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Introduction

The buckling of a sandwich panel with facings of equal thickness under com-
pressive end load was considered in U. S. Forest Products Laboratory Re-
port No. 1583. In that report an approximate method for analyzing the effect
of the transverse shear deformation in the core was used. This method of
analysis led to relatively simple formulas for predicting the critical buckling
load of sandwich panels with orthotropic core and facing materials and with
various types of edge support, provided that the elastic properties of the sand-
wich in the two directions parallel to the edges were not too greatly different.
Predictions by these formulas were found to be in satisfactory agreement with
test results, as shown in U. S. Forest Products Laboratory Reports Nos.
1525-B, C, D, and E. For comparison of results with those obtained by dif-
ferent methods of analysis, reference is made to the analysis of the problem
for simply supported panels by Reissner (9),± and by Seide and Stowell (11).

-This progress report is one of a series prepared and distributed by the For-
est Products Laboratory under U. S. Navy, Bureau of Aeronautics No. NBA-
PO-NAer 00619, Amendment No. 2, and U. S. Air Force No. USAF-PO-
(33-038)49-4696E. Results here reported are preliminary and may be re-
vised as additional data become available.

?Major revision by John J. Zahn, Engineer„ of a report originally issued
November 1950.

-Maintained at Madison, Wis. , in cooperation with the University of Wisconsin.

_Underlined numbers in parentheses refer to Literature Cited at end of this
report.
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The problem for the case of simply supported loaded edges and clamped un-
loaded edges was considered by Seide (10). These publications, which were
concerned with panels with isotropic facings and cores, indicate that for such
constructions, the formulas developed in Report No. 1583 lead to substan-
tially the same results as those derived on a more rigorous basis.

This report con§iders the compressive buckling of a rectangular sandwich
panel having dissimilar facings of unequal thickness. As in Report No. 1583
the facing and core materials are taken to be orthotropic. Two of the ortho-
tropic axes of the core and facings are assumed to be parallel to the edges of
the panel and the third is then perpendicular to the facings.

The approximate method here employed is a generalization of that which was
used in Report No. 1583 and which was previously applied in a number of
British reports concerned with the behavior of sandwich panels with isotropic
facings and core materials (12, 4, 3). In these prior publications the dis-
placements in the core have been assumed to be such that plane sections
initially perpendicular to the middle surface remain plane under deforma-
tion but rotate by an amount proportional to the slope of the normal displace-
ment of the middle surface. A single proportionality factor has been used
to specify these rotations about axes parallel to both the x and y axes, these
axes being in coincidence with the edges of the panel.

In the present analysis, (Appendix A), two proportionality factors are used;
one to specify rotations about axes parallel to the x-axis and the other to
specify those about axes parallel to the y-axis. 5 By this means the results
are made applicable to those sandwich constructions in which the elastic
properties of the core material may be greatly different in the two directions.
In order to analyze the displacements in a sandwich panel with facings of un-
equal thickness it is necessary to take surfaces other than the middle surface
of the core as those which contain the fixed lines of the rotating planes.

For a panel with similar orthotropic facings it is found (Appendix C) that if
the bending of the facings is neglected, the present method of analysis yields
a formula for the buckling load of a simply supported panel which is the same
as that obtained by the method of Libove and Batdorf (5), which consists in
solving a set of differential equations subject to proper boundary conditions.
For other types of support, however, the energy method applied here is ex-
pected to yield estimates of the buckling load that are , somewhat greater than
those which would be obtained by using the differential equations.

5,A quite similar type of analysis has been used by Dale and Smith (2), Ap-
pendix IV.
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If the facings are considered as membranes it is possible to define a buckling
load coefficient which, in the case of isotropic facing and core materials,
depends mainly on two parameters, V and p. This dependence is shown in
the form of curves for two of the types of support considered herein. Curves
for the two remaining types of support which are discussed below are given
in references (10) and (11).

Throughout the following analysis it is assumed that neither the core nor the
facing materials are stressed beyond the elastic limit. A method by which
the formulas may be applied in an approximate manner beyond the propor-
tional limit of the facing material has been discussed in Report No. 1583.
The problem of buckling in the plastic range is considered in reference (11)
for simply supported panels.

Notation

a, b	 dimensions of the panel with the sides b parallel to the
line of action of the compressive load.

c	 thickness of the core.
D flexural stiffness of sandwich panel with dissimilar fac-

ings; defined by formula (2).
Dfi , Df2	 flexural stiffness of individual facings about their own

middle planes; defined by formula (13).
Ef	 Young' s modulus of elasticity of similar isotropic facings.

• E f2	 Young' s modulus of elasticity of dissimilar isotropic
facings.

Ex 1, Eyl E	 Eyz Young' s moduli of elasticity of dissimilar orthotropic
facings in the direction indicated by the subscripts.

thickness of the facings.f l , f2
1 - cr2

Xfl	 1 - 0-12

Xf2	 1 - 0-22

X 1	 1 - axy 0-yx..1

X2	 1 - crxy2 0-yx2

shear modulus of isotropic core.

, I2	
shear moduli of orthotropic core.

zx Yz

Fixy 1 1-1-xy2	 shear modulus of facings.

n	 number of longitudinal half-waves in buckled surface.
P compressive buckling load, pounds per inch.

Pf, PM	 buckling coefficients of sandwich panels with dissimilar
facings; defined by formulas (1), (12), and (15).
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defined by formula (A36).
au aspect ratio.

cr	 Poisson' s ratio of similar isotropic facings.

0 1 , 02	 Poisson's ratio of dissimilar isotropic facings.

crxy 1 , cryx1	 Poisson' s ratios of dissimilar orthotropic facings.

°xy2' °yx2	 Poisson' s ratios of dissimilar orthotropic facings.

T 1 , T 2	membrane stiffness of facings; defined by formula (2).

t	 relative membrane stiffness parameter; defined by for-
mula (6).

V, Vx , Vy	core shear parameters; defined by formulas (9), (7),
and (8).

u, v, w	 displacements in the x, y, and z directions.
x, y, z	 coordinate and orthotropic axes (see figure 3).

Results and Discussion

The compressive buckling load per inch of panel edge applied at the neutral
surface of a sandwich panel is defined in terms of a buckling load coefficient,
p, by the relation

P

D

= p	 D

T1 T2 fl
+ (c( f2

(2)

T 1 + T 2 2

VE x i Eyi
T• - f.1	 1	 Xi

, i - 1,2

where i = 1, 2, denotes facing 1 or facing 2. (See figure 3 for orientation of
axes. )

For a panel with dissimilar orthotropic facings and orthotropic core, the the-
oretical value of p depends upon nine physical constants. These are:

(1)

with
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xi
	 Eyi

t

V

Vy

E xi Eyi

L xyi	 Xi

x i

iT

EE. E .yi

T1

T1	 + T2

=	
cT1 T2

(T1	 + T 2 )

-	 cTi	 T2

a 2	zx

w2

(T1	 + T2) a 2 p.t yz

ai

i3i    

,)

where i = 1,2, denotes facing 1 or 2, and T 1 and T2 are given by the second
of formulas (2).

If the core material is isotropic, V x and Vy both reduce to

	

cTi T 2	Tr2	

(9)
(T 1 + T2) a2 p.`

The coefficient p is given by the formula

P = Pf	 Pm
	 (10)

where pf is the buckling load coefficient of the two facings acting independently,

but with half-wave lengths so determined that the buckling load of the com-
posite panel is a minimum, and pm is the buckling load coefficient of the panel
with the facings considered as membranes. In many cases p f is so small
that the approximation

V-
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P	 Pm

may be used.

(11)

Bfl	 Df2
(12)

(13)

Pf = 
D	

K+ 	 K2

where	 fi3	 Exi Eyi

Dfi -	 12	 xi

i = 1,2

c 3
 —Ki = aic i + 213 i c 2	 +

cri
(14)

V,
K	 + (4: + Vy ) F22

(15)
PM	

''2+ W3LZ+	 F2
c4

where

_K1 F2 (16)=t+	 _ t)

K2 Fl

N22 = t2 + 2t(1 - t)	 F12 + (1 - t)2 F2 (17)—
F1 	F1

*3 = t + (1 - 0_11- 	F2 (18)

L2	 Fl

V	 3 
+

x
— + (19)VyLi	 + y i c 2 )	

k, 
— yi 2 )

c4
i = 1,2

Fi = c 1 c 3 - pi2 C 2 2 + yiC2Ki (20)
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(22)

(23)

p 2 (n4 + 6n2 + 1)
, , c 4 =

n2 + 1

if n = 1

1 

2 + 1)p2

3

np2
(24)

if n > 2

2	 2a2
F = (	12	 2ai a2

2	 Yl	 Y2
- )31 13 2c 2 +	 c K +	 c K	 (21)

2 2 2	 2 2 1

The quantities ci , j = 1, 2, 3, 4, are given in terms of p = 1, the aspect

ratio of the panel, and n, the integral number of longitudinal
b
 halfwaves in-

to which the panel buckles. In each case the integer n must be chosen so that
p is as small as possible. When formula (10) is used, the same value of n
must be used for both pf and pm. The following formulas are taken from

(A69), (A71), (A73), (A74), and (A76).§_

Case I. All Edges Simply Supported 

Cl - 21 2 , c 2 = 1, c 3 = n2_2p	 c4 = c1
n p

Case II. Loaded Edges Simply Supported 
and the Remaining Edges Clamped 

4
c 1 = 	  , c 2 = — , c 3 = n2 p 2 , c 4 = —

3	 431.1 6 p

Case III. Loaded Edges Clamped and the 
Remaining Edges Simply Supported

c l = —

3-3 if n
413	

= 1

, c	 = 1,2
1

(n2 + 1)p2
if n > 2

-The numbers of equations in the appendices are preceded by the appropriate
letter.
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if n = 1
P

2

16 

3(n2 	1)p2

4, Cz =
3

4

cl

if n > 2

Case IV. All Edges Clamped

1

3 =
n2 + 1	

, C 4 =	 2
4

p 2 (n4 + 6n2 + 1) 
C -

3(n2 + 1) p2

if n = 1

(25)

if n > 2

(26)

Dissimilar Isotropic Facings 

For isotropic facings

al = a2 = 131 = 13 2 = 1,

and	 1 - cr2
lez	 2	

1 - o-
Y1 - 2

It appears that the only essential difference in the properties of the two facings
is that due to Poisson' s ratio. The effect of Poisson' s ratio is usually small,
and this property does not vary much among structural materials which are
used for facings; thus the assumption can be made that o-1 = IT2 • Then

K 1 = K 2 = K
	

Ll = L 2 = L	 and

(27)

F1 = F12 = F2 = F

and	 = NIf 2 = 1/ 3 = 1.

The expressions for pf and pm reduce to

Df 1 + Df2
Pf	 	 (28)
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rV
V
A

KM

Vx
V
F

Y

Pm

and V
K + x + Vy) F

V V11

	

1 + L +	 F-4

where
K = cl + 2c 2 + c3

1 - Cr	
Vx	 1 - CT 

L = (c 1 +	 2	 c 2 ) e4 + (c 3 +	 2	 c2) Vy	(31)

c 2 2F = ci c 3 - c2 + 1 
	
c2K

2

Formula (29) for pm is exactly the same as formula (6) of Forest Products
Laboratory Report No. 1854, which presents design curves for panels with
similar facings. This can be seen by substituting (30) and (31) into (29) and
making the following change of notation:

Notation of Report No. 1854	 Notation of Present Report 

(29)

(30)

(32)

With this interpretation of the variables appearing in Report No. 1854, the
curves of that report can be used to find pm for panels with dissimilar iso-
tropic facings. Unless b/a 'is small or V x and Vy large, pf is negligible

in comparison with pm. However, p f can be obtained from the curves of

Report No. 1854 by noting that

Df2
Pf 	  PM0

where pm13 is the value of pm at Vx = Vy = 0.

Similar Orthotropic Facings

A reduction very similar to that made for dissimilar isotropic facings can be
made for similar orthotropic facings.

(33)
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Also
f i fz

D =
f,1 	 f2

Again

= K2 = K,	 Li = L2 = L

F1 = F12 = F2 = F and NIfi = AF2 = 11/ 3 = 1

(c + fl f2 2 IllcE E

2	 A

c f if2 ir2 47;---cEy

fl f2 a
2 

k ilt zx

V =Y
f 1 + f2 a2 X le yz

Dfl + Df2
Pf 	

Vx
K	 ' + Vy) F PM -

c3
K = ac i + 2f3c 2 + —

a

2 2
F = c 1 c 3	 f3 c + yc 2 K

2

	

t Vx	c3
L = (ac i + yc2 ) — + (-- + yc 2) Vy

	

C4	
a

Similar Isotropic Facings 

The formulas given above for similar orthotropic facings apply to similar iso-
tropic facings if:

a = 13 = 1	 = 2

and EEX y _ Ef

X-
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Vx =

c fl f2 ir2 .V Ex Ey

„
1 + L +	 VF

C4

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)



Column Formulas

The formula for the buckling load of a column can be obtained from formula
(1) by taking the limit as the width, a, of the panel becomes infinite. For
this process, formula (12) is taken for pf, and formula (15) is taken for pm.

The number n in the formulas for., j = 1, 2, 3, 4, is taken as 1, since the

column is assumed to buckle into a single half wave.

If the ends are simply supported, the limiting process yields

ir2
P =

b2 [ 12 x 1

+ f23 Ey21

12	 X2

f1Ey1f2Ey2 	 (c + 
fl	 f2  

)
2

f lEy1 X 2+ f 2Ey2X1	 2

cf.]. Eyi f 2Ey2	 112
1 +

flEy1 X 2+ f2E2 X 1 b

If the ends are clamped, the limiting process yields

P =
4Tr.2

[1

E i 

+
2f2 3 Ey z

--
b2	 12 X i X z_12

fl Eyl f2 Ey2 	 fl	 f2  
)
2

fl Eyl X 2 + f2Ey2X1 (c + 
	

2

4c11 Ey1 f2Ey2	 2

fl Eyl X 2 + f2Ey2 X 1 b2u;rz

The terms containing f1 3 and f2 3 represent the effect of the bending stiffness of

the individual facings about their respective middle planes, and are often neg-
ligibly small as compared with the second term. The above formulas apply

1 +
}

(43)

(44)
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1 
(45)

(46)

to a column with dissimilar facings of unequal thickness. If the facings are
similar, formulas (43) and (44) reduce to

fl f2 + f 2 )2( c +
w 3 Ey	 f1 3 + f 2 3	 f1 + f2 	 2

P =

b	 H	 12c f If2w2Ey
1 +

(f 1 + f2) b2 yZ H

for simply supported ends, and

fl f2	 f1 2+ f2 
)2

P = 
2 Ey fl 

b2 	X	

+ f2 +

12	 i	 cff1+ 4+f2i f2 w 2 E

Eln

(f1 + f2 ) b211' yz X

for clamped ends.

Comparison of Results with Those of Other Investigators 

The case of a sandwich panel, with dissimilar isotropic facings and orthotropic
core and with all edges simply supported has been solved by Chang and Eb-
cioglu (13) by a differential equation method. The assumption was made that
the Poisson' s ratios of the facings were the same or nearly equal. Equations
(29) and (33) of the present report agree exactly with their results.

The case of a sandwich panel with equal isotropic facings and core material
and with edges simply supported has been discussed by Seide and Stowell (11).
These writers have assumed that the effect of the bending of the facings is
negligible, and p is therefore determined by formula (11). In this case for-
mula (39) with (22) for pm is identical with that obtained by Seide and Stowell

and that obtained from Report No. 1583. In their report Seide and Stowell
have given a series of curves relating p to lip, for various values of the param-
eter V.

Case II above has been discussed by Seide (10) for a panel with equal isotropic
facings and core materials. In his analysis Seide has assumed that the effect
of the bending of the facings is negligible. Under this assumption the present
results are given by formula (11), with pm determined by formulas (39) and
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(23). The results of Seide, which are obtained by means of a transcendental
relation, are given in a series of curves relating p to 1/p for various values of
V. These results differ somewhat from those obtained from the present
formulas. However, comparisons made at various check points indicate that
the greatest discrepancy occurs when V = 0. When V = 0 there is no correc-
tion for transverse shear deformation in the core and pm reduces to that ob-

tained in ordinary plate theory when the form (A70) is assumed for w. On
the other hand, when V = 0, the results of Seide are those obtained by the
differential equation method for ordinary plates. The comparison with the
results of Seide, therefore, indicate that the difference between results of
.Seide, therefore, indicate that the difference between results by the present
energy method and those by the differential equations method are no greater
than the difference between results by the two methods in ordinary plate
theory.

Design Curves

The buckling load coefficient pm has been computed on the basis of formula

(39) for cases III and IV, for panels with isotropic facings and core materials.
The results of these computations are given in figures 1 and 2 in the forms
of plots of pm as a function of lip for various values of V. In figure 1 the

curves are given for case III, in which the loaded edges are clamped and
the remaining edges are simply supported, and the curves for case IV, in
which all edges are clamped, are given in figure 2.
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APPENDIX A

Derivation of the Formula for the 

Buckling Load of a Panel 

Al. Axes of Reference

The axes of reference, x, y, z, are so oriented that the x and y axes (fig. 3)
are in coincidence with two edges of the panel and the z axis is perpendicular
to underformed surfaces of the facings. The x, y plane is taken as the junc-
ture of the core and the facings of thickness denoted by f 1 , (fig. 4). The
thickness of the core is denoted by c, the thicknesses of the two facings by
f1 and f2 , and the dimensions of the panel by a and b, with a measured along
the x axis. It is convenient to identify a facing by the number 1 or 2, accord-
ing to whether its thickness is fl or f2 . The displacements in the x, y, and z

directions are denoted by u, v, and w. The displacement w is taken to be
that of the neutral surface and it is assumed to be constant through the thick-
ness of the panel.

A2. Expressions for Components of 
Displacement and Strain 

In the present analysis the core is assumed to deform in such a way that each
plane section originally parallel to the x, z or to the y, z plane remains
plane but rotates about a line which it contains, this line being parallel to
the x, y plane.? Specifically, the components of displacement in the core
are taken as

uc = - k (z -

vc = -	 (z - r) L327.
Oy

we = w (x, y)

?This method of analysis is an extension, to sandwich constructions with un-
equal facings, of that used by Williams, Leggett, and Hopkins (12) and
other British investigators (4), (3), for isotropic sandwich constructions
with equal facings and in Report No. 1583 for orthotropic constructions
with equal facings. Its adoption leads to a uniform shear stress distribu-
tion in the core instead of the slightly variable actual shear stress dis-
tribution.
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where the subscripts c identify the components as those of the core. It is
seen from the formula for u c that the amount of rotation of a section parallel
to the y, z plane is prescribed by the parameter k and the line about which
this plane section rotates is its intersection with the plane z = q. Similarly
the amount of rotation and the fixed line of a section parallel to the x, z
plane are prescribed by the parameters h and r, respectively. The param-
eters k, q, h, and r will be determined in the course of the analysis.

The continuity of displacements at the glue lines prescribes that the com-
ponents (Al) evaluated at z = 0 and z = c shall be those of the inner sur-
faces of the facings 1 and 2, respectively. Within each facing the components
of displacement are assumed to be such that sections originally plane and
perpendicular to the middle surface of the facing remain plane and perpen-
dicular to the deformed middle surface. Accordingly the components which
are identified by a subscript 1 or 2 according as the thickness of the facing
is f 1 or f2 are

u 1 = (kq - z) 2w.
ax

v 1 = (hr - z) aw
ay

w = w(x, y)

u2 =

v2 = -

k (c

h (c

- q) + z -

r) + z

aw

ax

aw

ay
(A3)

w2 = w (x, y)

Love' s (6) notation will be used for the components of strain with the symbols
c, 1 and 2 used as superscripts to denote components in the core, in facing
1 and in facing 2, respectively. From (Al) it follows that

	

e (c 	
k) a(1	 w	 e(c) = (1 - h) aw- 	zx	 yz

	

ax	 ay

For the present the remaining strains in the core associated with the dis-
placements (Al) are assumed to have a negligible effect upon the results in

(AZ)

(A4)
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the problem under consideration, and are neglected. This amounts to ne-
glecting the bending energy of the core in the present energy method.

In the determination of the strain energy in the facings, it is convenient to
consider the components of strain in the facings as the superposition of two
states of strain. The first of these consists of the membrane strains or
strains in their middle surfaces. Components of this type, as determined
from formulas (A2) and (A3), are

e (1) = (kq + —fl ) 82W
XX	 2 8x2

and

e 
(1)

YY

e (1)
xy

e	 )xx

e (2)
YY

2v.,
= (hr + —f (A5)

(A6)

2	 8y2

82w= (kq + hr + f1)
8x8y

-	
82w

k (c	 q)
2	 ex2

.}

f 2	 8 2w
h=	 (c	 r) +

2	 8y2

e (2) =xy (C q) + h (c - r) +

f2.)
19

2
w

ax3y

The second state of strain in the facings is that associated with the bending of
the facings about their own middle surfaces. This state, in either facing,
has the components

a2w	 2	 8 2w
e'	 = -	 , e'	 = - z'	 , e'	 = - 2 z'

xx	 8x6	 YY	 a yL	 xy	 8x8y

where z's is measured from the middle surface of the facing under considera-
tion.

(A7)
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A3. Strain Energy in the Core and Facings 

The strain energy in the core or facings is given by the expression (7), (8)

fffU = 2---x.	 Ex exx 2 + Ey eyy 2 + 2 Excryx exx eyy

(A8)

j+ X pxy exy2 + X p. yz eyz2 + Xp.zx e zx2 dz dy dx

•

where, for the material under consideration (core or facing), X = 1 - o-xycryx,
Ex and Ey are Young' s moduli, p.xy , p.y.z , and p.zx are moduli of rigidity,

and °xy and °yx are Poisson' s ratios. Primed letters will denote the elastic

constants of the core material and unprimed letters will denote those of the
facing material. The integration indicated in formula (A8) is to be carried
out over the entire volume of the core or facing.

The energy in the core is obtained by substituting expressions (A4) into (A8),
the remaining strains in the latter formula being neglected as previously
stated. After integrating with respect to z over the thickness of the core,
the expression for the energy, denoted by U c , is

Uc =

r

ha.

(1 -
a w 2 aw+ p.'	 (1 - h) 2 (—) 2	 dydx (A9)8x	 yz	 ay

The strain energy in the facings associated with the membrane strains is the
sum of the energies obtained from (A5) and (A6). With the substitution of
these expressions into (A8) one obtains, after integration with respect to z,
the following expression which is denoted by UM.

=	 + UM2UM UM1 (A10)
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where

U
M1	

1	
a b	 I, 2 d

2
w 2	 fl 2 d w 2

2

	

2X1 
if	 Ex I f 1 (kq2	 dx2 + E

yi f i (hr + 2")
dy

2	 Zu+ 2Exi cryx1f1 (kq + L) (hr + l) dw d2w21 
2 dx2 dy2

+ X 1 gxyi f i (kq + hr + f l )
2 (

d2 
) 2)
2 

dx dydxd (All)

UM2

a b

Z].2

1

o 0

x2[	
fa	 d

2

E	
w

fa (k (c - q) + —)
2 

(—)2
2	 dx 2

d2 2+ E 2 f2 (h (c - r) +--f2-- )2
2	 dy

+ 2E	 f
x2 Tyx2	

f2
) (h	 -(k (c - q) —	 (c r) + 

f2 ) d 2 w d 2'w

2	 2 cix 2 dy2

2 d
2 

2
+ X2 p. xy2 f 2 (k (c - q) + h (c r) + f )	 dx dy	 (A 12)

2 dx dy

The strain energy in the facings associated with the flexural strain, U F, is

obtained by substituting expressions (A7) into (A8) and integrating over the
volume of each facing. After integrating with respect to z' ,

	

UF = U F1 UF2
	

(A 13)

0 0
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where

U F1 = 24X1
3fl

Exl	 + Eyl d2

f d2v‘q d2w 2
dx 

0 0 -  

d2w d2w	 d2w 1
2+ 2 Exlcryx1 dx2 dy2 ^lµ xy

 (dicky /
1 dx dy	 (A14)

U F2
f2

3

24X2

a b
2w 2	 d2w 2

Ex2 ( d72 ) + Ey2
dy

0 0

d2w d2w	 d2wcr+ 2 E 2 yx2 
clx

2
 dy	 y2 + X211 xy2 (did )

	
dx 

dy (A 15)

The total strain energy in the sandwich, U, is taken as the sum

U = Uc + Um + OF	 (A16)

This expression depends upon the parameters k, q, h, and r which will be
determined in the following section so that the load is a minimum. For these
determinations it is convenient to consider U as a function of kq, hr, k, and
h, since it is a quadratic in these•variables, and to introduce the notation
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, d2w ,2
)	 dx dy

dxdy
Ali

a b [ E

o o

d2w 2
(—)

dx

A21
a b

= ff	
Exi o-yxi

ki
o o

d2w d2w	 d2w
+. (— )2 dx dy	 i = 1,2

dx2 dy
2	 xyl.

dxdy

a b
A	 =3i

E5'1d2w 2
) xy 

d2w
( —)
dxdy

+
X	 k d2i	 y

(A17)dx dy J
o o

a b
A4 = zx 821)2 dy dx

8x

o o

a b

A 5 = f	 III
Yz ay

42 dy cbc

o o

where i = 1,2, denotes facing 1 or facing 2.

Then if U is expressed in the form,

2U = B 1 (k q)2 + 2B2 (k q) (h r) + B 3 (h r)2

+ 2B 4 (k q) k + 2B 5 (k q) h + 2B5 (h r) k

+ 2B 6 (h r) h + B 7 k2 + 2B8 kh + B9 h2
(A18)

+ 2B 10 (k q) + 2B 11 (h r) + 2B 12 K + 2B 13 h + B 14 + B15
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the coefficients Bi are given as follows:

B1 = f 1 A 11 f2Al2'

B 3 = 1 1 A 31 + f2A32,

B 5 = -cf2 A22,

B = cA 4 + c2f2A7	 12,

B 9 = cA 5 + c2f2A32,

B2 = f lA 21	 f2A22

B4 = -cf2 Al2

B6 = -cf2A32

B 8 = c2f2A22

f22	 f22
B 10 = — (A + A21

)
11 2 (A l2 + A23)

B11 =
f 21 (2i + A31) f2 (A 22 + A 32)

2	 2

cf22

B 12 = -cA4 +	 (A 12 + A22)
2

cf22
B 13 = -cA 5 + 2 (A 22 + A 32)

fi3
c(A 4 + A5)	 (An + 2A22 + A32)

B 14 =	 + –m-- (A 11 + 2A 21 + A 31) + 
f2

4
3

4

fl3	
32

B15	
f

=	 (A 11 + 2A21 + A 31 ) t — (Al2 + 2A 22 + A32)
12	 4

The term B15 is twice the strain energy associated with flexural strains in

the facings. This component of the strain energy has been written separately
because it is often negligible, and when it is neglected the expression for the
load is simplified considerably.

(A19)
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j = 1, •.., 5	 (A23)

A4. The Buckling Load of a Panel 
Under Compressive End Load 

If a panel is subjected to a uniform compressive end load of P pounds per inch
of edge at the neutral surface of the panel in the direction of the y axis, the
work done by the load during buckling is

a b
W	 f f

o o

(8w)2
(a

y
dy dx	 (A20)

The condition for instability is expressed by the relation

W = U	 (A21)

where U is obtained from (A16). In order to write the expression for P ob-
tained from this formula, it is convenient to introduce the notation

UI = 	 	 (A22)
a b

( 2112 dy dx
J 

0 0

Aj1

•2A.1

	

- 
a b	

	

I I	 	 2dy
( `12) dx dy

o o

A
32

a b
f dw 2

dx dy
dYo o

I
B 1 - 	

B•

	

1 	 i = 1, -- 15	 (A24)
 a b

I 1
0 0

8w 2
()
ay

dy dx

Report No. 1583 - B 	-22-



Then according to (A20), (A21), and (A22),

P = 21P

with U' obtained from (A 16) by means of (A22), (A23), and (A24).

The conditions

(A25)

8P 	 - 0, aP = o, aP = 0
(kq)	 8 (hr)	 ak	 811

are now imposed for the determination of (kq), (hr), k, and h. From equations
(A18), (A22), (A24), and (A25) these yield respectively   

(A26)

B'	 13t (kq) + 13 12 (hr) + 134 k + ; h +1
3 110 = 0i 

B t2 (kq) +	 (hr) + 13'5 k + 13'6 h + B1 = 0

13 14 (kq) + 134 (hr) + B7 k + 13 18 h + B ti2 = 0

B' kq + B' hr + B' k + B t h + B' =0
5	 6	 8	 9	 13 J

If the first of these is multiplied by (kq), the second by (hr), the third by k,
and the fourth•by h, and the resulting expressions are substituted into (A25)
using (A18), (A22), and (A24), then

P = B10 (kq) + B11 (hr) + B'12 k + B'13 h + B'14 + B'1 5 (A27)

If (kq), (hr), k, and h obtained from the solution of the system (A26) are sub-
stituted into this equation it is found that

1
B 22 4 B55 10
13'3 Bt5 B'6 B'11

B'4 B 55 7 8 B'12
B'5 Bt6 13 18 B'9 B'13

B1010 11 1Z
B'

13	 14 (A28)+ B
15B t1 B'2 B'4 B'

B'2 B'3 13'5 Bt6
13'4 5 B'7 B'8
B'5 Bt6 B'8 B'
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When the expressions (A19), using (A23), and (A24), are substituted for B.

i = 1, ... 14, the determinants in this formula may be evaluated. This evalua-
tion is most easily accomplished by eliminating elements by the process of
adding multiples of one row or column to another. A detailed account of this
process is given in Appendix C.

With the evaluation of these determinants the expression for P may be written

P = Pf + PM
	(A29)

with

and

where

n = I

f 3	f73
Pf	(Nu + 2A l21 + A131 ) + -=—(A'12 + 2A l22 + A32 )	 (A30)

12	 1

n	 (A31)-PM

[

f i (Al 1 A13 1 -A'21z )(Nu + 2Al2  

+ l 1A31 -A21 2)(A112A 32 -Al222) (#A

	

	 )4 + 

f 1 (A111A131 -Al21 2)  A l24 A1324)
f

1 + f
2
	A'

	

4	
A'S

2f (A' A' -A') Al ct•	 A'
+ 	 12 32 22 	 Li- + _3.1___.)

f 1 + f
2
	A'4	 A'5

2	 I 2 	 I 2-A 21 ) (A l2A 32 -A22 )(A'11A'31 
A14

A _
d = A flAf3	

2

(A32)

(A33)
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f lV ExlE y1 f Z V Ex2Ey2	 fl + f2 z
( c + 	

f l4 Ex1 E yl X 2 + f2 qEx2E y2 X1
	 2

D =
(A38)

	fIA'	 + f A'jA j 1	 2 2 Afi =
f 1 + f2

I=  flf2 

	

f + f2	
[.c + f 1+ f2 2

2

cflf2 
=

f 1 + f2

and

(A34)

(A35)

(A36)

j = 1, 2, 3

The term Pf in the formula for P, comes from B1
5
 and is interpreted as the

load required to buckle the two facings, each acting independently of the
other, into the form assumed for w. This term is often negligible. The
second term, Pm, in formula (A29) is the buckling load of the panel, with
correction for shear deformation, with the facings considered as membranes.
The quantity I, formula (A35), is the moment of inertia of a section of the
panel with the facings considered as membranes, taken about an axis which
gives a minimum moment of inertia.

A5. The Buckling Load Coefficient

It is often more convenient to deal with a dimensionless buckling load coef-
ficient rather than the buckling load itself. Such a coefficient may be defined
as

P	
iT 

P	
(A37)

D
a 2

Also define

Pf
Pf

w2
--2a D

(A39)
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and

Pm
Pm = 1r2

D

(A40)

so that

P = Pf Pm (A41)

For the reduction of formula (A31) to dimensionless form it is convenient to
introduce the notation

ir2
—c
a2 I 

a bI f a2W 2 dy(--z)	 dxo o ex
a b

, wt2ETr/ dydx

a b

ir2 	o oa- c2 = a b

8 4 12
l-/ dydxx

8x8y 

8y
o q

dydx

a b
, 2w ,

2	 1 / 8y22 dydx
Tr
- ca 2 3 a b

a b

f aew )2 dy dx
o o Y

C4 - a b

f( 8y )2(—) dydx
o o 8Y

f , 
a

w
dydx

q q
y

(A42)
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Also define   

Ri
Xi Exi ayxi 

Exi Eyi xi

Yi - 
µxyi Yi 

Exi Eyi

•	 -T. = f. [Exi

 E yi

Hi            

i = 1, 2

(A43)

V, -
-Tl + T2 a2lit zx

V-
Y T

1 T2
 Ai' yz

where i = 1, 2, denotes facing 1 or facing 2.

If the core is isotropic, Vx and Vy both reduce to

c Tl T2	ir2
V = 	

T1 + T2 a21.0

c T 1 T Z	 1r2

c	 T2	 .12

(A44)

In this notation formulas (A30) and (A39) yield
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where

ExiEyi

12	 Xi

fi3

Dfi

c3

ai

(A46)

(A47)

i = 1, 2

Ki = ai cl	 2gi.c2

Pf
(A45)

and by formulas (A31) through (A36) and (A40),

Pm =

vx
TiK2 + (4 + vy) F2

(A48)
xV,

112	
V

+ * 3 L2 +	 F2
c4

8—In the reduction of Ah and .A, 2 it has been assumed that

a b	 a b

f f ( 822v )2 dydx =	 a2w, 827	 dx
0 0	 8y	 Yo	 axe).

This relation holds for each form used for w.
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t
T1

T1 + T2
(A49)

Ti = t + (1 - t) 11C —F2
K2 Fl

If2 = t + 2t(1 - t) _F12 + (1 - t) 2	 F2

F1 F1

113 = t + (1 - t) Ll F2
L2 Fl

where

3
Li =- (a	 + y ic	

1/21
) —; 	 (

c
+ y i c 2 ) Vy

c	 cei

= 1, 2

Fi = cl c 3 -13 i2c 22 Yi c2Ki.

a1 2 + a22
n 2 Yl	Y2

F12 - (	 )	 C341 P2 C2 + — c2K2 + —c 2K1
Zala2	 2	 2

where, as usual, i = 1, 2, denotes facing 1 or facing 2.

In the event that the facings are isotropic (but dissimilar),

1 - cri
ai =	 = 1, yi - 	 , i = 1, 2	 (A50)

2

If only one facing is isotropic, reduction (A50) can be made for only that facing
which is isotropic.

If both facings are isotropic, an important simplification can be achieved by
assuming that cri = cr.2 ; i.e. that y i = y2 . Then
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where
K = c1 + 2c 2 + c3

L = (c1
Vxx + (c3 +

c4
c 2 ) Vy (A53)1

2
1 -

2
C2)

K =K L =L F =F12 =FK1	 2'	 1	 2' 1.	 12 =F2

so that subscripts on K, L, and F can be dropped, and

*1 =	 = * 3 = 1

Finally, (A45) and (A48) reduce to

Dn. + Df2
Pf 	 (A51)

and Vx
K+ (-67 +	 F

1 + L +.—::/ F
c4

(A52)

+ 1 - o-F = c 1 c 3 - c2 2 
T	 c2K

2

If the facings are similar, considerable simplification is possible. Define
A! , j = 1, 2, 3, as in formulas (A23) but without a second subscript to denote

facing. Then formula (A30) reduces

P = If (A' + 2A' + A'3
)

f	 f	 1
(A54)

where

If -

3
f1 3	2 (A55) 

12
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k f -
2

-Fr

Pt

E E
— I	 x y
a 2	 X

(A58)

and formulas (A31), (A32), and (A33) reduce to

I (A‘ + 2AZ +A4 + 	 A'3 -A 1, 2 ) (11)- ±))
A41	 AI5

(A56) 
Aid	 A3(I)	 4,2

1 +	 +	 + (A' A' -Al2)A
4

	1 3	 2	 A' A'4	 4 5

In order to make this last reduction note that, for similar facings, A f2 reduces
to Aj, j = 1,2, 3, and a factor (AiAS -A l2 2 ) cancels from numerator and de-
nominator.

The definition of the buckling load coefficient, (A37), is replaced, in the case
of similar facings, by

k -
n2
T Ia

P (A57) 

and, similarly,

kM - 	
ir2 VExEy 

a2 I X

so that k = kf + km, as before.

Introduce the ci , j = 1,	 , 4, according to (A41) and define

(A59)

Report No. 1583-B	 -31-



H
S = 2 

ta p.

+1r2 VExEy
(A6I)

a =II —
E

Ex  

V E Ex y

1.1xy\
	

(A60)

x y

Sx
	 1T2 V ExEy

a
zx

Tr4 VExEy
S = 

	

	Y a2 k 111yz

Note that if the core is isotropic, Sx and Sy both reduce to

In this notation formulas (A54), (A55), (A58), and (A60) yield

c
3

kf = If (ac t + 213c 2 +	 )	 (A62)

and by formulas (A56), (A59), and (A60),

c 3	 Sx
ac t + 213c 2 + —a + (c-4 + Sy ) F

km = 	 	 (A63)

Sx 	 c3	 S S F
1 + (act + yc2)E– +(a + Yc2)Sx

4
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2
a= 13 = 1, y= 1-o- (A65)

where
c3

F = ci c 3 -02 c 2 2 + yc 2 (aci + 2i3c 2 + —) (A64)

In the event that the facings are similar and isotropic,

E
and Ef replaces	 3E1_ in the formulas for Sx and Sy. Formulas (A62) and

Xf	X
(A63) reduces to

kf = If K
	

(A66)

and

km -

K + (zt + Sy) F  
(A67) 

1 - Cr	 1Sx
1 +	 +	 2 c2 ic4

1 - cr	 S Sv
+ (c 3 + 2 c2) Sy + 2-2-`c4 F

where K and F are given by (A58).

Note that (A52) and (A67) have exactly the same functional form, thus making it
possible to plot one set of curves for both similar isotropic facings and dis-
similar isotropic facings, provided the "dissimilar" facings have the same,
or nearly equal, Poisson' s ratios.

Boundary Conditions

The quantities c i, i = 1, 2, 3, 4 defined by formulas (A42), may be evaluated
when the function w (x, y), which represents the deflection is specified. A
suitable form for w will now be chosen and these quantities will be determined
for each of the boundary conditions considered. The form assumed for w is
in each case a trigonometric expression, and the quantities ci are functions of
p = ....a , and n, the number of longitudinal half waves into which the panel buckles.
In each case, the integer n must be chosen so that the coefficient p is as small
as possible.
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Case I. All Edges Simply Supported 

A suitable form for w is 9—

wxw = c sin — sin nwy
a

(A68)

Then by formulas (A42)

n`1
c1 =	 , c2 = 1, c 3 = n2 p 2 , c4 = c1	(A69)

p4

Case II. Loaded Edges Simply Supported and 
the Remaining Edges Clamped

The deflection in this case is taken as

sing Inc. nwy
w = c sin — sin	 (A70)

a

From (A42),

lc 1	
16 	

c2 = 4 c 3 = n22 ,

	

= 1	 (A71)
3n'p'	 3	 4

Case III. Loaded Edges Clamped and the 
Remaining Edges Simply Supported 

The form for the deflection surface is taken to be

w= c sin —Inc sin LT	 nwy
a

(A72)

9—In this case, the form assumed for w is "exact"in the sense that no other
form can yield a lower theoretical buckling load. In the following three
cases, the form assumed for w is an approximate expression chosen for
its mathematical simplicity. Such an approximation will always yield a
theoretical buckling load which is too great. However, the error is
small, since geometric boundary conditions are satisfied.
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1 +
2 

c1
p 2 (n2 + 1)

p 2 (n4	 6n2 + 1)
cz = 1, c 3 = 	  , c4 = cl (A73)

n2 + 1

6 1n

From (A42), 

where

Case IV. All Edges Clamped

(A74) 

A fcrm for w in this case is

w = c sing la sin	 sin 12a.
a	 b	 b

From (A42)

16(1 + 
61n

)2	 4	 p2 (n4 + 6n2 + 1)
c
l
 - 	  ,-	 c3

"	 3	 n2 + 13 p 2 (n2 + 1)

cl
=

(A75)

(A76)
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APPENDIX B

Solution by Libove and  Batdorf Method When 

Panel is Simply Supported

In the case of simple support, an expression for the buckling load can be de-
rived quite simply from the equations of Libove and Batdorf (11). For this
type of support the functions

w = A sin L sin an
a

Qx = B cos la sin 111TY	 (B1)
a

Q = C sin — cos
a

may be used in solving the system of differential equations (11, pp. 13-14).
These functions satisfy the boundary condition (11, conditions 10) and lead to
an expression for

k - 	 	 (B2)

ir2 VD3c1) y

a2 (1 -

which is identical with p m given by formula (A60) above, provided the follow-

ing interpretations are given to the physical constants appearing in that for-
mula
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1 - Rxiiy

DxDy I
D

xy

+ Dy x

Dxy (1 -
Y = (B3)

IT2	 Dy 

a2 DQ (1 - p.xp.y)

S =
Y	

a
Z 

D cw (1 - P•xl-Ly)

The symbols_appearing in the right-hand member of each of these expressions
are those which have been used by Libove and Batdorf. When expressions
(B2) and (B3) are compared with (A57) and (A60), it is found that the solutions
by the two methods are identical provided the Libove and Batdorf constants,
which are given on the left below, are interpreted in the present notation as
follows

Sx

T2 V DxDy
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P'x = 'Txy

11 =Y	 Er yx

fl f 2	 + fl + f2 Dx = IEx =	 (c	 )2 Ex

	

f1 + f2	 2

D = 1EY	 Y

D	 = 21 p.xy	 xy

	

(c + 
fl	 f2 

)-2
D, =

	

fl	 f2  2
+	 2	 )

D
Qy 

= 	

Among these the first five reduce to those which have been used in the NACA
publications (11), (10), when the facings are isotropic and of equal thickness.
The last two reduce to the form suggested by Bijlaard (1) when the facings
are of equal thickness and the core isotropic.

For the case under consideration, the identity of the present solution for pm

with that obtained by the differential equations method could be anticipated
on the basis that the same form for w was assumed for both solutions; and
the expressions for Q x and Q y derived from formulas (A4) are of the same

forms as the second and third expressions of equations (B1) respectively.
Under these circumstances the processes of Appendix A can be expected to
yield the same results as that obtained by the differential equations method.

(B4)
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APPENDIX C

Reduction of Determinants in (A28)

Rows will
, R-5.

Cl, C2, .

be numbered from top to bottom and will be referred to as R1, R2,
Columns will be numbered from left to right and referred to as
, C5. Substitutions will be indicated as follows

R1 + c • R2—> R1

which reads "substitute (termwise) c times row 2 plus row 1 for row 1."

Consider the numerator of the first term of (A28). The following sequence
of substitutions	 —,s

R3 + c • R1-9R3

R4 + c • R2—,114

f 2	 f 2
C5 — • Cl - — • C2--->C5

2	 2

f 2	f
R5 + — R1 + — R2 + R3 + R4 -->R5

2	 2

C3 + C4 + C5—,C5

R1 cf 2	R1

R2 + cf 2 —) R2

Cl	 cf1-->C1

C2 ÷	 C2

R2 - (A22
	

) • R1--> R2
22 + 

A'
3Z

12	 22

(
A' + A'

21
C2 -	

31
') • C1--->C2

A' + A'
11	 21

(C1)
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results in a third order determinant. At this point the numerator is

J11 J 12 J13
_ cf f ( h  c  12 (Ail + 11, 2	A.12 + A 22 )n'

1 2 2c '	
(	 21 J 22 J23

J31 J32 J33

(C2)

where

1A21 , A 2 2 \
J11 -	 k 	 -/

[

11	 c z	 f2	fl

	

A11 	 (A 22  A'	 (A21 	 A 31,

	

11	 12	 21 _	 22	 32
1 (
 f	 fl	 Al2 	 A'	 A	 + A12	 22	 11	 21

A2 	 A 3' 222 
J12	 A22	 Al2 (A'	 + A' )

12	 22

	

A'	 + A'222	 3,

J13 	 -A' + A' 
( A'13	 32	 22 A'	 + A'12	 22

	

A21 	 A'21	 31,
J21 =``q1 -` in (

11 + Al21

J22 = cA'22	 4

J23 = 0

A21 + A'31
J

31 =A31 -A21 ( 	21 A I	 + 
AI21

)
11

J32 = 0

J	 = cA'33

(C3)
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n'	 c4f-i2 fz2 (h + c  
)
2 {A41 5I { 1

CZ	 f2
(A11 A'31 -/21 2 ) (AI 2 + 2A2 	A' )22	 32

+ 7- (A' A'	 -A' 2 ) (A' + 2A'
11.	 12 32	 22	 11	

21 + A' )1
31

1

This determinant can be expanded literally. Thus n' finally becomes

1
+ — (A' + A' ) (A'	 A'	 -A' 2 ) (A' A'	 -A' 2 ) ),C	 4	 5	 11 31	 21	 12 32	 22

Consider next the denominator of the first term of (A28). The following se-
quence of substitutions

R3 + c . R1 —>R3

R4 + c • R2--9R4

R1 cf2—^R1

R2 + cf2 --> R2

Cl .cf1 -9 CI

C2	 cfr---> C2

22A'
R1 + -- • R4--> R1

cA'
5

A'32
R2 +	 • R4--11U

cA'
5

Al2
R1 +	 • R3 --ntl

cA'
4

22A'
R2 +	 • R3 --,112

A'4

R1 • cA' —>R14

	

R2 • cA'	 R25
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(C6)

(C7)

results in a second order determinant. Introduce the notation

Ail	 Ail
T • =-+-, i = 1, 2

f2	 fl

and the denominator, d' , becomes

{= 4f 2f 2 AW5 f T _ T 2)
" c 1 2	 2	 n T1 3	 2

c

1	 '	 '	 A' A'
— (A!, A'31 _A l21 ) (A 3ZA 4 +  12 5)
f2

1 A'31. 1 4	 A' A'All 5 
+	 (A' 

A32
	 2 ) (	fl	 12 32	 22

(A'11 A 31 -
A212 ) (Aiz A'32 -A'22)

Upon dividing n' and d' by c 2 (f 1 + f2 )2 A41% and introducing Afi , j = 1,2, 3,

I, and 4 as defined by (A34), (A35), and (A36), Pm can be written as !di ac-

cording to (A31) through (A33).

d'
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Figure 1. --The compressive buckling load coefficient pm

for a rectangular panel with clamped loaded edges and the
remaining edges simply supported. Isotropic facing and
core material. a- = _1
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Figure 2. --The compressive buckling load coefficient pm for a rec-
tangular panel with all edges clamped. Isotropic facing and core
material. 0- = 1
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Figure 3. --Flat sandwich panel in compression.
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Figure 4. --Cross section of sandwich panel.
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