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MODELING ESTUARY POLLUTION
BY COMPUTER SIMULATION

INTRODUCTION

The rapid population expansion and resultant urban and industrial

growth have caused vast increases in the quantities of waste materials

being produced. Even if advanced treatment facilities were available

to process these waste loads, the effluent would still contain sufficient

dissolved materials or heat to influence the ecology of receiving water

bodies, The expanding population also means increased requirements

for safe and aesthetic aquatic environments, especially in the vicinity

of population centers. For these reasons, predicting the impact of

domestic and industrial wastes on the aquatic environment remains

one of the most urgent problems facing the sanitary engineer.

Estuaries are among the most complex of all disposal sites.

They are characterized by irregular geometry, unsteady flow and a

blending of chemical, biological, meteorological and hydraulic inter-

actions. Due to the complexity of the system, it often becomes

necessary to consider only the principle mechanisms influencing the

pollutant distribution in order to simplify the problem to one of man-

ageable terms. The most significant simplifying assumption, and the

one that has been almost universally applied, is that of one-dimensional

flow in the channel or in a finite segment of the channel. The basic
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equation describing a non-conservative pollutant in a one-dimensiona.I

channel is derived from mass baI'nce considerations on a differential.

element and can be expressed as

(AC) (AD-) &(UAC) - KAC (1)
aT ax

where C = pollutant concentration, T = time, x = distance along the

channel, A = cross section area, D = longitudinal dispersion coeffic-

ient, U = average velocity over the cross section, and K = decay con-

stant. The first term on the right-hand side of Equation 1 is the

dispersion term and represents the transport of material due to non-

uniform velocity gradients in the stream profile. The second term

represents convection of the material and the third term represents

first-order biochemical decay.
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PURPOSE AND SCOPE

Predicting the fate of pollutants in estuaries has been the object

of a large research effort during the past decade. A wide variety of

models have been developed during this period and the results corn-

pared to observed data from the prototype with varying degrees of

success. Many of these models utilize numerical methods which are

subject to subtle and sometimes unobserved numerical errors. As so-

iated with these studies is the major problem of describing the hydraul-

ic regime so that proper flow velocities can be applied to the convection

term in the model.

The present study was undertaken to refine one type of finite-

difference model by developing an efficient means of predicting stream

velocities and by correcting numerical errors introduced by the differ-

ence approximation of Equation 1.

A computer program was written to describe the fate of a dis-

solved pollutant in an estuary, The dispersion, convection and decay

relationships in the model are based on finite-difference methods

described by Bel.la and Dobbins (1968).

The prediction of water surface elevations is based on the prop-

agation of a tidal wave upstream from the mouth of the estuary.

Stream flows are determined from changes in water surface elevations

by finite-difference methods. Numerica.l errors associated with the
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convection term of the model are analyzed in detaiL The model is

used to simulate the buildup of a pollution concentration in the vicin-

ity of an outfall during slack waters, Results are compared to a

tracer study on the Yaquina Estuary, Newport, Oregon.



LITERATURE REVIEW

General

Two distinctly different types of time scales are used in estuary

modeling. One is a time scale such that velocity vari3tion caused

by tidal action are included directly in the model, and thus, the poilu-

tant distribution is a function of tidal elevations. In these models, con-

centrations in the channel can be calculated at any time during a tidal

cycle.

The other time scale includes only average net water movements

over a period of time equal to or greater than one tidal cycle. Since

intertidal velocities are excluded, their affect on the concentration

distribution is considered to be represented by the dispersion coeffic-

ient, D. In these models, concentrations in the channel can be calcu-

lated only at the time of slack water.

In the following literature review, methods for solving Equation

1 have been divided into three categories: analytical, numerical, and

others. Both of the above mentioned time scales can be utilized by

these methods.

Analytical Methods

Ana.lytica.l solutions to Equation 1 can be separated into three

general categories, according to the assumptions applied to the



parameters, A (area), U (velocity) and D (dispersion).

The first category includes solutions based on the assumption

that equilibrium conditions exist in the estuary and that all parameters

are constant with time and distance (Asano, 1967; Bain, 1968). A

modified version of Equation j was solved with steady-state dissolved

oxygen (DO) relationships in the Delaware River (OConnor, 1960) and

relatively close agreement was obtained between model predictions

and observed yearly slack water concentrations, However, this type

of model'is often of limited value because only long term average

concentrations are involved and most practical applications require

knowledge about short term critical concentrations.

The second category of analytical solutions are those which hold

U and D constant and allow A to vary as a simple algebraic function

of X. Solutions of this type were applied to the Delaware, Upper

East, and James Rivers (O'Connor, 1965) where U was set equal to

the average fresh water flow over the study period. A more recent

study by the same author (O'Connor, St. John, and Di Toro; 1968)

utilizes similar analytic techniques. However, in this case the

channe.l is divided into segments, the analytical solution applied to

each segment, and the resulting system of simultaneous equations

solved by matrix algebra. This type of model is limited to the extent

that only slack water concentrations are considered and velocity fiuc-

tuations due to the tide are ignored.
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The third category of analytical solutions to Equation 1 is based

on the assumptions that D and A are constant and that U varies as

a sinusoidal function of time. Holly (1969) used this approach for the

investigation of slack water buildup associated with unsteady, uniform

flow. In these studies the pollution injection rate was varied as a

simple algebraic function of time. The major limiting factor of this

approach is that the cross section area of the channel is considered

uniform throughout the length of the estuary.

Numerical Methods

Due to the irregular geometry and unsteady flows in estuaries,

Equation 1 defies analytical solution for most practical applications.

Therefore, numerical methods have been utilized in order to obtain

solutions with greater freedom in parameter variation. Several basic

approaches to general finite-difference modeling are presented by

Dresnack and Dobbins (1968) and Thomann (1963)

An implicit central-difference scheme was applied to Equation 1

for studies of the Potomac River Estuary (Harleman, Lee and Hall,

1968). The stream channel was divided into equal-length segments and

average cross section areas (A) were estimated for each segment.

Velocity (U) was represented as a sinusoidal function of time, the

dispersion coefficient was given as a linear function of velocity, and

the injection rate was a combination of continuous and slug injections.



Computer output was characterized by instability. Predicted results

only vaguely resembled observed data.

In studies of the Delaware Estuary (Pence, Jeglic and Thomann,

1968), Equation 1 was combined with an oxygen balance equation and

expressed as a differential-difference equation. These equations are

solved numerically by fourth-order Runge-Kutta methods, Stream

velocities are based on fresh water flow without consideration of tidal

fluctuations. An attempt was made to incorporate the effect of tides

by introducing an advection coefficient ( )' into the finite difference

portion of the equation. When is changed from 1. 0 to 5. 0 the differ-

ence scheme changes from the backward to the central difference

equation. Hence, the lower the value of , the more dependent the

concentration in a particular segment becomes on downstream concen-

trations. Application indicated close agreement between model and

prototype for long term average DO concentrations,

Dornhelm and Woolhiser (1968) combine Equation 1 with the con-

tinuity and momentum equations for unsteady free-surface flow. The

system of equations is solved by an implicit difference scheme, In-

stability and long periods of computer time are found to be the major

disadvantages of this method,

Application of Equation 1 to a two-dimensional estuary was

attempted by Orlob (1967, A square grid was superimposed on the

estuary and each line segment was considered to be a one-dimensional



channel. Tidal velocities in the channels were calculated by a separate

computer model, The pollution distribution was simulated by repre-

senting Equation 1 in explicit finite-difference form and applying it to

each channel, Two types of numerical errors were discovered in the

model; oscillations and spreading of the distribution, A sensitivity

ana.lysis comparing the central difference and quarter-point difference

schemes indicated that in general when one error was reduced the

other was increased.

Because of the errors introduced when Equation 1 is represented

by numerical methods, some investigators have applied numerical

techniques directly to the stream channel using Equation 1 only as a

guide. 'The channel has been conceived as a series of cells each con-

taming a known vo.lume and uniform concentration during finite time

increments (Bella and Dobbins, 1968. Convection and dispersion are

simulated by average transport of material across cell boundaries and

decay by reduction of cell concentrations during each time increment.

A multi-step procedure is used so that the effects of each term can be

determined independently. Numerical errors can be readily recogniz-

ed by this procedure and a method for correction is presented, These

methods are used as the basis for the mathematical model in this

thesis and are explained in detail in the next chapter.

A Lagrangian concept has been developed for predicting poi.lu-

tion dispersion in Boilnas Lagoon, California (Fisher, 1969). The
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embayment was segmented into a two-dimensional pattern; although

flow with-in each segment is considered to be one-dimensional, Each

time increment includes a convection step, a dispersion step, and a

decay step, Convection is simulated by slugs of water moving at this

average water velocity over each finite time increment. Numerical

errors associated with the convection step are greatly reduced. Dis-

persion is an emperical relationship based on the concentration grad-

ient.

Other Methods

Leeds and Bybee (1967) have developed a solution to Equation 1

by using digital computer programs designed to solve electrical net-

work problems, Equation 1 is approximated by a set of ordinary

differential equations obtained by replacing the differentiation with re-

spect to the space variable with finite-differences. Stream velocities

are based on fresh water flow without consideration of tidal fluctua-

tions. Effects of mixing due to tidal action were assumed to be in-

c.luded in an "eddy diffusivity coefficient", Significant errors are

inherent in this method, especially for the simulation of a continuous

outfall (Bella, 1968).

A statistical time-series analysis was applied to concentrations

in the De.laware Estuary (Thompson, 1967). Analytical techniques

such as Fourier and power spectrum computations are used to
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calculate DO with. average daily water temperatures. The greatest

amount of variance is accounted for by the annual harmonic, Fre.-

quencies at the low end of the spectrum are analyzed in detail in order

to obtain a first estimateTM of the expected short term DO distribu-

tion around a mean value. Given this variance, an administrator

could decide on the basis of water..use goals whether a particular

mean DO concentration is sufficient in view of occasional fluctuations

to critical values.

A similar type analysis was applied to Charleston Harbor

(Wastler and Walter, 1968). In this case the objective was to deter-

mine effects of reduced fresh water inflow on water quality. Chloride

intrusion was correlated with fresh water inflow by power spectrum

analysis and a significant relationship was shown to exist between the

two variables.

A stochastic model has been devided to describe the probabilistic

distribution of the biochemical oxygen demand (BOD) and DO concen-

trations (Thayer, 1967). The model is based on the assumptions that

all parameters are constant and that the system has reached steady-.

state conditions. Although the model is inadequate for direct applica-

tion to most practical estuary problems, it does present one interest-.

ing result in that variance in DO concentration is highest when the

average DO concentration is low. In other words, the greatest amount

of uncertainty exists at critical concentrations.
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GENERAL MODEL

General Structure

The main computer program is based on the finite-difference

method developed by Bella and Dobbins (1968). The stream channel

is divided into equal length segments (ax) and the content of each seg-

ment is analyzed during finite time increments (LT). In this model,

LT is less than a tidal cycle. Segments are labeled beginning with

segment one at the fresh water end of the channel as shown in Figure

1, where N = segment number on the main channel and n interface

number. The program is versatile in that irregular estuary config-.

urations can be simulated by appropriate arrangement of the segments.

Tributaries can be attached to the main channel as shown in Figure 1

where K are segment numbers of the tributary intersecting the main

channel at segment N. Mud flats can be simulated by a series of ad.

jacent short tributaries where material is transferred across all four

interfaces of each interior segment. A two-dimensional effect can be

achieved by superimposing two or more channels.

The program is written in Fortran IV for use on the CDC 3300

computer at Oregon State University. Figure 2 is a flow diagram of

the main program. Four types of input data are required:

1. Finite-difference grid parameters ix and EXT. The amount

of numerical error introduced by the finite-difference scheme
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(tributary fresh
water flow)
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vI I N-i1 N N+i I

Figure 1. Representation of stream channel
including a tributary.
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Ilnøut datal

Write initia.I conditions

Increment time by an amount Et

Water quantity model

Water quality model

Add pollutant to specific segments
by subroutine SOSINK

Is output desired at this time?

no
IWrite outDutl

Has time exceeded maximum time for run?

yes

lEND

Figure 2. Flow chart for the main computer program.
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was found to be very sensitive to these parameters. The

numerical error is discussed in detail in the chapter ERROR

STUDY.

2. Estuary configuration consisting of the cross section area,

channel side slopes, and mean water depth at each segment

and the location and configuration of each tributary.

3. Hydraulic characteristics of the main channel and each

tributary. These data include magnitude of tidal wave at the

mouth, speed of tidal wave propagation, channel friction,

and fresh water inflow rates. The water quantity model is

described in detai.l in the chapter WATER QUANTITY MODEL.

4. Mass transfer parameters and initial conditions. Those data

include the dispersion and decay coefficients and the initial

pollution concentration in each segment. Also included is

the location of poLlution sources and the rate of pollution in-

jection at each source.

For each time increment, the program begins at the fresh water

end of the main channel (segment number one) and calculates flows in

each successive segment by means of the water quantity model. As

the calculations proceed down the estuary, each segment is checked

for an intersecting tributary. When tributaries are encountered, con-

trol is shifted to a subroutine which calculates tributary inflow.. The

main channel flow is adjusted by the amount of the tributary flow and
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the program proceds to the next segment.

After flows have been calculated in all segments, the program

returns to segment one and again proceeds down the main channel cal-

culating pollutant concentrations by means of the water quality model.

When tributaries are encountered, control is shifted to a sub program

which distributes the pollutant in the tributary.

When the pollution distribution has been calculated for all seg-

ments in the estuary, the program returns to segment number one and

proceeds back down the main channel checking for pollution sources.

When outfall locations are encountered pollution is injected by sub-

routine SOSINK.

Results are printed in predesignated times. Output includes the

velocity, area, dispersion coefficient and concentration in each seg-

ment.

Water Quality Model

Convection, dispersion, and decay are considered to be the

three factors acting on each segment during each time increment.

Each factor is calculated independently of the others in a multi -step

process. This approach allows analysis of the relative effects of each

factor and simplifies detection and correction of numerical errors.

In addition, any one factor can be modified or bypassed without major

revision to the program as a whole,
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Calculation of the convection of the pollutant between adjacent

cells in the main channel is accomplished by simple mass balance

considerations. The mass of pollutant transferred across an interface

is equal to the volume of water which crossed the interface in time

LT multiplied by the concentration in the upstream segment. In

finite-difference terms the concentration in segment N at T + T,

when flow is towards the ocean, can be represented as:

C(N, T+T)A(N, T+T) = C(N T)A(N, T)X

+UA C(n, T) (N-i, T) (2)

-UA C(n+1,T) (N,T)

where C(N, T) = concentration in segment N at time T, A(N, T)

average area of segment N at time T and UA( T) = average flow

across interface n during period tT. Equation 2 is modified when

flow is in the opposite direction by changing the sign on UA and

changing the subscripts on C from N-i to N and from N to N+i in

the last two terms. Numerical errors are introduced by this method

of simulating convection. The properties of these errors and a method

for correction are presented in the chapter on numerical errors.

Dispersion describes the transfer of mass across segment inter-

faces caused by non-uniform cross section velocity gradients. It can

be represented in explicit finite-difference form as follows (Bella



and Dobbins, 198):

T+T) = C(N T) + Fl[C(N+l T) C(N

+ FZ{C(Nl T) C(N T)1

DA
(n+1, T)F=

1

A(NT(&c2

DA tT
F (n,T)

A(N, T)

(3)

where D = a dispersion coefficient which may vary with N and T.

Decay is represented in the model by reducing C(N
T)

by a

fractional amount of the average concentration in a segment during

T. Written in finitedifference form:

C(N, T+T) C(N, T) K{(1O)C(N T) + OC(N T+T)' T (4)

where e is a weighting factor for obtaining the average value. Soiv-

ing Equation 4 for C(N T+T) gives:

11-KT(1-O)1
(5)0(N,T+T) = C(N,T)L 1+KTO

When a tributary is encountered, control is shifted to a subpro-

gram which calculates the pollution concentration in the tributary seg-

ments in a manner analogous to that used in the main channel. Mass
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transfer between the last segment in the tributary and the main channel

segment is accomplished by equations similar to Equations (2) and (3).

Sources and Sinks

A quantity of pollutant mass can be added or subtracted from

specific segments during each time interval, by means of subroutine

SOSINK. The quantity of mass can be varied as a function of time in

order to simulate realistic pollutant outfall or sink characteristics.

The concentration in the segment is adjusted according to the total

pollutant mass and the volume of water currently in the segment.

Because concentrations are considered to be uniform in each

channel segment, a particular pollutant source or sink cannot be

located with greater accuracy than the length of iX. Outfalls located

at any point within a segment will, for example, have the same affect

on model results.

If subroutine SOSINK is included in the program before the water

quality model, it is possible for unrealistic distributions to appear in

the output. For example, in the case of a continuous pollution source

and relatively high stream velocities, the printout indicates that max-

imum concentrations occur in the first segment downstream from the

simulated outfall instead of in the segment containing the outfall.

Therefore, this subroutine has been included after the water quality

model.



20

WATER QUANTITY MODEL

Method

The most simple method for estimating stream velocities is to

assume uniform flow throughout the estuary and apply a sinusoidal

velocity at the mouth (Bella and Dobbins, 1968; Harleman, 1968;

Holley, 1969). A more realistic method is to determine water surface

elevations as a function of distance and time and calculate flows from

known characteristics of the channel. This can be accomplished by

solving the continuity and momentum equation for unsteady flow

(Dornhelm and Woolhiser, 1968). Although this method is accurate, a

great amount of computer time is required. A more efficient method

has been to use changes in water surface elevations to calculate aver-

age flows over small time intervals, i. e., (average flow out of seg-

ment) (average flow in) - (change in volume), (Fisher, 1969). This

method has been adopted for the present study and can be represented

in finite-difference terms as follows for flow in the direction shown in

Figure 1:

UA =UA +{A -A 1 (6)(n,T) (n-1,T) (N,T-1) (N,T AT

By using this approach, the problem is reduced to one of finding an

efficient means for predicting water surface eievations(H.
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Fisher (1969), in studies of Bolinas Lagoon, California, used

observed values of H over a few tidal cycles. The use of tabulated

values becomes awkward for long periods of analysis. Dorlhelm and

Wollhiser (1968) predict H by propagating a sine shaped tidal wave up

the estuary. Tida.l actions in most real estuaries do not conform to

this simple representation however.

Frequently a reflected sine wave can be used to predict tidal

heights along an estuary (Ippen, 1966). Consider the channel profile

of length L shown in Figure 3. An imposed wave is assumed to

travel up the estuary from the mouth. A hypothetica.I boundary exists

at the end of the estuary which reflects a portion of the incident wave.

The water surface at a point x feet from the boundary can be predict-

ed by superimposing the height of the reflected wave onto the incident

wave. The effects of friction can be approximated by assuming an

exponential reduction in wave height with distance. Mathematically,

the tidal height can be represented as (Gienne, 1969):

H = H0 + a [ecos (ÔT + kx) + e cos(6T - kx)] (7)

Where H0 = average water surface elevation, a = amplitude of mci-

dent wave, i = constant representing channel friction, 6 = wave fre-

quency, k = portion of a tidal cycle required for the wave to travel one

unit of estuary length, and p = fraction of wave reflected. For short

tributaries the water surface elevation can be assumed equal to that
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Figure 3. Reflected tidal wave.
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in the main channel at the point of intersection, For long tributaries,

program control is shifted to a subprogram which propagates the wave

up the tributary channel in accordance with Equation 7 where a =

amplitude of incident wave at the mouth of the tributary.

The solution of Equation 7 for every channel and tributary seg-

ment during each time increment would be very time consuming.

Therefore a method of approximating Equation 7 was adopted. Figure

4 shows the flow chart for the subprogram used to calculate water

surface e.levations and cross section areas, The incident wave at the

mouth of the estuary is represented for one and a quarter tidal periods

by a series of chords as shown in Figure 5. This method of des crib-

ing the wave allows complete freedom for selecting any shape wave at

the mouth of the estuary, i. e. , it is not limited to a cosine function.

The amount of error introduced by representing a smooth curve with a

series of chords is a function of the number of increments into which

the tidal cyc.le is divided. The error in representing a cosine curve

by this method is shown in Figure 6 where t is the maximum differ-

ence between any chord and the true curve based on an amplitude of

one.

For any particular time at the mouth of the estuary, T, the

ordinate of the imposed wave at any point, x, in the estuary can be

calculated by determining the time required for the wave to move up

the channel to that point. This is the lag time and is represented by
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Has program reached the en
the current tidal cycle

Yes

JC aiculate ordinates of the imposed
tidal wave at the mouth of the

estuary for the next
tidal cycle
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dinates of the incident wave at the
center of each channel. seg-

m ent

Calculate ordinate of reflected
wave and superimpose

on incident wave

Calculate average cross section
areas for each segment

Return

Figure 4. Flow chart for subroutine AREA.
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TRAV on Figure 5. For this study, the time lag was expressed as

TRAV = c(L-x)

where c is wave celerity, x is the distance from the fresh water end,

and L is the length of the estuary. More accuracy could possibly be

achieved by allowing c to vary as a function of depth; however, at

the sacrifice of computer time. Once T is located (Figure 5', the

elevation is obtained by interpolating between points M and M + 1.

The ordinate of the reflected wave is obtained in a similar man-

ner. A portion of the incident wave is assumed to bounce off the

boundary at the end of the estuary and travel back towards the mouth

at the same celerity. The total lag time for the wave to travel from

the mouth back to point x can be calculated by:

TRAV c(L+x)

Friction is incorporated in the model by reducing the ordinates

by an exponential function of the distance traveled by the wave, 1. e.

-(L+x)e for the incident wave and e for the reflected wave.

The water surface elevation is then obtained by superimposing the

ordinates of the incident and reflected waves. Friction need not be

represented by an exponential function however,, it was selected so

that existing methods (Ippen, 1966) could be used to estimate the

parameters j. and k. It may not be the most realistic representation,
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however, because the major frictional influence is exerted near the

mouth of the estuary and the frictional effect decreases with distance

up the estuary. Conversely, in some real estuaries the effect of

friction would probably be least near the mouth and increase with

distance up the estuary.

Cross section areas are calculated as a function of the water

surface elevation and side slopes of the channel at each segment.

Boundary Conditions

In order to calculate flows by means of Equation 6 it is necessary

to know the flow across the interface of segment one at the upper end

of the estuary and in every tributary. For a completely reflected wave

all of the tidal induced flow is reflected and, therefore, the flow

across the first interface is equal to the fresh water inflow. Physical-

ly this can be visualized as a waterfall forming a complete barrier at

the end of the estuary, However, when the upstream boundary reflects

only a fraction, 3, of the incident wave amplitude, a certain amount

of flow will be induced at segment one due to tidal action beyond the

boundary, When this flow is neglected, significant errors may be

introduced for values of p less than one.

The tidal induced flows at the boundary can be calculated by ex-

tending the hydraulic model beyond the boundary a distance necessary

for the unref.lected portion of the wave to become significantly



attenuated by friction. For progressive waves with low friction this

method may require excessive computer time. One approach to re-

duce computer time and still approximate flows across the first inter-

face would be to increase the friction coefficient beyond the boundary.

Errors introduced by this approximation would have to be investigated

for each individual case.

If the reflected wave is not completely attenuated when it

reaches the mouth of the estuary, the calculated water surface eleva-

tion will not coincide with the incident wave and a discontinuity wil.l

occur at the ocean boundary. Ippen (i966 avoids the problem by

applying the incident wave at the end of the estuary instead of the

mouth. However, tidal fluctuations are generally not recorded at the

upper end of an estuary, and this approach is not always practical.

If there is sufficient friction in the channel, orif p is low, the

discontinuity will be negiib.le, When a substantial discontinuity does

exist at the ocean boundary, a driving wave must be found such that

superposition of the reflected wave will result in water surface

elevations which agree with observed data. Finding a driving wave is

difficult, but it can be done by trial and error for short runs.



29

Testing

An analytical solution for a uniform rectangular channel was

developed and compared with computer output in order to determine

how accurately the program predicted flows.

In a rectangular channel with constant Width, B, flow can be

represented by the following equation:

d(UA) = B dx (8)aT

Substituting Equation 7 into Equation 8:

Boa [esin(6T+kx)+ e (6Tk)] dx (9)

Intergrating each term in Equation 9 by parts twice and combining

terms leads to:

22-xk +1j.UA = F3e[cos(OT+kx+a) - pF3e 22[cos(6T-kx+c)J (10)

Ba6F3
2+2

a= arc tan /k

When f3 = 1, the wave is completely reflected and Equation 1 0 reduces

to the form developed for a standing wave (Ippen, 1966).

Equation 10 predicts that maximum flow will lag slack water by

approximately ninety degrees for a complete.ly reflected tidal wave.
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As
1

decreases, the lag time between high water and maximum flow

decreases. Maximum flow approximately coincides with high water

for a progressive tidal wave, when
I

0.

The percentage error between computer results and the analyti-

cal solution is shown in Table 1 for seven runs. The amplitude of the

imposed wave was 3, 5 feet at the mouth of the estuary and the wave

was considered to travel up the estuary at a constant speed of 25 feet

per second (k=O. 04). The length of the estuary was 25 miles. Values

were recorded at two times during the tidal cycle in order to compare

errors associated with both high and moderate flows. Tidal heights

predicted by the program were within 1% of those calculated by Equa-

tion 7 for all runs. High flows for runs number one and number two

were unrealistic and,therefore, not included in Table 1.

Runs number one and three and runs number two and five are

identical pairs with the exception of the friction coefficient, p. . Corn-

parison of these runs indicates that the introduction of friction in-

creases the error associated with the finite difference scheme. Corn-

parison of runs number three and four and runs number five and six

indicates that error is not affected by reducing Ex when T is rela-

tively large and is only slightly affected by reducing .x when AT is

small. The. error is,. however, significantly reduced by decreasing

AT from 1/4 hours to 1/6 hours as shown in runs number four and

five. In general, the error was reduced more by decreasing the time



Table 1. Computerrun r)arameters and nercent error acsoeiated with pc'1, rim

Run# 1 2 3 4 5 6 7

t.x(miles) 0.50 0.25 SO .25 .25 .10 .10

.T (hr) 1/4 1/6 1/4 1/4 1/6 1/6k 1/6

1
.1. (miles 0 0 0.092 0.092 0.092 0 092 0.092

3 1 1 1 1 1 1 .75

Percent error at two fractions of a tidal cycle

1/2 1/2
]

1/4 1/2 1/4 1/2 1/4 1/2 1/4 1/2 1/4 1/2

.. 5.25 1.1 1.7 1.1 10.9 4.1 8.5 1.9 2.7 0.0 1.1 0.6 2,0

10,25 3.7 1,5 4.5 7.9 5.8 6.2 1,5 2.2 0.7 1,2 2.5 6.0

15.25 4.7 1.4 8.0 6.5 9.4 5.1 2.0 1.8 1.5 1.0, 3.6 8.9

20.25 5.1 0.9 12,4 5.6 13.0 4.3 1.2 1.6 1,0 08 5.3 10.7

2475 53 06 177 46 182 34 11 16 11 09 80 115

(J
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increment than by decreasing the segment length. Run number five

appears to be about an optimum balance between computer time and

numerical error.

For run number seven the barrier at the fresh water end of the

estuary was considered to be only partially reflecting, 3 = 0. 75. The

influence on flow of tidal conditions above the barrier was neglected

and the resulting error was significant as can be observed by compar-

ing run seven with run six,
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ERROR STUDY

Introduction

A basic component of most mathematical models of aquatic

ecosystems involves the movement of materials carried by the water

(convection). The differential equation describing convection due to

uniform flow in a channel of constant cross-sectional area is given by

UaC 11

in which C is the water carried material (tracer, pollutant, etc.

concentration, T is time, U is the water velocity and x is the

longitudinal distance.

Finite-difference methods commonly used in developing numeri-

ca.l models most often poorly describe this very basic convection

process. Finite-difference convection errors are often subtle, affect-

ing the results in a manner not intended by the investigator yet often

escaping notice and thus possibly contributing to the misinterpretation

of model results.

It is the purpose of this chapter to go back to the simplicity of

pure convection and investigate the errors associated with several

commonly used finite-difference convection approximations. It is in-

tended that this investigation into this most basic process will contrib-

ute to the ability of and confidence in the more complex finite-difference
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models of aquatic ecosystems that are presently being developed.

For simplicity, the investigation will consider only one-dimensional

convection (downstream movement) for uniform flow in a water channel

of constant cross-sectional area,

Errors of different finite- difference approximations of convection

have been recognized by previous investigators.

During studies for the Sacramento-San loaquin Delta (Oriob,

Shubinski and Feigner, 1967) the numerical convection error was des-

cribed as Hnumerical mixing! with the magnitude related to the ratio

Ub.T
(12)

In these studies, the numerical mixing was so high that actual dis-

persion was not separately included within the model.

During studies on the Potomac River Estuary (Harleman, Lee

and Hall, 1968) large numerical errors were generated by shock load-

ings. These errors were minimized by modifying computer input in-

jection rates to more evenly distribute the loads.

The numerical spreading errors associated with the backward

or upstream difference method have been quantified by a pseudo dis-

persion coefficient (Bella and Dobbins, 1968) given by

TJT) (13)

for a stream of constant cross section and uniform flow,
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A similar dispersion coefficient describing the spreading associ-

ated with the central difference equation has been presented Prych

and Chidley, 1969) as

D
U2T

(14)

Numerical Convection Model

Finite-difference representation of smooth distributions can be

visualized as a series of completely mixed cells as shown in Figure 7.

Numerical convection can be visualized as the transfer of material

over successive time intervals from cell to cel.l in the downstream

direction. The following study of numerical, convection will be limited

to finite-difference models in which the concentration change within a

cell due to convection over a finite time interval, tNT, is determined

by the concentrations within the cell and within adjacent cells at the

beginning of the time interval. A general finite-difference equation of

such convection is given by

C(NT+T) = C(N T)+F[(l v)C(Nl T)+YC(N T)' F[(1 v)C(N T)C(Nl, T)1

(15)

U'LTwhere F = and y is a proportionality factor used to establish
tx

flux between cells. In Equation 15,

y = 0. 00, reduces Equation 15 to the upstream difference
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equation;

= 0. 25, reduces Equation 15 to the quarter point difference

equation;

y = 0.50, reduces Equation 15 to the central difference equation,

and;

y= 1.00, reduces Equation 15 to the downstream difference

equation.

F can be physically interpreted as the fraction of a cei.l length (tx)

traveled by a particle of water during the time interval LT. Figure 8

illustrates the nature of Equation 15 by showing the convection of a

slug distribution over one time interval, T.

Numerical Convection Errors

Finite-difference convection errors were investigated by numer-

icaily convecting a s.lug load represented by a uniform concentration of

100 within a single cell, If no errors were present, the centroid of

the distribution moved downstream at the chosen velocity and the con-

centr ation distribution remained unchanged.

Figure 9a shows the distribution resulting from a typical run in

which the parameters U = 18 mi/day; Lx = 0.05 mi, T = 1/96 days

and y = 0. 25 were used. Boundaries were located at a distance suffic-

ientiy large from the distribution center so as to have very little

effect on the distribution. Comparing these results to the pure
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Distance along channel

Figure 7. Finite difference approximation of a continuous
function.

V
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Figure 8. Convection of a slug load,
illustrating the central
difference approximation.



translation of the initial slug reveals the nature of the errors typical

of finite-difference convection models, The nature of these errors

wiLl. be classified into three categories.

The first category of errors is called oscillation errors and can

be noticed by the left side (upstream) of the numerical distribution

shown in Figure 9a, The variation between positive and negative con-

centrations over a short distance can either decrease to small magni-

tudes or can increase to extremely large values as the numerica.l con-

vection calculations proceed, These oscillations result from the

numerical removal of more material from a cell over a time interval

than is present within that cell at the beginning of that time interval.

The oscillations associated with different convection models will

be defined by the magnitude of the largest calculated negative con-

centration present at a given time, In Figure 9a, the oscillation

error is given as 3. 4.

The second category of errors is seen by the skewness of the

numerical distribution shown in Figure 9a. This error will be defin.-

ed by the magnitude of the skewness as computed by

(Normalized third moment about centroid)/(Variance)3' 2
(16)

The computed distribution shown in Figure 9a has a skewness of 2. 64.

The third category of errors is characterized by the spreading

of the distribution as shown in Figure 9a, This spreading is
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expressed bya pseudo dispersion coefficient given by:

where

40

D = (rate change in variance) (17)
p 2 2LT

Pb

Cd

Variance = -°° (18)
Pb 00

Cd
.00

and = the distance from the centroid to C (Fisher, 1966). When

the distribution consists of adjacent rectangles as in Figure 8, van-

ance can be expressed as:

M

+ bxC./1 z]

(19)

xCi

where Z, = the distance from the centroid of the entire distribution to
1

the centroid of the rectangular area ixC

In an actual stream, pollutants and tracers are spread along the

length of the stream by velocity gradients and turbulent water motions.

The magnitude of this spreading is often included in mathematica.l

stream models through a longitudinal dispersion coefficient. For the

conditions of a constant dispersion coefficient and a constant cross-

sectional area, dispersion is mathematically described by:
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ac a2c
= (20)

8x

in which the dispersion coefficient D can be expressed and measured

by Equation 17, Thus, the magnitude of the spreading error in numer-

ical convection models is quantified in terms of an often used physical

coefficient. This greatly assists an investigator in determining how

much the error affects the results. The pseudo dispersion coefficient

describing the numerical spreading shown in Figure 9a is 0. 5625

square miles per day,

The errors shown in Figure 9a can often be masked when smooth

distributions are calculated, As an example consider Figure 10

which shows the distribution for a run in which the same numerical.

model and parameters shown in Figure 9a were used, A slug load,

however, was not convected but instead, the upstream boundary was

held at a constant value and initial conditions of zero concentration

throughout the length were assumed, With the exception Qf the concen-

tration front, the smooth portion of the numerical distribution closely

agrees with the analytical results despite the fact that numerical con-

vection of a slug load is very poorly described (Figure 9a. The

smooth numerical distribution can be visualized as a series of slug

distributions, In the smooth distribution the errors are superim-

posed and thus masked; hence, a satisfactory computation of a smooth

distribution is a poor test of the accuracy of a numerical model.
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Tests of numerical methods using slug loads are far more informative,

The results of a series of computer runs using slug loads and

different numerical convection models are summarized in Table 2.

The three categories of errors discussed above are listed in columns

(7), (8) and (9).

Pure translation was simulated only in runs 1 and 8 in which the

backward difference equation ( y =0. 00) was used with F equal to

unity. The backward difference method displayed no oscillations and

only slight skewness, However, a relatively large amount of positive

dispersion was not uncommon,

Severe oscillations and negative dispersion typified results from

the central difference equation (y = 0. 5) and the forward difference

equation. Frequently, oscillations became larger as computations

progressed.

The quarter point equation displayed a wide range of errors

within all categories. Both negative and positive dispersion was ob-

taiñed. Positive dispersion tends to reduce concentration gradients

while negative dispersion tends to increase the gradients. As a result,

runs in which negative psuedo dispersion was present experienced a

growth of oscillations as computations progressed while a reduction of

oscillations was found when positive pseudo dispersion was present.

An investigator might also reason that by reducing T, errors

are reduced, yet, an inspection of the dispersion error associated



Table 2. Convection of slug load by different numerical schemes.
One-half

Rate Change
DCen- in Varince, p 2Run x LT troid (Miles Oscilla- (Miles

No. (Miles) (Days) F (Miles) per day) Skewness tions per day)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 0.00 1.00 1/12 IL000 24 0.000 0.00 0.0 0.000
2 0.00 1.00 1/16 0. 750 24 1. 500 0. 20 0.0 1. 500
3 0.00 1.00 1/24 0. 500 24 3.00 0.00 0.0 3. 000
4 0.00 1.00 1/48 0. 250 24 4. 500 0. 12 0.0 4. 500
5 0.00 1.00 1/96 0. 125 24 5.250 0. 16 0.0 5. 250
6 0.00 0.50 1/48 0.500 24 1.500 0.00 0.0 1.500
7 0.00 0.50 1/96 0.250 24 2.250 0.08 0.0 2.250
8 0.00 0.25 1/48 1.000 24 0.000 0.00 0.0 0.000
9 0.00 0.25 1/64 0.750 24 0.375 0.10 0.0 0.375
10 0.00 0.25 1/96 0.500 24 0.750 0.00 0.0 0.750
11 0.25 1.00 1/12 1.000 24 -3.000 0.87 578.2 -3.000
12 0.25 1.00 1/16 0.750 24 -1.500 1.67 73.3 -1.500
13 0.25 1.00 1/24 0.500 24 0.000 748.25 10.8 0.000
14 0.25 1.00 1/48 0.250 24 1.500 1.20 1.6 1.500
15 0.25 1.00 1/96 0.125 24 2.250 0.74 0.6 2.250
16 0.25 0.50 1/24 1.000 24 -1.500 0.62 13921.1 -1.500
17 0.25 0. 50 1/32 0. 750 24 -0.750 1. 17 187. 5 -0. 750
18 0.25 0.50 1/48 0.500 24 0.000 1496.49 10.1 0.000
19 0.25 0.50 1/64 0.375 24 0.375 2.30 2.8 0.375
20 0.25 0.50 1/96 0.250 24 0.750 086 0.8 0.750
21 0.25 0.25 1/48 1.000 24 -0.750 0.43 -0.750
22 0.25 0.25 1/64 0.750 24 -0.375 0.82 1636.0 -0.375
23 0.25 0.25 1/96 0.500 24 0.000 2992.98 8.6 0.000
24 0.50 1.00 1/12 1.000 24 -6.000 0.62 68988.1 -6.000
25 0.50 1.00 1/48 0.250 24 -1.500 1.87 264.1 -1.500
26 0. 50 1.00 1/96 0. 125 24 -0. 750 4.97 69. 1 -0. 750
continued on next page



Table 2 continued.

One-half
Rate Change D

Cen- in Vari32nce
2Run Lx T troid (Miles Oscilla- (Miles

No. (Miles) (Days) F (Miles) per day) Skewness tions per day)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

27 050 1.00 1/192 0O625 24 -0.3750 14,34 33.7 -0.3750
28 0,50 1.00 1/348 0,03125 24 -0.1875 50 23.0 -0, 1875
29 0.50 0.50 1/24 1.000 24 -3.000 0.43 -3,000
30 0. 50 0. 50 1/48 0. 500 24 -1, 500 0.63 533677. 8 -1. 500
31 0. 50 0. 50 1/96 0.250 24 -0,750 1.31 3344, 1 -0. 750
32 0.50 0.25 1/48 1,000 24 -1.500 0.21 -1.500
33 0. 50 0.25 1/96 0, 500 24 -0. 750 -0. 750
34 1.00 1,00 1/96 0,125 24 -6.750 ***** -6,750

All runs with constant velocity, U = 12 miles/day. Values were recorded at time 2 days.

***** Value gre aterthan 9 x io6.
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with the backward difference equation (Table 2) reveals that this

error increases as tT decreases when U and tx are held constant.

Reducing tT might then maximize the error rather than minimize it.

The results shown in Table 2 indicate that one or two types of

errors can often be reduced with a resulting increase in the remain-

ing errors. Thus, run 13 has no dispersion error yet its skewness

and oscillations are high (see Figure 11). Run 15, using the same

value of y, has a higher pseudo dispersion and the skewness and

oscillation errors are reduced (see Figure 11). Run 17 has low dis-

persion and skewness errors yet the oscillations are quite high (see

Figure 1 2). In these examples, the relative magnitudes of the differ-

ent errors have changed, yet none of the results satisfactorily des-

cribe pure convection.

This apparent trade off of errors does suggest a method of error

control. If an estimate of the dispersion error is available, an in-

vestigator might select a method which reduces the skewness and

oscillation errors to minimum levels and in the process increases the

dispersion error. The estimate of the dispersion error might then

provide a reasonable estimate of the entire numerica.l convection

error. The magnitude of the error would then be defined and correc-

tion of the error might then be made.
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Figure 11. Concentration distributions for runs number 13 and 15.
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Calculating the Dispersion Error

Consider the convection of a single slug load as rhown in Figure

8. As a continuous distribution may be visualized in finite-difference

terms as a series of slug loads (Figure 7) the derivation of the pseudo

dispersion coefficient will involve the convection of a single slug. This

general approach simplifies the derivation and allows for the variation

of pseudo dispersion with distance that might occur with more complex

models. Referring to Figure 8 and Equation 19, the variance of the

distribution at time T is:

5(T) = C(N T) R2C(N, T
= 2/12 (21)

The variance at time T + ET can similarily be determined by noting:

IJAT UET
C C +yC ( )-(N, T+T) (N, T) (N, T) (1v)C(N T)

(22

tJT
C(Nl T+T) = vC(N T) (23)

UT
C(Nl T+T) (lv)C(N T)

(24)

and substituting into Equation 19. The result after reduction is:

2

5(T+T) -j-- + 1ThTEx - (UET)2 - 2y1JTx (25)

Defining pseudo dispersion D as one-half the rate change in



variance leads to:

D
62(T+T) - 62(T)

(26)
p LT

Substituting Equations 21 and 25 into Equation 26 results in:

n = [(1-2y) - UTJ (27)
p 2

Equation 27 defines the spreading error associated with the gen-

era.l numerical convection equation, Equation 15. Results of Equation

27 given in column (9) of Table 2 agree exactly with the dispersion

errors listed in column (6).

Substitution of y = 0 into Equation 27 leads to Equation 1 3.

Equation 1 3 was originally obtained through a mixing length descrip..

tion of dispersion and a visualization of numerical convection similar

to that shown in Figure 8

Substitution of y = 0. 5 into Equation 27 leads to

D
U2T

p 2

which is identical in magnitude to Equation 14 given by Prych (1969)

but opposite in sign.

Figure 1 3 shows the manner in which D varies with 13, Ex,

LT and The backward difference equation (y = 0. 00) always re-

suits in a positive value of D while the central and forward differ-

ence equations always result in negative values of D . The quarter



0
N

-J 7a.

AX:O.5 MILES \
c T=I/48 DAYS

F -0 0.25 05

Uin 0 6 12

MILES/DAY

97b.
U,
N:

T=I/48-J

U 12
\ --

\ ___=O.5O
-1.5 - -_____ --

0.75 10 F - I .5 .33 25
8 24 X IN MI LES-25 .5 .75 10

0

£ 1.!

d lc.

X=O.5O MILES
-3.0 U=I2 MILES/DAY

I I

F - 0 25 .50 .75 1.0

T In - 0 1/96 1/48 1/32 /24
DAYS

Figure 13. Pseudo dispersion as a function of U, LT, LX and y.
0



50

point equation may result in a positive or negative value of D

depending on the values of Ex, T and U.

Numerical Convection Error

While results shown in Table 2 demonstrate that Equation 27 can

satisfactorily describe the dispersion error, it is desirable to know

under what conditions Equation 27 can be a suitable estimate of the

total errors associated with numerical convection Equation 15.

In order to determine how well Equation 27 describes the total

convection error, numerical results from Equation 15 were compared

to analytical solutions of Equation 20 in 'hich D = D and initial con-

ditions are identical. For the initia.l condition shown in Figure 9a,

the analytical solution to Equation 20 with suitab.le boundary conditions

is:

C x/2- Z tx/2+Z
1erf( ) (28)C = {erf( +

2

where C0 = the initial concentration, D = the dispersion coefficient,

T = time from injection of the slug load, and Z = the distance from

the centroid to C (Cars.law and Taeger, 1959).

Figure 9b shows the distribution calculated by Equation 28 with

D = 0. 5625 superimposed on the distribution obtained by Equation 15

for the same parameters. Three methods for defining the maximum

difference between these curves were considered. These methods are:
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1. the maximum distance between two ordinates at a point along

the X axis (length a on Figure 9b).

2. the maximum ratio obtained by dividing the difference in

ordinates at a point along the X axis by the ordinate of the

analytical solution (a/b on Figure 9b), and

3. the maximum difference between two ordinates at a point

along the X axis divided by the maximum ordinate of the

analytical solution (a/c on Figure 9b).

The first definition does not indicate a relative magnitude and

the second is always greatest in the tail of the distribution where the

denominator becomes very small. Therefore, the third definition was

adopted as the most meaningfu.l indicator of the maximum discrepancy

between the two curves. The discrepancy in Figure 9b is:

E x 100 = 33. 7 (29)

It was observed that the magnitude of the discrepancy decreased

with time for all cases tested with positive D. An example of these

results is shown in Figure 14. The discrepancy was observed to be

large and to increase with time for negative values of D except at

very small values of F.

It can be seen by examining Equation 15 that for a slug load as

in Figure 8 and a specific y, the concentration at the end of a time

increment, C(N, T+T)' will always be the same for a particular value
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of F. Thus, the concentration in a particular cell after a specific

number of iterations will always be the same for a given value of F

and 'y no matter what individual values of tx, LT and U are used to

make up the F ratio. In Equation 28 let Z = nX, T = kENT and D =

1(1 2V)Ex - ULT} where n = number of increments away from cen-

troid and k number of iterations. Rearranging and combining terms

lead to:

C l/2+n 1/2-n+ erf(C=-{erf(
12VFF2 Jl-2y)F-F

Since for a particular segment after a specific number of iterations

and a given value for both the analytical and difference equation

are solely dependent on the value of F, the discrepancy as previously

defined can be plotted as a function of F as shown in Figure 15.

Equation 27 accurate.ly describe the total convection errors for

the backwards difference method as shown by the low discrepancies

shown in Figure 15. The discrepancies were least when F = 0. 5

which is the region of maximum dispersion error (see Figure 1 3).

Oscillations were so great in the central and downstream differ-

ence results that no attempt was made to quantify these discrepancies.

Discrepancies were least for the quarter point method at low

values of F, though ati discrepancies were considerably higher than

those observed for the backward difference method.
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Control of Finite-Difference Errors

The general method of controlling finite-difference convection

errors involves first selecting a method for which most of the numer-

ical error can be described in a pseudo dispersion coefficient. The

actual dispersion being modeled in addition to convection is then re-

duced by an amount equal to the pseudo-dispersion. Thus, the pseudo

dispersion coefficient plus the dispersion coefficient used in the numer-

ical computations of dispersion equa.l the desired dispersion being

modeled. This general method has been discussed by Belia and

Dobbins (1968), If high accuracy need be assured it is desirable,

though not always necessary, to select x and T so that the actual

dispersion being simulated by the entire model is greater than the

dispersion error of the convection portion given by Equation 27.

Convection and dispersion of a slug load were numerically sim-

ulated using this method of error correction. The distributions result-

ing from these runs were compared to the analytical solutions and the

discrepancy, as previously defined, was determined. The numerical

method of including dispersion has been previously given by Beila and

Dobbins (1968). Table 3 indicates the discrepancies associated with

various values of U and y for the specific conditions: Ex = 0. 5

miles, T = 1/96 days, D = 1.5 miles 2/day and T = 2 days. During

each run the actual rate change in variance of the distribution was
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Table 3, Comparison of discrepancies associated with several
numerical schemes.

(Miles/day) F 0. 00 0. 25 0.50 1.00

6 0. 1 25 E = 3. 2 4. 2 5. 0 6. 5
Dp = 1. 31 0. 56 - . 19 -1. 69

12 0.250 e = 3.7 7.2 10.4 *

Dp= 2.25 0.75 -0.75 -3.75

24 0, 500 E 1. 0 13. 3 22.4 **
Dp = 3. 00 0. 00 -3. 00 -9. 00

36 0.750 = 3.7 22. 0 33. 6 **
Dp = 2.25 -2.25 -6.75 -15.75

46 0. 958 E = 1. 6 30. 5 **
lJp = 0.48 -5. 27 -11. 02 -22.52

= 0,5 miles, T = 1/96 days, D = 1.5 mi.les2/day and T = 2 days.

** Severe oscillations * Not measured
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exactly equa.l to twice the desired dispersion coefficient, D.

The results shown in Table 3 demonstrate that the errors are

best controlled when the backward difference method is used, even

when D > D. The quarter point method gives reasonable results

when F is low as was indicated previously in Figure 1 5.

The central and forward difference methods were best when con-

vection was low and thus when dispersion could dominate the results.



MODEL APPLICATION

General

Pollution concentrations resulting from continuous loadings pre-

sent special problems when the receiving water body is influenced by

tidal action, For example, the water resting over the outfall during

slack water will pick up more pollutant than water traveling at rela-

tively high velocity at other times during the tidal cycle. The volume

of water passing a given station in a unit of time and, therefore, the

dilution capacity of the stream is continuously changing, Hence, the

concentration distribution in the channel will be characterized by a

series of peaks all moving up and down the channe.l with the tidal

fluctuations, The maximum concentration would be expected to occur

at low water slack. The distance between peaks wil.l be dependent on

the net convection during each tida.l cycle due to fresh water inflow.

The magnitude of the concentration peaks will be diminished in time

in accordance with the dispersion characteristics of the particular

estuary and the decay rate of the pollutant, They can be reduced

initially at the outfall by varying the rate of pollutant addition so that

it is proportional to stream velocities.

These localized maxima may be the critical concentrations in

the estuary, They may form a series of barriers against migrating

fish or exceed the toxicity threshold levels of other aquatic organisms,
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These peaks could have a detrimental effect on the estuary biota

which would not be predicted if only average concentrations based on

the tidal prism were considered, The peak concentrations caused by

slack water buildup must, therefore, be considered when predicting

the impact of a new pollutant source on an established ecosystem.

A dye study was conducted in the upper reach of the Yaquina

Estuaryin order to demonstrate the magnitude of slack water buildup

and to provide field data to compare with the computer model.

Field Study

The study area was a fairly uniform seven mile section of

channel between Elk City and Mill Creek without intersecting tributar-

ies or mud fiats. Dye was injected into the channel at a point approx-

imately one mile down the Estuaryfrom Elk City. A diffuser was con-

structed by placing six nozzles at equal spacing on a 150 foot length

of half inch plastic irrigation pipe. The nozzles were adjusted to

provide equal flow rates beiore installing the diffuser across the

estuary channel. The diffuser was anchored to the bottom by concrete

blocks and floats were attached in order to keep the nozzles approxi-

mately one foot above the bottom. Water was pumped into the diffuser

at a rate of about 20 gallons per minute. A concentrated solution of

rhodamine-B dye was injected into the diffuser at a nearly constant

rate of 0. 2 pounds per hour for 1 2 hours
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Buoys were set to divide the stream width into quarters at the

diffuser and at sections 235 feet on both sides of the diffuser. Samples

were taken near each of the buoys at the diffuser and at the downstream

section every half hour or as determined necessary. Samplers were

constructed of long poles with rubber bulbs attached at various heights

so that four to six samples could be taken simultaneously at different

depths, Each solid vertical line in Figure 1 6 shows the arithmetic

average of the vertica.l samples taken near each buoy at the diffuser,

The dash lines represent similar values for the downstream section.

The actual concentrations varied between zero and three parts per

billion.

Velocities were measured at four depths near each of the quarter

points of the stream width near the diffuser. An arithmetic average

of the 1 2 velocity measurements was assumed to represent the aver-

age cross section velocity. These values are shown on Figure 17.

After 21 :00 hours, velocity measurements were taken only at the

channel center.

Water surface elevations were continuously measured with

Stevens automatic tide recorders at Elk City and at Mill Creek.

Elevations at the diffuser were measured at the same time that velo-

cities were recorded. Observed data are shown in Figures 18, 19 and

20.



12

10

0

C)

0

C)

c4

Time (hours)

Figure 16, Dye tracer study on Yaquina Estuary.
0'



1.0
.8

.2

®0ObservIave.0 cross-sectional
-

Observed - center-
line-

- Siniulated
I I I I I I

13:00 15:00 17:00 19:00 21:00 23:00

Time (hours)

Figure 17. Observed and simulated velocities at the diffuser section.



7
0

cd

cd

rJ)

ti)

cd

3 Simulated

I I I I I I

13:00 15:00 17:00 19:00 21:00 23:00

Time (hours)

Figure 18. Water surface elevations at Miii Creek.



[1

o 7

6

o
5

'a

3

mean = 5.60

0
0

0 Field measur

SimuIated

13:00 15:00 17:00 19:00 21:00 23:00

Time (hours)

Figure 19. Water surface elevations at Elk City.



I

0

7

U :

4

mean 5.60

OFieid measured

Simulated

13:00 15:00 17:00 19:00 21:00 23:00

Time (hours)

Figure 20. Water surface elevations at diffuser section.

01



66

Computer Simulation

The mean tidal elevation during the study period was determined

to be 5. 6 feet above mean low low water (MLLW) from Figures 18, 19

and 20. Channel cross section dimensions were obtained (Goodwin,.

Emmett and Gienne, 1970) and cross section areas were calculated

for the mean water surface elevation. This data was approximated by

algebraic functions for the computer simulation as shown in Figures

21 and 22. Values above Elk City were estimated from cursory field

observations.

A study of tidal hydraulics in the Yaquina Estuary (Goodwin,

Emmett and Glenne, 1970) indicated that the end of the estuary could

be approximated at a point 3. 9 miles from Elk City for the particular

tidal conditions during the study. A completely reflecting boundary

= 1. 0) was assumed at the end of the Estuary because actual tidal

velocities and water surface elevations were observed to be ninety

degrees out of phase. Values for k and i were estimated emperi-

caily by methods developed by Ippen (1966) for a uniform rectangular

channel. These values were adjusted slightly by trial and error in

order to obtain a good fit between output from the water quantity

model and observed data. The resulting values were k = 0. 0482

radians per mile and p. = 0. 0219 per mile. Computer results and

field data are shown on Figures 18 through 20.
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The channel segment length (tx) and the time increment (zT)

were se.lected as 0. 10 miles and 1/6 hour respectively. These grid

parameters were in the range which produced good accuracy for the

water quantity model as indicated in Table 1. They also provided

reasonably low values of pseudo dispersion as shown on Figure 23.

No values for the dispersion coefficient (D), as defined in this

model, were available for the Yaquina Estuary. However, results

from the field study, Figure 16, indicated steep gradients in the tracer

concentration. Therefore, D was selected as low as possib.le but

large enough to maintain a positive net dispersion coefficient at all

times during the tidal cycle. Run number one was conducted using a

constant dispersion coefficient equal to 75 feet2/sec. (0. 218 miies2/

day). Run number two used a dispersion coefficient which varied as a

linear function of the velocity. The maximum value for the variable

dispersion coefficient was obtained by equating the area under the two

curves shown on Figure 23.

Discussion

The water quantity model represented the observed data reason-

ably well as indicated on Figures 17 through 20.

The observed average cross-sectional velocities during ebb tide

between 13:00 and 15:00 ranged from 83.5% to 93. 7% of the velocities

at channel center. The departure of the model from the prototype in
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Figure 17 may be partially explained by the fact that velocity measure-

ments were taken only at the channel center after 21:00 hours and,

therefore, are higher than the average cross-sectional velocities rep-

resented by the model. A method was considered to estimate average

velocities for the period after 21:00 hours by correlating the two ebb

tides. However, cross-sectional areas for the two periods differ by

as much as 40% and maximum velocities appear to shift across the

channel at various tidal heights so it was determined unrealistic to

attempt to adjust the observed values after 21:00 hours. The fact that

the observed data could be approximated by varying only two param-

eters would tend to indicate that the model possesses a significant

relationship to the prototype. However, the study by Goodwin,

Emmett and Glenne (1969) indicates that k and }J. would have to be

represented as functions of distance and water surface elevation for

runs longer than one tidal cycle with irregular tidal wave amplitudes.

Emperical determination of these functions would be extremely diffi-

cult.

Comparison of runs number one and two in Figure 16 indicates

that the variable dispersion coefficient causes the steepest concentra-

tion gradients and provides the best approximation to the observed

data. This result is consistent with the common sense concept that

dispersion is related to stream velocity. The concentrations from the

simulated runs consistently underestimated the maximum observed
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values. This trend was expected, however, because the finite-differ-

ence representation in the model calculates values averaged over the

distance x. The time of occurrence of the simtilated peaks lagged

the observed values, although run number two was slightly earlier

than run number one. This lag might also be attributable to the aver-

aging effect of the finite-difference scheme.

Figure 24 shows the tracer distribution along the channel calcu.-

lated by run number two at 22:10 hours. The two slack water peaks

and the spreading of the first peak due to dispersion are apparent on

the figure.

The wide scatter of observed data in Figure 16 indicates that the

tracer was not well mixed throughout the cross section area and,

therefore, that the estuary was not one dimensional as assumed.

Part of the scatter may have been eliminated by using a diffuser with

more ports. Using a larger quantity of dye in order to obtain maxi.

mum concentrations in the neighborhood of 0. 5 parts per million

would provide greater precision in sampling and sample measurement.

The results do, however, give a good indication of the relative magni-

tude of slack water buildup and demonstrate the necessity for consid-

ering these peak concentrations when predicting the impact of pollu

tion outfalls on the environment.



74

SUMMARY AND CONCLUSIONS

A one-dimensional model was developed which simulates the

distribution of a dissolved pollutant in an estuary, Finite-difference

methods were utilized on a digital computer to yield solution in terms

of time and longitudinal distance. Methods were developed for calcu-

lating tidal velocities at any point in the estuary as a function of the

tide at the mouth.

Errors associated with finite-difference convection were investi-

gated. The errors associated with the model were classified into

three categories: oscillation errors, skewness errors, and disper-

sive errors. Errors were most noticeable for computations of slug

load convection. Smooth distribution computations tended to hide

errors and were thus poor tests of numerical methods,

A means of accurately calculating the dispersion error was

developed. Numerical methods in which most of the error was class-

ified as a dispersive error were investigated. It was then shown that

the error associated with such methods could be qualified and control-

led.

A diffuser was installed at the Yaquina Estuary, Newport, Ore-.

gon and dye was released at a constant rate for 1 2 hours, Both field

and simulated data indicated that steep concentration gradients could

occur in the vicinity of the outfall during slack water periods.
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