and ARX) for the application of a reactor-exchanger is 

investigated in Chetouani, (2008).  Further issues particular to many ANN 

applications such as over-fitting, architecture bottlenecks, and qualifying input are 

documented in similar studies.  (Huang et al., 2003; Kim et al., 1999; Londhe & Deo, 

2004; Mandal & Prabaharan, 2010) 
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2.6 Input and Preprocessing 

 

Successful implementation of autoregressive methods such as AR, ARX, and NARX, 

typically requires the preprocessing of input.  The removal of the time series mean, 

and the removal of linear or nonlinear trends often accomplished by differencing, are 

important prior to forecast.  These processes can be reversed post forecast.  

Smoothing of input is also recommended, which can be done via filtering in the time 

or frequency domain.  (Dorffner, 1996)  Time series applications that demonstrate the 

effectiveness of input preprocessing include the use of a moving average for 

forecasting foreign exchange rates (Kondratenko & Kuperin, 2003), an exponential 

moving average for ocean power production forecasts (Hatalis et al., 2014), and 

wavelet transforms for ocean wave height forecasting (Dixit et al., 2015).  While 

these time series differ from wave elevation histories in signal profile and time step 

resolution, the commonalities within the prediction model architectures suggest the 

preprocessing techniques offer potential benefits for wave-by-wave forecasting. 

2.6.1 Signal Filtering  
 

Stochastic forecasting methods exploit signal correlations, and are thus limited by the 

intrinsic correlation of the signal.  And since the intrinsic correlation is in general 

proportional to the signal bandwidth, the ability to forecast waves is highly related to 

sea state. (Fusco & Ringwood, 2013)  Narrow-banded signals are more highly 

correlated than broad-banded signals.  On this basis, there may be potential to 

improve forecast performance through filtering.   

Filtering can be done in the time domain by averaging over adjacent data 

points or in the frequency domain by limiting high frequency components.  Moving 

average and exponential moving average are two examples of time domain filtering.  

In the case of a moving average, data is averaged evenly over a window of a specified 

length.  The smoothed signal is obtained by sliding the window forward step by step.  

This type of moving average would preserve the phase of the time series and thus, is a 

zero-phase filter.  Filtering in the frequency domain is another example of a zero-

phase filter.  The there will not be a practical method of zero-phase filtering in real-
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time without further research. (Fusco & Ringwood, 2010)  The specifics of real-time 

filtering limitations of zero-phase filters will be addressed in 3.2.1.   

In some studies, focus is shifted to an alternative context to minimize the need 

for filtering.  Quiescent interval prediction of sea elevation is the target of Belmont et 

al., (2006) for the purposes of using DSWP for marine applications.  Non-causal 

(zero-phase) finite impulse response filter is deemed suitable for the specific 

application due to the nature of the DSWP process.  Some researchers focus their 

forecasting efforts on the effect of the wave elevation on the device such as the wave 

excitation force.  Depending on the size of the device relative to the higher frequency 

wavelengths, the wave excitation force is inherently low-pass filtered to some extent, 

lessening the need for a zero-phase filter.  (Brekken, 2011; Ling, 2015) 

The exponential moving average weighs the windowed data unevenly, by 

favoring terms closer to the time of interest.  It is not a zero-phase filter, but the phase 

shift is linear and can be largely corrected post forecast.  The implementation of this 

filter is described in Hatalis et al. (2014), in which a fairly accurate method for short-

term forecasting of wave power is developed for the primary goal of operational 

scheduling.  The method utilized NAR and its success was due in large part to the 

preprocessing of input.  The model forecasted exponentially smoothed wave power 

directly converted from measured SWH from the Irish Marine Institute. The authors 

improved on other power forecast attempts by using the NAR version of NARX (as 

opposed to other ANNs), predicting high resolution (ten-minute intervals) 

exponentially smoothed values of wave power instead of SWH, and forecasting 

multistep into the future instead of just one step into the future.  Refer back to 2.4.2 

for performance details.  The preprocessing specifics are given below. 

Prior to exponential smoothing, linear interpolation was applied to the data set 

to yield values at every minute for the purpose of correcting missing and irregular 

data points.  From this set they then extracted 10-minute data points.  The exponential 

smoothing formula is  

 

!!!! = !!!!! + (1− !)!!!!     (2-6) 
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The smoothed weighted average si+1 is calculated from the previous observation yi, 

and previous smoothed value, si-1.  The smoothing factor α is given by the following 

expression. 

! = ! !
!!! ,!!!!!!0 < ! < 1            (2-7) 

The window size is specified by k, which is taken to be 12 hours in this case.  The 

result of the exponential smoothing is shown below. (Hatalis et al., 2014) 

Figure 2.2.  Exponential smoothing from (Hatalis et al., 2014). 

 

2.6.2 Wavelet Analysis 
 

Wavelet analysis is an extension of Fourier analysis.  In Fourier analysis, a signal is 

approximated with a Fourier transform, which is a combination of infinite sinusoids 

of differing frequencies.  In wavelet analysis, a signal is approximated with a wavelet 

transform, which is a combination of finite wavelets of similar shape, but differing in 

shift and scale.  Where Fourier analysis is a windowing technique of the same time 

and frequency resolution, wavelet analysis is a windowing technique of varying time-

frequency resolution.  It allows the use of long time intervals for low frequency 

information and shorter time intervals for high frequency information.  
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Wavelet analysis is applicable to both stationary and non-stationary signals, as 

opposed to Fourier analysis, which requires stationarity.  There is no artificial 

periodicity imposed on the wavelet transform since it is a combination of finite 

waveforms.  These finite waveforms are all scaled and shifted versions of one mother 

wavelet.  Time information is not lost with wavelet transforms as it is with Fourier 

transforms.  It is capable of revealing points of discontinuities or certain aspects of 

trends.  

However, the tracking of so much information comes with computational cost.  

This is addressed with discrete wavelet transforms (DWT).  DWT shift and scale at 

discrete intervals, allow for greater efficiency with respect to continuous wavelet 

transforms (CWT) that operate at every scale.  DWT can provide similar accuracy to 

CWT, depending on the choice mother wavelet and level of decomposition.  There 

are many dictionaries of mother wavelets, to suit various applications.  The mother 

wavelet is chosen to match the general characteristics of the time series under 

analysis.  (Mallat, 2009; Misiti et al., 1996; Misiti et al., 2015) 

There have been several recent accounts of ocean wave height forecasting in 

which wavelet transforms are applied in a preprocessing step.  Three studies are 

described below.  In all three, single-step forecasting models were used (as opposed 

to multi-step feedback models) based on the forecast horizons desired.  In the first 

study, the wavelet-transformed input is used for a fuzzy logic model.  In the latter two 

studies, the wavelet-transformed input is used for ANN models.  Wavelet transforms 

are discussed in further detail in 3.2.2. 

 First study:  Özger (2010) used a combination of wavelet and fuzzy logic 

(WFL) to achieve improvements in long-range (>24 h) forecasts of significant wave 

height and average wave period.  Performance was evaluated against three other 

prediction methodologies:  Autoregressive Moving Average (ARMA), Artificial 

Neural Network (ANN), and Fuzzy Logic (FL).  Data, obtained from NOAA’s 

National Data Buoy Center, was from 5 different wave rider buoys off the west coast 

of the United States.   
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The evaluations showed that the WFL model outperformed ARMA, ANN, 

and FL for all forecast horizons (3, 6, 12, 24, 48 h) and especially in higher forecast 

horizons (48 h).  The following table lists CE values as defined in Section 2.4. 

 

Table 2.1.  First Study:  Coefficient of Efficiency 
(Özger, 2010) 

Horizon (h) ARMA ANN FL WFL 

3 0.944 0.948 0.948 0.970 

6 0.873 0.885 0.884 0.933 

12 0.721 0.755 0.754 0.877 

24 0.433 0.533 0.532 0.880 

48 0.188 0.366 0.363 0.718 

 

 

 Second study:  Deka & Prahlada (2012) utilized discrete wavelet transforms to 

decompose the wave height data for use as input for the feed forward neural network 

(FFNN).  The data, obtained off the west coast of India by New Mangalore Port Trust 

(NMPT), was collected from 2004-2005.  The Mallat algorithm with db4 type 

wavelet was used for the discrete wavelet transform (DWT).  The FFNN was trained 

using Levenberg-Marquardt (LM) method to forecast future wave heights directly, 

without the need of an inverse transform.  The hybrid model (WLNN) was evaluated 

with respect to the FFNN using raw data.  The results confirmed that wavelet 

preprocessing improved forecasts, especially for longer lead times (forecasting 

horizons).  The root mean squared errors (RMSE) of the two models are compared in 

the figure below. 
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Figure 2.3.  Variation of RMSE over lead time (Deka & Prahlada, 2012) 

 

Third study:  Removing prediction lags that plague ANN time series 

forecasting in general, and ANN wave height forecasting in particular, was the focus 

of the third study by Dixit et al. (2015).  In this case, two separate ANNs were 

trained, one for approximate wavelet coefficients and the other for detail wavelet 

coefficients.  The outputs of the networks were then transformed back to wave 

heights using an inverse discrete wavelet transform (iDWT).   

The ANNs were of FFNN architecture and trained using LM, similar to the 

previous study.  The data sets included seven years of hourly data (2006-2012) from 

three stations off the coast of Florida, obtained from NOAA.  Correlation coefficients 

(R) as defined in 2.4 are listed in Table 2.2.  

 

Table 2.2.  Third Study:  Correlation Coefficients of  
ANN and Hybrid Model MNWT 

(Dixit et al., 2015) 
Horizon 

(h) 

Station 42040 Station 42039 Station 41004 

ANN MNWT ANN MNWT ANN MNWT 

12 0.94 0.98 0.80 0.83 0.73 0.78 

24 0.86 0.98 0.60 0.63 0.50 0.51 

48 0.78 0.94 0.40 0.42 0.30 0.37 

 
  

Based on the above analyses, preprocessing the input via wavelet transforms 

has the potential to extend the prediction horizons of wave-by-wave forecasting.  An 
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investigation into the practicality of implementing the wavelet transforms in a multi-

step model is of particular interest. 

2.6.3 Exogenous Input 
 
Some forecasting models have the capability for exogenous input (external time 

series), which can greatly improve forecasting performance.  Determining the 

appropriate exogenous input requires some trial and error.  Excess input can 

compromise the forecast.   

Traditionally, a second related time series would be used.  For example in the 

case of a reactor-exchanger, the heat transfer fluid temperature was the exogenous 

input to aid the NARX forecast of oulet temperature of the reactor-exchanger. 

(Chetouani, 2008)  In an example more relevant to the present goal, up-wave 

exogenous input was used (with little benefit) for a hybrid Kautz/AR model to 

forecast the water surface elevation within the oscillating water column. (Paparella et 

al., 2015)  This analysis was previously discussed in greater detail in 2.4.1. 

The present investigation is limited to a single time series, but it is 

conceivable to derive the exogenous input from the primary time series.  With regard 

to foreign exchange rates, daily returns were used to suplement the primary input of a 

moving average of the daily returns.  An exponential moving average was also 

considered and was found to yield similar results. (Kondratenko & Kuperin, 2003) 
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3 ANN Model Development 
 

The forecasting method used in this analysis can be separated into three basic 

components:  The preprocessing of input, the assimilation of data with time, and the 

forecasting of output.  The overall success depends on whether the input could be 

preprocessed in a way that significantly aided forecasting, yet could be employed 

consistently in real-time. A major concern of integrating the components was that 

autoregressive techniques of the ANN time series model rely heavily on the last data 

points measured.  Many preprocessing steps that are often beneficial in a hindcast 

sense potentially compromise the beginning and end of the data record, and thus, 

complicate performance in the real-time forecasting sense.  These components are 

interdependent, but will be first addressed individually for clarity.  The forecasting 

process was the core of the model and dictated the type of preprocessing required.  

For that reason, the description of the overall model begins with the NARX design 

and requirements. 

3.1 Forecasting of Output 
 

The forecasting method was based on the nonlinear autoregressive with 

exogenous inputs (NARX), a type of ANN particularly suited for time series 

prediction as opposed to other ANNs that may be better suited for classification, 

clustering, or pattern recognition.  The NARX model is stated algebraically in 

Equation 3-1. 

 

!! = ! !!!!,!!!!,!!!!,… !!!,!!!!,!!!!,!!!!,… + !!! ,   (3-1) 

 

where yn is a value of the time series of interest at time step n.  F represents a 

nonlinear function of the present value of an exogenous time series u, as well as 

previous values of both y and u.  A stochastic error term is given by !.    
Neural networks are model-less approximators in that they are capable of 

modeling without prior knowledge of the nature of the system being modeled.  In the 
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case of the NARX model, input is regressed onto a nonlinear function approximated 

with a multi-layered perceptron (MLP).  A perceptron is a mathematical model of a 

biological neuron.  The MLP serves as the basis of supervised learning where the 

training input is mapped onto target outputs.  NARX is termed a recurrent dynamic 

network with feedback.  The model is recurrent in the sense that global feedback is 

applied backward and forward within the model.  It is dynamic in the sense that the 

network continues to adapt during operation, as opposed to a static ANN.  A static 

network learns during the training process and once trained, the model is fixed, or 

static. (Beale et al., 2015)  

The NARX model, illustrated in Figure 3.1, is made up of three layers of 

nodes (or perceptrons):  The input layer, the hidden layer, and the output layer.  The 

first layer is the input layer, which acts as an embedded memory in the form of tapped 

time delays.  Each node is connected to a value in the wave record.  The number of 

nodes in the input layer (often termed input order) and delay spacing (tapped delays) 

can be tuned to suit the character of the input signal.  The performance of the network 

is largely dependent on the choice of the input order and delays.  Generally, larger 

spacing captures lower frequency patterns and tighter spacing captures higher 

frequency patterns.  Insufficient delay spacing leads to redundancy of input, which is 

undesirable.  Too many input nodes will destabilize the network.  Typically, a 

feedback input order of 24 with consecutive delay spacing (15 points per peak period) 

was used in the Huntington Beach analysis, which was sampled once per second.  

Exogenous input order was smaller and often spaced by a factor of 2 or 3 (5 - 7 points 

per peak period), since the signal tended to be more regular.  The tapped delay 

spacing may need to be increased in cases of higher data sample rates.  
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Figure 3.1.  NARX architecture (Hatalis, 2014). 

 

The second layer is referred to as the hidden layer.  Too many nodes in this 

layer may lead to over-fitting, yielding a network that is not well-generalized for new 

input.  Too few nodes may lead to under-fitting and reduced accuracy.  However, the 

small variations in size of this layer were not as critical to overall performance as was 

the sizing of the input layer.  The hidden layer contained 3 nodes in all cases of this 

analysis.  Lastly, the output layer comprised of a single node since the only output is 

the primary time series (forecasted wave record).   

3.1.1 Two-Step Forecasting Method 
 

The NARX forecasting model has the capability to manage two input signals in 

predicting of the future sea surface profile (Eta).  A flowchart illustrating the process 

is given in Figure 3.2.  The feedback input is the signal to be forecasted (measured 

sea-surface elevation).  If the measured data were particularly noisy, the feedback 

input may be smoothed in a preprocessing step.  In that case, the network target 

would actually be the de-noised version of the measured data.  Regardless, 

performance would be gauged against the expected raw measurements.   
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Figure 3.2.  Process flow of the 2-step forecasting method. 

 

 

If an exogenous input were available, Step 1 would be employed in order to 

forecast future values of this signal.  The exogenous time series need not be of the 

same character as the primary feedback input, but it is important that it be correlated.  

Additionally, it must be predictable for simple linear AR (Auto-Regressive) or NAR 

routine.  Next, the NARX model would be employed in Step 2 to forecast the wave 

elevation (Eta) based on both the primary feedback input and the forecasted 

exogenous input.  In the case of no exogenous input, the wave elevation would be 

forecasted via the Step 2 network configured as NAR. 

The model was designed to refresh multi-step forecasts as it progressed in 

time, producing a vector of forecasts associated with each newly measured data point.  

In the case of the Huntington Beach dataset, measured data was provided at every 

second.  A forecast profile was computed for every future second up to a maximum 

horizon of three peak wave periods (45 seconds).   

To understand how the input was incorporated to create each forecast profile, 

consider one instant in time.  Figure 3.3 shows an example of input used with respect 

to the first and last prediction of the multi-step forecast.  The upper graphs represent 
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Step 1 in which the exogenous input has already been forecasted.  The 45-second 

forecast is marked by the blue circles that are perfectly aligned with the expected 

values for the purpose of this example.  The lower graphs represent Step 2 in which 

the feedback is currently being forecasted.  The red boxes on the left isolate the 

required input from both time series to make the first 1-second forecast.  The red 

boxes slide forward to accommodate the NARX model as it runs in feedback mode 

and incorporates more and more previously forecasted values as input.  The input 

required to make the final 45th-second forecast in Step 2 relies heavily on previously 

forecasted values as shown on the right. 

 

 

Figure 3.3.   Examples of the required Step-2 input indicated by the red boxes for 
the first (left) and last (right) prediction in the multi-step forecast. 

 

Figure 3.4 depicts the 2-step model as it was implemented in real-time.  First, 

the training phase was conducted on the recent wave record, providing the networks 

to be used in the Prediction Phase.  Next the prediction phase was initiated at the time 

of interest (the last known data point in the wave record).  The input is preprocessed 

and then submitted to the networks to provide the first forecast profile.  At the next 

time-step, once the newly acquired measurement is incorporated into the wave record, 

the model marches forward one step to repeat the process.  This would continue for 

perhaps tens of minutes until the networks required retraining. 
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Figure 3.4.  Process flow of the training and prediction phases. 

 

3.1.2 Offline Training and Computational Requirements 
 

The NARX model was trained on the recent time history of point measurements using 

the Levenberg-Marquardt algorithm.  Refer back to 2.5.2 for a description of the 

training options.  The network was trained in an open-loop configuration, meaning 

that actual data was used in leau of feedback.  This allowed for a more efficient 

training with the back-propagation method.  Once taining was complete, the network 

was converted to a closed-loop configuration, allowing for feedback and multi-step 

forecasts. 

The training/validating/testing process was conducted in a 70/15/15 split and 

typically required 20-30 minutes of data.   A sample training record is given in Figure 

3.5.  The markers indicate training targets (blue), validation targets (green), and 

testing targets (red).  Block division of data, as opposed to the default random 

division, was utilized to better track longer-term correlations. 
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Figure 3.5.  A Sample training record. 

 

The training typically required 5-10 seconds per network.  Due to the nature 

of neural networks, each training yields a slightly different output.  For all neural 

networks, occasionally the training goes poorly and the resulting network is unstable 

or underperforms.  Thus the networks were trained multiple times and the network 

associated with the best open-loop performance determined by minimum mean-

squared errors was selected.  Since the training process typically required less than 1 

minute, and the resulting network could perform multi-step forecasts in less than 0.2 

seconds, the method was suitable in this regard for real-time applications. 

3.2 Preprocessing of Input 
 
The most important preprocessing step is subtracting the tidal trend and mean 

elevation from the wave record.  This initial processing is common practice in ocean 

analysis, is easily accomplished in real-time, and was assumed in all datasets.  Thus, 

the preprocessing discussed moving forward, is in addition to de-trending and de-

meaning measured data.  Data termed raw or unprocessed in the following text refers 

to the de-trended, zero-mean dataset. 
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Various methods of preprocessing were explored including filtering in the 

frequency domain, filtering in the time domain, de-noising using wavelet analysis, 

and wavelet transformations.  The feedback input is the primary input and serves as 

the target of the forecast.  Smoothing of the feedback input requires that the phase and 

general character of the measured data be conserved.  Any steps beyond simple 

smoothing that significantly alter the input must be reversible post forecast.  

Exogenous input, on the other hand, serves as an aid to the forecasting network and is 

not limited in this way.  However, the exogenous input must be both correlated to the 

feedback input and easily forecasted to be of any value to the network.   

 Preliminary investigations into potential preprocessed signals identified the 

following approaches worthy of further testing. 

 

Feedback input: 

• no preprocessing  

• level 2 wavelet filtered input (de-noised) 

• low-pass filtering in the frequency domain 

• wavelet transformed input  

 

Exogenous input 

• band-pass filtering in the frequency domain 

• level 3 wavelet input  

 

Other approaches considered but eliminated due to poor predictability were moving 

average and exponential moving average, two smoothing techniques in the time 

domain.  Also in the time domain is the loess filter, a local regression using weighted 

linear least squares and a second order polynomial.  The loess filter provided similar 

performance to the low-pass filter in the frequency domain and could be a suitable 

alternative if needed. 
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3.2.1 Filtering in the Time and Frequency Domains 
 

The first preprocessing approach considered is the smoothing of feedback input.  

Smoother input generally facilitates autoregressive forecasting.  It is accomplished by 

the removal of higher frequency variations that contain both measurement noise and 

shorter, low energy wind waves.  Although loss of shorter wind waves may be 

undesirable, the resulting smoother signal represents the lower frequency waves that 

carry the greater portion of total wave energy and determine the general shape of the 

wave profile.  Filtering can be achieved in the time domain by averaging over 

successive data points or the frequency domain by limiting higher frequency 

components. 

In the time domain, symmetrical smoothing conserves signal phase by 

weighting data on both sides relative to the time of interest.  In other words, the 

windowing of data is centered on the time of interest.  Windowed data to the left of 

center is termed backward-looking data and that to the right of center is forward-

looking data.  Filtering errors, or edge effects, occur at the beginning of the wave 

record due to the lack of backward-looking data, and at the end of the record due to 

the lack of forward-looking data.  In the case of forecasting, the end of the wave 

record is of primary importance.  Asymmetrical smoothing in which only backward-

looking data is used, eliminates the edge effects at the time series end, but at the price 

of a phase shift.  If the phase shift is linear (does not vary over the time domain), it 

can be corrected.  The exponential filter is one asymmetrical filter that was 

considered, but eliminated, since it did not produce a signal easier to forecast. 

Filtering in the frequency domain by way of discrete Fourier transforms, can 

produce a very clean signal, but also produces the attendant edge effects.  These 

effects are due to limitations in the Fourier transformation.  The discrete Fourier 

transform is a finite approximation of an infinite mathematical process.  The 

approximation assumes that the finite wave record repeats forward and backward 

smoothly and infinitely, thus imposing an artificial period of the length of the wave 

record.  The time series end is assumed to continue on from the beginning and so 

forth.  Additionally, any discontinuities within a series produce spurious oscillations 
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(rippling artifacts due to the Gibbs phenomenon).  Band-pass and low-pass filtering 

create discontinuities that manifest as ripples in the time domain.   

Conversely, windowing in the time domain cause ripples upon transformation 

to the frequency domain. These edge effects are inescapable, but can be mitigated.  

Window tapering in either domain reduces the edge effects by reducing the sharpness 

of the discontinuities.   End-point matching is a technique in which the wave record 

end-points are matched by adding a linear trend so as to reduce the discontinuity 

caused by the imposed Fourier period.  

3.2.2 Wavelet Transformations 
 

The present work was conducted using the Matlab R2015b wavelet toolbox and the 

following descriptions of wavelet transformations are with respect to the Matlab 

algorithms as explained in Michel Misiti et al. (2015).   

For this analysis, the symlet mother wavelet of order 6 (ψ = Sym6) was 

chosen from the dictionaries of wavelet functions based on smoothness and symmetry 

and some trial and error.  The Sym6 wavelet is shown in Figure 3.6.  Discrete wavelet 

transforms achieve greater efficiency by using scales and positions based on powers 

of two (dyadic scales).  Thus, consider a rectangular grid with scale defined on Z and 

scale-related time defined on N.  The mother wavelet is scaled by the factor a, and 

translated to position b according to Equation 3-2.   

 

! = 2!,   b = k2! ,!!!!!!!!!! ∈ !, ! ∈ !   (3-2) 

 

It follows that the discrete wavelet transform yields coefficients in scale-related time 

according to  

! !, ! = !! !, ! = ! ! ! !!,!!∈! ! ! , (3-3) 

 

where the sampled signal is given by s, and the wavelet filter, g, plays the role of the 

mother wavelet, ψ.  Reconstruction of the signal s is achieved via the inverse wavelet 

transform  

! ! = ! !(!, !)!!,!(!)!∈!!∈!  .  (3-4) 
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Figure 3.6.  Mother wavelet Sym6 (Michel Misiti et al., 2015). 

 

 

Wavelet details D(t) are defined according to  

 

!! ! = ! !(!, !)!!,!(!)!∈!     (3-5) 

 

and are related to the sampled signal by 

 

! = ! !!!∈!    .         (3-6) 

 

Two sorts of details are defined with respect to a reference level J.  The 

approximation of the signal (A) corresponds to the sum of details above J according 

to Equation 3-7.  These are the coarser details responsible for the general character of 

a signal.   

!! = ! !!!!!       (3-7) 

 

Equation 3-6 can be rewritten with respect to the reference level J where the finer 

variations are within the summation of details below J according to 

 

! = !!! + !!!!!  .    (3-8) 
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Discrete wavelet transformations were utilized in this work in two distinct 

ways.  The first involved de-noising via wavelet approximations.  As shown above, a 

signal can be decomposed into approximate and detailed signals at increasing levels 

of scale.  Generally, D1 and D2 contain the noise of the signal and de-noising can be 

done by omitting or reducing their contributions.  Thus, the first method was to use 

the A2 approximation as the de-noised input signal for NARX. 

The second approach was based on forecasting wavelet coefficients as 

described in 2.6.2.  For the second method, the NAR input was converted to level 2 

wavelet coefficients and the forecasted coefficients were reconstructed to the A2 

approximation post forecast.  

In both cases the input was decomposed to the second level.  Scaling levels 3 

and above decompose the signal further to effectively yield progressively more 

extreme low-pass and high-pass filtered versions of the signal.  The general character 

of level 3 and higher approximations differed significantly from that of the original 

signal.  Consideration for the use of the higher-level decompositions was reserved for 

the exogenous input.  As a final note, the maximum decomposition level is dependent 

upon mother wavelet type and signal length.  

3.3 Assimilation of Data in Time 

 

The assimilation of new measurements into feedback and exogenous inputs as they 

were made available in time is necessary for real-time application of the model.  This 

assimilation was done as model progressed in time at the rate of data sampling and 

continued potentially, for as long as the training sustained the network.  A new multi-

step forecast of wave elevation profiles was incrementally produced corresponding to 

each step of the progression.  

The assimilation of Data in time occurs in the prediction phase as outlined in 

Figure 3.7.  The basic steps include the following. 

 

• Augmenting newly measured data to the wave record 
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• Implementing input preprocessing on the wave record 

• Mitigation of edge effects  

 

The exact nature of these steps is dependent upon the type of preprocessing and the 

mitigation tactics implemented.  A detailed description of the assimilation process is 

deferred to 5.4.  

Figure'3.7.''Process'flow'of'Prediction'Phase!
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4 Wave Record Datasets 
 

The NARX forecasting model was developed based primarily on one data set that 

was collected off the coast of Huntington Beach, California.  A second data set was 

considered post development to test the model application in a more general sense. 

4.1 Huntington Beach, California 

 

The Huntington Beach dataset was collected off the coast of southern California at a 

depth of about 15 m.  The 68-minute wave record was sampled at 1 Hz and had 

waves on the order of 0.5 meters with a peak wave period of 15 seconds.  As can be 

seen from the spectrum given in Figure 4.1, the data exhibit a bimodal character.  The 

primary peak is likely the result of ocean swell conditions and the broader, secondary 

peak is more typical of local wind-waves. 

4.2 Newport, Oregon  

 

The Newport dataset was collected in the summer of 2013 via acoustic wave and 

current profiler (AWAC) at the North Energy Test Site.  This site was located 2-3 

miles off the coast of Oregon and had an average depth of 50 m.  The dataset contains 

601 time series of heave measurements, each 40 minutes long and sampled at 2 Hz.  

Wave record 417, selected for this analysis, had waves on the order of 1 meter with 

peak wave period of 10.5 seconds.  The spectrum, given in Figure 4.1 shows a single, 

relatively broad peak. 
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Figure 4.1.  Energy spectrum of Huntington Beach dataset (left) and Newport 417 
dataset (right).  
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5 Results and Discussion 
 

Overall performance was evaluated in stages to isolate the potential effectiveness of 

input preprocessing from the challenges of implementing the preprocessing in real-

time.  All primary analyses were conducted using the Huntington Beach dataset that 

was described in 4.1.  Some further analyses were conducted using the Newport 

dataset that was described in 4.2.   

The analysis began with an investigation into the value of several feedback-

preprocessing methods.  The key findings are outlined in 5.1.  In the next stage, the 

benefit of adding an exogenous input was evaluated, which is discussed in 5.2.  Upon 

identifying the most viable set of input conditions, the model testing was expanded to 

the Newport dataset as described in 5.3.  In the final stage, the analysis turned to the 

implementation of the preprocessing steps in real-time (5.4).  Several comparable 

linear-AR cases were also considered and these results are given in 5.5.  The full 

analysis is represented by a progression through 13 salient cases, with results for each 

case given in figures of identical format.  An explanation of this format is beneficial 

before evaluating the individual cases.   

Consider Figure 5.1 as a reference.  On the left side of each figure three 

forecast profiles are given, which represent random snapshots of performance as the 

NAR(X) model progresses (or marches) in time.  The data are in black, where values 

shown to the left of the vertical line are known and values to the right are unknown to 

NAR(X) but are provided as a reference.  The input is in red and the multi-step 

forecast computed at each time step of the march is in blue.  In these cases, a forecast 

maximum is equivalent to 3 peak wave periods (Tp = 15 s) or 45 seconds.  Although 

the profiles shown are separated by 10 seconds, a 45-second forecast was computed 

with respect to every second of the march. 

  On the right side of the figures, the corresponding errors are expressed in two 

forms.  The average correlation between the forecasted and expected values is given 

by a correlation factor shown in blue.  As noted in 2.4, this value does not take into 

account magnitudinal differences, but gauges whether the forecast and reference 
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signals are in sync.  The coefficient of efficiency, shown in red, is an average measure 

of the relative difference in amplitude at each forecast step.  For both metrics, a value 

of 1 indicates good agreement.  The correlation factor and coefficient of efficiency 

were computed according to Equations 2-3 and 2-4, respectively.  Errors 

corresponding to a forecast length were averaged cumulatively.  For example, the 

errors associated with a 10-second forecast length account for all of the first ten steps 

of each forecast over the full 5-minute march.  

5.1 Determination of Effective Feedback Input 
 

Cases 1 - 4 represent NAR forecasts of the Huntington Beach data set using 

several different methods of input preprocessing.  These forecasts do not utilize 

exogenous input.  The purpose of these forecasts was to assess the potential value of 

various preprocessing methods with regard to the predictability of the feedback input.  

Preprocessing was applied to the entire data set prior to use in the forecasting model.  

Thus at this stage of the analysis, all issues regarding filtering edge effects were put 

aside.  Real-time application would require preprocessing on the wave record as it 

grows adding potential complications.   

Case 1 serves as the base case and is shown in Figure 5.1.  Raw data was 

unprocessed prior to input and no exogenous input was provided.  It is clear in a 

visual inspection of the profiles that the forecast performance fell off after the first 

steps of the process.  This is consistent with the general performance as represented 

by the error calculations averaged cumulatively with respect to forecast length, over a 

march of 20 peak wave periods (5 minutes).  The error values averaged over 1 peak 

period were R15 = 0.70 and CE15 = 0.52. 
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Figure 5.1.  Case 1:  Sample NAR forecast profiles based on raw input (left) and the 
corresponding errors (right).  

 

In Case 2, the feedback input was de-noised via a second-level wavelet 

transform.  Note that the input (in red) differed slightly from the reference.  Results 

show no improvement over the base case (R15 = 0.70 and CE15 = 0.51), indicating that 

this preprocessing was unhelpful.  In the present analysis, only A2 approximations 

were considered for feedback preprocessing.  The A3 signals differed too significantly 

from the raw data to serve as feedback input.  Forecasting A3 and D3 in separate 

networks and then summing the two resulting forecasts is another way to yield an A2 

forecast.  However, this approach proved no better than the more direct method.   
 

 

Figure 5.2.  Case 2:  Sample NAR forecast profiles based on wavelet-filtered input 
(left) and the corresponding errors (right).   
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In Case 3 an alternative use of the wavelet transformation was employed.  

This involved forecasting the wavelet coefficients similar to what was done in 

previous analyses that are described in 2.6.2.  This method involved more 

intermediated steps.  Wavelet coefficients represent the magnitude of the correlation 

of the scaled mother wavelet with respect to time.  Since discrete wavelet 

transformations employ successive down-sampling at each level of decomposition, 

missing correlation coefficients corresponding to the original data sampling were 

approximated using cubic interpolation.  The interpolated time series of coefficients 

was then used as feedback input yielding a forecast in terms of wavelet coefficients.  

This output had to be down-sampled prior to wavelet reconstruction to ultimately 

yield the wave elevation forecasts.  The NAR performance, shown in Figure 5.3, was 

fairly level across forecasting length, but generally poor overall.  The error values 

averaged over 1 peak period were R15 = 0.63 and the CE15 = 0.40. 
 

 

 

Figure 5.3.  Case 3:  Sample NAR forecast profiles based on wavelet-transformed 
feedback input (left) and the corresponding errors (right).   
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CE15 = 0.92.  For reference, Figure 5.5 provides the Huntington Beach energy 

spectrum corresponding to both filtered and unfiltered signals.   
 

 

 

Figure 5.4.  Case 4:  Sample NAR forecast profiles based on low-pass filtered input 
(left) and the corresponding errors (right).  

 

 

 

Figure 5.5.  Spectrum of Huntington Beach dataset showing low-pass and band-pass 
filtered signals. 
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5.2 Determination of Effective Exogenous Input 
 

An exogenous input is a separate time series used to aid the NARX model in 

forecasting the primary feedback input.  Use of an exogenous input would be helpful 

only if it is both predictable and correlated to the feedback input.  Various potential 

signals were considered, including exponential filtering in the time domain, narrow-

band filtering in the frequency domain, and wavelet decomposed approximate and 

detailed signals.   

Two predictable time series were identified as potential exogenous inputs and 

were implemented in the NARX model.  The first signal was a level-3 wavelet 

approximate signal (A3).  The second signal was a narrow-banded filtered signal 

isolating frequencies near the peak frequency (fp) of 0.07 Hz.  Refer back to Figure 

5.5 for the spectrum of this filtered signal.  The narrow-band cutoffs were 0.85 fp and 

1.3 fp, and thus included frequencies between 0.06 and 0.09 Hz.  The low-pass signal 

included all frequencies below 0.13 Hz.  The NAR forecasts for these two time series 

are given in Figure 5.6.   

 

 

Figure 5.6.  Sample Step 1 NAR forecast profiles of narrow-band exogenous input 
(left) and A3 exogenous input (right). 
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feedback and narrow-band exogenous input and is given in Figure 5.7.  Note that the 

corresponding error values averaged over 3 peak periods (R15 = 0.76, CE15 = 0.58) 

exceed the 1 peak period values for Case 1.  The results are still better assuming low-

pass feedback (Case 6) as is evident in Figure 5.8.  The error values averaged over 3 

peak periods were R45 = 0.88 and the CE45 = 0.75. 

 

 

Figure 5.7.  Case 5:  Sample NARX forecast profiles based on raw feedback input 
and narrow-band exogenous input (left) and the corresponding errors (right).   

 
The improvements offered by the use of the level-3 wavelet approximation as 

exogenous input were disappointing.  It was anticipated that this type of 

preprocessing if it were found useful, would have fewer edge-effect concerns under 

real-time application.  In the case of raw feedback input, the error values averaged 

over 1 peak period were R15 = 0.81 and CE15 = 0.67, only slightly better than those 

for Case 1.  The 3 peak period values were however, no better (R45 = 0.52 and CE45 = 

0.31).  The overall results are not provided in figures.  The combination of low-pass 

feedback and A3 exogenous input resulted in an unstable forecasts beyond ~1 peak 

period.  This was likely the result of the signals being too similar.  Similarity becomes 

a problem when either of the inputs cannot be well-predicted.  It is surmised that 

since the NARX model is trained on ideal input that are consistently correlated, it is 

not capable of handling inputs that diverge as errors accumulate.  
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Figure 5.8.  Case 6:  Sample NARX forecast profiles based on low-pass feedback 
input and narrow-band exogenous input (left) and the corresponding errors (right).   

 

5.3 Extending Assessment to the Newport Dataset 
 

The next step in the analysis was to assess whether this approach may be extended to 

the Newport dataset.  Refer back to 4.2 and Figure 4.1 for the specifics of this second 

dataset.  The model parameters were unchanged except for a minor tuning of the 

filtering frequencies with respect to the peak frequency of 0.096 Hz for this wave 

record.  The spectrum of the filtered signals is given in Figure 5.9.  The cutoff 

frequencies are again given as multipliers of the peak frequency, between 0.7fp and 

1.1fp. Thus, the narrow band includes frequencies between 0.07 and 0.11 Hz.  The 

low-pass input in this case, includes all frequencies below 0.18 Hz. 
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Figure 5.9.  Spectrum of Newport 417 dataset showing low-pass and band-pass 
filtered signals. 

 

 Results for Cases 7 and 8 are given in Figures 5.10 and 5.11, respectively.  

These cases represent the performance corresponding to Cases 5 and 6, using the 

Newport dataset.  It is evident that the exogenous input was beneficial to overall 

performance as was true for the Huntington Beach dataset.   However, the 

improvement was not quite as significant for the second dataset.   

This difference may be attributed to the different sea states.  As noted earlier in 2.6.1, 

stochastic forecasting is limited by the intrinsic correlation of the signal, which is 

inversely proportional to the bandwidth.  Thus, narrow-banded signals are more 

highly correlated than broad-banded signals.  The Huntington Beach dataset is 

characterized by a bimodal sea state in which there is a clear narrow-banded swell 

component separate from a local wind-wave component (Figure 5.5).  The Newport 

spectrum (Figure 5.9), characterized by a single, broader peak, has a swell component 

that was not so easily isolated for the exogenous input.  Still, the improvement was 

substantial enough to suggest general forecasting potential. 
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Figure 5.10.  Case 7:  Sample NARX forecast profiles based on raw feedback input 
and narrow-band exogenous input (left) and the corresponding errors (right) for 
Newport 417.   

 

 

Figure 5.11.  Case 8:  Sample NARX forecast profiles based on low-pass feedback 
input and narrow-band exogenous input (left) and the corresponding errors (right) for 
Newport 417.   

 

5.4 Implementation of Preprocessing Steps in Real-time 
 

Thus far, the model has been developed using a simplification in which the input was 

preprocessed as a whole prior to use in the forecasting model.   Although no forward-

looking data was made available to the model in the forecasting stage, it was 

essentially available in the preprocessing stage due to the symmetrical nature of the 

filter.  This simplification was made in the development stage to separate poor 
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performance due to useless input from that largely due to edge effects and other real-

time filtering challenges that could be addressed later.  For this reason, the results 

cannot be considered realistic at this stage.  A realistic application of the forecast 

model would treat input preprocessing in real-time, using only the data that would be 

available at the current index.  

 The particular challenge of the real-time application is the narrow-band 

exogenous input.  This was the exogenous input determined to be the most effective 

contributor to improved forecasting performance.  Unfortunately edge effects are 

fairly severe in narrow-band filtering and hence, they must be mitigated if there could 

be any practical use of this forecasting approach.  Two mitigation tactics were 

posited.  

The first tactic was to extend the wave record beyond the current index so that 

the most important data was not at the end of the time series.  This was done in real-

time by augmenting the wave record with the forecasted wave profile acquired in the 

previous step.  The goal was that the augmented portion of the wave record would 

serve as a buffer during the filtering process.  This could work only if the previous 

forecast was accurate and long enough that the ripples would largely confined to the 

buffer.  The buffer would then be discarded post filtering to yield an exogenous input 

of similar quality from middle to end.  Further, the Fast Fourier Transform algorithm 

(FFT) in Matlab operates most efficiently on time series with lengths of a power of 2.  

After some trial and error, the filtering window was set to 2048 data points to 

accommodate this constraint.  Additionally, endpoint matching was achieved by a 

linear tapering of the beginning and end of the series to zero. 

In theory, the initial forecasting would be launched far enough from the record 

end to allow a buffer of real data.  As the forecasting computations could be 

conducted quickly, the model would then catch up to the current time index in a 

matter of seconds. 

Beyond forecasting, the NARX network has been commonly used for signal 

noise reduction.  The second tactic would utilize NARX in this capacity in an attempt 

to repair the end of the exogenous input.  By reversing the feedback and exogenous 

inputs, the NARX model could be trained to target the narrow-band signal using the 
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measured data as the exogenous input.  If the results were good enough, the corrupted 

end of the filtered signal could be replaced by the narrow-band approximate.  

Figure 5.12 shows the Step 1 intermediate forecast of the exogenous input 

utilizing filtering in real–time.  The graph on the left shows the intermediate forecast 

based on the unmitigated input in green.  It is evident that the forecast was inaccurate 

due to corrupt input.  Improvement to this intermediate forecast was achieved by 

employing both mitigating tactics together as can be seen in the graph to the right.  

The green signal in the right graph represents improvement using only the first tactic.  

Here the forecast was based on the red input, which was the combination of both 

mitigation efforts.   

 

 

Figure 5.12.  Sample exogenous input processed in real-time utilizing uncorrected 
end values (left) and corrected end values (right). 

 

Unfortunately, the improvement proved too inconsistent to render an 

ultimately viable forecast.  Figure 5.13 shows the resulting forecast for Case 9 in 

which raw feedback was aided by exogenous input preprocessed with corrections in 

real-time. Visual inspection of the forecast profiles seems to suggest a performance 

similar to that of the base Case 1.  Yet, the generally poor error values indicate 

otherwise.  This is possibly the result of instabilities at certain steps along the 

progression.  
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Figure 5.13.  Case 9:  Sample NARX forecast profiles based on raw feedback input 
and narrow-band exogenous input (left) and the corresponding errors (right) for 
Huntington Beach dataset conducted with input processed in real-time. 

 

Case 10 represents the NAR forecast in which the low-pass feedback is 

processed in real-time without the use of exogenous input and is shown in Figure 

5.14.  Results represent an improvement over Case 9, but not enough to improve upon 

the base Case 1.  It follows that combining the filtered exogenous input with the 

filtered feedback input yielded somewhat worse results.  These results are not given 

in a figure. 
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Figure 5.14.  Case 10:  Sample NAR forecast profiles based on low-pass feedback 
input (left) and the corresponding errors (right) for Huntington Beach dataset 
conducted with input processed in real-time. 

 

5.5 NAR(X) Model Comparisons to Linear AR 

 

The final step of this investigation was to compare the NAR(X) performance to that 

of the linear AR.  The linear AR model utilized here was based on the least-squares 

optimal state estimator.  The data was fit over the equivalent of 45 peak wave periods 

and used an input order of 30 previous steps.   

Three AR cases corresponding to NAR Cases 1, 4, and 10 are shown in 

Figures 5.15 - 5.17, respectively.  Figure 5.15 shows the forecast corresponding to 

Case 1 (Figure 5.1), which was based on raw Huntington Beach input.  The results 

were very similar to that of the NAR model.   

In Figure 5.16, the forecast was based on low-pass feedback input processed 

as a whole.  The results yielded good forecasts for the first peak period, consistent to 

those obtained by Fusco (2010) via AR as summarized in 2.4.1.  These results are 

also similar to the corresponding NAR forecast, unaided by the exogenous input.  The 

NARX model shows superiority only with the use of the narrow-banded exogenous 

input as seen in Case 8, Figure 5.11.  However, it was evident that use of this narrow-

banded exogenous input was not reliable in real-time.   
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Figure 5.15.  Case 11:  Sample Linear AR forecast profiles based on raw feedback 
input and the corresponding errors (right) for Huntington Beach dataset.  

 

 

Figure 5.16.  Case 12:  Sample Linear AR forecast profiles based on low pass 
feedback input and the corresponding errors (right) for Huntington Beach dataset 
conducted with input preprocessed as a whole. 

 

Figure 5.17 illustrates that the linear AR method likewise was susceptible to 

limitations in the real-time application of the low-pass filter, even with the benefit of 

the mitigation approach utilized for NAR.  Results were generally no better than those 

for the corresponding NAR Case 10 (Figure 5.14).   
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Figure 5.17.  Case 13:  Sample Linear AR forecast profiles based on low-pass 
feedback input and the corresponding errors (right) for Huntington Beach dataset 
conducted with input processed in real-time. 

 

 A different comparison of the forecasting results is given in Figure 5.18. Here 

the one Tp (15 s) forecasts are plotted against measured data for the 5-minute 

progression for several cases.  The predictions, given by the blue symbols, would lie 

along the diagonal line if accurate.  Note that the treatments using forward-looking 

data for preprocessing input are marked with the asterisk.  

The top three graphs on the right represent the AR cases that were just 

discussed.  Case 11, *12, and 13 use raw, low-pass (forward-looking), and low-pass 

input, respectively.  The top three graphs on the left represent the comparable NAR 

cases.  For all three treatments, it is apparent that NAR offers no advantage over AR.  

However, the bottom two graphs illustrate the advantage of NARX if a narrow-band 

exogenous input were possible.  *Case 5 NARX is an improvement over both Case 1 

NAR and Case 11 AR, as is *Case 6 NARX over both  *Case 4 NAR and *Case 12 

AR, most notably at longer horizons.   
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*Forward-looking data available during input preprocessing. 

 

Figure 5.18.  Forecast vs. Data for predictions up to one peak period (15 sec).   
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6 Summary and Conclusions 
 

Forecast results of Cases 1–13 are summarized in Table 6.1 below.  Although only 

discussed indirectly in 5.2, two extra input treatments were included in the last entries 

of the table for completeness.   

The base NAR forecast (Case 1) is comparable to the AR forecast (Case 11).  

Both models are capable of forecasting 1 peak wave period with R15 =  0.7 and CE15 

= 0.5.  In this most basic example, the added complexities of NAR cannot be 

justified.  AR has the advantage over NAR both in speed and simplicity.   

Forecasting performance based on preprocessed data (filtering via Fourier 

transformations), and in particular with the use of the exogenous input, suggested 

great potential for NARX forecasting (Cases 5* and 6*).  Credible forecast 

performance was extended to 3 peak periods using the Huntington Beach dataset, and 

2 ½ peak periods with respect to the Newport dataset.  If these preprocessing steps 

could be realistically implemented as new data is being incrementally added, NARX 

would hold a significant advantage over AR.  Unfortunately, real-time 

implementation of the preprocessing steps proved problematic, as was demonstrated 

in Cases 9 and 10.  Thus, it is apparent that the NARX-based model failed to provide 

an advantageous solution to the near-term forecasting problem, at least in a practical 

sense.   

All that is left to consider are the reasons for the breakdown.  As stated in 

2.6.1, stochastic forecasting relies on the intrinsic correlations of the signal, and 

narrow-banded signals are more highly correlated than broad-banded signals.  It 

followed that forecasting improvement was associated with the inclusion of a narrow-

banded exogenous input.  However, providing the narrow-banded signal in real-time 

was susceptible to the limitations of a zero-phase (non-causal) filter, which resulted in 

imperfect preprocessing. 
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Table 6.1.  Summary of NAR(X) and AR Results.  The error metrics R and CE are 
defined in Equations 2-3 and 2-4, respectively, with subscripts referring to forecast 

lengths in seconds. 

Case (Figure) Feedback Exogenous R15 R45 CE15 CE45 

1    (Fig. 5.1) Raw N/A 0.70 0.48 0.52 0.26 

2*  (Fig. 5.2) A2 N/A 0.70 0.46 0.51 0.11 

3*  (Fig. 5.3) cA2 N/A 0.63 0.56 0.40 0.32 

4*  (Fig. 5.4) Low-pass N/A 0.96 0.73 0.92 0.54 

       

5*  (Fig. 5.7) Raw Narrow-band 0.89 0.76 0.78 0.58 

6*  (Fig. 5.8) Low-pass Narrow-band 0.96 0.88 0.92 0.75 

       

9    (Fig. 5.13) Raw Narrow-band 0.52 0.26 0.13 -0.22 

10  (Fig. 5.14) Low-pass N/A 0.39 0.30 0.13 -0.07 

       

11   AR  (Fig. 5.15) Raw N/A 0.71 0.49 0.51 0.26 

12* AR  (Fig. 5.16) Low-pass N/A 0.96 0.69 0.91 0.35 

13   AR  (Fig. 5.17) Low-pass N/A 0.44 0.27 0.17 -0.20 

       

Extra  (no Figures)       

* Raw A3 0.81 0.52 0.67 0.31 

 Low-pass Narrow-band 0.39 0.24 -0.23 -0.34 

 
*Forward-looking data available during input preprocessing. 
 

It was hypothesized in 5.4 that effects of imperfect real-time preprocessing 

could be mitigated by a combination of filtering adjustments and an input correction 

algorithm.  The edge effects were eased to some degree, and significantly at many 

points along the time series (Figure 5.12).  Unfortunately, at other time steps, the edge 

effects extended beyond two peak periods and thus, beyond the capability of the 

correction algorithm to provide improved input.  Real-time implementation failure 

was not limited to the NARX model.  Low-pass filtered input that extended the AR 

forecast to 1.5 or 2 peak wave periods as seen in Case 12* and similarly cited in 
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Fusco, et al., (2010) was also susceptible to similar failures under real-time 

implementation (Case 13).  

Another consideration concerns the circumstances with regard to training.  In 

the present analysis, the networks were trained using ideal input (no edge effects), 

and then applied by attempting to approximate the ideal input by mitigating input 

edge effects.  Conversely, if there were a way to train the networks on input 

exhibiting the same edge effects that they would encounter under practice, the 

preprocessing dilemma may be sidestepped.  Still, it is not clear whether the 

imperfect input would retain its forecasting value. 

While not included in the investigation into real-time implementation, two 

methods of input preprocessing based on wavelet transformations merit discussion.  

These methods held promise as alternatives with better potential for real-time 

implementation due to the finite nature of the mother wavelet.  The first method in 

which wavelet approximations served as low-pass filtered input did not significantly 

boost forecast potential (Case 2*) when compared to Case 1.  The second (Case 3*) 

relied on forecasting the wave record in the form of wavelet coefficients to be 

reconstructed post forecast, similar in method to the wave height prediction studies 

(2.6.2).  In Case 3*, forecasts of wave elevation did demonstrate a performance more 

consistent with respect to forecast length.  However, the forecast generally suffered in 

the early steps relative to corresponding forecasts using raw input (Case 1).  Perhaps 

the forecasts were somewhat compromised in the down-sampling/up-sampling 

conversions necessary in dealing with DWT formats.  Yet, it was also observed that 

the coefficient time series were not noticeably more predictable than the wave record 

itself.   

The failure of wavelet transformations in boosting NARX performance was 

especially disappointing considering that the transforms showed potential for 

improvement in the single-step ANN forecasting of wave heights as described in 

2.6.2.  It was anticipated that this potential would translate to the multi-step ANN 

model that would provide a forecast profile appropriate for this application.  The 

discrepancy may be attributed in part to the fact the models are inherently different.  

The single-step ANN models did not use feedback, allowing for input to be entirely 
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different from output.  The previous wave height studies differed from the present 

study in other aspects as well.  For instance, the time series were generally 

decomposed at higher levels (~6), and predictions for both approximations and details 

were used in the final reconstructions. It is also notable that a wave height and wave 

elevation time series are dissimilar in shape and time-scale.   
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