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ACTIVE NETWORK SYNTHESIS USING GYRATORS

I. INTRODUCTION

Over the past decade, increasing interest has been shown in
synthesis techniques using active elements. Conventionally, the ele-
ments used in network synthesis are resistors, capacitors, inductors
and transformers. Since capacitive elements are usually cheaper,
simpler and more nearly ideal elements than are inductors, synthesis
techniques using only RC elements are very important. On the
other hand, non-positive real functions cannot be realized by using
passive elements alone. The use of active devices will overcome
some of these difficulties. The most commonly used active elements
are negative resistances, controlled sources, operational amplifiers,
negative impedance converters and gyrators. The gyrator is one of
the most useful active elements. It has the property that it can gyrate
an impedance into an admittance, and vice versa. By this property,
an inductor can easily be obtained by terminating a gyrator with a
capacitor. It is also attractive in microminiaturization, since the
fabrication of inductors in thin-film and integrated-circuit technology
is the most difficult problem, especially, for low frequency applica-
tion, and no practical values of inductance have been obtained at this
time.

The thesis will concentrate on gyrator synthesis techniques



with sensitivity considerations. Sensitivity has been recognized as
one of the main considerations in active RC synthesis. Chapter II
gives some definitions of sensitivity. In Chapter III, optimum poly-
nomial decompositions, developed by Horowitz and Calahan, are sum-
marized. Butterworth and Chebyshev polynomials using this tech-
nique are decomposed and tabulated for practical use. The proper-
ties and realization methods of gyrator are described in Chapter IV.
An actual circuit is synthesized and tested and the results also shown.
Two RC-gyrator synthesis techniques are described and compared in

Chapter V.



II. DEFINITION OF SENSITIVITY

Sensitivity is a measure of the degree of dependence of one
quantity upon the value of another quantity. In network synthesis,
the sensitivity is a measure of the change in certain network functions
resulting from the change of the network elements. In this chapter,
some definitions of sensitivity which have been used in network syn-

thesis are defined.

1. Classical Sensitivity

Let Ni(s, X1 XZ’ e, xn) be a network function of n param-
eters, For a single parameter case, N(s, x), the sensitivity is de-
fined as

N dN/N dlnN dN x
= = T e e e, 2—].
Sx(s’ %) dx /x dln x dx N ( )
Since,
In N (jw, x) = In |N(jw, x)| + j Arg N(jw, x). (2-2)
equation (2-1) can be written as,
N dM do
S (jw, = x|—=—+ j—, 2-3
X(Jw x) X(dx J dx) ( )
where
M = 1n |N(jw, x)], (2-4a)

[ev)
1l

Arg[N(jo, x)]. (2-4b)
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Thus the real part of the sensitivity is the change in magnitude of the
network functions, and the imaginary part of the sensitivity is the
change in phase function.
Let @Q(s,x) and P(s,x) be the numerator and the denomi-

nator of N(s, x) respectively. Then

Qfs, x)
= 2 2-5
N(s, x) P(s, x) (2-5)
It can be shown that
N Q' P!
S ’ = - - A ’ 2'6
(o) = x5 - ) (2-6)
where
00 oP
1 _ 1o 2-
Q ox ’ P ox (2-7)
2. Root Sensitivity
Let the network function N(s, x) = 9—(-5—’}—(—)- . The root sensi-
P(s, x)

tivity is defined as the change of the roots of N(s,x) with respect to
the change in one of the network parameters. Thus the root sensi-

tivity can be expressed as

sj ds. jd—sl
Sx (s, %) = dx/x T ax (2-8)

If

P(s, x) = A(s) + xB(s), (2-9)



then the pole sensitivity SXJ is

P. dp. xB(p.)
J - J_ ) 1
SX (s, x) = x Tn P,(pj) (2-10)
Similarly, let
Q(s,x) = C(s) + xD(s) (2-11)
z,

s 1.
The zero sensitivity S is

SX(s,x):x T = - Oz (2-12)

3. Multiparameter Sensitivity

I.et N be the network function with n parameters,

N = N(s, x , X ). (2-13)

3o X

,XZ,X

1

Taking the partial derivatives with respect to each variable, x,, the

total differential is

ON
dN = ——dx +——8Ndx +...+——8Ndx (2-14)
8xl 1 8xZ 2 0x n
n

Divide both sides by N

dN _ 4(1n N) = Z 81nN(dlnxi). (2-15)



The multiparameter sensitivity S may be defined as a gradient

. 0 1ln N
vector with elements ———
0 1ln Xi
Let d(ln ;i) be a vector with elements d(ln xi). Then
dN —N -
— 2-1
N (S )d(ln Xi) ( 6)

The multiparameter sensitivity g’N is then defined
——>N —_—
S = Grad{(ln N) d(ln xi)} (2-17)

4. The Relationship Between Classical Sensitivity
and Root Sensitivity

Start from the definition of classical sensitivity,

SN( ) = dN/N _ d(ln N)
x 0 F T ax/x d(ln x) ’

and define

_ Qfs,x)  C(s)+xD(s)
N(s, x) = P(s,x) A(s)+xB(s) (2-18)

Then

N R O L D(s) B(s)
SX(S,X)—X( o _P)—X(Q(s,x)_P(s,x))' (2-19)

Replace x by x+ Ax. The poles of N(s,x) will be determined

by the root of equation

A(s) + (xtAax)B(s) = 0. (2-20)

Define



_ _xB(s)
F(s, x) = —P(s,x) . (2-21)
Then Equation (2-20) can be written as
1+ -AX—XF(s,x) = 0. (2-22)

Assume the degree of the numerator of F(s,x) 1is lower than the

degree of the denominator. Then

F(s,x) = ) —— (2-23)

Substitute (2-23) into (2-22), and examine the behavior of the equa-
tion in the vicinity of the jth pole of F(s,x). Equation (2-22)

may be written in the form

k.
1+ &% —1l -0 (2-24)
G

where p.! is the value of s which satisfies the equation. If we

1

write pj - p. = Apj, substitute it into Equation (2-24), rearrange

J
and take the limit

Ap. dp.
lim —d = —d = _ L1 (2-25)
AX dx X ]

Ax—0

Thus, the sensitivity of jth =zero of Ni(s,x) is



pJ. dp.
SX (s, x) = —-.de/x = -kj, (2-26)
Similarly, define
xD(s) kj
G(S’X) = Q(S) = . s-z. ’ (2‘27)

The sensitivity of jth zero of Ni(s, x) is

Z, dz.

i i
Sx (s, x) = Py ki , (2-28)

Substitute (2-26) and (2-28) into (2-23) and (2-27) respectively. Thus

p.
_Sx

F(S,X) = z S"p 3 (2"29)
j J
Z

G(s, x)

-S

Z . (2-30)
S-Z.

i

Substitute (2-29) and (2-30) into (2-19), the relation between classical

sensitivity and root sensitivity results

p. z

j
S S
N
S (s, x) = Z x . E X (2-31)
X s-p. / s—zi

j b




III. POLYNOMIAL DECOMPOSITION IN ACTIVE
NETWORK SYNTHESIS
In the previous chapter some sensitivity definitions have been
stated. However, the synthesis technique based on the sensitivity
consideration is very important and will be discussed here. Most of
the active RC synthesis methods are based upon the partitioning of
network functions into subnetwork functions. There are two decom-

position forms.

1. RC-NIC Decomposition

Several methods have been presented to realize the immittance

function by RC-NIC circuit. Horowitz (7) suggested a method by
which a given polynomial can be decomposed into the difference of two
other polynomials in such a way as to minimize the sensitivity.
Calahan (4) has also shown that the same method can minimize the

root sensitivity.

Let

P(s, k) = a sn+a s 'I‘...'I‘ao

I
>
>
W

t
o
o

(o]
o]
9
b/-\
wn

n
= z(a’i-kbi)s1 = z cmis1 (3-1)
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where
n/2
A (s)= T (s+a.), (3-2a)
n ) i
n/2
B (s)= I (s+b.) (3-2b)
n ) i
a; = a, - kb_1 (3-2¢)

The sensitivity of any change of coefficient a; with respect to k

is
. 0aq, kb,
Sal = __1_£ = 1 (3-3)
k  dka, = a )
i i
In order to minimize the sensitivity to the change of any coef-
ficient in k, it is necessary to minimize the corresponding coeffi-

cient of B._B (s). Horowitz (7) has shown that the polynomial P(s)

onn
. . 2
must be decomposed into two new polynomials; a (s) and sb (s).
These polynomials have zeros arranged as shown in Figure 3-1.
b
—— - - - - ————6—©- —
n a b a —_— —
az 2 2 1

Figure 3-1. Optimum zero pattern of RC-NIC de composition.
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The optimum pattern can thus be written as

P(s) = ansn + an_lsn‘.1+ .otag
= a%(s) - Bosbz(s), (3-4)
where
a(s) = (sta))(sta,) ... (sta_,) (3-5a)
b(s) = (stb,)(stb,) . (stb_,, ) (3-5b)

The optimum decomposition of the polynomial P(s) can be
obtained by the following procedures:
1) Form the polynomial P(sz): that is the polynomial formed
by replacing s with sZ. Let F(s) contain the left

2
half-plane roots of P(s ). Obviously, F(s) is Hurwitz

2
and F(-s) contains the right half plane roots of P(s ).

Thus we obtain
2
P(s )= F(s)F(-s). (3-6)

2) Since F(s) isHurwitz, F(s) can be expressed as

F(s) = A(s) + sB(s), (3-7)

then
2 2
2 2(s). (3-8)



12

2
3) Replace s with s in the optimum form of Equation

(3-4) which yields

B(s) = ’\/-Eob(sz).

4) Substitute (3-10a) and (3-10b) into (3-8) and replace

2
with s , the optimum form results

(Example):

Find the RC-NIC optimum decomposition of

P(s)=s +B.s ty;-
Apply the procedures

1) P(s ) = s4+ Blsz-l- Y,

{

1

)+ s - (N2NT. -B, )

2) F(s) = (sZ+VTG

(3-9)

(3-10a)

(3-10b)

S

(3-11)

(3-12)

—[(s2+wﬂy) + sN2Nv, -B. )] [(s“+N¥, ) -5 2\F71-Bl}
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3) a(s ) =s + \"\71, and
2, _
Bob(s ) = Z'\/—y_l-ﬁl.

P(s) = (stNy,) - s(Z'\/'y_-Bl). (3-13)

2. RC-RI. Decomposition

Since and equivalent inductor can be obtained by terminating a
gyrator with a capacitor, RC-RL decomposition can also be applied

in RC-gyrator synthesis.

Let
P(s)= a s + n-l 4
5) = an an_ls ao
n/2 _
= I (s+s.)(s+s.)
1 1
1
= A A (s)+kB_ B (s), (3-14)
on on n
where
n/2
A (s)= I (s+a.) (3-15a)
n 1
1
n/2
B (s)= I (s+b.) (3-15b)
n ] i

The zeros are distributed as in Figure 3-2.
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—_—— - — - — e °
b b a, 2, o >

o
I
o
VB
]
—

Figure 3-2. Zero pattern of An(s“' and Bn(s).

The root sensitivity of Equation (3-14) is

si dsi kBéan(si) AonAn(si)
ISk | = ldk/k| B 'dp(si)/ds =] P'(s,) |- (3-16)

The sensitivity will be minimized if AonAn(si) is minimized. The

optimum zeros pattern is shown in Figure 3-3.

6 - —— -0 ©
a.g b> -1 by °
2 2~
Figure 3-3. Optimum zero pattern of RC-RIL decomposition.

Calahan (6) shows that if,

n/2
T
1 < =, -
) ZArg Si: > (3-17a)
i=1

A unique decomposition of P(s) 1is possible and has the



form
n/2 (n/2)-1 5
P(s)= 1T (sta.) + B ji (s+b.) .
] i on ] i
n/Z
2) 23 Args <7,
i=1

15

(3-17b)

(3-18a)

Nen-unique decompositions of P(s) are possible and have

the form

n/2 5
A, TlI (sta)” = [R_(s)]
and
n/2
B I (stb)”=[0 (s)]°
on i m
Then
n/2
R (s)=A~NA M (s+a.),
m on i
n/2

and

(3-18b)

(3-19a)

(3-19b)

(3-20a)

(3-20b)
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2

it

R (s)]°+[Q (s)]
m m

it

[R (s)+iQ (s)[R (s)-jQ (s)]. (3-21)
m m m m

Summarizing the above equations a procedure for finding optimum
RC-RL decompositions obtained:

1) From a given polynomial

n/2 _
P(s) = @I (s+s.)(s+s.)
) i i

determine R (s) and Q (s).
m m

2) Assign

n/2

(R (S)]2 = AOn 1;1 (s+ai)2’ (3-22a)
> (n/2)-1 5
[Q (s)]"=B m (s+b.)". (3-22b)
m on 1 1

3) Substitute Equation (3-22a) and (3-22b) into (3-21) to get
optimum RC-RL form.
For non-unique decomposition, equating the given polynomial to the
optimum form and comparing the corresponding coefficients, it is

found that there are n+Z2 unknowns and only nt+l equations.
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Arbitrarily select the value of Aon/Bon' Infinite numbers of other

decompositions can then be found. Calahan (6) also concludes that,

for a given polynomial

=A A (s)+kB B (s) (3-23)
on n

If

T
> - -
z Arg Si > (3-24a)
1

only RC-NIC decomposition is possible. If

m
< - -
z Arg S <5, (3-24b)

both RC-NIC and RC-RL decomposition are possible. The latter can

always be chosen to have the lower sensitivity.

(Examples):

1) For a given polynomial

!

2
P(s)=8s5 + ﬁls + Yy



if

™
= _ > -,
Arg Sl Arg >

18

The optimum RC-NIC form can be found in the example on

page 12. If

Arg Sl = Arg

Apply the RC-RL decomposition procedure:

2
5, [ 8 8 | B
(st +Ny - Msrom =Ny - )

1) P(s) =
= [R_(s)4jQ_(s)I[R_(s)-jQ_(s)].
i) [R_(s)]° - (s+f2;)2-
S

—
O
w
=
fl
-
—
1
|

iii) Thus the optimum RC-RL decomposition is

2
Bl
P(s) = (s+5)" + (v, =) -

2) When Pf(s) = (sz+a.s+b)(sz+cs+d)

apply the angle criterion,

(3-25)

(3-26)



19

(Case 1):

2
. 2

Arg S - Arg S. + Arg S, = Arg S22

g S, g S, gs, g —,
i=1
2
4d-c g
—_— > _— -
+ arg 2 > (3-27)

Only RC-NIC decomposition is possible, the optimum form

is

P(s) = az(s) - sbz(s)
= [sz+(\f5+ Nd+ N (4 Nbd+ac)-2(c b+a«fa)+'\/'b_d]2
- s[s(\/ZN/'E—a+ '\/d.'\/'a'-c)+ (NIZVB_—a)d+ \f(Z'\/'a'-c)b)2
(2-38)
(Case 2):
4b 2
Arg S. = Arg S, + Arg S = Arg ————
1 1 2
4d c2 T
+ Arg ——C. é-z-, (3-29)

RC-RL decomposition has lower sensitivity than RC-NIC

case. The RC-RL optimum form is

Vgc-(4b—azﬂ4d-czﬁz
4

+—%{(J@b_az+~/4d-czm-+%(ad4d_c2+-cd4b-azﬂz-

(3-30)

2 1
P(s) = [s ~+E(a+c)s+
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For practical design convenience, the decomposition of Butterworth
and Chebyshev polynomials with degree from 2 to 5 have been con-
structed and tabulated (Tables 1-5). These are calculated by hand;

for high degree cases the use of a digital computer is needed.



Table 1. Optimum RC-NIC and RC-RL decomposition forms of Butterworth polynomaisl.

Optimum RC-NIC

Optimum RC-RL

n P(s) = Pl(s) . P2(s) Pl(s) decompositions of P2(s) decompositions of P2(s) 2 ArgS,
1
2 2 2 ki
2 s +1.4145 + 1 1 (s+1)” - 0.5858 -5 (s+0.7071)" + 0.5 "
2 2 2 T
3 (s+1)(s +s+1) s+1 (s+1) =-s (s+0.5) +0.75 ;
2 2 2
o (540.7854541) . [ (s+0. 5250)(s+1. 9050)] [ (s+1. 2247)(s+0. 0919)) s
2 2 2 2
x (s +1. 8478s+1) - 2.5167s - (s+1) + 3. 3917(s+0. 8446)
+1 2+0 6180s+1 +2. 2899)(s+0. 4367 2 L4
5 (s*1)s 40.6180s4+1) s+1 [(s+2. Ms#0. 4367)] 107.91° > =

2
X (s +1.6180s+1)

2
-3.2205s - (s+1)

1¢



Table 2, Optimum RC-NIC and RC-RL decomposition forms of Chebyshev polynomials (with 1/2 db ripple},

Optimum RC-NIC

Optimum RC-RL

n P(s) = Pl(s) . PZ(S) Pl(s) decompositions of PZ(S) decompositions of Pz(s) 2 Arg Si
2 2 2 ‘ o_m
2 5" +1.4256s +1.5162 1 (s+1.2313)" = 1. 0370s (s+0.7128)" + 1. 0081 54.62° < 7
+0. 6264 1.0688) - 1. 5112 +0.3132)° + 1,043
3 @ B ) s +0,6264  (+1.0688) - 1.5112 (s40.3132) + 1. 72.96°<§
x (s +0. 6264s+1. 1424)
2,0, 3508541, 0637 +2. 1095)(s40. 2922)]°
. . . B .
s © 2 ) ! e " 1 2 125.22° 5
x (s 40, 8466s5+0. 3564) - 3.6058 * s (s+0. 7328)
+0. 3623 40, 2661)(s42. 6421)]° m
5 (s%0.3629) s+0 3623  L(10.2601)(s42.6421)] 144.78° > >

2

x (s*+0. 2240s+1. 0359)
2

x (s +0. 5862s+0. 4768)

2
~ 5.006(s+0. 8208)

22



Table 3. Optimum RC-NIC and RC-RL decomposition forms of Chebychev polynomial (with 1 db ripple).

Optimum RC-NIC

Optimum RC-RL

n P(s) = Pl(s) . PZ(S) Pl(s) decompositions of PZ(S) decompositions of Pz(s) 2 Arg S,
1
2 2 2 o iy
2 s +1.097s +1.1025 1 (s+1.050) - 1,0022s (s+0. 5489) + 0. 8012 58. 49 < E
+0. 4942 +0. 9971 2 1. 5000 +0, 2471 2 + 0. 9331 il
. . -1, S N .
3 6 ) ) s+0.4982 O ) (s ) 75.65° < =
X (s 40. 4942540, 9942)
2 2 2
4 (s 4+0. 2790s+0, 9865) 1 (s+2.0782) (s40. 2526) 132, 37° S o
2 2 ) 2
x (s +0.6736s+0, 2794) - 3.7153(s40. 6977)
+0, 2895 +0, 2475 2 +2. 6365 2 il
. s+0. .
s 6 ) 5402895 ) s ) 154 44 >

2

x (s +0. 1790s+0. 9882)
2

x (s +0. 4684540, 4293)

2
- 5. 1203(s+0. 7927)

14



Table 4. Optimum RC-NIC and RC-RL decomposition forms of Chebychev polynomial (with 2 db ripple).

Optimum RC-NIC

Optimum RC-RL

n P(s) = Pl(s) . Pz(s) Pl(s) decompositions of Pz(s) decompositions of Pz(s) 2 Arg S,
i
2 2 2 o i
2 5" +0.8038 +0.6366 1 (s40.7979) - 0. 7920s (s40. 4019)° + 0. 4751 59.76" < 3
(s+0. 3689) (s40. 9413)° = 1. 5138 -5 10, 1844)° + 0, 8521 T
540, s+0. -1, . R .
3 ) (s+0. 3689) (s ) 78.69° < >
x (s +0. 3688s+0, 8861)
2 2 2
4 (540.2098540, 9285) . (s+1. 9620) " (s+0. 2301) 1a1.20° > T
2 2 ’ 2
x (s +0. 5064s+0, 2195) - 3,8191 .s(s+0, 6002)
+0. 2183 +0, 2295 2 +2, 6522 2 T
. s+0. .
5 @ ) s+0.2183 ) (s ) 160.04° >

2

x (s +0. 1348s+0, 9522)
2

x (s +0. 3532540, 3931)

2
- 5, 2753 - s(s+0, 766)

¥e



Table 5. Optimum RC-NIC and RC-RL decomposition forms of Chebychev polynomial (with 3 db ripple).

P(s) = Pl(s) . PZ(S)

P (s)

Optimum RC-NIC
decompositions of PZ(S)

Optimum RC-RL
decompositions of PZ(S)

2 Arg S,
i

2
s +0,6450s + 0, 7080

(s40. 2986)
2
x (s +0. 2986s-+0, 8397)

2
(s +0. 1704 - s+0. 9031)
2
x (s +0. 4112540, 1959)

(s+0. 1775)

x (52-00. 1096s+0. 9329)
2

x (s 40, 2872540, 3770)

1

s +0. 289

(s+0. 1775)

2
(s+0.8414) -1.0378 -5

(s+0. 9163)2 -1,5340 -5

2 2
(s+0. 2005) “(s+2. 0974)

2
- 3.9279 -5 - (s40. 6135)

2 2
(s+0. 0506) (s+1. 8385)

2
- 5,3815 .5 - (s40. 7611)

2
(s+0. 3225) + 0, 6040

2
(s+0.1493)" + 0. 8174

67.47° <

80.63° «

148.98°

163, 22° >
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Iv. THE PROPERTIES AND REALIZATIONS OF GYRATOR

The gyrator, first investigated by B.D. Tellegen (15) in 1948,
is a two port device in which the impedance seen at either port is the
reciprocal of the impedance connected to the other port. By this
property a current is gyrated into a voltage, an impedance into an
admittance, and vice versa. In network synthesis, there are many
advantages such as size and weight reduction to be realized from the
elimination of inductors. Since the fabrication of the inductors in
integrated circuits is not feasible, the gyrator will play an important

role in the integrated inductor simulation.

1. The Origin of Gyrator

In order to create useful systems, besides the four known net-
work elements--resistor, inductor, capacitor and transformer, we
shall consider another similar element. By careful study, we find
n-ports network composed of these elements have the properties of:

A) the relationships between the voltages and currents of the

terminals is formed by a system of ordinary differential
equations, with

B) constant coefficients,

C) the n-port is passive: it candeliver no energy, and

D) reciprocity holds.
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Dropping any one of the first three properties will cause the system
to become complicated. An n-port network possessing the first three
properties but lacking the fourth may be very similar to the n-port
network composed of four elements. We shall find a new type of net-
work to realize these n-ports in which the first three properties hold
but which violates the reciprocity theorem. This requirement has no
significance for a one port element, such as C, R, and L, so we
have to look for a new two port element. The ideal transformer
is a type for which ilv1 + izv2 = 0, as in the ideal case, energy

can neither be dissipated nor stored. The equations for the ideal

transformer are

i, = -ni_, : (4-1a)

(4-1Db)

v, = nv

2 U

which satisfies the reciprocity relation. Another two-port element

which satisfies ilv1 + izv2 = 0, but violates reciprocity is de-
scribed by
v1 = —R12, (4-2a)
v, = R11, (4-2Db)

and is named "ideal gyrator."
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2. The Properties of the Gyrator

As stated previously, an ideal gyrator is a two port device

whose terminal characteristics are described by

v, = —Riz, (4-2a)

v, = R.ll- (4-2Db)

The circuit symbol as shown in Figure 4-1 where "R" is called the

"gyration resistance, "

i _— i
—_ ] 2 <

E__>< V

Figure 4-1. The circuit symbol of an ideal gyrator.

— O

v

o

JO.

1
S

From Equation (4-2), the ideal gyrator can be described as the fol-

lowing matrices,

0 R
Impedance matrix [z] = , (4-4)
R 0
- <
° R
Admittance matrix [Y] = ] s (4-5)
-= 0
R
- Z
0 R
Transmission matrix [T] = ) . (4-6)
= 0
~— R’ /
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The following properties are derived from Equation (4-2).
A) An ideal gyrator is a passive and lossless device.
B) By connecting an impedance Z at the output terminal,
RZ
an impedance Z'= - at the input terminal can
be found.
This can be proven as follows: Figure 4-2 is an ideal

gyrator with an impedance Z at the output terminals.

Its matrix can be expressed as

= . (4-7)

o N

o=
ol

Figure 4-3 is an ideal gyrator with an impedance Z' be-

tween the input terminal. Its transmission matrix is:

~ -~ ~ e ~

(1 0 0 R 0 R
= (4-8)
EUR I I 1 R
zZ' R R Z'
k - ~ K
RZ
Comparing these two matrices, if 2Z'= = the two

networks are equivalent.
C) An ideal transformer with unity turns ratio can be realized

by two identical ideal gyrators in cascade. That is



D¢ .

Figure 4-2. An ideal gyrator with an impedance Z at the
output terminal.

G <D

R

———

Zl ) ( \%
1

!
l1

9 [N

Figuve 4-3. An ideal gyrator with an impedance Z' at the
input terminal,

0 R\{ 1 0

{

i

| | - (4-9)
| | |
R O

= U 0 1
| R '

—

Schematically, the realization at an ideal transformer is
shown in Figure 4-4.

R R

Vlin >< > < Tout vin - Vout

[ I (R S W g S

Figure 4-4. A realization of an ideal transformer.

D) A grounded inductor can be realized by an ideal gyrator

terminated with a capacitor as shown in Figure 4-5.

30
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n3my,
—ph

—

Figure 4-5. A realization of a grounded inductor.

E) An ungrounded inductor can be obtained by two gyrators and

a capacitor as shown in Figure 4-6.

L 1 :
| N
Vi v2 - v:l
X | ]
R R 1.

T

; > -

A A

(*am

Il

v

Figure 4-6. A realization of an ungrounded inductor.
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3. The Realization of Gyrators

Since gyratcers hold so many useful properties, it is very inter-
esting to investigate its actual circuit realization. Briefly, the
realization methods can be divided into three groups:

A) Realization by inseration of negative impedance elements to
compensate for the residual positive input and output im-
pedances.

B) Realization by two parallel VCCSs (voltage controlled cur-
rent sources).

C) Realization by cascade NIC (negative impedance converter)

and NIV (negative impedance inverter).

3a. Realization Using Negative Impedance Elements

Consider the feedback circuit of Figure 4-7. This circuit con-
sists of an amplifier with input impedance Zl’ output impedance

Z and open circuit gain k.

2’
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|
v k v v k
£yl ¢

I

(a) Series-parallel connection (b) Parallel-series connection
&
V\f—0
— i
k - e Z]_ ke
©

(c) Equivalent circuit of the amplifier

Figure 4-7. The feedback circuit connection.

For the series-parallel (s-p) and parallel-series (p-s)
connections, we have the following impedance and admittance ma-
trices:

Series-parallel:

a -Z2
[Z] = , (4-10)
s-p Z. -a Z
1 2
Parallel-series:
Z1 -Z1
[Z] .= , (4-11)
p- Z..-Q a
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Series-parallel:

Yl Yl
[Y]S = , (4-12)
P (1'-Y2 a
Parallel-series:
1
a Y2
[y] = ; (4-13)
P=% tay, v
1 2
where
a= Zl(l-k) + ZZ,
| —
a' = YZ(l-k)+Y1, (4-14)
Y ! d Y 1
= —, an = — .
1 Z2 2 Z1
If the output is terminated by impedance Z_, then the inputim-

L

pedance of the series-parallel and parallel-series connections are:

Series-parallel

Z_ Z
1 2
Z., = —, (4-15)
in ZZ+ZL
Parallel-series
Z (Z. +Z_)
1'"2 71,
Zin_ ZZ . (4-16)

By inspection of Equation (4-10), (4-12) and (4-15), if the fol-

lowing conditions are satisfied, then a gyrator can be formed.
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i) If a =0, then K=2 and Zl=ZZ=R, and

i) if ZL>>ZZ’ and

iii) if a series circuit is connected to a negative impedance

(equal to Z at the output or a parallel circuit is con-

5)

nected to a negative admittance (equal to Yl) at the input.

Similarly, by inspection of Equations (4-11), (4-13) and (4—16),
if the following conditions are satisfied, then a gyrator can be
formed.

i) a=0, then K=2 and Z1 = ZZ= R

ii) ZL<< Z2
iii) a series circuit is connected to a negative impedance (equal

to Zl) at the input, or a parallel circuit is connected to a

negative admittance (equal to YZ) at the output.

The equivalent circuits are shown in the following figures.

1 2 -R
VA4 R
=2 IZ
=ZZZ R
4
=2 "/2

Figure 4-8. A realization of an ideal gyrator by s-p connection
of the feedback circuit.
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—®

S —— < —

Figure 4-9. A realization of an ideal gyrator by p-s connection
of the feedback circuit.

3b. Realization by Two Parallel VCCSs

The admittance matrix of the gyrator was defined as:

[Y]= : (4-17)

The admittance matrix can be partitioned into two submatrices

1
R

[Y]= + : (4-18)
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Each part of the matrices can be represented by a VCCS with
opposing polarities. Thus a gyrator can be realized by paralleling

two VCCS with opposite polarity. The circuit is shown in Figure

4-10.
194 -Q
:}’1 Gvy ‘%z

/D C‘zv2

Figure 4-10. A realization of an ideal gyrator using two VCCS.

3c. Realization by Cascading NIC and NIV

Negative impedance converter (NIC) is a tv;/o port device in
which the impedance seen at either port is the negative of the imped-
ance connected to the other port. Practical NICs have two classes.
One of them is the class in which the NIC reverses the current flow at
one of the ports with respect to the direction of current flow at the
other. Such a device is referred to as a current-inversion negative

impedance converter (INIC). The following equations apply to it:

(4-19a)
(4-19b)

where k is the gain of the NIC. Its transmission matrix is
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[T] = , . (4-20)

The other class of NICs operates by inverting the voltage polarity
while leaving the direction of current flow unchanged. The voltage

inversion negative impedance converter (VNIC) is described by the

following equations:

1
Vi E - gV (4-21a)
i) = -i, (4-21b)
Its transmission matrix is
R
k
T] . = . (4-22)
vnic .
0 1

An ideal negative impedance inverter is a two port device in which
the input impedanze Zi is proportional to the negative of the load
admittance, Y_. In other words,

L

Z =-R°Y_ =- . (4-23)

The necessary and sufficient conditions for the two port device to be

an ideal NIV circuit, in terms of the Z parameters, are
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Z11 = ZZZ = 0, (4-24a)
Z. .7 = RZ {4-24b)
12721 ’ )
If we choose ZIZ = Z21 = R, then its transmission matrix can be
expressed as
0 +R
(T] . = : (4-25)
n\v 1
+— 0
R

The circuit can be realized by using one negative resistance and two
positive resistances, or two negative resistances with one positive

resistance as shown in Figure 4-11:

R R . R
MV TV~ — o AN
T t f
V1 = VZ v1 x R v
| | | |
o v -0

Figure 4-11. A realization of NIV by using positive and
negative resistances.

When a negative impedance converter with gain k =1 is
cascaded with a negative impedance inverter, the transmission ma-

trix can be represented as
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+1 0 0 +R 0 *R
= . (4-26)
1 1
0 -1 +— - 0
R 0 iR

Thus the gyrator can be realized by cascading an NIC and an NIV:

R
——— | | I i tL ey T
v, NIC NIV v, — ¥, > ( v,
I 1 N R S|

Figure 4-12. A realization of the gyrator by cascading NIC
and NIV.

3d. Experimental Results of the Gyrator

The design of an actual gyrator circuit is based on cascading an
INIC and an NIV. The INIC and NIV are realized by using operational
amplifiers. An ideal operational amplifier is an ideal voltage ampli-
fier of very low output impedance, very high input impedance and
very high gain, with the property that the output voltage is propor-
tional to the difference in the voltages applied to the two input termi-

nals. An equivalent circuit is shown in Figure 4-13:

out

Figure 4-13. An equivalent circuit of an ideal operational amplifier.
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The two summing point constraints are very important and de-

fined as:
i) No current flows into either input terminal of the ideal oper-
ational.
ii) When negative feedback is applied around the ideal opera-

tional amplifier, the voltage between the input terminals

approaches zero.
These two statements are used to analyze various circuits. The
INIC and NIV are realized using the two constraints. As an example,
consider the circuit of Figure 4-14. By directly applying the two

constraints, the following relations result.

R
1

— VWV

< —>9
\a
*

l <4
v
|
o ©

Figure 4-14. An INIC realization by using operational amplifier.

2

- N N N
Y1 ! 0 V2
= . 4'27
RZ ( )
i 0 -=— -1
1 R 2
1
S 1L )

By comparing the transmission matrix with Equation (4-20), it
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is obvious that the circuit is an INIC with k = RI/RZ' For the NIV

circuit consider the circuit of Figure 4-15.

Figure 4-15. The NIV circuit.

This is a circuit replacing a current controlled current source
by a voltage controlled voltage source in an NIV circuit which was
given by Lundry (10). Analyzing the circuit, the transmission matrix

is found to be

1 RZ(G+1)
G G
[T] = : (4-28)
NIV G-1 R‘2
GR1 GR,
When |G|> 1, the transmission matrix reduces to
r N
0 R‘2
= -2
(Tlv (4-29)
= 0
R1
~ P

Since the operational amplifier is a VCVS with the gain |G| > 1, the

NIV can be formed by replacing the VCVSby the operational amplifier.
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The resulting circuit is shown in Figure 4-16. Clearly, the gyrator

can be easily formed by using two operational amplifiers.

Ry

W%

J-‘— <

!
1

Figure 4-16. The NIV circuit using operational amplifier,

An actual gyrator circuit was made and tested. Two NEXUS
SQ-10a operational amplifers, with a dc gain of 100, 000 and a
2MHz cut off frequency, were used in the experiment. Figure 4-17

shows the circuit.

| —\\N\—

< ——
I R I |
|
. |
., §5
S!
81
i
|
i
N
|
L<—>L

Figure 4-17. The gyrator circuit using operational amplifier,

The experimental results are shown in the following curves and

oscillograms.
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Tigures 4-18 and 4-19 are plots of the impedance, Zin’ vs
the frequency, £, when the gyrator is terminated with a resistance
RL or a capacitance. The curves show that the input impedance
agrees closely with theoretical results at frequencies between 250 Hertz
to 2500 Hertz. Oscillograms 1 through 4 show the phase difference be-
tween a resistance and the simulated inductor L (see Figures 4-20

and 4-21) at the frequency f =500, 1000, 2000, 2500 Hertz.

R =1KQ

R=1K2 _ g ~_ R =1 KQ
,VW ) I
- {
,;fﬂ'{)/_’ < = = /Q\/y L
- \[ C: . Oz}lf
—e- —o- — o

f=500, 1000, 2000, 2500 Hertz L = RgZC =0.02h

Figure 4-20. Simulated R-!. circuit.

-1
Phase difference 6 = sin

» o
®

[

Figure 4-21. Phase-difference pattern.



Oscillogram # 1 Oscillogram # 2
f =500 c/s f = 1000 c¢/s
Phase d.fferznce ° o
(theoretical)t = 86.42 0 = 82.84
(exzperiinental)t =87° 0 =82°

Oscillogram # 3 Oscillogram # 4

f =2000 ¢/s f =2500 c¢/s

Phase difference
(theoretical)f = 75,45
. o RO
(experimental) ™ 2 70

© @
n
o~
o
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V. ACTIVE FILTER SYNTHESIS USING GYRATOR

In the design of low frequency circuits, inductance, if required,
is usually needed in large values. Consequently, the physical reali-
zation of these inductances becomes very impractical, because of
size and cost limitations, and because of resistive losses. In addi-
tion, when precise specifications are to be attained, conventional
circuits with inductances can not be used, because of the inherent
resistance of inductors. On the other hand, capacitances of large
values can be obtained with low loss and for a reasonable cost. Thus,
the use of networks containing only resistors and capacitors are to be
considered. The natural frequencies of passive RC networks are re-
stricted to the negative real axis of the complex frequency plane, ‘and
the natural frequencies must be simple, i.e., of the first order. It
is therefore not possible to obtain the complex natural frequencies.
However, the situation can be improved by using active elements.
The most frequently encountered active elements are controlled
sources, negative impedance converters and gyrators. Each active
element had its advantages and disadvantages. The realization of the
gyrator has been discussed in Chapter IV. In this chapter we shall
apply the sensitivity minimization techniques, which have been de-

scribed in Chapter III, to RC-gyrator synthesis.
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1. Direct Design Method

The simplest and most direct way to design active filters using
gyrators is to first design the conventional L.-C filter, and then re-
place all the inductors with gyrators and capacitors. As an example,
a 3-pole maximumally-flat low pass transfer function can be realized
using the following procedures:

i) Find the pole locations.

. 2

I3 7
s, = e = -0.5+ jO. 866
sz=eJTT = -1+ 30

.4

J3 7
s;=e = -0.5 - jO. 866.

ii) Construct the transfer function

_ H
21" (s+0.5-30. 866)(s+1)(s+0. 5+j0. 866)

- = Ig . (5-1)
s +2s +2s+l

iii) Design the network as an LC filter loaded with unity resist-

ance.

<i )I LC 4
1 \izjlﬂ

Figure 5-1. 1.C network terminated with unity resistance.
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The transfer impedance Z21 can be expressed by

open circuit parameters:

z

21
Z,, = (5-2)
12 l+222
iv) Assign Z51 and Z55
H
3
7 - H s tZs
12 - 2 B
s3+2s +2s+1 1+ 2s2+l
s3+2s
712
l+z22
Thus,
__H
z,,= 3 , {(5-3a)
s +Zs
and
2
_2s +1
Zy5 % 73 . (5-3b)
s +2s
v) Synthesize the network.
Since all zeros of Z5 lie at s = ©, the desired network
is obtained through the continued-fraction development of Z55
1
“227 3 , | (5. 4)
271 1
38
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The realized network is shown in Figure 5-2.

_4
L~3h

1 G =2f C =-21-f = v 192

Figure 5-2, The realized network of Equation (5-1).

vi) Denormalize the element values in terms of the given speci-

fication.
Suppose we wish to increase the impedance level to kz, and
scale the frequency to k,, the denormalized values R*, L* and

f

C%* are changed to

R* = sz (5-5a)
kz

L#*=— 1L (5-5b)
k
f

C* = ! C (5-5c)

0 — k k -

z f

vii) Replace the inductor by two gyrators and a capacitor

R R
—_é-—.y ————g—.—.-

CDII C1= > ( ﬁlcs) <C2 k

Z
22
Figure 5-3. Replacing the inductance in Figure 5-2 by gyrators.

M
IR
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Where
3 1
©172 kx, - (5-62)
z f
1 1
€277 Tk, (5-6b)
z f
k
4 1
CS:—I-JZ-:E'——Z' 'k—z-. (5—6C)
R R f
g g

The active filter design using this direct method is quite sim-
. . . 2 . .
ple, the simulated inductoris L = Rg Cs~ If, under certain condi-
tions Rg drifts, then an accurate L cannot be attained; there-
fore, the characteristic of the transfer function will be changed. An
example of a second degree low pass filter will be used to examine

this change. The transfer function is

G, . =—L (5-7)

12 2
s +2&s+1

Applying the previous procedure, the network can be found as follows:

R R
— £ 3 8 o

N
A > (CSiL/Rg > CTQ

v C

M
7T
<

—
—_— G —

Figure 5-4. The realized network of Equation (5-7).
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where
L = 2¢ (5-8a)
C = —l— (5-8b
= 2§ - )
R=1 (5-8c)

and
Ry

Cs = I, (5-8d)

Denormalize each circuit element by changing the impedance
level to RZ and the frequency scale to w - Then the element

values become

ZE,RZ

L% = , (5-9a)

w

o
Ck = S (56-9b
ST 26w R’ -9b)

o z
and

R#* = RZ, (5-9¢)

If the gyration resistance Rg is varied to R'g the simu-

lated inductance is changed to
RI
2 2
L' = L(z5) = La (5-10)
8

where

R
a:R . (5-11)
g

The denormalized transfer function of Figure 5-4 becomes



54

1
LC
G127 1T T
® "TCR°TLC
2
wO
- (5-12)

When the gyration resistance is changed the simulated induct-

ance changes to L'. The transfer function thus becomes
(=22
G, (s) = -
12'%) 7 2 w w o,
~ o
s +28 a(—)+ ()
2
w
= n > (5-13)
s +2& w tw
nn n

The dc gain remains unity, but the danping ratio E,O and the

resonant frequency w ~ are changed to E,n and w , Trespec-
tively.
"o L, (o2
w = :wo(R' ) (5-14a)
g
and

)s (5-14b)

Figure 5-5 shows the percent change in damping ratio with percent
change in Rg. Figure 5-6 shows the percent change in resonant

irequency with percent change in Rg.
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Figure 5-5. Damping ratio vs a for direct design method.
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Figure 5-6. Resonant frequency vs a for direct design method.
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From Figures 5-5 and 5-6, we observe that when the gyration
resistance is increased by 10%, the damping ratio f_f,n and resonant
frequency w ~vary 10% and 9%, respectively. This will be com-

pared with the other methods later.

2. Single Gyrator Design Method

Although the direct design method is quite simple, it has the
disadvantages that pole locations of the transfer function are sensi-
tive to the change of gyration resistance, and the network needs more
than one gyrator. There is a better method using a single gyrator

cascaded by passive networks at both ports as shown in Figure 5-7

(13).
R
_.g_..

P—r 4

f RC RC 1\

Vi1 (1] > Q [11] v,

| |

17 i

Figure 5-7. A gyrator cascaded with two RC networks.
Let network I in Figure 5-7 be defined by its y-parameters
(I) . . (1)

Yij , and the network II be defined by its =z-parameter Zij .

Then the open-circuit voltage transfer function for the overall net-

work is



G, (s) = Vols) Nls)  Roy,le)z),(s)  Gy,yls)z,,(s)
12777 ) o : N |
Vv, (s) D(s) 21 (SHR Y,5(8)  y,,(s1G Tz (s)
(5-15)

Divide both denominator and numerator by an arbitrary polynomial

Q(s) and decompose D(s)/Q(s) into the form of =z (s)+R2

11 ngz(s)'
Thus
2
D(s) DZ(S) . RZ Dl(s) ) Dz(s)Ql(s)+Rng(s)Q2(s) 516
Qls) = Q,(s) g Qs) B Q,(s)Q,(s) )
Therefore
i DZ(S) i Dl(s) -
11 T Q(s) ¢ Y22 Q.(s) (5-17)
2 1
Q(s) = QI(S)QZ(S)’ (5-18a)
2
D(s) = DZ(S)QI(S) + R Dl(s)QZ(s). (5-18b)

The decomposition may be achieved by using optimum poly-
nomial techniques proposed by Calahan which have been summarized
in Chapter III. The first way, denoted by (A), is the optimum non-

unique decomposition. The second, denoted latter by (B), is the

optimum unique decomposition.

(A). The optimum non-unique decomposition has the form of

n/2 5 n/2 5
Di(s) = A M (s+ta.) + B T (s+b.) . (5-19)
on i on i



Consider a low pass filter with the transfer function of

Ho
G. (s) = o o :N(s)

12 2 2
s +28w stow
o o

D(s) has an optimum decomposition of the form

2

n

2 2
D(s)=s + 28w stw_= A (sta) + B _(s+b
o o on o

By equating the corresponding coefficients

A +B =1,
on on

A a+B b=¢Etw,
on on o
and
2
A a + B b2=w
on on
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(5-20)

(5.20")

(5-21a)

(5-21b)

(5-21c)

There are four unknowns and only three equations available, so we

shall make some assumptions. By calculations we find that

1
Aon T 1+B /A
on = on
Arbitrarily select
2
B /A =n,
on ~on
then
A = A4 B = o’
on 20 on 2’

l+n 1+n

(5-22)

(5-23)

(5-24)
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Substituting Equations (5-23) and (5-24) into Equations (5-21a,b and

c) yields

©
i

wo(§+n'\]1—§2) (5-25a)
o (g-2n1-¢%) (5-25b)

o
I

From Equations (5-20) and (5-18b)

Assign

and

where k
o)

Then

and

D.(s)Q.(s) = A (s+a)’, (5-26)

2 1 on

_ 1 2
D,(s)Q,(s) = —Z[B (s+b)"]. (5-27)

on
R
g
B
D, =k °2n (s+Db), (5-28a)
R
g

Q. = L (s+b (5-28b

2 g (8th) -28b)

(o]
D2 = Aon(s+a), (5-28c)
Q = (s+a), (5-28d)
is impedance scaling factor.
D_(s)
__2 sta
11 ° QZ(S) - kvon s+b’ (5-292)
_ D, (s) R o>on stb (5-29b)

Yzz”Ql(s)‘ g2 sta’ }

g
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V12 and z,, can be found from the numerator:
2
N(s) H woko
o
. = = - . 5.
Os) - (s+a)stn) - ~Rg¥12!8)712(9) (5-30)
Now assign
Xl
- = —_— -31
via(8) =k - (5-31a)
and XZ
z1(8) =k o (5-31b)
where 2
H w
X X =—. (5-32)
172 2
k R
o g

From Equations (5-29b) and (5-31a), the RC network at the left port
of the gyrator can be realized and shown as in Figure 5-8. The

continued-fractional expansion of takes the form of Figure

Y22

5-8.

1
= 5.33
Y22 2 ( )
R
g _ 4 1
k B k B
0o on 0o on n 1
s
2 2
R (a-b) R
g a-b
kB b
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al a2
f—'\/vv —AAA ’T
V1 -, V2
| l Y22

Figure 5-8. The RC network at the left port of the' gyrator.

where
2
R (a-b) R2
R . .=—2_ , R _=-—2_
al kB b a2 k B ’
O oOon O oOon
(5-34)
koBon bB
€. 2 ‘ Xy = 3“
R (a-b) R
g g

Similarly, the RC network at the right of the gyrator is realized by

Equations (5-29a) and (5-31b), which yields Equation (5-35) and Fig-

ure 5-9.
1
11 7 A+ 1 (5-35)
o ‘on 1 s+ 1
- 1
ko%on®® 7 A A (aom)
b o on
R
bl
o NNV N\ 7’
, 4 v,
— v 1 "F Cb sz 2
| |
o o
11

Figure 5-9. The RC network at the right port of the gyrator.
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where

1
bl = "o on b2 E o on
{(5-36)

R R Rg R
al a2 _— bl

Figure 5-10. The realization of Equation (5-20).

Substituting the values of a, b, A and B into R _,
on on al

RaZ’ Rbl’ sz, Ca and Cb yields
(1+nz)Z RZ 1 gz l+nZ RZ
Ria™73 E& 1_[‘7’ Ro:2* zi&’
n o g-; 1-£ n o

Ry = 5Ky Rz "3k 1 > (5-37)
l+n £ =N1-§
n
3 k
n o 1 1
Cc = C. =n————— .
22 2 2’ 2
(140" R% W1-¢ Pk oWt
g o o o

It is instructive to examine the characteristic change of the

transfer function due to the change of gyration resistance. The
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transfer function of the network designed by this method (Figure 5-10)
is

R (s)

gYIZ(s)z

G ple)=- (s)+R 2
SITRg Y22

L
Re

2 2 2
s (A +B )+2s(aA +bB )J+a A +b B
on ~on on on on on

%11 ()

k b(a-b)A B
o on on

2 2
s +26w stw
o o

sz

= °© 9° (5-38)
2 2

s +2§w stw
o] o]

where

H = — &k 1-g2(g-%~/1-gz) o (5-39)

g n +1

When the gyration resistance changes from Rg to R'g letting

Rl
a = Ri_ as before, we obtain

g
o (o) - anglZ(s)zlz(s)
12(8) = - (o14aR 2y
2pp(s)te Roy,,ls)
1
—k bB A (a-b)
R O on on
- g
2
2 Aon aAon Aona
s (—+aB )+2( +bB a)s+ +aB b
a on on a on
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1
R "o"Pon®on'*™")

g

2 2
Yls +a¥ 2§w05+w0 Y3

1 1
— — k b -
R Y o} BonAon(a b)

b

Zgw s+(-——)<.o2
1

=1 wa-— «/_Z)n

1

Y 2

B R& n +1
2

|
vV i

+(

w

*<1|'-<1"
I

—

'-<1

Y
S Zgw s+(-—-)<.o
1 l

2
H w

= — L > (5-40)
s +2& w stw
n n n

The dc gain Ho’ the damping ratio éo’ and the resonant fre-

quency « = are changed to Hn, én and @ o respectively. Thus

(5-41a)
(5-41b)

[ 3
= -_— - 1
w v w , (5 4 C)

Y., = —a—+aB = —_— (5-42a)

o
=}

I
=
=

e

and

where
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Y, = 1 (2 k. +abk ) = 1 [§+n'\/l-§2+n2(§- 1 1-::;2)]
fw a’l 2 2+l) n
° ta(n (5-42b)
and
k
Y3 = —12- (——l- a2+ak2b2)
w
o
= 21— {(l_az)[gz(l-n2)+2n§'\/l-gz]+n2+a2 }. (5-42c¢)
(n +1)a

Substituting Equations (5-42a, b, c) into Equations (5-4la, b, c) yields

w = w J l+n2a2 , (5-43a)
£ +nov1-6% 4n%a’6 - 2167
¢ = . (5-43b)
n «/(l+n2a2)[§2(l-n2)+2n§'\]l-g ](l-a2)+n2+a2
and
( 2+l
H -H n tlla (5-43c)

n © (l_az)[gz(l-n2)+2n§\/l-§ ]+n2+a2 .

Figure 5-11 shows the percent change in the damping ratio §n, with
percent change in Rg. Figure 5-12 shows the percent change in
resonant frequency w with percent change in Rg- Figure 5-13
shows the percent change in the dc gain Hn’ with percent change

in Rg. Figures 5-11,5-12,and5-13 show the percentchange of En,

w Hn due to the percent change in the gyration resistance Rg. This
method is based on minimum sensitivity polynomial decompsotion.:

This method should have a lower sensitivity than the direct design
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£ r21-£2+a0l(t- 2169

2

g =
n \/l+4a [(4€ W1- gz 365y (1-0%)+a’sa

| |

g a/o' 2
1.0F

1.5¢

\\Z‘LI 20 _—£=0.8

20 | — £ -0 6
0-51 N T T S I ) 2.0:-070.“.

0 0.5 1.0 1.5 2.0
a=R'/R —e
g g

Figure 5-11. Damping ratio vs a for single gyrator design method (A).

1.5(.0 -
(o]
A
]--OLL) e
w (o]
n
£=0.8
£=0.6
05w |- £=04
J4gd1 £ 3g (1- o’ )+a 2r4
w =W
n
0 O X l+4a X i
0 0.5 1.0 1.5 2.0
—a=R'/R —=

g

Figure 5-12. Resonant frequency vs a for single gyrator design
method (A).
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method. This can be seen by corﬁparing Figures 5-5 and 5-6 to Fig-
ures 5-11 and 5-12. Using this method, the experimental results as
indicated in Figure 5-14, which follows show quite good agreement

with the theoretical case.

5a
H =H
2 2 2 2
D O g N1-E° S3E%)(1-a")+a"+4
£=0.4
£ = 0.6
\ 15H G 1 R
(o]
% [
Hn l B B g
- 20 £=0
R PR T S N | N R N T 1
l.OH0 50 20 —
- 20
O5H p n
(o]
1 1 | I
0 0.5 1.0 1.5 2.0
_a = '/ R @ ——a
g

Figure 5-13. Gain vs a for single gyrator design method (A).



h 1/ 2
al n3 ko §_;'\l ¢

2
Hn® R
R ,="% 7+ =6250
n (@]
k
(o]
R, , = = 4000 9
bl
14+n
1 Nz
R, = -k —T = = 33.33 K@
E=N1-¢
n
3k
C, = nz ; = 1. 274 pf
(l1+4n) R w
g o
1
c, = = 0.0199 pf

- N ——
b k w «/1_§
o o

4, £=0.6, k0:2x104, f=1000 c/s,

Select n

w =6280c/s, R _=1000%
o g
l i
Gain H - —k \/I_gz(g-—x/l_gz) D _1,28=2 144db
o R o n 2
g n +1
2
Howo
G ,(8) =

2 2
s +2(0. 6)w stw
o o

Figure 5-14. The experimental result of RC-gyrator filter.
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-gyrator filter,

The experimental result of RC

Figure 5-14.



(B). The optimum unique decomposition has the form

n/2 (n/2)-1
D(s) = I (s+ai) + B Il (S+bi) .

i=1 on s

Again, consider the low pass filter with damping ratio

resonant frequency w - It has the form
2
Ho"\)o
G.,(s) =
12 2 2
s +2Ew stw
o o

Recall Equation (5-15),

_ N(s)/Q(s) _ Gy21%21
" D(s)/Q(s)

G, ,(s) 2
Y,2tG 2

Decompose the denominator into the form of

2
D(s) _ DZ(S) L2 Dl(s) ) DZ(S)QI(S)+G DI(S)Q?_(S)
N(s) Qz(s) QI(S) - QI(S)QZ(S)
Therefore,
_Dale) DY)
Y22!8) " Q,(s) Z11(8) = Q,(s)

where

Q(s) = QI(S)QZ(S),

D(s) = Dzm)le)+-G2Dlm)Q2m%
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(5-44)

£ and

(5-45)

(5-46)

(5-47)

(5-48)

(5-49a)

(5-49b)

The optimum form of D(s) can be found in the example on page 18:
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D(s) = s2+-2§wos4-wj =(s+§wo)24-wj(l—§zy (5-50)
Thus
D,(5)Q,(s) = (s+§wo)2, (5-51a)
D,(s)Q,(s) = 1, (5-51b)
and >
G=w NL-§ . (5-51c)
o
Assign
Dz(s): s+—§wo, (5-52a)
Ql(s)= s+—§wo, (5-52b)
D (s) =1, (5-52c)
and
Qz(s): 1. (5-52d)
Then
YZZ = st gwon (5—533)
and 1
211 s+E (5-53b)
“o

are found from the numerator

2
H w
N(s) _ oo
Qs) - "9Y21%2) ¢ sto (5-54)
Thus
_YZI = Hl (5—553)
H2 2
= , and H H_=H & . (5—55b)
172 oo

Z21 s+fw
o
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The RC network to the left of the gyrator can be obtained by Yio
and Y1 Similarly, the network to the right of the gyrator can be

found by Zy4 and zZ, The complete network is shown in Figure

5-15,
R
Rl _ 4 3
% 2VAYAY _L f
Vl ::Cl > C Cz:l\ R2 VZ
Figure 5-15. The realization of Equation (5-45).
where
1 1
Rl_gw' R2=§w ' Cl_l' CZ_l'
o o
and
G —wo'\]l-g

The transfer function of Figure 5-15 in terms of Rl’ RZ’ Cl’ C2

and G, can be written as

_ G
G (o) - R,C,\C,
1208) = 2 1
G+RR
s +s( 1 + 1 )+ 1 2
R,C; R,C, C,C,
Géw
o (5-56)

The gyration resistance and the gyration conductance are changed
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from Rg to R;g and G to G', Trespectively.

Let

&
=57 - (5-57)

o
I
b

Then the transfer function GIZ(S) is changed to

a b

(o]

2 G2 ,2 2
S +2§wos+(a) +§ w
2
H wn
= a . (5-58)

2 2
s +2§ w stw
n n n

Thus, when the gyration resistance or the gyration conductance is
changed, the damping ratio €, resonant frequency w and gain

HO are changed to

.
o= J(g)z +g2w02 -2 J1+£4(a’1), (5-59a)

&wo

g
£ = - , (5-59b)
n W ﬁgz(az_l)
and
H = < H (5-59¢)
n (1_€Z)+a2€2 fe)

respectively.

Figure 5-16 shows the percent change in damping ratio §_, with

percent change in Rg. Figure 5-16 shows the percent change in
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€, 1.0l
0.5}
g = 2k
n Jl-gz(az_l)
0 . § 1 )
0 0.5 1.0 1.5 2.0
—a=R'g/R —_—

l.50 &
o
T 1.0
o
w
n
0.5w [
o
w
2
o = 2414£%0a% 1)
n a
0 | ] i
0 0.5 1.5 2.0

1.
— a=R'/R —— >
g g

Figure 5-17. Resonant frequency vs a for single gyrator design
method (B).
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resonant frequency w with percent change in Rg. Figure 5-18
shows the percent change in dc gain, Hn’ with respect change in
Rg. Compare Figure 5-16 and 5-15 to Figure 5-11 and 5-12 and
Figure 5-5 and 5-6. This comparison shows that the single gyrator

design method always has lower sensitivity than the direct design

method.

1.0H

Figure 5-1&. Gain vs Rg for single gyrator design method (B).
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V. SUMMARY

Two methods of active filter synthesis were derived. The first
was replacing inductors in the conventional LC filter with gyrators
and capacitors. The second was using a single gyrator cascaded by
two RC two port networks. The gyrator is realized by cascading an
ideal negative impedance inverter (NIV) and a negative impedance
converter (NIC). Each NIV and NIC is realized by using a single
operational amplifier. Therefore, the gyrator can be realized by
using two operational amplifiers. It is to be noted that the gyration
resistance can easily be adjusted by adjusting the passive elements of
the NIV.

In RC-gyrator synthesis, although the realization of the gyrator
is much more complicated than that of the NIC or of controlled
sources, it has the disadvantage of not being able to provide large
amounts of gain. However, it does have the following advantages.
First, from its lossless nature, the gyrator can never be unstable.
Seccnd, since a capacitor in general has a higher quality factor than
an inductor, gyration using a capacitor produces a better inductor
than that now available. Third, it provides lower sensitivity than
comparable realization using controlled sources or NICs. These ad-
vantages make the gyrator realization very attractive.

The applications of integrated circuit technology in active RC
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network synthesis have received much attention recently, especially
in microminiaturization. In active RC integration network design,
the designer may no longer select passive elements and interconnect
them to achieve a network, but rather must make the passive com-
ponen]:s simultaneously with the active elements in the integration
procedure. In integrated circuit technology the initial tolerances of
the resistors and capacitors are still within certain limits. There-
fore, the sensitivity minimization problem is not a single parameter
sensitivity problem but a multiparameter sensitivity problem The
sensitivity minimization of the polynomial decomposition applied in
this thesis is due only to the change in active elements. In this
thesis, only the single-parameter sensitivity was considered. Multi-

parameter sensitivity of integratable active RC networks is suggested

as a topic of future study.
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