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ACTIVE NETWORK SYNTHESIS USING GYRATORS

I. INTRODUCTION

Over the past decade, increasing interest has been shown in

synthesis techniques using active elements. Conventionally, the ele-

ments used in network synthesis are resistors, capacitors, inductors

and transformers. Since capacitive elements are usually cheaper,

simpler and more nearly ideal elements than are inductors, synthesis

techniques using only RC elements are very important. On the

other hand, non-positive real functions cannot be realized by using

passive elements alone. The use of active devices will overcome

some of these difficulties. The most commonly used active elements

are negative resistances, controlled sources, operational amplifiers,

negative impedance converters and gyrators. The gyrator is one of

the most useful active elements. It has the property that it can gyrate

an impedance into an admittance, and vice versa. By this property,

an inductor can easily be obtained by terminating a gyrator with a

capacitor. It is also attractive in microminiaturization, since the

fabrication of inductors in thin-film and integrated-circuit technology

is the most difficult problem, especially, for low frequency applica-

tion, and no practical values of inductance have been obtained at this

time.

The thesis will concentrate on gyrator synthesis techniques
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with sensitivity considerations. Sensitivity has been recognized as

one of the main considerations in active RC synthesis. Chapter II

gives some definitions of sensitivity. In Chapter III, optimum poly-

nomial decompositions, developed by Horowitz and Calahan, are sum-

marized. Butterworth and Chebyshev polynomials using this tech-

nique are decomposed and tabulated for practical use. The proper-

ties and realization methods of gyrator are described in Chapter IV.

An actual circuit is synthesized and tested and the results also shown.

Two RC-gyrator synthesis techniques are described and compared in

Chapter V.
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II. DEFINITION OF SENSITIVITY

Sensitivity is a measure of the degree of dependence of one

quantity upon the value of another quantity. In network synthesis,

the sensitivity is a measure of the change in certain network functions

resulting from the change of the network elements. In this chapter,

some definitions of sensitivity which have been used in network syn-

thesis are defined.

1. Classical Sensitivity

Let N(s, xl, x2, ... , xn) be a network function of n param-

eters. For a single parameter case, N(s, x), the sensitivity is de-

fined as

Since,

SN(s x) dININ d ln N dN x
,x dx /x d In x dx N

(2-1)

ln N (jw, x) = ln I N(jw, x) + j Arg N(jw, x). (2-2)

equation (2-1) can be written as,

where

N (dMSx (jw, x) = x .

dx dx
(2-3)

M = In I N(jw, x) I , (2-4a)

0 = Arg[N(jw, x)]. (2-4b)



Thus the real part of the sensitivity is the change in magnitude of the

network functions, and the imaginary part of the sensitivity is the

change in phase function.

Let Q(s, x) and P(s, x) be the numerator and the denomi-

nator of N(s, x) respectively. Then

It can be shown that

where

N(s, x)
Q(s, x)
P(s, x)

Qt

P
Sx (S, x) = X( - )

Q

aQ ap_
ax 8x

2. Root Sensitivity

x)
Let the network function N(s, x)

Q(s,
P(s, x)

(2-5)

(2-6)

(2-7)

The root sensi-

tivity is defined as the change of the roots of N(s, x) with respect to

the change in one of the network parameters. Thus the root sensi-

tivity can be expressed as

If

ds. ds.
Sxj(s, x) = - x

dx ix d-x
(2-8)

P(s, x) = A(s) + xB(s), (2-9)

4



then the pole sensitivity Sx
is

Similarly, let

p. dp. xB(p.)
Sxi(s, x) = x dx PI(p.)

5

(2-10)

Q(s, x) = C(s) + xD(s) (2-11)

z.
The zero sensitivity S is

x
1

z. dz. xC(z.)
1 1 1Sx (s, x) = x = - .

dx Q'(z.)
1

3. Multiparameter Sensitivity

Let N be the network function with n parameters,

xl, x2, ... xn.

N = N(s, xl, x2' 3' , xn).

(2-12)

(2-13)

Taking the partial derivatives with respect to each variable, xn, the

total differential is

dN dx + N dx
2

+
aN

+ dxn
axaNl 1 ax n

Divide both sides by N

dN d(ln N) =
N

a ln N Ina In x, n x.).

(2-14)

(2-15)
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The multiparameter sensitivity S may be defined as a gradient

vector with elements 8 In N
8 In x.

Let d(ln be a vector with elements d(ln xi. Then

dN
TF = (S N)d(ln 17i) (2-16)

The multiparameter sensitivity S is then defined

}SGrad {(ln N) d(ln

4. The Relationship Between Classical Sensitivity
and Root Sensitivity

Start from the definition of classical sensitivity,

and define

Then

dN/N d(ln N)SN(s, x) -x dx/x d(ln x) '

N(s, x) Q(s, x) C(s)+xD(s)
P(s,x) A(s)+xB(s)

SN(s, x) = x( Q'
-

1=2"
) x(

D(s) B(s)
Q P Q(s, x) P(s, x) ).

(2-17)

(2-18)

(2-19)

Replace x by x + Ax. The poles of N(s, x) will be determined

by the root of equation

A(s) + (x+,6.x)B(s) = 0. (2-20)

Define



F(s, x) - xB(s)
P(s, x)

Then Equation (2-20) can be written as

Ax
1 F(s, x) = 0 .x

7

(2-21)

(2-22)

Assume the degree of the numerator of F(s, x) is lower than the

degree of the denominator. Then

F(s, x) = (2-23)

Substitute (2-23) into (2-22), and examine the behavior of the equa-

tion in the vicinity of the jth pole of F(s, x). Equation (2-22)

may be written in the form

k.
A

1 +
x -1- -0x 13!-13

J J

(2-24)

where p! is the value of s which satisfies the equation. If we

write p! - p. = 6.p., substitute it into Equation (2-24), rearrange
J J

and take the limit

A p. dp.
lim

dx x
_ = _ k

Gx-0 j

Thus, the sensitivity of jth zero of N(s, x) is

(2-25)



Similarly, define

P. dp.
SxJ(s, x) - dx/x1- -k

G(s, x) - xD(s)
Q(s)

k.

s- z.
1

The sensitivity of jth zero of N(s, x) is

dz.
1Sx1(s, x) dx/x k.

1

8

(2-26)

(2-27)

(2-28)

Substitute (2-26) and (2-28) into (2-23) and (2-27) respectively. Thus

F(s, x) =

G(s, x) =

(2-29)

(2-30)

Substitute (2-29) and (2-30) into (2-19), the relation between classical

sensitivity and root sensitivity results

P.
Si

N xS(s, x) = -x s - p .
J

i.

(2-31)
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III. POLYNOMIAL DECOMPOSITION IN ACTIVE
NETWORK SYNTHESIS

In the previous chapter some sensitivity definitions have been

stated. However, the synthesis technique based on the sensitivity

consideration is very important and will be discussed here. Most of

the active RC synthesis methods are based upon the partitioning of

network functions into subnetwork functions. There are two decom-

position forms.

1. RC-NIC Decomposition

Several methods have been presented to realize the immittance

function by RC-NIC circuit. Horowitz (7) suggested a method by

which a given polynomial can be decomposed into the difference of two

other polynomials in such a way as to minimize the sensitivity.

Calahan (4) has also shown that the same method can minimize the

root sensitivity.

Let

P(s,k) = a nsn + an-1 sn-1+ + a
0

= Aon An(s) - kBonBn(s)

n n

= (a.-kb.)si = a.s

i=0 i=0

(3-1)



where

n/2
A (s) = n (s+a.),

n
1

n/2
B (s) = II (s+b.)

n
1

a. = a - kb.
1 1

The sensitivity of any change of coefficient ai with respect to

is

ai i kaa kb.
s

k ak a. a.
1 1

10

(3- 2a)

(3-2b)

(3-2c)

(3-3)

In order to minimize the sensitivity to the change of any coef-

ficient in k, it is necessary to minimize the corresponding coeffi-

cient of BonB (s). Horowitz (7) has shown that the polynomial P(s)
n

must be decomposed into two new polynomials; a
2(s) and sb 2(s).

These polynomials have zeros arranged as shown in Figure 3-1.

Figure 3-1. Optimum zero pattern of RC-NIC decomposition.



where

The optimum pattern can thus be written as

P(s) a sn + an-1sn-1 + a0

= a
2 (s) - Bosb2(s),

a(s) = (s+al )(s+a 2) ... (s+an/2)

b(s) = (s+b2)(s+b 3) ... (s+bn/2-1)

11

(3-4)

(3-5a)

(3- 5b)

The optimum decomposition of the polynomial P(s) can be

obtained by the following procedures:

1) Form the polynomial P(s 2): that is the polynomial formed

by replacing s with s
2. Let F(s) contain the left

half-plane roots of P(s 2). Obviously, F(s) is Hurwitz

and F(-s) contains the right half plane roots of P(s 2).

Thus we obtain

P(s 2 ) = F(s)F(-s). (3-6)

2) Since F(s) is Hurwitz, F(s) can be expressed as

F(s) = A(s) + sB(s), (3-7)

then

P(s 2)
= A

2(s) - s 2
B

2(s). (3-8)



3) Replace s with s2 in the optimum form of Equation

(3-4) which yields

P(s2) = a2(s 2)
- Bos2b

2(s 2).

Compare Equation (3-8) and (3-9),

A(s) = a(s2),

B(s) = NTS
0
b(s 2).

4) Substitute (3-10a) and (3-10b) into (3-8) and replace

with s2, the optimum form results

P(s) = a 2 (s) - Bosb2
(s).

(Example):

Find the RC-NIC optimum decomposition of

P(s) = s2 + p s + v .

Apply the procedures

1) P(s 2)
= s4 + P1s 2

+ .y1

12

(3-9)

(3-11)

(3-12)

= [(s2+NrV1) + sN2\ryi-P1)] {(s2+Nrcy-s,i2Nry1-131].

2) F(s) = (s2+NrCi1) + s (42\71-131)



, 2, 23) a(s ) s + \171., and

Bob(s2) = 42Arci1-p1.

4) Finally the optimum form results

P(s) = (s+Nr\TI)2 s(2NITI-(31).

2. RC-RL Decomposition

13

(3-13)

Since and equivalent inductor can be obtained by terminating a

gyrator with a capacitor, RC-RL decomposition can also be applied

in R C- gyrator synthesis.

Let

where

n-1
P(s) = a nsn -F an-1s 0

n/2
= lI (s+s.)(s+s.)

1
1 1

= A A (s) + kB B (s),on n on n

n/2
A (s) = n (s+a.)

n
1

n/2
B (s) = R (s+b.)

n
1

The zeros are distributed as in Figure 3-2.

(3-14)

(3-15a)

(3-15b)



b
2 2

b - 11-1
b

2
bl a2 al

Figure 3-2. Zero pattern of An(s and Bn(s).

The root sensitivity of Equation (3-14) is

Cr

s. ds. kB B (s.) A A (s.)
l.' onni.

k I I dk/k I I dP (s.)/ds I I PI(s.) I

14

(3-16)

The sensitivity will be minimized if A A (s.) is minimized. Theon n
optimum zeros pattern is shown in Figure 3-3.

a-12 1. b
2

b1-1 al o-

Figure 3-3. Optimum zero pattern of RC-Ri, decomposition.

Calahan (6) shows that if,

1)

n/2

Arg Si <

i =1

Tr

2
(3-17a)

A unique decomposition of P(s) is possible and has the



form

n/2 (n/2)-1
2

P(s) s) (s +a.) + Bon 1-11 (s+b.)
1

1

n/2
2) Arg Si < 12,

i =1

15

(3-17b)

(3-18a)

Non-unique decompositions of P(s) are possible and have

the form

n/2 n/2
P(s) = Aon (s+a.) 2 + B H (s+b.)2.

1
on

1
1 1

For the unique decomposition case, let

n/2
Aon ri (s+a.)2 [Rm(s)] 2

1
1

and
n/2

, ,
II

=Bon(s+b.)
2 to (s)]2.

1

Then
n/2

R (s) = \FTon (s+a.),
o

1

n/2
Q (s) = N/T3-on (s+b.),m

1

and

(3-18b)

(3-19a)

(3-19b)

(3-20a)

(3-20b)



n/2
P(s) = II (s+s.)(s+s.)

1

= [Rm(s)]2 + [Qm(s)]2

= [Rm(s)+j0m (s)ffRm(s)-jQm (s)].

16

(3-21)

Summarizing the above equations a procedure for finding optimum

RC-RL decompositions obtained:

1) From a given polynomial

n/2
P(s) = II (s-Fs.)(s-Fs.)

determine R (s) and Q ( s ).m m

2) Assign

n/2
[R(s)] 2

= A (s+a.) 2,
m on

1

(n /2)- 1
(s+b.)2.[Q (s)] = Bon

1

(3-22a)

(3-22b)

3) Substitute Equation (3-22a) and (3-22b) into (3-21) to get

optimum RC-RL form.

For non-unique decomposition, equating the given polynomial to the

optimum form and comparing the corresponding coefficients, it is

found that there are n+2 unknowns and only n+1 equations.
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Arbitrarily select the value of Aon/Bon. Infinite numbers of other

decompositions can then be found. Calahan (6) also concludes that,

for a given polynomial

If

P(s) = a nsn + a
n- 1

s
n-

n/2
= 11 (s+s.)(s+s.)

1

= Aon An(s) + kBonBn(s).

n/2

Arg Si >

1

only RC-NIC decomposition is possible. If

n/2
Arg Si <= 2

1

+a
0

(3-23)

(3-24a)

(3-24b)

both RC-NIC and RC-RL decomposition are possible. The latter can

always be chosen to have the lower sensitivity.

(Examples):

1) For a given polynomial

2P(s) = s + ails +



if

Arg S1 = Arg Tr

2

The optimum RC-NIC form can be found in the example on

page 12. If

Arg S1 = Arg

2/4-yi -pi

P1

TT

2

Apply the RC-RL decomposition procedure:

2 2
P1 1

i) P(s) (s+7+j )(s+T
1

)

= [11m (s)+jQ m(s)NRm(s)-jQm (s)].

,ii) [Rm(s)]2 = (s+
2

2-)

2

[C2 m(s)]2 = Y1 Ej,14

iii) Thus the optimum RC-RL decomposition is

pl 2 134
2

1

P(s) (s+2-) + (y(y1- )

2) When P(s) = (s 2+as+b)(s 2+cs+d)

apply the angle criterion,

18

(3-25)

(3-26)



(Case 1):

2

Nob -a
2

2 Arg Si Arg S1 + Arg S2 = Arg

i =1

19

- C 2 7T

+ Arg > 2 (3-27)

Only RC-NIC decomposition is possible, the optimum form

is

P(s) = a 2(s) - sb2(s)

[s2+KE+ Nrcr+ N(4 N/bd+ac)-2(cirb+at471)+NTEU]2

- s[s(42N/E-a+ (42NTE-a)d+ 4(2NTa-- c)b)2

(Case 2):

41,17-a7Arg Si = Arg S1 + Arg S2 = Arg

2
Tr

<
2c =

(2-38)

(3-29)

RC-RL decomposition has lower sensitivity than RC-NIC

case. The RC-RL optimum form is

P(s) = ir s +c
2 1

s+
Jac- (4b-a 2)(4d-c2),2c,, 4

1 r 2 2 1 F2 j 2 2
+ -2-1(1v4b-a +

14d-c )s +-
2

(a 4d-c + c 4b-a )] .

(3-30)
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For practical design convenience, the decomposition of Butterworth

and Chebyshev polynomials with degree from 2 to 5 have been con-

structed and tabulated (Tables 1-5). These are calculated by hand;

for high degree cases the use of a digital computer is needed.



Table 1, Optimum RC-NIC and RC-RL decomposition forms of Butterworth polynomaisi.

n P(s) P1(s)
.P2(s) P

1
(s)

Optimum RC-NIC
decompositions of P

2(s)

Optimum RC-RL
decompositions of P2(s) E Arg

2

3

4

5

2
s + 1. 414s + 1

(s+1)(s
2

+s+1)

(s
2+0.

7854 +1)
2

x (s +1. 8478s+1)

(s+1)(s
2+0.

6180s+1)

x (s
2+1.

6180s+1)

1

s + 1

1

s + 1

(s+1)
2

- 0. 5858 .s

2
(s+1) - s

[ (s+0. 5250)(s+1. 9050)12
2

- 2. 5167s (s+1)

[ (s+2. 2899s)(s+0. 4367)12

-3. 2205s (s+1)
2

(s+0. 7071)
2

+ 0. 5

2
(s+0. 5) + 0. 75

[ (s+1. 2247)(s+0. 0919)12
2

+ 3. 3917(s+0. 8446)

107. 91 0 >

Tr

4

Tr

3

Tr

2

Tr

2

N



Table 2. Optimum RC -NYC and RC-RL decomposition forms of Chebyshev polynomials (with 1/2 db

n P(s) = P1(s) P2(s) P 1(s)

Optimum RC-NIC
decompositions of P2(s)

Optimum RC-RL
decompositions of P2(s) E Arg Si

2

3

4

5

s2 + 1. 4256s + 1. 5162

(s+0. 6264)

x (s
2+0.

6264s+1. 1424)

(s
2+0.

3508s+1. 0637)

x (s2+0. 8466s+0. 3564)

(s+0. 3623)

x (s2+0. 2240s+1. 0359)

x (s
2+0.

5862s+0. 4768)

1

s + O. 6264

1

s + 0. 3623

(s+1.2313)2 - 1. 0370s

(s +1.0688)
2

- 1. 5112s

[ (s+2. 1095)(s+0. 2922)12
2

- 3.6058 s (s+0. 7328)

[ (s+0. 2661)(s+2. 6421)12
2

- 5.006(s+0. 8208)

(s+0.

(s+0.

7128)2

2
3132)

+ 1.

+ 1.

0081

0443

54. 62°

72. 96°

125. 22°

0
144.78

<

<

>

>

-
2

2

2

'TT

2



Table 3. Optimum RC-NIC and RC-RL decomposition forms of Chebychev polynomial (with 1 db ripple) .

P(s)
P1(s) P2(s) P

1(s)

Optimum RC-NIC
decompositions of P2(s)

Optimum RC-RL
decompositions of P 2(s) Arg Si

2

3

4

5

s
2

+ 1. 097s + 1. 1025

(s+0. 4942)

x (s
2+0.

49425+-0. 9942)

(s2+0. 2790s+0. 9865)

x (s
2

+O. 6736 s+0. 2794)

(s+0. 2895)

x (s
2+0.

1790s+0. 9882)

x (s
2+0.

4684s+0. 4293)

1

s + 0.

1

s + 0.

4942

2895

(s+1.

(s+0.

(s+2.

- 3.

(s+0.

- 5.

050)2 - 1. 0022s

9971)2 - 1. 5000s

0782)
2

(s40. 2526)2
2

7153(s+0. 6977)

2475) 2(s +2. 6365)2

1203(x+0.7927)2

(s+0.

(s+0.

2
5489)

2471)2

+ 0.

+ 0.

8012

9331

S8. 49
0

0
75. 65

0
132.37

0154.44

<

<

>

>

7
2

TT

2

7
2

TT

2



Table 4. Optimum RC-NIC and RC-RL decomposition forms of Chebychev polynomial (with 2 db ripple).

n
P(s)

P1(s) P2(s) P
1
(s)

Optimum RC-NIC
decompositions of P2(s)

Optimum RC-RL
decompositions of P2(s) E Arg Si

2

3

4

s
2

+ 0. 8038s + 0. 6366

(s+0. 3689)

x (s
2+0.

3688s+0. 8861)

(s
2+0.

2098s+0. 9285)

x (s
2+0.

5064s+0. 2195)

(s+0. 2183)

x (s
2+0.

1348s+0. 9522)

x (s
2+0.

3532s+0. 3931)

1

(s+0. 3689)

1

S 0.2183

(s+0. 7979)2 - 0. 7920s

(s+0. 9413)2 - 1. 5138 s

(s+1. 9620)
2

(s+0. 2301)2
2

- 3.8191 s(s+0. 6002)

(s+0. 2295)
2

(s+2.. 6522)2
2

- 5. 2753 s(s+0. 766)

(s+0. 4019)2

(s+0. 1844)2

+ 0. 4751

+ 0. 8521

59. 76
0

<

078.69 <

o141.20 >

o160. 04 >

7T
-2

2

7
2

2



Table 5. Optimum RC-NIC and RC-RL decomposition forms of Chebychev polynomial (with 3 db ripple).

n P(s) P1(s) PP) P1(s)
Optimum RC-NIC

decompositions of P2(s)
Optimum RC-RL

decompositions of P2(s) Z Arg S,
i

2

3

4

s
2

+ 0. 6450s + 0. 7080

(s+0. 2986)
2

x (s +O. 2986s+0. 8397)

(s
2+0.

1704 sl-0. 9031)

x (s
2+0.

41125A0. 1959)

(s+0.
2

1775)

x (s +0. 1096s+0. 9329)

1

s + 0.

1

(s+0.

2896

1775)

(s+0.

(s+0.

(s+0.

- 3.

(s+0.

- 5.

8414)2 - 1. 0378 s

9163)2 - 1. 5340 s

2005)2(s+2. 0974)2

9279 s (s+0. 6135)2

0506)2(s+1. 8385)2

3815 s (s+0. 7611)2

(5+0.

(s+0.

3225)2

1493)2

+ 0.

+ 0.

6040

8174

67.

80.

148.

163.

o
47

0
63

0
98

o
22

TT

<
2

TT
<

2

>
TT

2

> -2

x (s
2+0.

28725+0.3770)
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IV. THE PROPERTIES AND REALIZATIONS OF GYRATOR

The gyrator, first investigated by B. D. Tellegen (15) in 1948,

is a two port device in which the impedance seen at either port is the

reciprocal of the impedance connected to the other port. By this

property a current is gyrated into a voltage, an impedance into an

admittance, and vice versa. In network synthesis, there are many

advantages such as size and weight reduction to be realized from the

elimination of inductors. Since the fabrication of the inductors in

integrated circuits is not feasible, the gyrator will play an important

role in the integrated inductor simulation.

1. The Origin of Gyrator

In order to create useful systems, besides the four known net-

work elements- -resistor, inductor, capacitor and transformer, we

shall consider another similar element. By careful study, we find

n-ports network composed of these elements have the properties of:

A) the relationships between the voltages and currents of the

terminals is formed by a system of ordinary differential

equations, with

B) constant coefficients,

C) the n-port is passive: it candeliver no energy, and

D) reciprocity holds.
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Dropping any one of the first three properties will cause the system

to become complicated. An n-port network possessing the first three

properties but lacking the fourth may be very similar to the n-port

network composed of four elements. We shall find a new type of net-

work to realize these n-ports in which the first three properties hold

but which violates the reciprocity theorem. This requirement has no

significance for a one port element, such as C, R, and L, so we

have to look for a new two port element. The ideal transformer

i s a type for which ilvl i2v2 as in the ideal case, energy

can neither be dissipated nor stored. The equations for the ideal

transformer are

i
1

= -ni
2,

v2 = nv1,

(4-1a)

(4- lb)

which satisfies the reciprocity relation. Another two-port element

which satisfies i
1
v

1
+ i

2
v2 = 0, but violates reciprocity is de-

scribed by

v1 = -Ri2,

v2 = Rif,

and is named "ideal gyrator."

(4-2a)

(4-2b)



2. The Properties of the Gyrator

As stated previously, an ideal gyrator is a two port device

whose terminal characteristics are described by

NT
1

= -Ri
2,

28

(4-2a)

v2 = Rif. (4 -2b)

The circuit symbol as shown in Figure 4-1 where HRH is called the

"gyration resistance. n
i2

Figure 4-1. The circuit symbol of an ideal gyrator.

From Equation (4-2), the ideal gyrator can be described as the fol-

lowing matrices,

Impedance matrix [Z] =

Admittance matrix [Y] =

Transmission matrix [T] =

0 R
(4-4)

R 0

1-.

1
(4-5)

0
R

0 R

1
(4-6)

R 0
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The following properties are derived from Equation (4-2).

A) An ideal gyrator is a passive and lossless device.

B) By connecting an impedance Z at thc output terminal,
R2an impedance Z' = at the input terminal can

be found.

This can be proven as follows: Figure 4-2 is an ideal

gyrator with an impedance Z at the output terminals.

Its matrix can be expressed as

0 R 0 R

(4-7)
1

0 0 1
1 Z

R R R

Figure 4-3 is an ideal gyrator with an impedance Z' be-

tween the input terminal. Its transmission matrix is:

1 0

1

Z' 1

0

R
0

0 R

1 R
R Z'

(4-8)

2

Comparing these two matrices, if Z' , the two

networks are equivalent.

C) An ideal transformer with unity turns ratio can be realized

by two identical ideal gyrators in cascade. That is



R

v2

Figure 4-2. An ideal gyrator with an impedance Z at the
output terminal.

V2

Figure 4-3. An ideal gyrator with an impedance Z' at the
input terminal.

R

0

R'I

U

1 0

0 1

30

(4-9)

Schematically, the realization at an ideal transformer is
shown in Figure 4-4.

R R

Figure 4-4. A realization of an ideal transformer.

D) A grounded inductor can be realized by an ideal gyrator

terminated with a capacitor as shown in Figure 4-5.
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L = R2C

R

Figure 4-5. A realization of a grounded inductor.

E) An ungrounded inductor can be obtained by two gyrators and

a capacitor as shown in Figure 4-6.
1 : 1

vl v2

R

Figure 4-6. A realization of an ungrounded inductor.
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3. The Realization of Gyrators

Since gyrators hold so many useful properties, it is very inter-

esting to investigate its actual circuit realization. Briefly, the

realization methods can be divided into three groups:

A) Realization by inseration of negative impedance elements to

compensate for the residual positive input and output im-

pedances.

B) Realization by two parallel VCCSs (voltage controlled cur-

rent sources).

C) Realization by cascade NIC (negative impedance converter)

and NIV (negative impedance inverter).

3a. Realization Using Negative Impedance Elements

Consider the feedback circuit of Figure 4-7. This circuit con-

sists of an amplifier with input impedance Z1,

Z2, and open circuit gain k.

output impedance
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V
L.

k

1.1

(a) Series-parallel connection (b) Parallel-series connection

(c) Equivalent circuit of the amplifier

Figure 4-7. The feedback circuit connection.

For the series-parallel (s-p) and parallel-series (p-s)

connections, we have the following impedance and admittance ma-

trices:

Series-parallel:

[z] =s-p

Parallel-series:

[Z]p-s

a -Z2

Z1 -a Z2

-
-zi

Z - a a

(4-10)

(4-11)



Se rie s - parallel:

Parallel-series:

where

[y]s-p

[Y]p-s

a = Z 1(1-k)

a' = Y 2(1-k)

Yl

a'-Y2

a' -Y1

+ Z2,
2

+ Y1,

Yl

a

Y
2

Y2

34

(4-12)

(4-13)

(4-14)

Y= 1
, and Y = .

1 Z2 2 Z1
1

If the output is terminated by impedance ZL, then the input im-

pedance of the series-parallel and parallel-series connections are:

Series - parallel

Parallel-series

Z. =

Z1 Z2

in Z
2
+ZL

Zin-
Z

1
(Z +ZL)

2

(4-15)

(4-16)

By inspection of Equation (4-10), (4-12) and (4-15), if the fol-

lowing conditions are satisfied, then a gyrator can be formed.
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i) If a = 0, then K = 2 and Z1 = Z2 = R, and

ii) if ZL>>Z2, and

iii) if a series circuit is connected to a negative impedance

(equal to Z2) at the output or a parallel circuit is con-

nected to a negative admittance (equal to Y1) at the input.

Similarly, by inspection of Equations (4-11), (4-13) and (4-16),

if the following conditions are satisfied, then a gyrator can be

formed.

i) a = 0, then K = 2 and Z1 = Z2 = R

ii) ZL<<Z2

iii) a series circuit is connected to a negative impedance (equal

to Z1) at the input, or a parallel circuit is connected to a

negative admittance (equal to Y2) at the output.

The equivalent circuits are shown in the following figures.

=Z_ R

4

Z1 =Z2 R

k = 2 v2
0

Figure 4-8. A realization of an ideal gyrator by s-p connection
of the feedback circuit.
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vl

=Z R

V
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= Z R

1
=2

Figure 4-9. A realization of an ideal gyrator by - s connection
of the feedback circuit.

3b. Realization by Two Parallel VCCSs

The admittance matrix of the gyrator was defined as:

1-S
0

R
[Y ] = (4-17)

1
0

R

The admittance matrix can be partitioned into two submatrices

,
1

0 0 0
R

[Y] = (4-18)
1

0 0 0
at. R
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Each part of the matrices can be represented by a VCCS with

opposing polarities. Thus a gyrator can be realized by paralleling

two VCCS with opposite polarity. The circuit is shown in Figure

4-10.

0

4vi

0-

OGv 1

ICII)Gv
2

Figure 4-10. A realization of an ideal gyrator using two VCCS.

3c. Realization by Cascading NIC and NIV

Negative impedance converter (NIC) is a two port device in

which the impedance seen at either port is the negative of the imped-

ance connected to the other port. Practical NICs have two classes.

One of them is the class in which the NIC reverses the current flow at

one of the ports with respect to the direction of current flow at the

other. Such a device is referred to as a current-inversion negative

impedance converter (INIC). The following equations apply to it:

v
1

= v2,

1
i = i ,

1 k 2

where k is the gain of the NIC. Its transmission matrix is
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[T]nic

1

0

0

1

k

(4-20)

The other class of NICs operates by inverting the voltage polarity

while leaving the direction of current flow unchanged. The voltage

inversion negative impedance converter (VNIC) is described by the

following equations:

1

v2' (4-21a)

"ii = -i2. (4-21b)

Its transmission matrix is

1

k
0

[7]vnic = (4-22)

0 1

An ideal negative impedance inverter is a two port device in which

the input impedanze Zi is proportional to the negative of the load

admittance, Y L. In other words,

2
-Z.= R

2
YL =

R
ZL

(4-23)

The necessary and sufficient conditions for the two port device to be

an ideal NIV circuit, in terms of the Z parameters, are



Z11 = Z22 = 0,

2
Z

12
Z21 = R.
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(4- 24a)

(4-24b)

If we choose Z12 = Z21 = ±R, then its transmission matrix can be

expressed as

[T] . =niv

0 ±R

1±R 0

(4-25)

The circuit can be realized by using one negative resistance and two

positive resistances, or two negative resistances with one positive

resistance as shown in Figure 4-11:

R

Figure 4-11. A realization of NIV by using positive and
negative resistances.

When a negative impedance converter with gain k = 1 is

cascaded with a negative impedance inverter, the transmission ma-

trix can be represented as



±1 0

0 -1

0 ±R

±
R

0

0

1
±R 0
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(4- 26)

Thus the gyrator can be realized by cascading an NIC and an NIV:

Figure 4-12. A realization of the gyrator by cascading NIC
and NIV.

3d. Experimental Results of the Gyrator

The design of an actual gyrator circuit is based on cascading an

INIC and an NIV. The INIC and NIV are realized by using operational

amplifiers. An ideal operational amplifier is an ideal voltage ampli-

fier of very low output impedance, very high input impedance and

very high gain, with the property that the output voltage is propor-

tional to the difference in the voltages applied to the two input termi-

nals. An equivalent circuit is shown in Figure 4-13:

Tv +
in I

A =00

Figure 4-13. An equivalent circuit of an ideal operational amplifier.
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The two summing point constraints are very important and de-

fined as:

i) No current flows into either input terminal of the ideal oper-

ational.

ii) When negative feedback is applied around the ideal opera-

tional amplifier, the voltage between the input terminals

approaches zero.

These two statements are used to analyze various circuits. The

INIC and NIV are realized using the two constraints. As an example,

consider the circuit of Figure 4-14. By directly applying the two

constraints, the following relations result.
R1

Figure 4-14. An INIC realization by using operational amplifier.

1 0

R2

1

0
R

v2

-I
2

(4-27)

By comparing the transmission matrix with Equation (4-20), it
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is obvious that the circuit is an INIC with k = R1 /R2. For the NIV

circuit consider the circuit of Figure 4-15.

R2

Figure 4-15. The NIV circuit.

This is a circuit replacing a current controlled current source

by a voltage controlled voltage source in an NIV circuit which was

given by Lundry (10). Analyzing the circuit, the transmission matrix

is found to be

[T]NIV

1
Rz(G+1)

G -1
R2

GR1 GR1

When I G I >> 1, the transmission matrix reduces to

[T]NIV

0 R2

1

R1
0

(4-28)

(4-29)

Since the operational amplifier is a VC VS with the gain IG I >> 1, the

NIV can be formed by replacing the VCVS by the operational amplifier.
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The resulting circuit is shown in Figure 4-16. Clearly, the gyrator

can be easily formed by using two operational amplifiers.
R1

Figure 4-16. The NIV circuit using operational amplifier.

An actual gyrator circuit was made and tested. Two NEXUS

SQ -1 Oa operational amplifers, with a dc gain of 100,000 and a

2MHz cut off frequency, were used in the experiment. Figure 4-17

shows the circuit.

a

INIC (k = 1)
1000Q

'NAN

L
1000St

i\AA.

r
NIV

10000 1-Wr-

L _ _ _J

100052

L- - - - - - -I

_A
2

Figure 4-17. The gyrator circuit using operational amplifier.

The experimental results are shown in the following curves and

oscillograms.
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Figures 4-18 and 4-19 are plots of the impedance, Zin, VS
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the frequency, f, when the gyrator is terminated with a resistance

RL or a capacitance. The curves show that the input impedance

agrees closely with theoretical results at frequencies between 250 Hertz

to 2500 Hertz. Oscillograms 1 through 4 show the phase difference be-

tween a resistance and the simulated inductor L (see Figures 4-20

and 4-21) at the frequency f = 500, 1000, 2000; 2500 Hertz.

R = 1 KS2 R = 1 KO
g J. R= 1 KS2

f = 500, 1000, 2000, 2500 Hertz L = R 2C = 0. 02 h
g

Figure 4-20. Simulated R- circuit.

-1 bPhase difference 0 = sin a

Figure 4-21. Phase-difference pattern.



Oscillogram # 1

f = 500 c/s

Phase difference
(theoretical) 6 = 86. 42o

(e:Te.rirnental) 87 o

Oscillogram # 3

f = ..J3100 c/s

Phase difference
(theoretical) = 75. 45o

(expe rime atal) 74 70°

4 .1

Oscillogram # 2

f = 1000 c/s

= 82. 84°
8 z 82°

Oscillogram # 4

f 2500 c/s

8 = 7i, 7°
0 g 60°

_..noraill111111111nr.,-
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V. ACTIVE FILTER SYNTHESIS USING GYRATOR

In the design of low frequency circuits, inductance, if required,

is usually needed in large values. Consequently, the physical reali-

zation of these inductances becomes very impractical, because of

size and cost limitations, and because of resistive losses. In addi-

tion, when precise specifications are to be attained, conventional

circuits with inductances can not be used, because of the inherent

resistance of inductors. On the other hand, capacitances of large

values can be obtained with low loss and for a reasonable cost. Thus,

the use of networks containing only resistors and capacitors are to be

considered. The natural frequencies of passive RC networks are re-

stricted to the negative real axis of the complex frequency plane, and

the natural frequencies must be simple, i. e. , of the first order. It

is therefore not possible to obtain the complex natural frequencies.

However, the situation can be improved by using active elements.

The most frequently encountered active elements are controlled

sources, negative impedance converters and gyrators. Each active

element had its advantages and disadvantages. The realization of the

gyrator has been discussed in Chapter IV. In this chapter we shall

apply the sensitivity minimization techniques, which have been de-

scribed in Chapter III, to RC-gyrator synthesis.
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1. Direct Design Method

The simplest and most direct way to design active filters using

gyrators is to first design the conventional L-C filter, and then re-

place all the inductors with gyrators and capacitors. As an example,

a 3-pole maximumally-flat low pass transfer function can be realized

using the following procedures:

i) Find the pole locations.

.2
37 Tr

s
1

=e = -0. 5 + j0. 866

s
2

= ejlr -1 + j0

.4
13Trs3 = e = -0. 5 - j0. 866.

ii) Construct the transfer function

Z
21 (s +0. 5 -j0. 866)(s+1)(s+0.5+j0. 866)

H

H

s
3+2s 2+2s+1

(5-1)

iii) Design the network as an LC filter loaded with unity resist-

ance.

O

LC

Figure 5-1. I,C network terminated with unity resistance.



The transfer impedance Z21 can be expressed by

open circuit parameters:

z
21

Z12 1+z22

iv) Assign z21 and z22

H

H s
3+2s

Z12 3s +2s 2
+2s+1

1+
2s

2+1

Thus,

and

z12

1+z22

H
z12

s
3+2s

z22 2s2+1

s3+2s

v) Synthesize the network.

Since all zeros of z12

s3+2s

lie at s =oo,

50

(5-2)

(5-3a)

(5-3b)

the desired network

is obtained through the continued-fraction development of z22

z22
3 1

2 4 1

3s +3
s

2

(5. 4)
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The realized network is shown in Figure 5-2.

L = 4 h

Figure 5-2. The realized network of Equation (5-1).
vi) Denormalize the element values in terms of the given speci-

fication.

Suppose we wish to increase the impedance level to kz, and

scale the frequency to kf, the denormalized values R*, L* and

C* are changed to

R* = kzR (5-5a)

k
L* = L (5-5b)

kz
f

C* - kzkf C (5-5c)

vii) Replace the inductor by two gyrators and a capacitor

g g

Z22

Figure 5-3. Replacing the inductance in Figure 5-2 by gyrators.



Where

3 1
C

1 2 kzkf

1 1
C

2 2 kzkf

L 4 1
kz

Cs = =R2 3 R2 k
f

g g

52

(5-6a)

(5-6b)

(5-6c)

The active filter design using this direct method is quite sim-

ple, the simulated inductor is L = R 2C
. If, under certain condi-

g s

tions R drifts, then an accurate L cannot be attained; there -
g

fore, the characteristic of the transfer function will be changed. An

example of a second degree low pass filter will be used to examine

this change. The transfer function is

G
12

s
2-1-4s+1

1 (5-7)

Applying the previous procedure, the network can be found as follows:

Figure 5-4. The realized network of Equation (5-7).



where

and
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L = 2 (5-8a)

1
C=

R = 1

R2
C

s L

(5-8b)

(5-8c)

(5-8d)

Denormalize each circuit element by changing the impedance

level to Rz and the frequency scale to :a
o.

Then the element

values become

and

R
o z

2Rz

0

1

R .

(5-9a)

(5-9b)

(5-9c)

If the gyration resistance R is varied to R' the simu-

lated inductance is changed to

where

R'

g

2

R

a.
g

(5-10)

(5-11)

The denormalized transfer function of Figure 5-4 becomes
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1

LC
G (s)

12 2 1 1
S + S +

CR LC

2
wo

(5-12)
2

s
2+ 4co s+co

0 0

When the gyration resistance is changed the simulated induct-

ance changes to L'. The transfer function thus becomes

G 12(s) -
4.) LA)

0 o
s2+2 a(7 )+(7 ) 2

2
con

2 2
s +2n(k) n+ (')n

The dc gain remains unity, but the damping ratio

(5-13)

and the

resonant frequency wo are changed to and con, respec-

tiyely.

and

o
w =

(n a 0
g

n= a
g

(5-14a)

(5-14b)

Figure 5-5 shows the percent change in damping ratio with percent

change in R . Figure 5-6 shows the percent change in resonant

frequency with percent change in R



55

0.5 1.0
a= R.' /R

g g

1.5 2.0

Figure 5-5. Damping ratio vs a for direct design method.

0

1
W n

w
0

0.5w
0

0
0 0.5 1.0

a. = R' /R
g g

1.5 2.0

Figure 5-6. Resonant frequency vs a for direct design method.
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From Figures 5-5 and 5-6, we observe that when the gyration

resistance is increased by 10%, the damping ratio

frequency wn

and resonant

vary 10% and 9%, respectively. This will be corn-

pared with the other methods later.

2. Single Gyrator Design Method

Although the direct design method is quite simple, it has the

disadvantages that pole locations of the transfer function are sensi-

tive to the change of gyration resistance, and the network needs more

than one gyrator. There is a better method using a single gyrator

cascaded by passive networks at both ports as shown in Figure 5-7

(13).

(I)Y

Figure 5-7. A gyrator cascaded with two RC networks.

Let network I in Figure 5-7 be defined by its y-parameters
(II)and the network II be defined by its z-parameter z.. .

Then the open-circuit voltage transfer function for the overall net-

work is
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V
2
(s) N(s) R

g
y 12 (s)z 12(s) Gy21(s)z21(s)

G 12(s) - V (s) D(s)
_ _

1 z11(s)+Rg
2

Y22
(s) y22(s)+G2z11(s)

(5- 15)

Divide both denominator and numerator by an arbitrary polynomial

Q(s) and decompose D(s)/0(s) into the form of z
11

(s)+R
g
2y

22 (s).

Thus
2

D(s) D 2(s) D
1

(s) D
2
(s)Q

1
(s)+R

g
D

1
(s)Q2(s)

0Q(s) Q 2(+
R2

g Q 1(s) Q
1 (s)Q 2(s)

Therefore

D 2(s) D 1(s)
z = Y11 Q2(s) ' 22 Q 1(s)

Q(s) = Q1(s)Q2(s),

2
D(s) = D

2
(s)Q1(s) + R

g
D

1
(s)Q2(s).

. (5-16)

(5-17)

(5-18a)

(5-18b)

The decomposition may be achieved by using optimum poly-

nomial techniques proposed by Calahan which have been summarized

in Chapter III. The first way, denoted by (A), is the optimum non-

unique decomposition. The second, denoted latter by (B), is the

optimum unique decomposition.

(A). The optimum non-unique decomposition has the form of

n/2 n/2
D(s) = Aon (s+a.)2 + Bon II (s+b.)2.

1
1 1

(5-19)



Consider a low pass filter with the transfer function of

G 12(s) =

2
H u.)o o N(s)

s+o)
2 D(s)

0 0

D(s) has an optimum decomposition of the form

2
D(s) = s 2 + 2w s+co = A (s+a)2

+ Bon (s+b)
2.

ilo o O

By equating the corresponding coefficients

and

Aon + Bon = 1,

Aona + Bonb co
o,

2
A a + Bb 2 = co.

on on o2
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(5-20)

(5. 20')

(5-21a)

(5-21b)

(5-21c)

There are four unknowns and only three equations available, so we

shall make some assumptions. By calculations we find that

Arbitrarily select

then
1

Aon
l+n

2

1
A on 1 +B /A

n on

B on /Aon = n2,

and B =
on l2 '

+n

n2

(5-22)

(5-23)

(5-24)



Substituting Equations (5-23) and (5-24) into Equations (5-21a, b and

c) yields

a =

b = w (-1,1142)
o n

From Equations (5-20) and (5-18b)

Assign

and

where ko

Then

and

D
2
(s)Q1(s) = Aon(s+a)2,

D
1
(s)Q

2
1

2
(s) = [13

on(s
+b)2].

g

B
D

1
= k

o 2
(s+b),

g

on

Q
2 k

1 (s+b),

D2 = Aon(s+a),

(s+a),

is impedance scaling factor.

D 2(s) s+a
zl 1 Q2(s) ko"-l'on s+b

D 1(s) koBon s+b
y22 Q

1
(s) 2 s+a

g

59

(5-25a)

(5-25b)

(5-26)

(5-27)

(5-28a)

(5-28b)

(5-28c)

(5-28d)

(5-29a)

(5-29b)



Y12
and z12 can be found from the numerator:

Now assign

and

where

2

N(s )
Ho coo ko

Q(s) (s+a)(s+b) = -Rg y 12
(s)z 12(s).

X1
-y 12(s) = ko s+a

X2
z 12(s) = ko s+b

H
2

o
coo

X
1

X2
k

2

oRg
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(5-30)

(5-32)

From Equations (5-29b) and (5-31a), the RC network at the left port

of the gyrator can be realized and shown as in Figure 5-8. The

continued-fractional expansion of y22 takes the form of Figure

5-8.

Y22
1

2

g
ko Bon

1

ko Bon
1

2
s +

RR (a-b)
g g

ko Bon
a-b
b

(5-33)



where

Ral

v
1

C
a

v2

1

Y22
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Figure 5-8. The RC network at the left port of the gyrator.

2R
2 (a-b) R

R = g R gal kBb ' a2 kB0 on o on

ko Bon bBon
C a X1

2R (a-b) R
2

g g

(5-34)

Similarly, the RC network at the right of the gyrator is realized by

Equations (5-29a) and (5-31b), which yields Equation (5-35) and Fig-

ure 5-9.
1

zll
k

o
Aon +

R
bl

1

1 1s +ko Aon(a-b) 1b[koAon(a-b)]

z
11

(5-35)

Figure 5-9. The RC network at the right port of the gyrator.



where

1Rbl = ko Aon
'

R
b2 b [1c

o
Aon(a-b)],

1
C =

b kA(a-b) X2 = Bon(a-b) .
o on

The complete network is shown in Figure 5-10.

Ral Ra2 R
g Rbl

Figure 5-10. The realization of Equation (5-20).

2
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(5-36)

Substituting the values of a, b, Aon and Bon into Ral'

Rat' Rbl, Rb2, Ca and Cb yields

2
2

2 R 2
(l+n )

2 R
g ,.//1.--

2
1+n gRai

1 / 2 ' Ra2 -k
n3 o ---Nil-t n2 ko '

n

1

R = 1k 1-2
1+n

=
2

ko
' b2 no 1 2-

n

n3 ko
1 1Ca Cb - n2 2 I- '(1 +n ) Rg

2coo v147 k N1-7o o

(5-37)

It is instructive to examine the characteristic change of the

transfer function due to the change of gyration resistance. The
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transfer function of the network designed by this method (Figure 5-10)

is

where

R
g

y
12

(s)z 12(s)
G

12
(s)

2

z11(s)+Rg Y22(s)

1 k b(a-b)AonB
o onRg

2s (A +B)+2s(aA +bB )+a
2A +b 2

Bon on on on on on

o R
2, 1 ko\li_ n

g n2+1

52+4w s+w
2

O o

H w 2

o o (5-38)
s

2+4co s+w 2

0 0

Ho
R1 o

ji
n

_,2)

g
2n +1

(5-39)

When the gyration resistance changes from R to R' letting
RI

a = as before, we obtain
g

G 12(s) = aRgY12(s)z12(s)
, 2

zWs)+a
2
Rg Y 22(s)

1

R
kobBonAon(a b)

g
2

A aA Aon a
s2(

onon+aB )+2( +bBa)s+ +aBb 2

ona on a a on



1

R
kobBonAon(a-b)

g
2 2

Y s +aY2 (L.)os+wo Y3

1 1 k bB A (a-b)
Rg Y1 0 on on

2
Y2 Y3

2s +()
o
s+(

Y
)w

1 1
o

717-[-Ti (wok '41--
2(--1d1-e)

2
1 n +1

2
Y2 Y3

2s + (Y1 )4wos+ (Y1 )wo

2
Hnwn

2 2

n ns ws+wn

64

(5-40)

The dc gain Ho, the damping ratio o' and the resonant fre-

quency wo are changed to Hn, and wn, respectively. Thus
n

2

0 1
H

n
H

o 2 Y
1

= H o Y3
n

(5-41a)
w 1

Y2

Niy
3

y
1

5
(5-41b)

and

3

Y1 o
w , (5-41c)

Wn

where

Aon

a 2

2
a

2

Y = + aBon = l+n (5-42a)
a(n +1)



and
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1 (a k +abk2) 1
Y2 = [g+nll - g

2
+n2(g- 4142)]

gwo a 1 a(n2+1)
(5-42b)

kl
21

Y3
2

( aa +ak 2b 2)

wo

1 {(1-a 2
)[g

2(1-n 2
)+2ng F-T1]+n2+a2 }.

(n
2+1)a

(5-42c)

Substituting Equations (5-42a, b, c) into Equations (5-41a, b, c) yields

n
w

o 2 2 (5-43a)
l+na

(5-43b)

and

-a 2a (1-n 2
)+2ng47:g7]+n2+a2

+ +n2a2(g
n

n qi(l+n2a 2)[g2(1-n2)+2ng ](1-a
2)+n 2+a2

(n
2+1)a

Hn = Ho
(1-a2)[ 2(1-n2)+2ng Ni1-g21+n2+a2

(5-43c)

Figure 5-11 shows the percent change in the damping ratio gn, with

percent change in R Figure 5-12 shows the percent change in

resonant frequency wn, with percent change in R . Figure 5-13

shows the percent change in the dc gain Hn, with percent change

in R Figures 5-11, 5-12, and 5-13 show the percent change of gn,

wn, Hn due to the percent change in the gyration resistance R . This

method is based on minimum sensitivity polynomial decompsotion.

This method should have a lower sensitivity than the direct design
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Figure 5-11. Damping ratio vs a for single gyrator design method (A).
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Figure 5-12. Resonant frequency vs a for single gyrator design
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method. This can be seen by comparing Figures 5-5 and 5-6 to Fig-

ures 5-11 and 5-12. Using this method, the experimental results as

indicated in Figure 5-14, which follows show quite good agreement

with the theoretical case.

1.5 H0

Hn

1.0 H
0

0.5 H
0

0 0.5 1.0 1.5a= /R
g g

2.0

= 0. 4

= 0. 6

= 0. 8

Figure 5-13. Gain vs a for single gyrator design method (A).
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Figure 5-14. The experimental result of RC-gyrator filter.
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(B). The optimum unique decomposition has the form

n/2 (n/2)-1
2 2

D(s) = II (s+a.) + B II (s+b.) .
1 on i

i=1 i=1

69

(5-44)

Again, consider the low pass filter with damping ratio and

resonant frequency coo. It has the form

2
H0 0

G 12(s) - 2
s2+nco s+u)

0 0

Recall Equation (5-15),

N(s)/Q(s)
G 12(s) D(s)/Q(s) -

Gy21z21
2

v22+G z
11

Decompose the denominator into the form of

(5-45)

(5-46)

2

D(s)
D

2(s) D 1(s) D (s)Q
1
(s)+G D

1
(s)Q2(s)

+ G (5-47)
N(s) Q 2(s) Q

1
(s) Q

1 (s)Q 2(s)

Therefore,

where

D 2(s) D 1(s)
y 22(s) Q 2(s)

z 11(s) =
Q1(s)

=

Q(s) Q1(s)Q2(s),

D(s) = D 2
(s)Q 1(s) + G

2
D

1 (s)Q 2(s).

(5-48)

(5-49a)

(5-49b)

The optimum form of D(s) can be found in the example on page 18:



Thus

and

Assign

and

Then

and

D(s) = s 2 + g w s +w 2 = (s-qwo)2
+ wo

2 2
)-o o

D2(s)Q1(s) = (s-qw o
)2,

D1(s)Q2(s) = 1,

G = w
0

1- 2
.

D 2(s) = s +

Q1(s) = s +

D 1(s) = 1,

Q2(s) = 1.

y22 = s +

1

Z11 s+wo

are found from the numerator

Thus

2

N(s) How oo= -Gy z
Q(s) 21 21 s-qw

o

-y21 = HI

H2
2

Z21 s-qw and H1 H2 = How() .
0

70

(5-50)

(5-5Ia)

(5-51b)

(5-51c)

(5-52a)

(5-52b)

(5-52c)

(5-52d)

(5-53a)

(5-53b)

(5-54)

(5-55a)

(5-55b)
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The RC network to the left of the gyrator can be obtained by y22

and -y21. Similarly, the network to the right of the gyrator can be

found by z11 and

5- 15 ,

where

and

z12' The complete network is shown in Figure

R
g

Figure 5-15. The realization of Equation (5-45).

1 1R -
2 gw

,

o

G = w
o

t 2

Cl = 1, C2 = 1,

The transfer function of Figure 5-15 in terms of R1, R2, C1, C2

and G, can be written as

G 12(s) -
R1C1C2

G2+ R1R
s

2
+s( 1

+ )+
1 1 2

RIC' R2C2 Cl C
2

G

2 2s +2;w s+w
0 0

(5-56)

The gyration resistance and the gyration conductance are changed



from R to R' and G to G', respectively.
g g

Let
R'

g Ga -
R

g
GI

Then the transfer function G12(s) is changed to

G
o)a

G 12(s)
s2+4w s+ (G )

2-q2w
2

oo a

2
Hnwn

_ .
2 2s +4rins+wn

72

(5-57)

(5-58)

Thus, when the gyration resistance or the gyration conductance is

changed, the damping ratio ,, resonant frequency wo

Ho are changed to

woiw = j(G )
2 -q 2 2

w = 1-q 2 (a2 -1),
n a o a

ewo

n w n 4
a

1+2(a2-1)

and
a

Hn
-2)-Fa2 2 Ho '

respectively.

Figure 5-16 shows the percent change in damping ratio n'

and gain

(5-59a)

(5-59b)

(5-59c)

with

percent change in R Figure 5-16 shows the percent change in
g
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Figure 5-16. Damping ratio vs a for single gyrator design method.(B).
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resonant frequency wn, with percent change in R . Figure 5-18

shows the percent change in dc gain, Hn, with respect change in

R Compare Figure 5-16 and 5-15 to Figure 5-11 and 5-12 and

Figure 5-5 and 5-6. This comparison shows that the single gyrator

design method always has lower sensitivity than the direct design

method.

1.5Ho

Hn

1.0Ho

0.5Ho

-20

-20

0.5 1.0
a = R' /R-0-

g g

aHn -
(1-
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= 0.6
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Figure 5-18 Gain vs R for single gyrator design method (B).
g
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VI. SUMMARY

Two methods of active filter synthesis were derived. The first

was replacing inductors in the conventional LC filter with gyrators

and capacitors. The second was using a single gyrator cascaded by

two RC two port networks. The gyrator is realized by cascading an

ideal negative impedance inverter (NIV) and a negative impedance

converter (NIC). Each NIV and NIC is realized by using a single

operational amplifier. Therefore, the gyrator can be realized by

using two operational amplifiers. It is to be noted that the gyration

resistance can easily be adjusted by adjusting the passive elements of

the NIV.

In RC-gyrator synthesis, although the realization of the gyrator

is much more complicated than that of the NIC or of controlled

sources, it has the disadvantage of not being able to provide large

amounts of gain. However, it does have the following advantages.

First, from its lossless nature, the gyrator can never be unstable.

Second, since a capacitor in general has a higher quality factor than

an inductor, gyration using a capacitor produces a better inductor

than that now available. Third, it provides lower sensitivity than

comparable realization using controlled sources or NICs. These ad-

vantages make the gyrator realization very attractive.

The applications of integrated circuit technology in active RC
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network synthesis have received much attention recently, especially

in microminiaturization. In active RC integration network design,

the designer may no longer select passive elements and interconnect

them to achieve a network, but rather must make the passive com-

ponents simultaneously with the active elements in the integration

procedure. In integrated circuit technology the initial tolerances of

the resistors and capacitors are still within certain limits. There-

fore, the sensitivity minimization problem is not a single parameter

sensitivity problem but a multiparameter sensitivity problem The

sensitivity minimization of the polynomial decomposition applied in

this thesis is due only to the change in active elements. In this

thesis, only the single-parameter sensitivity was considered. Multi-

parameter sensitivity of integratable active RC networks is suggested

as a topic of future study.
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