
 

AN ABSTRACT OF THE DISSERTATION OF 

 

Zhiqiang Cui for the degree of  Doctor of Philosophy in 

Electrical and Computer Engineering presented on September 4, 2007.  

 

Title: 

Low-Complexity High-Speed VLSI Design of Low-Density Parity-Check Decoders 

  

Abstract approved:    

______________________________________________________ 

Zhongfeng Wang 

 

Low-Density Parity-check (LDPC) codes have attracted considerable attention due 

to their capacity approaching performance over AWGN channel and highly parallelizable 

decoding schemes. They have been considered in a variety of industry standards for the 

next generation communication systems. In general, LDPC codes achieve outstanding 

performance with large codeword lengths (e.g., N>1000 bits), which lead to a linear 

increase of the size of memory for storing all the soft messages in LDPC decoding. In the 

next generation communication systems, the target data rates range from a few hundred 

Mbit/sec to several Gbit/sec. To achieve those very high decoding throughput, a large 

amount of computation units are required, which will significantly increase the hardware 

cost and power consumption of LDPC decoders. LDPC codes are decoded using iterative 

decoding algorithms. The decoding latency and power consumption are linearly 



proportional to the number of decoding iterations. A decoding approach with fast 

convergence speed is highly desired in practice.  

This thesis considers various VLSI design issues of LDPC decoder and develops 

efficient approaches for reducing memory requirement, low complexity implementation, 

and high speed decoding of LDPC codes. We propose a memory efficient partially parallel 

decoder architecture suited for quasi-cyclic LDPC (QC-LDPC) codes using Min-Sum 

decoding algorithm. We develop an efficient architecture for general permutation matrix 

based LDPC codes. We have explored various approaches to linearly increase the decoding 

throughput with a small amount of hardware overhead. We develop a multi-Gbit/sec LDPC 

decoder architecture for QC-LDPC codes and prototype an enhanced partially parallel 

decoder architecture for a Euclidian geometry based LDPC code on FPGA. We propose an 

early stopping scheme and an extended layered decoding method to reduce the number of 

decoding iterations for undecodable and decodable sequence received from channel. We 

also propose a low-complexity optimized 2-bit decoding approach which requires 

comparable implementation complexity to weighted bit flipping based algorithms but has 

much better decoding performance and faster convergence speed.  
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LOW-COMPLEXITY HIGH-SPEED VLSI DESIGN OF             

LOW-DENSITY PARITY-CHECK DECODERS 

1 INTRODUCTION 

1.1 Overview 

Reliable and efficient information transmission and storage has been increasingly 

demanded in recently years. Error correcting codes are widely used in digital 

communication and storage systems to protect data against transmission error cause by 

channel noise. From channel coding theory, for a channel with a capacity C , there exist 

codes of rate CR <  that have an arbitrarily small decoding error probability with 

Maximum Likelihood Decoding (MLD). The arbitrarily small error probabilities are 

achievable by increasing the codeword length for block code or the encoder memory order 

for convolutional code [17]. Because the implementation complexity of typical decoding 

algorithm such as MLD becomes very large as codeword length or encoder memory order 

increases, researchers have made significant amount of effort to develop new coding 

schemes which can be decoded using simpler approaches and have decoding performance 

close to what could be achieved using MLD.  

Low-Density Parity-Check (LDPC) codes invented by Gallager in the early 1960s 

are a class of near Shannon limit error correcting codes and can be decoded using belief 

propagation algorithm. Because of the limitation of the computation capabilities at that 

time, they have largely been ignored for more than 30 years. With the innovation of VLSI 

and computer technology, the implementation cost of LDPC codec is reduced. Since the 

late 1990s, LDPC codes have attracted considerable attention due to their capacity 

approaching performance over AWGN channel and highly parallelizable decoding 

schemes.  
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This research is devoted to the efficient VLSI architecture design and 

implementation for LDPC codes. We have considered various VLSI design issues of 

LDPC decoder and developed efficient approaches for reducing memory requirement, low 

complexity implementation, and high speed decoding of LDPC codes.  

1.2 Summary of Contributions 

1.2.1 Memory Efficient Decoder for Quasi-Cyclic LDPC Codes 

Quasi-cyclic LDPC (QC-LDPC) codes [4][13][14], being a special class of LDPC 

codes, are well suited for hardware implementation. The encoders of QC-LDPC codes can 

be built with shift-registers [16]. In addition, QC-LDPC codes also facilitate efficient high-

speed decoding because of the regularity in their parity check matrices. LDPC codes 

achieve outstanding performance only with large codeword lengths (e.g., bits1000N ≥ ), 

which lead to a linear increase of memory requirement for storing all the soft messages in 

LDPC decoding.  

To reduce hardware cost of QC-LDPC decoder, we proposed a memory efficient 

partially parallel decoder architecture for high rate QC-LDPC codes, which stores soft 

messages in the Min-Sum decoding algorithm in a compressed form. In general, over 30% 

memory can be saved. To further reduce the implementation complexity, various 

optimization techniques were developed. 

1.2.2 Efficient Design of High Speed LDPC Decoders 

For high throughput applications, the decoding parallelism is usually very high. 

Hence a complex interconnect network is required which consumes a significant amount of 

silicon area and power. In a pioneer design of high throughput LDPC decoder [57], the 
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power dissipation of the decoder was largely determined by the switching activity of 

interconnect network. The utilization of chip area was only 50%. 

To reduce complexity of interconnect network, we propose an efficient message 

passing decoder architecture using Min-Sum algorithm for permutation matrices based 

LDPC codes. QC-LDPC codes are a sub-class of permutation matrices based LDPC codes. 

The regularity in their parity check matrix can be further exploited. We develop a multi-

Gbit/sec low-cost layered decoding architecture for generic QC-LDPC codes. To 

demonstrate the design of high speed LDPC decoder, we implement an enhanced partially 

parallel decoder architecture with FPGA for a (8176, 7156) Euclidian geometry based QC-

LDPC code. A worst-case source information decoding throughput (at 15 iterations) over 

170Mbps is achieved.  

 

1.2.3 Low Complexity Decoding of LDPC Codes 

The Sum-Product LDPC decoding algorithm (SPA) (also known Belief-Propagation 

algorithm) has the best decoding performance and the highest implementation complexity. 

On the other hand, various weighted Bit-Flipping (WBF) based decoding approaches were 

proposed in order to seek very low decoding complexity.  

We analyzed the decoding complexity of state-of-the-art WBF-based algorithms 

from a VLSI implementation point of view. To maintain low decoding complexity while 

further narrowing the performance gap from the SPA, we present an optimized 2-bit soft 

decoding approach. The implementation complexity of the proposed method is comparable 

to WBF-based algorithms. However, the proposed approach achieves much better 

decoding performance and faster convergence speed.  
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1.2.4 Reducing Iterations for LDPC Codes 

LDPC codes are decoded using iterative decoding algorithms. To increase decoding 

speed, it is highly desired to reduce the number of decoding iterations without significant 

performance loss. We propose an extended layered decoding approach which can be 

applied to any structure of parity check matrix. Simulations on both random and structured 

LDPC codes show that the proposed approach achieves faster convergence over 

conventional two phase message passing decoding algorithm. On the other hand, it 

happens frequently that a valid codeword can not be found even though a large number of 

decoding iterations are performed at low to medium signal-to-noise ratios. We propose an 

efficient early stopping scheme to detect such undecodable cases as early as possible in 

order to avoid unnecessary computation. In addition, we demonstrate that the decoding 

convergence of WBF-based algorithm can be significantly speeded up with a multi-

threshold detection scheme. 
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2 DECODING OF LDPC CODES 

2.1 Introduction of LDPC Codes 

Low-Density Parity-Check (LDPC) codes [1] invented by Gallager are a class of 

error correcting codes and can be decoded using belief propagation algorithm. Since the 

late 1990s, LDPC codes have attracted considerable attention due to their capacity 

approaching performance over AWGN channel and highly parallelizable decoding 

schemes. In recent years, LDPC codes have been considered in a variety of industry 

standards for the next generation communication systems such as DVB-S2, WLAN 

(802.11.n), WiMAX (802.16e) and 10GBaseT (802.3an). 

2.1.1 Representations of LDPC Codes 

LDPC codes are a class of linear block codes whose parity-check matrices H are 

very spare binary matrices. Conventionally, LDPC codes are characterized in matrix 

representation and graphical representation [17]. In matrix representation, an LDPC code is 

described as a k-dimensional subspace C of the vector space n
2F  of all binary n-tuples over 

the Galois field GF(2). It is possible to find k linearly independent codewords, 

1k10 −ggg ,,, L , such that every codeword C∈c  is a linear combination of these k 

codewords (i.e., 1k1k1100 uuu −−+++= gggc L ). In matrix form, uGc = , where, 

][ 1k10 uuu −= Lu , is the information to be encoded and G is a nk ×  generator matrix 

whose rows, { 1k10 −ggg ,,, L }, span the (n, k) LDPC code. For a generator matrix G, there 

exists a kkn ×− )(  matrix H such that 0GH =T . Thus for every codeword C∈c , 0cH =T . 

In graphical representation, an LDPC code is represented by a bipartite graph (also called 

Tanner graph). Fig. 2.1 shows a Tanner graph. Nodes in a Tanner graph are partitioned into 
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two disjoint classes, i.e., variable nodes and check nodes. Variable nodes are associated 

with digits of the codeword and check nodes are associated with the set of parity-check 

constraints which define the code. The 1-componets in parity-check matrix are associated 

to edges in Tanner graph. An edge in Tanner graph may only connect two nodes of 

different classes. 

 

 

Figure 2.1    An example of Tanner graph. 

 

An LDPC code is usually characterized by its check node and variable node degree 

distribution polynomials. The terminology, node degree, is defined as the number of edges 

connected to a node in graph. In LDPC matrix representation, it is equal to the number of 

1-components in a row or column of the parity check matirx. The check node and variable 

node degree distribution polynomials ususlly denoted by )(xρ  and )(xλ , respectively [6]. 

More specifically, 

∑
=

−ρ=ρ
cd

1d

1d
d xx)(  and  ∑

=

−λ=λ
vd

1d

1d
d xx)( , 

where, dρ denotes the fraction of all degrees connected to degree-d check nodes and 

cd denotes the maximum check node degree. Similarly, dλ denotes the fraction of all 

degrees connected to degree-d variable nodes and vd denotes the maximum variable node 

degree.  
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2.1.2 LDPC Code Construction and Encoding 

In the literature, various LDPC code construction approaches have been proposed. 

Among them, progressive edge-growth graph (PEG) construction [15] [30] and finite field 

algebraic construction [18] [19][20] are widely used in practice. All these approach 

construct a low-density parity-check matrix H . Although the parity check matrices of 

LDPC codes are sparse by code construction, the generator matrices are usually high 

density matrices. Therefore, the direct encoding approach, uGc = , has the encoding 

complexity of )( 2NO , where N is the block length of an LDPC code. To reduce the 

encoding complexity, various efficient encoding method has been proposed. Each one is 

usually only suitable for a specific class of LDPC codes. The encoding details for general 

LDPC codes, QC-LDPC codes and repeat-accumulate LDPC codes can be found in [8] 

Error! Reference source not found. [16] [68]. 

2.2 Belief Propagation Decoding Algorithm 

The LDPC decoding algorithm was originally provided by Gallager in 1960s [1]. 

Since then, the decoding algorithm has been independently rediscovered by other 

researchers. Belief propagation algorithm (BPA) is also named as Sum-Product algorithm 

(SPA) in the literature. In general, it has the best decoding performance among all LDPC 

decoding algorithms. Let C be a binary (n, k) LDPC code specified by a parity-check 

matrix H with M rows and N columns. Using a notation similar to that in [4], let 

}:{)( 1HnmN mn ==  denote the set of variable nodes that participate in check m. Similarly, 

let }:{)( 1HmnM mn ==  denote the set of checks in which variable node n participates. Let 

nmN \)(  represent the set )(mN with variable node n excluded and mnM \)(  represent 
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the set )(nM with check m excluded. Let ),,,( N21 ccc L=c  and ),,,( N21 xxx L=x  denotes 

coded sequence and the transmitted vector. The received vector and the corresponding 

hard-decision vector are denoted by ),,,( N21 yyy L=y  and ),,,( N21 zzz L=z , 

respectively. Let ]|Pr[ vvv y1cP ==  be the probability that the transmitted digit in position 

v is a 1 conditional on the received digit in position v, and let mnP  be the same probability 

for the n’th digit in the m’th parity-check set. Let ],|Pr[ S1cv y=  be the probability that the 

transmitted digit in position v is a 1 conditional on the set of received vector y  and on the 

event S that the transmitted digits satisfy all j parity-check equations on digit v. Assume the 

digits be statistically independent of each other. Then 

],|Pr[
],|Pr[

]|Pr[
]|Pr[

],|Pr[
],|Pr[

y
y

y
y

y
y

1cS
0cS

1c
0c

S1c
S0c

v

v

v

v

v

v
=
=

×
=
=

=
=
=                          (2.1) 

Consider a sequence of cd  independent binary digits vc  in which ]|Pr[ vvv y1cP == . Then 

the probability that the sequence contains an even number of 1’s and an odd number of 1’s 

are expressed in (2.2) and (2.3) respectively. 

2

P211
cd

1v
v∏

=
−+ )(

                                (2.2) 

2

P211
cd

1v
v∏

=
−− )(

                                  (2.3) 

Then 

∏
∏

∏

∈

∈

∈

−−

−+
−

==
=
=

)(

\)(

\)(

)(

)(

],|Pr[
],|Pr[

vMm

vmNn
mn

vmNn
mn

v

v

v

v

P211

P211

P
P1

S1c
S0c

y
y                     (2.4) 

For the actual computation, it is more convenient to use (2.4) in terms of log-likelihood 

ratios (LLR). Let  
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vv
vv

vv
y1c
y0c

βα=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

]|Pr[
]|Pr[

ln ,  

where vα is the sign and vβ is the magnitude. Similarly, let  

''
],|Pr[
],|Pr[

ln vv
v

v
S1c
S0c

βα=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

y
y .  

We can rewrite (2.4) as 

∑
∏

∏
∏

∈

∈
β

β
∈

β

β

∈
⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−
−

+

−
+

×
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α+βα=βα

)(

\)(

\)(

\)(

''
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⎜
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where ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+
=βΨ

β

β

1e
1eln .  

The standard two phase message passing (TPMP) belief propagation (BP) iterative 

decoding approach is formulated as follows. Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

=
]|Pr[
]|Pr[

ln
vv

vv
v y1c

y0c
I  denote the intrinsic 

message. Assuming that 0cv =  and 1cv =  are equal likely. For binary input, AWGN 

channel, mapping the transmitted digit vv c21x −= , the intrinsic message can be obtained 

by 

2
v

vvvv

vvvv

vv

vv
v

y2
yp1x1xyp
yp1x1xyp

y1c
y0c

I
σ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=
+=+=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

=
)(/)Pr()|(
)(/)Pr()|(

ln
]|Pr[
]|Pr[

ln .   

Let cvR  represent the check-to-variable message conveyed from the check node c to 

the variable node v, and cvL  represent the variable-to-check message conveyed from the 

variable node v to the check node c. 

1.  Initialization: 
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vcv IL =  for N21v ,,, L= and M21c ,,, L= .                                 (2.7) 

2.  Check-to-variable message passing: 

Each check node c computes the check-to-variable message cvR  with variable-to-

check message cvL . 

{ }∑∏ ∈∈ ΨΨ×= vcNn cnvcNn cncv LLsignR \)(\)( |)(|)(  ,                   (2.8) 

3.  Variable-to-check message passing: 

Each variable node v computes the variable-to-check message cvL  with check-to-

variable message cvR . 

vcvMm mvcv IRL += ∑ ∈ \)(                                             (2.9) 

4.  Tentative decision and parity check: 

Each variable node v computes the LLR message vL  and makes tentative decision.   

vvMm mvv IRL += ∑ ∈ )(                                               (2.10) 

.otherwise,if 1z0L0z vvv =≥=                                 (2.11) 

If 0zH =T , a valid codeword is found. The decoding is terminated if a valid 

codeword is found or the maximum decoding iteration is reached. Otherwise, go to step 2 

for a new decoding iteration. To reduce the computation complexity, the a posteriori 

probability based decoding approach can be used by replacing (2.9) with (2.10). 

2.3 Min-Sum Decoding Algorithms 

In the literature, various approximate LLR belief propagation decoding algorithms 

were proposed to simplify the decoding complexity. The general approximate method can 

be summarized as follows. Let us rewrite (2.8) in the form of (2.12). 
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ln                             (2.12) 

Let a real number vvvx βα= , where vα  and vβ are the sign and the magnitude of vx , 

respectively. Let us define 
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∏
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ee
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1e
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)(
ln),(                (2.13) 

It can be shown that  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
××α=

β−

β+−
−− v1vx1xf

v1vx1xf

1v1vv1v
ee

e1xxfsignxx1xf
|),,(|

|),,(|

, ln)),,((),,(
L

L

LL  

)),,,(( v1v1 xxxff −= L  

Therefore the computation of (2.12) can be recursively performed using the core 

computation expressed in (2.13) [2]. Using Jacobian logarithm twice [30], the core 

operation ),( 21 xxf  becomes 

( )|)||,(||)||,min(|)(),( 2121
2

1i
i21 xxgxxxsignxxf +×= ∏

=
,         (2.14) 

where ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+
=

−−

+−

yx

yx

e1

e1yxg ln),( , 0x ≥ , and 0y ≥ . It can be seen from Fig. 2.2 that 

0yxg ≤),( . Hence, |)||,min(||),(| 2121 xxxxf ≤  and ( )|||),,(| min, i

v

1i
v1v1 xxxxf

=
− ≤L . Based on 

the observation, two widely used near optimum decoding algorithms, scaled Min-Sum 

algorithm (MSA) and offset Min-Sum algorithm [24][25][26], can be obtained. Because 

they are approximations of BP algorithm, the overall decoding procedure is similar to the 
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standard BP algorithm except that the check-to-variable message passing is replaced by 

(2.15) and (2.16), respectively. The near optimum decoding performance can be obtained 

with 750.=α  and 150.=β  in most cases. 

||)sgn( min
\)(\)(

cn
vcNn

cn
vcNn

cv LLR
∈∈

××α= ∏ ,                        (2.15) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
β−×=

∈∈
∏ 0LLR cn

vcNn
cn

vcNn
cv ,||max)sgn( min

\)(\)(
.               (2.16) 
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Figure 2.2    The mesh and contour plot of ),( yxg . 
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2.4 BCJR Algorithm Based Decoding Approach 

As suggested by Mackay in [5], the check-to-variable message can also be 

computed by use the forward-backward algorithm [3]. The detailed computation 

approaches using the BCJR algorithm were elaborated by Zhang and Mansour 

[46][50][51]. The 1-components of a row in H matrix define a single parity-check (SPC) 

code. The LDPC code is defined by the concatenation and intersection of all SPC code. A 

two-state trellis can be drawn for a SPC code as shown in Fig. 2.3. The state of the trellis is 

the binary summation of corresponding digits. The state of the source at time t is denoted 

by tS . The source starts in the initial state 0St = , and produces an output sequence 

.,,, T21
T
1 cccc L=  ending in the terminal state 0ST = . The received sequence is 

.,,, T21
T
1 yyyy L=  )(mtα  and )(mtβ  are forward  and backward state metric, respectively. 

),'( mmtγ denotes the path metric at time t from 'mS 1t =−  to mSt = . 

s0 st-1 st+1

c1 ct ct+1

y1 yt yt+1

1λ

1λ

2λ 2λ

11100 λ=γ=γ ),(),(

20110 λ=γ=γ ),(),(

state=0

state=1

)(0tα
)(0tβ

)(1tα
)(1tβ

 

Figure 2.3    The two-state trellies of a SPC code. 

 

Following the standard BCJR algorithm, it can be shown that, 
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where, ∑0
t is the set of all state paris that correspond to the input bit 0ct =  at time t. 

Similarly, ∑1
t is the set of all state paris that correspond to the input bit 1ct = . The 

equation (2.17) can be rewritten as (2.18). 

   
∑

∑

∑∈ −

∑∈ −

βγα

βγα
=

=

=

1
tmm tt1t

0
tmm tt1t

T
1t

T
1t

mmmm

mmmm

y1c

y0c

),'(

),'(

)(),'()'(

)(),'()'(

]|Pr[

]|Pr[ ,           (2.18) 

where 

∑ γα===α −
'

) ),'()'(,()(
m

t1t
t
1tt mmmymSpm            (2.19a) 

∑ γβ===β ++
'

)',()'()|()(
m

t1tt
T

1tt mmmmSypm         (2.19b) 

)'|,(),'( mSymSpmm 1tttt ===γ −                 (2.19c) 

The boundary conditions are 100 T0 =β=α )()(  and 011 T0 =β=α )()( . For the convenience 

of implementation, equations (2.18) and (2.19) can be reformulated in log-domain. After 

some mathematical manipulation, equation (2.20) can be obtained. 
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The extrinsic information expressed in the last portion of (2.20) is the check-to-

variable information. The variable-to-check information is fed to the check node as the a 

priori information for computing the branch metric ),'( mmtγ . For VLSI implementation, 

the metric differences rather than the absolute metrics are used to reduce the memory 

requirement for state metrics and maximize the dynamic range of the metrics. The BCJR 

algorithm for check node computation can be viewed as a different data scheduling in 
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belief propagation algorithm. Therefore, the decoding approach discussed in the section is 

equivalent to the belief propagation algorithm presented in Section 2.2. 

2.5 Bit Flipping and Weighted Bit Flipping Based Algorithms 

In the early 1960s, the Bit-Flipping (BF) algorithm [1] was introduced.  It has very 

low decoding complexity since only simple logical operations are needed. However, it 

suffers from significant performance loss from those soft decoding approaches such as the 

SPA and various MSAs. To narrow the performance gap, a weighted Bit-Flipping (WBF) 

algorithm [21] was proposed, in which reliability information was incorporated.  

The decoding procedures of WBF-based algorithms include an initialization and a 

number of iteration steps. In the initialization of the original WBF algorithm, the reliability 

of each parity check equation is calculated using (2.18) and a binary hard-decision is made 

for each bit. In an iteration step, two computation steps, check-sum updating and bit 

flipping, are performed. In the check-sum updating step, the check-sum vector is given by 

(2.19). If s = 0, the decoding procedure is terminated and z  is taken as the estimated 

codeword. In the bit-flipping step, a weighted check sum is computed as (2.20) for each bit 

position n. The hard-decision bit lz corresponding to the maximum nE  is flipped. The 

index value l is given by (2.21).   

],[|,|min
)(

M1myw i
mNi

m ∈=
∈

                                     (2.18) 

TzHs =                                               (2.19) 

],[,)(
)(

N1nw1s2E
nMj

njn ∈−= ∑
∈

                              (2.20) 

nN1nll Elwhere1zz ],[maxarg,, ∈=⊕=                   (2.21) 

To further reduce the performance loss, the modified WBF (MWBF) algorithm [27] 

was proposed by incorporating both the check constraint messages and the intrinsic 
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message for each bit. The weighted check sum is computed using (2.22) instead of (2.20) 

in the bit-flipping step. The optimal value of α  varies for different codes and decreases 

slowly as the SNR increases. 

],[,||)(
)(

N1nyw1s2E
nMj

nnjn ∈α−−= ∑
∈

                         (2.22) 

 

Further improvements were presented in [64] and [65]. The improved modified WBF 

(IMWBF) algorithm discussed in [65] has the best decoding performance in general and 

largest complexity among these modifications of WBF algorithm. The IMWBF algorithm 

adopts (2.23) to calculate the reliability of each parity check equation in the initialization 

and (2.24) to compute the weighted check sum for each bit in the bit flipping step. 

)(],,[|,|min
\)(

mNnM1myw i
nmNi

nm ∈∈=
∈

                               (2.23) 

],[,||)(
)(

N1nyw1s2E
nMj

nnjjn ∈α−−= ∑
∈

                        (2.24) 
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3 MEMORY-EFFICIENT  DECODER ARCHITECTURE 

In general, LDPC codes achieve outstanding performance only with large code word 

lengths (e.g., bitsN 1000≥ ). Thus, the memory part normally dominates the overall 

hardware of a LDPC codec. A memory efficient serial decoder was presented in [34]. The 

decoding throughput of each tile is less than 5.5Mbps. Partially parallel decoder 

architectures, which can achieve a good trade-off between hardware complexity and 

decoding throughput, are more appropriate for practical applications. This chapter depicts a 

memory efficient partially parallel decoder architecture for high rate QC-LDPC codes, 

which exploits the data redundancy of soft messages in the Min-Sum decoding algorithm. 

In general, over 30% memory can be saved. In addition, the proposed architecture can be 

extended to other block-based LDPC codes, e.g., (general) permutation matrix based 

LDPC codes.  

3.1 The Performance of High Rate QC-LDPC Code 

For LDPC codes with the same size of H matrix, the error floor is significantly lower 

when the variable node degree is increased. Fig. 3.1 shows the Bit Error Rate (BER) and 

Frame Error Rate (FER) of two (4608, 4096) rate-8/9 regular QC-LDPC codes with 

variable node degree 3 and 4, respectively. The scaled Min-Sum algorithm with a scaling 

factor 0.75 is used in the simulation. It can be seen from Fig. 3.1 that the BER and FER of 

the code with variable node degree 4 is more than an order of magnitude lower than that of 

the code with variable node degree 3 at SNR=4.5dB. In conventional designs, more 

memories are needed to store the extrinsic messages for a code with larger variable and 

check degree. We proposed a memory efficient partially parallel architecture that only 

causes negligible increase of memory size when the density of 1-entries in the H matrix is 

increased.  
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Figure 3.1    BER/FER performance of the (4608, 4096) QC-LDPC codes. 

 

3.2 The Rearranged  (Scaled) Min-Sum Algorithm  

In the modified Min-Sum decoding algorithm, two classes of computation units, the 

variables nodes and the check nodes, iteratively exchange soft messages with each other 

through the edges in the Tanner graph. In the check-to-variable message updating phase, 

each check node c  computes the check-to-variable messages cvR  with variable-to-check 

messages cvL  as (2.15) which is written as (3.1)   

|,|)sgn( )(

\)(

)(

\)(

)( min 1k
cn

vcNn

1k
cn

vcNn

k
cv LLR −

∈

−

∈
××α= ∏            (3.1) 

where α  is a scaling factor. The superscript (k) is used to indicate that the data is 

generated in the k-th iteration. 

In the variable-to-check message updating phase, each variable node v computes the 

cvL  messages using the cvR  messages and the intrinsic messages vI  using (2.9). The 

equation (2.9) is rewritten in (3.2). 
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.
\)(

)()(
v

cvMm

k
mv

k
cv IRL += ∑

∈
                        (3.2) 

In the conventional decoding procedure, two classes of extrinsic messages in their 

individual form are involved. On the other hand, it can be observed from (3.1) that the 

magnitudes of the cvR  messages corresponding to one row of H matrix have only two 

possible values. By extending the idea presented in [47] and [51], a rearranged decoding 

procedure of the Min-Sum algorithm is developed to reduce the memory requirement for 

extrinsic messages. The new decoding procedure is expressed as follows. 

,||)sgn( min
\)(\)(

)(
n

vcNn
n

vcNn

1
cv IIR

∈∈
××α= ∏                      (3.3) 

,||)sgn( )()(

\)(\)(

)()()( min 1k
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1k
cn

1k
n

k
cv RSRSR −−

∈∈

−− −×−×α= ∏       (3.4)                          

.
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)()( ∑
∈

+=
vMm

k
mvv

k
v RIS                                (3.5) 

In the )(k
cvR  message updating phase, the required inputs cvMnL 1k

cn \)(,)( ∈− , are 

not directly retrieved from memory. Instead, they are computed using )()( 1k
cn

1k
n RS −− −  as 

shown in (3.4). The regular variable-to-check message updating phase is replaced by the 

column sum updating phase. The column sum vS  is calculated using (3.5) and stored in 

memory. Based on the new decoding procedure, optimized low complexity decoding 

architectures are developed.  

 

3.3 The Memory Efficient Decoder Architecture 

In the proposed design, the check-to-variable messages cvR  and  the column sum vS  

are stored in separated memories. All the cvR  messages corresponding to one row of H 
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matrix are stored in a compressed form to significantly reduce memory requirement. In 

general, the parity check matrices H of QC-LDPC codes contain cyclically shifted identity 

submatrices, zero sub-matrices and compound circulant submatrices. Each of the 

compound matrices consists of 2 superimposed cyclically shifted identity matrices. For 

simplicity, the cyclically shifted identity matrix and the compound circulant matrix are 

called weight-1 and weight-2 circulant matrix, respectively. We will deal with various 

cases in the following. 

3.3.1 Parallel Decoder Architecture for H Matrix Consisting of  

Weight-1 Circulant and Possible Zero Submatrices 

Fig. 3.2 shows the decoder architecture for QC-LDPC codes with H matrix 

consisting of weight-1 circulant matrices and possible zero matrices. The R-memory 

module is used to store the  cvR  messages. The messages corresponding to one row of H 

matrix are stored into one entry of R-memory in a compressed form with four elements. 

1) The smallest magnitude m1.  

2) The second smallest magnitude m2.  

3) The index of the smallest magnitude index.  

4) The signs of all soft messages of the row.  

To recover the individual cvR  messages from their compressed forms, data 

distributor is introduced. Each S-memory and I-memory modules are used to respectively 

store the column sum vS  and the intrinsic messages vI corresponding to a block column of 

the H matrix. The Check-Node Unit (CNU) performs the computation expressed in (3.3) 

and (3.4) in the check-to-variable message updating phase. The Variable-Node Unit (VNU) 

works in both decoding phases. It performs the computation )()( 1k
cn

1k
n RS −− −  in the )(k

cvR  

message updating phase and performs (3.4) in the column sum )(k
vS  updating phase. The 
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column sum vS  is accumulated for each column of H matrix. The decision and parity 

equation check unit is introduced for tentative decision and parity check computation.  

 

Figure 3.2    The partially parallel decoder architecture for H matrix containing  weight-1 

and possible  zero submatrices. 

 

To facilitate multiple data accesses per clock cycle in a p-parallel (p>1) architecture, 

the data in p adjacent rows or columns are stored into one memory entry. In the R-memory, 

check-to-variable messages cvR  in p adjacent rows are stored in one R-memory entry. 

Similarly, in one S-memory (I-memory) entry, column sums vS  (intrinsic messages vI ) in 

p adjacent columns are stored in one memory entry. Because the data stored in the R-

memory are in the row order while the data stored in the S-memory are in the column order, 

data scheduling and reverse scheduling units are introduced to resolve the data access 

conflicts. In Fig. 3.2, for clarity, we use one symbol (e.g., adder, MUX, and data 

distributor) to represent p components for parallel processing case. 
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Assuming that the H matrix is a KJ ×  block matrix, each submatrix is a tt ×  

weight-1 circulant matrix, and p-parallel processing is adopted, the message updating 

procedure is as follows. In initialization, the intrinsic messages in I-memory are dumped 

into S-memory for iterative decoding. It takes ⎡ ⎤pt /  clock cycles. In the thk  iteration, 2 

phases of decoding are performed. 

In check-to-variable message updating phase, for each row c , two kinds of messages  

)1( −k
cvR and )1( −k

vS , where )(cNv∈ , are sent to K VNUs via the path indicated by the dashed 

line in Fig. 3.2. Then, all of the intermediate results )1( −k
cvL  calculated by the K VNUs are 

sent to a CNU. Finally, the compressed )(k
cvR  messages are generated and stored into one 

entry of the R-memory. It takes ⎡ ⎤ )/( 1ptJ +×  clock cycles. 

In the column sum updating phase, the summation of vI  and )(k
cvR  messages for each 

column v of H matrix is accumulated. For each row c, the compressed )(k
cvR  messages are 

read out from R-memory module. Next, the individual )(k
cvR  messages recovered by the data 

distributor are sent to K VNUs for accumulating )(k
vS  messages via the path indicated by 

the solid line. If c is in the first block row, vI  and cvR  are added together and stored in S-

memory. When c is in other block rows, cvR  is accumulated to vS .  At the end of this 

phase, the final column sum )(k
vS  corresponding to all columns of the H matrix are 

accumulated in the K S-memory modules.   ⎡ ⎤ )/( 1ptJ +×  clock cycles are needed for this 

phase. 

If the maximum iteration number is set to n, totally, it takes  

⎡ ⎤ ⎡ ⎤ )/(/ 1ptJ2npt +×××+  clock cycles to complete the decoding for one code block. 

If H matrix contains zero submatrices, data received by the CNU and VNUs 

corresponding to zero submatrices must be filtered out. Therefore, additional data path for 
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zero matrices are introduced as the following. When computing cvR  messages, the largest 

positive value M determined by the word length of soft message is sent to the CNU from 

the inserted MUXs. According to (3.4), the value M has no effect on the computation in the 

check-to-variable message updating phase. When accumulating column sum vS , to avoid 

adding an undesired data to the summation, the write enable signal w_en for the associated 

S-memory must be disabled. Apparently, if the H matrix only consists of weight-1 circulant 

matrices, all the MUXs connected to the CNU can be removed. 

Fig. 3.3 shows the structure of data distributor which is introduced to convert the cvR   

messages corresponding to a row of H matrix into their true values. The data read from an 

R-memory entry is composed of four elements as mentioned before. On the output side, the 

relative location of m2 is determined by the index decoder. m1 is distributed to other 

locations. Because the order of the sign bits in signs part is the same as that of the cvR  

messages corresponding to a row of H matrix, the sign bits can be simply distributed. It is 

convenient to use two's complement data representation in column sum computation. 

Therefore, sign-magnitude to two's-complement conversion unit is needed at input of 

VNU. 

For a quantitative comparison of the memory size between the proposed architecture 

and the conventional approaches [38][43] [53] [55], let us consider a (4608, 4096) (4, 36) 

rate 8/9 regular QC-LDPC code designed for read channel. In the traditional approaches, 

the two classes of messages in their true values are alternately stored into the common 

extrinsic memory modules. Assuming that 6-bit quantization is used, the required 

memories are summarized in Table 3.1 and Table 3.2. It can be seen that the total memory 

for R-memory, S-memory, I-memory and estimated codeword is 163k bits with the 

proposed approach. The total required memory for the extrinsic messages, intrinsic 

messages and estimated codeword is 258k bits using conventional approaches. Thus, 
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nearly 37% of memory is reduced in this case. If the code rate is not so high, the memory 

savings in percentage would be relatively smaller. In general, for high rate LDPC codes, 

e.g., rate > 2/3, more than 30% of memory reduction can be achieved with the proposed 

architecture.  

 

Figure 3.3    The structure of data distributor. 

             TABLE 3.1  MEMORY  NEEDED BY THE  PROPOSED ARCHITECTURE 

Memory Component Memory Size (bits) 
The R-memory modules (DP) 128x4x2x(5*2+36+6)=53,248 
The S-memory modules (DP) 128x36x2x(6+2)=73,728 
The I-memory modules (SP) 128x36x1x6=27,648 

The decoded bits (DP) 128x36x2x1=9,216 
 Total=163,840 

 

TABLE 3.2  MEMORY NEEDED BY THE TRADITIONAL APPROACHES 

Memory Component Memory Size (bits) 
The extrinsic memory modules (DP) 128x36x4x2x6=221,184 
The intrinsic memory modules (SP) 128x36x1x1x6=27,648 

The decoded bits (DP) 128x36x2x1=9,216 
 Total=258,048 

 

In the above discussion, dual-port memories are used to support simultaneous 

memory read and write operations for each memory bank. Because adjacent memory 

entries are sequentially accessed (for read or write operation), we can also use a single-port 

memory and two buffers as shown in Fig. 3.4 to support simultaneous two memory 

accesses. The data width of the single-port memory needs to be doubled compared to that 
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of the ReadData port. The memory access data flow is as the follows. At cycle kc , both 

port ReadData and buffer D1 get data from the same entry of the single-port memory. In 

the same time, data is written from port WriteData to buffer D2. At next cycle 1+kc , port 

ReadData gets data from buffer D1. Simultaneously, data from port WriteData and buffer 

D2 are written back into the same entry of the single-port memory. This procedure is 

repeated in following cycles. In this way, the needed hardware size for a memory bank is 

significantly reduced compared to that of using dual-port memories.  

 

Figure 3.4    The structure of single-port memory supporting  simultaneous read and write 
operation. 

3.3.2 Architecture for H Matrices with Weight-1, Weight-2 Circulant 

Matrices and Zero Matrices 

We next discuss a more general case in which H matrix may also contain a small 

portion of weight-2 submatrices. Similar to the method illustrated above, for p-parallel 

processing, messages corresponding to p adjacent rows (columns) are stored in one 

memory entry. For each weight-2 circulant matrix, 2p messages stored in both S-memory 

and R-memory are accessed at each clock cycle in both decoding phases. The tricky issue 

of partially parallel processing is how to schedule the data order for the 2p messages. Each 

weight-2 circulant matrix can be decomposed into two weight-1 submatrices. 

Consequently, the parallel processing techniques discussed before can be utilized. 
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The decoder architecture for LDPC codes with H matrices containing weight-1, 

weight-2 circulant matrices and zero matrices is shown in Fig. 3.5. Because the matrix 

decomposition method is used, a new block row with zero submatrices and a small portion 

of weight-1 circulant submatrices is introduced for each original block row in the H matrix. 

Thus, to generate check-to-variable messages cvR  from the data corresponding to the two 

decomposed rows, an additional processing unit, CNUb, is needed for the new block row. 

For the considered H matrix, the number of the block columns containing weight-2 

circulant matrices is small. By block column permutation, these block columns can be 

arranged together. In this way, the size of CNUb is much smaller than CNUa. The final 

compressed cvR  messages corresponding to one row of H matrix are assembled by the 

merge unit using the outputs from the two CNUs. To facilitate distributing the cvR  

messages from the compressed form to two decomposed rows, 6 elements in the 

compressed message for one row are needed, i.e., 1) the smallest magnitude m1, 2) the 

second smallest magnitudes m2, 3) and 4) the index of the smallest magnitude for the two 

decomposed row I_a, and I_b, 5) and 6) the sign bits for the two decomposed row sgn_a 

and sgn_b. The second data distributor is introduced to distribute cvR  message onto the 

shorter decomposed block rows. If the index of the second smallest magnitude for a 

decomposed row is set to an invalid value by the merge unit, only the smallest magnitude 

can be distributed to that row. 

For a block column containing weight-2 circulant matrix, to recover the two 

variable-to-check messages cvL  at each clock cycle, two VNUs are needed. Similarly, two 

message accumulation operations are performed at each clock cycle in the vS  message 

updating phase. Therefore, for S-memory, either two-port memory with the technique 

discussed in Section 3.3.1 or register array is required to support two read and two write 

operations in the same clock cycle. On the other hand, if most of block columns of the H 
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matrix containing weight-2 circulant matrices, the presented approach is not suited in the 

sense of area-efficiency. Instead, the architecture proposed in [36] can be employed. 

 

Figure 3.5    The decoder architecture for H matrix containing weight-2 circulant matrices 

 

There is a special case for the p-parallel processing. For a weight-2 circulant matrix, 

if the difference between the two cyclic shifting offsets is less than p/2, the two cvR  

message corresponding to two 1-entries in one column may need to be added together and 

accumulated into the summation in one clock cycle. Thus, a multiplex network is needed to 

select different structures of VNU.  

3.4 Optimization on the Partially Parallel Decoder Architecture 

3.4.1 The Optimized CNU 

The critical task of CNU is to find the two smallest magnitudes from all input data 

and identify the relative position of the input data with the smallest magnitude. In this 
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section, an optimized 22×  Pseudo Rank Order Filter (PROF) is proposed. Then, an 

efficient CNU based on the PROF is presented to minimize hardware complexity.  

The 22×  PROF sorts two presorted sequences and decides which sequence 

containing the smallest data with respect to their magnitudes. Only the smallest and the 

second smallest magnitudes are sent out. Fig. 3.6 shows the architecture of the PROF. 

Input [a2 a1] and [b2 b1] are two presorted sequences such that 12 aa ≥  and 12 bb ≥ . All 

elements in the two input sequences are non-negative number.  On the output side, m1 and 

m2 stand for the smallest and the second smallest input data, respectively. index is used to 

indicate which group contains the smallest input data. Its value is 0 if the smallest input is 

in the group [a2 a1], otherwise, it is 1. It can be observed that the smallest magnitude must 

be either a1 or b1. The second smallest magnitude can be selected from a2, b2, and the 

intermediate comparison result of a1 and b1. Therefore, only one stage compare-and-swap 

unit plus a very simple combinational logic is used to perform the task of the PROF. 

 

 

Figure 3.6    The structure of pseudo rank order filter. 

 

The architecture of a CNU with eight inputs is shown in Fig. 3.7. Input data are 

variable-to check messages and represented in sign-magnitude format. On the output side, 

the scaled smallest and second smallest magnitude, the relative position of the second  
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Figure 3.7    The architecture of the optimized CNU. 

 

smallest magnitude, and the signs of all data computed in (3.4) are denoted as m1, m2, 

index, and signs, respectively. In Fig. 3.7, the part above the dash-dotted line performs the 

data sorting task. The compare-and-swap unit is used to compare two input data. If the 

larger magnitude is in the upper position, the comparison result indicated by the dashed 

line is 1, otherwise, it is 0. In the same time, the larger magnitude is placed at upper output 

position. In the optimized CNU, the bits of index are aggregated stage by stage. To 

illustrate the aggregation procedure, let us assume that the input data with the smallest 

magnitude has an index of 101. In the first stage, the comparison result of the third 

compare-and-swap unit (from top to bottom) is 1. In the second stage, the index bit of the 

second PROF is 0. In the same time, it is used to select the index bit generated by the 

previous stages.  Therefore, the aggregation result after the second stage is “10”. In the 

final stage, the index bit of the PROF is 1. This index bit is used to select the “10” 

generated from the previous stages. In this way, the final value of index is “101”. The part 

below the dash-dotted line is for computing the sign bit of each cvR  message as in the 
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conventional approaches. The relative position of each computed sign bit is not changed 

when they are grouped together. To reduce the critical path of CNU, pipeline stages are 

inserted as indicated by the vertical dashed lines. 

 

3.4.2 The Optimized Data Scheduling Unit 

The data scheduling (reverse scheduling) unit plays the key role in the partially 

parallel processing architecture. In [47], a component performing a similar task was 

implemented with a combination of data concatenation unit and cyclic shifter, which 

significantly increases the hardware cost and computation latency. In this chapter, an 

efficient data scheduling unit is proposed by exploiting the structure of LDPC codes.  For 

QC-LDPC codes, the number of non-zero matrices in one block column of H matrix is 

very limited, typically around four. It implies that the number of cyclic shift patterns in a 

block column is limited. Hence, a very simple switching block can be employed to resolve 

the data access conflict for each circulant matrix. If there are W non-zero matrices in a 

block column of H matrix, W switching blocks are needed for the block column. Thus, a 

W:1 multiplexer is used to select a switching block for a circulant permutation matrix. 

To illustrate the design of data scheduling unit, let us use a 1313×  circulant matrix 

with shift offset 7 without loss of generality. Fig. 3.8(a) shows the structure of data 

scheduling unit for 4-parallel processing. It has four inputs indicated by I1…I4 and 4 

outputs indicated by O1…O4. The corresponding data flow is shown in Fig. 3.8(b). At 

clock cycle 0, 4 messages corresponding to row 0, 1, 2, and 3 are sent to the input of the 

switch block. Their column indices are 7, 8, 9, and 10. At cycle 1, messages corresponding 

to row 4, 5, 6, and 7 are sent to the input. Their column indices are 11, 12, 0, and 1. The 

control signal for MUX array is set to “00”. The messages with column indices 8, 9, 10, 
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and 11 can be outputted. At cycle 2, the outputted message is for the last column 12. The 

other three values are discarded. Other entries in the figure can be read in a similar way. It 

can be seen that the input messages are from 4 adjacent rows and the output messages are 

for 4 adjacent columns. The scheduling unit introduces one clock cycle delay from input to 

output. The data reverse scheduling unit can be designed in a similar way. In the proposed 

decoder architecture, the two message updating phases are not overlapped. Due to the 

similarity in the structure of data scheduling and reverse scheduling units, the two 

components can be combined into one unit. It works alternately in the two message 

updating phases. 

 

 

Figure 3.8    The data scheduling unit. (a) structure  (b) data flow 

 

It should be mentioned that overlapping the two decoding phases will nearly double 

the decoding throughput while introducing some extra hardware. In addition, the proposed 
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architecture can be extended to other block–based LDPC codes such as general 

permutation matrix based LDPC codes.  

 

3.4.3 The Optimized Data Merge Unit  

Fig. 3.9 shows the architecture of the optimized data merge unit to calculate the 

smallest magnitude and the second smallest magnitude from the outputs of the two CNUs. 

On the input side, the data set a_m1, a_m2, a_I, a_sgn and a_sgn_prod are the output of 

CNUa, which represent the smallest and the second smallest magnitude, the index of the 

second smallest magnitude, the sign bits and the product of sign bits. The data set b_m1, 

b_m2, b_I, b_sgn and b_sgn_prod are the output of CNUb in the same meaning. On the 

output side, the index I_a and I_b are used to control the data distribution for the two 

decomposed rows, respectively. If the smallest magnitude needs to be distributed to all the 

positions of a decomposed row, the index value for the decomposed row is set to a value z, 

where z is larger than the number of submatrices in this decomposed row. Otherwise, the 

index value shows the position to which the second smallest magnitude will be distributed.  
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Figure 3.9    The structure of the merge unit. 

3.5 Summary 

A memory efficient partially parallel decoder architecture suited for (modified) Min-

Sum decoding algorithm for QC-LDPC codes is proposed. By rearranging the decoding 

procedure of the Min-Sum algorithm and exploiting the data redundancy of extrinsic 

messages, generally over 30% memory reduction can be achieved over traditional designs. 

To minimize the computation delay, a low complexity CNU is developed. To facilitate 

parallel processing, an efficient data scheduling structure is proposed. The approach 

facilitates the applications of high variable degree and/or high rate LDPC codes in 

area/power sensitive high speed communication systems. 
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4 EFFICIENT VLSI DESIGN OF HIGH THROUGHPUT LDPC 

DECODERS 

In the next generation communication systems, the target data rates range from a few 

hundred Mbit/sec to several Gbit/sec. To achieve those very high decoding throughput, a 

large amount of computation units are required. Because of the very high decoding 

parallelism, a complex interconnect network is required which consumes a significant 

amount of silicon area and power.  In a pioneer design of high throughput LDPC decoder 

[57], the power dissipation of the decoder was largely determined by the switching activity 

of these wires. The utilization of chip area was only 50%. 

In this chapter, design issues for high throughput LDPC decoders are discussed. 

Three LDPC decoder architectures which are accommodated to different types of LDPC 

codes and implementation technologies are presented. We propose an algorithmic 

transformation to facilitate the significant routing complexity reduction for LDPC 

decoders. Based on the algorithmic transformation, an efficient message passing decoder 

architecture for permutation matrices based LDPC code is proposed. Then, by exploiting 

the regularity in parity check matrices of QC-LDPC codes, we develop a high-throughput 

low-complexity decoder architecture for generic QC-LDPC codes. Finally, we demonstrate 

an FPGA implementation of a low complexity, high speed decoder for Euclidean geometry 

(EG) based QC-LDPC codes.  

4.1 Efficient Message Passing Architecture 

Recently, several techniques were introduced to reduce the total amount of 

interconnect wires in high throughput LDPC decoders. In [58], message passing of SPA 

was rescheduled. A check node only broadcasts a summation message to its neighboring 
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variable nodes. The needed check-to-variable messages for a variable node are recovered 

using check node summation messages and variable-to-check messages buffered in the 

variable node itself. From the hardware implementation point of view, a lot of wires are 

shared for message passing. In [59], SPA was further reformulated such that only 

summation messages are passed among check nodes and variable nodes. Separate variable-

to-check messages are buffered in variable nodes. Similarly, separate check-to-variable 

messages are buffered in check nodes. This scheme can significantly mitigate the routing 

congestion in a high throughput LDPC decoder. However, because both computation units 

and memory for soft messages are duplicated, the area and power efficiency are largely 

sacrificed.  

We propose an efficient message passing decoder architecture using MSA for 

permutation matrices based LDPC codes [18]. MSA is reformulated to facilitate significant 

reduction of routing complexity and memory usage.  A high throughput decoder 

architecture for permutation matrices based LDPC code is presented. To further reduce 

hardware complexity, an optimized non-uniform quantization scheme using only 3 bit to 

represent each soft message is investigated.  

4.1.1 Efficient Message Passing Schemes with Min-Sum Algorithm 

Reformulated Min-Sum Decoding Algorithm 

To reduce the interconnect complexity mentioned before, MSA can be reformulated 

for the following message passing scheme. In the variable-to-check message passing phase, 

a variable node v does not send separate variable-to-check messages vcL  to its neighboring 

check nodes. Instead, the column sum, vL , is sent to its neighboring check nodes. In 

addition, only vcS (i.e., the sign of vcL ) computed in the previous iteration is sent to the 

check node c, where, )(vMc∈  . 
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In a check node c, the )1( −k
cvR messages that computed in the th1k )( −  iteration are 

stored in a compressed format for recovering the needed input )(k
vcL for the thk  iteration 

using (4.1). The superscript (k) indicates that the data is generated in the thk iteration. 

|)|( )()()()()( 1k
cv

1k
c

1k
vc

k
v

k
vc RSSLL −−− ××−=                    (4.1) 

where, )( 1k
cS −  is the 1-bit product of vcS . In the check-to-variable message passing phase, 

a check node c does not send out separate check-to-variable messages to its neighboring 

variable nodes. Instead, all cvR messages are sent out in a compressed format, i.e., the 

smallest magnitude, the second smallest magnitude, the index of the smallest magnitude, 

and the 1-bit product of all vcS  (denoted as cmin1 , cmin2 , cindex , and cS , respectively).  

In a variable node v, the sign bits, )1( −k
vcS , are stored for recovering the needed input )1( −k

cvR in 

the thk iteration using (4.2) and (4.3).  
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where, V is the index of the block column that the variable node v belongs to. 

Fig. 4.1(a) illustrates the structure of a variable node unit (VNU). The inputs are 

compressed check-to-variable messages from three CNUs. The needed )1( −k
cvR  messages are 

recovered by equal-and-select (E&S) unit using (4.2). In the output, the sign bit of each 

)( 1k
vcL −  is sent to the check node c where, )(vMc∈ . The magnitude of each )(k

vcL  is not 

needed. Instead, only the column sum )(k
vL  is broadcasted to its neighboring check node 

units (CNUs). Fig. 4.1(b) shows the structure of a CNU performing (4.1) and (2.15). The 

inputs are )(k
vL and )1( −k

vcS  from six VNUs. The needed )(k
vcL  messages are recovered using 
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(4.1). The compressed check-to-variable messages are broadcasted to its neighboring 

VNUs.  
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Figure 4.1    Computation units using reformulated Min-Sum algorithm.                                                     
(a) Variable node unit    (b) Check node unit 

 

The proposed approach significantly reduces the amount of outgoing wires of a 

computation unit. For example, the H matrix of the LDPC code discussed in Section 4.1.2 

has row weight 32 and column weight 6. If using 4-bit quantization, the conventional 

method [44][56] needs 24 outgoing wires for a VNU and 128 outgoing wires for a CNU. 

Using the proposed approach, one VNU needs (5+6)=11 outgoing wires; and one CNU 

needs (5+3+3+1)=12 outgoing wires. Hence, 54% outgoing wires of each VNU and 90% 

outgoing wires of each CNU are reduced. Thus, significant reduction of routing complexity 

and memory usage can be obtained. 

 

Reformulated APP-based Min-Sum Algorithm 

To reduce decoding complexity, a posteriori probability (APP) based Min-Sum 

algorithm was presented [24]. The variable-to-check and check-to-variable message 

passing phases are formulated in (4.4) and (4.5), respectively.   



 

                                

38                                 

 

mvvMmvvvc RILL ∑ ∈×α+== )(                                 (4.4) 

||min)( \)(\)( ncvcNnncvcNncv LLsignR ∈∈ ×= ∏                       (4.5) 

To minimize the interconnect complexity, we can reformulate APP-based MSA for 

the following message passing scheme. In the check-to-variable message passing phase, a 

check node c only sends the smallest magnitude, the second smallest magnitude, and 1-bit 

product of all )( vLsign  (denoted as cmin1 , cmin2 , and cS , respectively) to its neighboring 

variable nodes. The index of min1 is not needed. 

In a variable node v, the )1( −k
vL  message that computed in the thk )1( −  iteration is 

stored for recovering the needed input )1( −k
cvR in the thk  iteration using (4.6). 
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Fig. 4.2(a) illustrates the structure of a VNU. The inputs are compressed check-to-

variable messages from three CNUs. The needed )1( −k
cvR  messages are recovered by E&S 

unit using (4.6). In the output, the column sum )(k
vL  is broadcasted to its neighboring 

CNUs. Fig. 4.2(b) shows the structure of a CNU performing (4.5). The inputs are )(k
vL  from 

six VNUs. The outputs, min1, min2, and 1-bit S, are broadcasted to its neighboring VNUs. 
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Figure 4.2    Computation units using APP-based Min-Sum algorithm.                       (a) 
Variable node unit     (b) Check node unit 

 

4.1.2 Architecture for Permuation Matrices Based LDPC Codes 

We use a (2048, 1723) permutation matrices based LDPC code [12] to illustrate the 

efficient message passing architecture for LDPC decoder. The H matrix of the (2048, 

1723) LDPC code is composed of 326 ×  submatrices. Each submatrix is a 

6464× permutation matrix. To facilitate high throughput decoder design, we partition the 

H matrix into 4 block columns. Each variable node in a block column is mapped to a VNU. 

Hence, 4 variable nodes are mapped to one VNU. Each check node is mapped to an 8-input 

folded CNU. It takes 4 clock cycles to complete the computation shown in (4.5) for 32 

input data. The decoding method discussed in Section 4.1.1 is employed.  

The structure of the 8-input folded CNU is shown in Fig. 4.3. Input data are variable-

to-check messages. Output data are min1, min2, and S. Each compare-and-swap unit 

compares the magnitude of two input data and swaps the larger magnitude to its upper 

output position. Each 22×  pseudo rank order filter (PROF) compares 4 data from two 

presorted vectors in parallel and outputs the smallest and the second smallest magnitude to 

its lower and upper output position, respectively. The design details of PROF is provided 
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in Section 3.4.1. In the thk  iteration, the intermediate values of check-to-variable messages 

are stored in a scratch register R1. In the beginning of the thk )1( +  iteration, the final check-

to-variable messages given in the end of the thk iteration is stored into register R2. To 

increase the clock speed of CNU, pipelining stages can be inserted. The structure of 

variable node can be straightforwardly designed with (4.6), (4.7) and (4.4).  
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 Figure 4.3    The structure of 8-input folded check node unit. 

 

To elaborate the top-level decoder architecture, let us use a very short LDPC code as 

an example. Its H matrix is shown in Fig 4.4. It is composed of 42×  submatrices. Each 

submatrix is a 33× permutation matrix. The H matrix is partitioned into 2 block columns. 
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Figure 4.4    The H matrix of an LDPC code example. 

 

Fig. 4.5 shows the corresponding decoder architecture. The message passing 

procedure in the thk iteration is as follows. In the first clock cycle, the 6 column sums of 

the first block column are calculated by VNUs. Then, they are sent to 6 2-input folded 

CNUs. In the same time, the 6 column sums are stored in L register array for recovering 

cvR  messages needed in the next iteration. Each CNU processes 2 data for a check node. 

The intermediate computation results are stored in R1 register array. In the second clock 

cycle, similar computations are performed using the data corresponding to the second 

block column. After the thk  iteration is completed, the final results of check-to-variable 

messages are sent to R2 register array for the next iteration.  

It can be observed from Fig. 4.5 that no separate variable-to-check and check-to-

variable messages are transferred. Each VNU sends out only one summation data to 

multiple CNUs; and each CNU sends out only one compact data to multiple VNUs.  
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Figure 4.5    Decoder architecture for the example code. 

4.1.3 Further Complexity Reduction with Non-uniform Quantization 

To further reduce routing and computation complexity, we can consider reducing 

word length, which will directly lead to linear reduction in routing complexity and memory 

usage. However, using less quantization bits usually leads to performance loss. Non-

uniform quantization schemes for SPA were studied [45] [60] to mitigate the performance 

loss of finite precision implementation. In this section, an optimized non-uniform 

quantization scheme for MSA using only 3 bits to represent each message is investigated.  

The simulation result for the (2048, 1723) code is shown in Fig. 4.6. It can be 

observed that only 0.25dB performance loss from floating-point SPA is caused when the 

target BER is 710− .  The maximum iteration number is 24. The details of the non-uniform 

quantization scheme using 3 bits for MSA decoding are as follows. 1) Each received soft 

message is quantized using non-uniform boundaries optimized for performance. In 

practice, the non-uniform quantizing boundaries can be obtained through simulation. 

Assuming that the binary bits of an LDPC codeword are transmitted over AWGN channel 
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with BPSK mapping from {0,1} to {1,-1}, the quantizing boundaries for the (2048, 1723) 

code are depicted in Table 4.1. It is assumed that each received symbol x from the front 

end of receiver is originally quantized using 5:4 quantization scheme [37], in which 5 bits 

are used to represent each data. 2) In the check-to-variable message passing phase, data in 

the non-uniform format are directly used in (4.5). 3) In the variable-to-check message 

passing phase, two kinds of look-up tables are needed. One is for converting 2-bit 

magnitude of an input data of (4.4) from non-uniform to two’s complement format. The 

other is for converting the magnitude of the column sum from 2’s complement to 2-bit 

non-uniform format. Table 4.2 shows the details of the data conversion for the (2048, 

1723) code. Please note that sign bit of each data is not changed and all intrinsic and 

extrinsic soft messages stored in memory are in 3-bit. The scaling factor α  of (4.4) is 

chosen to be 0.5. 

 

Figure 4.6    BER and FER of various decoding approaches (24 iterations)                                        
for the (2048, 1723) LDPC code. 
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TABLE 4.1  3-BIT QUANTIZATION FOR RECEIVED SYMBOL 

The Range of Received Symbol Quantization Output 
8/6≥x  011 

8/38/6 ≥> x  010 
16/38/3 ≥> x  001 
016/3 ≥> x  000 
16/30 −≥> x  100 

8/316/3 −≥>− x  101 
8/68/3 −≥>− x  110 

x>− 8/6  111 

 

TABLE 4.2  DATA CONVERSION BETWEEN UNIFORM QUANTIZATION                                        
AND NON-UNIFORM QUANTIZATION. 

Non-uniform to uniform Uniform to non-uniform 
Input Output Input Output 
000 1 02 ≥≥ x  000 
001 3 26 >> x  001 
010 6 6x10 ≥>  010 
011 10 10≥x  011 
100 -1 02 <≤− x  100 
101 -3 26 −<<− x  101 
110 -6 6x10 −≤<−  110 
111 -10 

 

10x −≤  111 
 

4.2 Layered Decoding Architecture for Quasi-Cyclic Codes 

In practice, QC-LDPC codes have been considered for many applications. We 

present a high-throughput low-cost layered decoding architecture for generic QC-LDPC 

codes. In this design, row permutation approach is proposed to significantly reduce the 

implementation complexity of interconnect network. An approximate layered decoding 

approach is explored to increase clock speed and hence to increase the decoding 

throughput. An efficient implementation technique which is based on Min-Sum algorithm 

is employed to minimize the hardware complexity. The computation core is further 

optimized to reduce the computation delay.  
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4.2.1 Row Permutation of Parity Check Matrix of QC-LDPC Codes 

The parity check matrix of a QC-LDPC code is an array of circulant submatrices. To 

achieve very high decoding throughput, an array of cyclic shifters are needed to shuffle 

soft messages corresponding to multiple submatrices for check nodes and variable nodes. 

In order to reduce the VLSI implementation complexity for the shuffle network, the 

shifting structure in circulant submatrices is extensively exploited. Suppose the parity 

check matrix H of a QC-LDPC code is a CJ × array of pp× circulant submatrices. With 

row permutation, it can be converted to a form as shown in (4.8).  

 ,
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                              (4.8) 

where σ is a pp × permutation matrix representing a single left or right cyclic shift. The 

submatrix j
iAσ  can be obtained by cyclically shifting the submatix )1( −j

iAσ for a single 

step. iA  is a pmJ × matrix determined by the shift offsets of the circulant matrices in block 

column i (i=1,2,…C), m is an integer such that p can be divided by m. 

For example, the matrix aH shown in Fig. 4.7 is a 32×  array of 88 × cyclically 

shifted identity submatrices. With the row permutation described bellow, a new matrix bH  

shown in Fig. 4.8 can be obtained, which has the form shown in (4.8). First, the first 4 rows 

of the first block row of aH  are distributed to 4 block rows of bH in a round-robin fashion 

(i.e., the row 1, 2, 3, 4 of aH  are distributed to row 1, 5, 9, 13 of bH ). Then the second 4 

rows are distributed in the same way. The permutation can be continued until all rows in 

the first block row of matrix aH  are moved to matrix bH . Then the second block row of 

aH  are distributed in the same way. It can be seen from Fig. 8 that bH  has the form 

shown in (4.8). In the above example, the row distribution is started from the first row of 
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each block row. In general, to distribute a block row to a new matrix, the distribution can 

be started from any row of the block row.  

For an LDPC decoder which can process all messages corresponding to the 1-

components in an entire block row of matrix PH (e.g. bH in Fig. 4.8), the shuffle network 

for LDPC decoding can be implemented with very simple data shifters.  

 

 

Figure 4.7    An array of circulant submatrices. 

 

 

Figure 4.8    Permuted matrix. 

4.2.2  Approximate Layered Decoding Approach  

Recently, layered decoding approach [49] [50] [52] has been found to converge 

much faster than conventional TPMP decoding approach. With layered decoding approach, 



 

                                

47                                 

 

the parity check matrix of an LDPC code is partitioned into L layers: [ ]T
L

TTT HHHH ⋅⋅⋅= 21  . 

The layer tH  defines a supercode tC  and the original LDPC code is the intersection of all 

supercodes: LCCCC II ⋅⋅⋅= 21 . The column weight of each layer is at most 1.  

In the thk iteration, the log-likelihood ratio (LLR) message from layer t to the next 

layer for variable node v is represented by tk
vL , , where t=1,2, …., L . The layered message 

passing with Min-Sum algorithm can be formulated as (4.9)-(4.11). 

,),()(,, t1k
cv

1tk
v

tk
cv RLL −− −=                                          (4.9) 

,||)( ,
\)(\)(

,, tk
cn

vcNnvcNn

tk
cn

tk
cv LMinLsignR

∈∈
∏ ××α=                              (4.10) 

.,,, tk
cv

tk
cv

tk
v RLL +=                                                (4.11)      

In a layered LDPC decoder, the check node unit (CNU) is for the computation shown in 

(4.10) and the variable node unit (VNU) performs (4.9) and (4.11). In the case that all soft 

messages corresponding to the 1-components in an entire block row of parity check matrix 

are processed in a clock period, the computations shown in (4.9)-(4.11) are sequentially 

performed. The long computation delay in the CNU inevitably limits the maximum 

achievable clock speed. Usually pipelining technique can be utilized to reduce the critical 

path in computing units. However, due to the data dependency between two consecutive 

layers in layered decoding, pipelining technique can not be applied directly. 

For instance, suppose that one stage pipelining latch is introduced into every CNU. 

To compute 3k
cvL , messages corresponding to the third block row of bH , 2k

vL , messages are 

needed, which can not be determined until 2k
cvR ,  messages are computed with (4.10). Due 

to the one-clock delay caused by the pipelining stage in CNUs, 2k
cvR , messages are not 

available in the required clock cycle. The data dependency between layer 3 and layer 2 

occurs at column 4, 8, 9, and 13 as marked by bold squares in Fig. 4.8. To enable pipelined 
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decoding, we propose an approximation of layered decoding approach.  Let us rewrite 

(4.10) as the following: 

),,,(

21

321

,,,,

444 3444 21
L

UNNn

tk
cn

tk
cn

tk
cn

tk
cv

i

LLLfR

∈

= , 

where 21 NN U is the variable node set vcN \)( . The data dependency between layer t and 

t+1 occurs in the column positions corresponding to the variable node set 1N . For the 

variable nodes v belonging to the variable node set 2N  , the following equation is satisfied. 
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Based on the above consideration, an approximate layered decoding approach is 

formulated as (4.12)-(4.14). 

   ,),()(,, t1k
cv

P1tk
v

tk
cv RLL −−− −=                                (4.12) 

        ,||)( ,
\)(\)(

,, tk
cn

vcNnvcNn

tk
cn

tk
cv LMinLsignR

∈∈
∏ ××α=                       (4.13) 

.),()),(()(,)(, Ptk
cv

Pt1k
cv

P1tk
v

Ptk
v RRLL −−−−−− +−=                     (4.14) 

where, P is a small integer. In order to demonstrate the decoding performance of the 

proposed approach, a (3456, 1728), (3, 6) rate-0.5 QC-LDPC code constructed with 

progressive edge-growth (PEG) approach [30] is used. Its parity check matrix is permuted 

as discussed in Section 4.2.1. The number of rows in each layer is 144. The parameter P in 

(4.12) and (4.14) is set to 2 to enable two stage pipelines. The maximum iteration number 

is set to 15. It can be observed that the proposed approach has about 0.05 dB performance 

degradation compared with the standard layered decoding scheme. The conventional 
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TPMP approach has about 0.2 dB performance loss compared with layered decoding 

scheme because of its slow convergence speed. It should be noted that, by increasing the 

maximum iteration number, the performance gap among the three decoding schemes 

decrease. However, the achievable decoding throughput is reduced.  
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Figure 4.9    Performance of the approximate layered decoding approach. 

 

4.2.3 Decoder Architecture with Layered Decoding Approach 

The Overall Decoder Architecture 

The proposed decoder computes the check-to-variable messages, variable-to-check 

messages, and LLR messages corresponding to an entire block row of PH  matrix in one 

clock cycle. The decoder architecture is shown in Fig. 4.10. It consists of five portions. 1) 

L layer R-register arrays. Each layer is used to store the check-to-variable messages 

cvR corresponding to the 1-components in a block row of matrix PH . At each clock cycle, 
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cvR  messages in one layer are vertically shifted down to the adjacent layer. 2) A check 

node unit (CNU) array for generating the cvR  messages for one layer of R-register array in 

a clock cycle. The dashed-lines in the CNU array denote 2 pipeline stages. 3) C LLR-

register arrays. Each LLR-register array stores the vL messages corresponding to a block 

column of matrix PH .  4) C variable node unit (VNU) arrays. Each VNU array is used for 

computing the variable-to-check messages and LLR messages corresponding to a block 

column of matrix PH . Each VNU is composed of two adders. 5) C data shifters. The vL  

messages corresponding to a block column of matrix PH  is shifted one step by a data 

shifter array. In Fig. 4.10, each VNU, MUX, and data shifter is used to represent C 

computing unit arrays. 
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Figure 4.10    Decoder architecture (P=2). 
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In the decoding initialization, the intrinsic messages are transferred to LLR-register 

arrays via the MUX1 arrays. At the first P clock cycles, cvR  messages are not available due 

to the P pipeline stages in the CNU array. Therefore, the MUX2 arrays are needed to 

prevent LLR-registers from being updated. In one clock cycle, only a portion of LLR-

messages are updated. The updated LLR-messages correspond to the 1-component in the 

layer of matrix PH  are sent to data shifter via computation path. The remained LLR-

messages are directly sent to the data shifter from the LLR-register array.  

  

The Critical Path of the Proposed Architecture  

The computation path of the proposed architecture is shown in Fig. 4.11. The 

equations shown in (4.12)-(4.14) are sequentially performed. The computation results of 

(4.12) are represented in two’s complement format. It is convenient to use the sign-

magnitude representation for the computation expressed in (4.13). Thus, two’s complement 

to sign-magnitude data conversion is needed before data are sent to CNU. The cvR  

messages from CNU array and R-register arrays are in a compressed form to reduce 

memory requirement. More details are explained in the next paragraph. To recover the 

individual cvR  messages, a data distributor is needed. The cvR  messages sent out by the 

data distributor are in sign-magnitude representation. Correspondingly, sign-magnitude to 

two’s complement conversion is need before data are sent to VNU.  

In this design, the computation path can be divided into three segments as shown in 

Fig. 4.11. The implementation of the SM-to-2’S unit and the adder in segment-1 can be 

optimized by merging the adder into the SM-to-2’S unit to reduce computation delay. The 

optimization for segment-1 is shown in Fig. 4.12. With the Min-Sum algorithm, the critical 

task of a CNU is to find the two smallest magnitudes from all input data and identify the 

relative position of the input data with the smallest magnitude. The implementation of  
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CNU can be found in Section 3.4.1. The dataflow in a CNU is very briefly discussed in this 

section. Because the number of input data is six, four computation steps are needed in a 

CNU. The first step is compare-and-swap. Then, two pseudo rank order filter (PROF) 

stages are needed. In the last step, the two smallest magnitudes are corrected using a 

scaling factor α  (usually, α  is set as 3/4). In this way, the cvR  messages output by a CNU 

are in a compressed form with four elements, i.e., the smallest magnitude, the second 

smallest magnitude, the index of the second smallest magnitude, and the signs of all cvR  

messages. The optimized implementation of segment-3 is shown in Fig. 4.13. The adder in 

the last stage can be implemented with a [4:2] compressor and a fast adder. The data shifter 

can be implemented with one-level multiplexers. 

 

tk
cvL ,

)(, Ptk
cvR −

)(),( Pt1k
cvR −−

)(, P1tk
vL −−

)(, Ptk
vL −

)(, P1tk
vL −−

t1k
cvR ),( −

{
 

Figure 4.11    The computation path of the proposed architecture (P=2). 
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It can be observed that the critical path of segment-1 consists of three adders and 

four multiplexers. The longest logic path of segment-2 includes three adders and two 

multiplexers. The critical path of segment-3 has two adders and four multiplexers. By 

inserting two pipeline stages among the three segments, the critical path of the overall 

decoder architecture is reduced to three adders and four multiplexers.   
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t1k
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Figure 4.12    The optimization of the SM-to-2’S unit and the adder in segment-1. 
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Figure 4.13    The optimization of the SM-to-2’S unit and two adders in segment-3. 
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It can be seen from Fig. 4.8 that by a single left cyclic shift, the block i1t
PH ),( +  is 

identical to it
PH ,  , for i=1, 2, … C and t=1, 2, … L-1. Therefore, repeated single-step left 

cyclic-shift operations can ensure the message alignment for all layers in a decoding 

iteration.  After the messages corresponding to the last block row are processed, a reverse 

cyclic-shift operation is needed for the next decoding iteration. Based on the above 

observation, only the edges of the tanner graph for the first layer of matrix PH  are mapped 

to the fixed hardware interconnection in the proposed decoder. A very simple data shifter 

which is composed of one level two-input one-output multiplexers is utilized to perform 

the shifting operation for one block column of matrix PH . Fig. 4.14 shows the structure of 

a data shifter for the matrix bH . When the value of control signal, S, is 1, the shifting 

network performs a single-step left cyclic-shift. If S is set to 0, the reverse cyclic-shift is 

performed.   

 

Figure 4.14    The structure of a data shifter. 

 

4.2.4 Hardware Requirement and Throughput Estimation 

The hardware requirement of the decoder for the example LDPC code is estimated 

except the control block and parity check block. In Table 4.3, the gate count for computing 

blocks is provided. Each MUX stands for a 1-bit 2-to-1 multiplexer. Each XOR represents 

a 1-bit two-input XOR logic unit. The register requirement is estimated in Table 4.4. In the 
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two tables, RW and LW  represent the word length of each cvR message and cvL (or vL ) 

message, respectively. The critical path of the proposed decoder is three adders and four 

multiplexers. In the decoder architecture presented in [63], each soft message is 

represented as 4 bits. The critical path consists of an R-select unit, two adders, a CUN, a 

shifting unit and a MUX. The computation path of a CNU has a 2’S-SM unit, a two-least-

minimum computation unit, an offset computation unit, an SM-to-2’S unit stage, and an R-

selector unit. The overall critical path is longer than 10 4-bit adders and 7 multiplexers. 

The post routing frequency is 100MHz with 0.13u CMOS technology. Because the critical 

path of the proposed decoder architecture is about one-third of the architecture presented in 

[63], using 4-bit for each soft message, the clock speed for the proposed decoder 

architecture is estimated to be 250MHz with the same CMOS technology. In a decoding 

iteration, the required number of clock cycles is 12. To finish a decoding process of 15 

iterations, we need 18331512 =+× clock cycles. Among them, 1 cycle is needed for 

initialization and 2 cycles are for pipeline latency. Thus, the throughput of the layered 

decoding architecture is at least 3456×  250 × 910 ÷ 183 ≈  4.7 Gbit/sec. Because a real 

design using the proposed architecture has not been completed, we can only provide a 

rough comparison with other designs. 

Lin, et al, [61], designed an LDPC decoder for a (1200, 720) code. The decoder 

achieves 3.33 Gbit/sec throughput with 8 iterations. Sha, et al, [62] proposed a 1.8Gbps 

decoder with 20 iterations. The decoder is targeted for a (8192,7168) LDPC code. The 

decoding throughput of the both decoders is less than the proposed architecture with 15 

iterations. Gunnam, et al, [63], presented an LDPC decoder architecture for (2082, 1041) 

array LDPC codes. With 15 iterations, it can achieve 4.6 Gbit/sec decoding throughput. 

The number of CNUs and VNUs are 347 and 2082, respectively. It can be seen from Table 

4.3 that much less computing units are needed in our pipelined architecture. The registers 

requirement in our design is more than that in [63] because an LDPC code with a larger 
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block length for a better decoding performance is considered in our design. The two 

pipeline stages in CNU array also require additional registers. The design in [63]  is only 

suitable for array LDPC codes. The proposed decoder architecture is for generic QC-LDPC 

codes. We would like to mention that the proposed architecture is scalable. For example, 

the considered LDPC code can be partitioned into 8, 12, or 18 layers for different trade-

offs between hardware cost and decoding throughput. 

 

TABLE 4.3  GATE COUNT ESTIMATION FOR COMPUTING BLOCKS 

Component (Number) 
Count  

Estimated gate count 

 
CNU 144 

    RW1584×  1-bit adder 
+  RW2880×     MUX  
+   1584             XOR 

Data 
distributor 259236144 =××   )( 1W2592 R −×  MUX 

SM-to-2’S 259236144 =××   RW2592×         MUX 
VNU 8646144 =×   LW3864 ××       1-bit adder 
2’S-to-SM 8646144 =×   LW864×            MUX 
Data shifter 6  LW3456×          MUX 

 

TABLE 4.4  STORAGE REQUIREMENT ESTIMATE 

Component Estimated register count 
R-register array ))(( 1W2631728 R −×++×  
LLR-register array LW3456 ×  
Pipeline register )]([ 1W263W6144 LR −×+++××  

 

4.3 An FPGA Implementation of Quasi-Cyclic LDPC Decoder 

We implement an enhanced partially parallel LDPC decoder for a (8176, 7156) EG-

based QC-LDPC code on FPGA to demonstrate the design of high throughput LDPC 

decoder. A worst-case source information decoding throughput (at 15 iterations) over 
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170Mbps is achieved. Optimizations at various levels are employed to increase the clock 

speed. More parallelism is introduced for the traditional partially parallel decoding 

architecture with small hardware overhead. An efficient non-uniform quantization scheme 

is proposed to reduce the size of soft message memories without sacrificing the decoding 

performance. The decoder architecture is suited for other QC LDPC codes as well.  

4.3.1 The (8176, 7156) EG-based QC LDPC Code  

The EG-based QC LDPC codes are a family of QC LDPC codes, which are 

constructed based on the decomposition of finite Euclidean geometries. The (8176, 7156) 

code (originally designed for NASA) is a regular QC LDPC code with a column weight of 

4 and a row weight of 32 [23]. The parity-check matrix is a 2x16 array of thirty-two 

511x511 submatrices as the following. 

 

Each submatrix H ji,  is a circulant matrix with both column and row weight of 2. Fig. 4.15 

shows a 15x15 matrix in the same form. 

 

 

Figure 4.15    A 15x15 circulant matrix. 
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4.3.2 Partially Parallel Decoder Architecture 

Balanced Computation Scheduling  

The conventional SPA algorithm has unbalanced computation complexity between 

the variable-to-check and check-to-variable message updating phases. This leads to 

unbalanced datapaths between Variable node units (VNUs) and Check node units (CNUs). 

To balance the computation load between the two decoding phases, a modified 

version based on algorithmic transformation was proposed in [38]. The check-to-variable 

and variable-to-check message passing are expressed in (4.15) and (4.16), respectively. 

)()(
\)(

\)( LLR cn
vcNn

vcNn cncv sign Ψ−= ∑∏
∈

∈ .                   (4.15) 

∑
σ∈

−Ψ−=
cvMm 2

v
mvmvcv

r2RRL sign
\)(

))()(( .                   (4.16) 

where, ))
2

log(tanh()( xx =Ψ , Rcv  and Lcv  stand for the check-to-variable message and  the 

variable-to-check message, respectively.  

 

The Check Node and Variable node units  

Fig. 4.16 shows the architecture of a CNU, which performs check-to-variable 

message Rcv  computation. Each CNU has 32 inputs and 32 outputs. The LUT-A is 

introduced to perform the function ))log(tanh()(
2
xx =Ψ . The magnitude of the output is the 

sum of 31 out of 32 data values which come from LUT-A. The sign bit of the output is a 

product of 31 out of 32 sign bits which come from the inputs. In the last addition stage, 

each word of the two addends is separated into higher and lower parts. Two partial 

additions are performed in parallel to reduce the addition delay.  To reduce the critical path 
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in the CNU, pipeline latches are inserted as indicated by the dashed lines. The data 

representations of the inputs of CNU, the outputs of LUT-As, and the final outputs of CNU 

are in two’s complement, unsigned, and sign-magnitude, respectively.  

 

 

Figure 4.16    Check node unit architecture. 

 

The architecture of a VNU is illustrated in Fig. 4.17, which performs variable-to-

check message Lcv  computation. Each VNU has 5 inputs and 5 outputs. Z  and C  stand for 

the intrinsic message and the tentative decoding bit, respectively. The LUT-B performs the 

function ).()( mvmv RRsign Ψ− It is convenient to use the two’s complement format in BPU 

computations. Thus, the data format of the intrinsic message Z , the outputs of LUT-Bs, 
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and the outputs of BPU are all in two’s complement format. The inputs of LUT-Bs are in 

sign-magnitude format. 

 

Figure 4.17    Variable node unit architecture. 

 

Enhanced Partially Paralle Decoder Architecture 

Conventionally, 1 CNU performs check-to-variable messages updating for 1 row of 

matrix H per clock cycle and is assigned for each block row of matrix H. Similarly, 1 VNU 

performs variable-to-check messages updating for 1 column of matrix H per clock cycle 

and is assigned for each block column of matrix H. To increase the parallelism, we propose 

an enhanced architecture that enables processing multiple rows/columns corresponding to 

each submatrix of H at the same time. In this design, only double parallelism is considered, 

though the proposed architecture can be easily extended to higher parallelism cases 

[35][36]. The key issue for this enhancement is how to access 4 soft messages 

corresponding to each submatrix at each clock cycle. For the considered EG-LDPC code, 

each submatrix consists of 2 cyclically shifted identity matrices. Thus, two memory 

modules are used for each submatrix. To facilitate 2 data accesses for each cyclically 

shifted matrix in both row and column updating phases, each memory module is 

partitioned into an even-addressed bank containing soft messages correspond to 1-

components in the even rows of the submatrix and an odd-addressed bank containing data 
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corresponding to the odd rows. This approach works because any two soft messages 

corresponding to two adjacent 1-componentss of a cyclically shifted identity matrix must 

fall into the even-addressed memory bank and the odd-addressed memory bank, 

respectively. In addition, double VNU and CNU are required and data switching networks 

are needed to ensure the data is moved correctly between memory banks and CNU (VNU). 

It can be observed that the proposed architecture is also suited for the hardware 

implementation with Min-Sum algorithm. On the other hand, multiple adjacent soft 

messages can be stored at one memory entry to increase the parallelism. In this method, 

extra buffers and data switching networks are needed to ensure the correct data accesses in 

the variable-to-check messages updating phase [47].  

The block diagram of the proposed architecture is shown in Fig. 4.18. Each memory 

block M ji, , which consists of two memory modules, corresponds to a circulant matrix 

H ji, of the parity check matrix H. They are used to store the extrinsic soft message 

conveyed at the both decoding phases. The memory modules iZ  and iC  and are used to 

store the intrinsic soft messages and the estimated codeword bits, respectively. As can be 

seen from the figure, the overall architecture has 32216 =×  VNUs and 422 =×  CNUs. 

 

Figure 4.18    Enhanced partially parallel decoder architecture for QC-LDPC code. 
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To illustrate the details of dataflow, three cases, which correspond to even, odd, and 

zero shifting offsets that range from 0 to 510 for a cyclically shifted identity matrix, are 

considered in the following analysis. 

 Fig. 4.19 shows an example of the memory partitioning and data switching scheme 

applied to a 15x15 cyclically shifted identity matrix with an even (excluding 0) shifting 

offset of 6. In the check-to-variable message updating phase, the two data located in the 

even memory sub-bank MEM_E and the odd memory sub-bank MEM_O with the same 

index are sent to CNU_E and CUP_O in parallel, respectively, which are CNU components 

for even row and odd row message updating. In the variable-to-check message updating 

phase, the two data connected by an arrow are sent to VNU_0 and VNU_1 in the same 

clock cycle, respectively. Similarly as above, VNU_0 and VNU_1 are VNU components 

for even column and odd column data computation. A soft message ),( jip saved in a 

memory sub-bank corresponds to a 1-component located at row i  and column j  of a 

cyclically shifted identity matrix. In this example, the data located in the even columns 6, 

8, 10, 12, and 14 of the matrix are stored in the even addressed memory sub-bank. 

However, the data located in the even columns 0, 2 and 4 are stored in the odd addressed 

memory sub-bank. Similar cases exist for the data located in the odd columns. Therefore, 

switching units are needed to route data between memories and VNUs in the variable-to-

check message updating phase. Because the size of each circulant matrix associated with 

the EG-based QC LDPC code is an odd value, only the data in the last row (or column) of 

these matrices are accessed in the last clock cycle of the check-to-variable (or variable-to-

checks) message updating phase. In this figure, symbol Z, C, and I represent an intrinsic 

soft message symbol, a decoding bit, and a fixed data value for initialization procedure, 

respectively. 

A similar example for a cyclically shifted matrix with an odd shifting offset of 5 is 

shown in Fig. 4.20. Note that the last data in the even row is stored in the odd memory 
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bank. Without data displacement, data access confliction indicated by the dashed arrow 

occurs when the two data from column 4 and 5 are retrieved from the even memory sub-

bank in the same clock cycle. Consequently, a pair of multiplexers is needed to steer the 

displaced data between the odd memory sub-bank and the CNU_E. 

For the third case, i.e., the shift value is 0, the cyclically shifted identity matrix 

becomes an identity matrix. The details of memory partitioning and data switching are 

shown in Fig. 4.21. This is in fact the simplest case. 
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Figure 4.19    Memory partitioning and data switching scheme for                                      
even shifting offset case. 
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Figure 4.20    Memory partitioning and data switching scheme                                           for 
odd shifting offset case. 

 

 

Figure 4.21    Memory partitioning and data switching scheme for identity matrix. 
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Architecture of the Controller 

The controller, which generates the control signals of the data switch networks and 

memory addresses, is composed of a two-level finite state machine. Fig. 4.22 shows the 

state transition diagram of the finite state machine. In the initialization state, the intrinsic 

soft messages stored in the memory Z are transferred into the memory M. The anti-overlap 

state is introduced to avoid the data access confliction between the two decoding phases.  

The block diagram of the controller is shown in Fig. 4.23. The memory write 

addresses and the data switching control signals for writing are the delayed versions of the 

memory read addresses and the control signals for reading, respectively. In order to 

increase the speed of the controller, memory addresses are generated such that retiming 

technique can be employed to reduce the critical path of the controller. By introducing one 

delay unit in the controller datapath, the critical path can be significantly reduced while 

introducing one cycle latency. 

 

Figure 4.22    State transition diagram of controller. 
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Figure 4.23    Block diagram of controller. 

4.3.3 Fixed-point implementation 

The word length of the soft messages determines the memory size, the computation 

unit size and the decoding performance of a LDPC codes decoder. The overall hardware of 

LDPC decoder is predominantly determined by the size of the memories holding intrinsic 

and extrinsic soft messages. Therefore it is very important to find an efficient quantization 

scheme for soft messages under the target decoding performance. 

 

Uniform and Non-uniform Quantization Schemes  

Using a similar notation as [37], let fq :  denote the uniform quantization scheme in 

which the finite word length is q bits, of which f bits are used for the fractional part of the 

value. If the target bit error rate (BER) is above 910− , 6:3 uniform quantization can be 

adopted with negligible performance loss. However, this design is targeted for BER below 

1010− considering potential applications of deep-space communications. Simulation results 
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reveal that 7:4 uniform quantization is needed to achieve this goal. Fig. 4.24 shows the 

performance comparison for 6:3 and 7:4 fixed-point quantization and double precision 

simulations. 

A non-uniform quantization scheme which generally out-performs the uniform 

quantization under the same word length was proposed [45]. However, in this method, a q-

bit non-uniform quantization scheme generally performs worse than the uniform 

quantization case with )( 1q + -bit word length since less precision is maintained for large 

values. This section presents a new non-uniform quantization scheme that can achieve a 

decoding performance almost identical to that of the uniform quantization case with 1-bit 

longer word length.  
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Figure 4.24    Decoding performance of fixed-point quantization and double precision. 
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In the both decoding phases, the extrinsic soft messages are sent to look-up tables, 

which perform the non-linear function ))log(tanh()(
2
xx =Ψ . Fig.4.25 shows the 7:4 uniform 

quantization of )(xΨ . It can be seen that the quantization result has many duplicated 

values. The improved non-uniform quantization scheme employs flexible non-uniform 

quantization steps for x to reduce the redundant elements in look-up table other than uses 

two fixed quantize steps as shown in [45] for the regions of 1<x  and 1≥x , respectively. 

The uniform to non-uniform quantization conversion logic can be implemented with 

simple combination logic or look-up table, which depends on the complexity of the 

conversion mapping.  In this method, the quantized value of )(xΨ  is presented in uniform 

quantization. 
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Figure 4.25    The uniform quantization of )(xΨ . 
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TABLE 4.5. UNIFORM TO NON-UNIFORM QUANTIZATION CONVERSION 

 

 

 A close study of the 7:4 uniform quantization results of )(xΨ  reveals that no 

quantized values of )(xΨ are lost if x is non-linearly quantized as shown in the middle 

column of Table 4.5. Based on this observation, the new non-uniform quantization scheme 

for this specific case is as follows: the soft messages in uniform quantization computed 

from equations (1) and (2) are converted into non-uniform quantization as seen in Table 

4.5 and are stored into memory blocks M ji, . The input of the look-up table for 

))log(tanh()(
2
xx =Ψ is in non-uniform quantization, and the values of )(xΨ , which are 

stored in look-up table, are in uniform quantization. Fig. 4.24 shows that using the 6-bit 

non-uniform quantization scheme can achieve an almost identical decoding performance to 

that using the 7-bit uniform quantization scheme.  

 

Processing Units with Non-uniform Quantization 

The new architectures for CNU and VNU with the non-uniform quantization scheme 

are shown in Fig. 4.26 and Fig. 4.27, respectively. The uniform to non-uniform 

quantization converters, U2NUs, are employed as shown in the two figures. They are 
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implemented with simple combination logic. The look-up tables, LUTs, for both CNU and 

VNU are the same.  

 

 

Figure 4.26    Check node unit with non-uniform quantization. 

 

 

Figure 4.27    Variable node unit  with non-uniform quantization. 
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4.3.4 FPGA Implementation 

       Based on the architectures described above, the (8176, 7156) EG-based LDPC code 

decoder was modeled in VHDL, simulated and synthesized targeting the Xilinx Virtex II-

6000. Based on the Xilinx TRACE report, the maximum clock frequencies of the uniform 

and non-uniform quantization implementation are 193.4MHz and 192.6MHz, respectively. 

Table 4.6 shows the FPGA utilization statistics of both implementations. 

The maximum iteration number is set to 15. It takes half of an iteration to transfer the 

intrinsic soft messages from memory Z into memory M of the decoder. It takes 

51752562 =+×  clock cycles to perform one iteration in which 5 clock cycles are allotted 

to the anti-overlap state. Thus, the non-uniform quantization implementation can achieve a 

worst-case information decoding throughput of (7154× 192.6)/[(15+0.5)× 517] ≈ 172 

Mbps. The achieved decoding throughput is more than twice faster (in terms of Mbps per 

iteration) than other published LDPC codec implementations based on similar platforms 

(e.g., [48][44]). 

TABLE 4.6. XILINX VIRTEXII-6000 FPGA UTILIZATION STATISTICS 

Slices

Slice Flip Flops

4-input LUTs

Block RAMs

Used
Resource

Utilization ratio

23052 68%

26926 39%

28229 41%

128 88%

Used Utilization ratio

27,460 81%

38,266 56%

36848 54%

128 88%

6-bit uniform
quantization

6-bit non-uniform
quantization

 

4.4 Summary 

In this chapter, design issues for high throughput LDPC decoders have been 

discussed. We have proposed an algorithmic transformation for significant reduction of 
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routing complexity in LDPC decoders. It has been shown that the proposed approach can 

reduce 54% outgoing wires of each VNU and 90% outgoing wires of each CNU if using 4-

bit quantization for decoding a (2048, 1723) (6, 32) LDPC code. The detailed architecture 

for permutation matrices based LDPC codes have been illustrated. Furthermore, we have 

developed a high-throughput low-complexity decoder architecture for generic QC-LDPC 

codes by exploiting the regularity in parity check matrices of QC-LDPC codes. It has been 

estimated that 4.7 Gbit/sec decoding throughput for a (3456, 1728) (3, 6) QC-LDPC code 

can be achieved. Finally, we have demonstrated an FPGA implementation of a low 

complexity, high speed decoder for EG-based QC-LDPC codes. The FPGA 

implementation with Xilinx Virtex II 6000 achieves a maximum decoding throughout of 

over 170 Mbps at 15 iterations. 
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5 PRACTICAL LOW COMPLEXITY LDPC DECODERS 

In this chapter, we briefly analyze the decoding complexity of WBF-based 

algorithms from the VLSI implementation point of view. To maintain low decoding 

complexity while further narrowing the performance gap from the SPA, we present an 

optimized 2-bit decoding approach. It is shown that the hardware implementation 

complexity of the proposed method is comparable to that of WBF-based algorithms. 

However, it has significantly better decoding performance and faster convergence speed.  

5.1 The Optimized 2-bit Decoding  

5.1.1 Decoding Scheme 

In the optimized 2-bit decoding method, each message stored in the memory is 

represented as 2 bits, msbb . Bit sb  is the hard-decision of a received soft message. Bit mb  

indicates the hard-decision confidence. mb =0 denotes a low confidence instead of a zero 

value. Similarly, mb =1 represents a high confidence. The values of the two bits are given 

by (5.1) and (5.2), where, 
yT  represents a threshold. Its optimum value can be obtained 

through simulation.  

)( ysignbs =                                                          (5.1) 

⎩
⎨
⎧ >

=
otherwise

Tyif
b y

m ,0
||,1                                              (5.2)  

The a posteriori probability (APP) based Min-Sum algorithm [24] is slightly 

modified in this section to maximally exploit the confidence bits in 2-bit intrinsic and 

extrinsic messages for a best decoding performance. The check-to-variable and variable-to-

check message updating phases are formulated in (5.3) and (5.4), where )(k
mnR , )(k

mnL , and nI  

stand for the check-to-variable, variable-to-check, and intrinsic messages, respectively.   
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α+==                           (5.4) 

Function )(⋅f converts a two-bit message to an integer. Correspondingly, function 

)(⋅g is for converting an integer to a two-bit message. With regard to the computation of 

(5.4), three steps are needed.  

1) The input 2-bit data nI or
jnR is converted to an integer number. Because mb =0 

indicates a low confidence, the converted integer is set to 1 (i.e., the smallest positive 

integer). Similarly, mb =1 represents a high confidence. Therefore, a larger integer W is 

assigned for the converted result. The optimum value of W can be determined through 

simulation.  

2) The summation is performed.  

3) The integer summation is converted back to a 2-bit message before storing into 

memory. The mnL  conversion threshold, LT , is determined through simulation. The sign 

bit is never changed in the above data conversion steps.  

Next, we use one high rate code and one low rate code mentioned before to further 

explain the 2-bit decoding approach and illustrate its decoding performance. For both 

codes, α  in (5.4) is set to 1/2 in our simulation. For the rate-0.84 code, we choose yT  , W, 

and LT  to be 3/8, 7, and 6, respectively, through simulation. Thus, each intrinsic soft 

message is assigned a value using (5.5). 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

,11
,10
,00
,01

msbb      

8/3
8/30

08/3
8/3

−<
−≥>
≥≥

>

yif
yif

yif
yif

                                    (5.5) 

For the computation of (5.3), 2-bit messages read from memory are directly used. 

Each 2-bit computation output is directly stored back to memory. For the computation 
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expressed in (5.4), each 2-bit message from memory must be converted to an integer 

number as shown in the left two columns of Table 5.1. The addition result of (5.4) must be 

converted to a 2-bit message as shown in the right two columns of Table 5.1 before storing 

back to memory. Similarly, we choose yT , W, and LT  to be 1/2, 6, 5, respectively, for the 

rate-0.5 code. In general, to determine the values of the three thresholds for a given LDPC 

code with simulation, a coarse search precision can be used in the beginning to roughly 

identify a small search range. Then simulation can be performed with a fine search 

precision in the small search range for a best decoding performance.  

TABLE 5.1  DATA CONVERSION FOR THE RATE-0.84 CODE 
Message from 

memory 
integer for addition 

in (11) 
Addition result 

of (11) 
Message to 

memory 
00 1 06 ≥> x  00 
01 7 6≥x  01 
10 -1 60 −>> x  10 
11 -7 6−≤x  11 

 

5.1.2 Decoding Performance Simulation 

For a comparison, WBF-based algorithms are simulated using double precision. For 

the (2048, 1723) (6,32) rate-0.84 code, the maximum iteration number is set to 48. The 

proposed 2-bit decoding method outperforms the IMWBF algorithm by 0.7dB when the 

target BER is 710− . For the (1974, 987) (5,10) rate-0.5 code, the maximum iteration 

number is set to 120. It can be observed that the 2-bit decoding approach significantly 

outperforms WBF-based algorithms. Its decoding performance is 2.4 dB better than that of 

IMWBF algorithm when the target BER is 710− .  In WBF-based algorithms, the 

information delivered from one iteration to the next iteration is only one or a few flipped 

decision bits. Soft messages, which require much more memory than decision bits, are not 

well exploited. Consequently, it has large performance loss compared to belief propagation 
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decoding algorithm.  On the contrary, the optimized 2-bit decoding method maximally 

exploits the confidence bits in 2-bit intrinsic and extrinsic messages of APP based Min-

Sum algorithm for best decoding performance. It should be pointed out that both the WBF-

based algorithms and the proposed 2-bit approach are not well suited for decoding LDPC 

code with only very low column weights (2 or 3) because of large performance loss from 

SPA. On the other hand, the performance gap between SPA and the low complexity 

decoding approaches mentioned before decreases as the column weight of LDPC code 

increases.   
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Figure 5.1    Performance of the (2048, 1723) rate-0.84 LDPC codes. 
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Figure 5.2    Average number of iterations for decoding the                                                
(2048, 1723) rate-0.84 LDPC codes. 
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Figure 5.3    Performance of the (1974, 987) rate-0.5 LDPC codes 
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Figure 5.4    Average number of iterations for decoding the                                                  
(1974, 987) rate -0.5 LDPC codes. 

 

5.2 Low complexity 2-bit decoder design 

5.2.1 Memory Reduction Scheme 

To store the check-to-variable message mnR , one simple method is to store all mnR in 

their individual format. With this method, the 2-bit decoder needs much more memory than 

WBF-based decoders. One efficient method is to store the mnR messages corresponding to 

one row of H matrix in a compressed format, i.e., the smallest magnitude (min1) and its 

index, the second smallest magnitude (min2), and all signs of the mnR messages. An even 

more efficient method is employed in this design to reduce the memory requirement of the 

2-bit decoder. For each row of H matrix, we only store min1, min2, and the product of all 

signs of the mnR messages. The needed jnR  messages in (5.4) are completely recovered as 

(5.6) with the aid of nL . 
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Apparently, the computation in (5.6) increases the complexity of variable node unit. 

However, because only two bits are used for each message, the arithmetic computation in 

(5.6) and (5.4) are equivalent to very simple combinatorial logic computations. We will 

further discuss the hardware complexity of computation units later.  

The estimated memory requirement for the proposed 2-bit decoder is shown in Table 

5.2. N and M are the column and row dimensions of parity-check matrix of the considered 

LDPC code. Dual-port (DP) memory is assumed for appropriate memory modules to 

support simultaneous read and write operations. We also assume that the needed hardware 

resource of each dual-port memory bit is twice as that of each single-port (SP) memory bit. 

For a comparison, the memory requirement of MWBF decoder is estimated and listed in 

Table 5.3. We assume that three bits are used to quantize the magnitude of each received 

soft message for that method since 2-bit quantization is not acceptable.  Our simulation 

shows that 2-bit quantization causes more than 0.5 dB performance loss compared to the 

floating-point simulation for either considered code. From our detailed analysis, we know 

that MWBF decoder requires the minimum hardware resource for both memory and 

computation unit among various modified WBF-based decoders. It can be concluded that 

the ratio of memory requirement for MWBF decoder and the 2-bit decoder is 1:1.2 for both 

of the rate-0.84 code and the rate-0.5 code. 
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TABLE 5.2  MEMORY REQUIREMENT OF THE 2-BIT DECODER 

Message Parameterized memory 
requirement 

Memory for the 
rate-0.84 code 

Memory for the 
rate-0.5 code 

nI  (SP,2-bit) 2N ×  4,096 3,948 
min1, min2, and sign 

(DP, 3-bit) 
2111M ×++× )(  2,304 5,922 

Hard-decision       
(DP, 1-bit) 2N ×  4,096 3,948 

|| nL  (DP, 1-bit) 2N ×  4,096 3,948 
Total M6N6 +  14,592 17,766 

  

TABLE 5.3  MEMORY REQUIREMENT OF MWBF DECODER 

Message Parameterized memory 
requirement 

Memory for the 
rate-0.84 code 

Memory for the 
rate-0.5 code 

|| ny   (SP,3-bit) 3N ×  6,144 5,922 

mnw (SP, 3-bit) 3M ×  1152 2961 
Hard-decision  (DP, 1-bit) 2N ×  4,096 3,948 

Check-sum (DP, 1-bit) 2M ×  768 1,974 
nE   0 0 

Total M5N5 +  12,160 14,805 
 

5.2.2 Computation Units Design 

Bcause only two bits are used for each message in the proposed 2-bit decoder, the 

arithmetic computation in (5.3), (5.6) and (5.4) are equivalent to very simple logic 

computations. Thus the hardware cost is very small. To illustrate its details, for simplicity 

and clarity, let us assume that the degree of variable node is 3 and the degree of check node 

is 6. 

Fig. 5.5 shows the structure of the check node unit (CNU) for the optimized 2-bit 

decoding method. As we explained before, CNU is for calculating min1, min2, and the 

product of all signs of the mnR messages. The portion below the dashed line is for 

generating the min1 and min2 from 6 1-bit inputs. The computation is performed in two 

stages. In the first stage, each M1 unit is used to calculate the smallest and the second 
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smallest values from three 1-bit inputs. The logic function of the M1 unit is shown in (5.7). 

In the second stage, an M2 unit is used for generating the values of min1 and min2. The 

logic equation of the M2 unit is given in (5.8). The product of all sign bits is calculated 

using a XOR-tree. The output of a CNU is composed of 3 bits. The structure can be easily 

extended if the number of inputs is more than 6. 

⎩
⎨
⎧

++=
=

)( 213212

3211

mmmmma
mmma                                     (5.7) 

⎩
⎨
⎧

+=
=

)( 1122

11

babamin2
bamin1                                       (5.8) 

Fig. 5.6 shows the structure of the variable node unit (VNU). Its task is performed in 

4 steps: 1) Recovering three )(k
mnR messages in their individual format as expressed in (5.6). 

Each )(k
mnR is recovered by a compare-and-select (C&S) unit. 2) Converting 2-bit data to 

integer number. 3) Performing summation as shown in (5.4). 4) Converting the summation 

to 2-bit data before storing into memory. A VNU has 5 inputs: one 2-bit intrinsic message, 

nI , one 2-bit extrinsic message, )( 1k
nL − , and three 3-bit intermediate messages. Each 

intermediate message is computed by a CNU. The logic function of C&S unit is given in 

(5.9) which is equivalent to (5.6). In (5.9), |x| stands for the 1-bit magnitude of x. Step-2 

and step-3 are performed with look-up table (LUT) and adder* unit, respectively. Because 

each 4-bit input of an adder* unit has only 4 possible values (see Table 5.1), the hardware 

cost of an adder* unit is much less than that of a 4-input 4-bit adder tree.  Stpe-4 is 

completed by a 6-to-1 combinational logic unit. The sign bit of the output is identical to 

that of the summation value given by the adder* unit. 

⎪
⎩

⎪
⎨

⎧

⊕=

+=

−

−

)sgn()(

||||

)()()(

)()()()(

1k
n

k
m

k
mn

1k
n

k
m

k
m

k
mn

LSRsign

L2minmin1R
                                 (5.9) 



 

                                

82                                 

 

To quantitatively depict the hardware complexity of the discussed computation units, 

we used Verilog to model the check node unit and variable node unit addressed above. The 

two node units are synthesized using Leonardo Spectrum with TSMC 0.35um technology. 

All syntheses are optimized for area. The synthesis results are listed in Table 5.4.  

 

 

Figure 5.5    Structure of the check node unit for the optimized 2-bit decoding approach. 

 

 

Figure 5.6    Structure of the variable node unit for                                                                   
the optimized 2-bit decoding approach. 
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For a comparison, the computing units for a WBF-based decoder are briefly 

discussed in the next. The computation core for the bit flipping operation is shown in Fig. 

7. Block 1 is for (2.22). The maximum value of weighted check sum is computed by block 

2. The sm=>2’s unit is for sign-magnitude to 2’complement conversion. To be consistent 

with Section 5.2.1, 3-bit quantization is assumed for the magnitude of each soft message. 

We make the same assumption as above about node degrees. The hardware cost of the 

computing unit for (2.18) in WBF-based decoder is ignored. The synthesis result using the 

same technology and optimization constraints is shown in Table 5.4. For a fair comparison, 

we assume the same parallelism level is adopted for either decoder. Therefore, we need 

only compare the complexity of single copy of those computation units. It can be observed 

that CNU and VNU for 2-bit decoder need less logic gates than the computation units for 

WBF-based decoder.  

sm=>2's

sm=>2's

sm=>2's

scaling

Adder
Tree

w1
s1

w2
s2

w3
s3

|y|
3

3

3

3

3

4

4

4

6 register
6

6

Block 1 Block 2  

Figure 5.7    The computation core needed in the bit flipping operation for                               
a WBF-based decoder. 

 

For the considered two LDPC codes, the check node degree and variable node 

degree are respectively larger than those of the above example. Roughly speaking, the 

complexity of a computation unit linearly scales up as the number of inputs increases. 

Overall, the complexity ratio for computation units of LDPC decoders using different 

algorithms remain the same or similar for different rate codes. Therefore, we conclude that 
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the proposed 2-bit decoder has comparable, if not less, hardware in the computation core 

with that of WBF-based algorithms. 

TABLE 5.4  COMPLEXITY OF COMPUTATION UNITS FOR THE OPTIMIZED 2-BIT                     
AND WBF-BASED DECODER.   

Computation units for the optimized 2-bit decoder Gates 
  Check node unit. 19 
  Variable node unit.  55 
 
Computation unit for WBF-based  decoder Gates 
  Computation core needed in the bit flipping operation.   
  (Block 1 requires 90 gates and Block 2 requires 67 gates)      157 

 

5.3 Summary 

We have studied VLSI implementation issues for WBF-based LDPC decoding 

algorithms and presented an optimized 2-bit decoding approach. The proposed decoding 

approach significantly outperforms the state-of-the-art WBF-based decoding algorithms for 

the considered LDPC codes while maintaining comparable hardware complexity to WBF-

based algorithms. Therefore, the proposed 2-bit decoding approach is more attractive than 

WBF-based decoding approaches in practical low complexity VLSI implementation of 

LDPC decoders. 
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6 REDUCING ITERATIONS FOR LDPC CODES 

LDPC codes are decoded using iterative decoding algorithms. To increase 

decoding speed, it is highly desired to reduce the number of decoding iterations without 

significant performance loss. In this chapter, the decoding schemes which can reduce the 

number of decoding iterations for decodable and undecodable blocks are presented. In 

addition, we demonstrate that the decoding convergence of WBF-based algorithm can be 

significantly speeded up with a multi-threshold detection scheme. 

6.1 Extended Layered Decoding of LDPC Codes 

To improve decoding convergence, various rescheduled message passing schemes 

are presented. Sharon et al., [52], proposed a message passing scheme based on a serial 

update of check nodes’ messages with SPA. In [49], Hocevar developed a low complexity 

LDPC decoder using layered decoding approach, where the SPA algorithm is used for the 

computation of each layer. Mansour and Shanbhag, [50], proposed a turbo-decoding 

message passing (TDMP) decoding algorithm. All these approaches achieve significantly 

faster convergence speed and slightly better decoding performance over TPMP SPA. 

However, one common constraint in all these approaches is that the column weight of each 

layer is at most 1. More related works can be found in [28][66][67].   

For many LDPC codes, such as irregular repeat accumulation (IRA) code [9], 

Euclidean geometry (EG) based code [23], and progressive edge growth (PEG) code [30], 

to satisfy the constraint of the standard layered decoding approach, the number of rows in 

each layer of parity check matrices could be very small. Because the computation has to be 

performed layer by layer in the layered decoding, the achievable decoding parallelism is 

thus limited, which is undesired for high throughput decoding.  
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To tackle the problem, we propose an extended layered decoding approach. Given 

any LDPC code, the parity check matrix can be partitioned into any number of horizontal 

layers and no constraint in the column weight of each layer is enforced. It enables more 

flexibility in high-throughput LDPC decoder design with layered decoding since many 

rows can be arranged in one layer and processing more rows per cycle over the standard 

approach becomes possible.  

6.1.1  The Proposed Layered Decoding Approach 

In the standard layered decoding approach, the parity check matrix of LDPC code is 

partitioned into L layers: [ ]T
L

T
2

T
1

T HHHH ⋅⋅⋅=  . Each layer defines a supercodes lC  and 

the original LDPC code is the intersection of all supercodes: L21 CCCC II ⋅⋅⋅= . The 

column weight of each layer is at most 1. 

We propose an extended layered decoding approach which removes the constraint in 

column weight of each layer. The reliability message from layer l to l+1 for variable node v 

is represented by l
vL . The message passing in the thk  iteration is as follows: 

For the first layer, i.e., l = 1, the extrinsic messages are updated using (6.1a), (6.2), 

and (63a). For other layers, i.e., l = 2, 3, …, L, the updating of extrinsic message is 

expressed in (6.1b), (6.2), and (6.3b). 
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where, )(vM l denotes the set of check nodes in the thl layer connected to the variable node 

v.  

It can be observed that if the column weight of each layer is at most 1, the proposed 

approach coincides with the standard layered decoding approach with SPA. On the other 

hand, if we view the parity check matrix as one layer, the proposed approach becomes 

TPMP SPA. The extended layered decoding approach can be easily extended to the 

approximations of SPA such as MSA and A-min [32] by replacing (6.2) with the 

corresponding formula for check-to-variable message updating. Our simulation results 

show that, with the proposed approach, no performance is sacrificed compared to TPMP 

SPA. Similar to the standard layered decoding approaches, faster decoding convergence is 

achieved as well.  

6.1.2 Overlapped Message Passing Decoding 

For high–speed applications, it is desired to perform check-to-variable message 

updating and reliability message updating in parallel to maximize the decoding throughput. 

In this section, we propose a low complexity overlapped message passing scheme for 

block-serial decoders [54] [69]. In a block-serial decoder, the data corresponding to a layer 

are processed block column by block column in a serial fashion. A block column includes 

one or multiple blocks. Each CNU loads one input data per clock cycle and all check node 

units (CNUs) associated with a block column work in parallel. After the computation of 

check-to-variable messages corresponding to a layer is completed, all reliability messages 

are updated. In [54] [69], a mirror memory for storing all the reliability messages is 

introduced to enable overlapped message passing. A close study of the data flow in (6.1)-

(6.3) shows that the mirror memory for vL  messages can be eliminated without sacrificing 



 

                                

88                                 

 

the decoding throughput. In the new approach, MSA for check-to-variable message 

updating is adopted.  

The key computation of a check node unit (CNU) is to generate the smallest 

magnitude, min1, and the second smallest magnitude, min2. Fig. 6.1 shows the 

computation core of a serial CNU. Before the computation of check-to-variable messages 

for one row is completed, the scratch registers, m1_reg and m2_reg, store the temporal 

value of min1 and min2. After the last cvL message is delivered to CNU, the final values of 

min1 and min2 can be sent out from m1_reg and m2_reg, respectively. The dashed-lines 

are for updating enable signals. If x1m > , m1_reg is updated using the value of x 

Otherwise, update is disabled. If x2m > , m2_reg is updated using the value of either x or 

m1. Otherwise, its content is unchanged. 

 

cvL

 
Figure 6.1    Serial computation of the smallest and the second smallest magnitude. 

 

To enable overlapped message updating, in the thk  iteration, the data flow of a 

block-serial decoder is scheduled as shown in Fig. 6.2.  In the first stage, (6.3) is 

performed. The reliability messages corresponding to layer (l-1) are computed and stored 

into memory. Then, the extrinsic messages for layer l are computed. In the last stage, the 

check-to-variable message computation is performed. It should be noted that the above 
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computations are performed block column to block column for every layer. In Fig. 6.2, 

lk1Min , and lk2Min , are the intermediate computation results. As soon as the data 

corresponding to all block columns in layer l are processed, the final values of lk
cvR , are 

generated immediately and stored into memory. It can be seen that no mirror memory 

vL message is needed in the improved overlapped message passing scheme.   

If the column weight of each layer is at most one, the data flow can be further 

simplified to avoid the duplicated subtraction occurred in stage 1 and stage 2 by storing 

extrinsic variable-to-check messages instead of reliability messages. 
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Figure 6.2    The data flow of overlapped message passing scheme. 

 

6.1.3 Simulation Results 

Two LDPC codes are considered in our simulations. One is (2038, 1723) rate-0.84 

Reed-Solomon code based (6, 32) regular code [18]. Its parity check matrix is an array of 
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326 ×  permutation matrices. The other is (1008, 504) rate-0.5 irregular code constructed 

with the progressive edge growth method [30]. It has variable and check node degree 

distribution as follows: 

,...

....)(
15147

5432

x1000x0010x0090

x0970x0350x2810x4770x

+++

+++=λ
                                              

....)( 997 x010x980x010x ++=ρ  

In all simulations, the maximum number of iteration is set as 50. The H matrix of the 

rate-0.84 regular code is evenly partitioned into 6 layers, 3 layers, and 2 layers such that 

the column weight of each layer is 1, 2, and 3, respectively. For the first partitioning case, 

the proposed approach coincides with standard layered decoding approach. Fig. 6.3 shows 

the average number of iterations and bit error rate (BER) performance of different 

partitioning cases. We can see that the proposed approach converges faster than TPMP 

SPA. Meanwhile, it has better decoding performance than TPMP SPA. Without loss of 

generality, the H matrix of the rate-0.5 code is evenly partitioned into 504 layers, 6 layers, 

3 layers, and 2 layers. Fig. 6.4 shows that the extended layered decoding approach 

converges much faster than TPMP SPA for the rate-0.5 PEG LDPC code. It can be 

observed that the proposed method outperforms the TPMP SPA in all partitioning cases.  



 

                                

91                                 

 

2.8 3 3.2 3.4 3.6 3.8 4 4.2
0

5

10

15

20

25

30

35

40

45

Eb/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns
 to

 c
on

ve
rg

e

 

 

standard layered decoding
propose, 3 layers
propose, 2 layers
TPMP SPA

2.8 3 3.2 3.4 3.6 3.8 4 4.2

10
-6

10
-4

10
-2

Eb/No (dB)

B
it 

E
rro

r R
at

e

 

Figure 6.3     Average number of iterations and bit error rate (BER) for the rate-0.84 code 
with standard layered decoding, proposed approach, and TPMP SPA decoding. 
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Figure 6.4    Average number of iterations and BER for the rate-0.5 code with standard 
layered decoding, proposed approach, and TPMP  SPA decoding. 
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6.2 An Efficient Early Stopping Scheme for LDPC Decoding 

It happens frequently at low to medium signal to noise ratios (SNRs) that a valid 

codeword can not be found even through a large number of decoding iterations are 

performed. An efficient scheme to detect such undecodable cases as early as possible and 

hence to avoid unnecessary computations is highly desired in practice. In the literature, 

various early stopping criteria [22][40][70] for turbo codes decoding have been proposed. 

A comprehensive overview is presented in [41]. Because of the similarity between the 

turbo decoding and LDPC decoding, some existing early stopping criteria for turbo 

decoding can be adapted for LDPC decoding. However, they may cause considerable 

performance loss at high SNRs. Recently, a convergence of mean magnitude (CMM) early 

stopping criterion [71] optimized for LDPC decoding was presented. This criterion is based 

on the evolution of the average magnitude of the log-likelihood ratio (LLR) messages in 

the decoding process. This approach can effectively detect undecodable cases. However, it 

has very high computation overhead because it involves the accumulation of the absolute 

values of all LLR messages and a large bit-width multiplication operation. 

By exploring the statistic characteristics of extrinsic and reliability messages 

computed during the decoding process, we found that the sign of extrinsic messages and 

reliability messages can be utilized to predict whether the received block is decodable or 

not. For the convenience, the equations for check-to-variable node message passing of SPA 

are rewritten as (6.4) and (6.5). 

,)()(∏ ∈= cNn cnc LsignS                                                 (6.4) 

{ },)()()( )( cvcNn cncvccv LLLsignSR Ψ−ΨΨ××= ∑ ∈                               (6.5) 

The check-sum cP of parity equation TzH corresponding to check node c is computed by 
(6.6).  

v
cNv

c zP ∑
∈

⊕=
)(

                                                (6.6) 
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where ∑⊕  represents binary addition and z  represents the hard-decision vector.. If 

0Pc = for any check node c, a valid code is found and the decoding process can be 

terminated. In VLSI design, (6.4) is implemented in the same way as (6.6). Let SS  denote 

the summation of the binary mapping of every sign product computed in (6.4) 

(i.e., ∑ −
== 1M

0c cS SS ) and PS  as the summation of the check-sum of every parity equation 

computed in (6.6) (i.e., ∑ −
== 1M

0c cP PS ). In LDPC decoding, the value of PS  in the thk  

iteration, k
PS , decreases as k increases (even though a certain extent of fluctuation may 

occur) if the decoded block is decodable. PS  converges to zero when a valid code is found. 

It can be observed that the convergence of k
SS  is very similar to that of k

PS  during the 

decoding process. Both k
PS  and k

SS  can be utilized to detect undecodable blocks. In this 

design, k
SS  is exploited for the consideration of easy hardware implementation.  

For undecodable blocks, usually k
SS  keeps a large value and fluctuates in a small 

dynamic range of magnitudes. If a received block is decodable, the variation duration of 

k
SS  generally is short and k

SS  goes to zero along a steep slope in most cases. Even if in the 

cases that k
SS  keeps fluctuating with a long duration, the fluctuant magnitude is much lager 

than that of undecodable cases. Therefore, the convergence of k
SS  can be exploited to 

predict the decoding convergence before the maximum number of iterations is reached or a 

valid codeword is found.  

It should be pointed out that any individual detection trial may have three possible 

outcomes, i.e., hit, miss detection, and false alarm. In LDPC decoding, a false alarm causes 

the performance loss. Thus, early stopping schemes should be optimized to minimize the 

false alarm rate at all SNRs. However, the block error rate is very small at high SNRs and 
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the computation power for undecodable blocks is very small, the early stopping scheme 

can be disenabled at high SNRs to avoid performance loss and save computation overhead. 

Based on the above discussion, an early stopping scheme for detecting the undecodable 

blocks is developed as follows: 

    

  

 In the step 2a, THΔ and T are two predetermined thresholds by simulation. k
SS  

converges once if 0>Δ  is satisfied. Under this condition, THΔ<Δ  indicates that a slow 

convergence occurs. T is for recording the duration of slow convergence. The proposed 

early stopping scheme can be implemented with a M2log -bit accumulator for counting the 

Step 1: 
Roughly check the SNR in the first iteration. 
If it is at low to medium range, step 2a is performed, otherwise 
step 2b is performed. 

Step 2a: 
counter:=0 
if (fluctuation occurred) then 

k
S

1k
S SS −=Δ −: ; 

if ( 0>Δ ) then 
if ( THΔ<Δ ) then 

counter:=counter+1; 
else 

counter:=0; 
endif 

endif 
if (counter>T) then stop decoding 
else continue to the next iteration 
endif 

endif 
Step 2b: 

Continue to the next iteration. 
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number of 1s from the binary mapping of cS  and a few additional logic gates. Therefore, 

the hardware overhead is very small. Simulation results have demonstrated that the 

proposed scheme can significantly reduce the average number of decoding iterations at low 

to medium SNRs. The performance loss is very small at all SNRs. We have published 

more details in [42]. 

 

6.3 The Fast Decoding Scheme for WBF-based Algorithms  

6.3.1 Multi-threshold Bit Flipping Scheme 

For long codeword and/or low SNR channel, the hard-decision vector z given in the 

initialization step of WBF-based algorithms has a large number of errors. If only one bit is 

flipped per iteration, a large number of iterations are required, which leads to very long 

decoding latency. For the original bit-flipping algorithm, Gallager suggested to flip a 

decision bit which is contained in more than b unsatisfied parity-check equations [1]. The 

optimized integer b is a function of decoding iteration, check node degree and variable 

node degree.  We extend the approach and employ multi-threshold scheme as the following 

to speed up the decoding process of WBF-based algorithms. 

                                         

In WBF-based algorithms, the hard-decision bit lz corresponding to the maximum 

value of k
nE in (2.20), (2.22) or (2.24) is flipped. If the decoding process converges, the 

maximum value of k
nE usually decreases as k increase. Thus, the condition of 321 δ>δ>δ  

if k<4 then flip the bit n if 1
k
nE δ>  

else if k<8 then flip the bit n if 2
k
nE δ>  

else if k<12 then flip the bit n if 3
k
nE δ>  

else flip the bit corresponding the largest k
nE  
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should be satisfied. For a specific LDPC code, the distribution of the maximum value of 

k
nE  at a given SNR can be easily found through simulation. It facilitates the setting of the 

initial values of iδ . With additional performance simulation, the final value of iδ can be 

determined. In practice, the values of iδ optimized at a medium SNR value are also 

suitable for low and high SNRs. The simulations on two LDPC codes are presented. One is 

a (2048, 1723) (6, 32) rate-0.84 permutation matrix based LDPC code. The other is a 

(1974, 987) (5, 10) rate-0.5 quasi-cyclic LDPC code. For simplicity, the two codes are 

labeled as rate-0.84 code and rate-0.5 code, respectively. Table 6.1 lists the values of 

iδ used in our simulations. It is shown that the proposed scheme can significantly speed up 

the WBF-based decoding algorithms.  

TABLE 6.1  THE  VALUE OF iδ FOR THE  RATE-0.84 CODE AND THE  RATE-0.5 CODE 

 1δ  2δ  3δ  
Rate-0.84 code 0.8 0.55 0.35 
Rate-0.5 code 1.5 1.0 0.6 

 

6.3.2 Performance Simulation 

We simulated the IMWBF algorithm using double precision. For the (2048, 1723) 

(6,32) rate-0.84 code, the maximum iteration number is set to 48. We can see from Fig. 

6.12 and Fig. 6.13 that the average number of iterations of IMWBF algorithm is 

significantly reduced by the fast decoding scheme with negligible bit error rate (BER) and 

frame error rate (FER) performance loss. The proposed 2-bit decoding method outperforms 

the IMWBF algorithm by 0.7dB when the target BER is 
710− . For the (1974, 987) (5,10) 

rate-0.5 code, the maximum iteration number is set to 120. We can see from Fig. 6.14 and 

Fig. 6.15 that the proposed fast decoding scheme can reduce the average number of 
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iterations needed by IMWBF algorithm to one third at the SNR of 5.5 dB. The introduced 

performance loss is negligible. 
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Figure 6.5    Performance of the (2048, 1723) rate-0.84 LDPC code. 
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Figure 6.6    Average number of iterations for decoding                                                                  
the (2048, 1723) rate-0.84 LDPC code. 
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Figure 6.7    Performance of the (1974,987) rate-0.5 LDPC code. 
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Figure 6.8    Average number of iterations for decoding                                                         
the (1974,987) rate-0.5 LDPC code. 
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6.4 Summary 

We have discussed the approaches to reduce the number of decoding iterations and 

hence to increase decoding speed. First, an extended layered decoding approach has been 

presented. It has been shown that it converges faster and has better error correction 

capability than the conventional TPMP LDPC decoding algorithm. The approach is 

suitable for both random and structured LDPC codes. Then, an efficient early stopping 

scheme has been proposed to detect undecodable blocks as early as possible in order to 

avoid unnecessary computation. The two approaches can be combined with SPA and its 

various near optimum approximate algorithms to speed up LDPC decoding. Finally, we 

demonstrate that the decoding convergence of WBF-based algorithm can be significantly 

speeded up with a multi-threshold detection scheme. 
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7 CONCLUSIONS AND FUTURE WORKS  

7.1 Conclusions 

This research has investigated various VLSI design issues of LDPC decoders and has 

proposed low-complexity high-speed decoder architectures to reduce VLSI implementation 

complexity and improve decoding throughput. 

To reduce hardware implementation complexity of LDPC decoder, we have 

proposed a memory efficient partially parallel decoder architecture, which stores soft 

messages in the Min-Sum decoding algorithm in a compressed form. In general, over 30% 

memory can be saved. Various optimization methods have been presented to further reduce 

the implementation complexity and minimize the critical path.  

We have investigated various design approaches for high throughput LDPC 

decoders. We have proposed an efficient message passing decoder architecture to reduce 

interconnect complexity. If using 4-bit quantization for decoding a (2048, 1723) (6, 32) 

LDPC code, the approach can reduce 54% outgoing wires per variable node unit and 90% 

outgoing wires per check node unit. Then, by exploiting the regularity in parity check 

matrices of QC-LDPC codes, we have developed a high throughput decoder architecture 

for QC-LDPC codes. It has been estimated that 4.7Gbit/sec decoding throughput for a 

(3456, 1728) (3, 6) QC-LDPC code can be achieved. In addition, we have also 

implemented an enhanced partially parallel decoder architecture with FPGA for a (8176, 

7156) Euclidian geometry based QC-LDPC code. A worst-case source information 

decoding throughput (at 15 iterations) over 170Mbps is achieved.  

For cost sensitive applications, we have proposed an optimized 2-bit soft decoding 

approach. The implementation complexity of the proposed method is comparable to WBF-
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based algorithms. However, the proposed approach achieves much better decoding 

performance and faster convergence speed.  

LDPC codes are decoded using iterative decoding algorithms. We have discussed the 

approaches to reduce the number of decoding iterations and hence to increase the decoding 

speed. First, we have proposed an extended layered decoding approach. Simulations on 

both random and structured LDPC codes have shown that the proposed approach 

converges faster than conventional TPMP decoding algorithm. Second, it happens 

frequently that a valid codeword can not be found even though a large number of decoding 

iterations are performed at low to medium signal-to-noise ratios. We have proposed an 

efficient early stopping scheme to detect such undecodable cases as early as possible in 

order to avoid unnecessary computation. Finally, we have demonstrated that the decoding 

convergence of WBF-based algorithm can be significantly speeded up with a multi-

threshold detection scheme. 

 

7.2 Future Work 

This research has assumed that a binary codeword is BPSK modulated and 

transmitted through an AWGN channel. It has been found that non-binary LDPC codes 

have better performance than binary LDPC codes if the block length in binary bits are the 

same [6][32]. Unfortunately, the message passing decoding algorithm for non-binary 

LDPC code is more complex than that for binary LDPC codes. Recently, a few researchers 

have explored reduced complexity decoding algorithms for non-binary LDPC codes 

[29][72]. However, little effort has been made for investigating the VLSI implementation 

issues. To facilitate the applications of LDPC codes designed in high order Galois fields, 

the decoding complexity has to be significantly reduced. Our research work can be 
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extended to low complexity decoding of non-binary LDPC codes in both algorithm and 

architecture level. Extensive efforts are needed in efficient VLSI design for non-binary 

LDPC decoders.  
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