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Abstract. The size of the bioavailable (i.e., “fixed”) nitrogen
inventory in the ocean influences global marine productiv-
ity and the biological carbon pump. Despite its importance,
the pre-industrial rates for the major source and sink terms
of the oceanic fixed nitrogen budget, N2 fixation and denitri-
fication, respectively, are not well known. These processes
leave distinguishable imprints on the ratio of stable nitro-
gen isotopes,δ15N, which can therefore help to infer their
patterns and rates. Here we useδ15N observations from the
water column and a new database of seafloor measurements
to constrain rates of N2 fixation and denitrification predicted
by a global three-dimensional Model of Ocean Biogeochem-
istry and Isotopes (MOBI). Sensitivity experiments were per-
formed to quantify uncertainties associated with the isotope
effect of denitrification in the water column and sediments.
They show that the level of nitrate utilization in suboxic
zones, that is the balance between nitrate consumption by
denitrification and nitrate replenishment by circulation and
mixing (dilution effect), significantly affects the isotope ef-
fect of water column denitrification and thus global mean
δ15NO−

3 . Experiments with lower levels of nitrate utiliza-
tion within the suboxic zone (i.e., higher residual water col-
umn nitrate concentrations, ranging from 20 to 32 µM) re-
quire higher ratios of benthic to water column denitrification,
BD : WCD= 0.75–1.4, to satisfy the global mean NO−

3 and
δ15NO−

3 constraints in the modern ocean. This suggests that
nitrate utilization in suboxic zones plays an important role in
global nitrogen isotope cycling. Increasing the net fractiona-
tion factorεBD for benthic denitrification (εBD = 0–4 ‰) re-
quires even higher ratios, BD : WCD= 1.4–3.5. The model
experiments that best reproduce observed seafloorδ15N sup-
port the middle to high-end estimates for the net fractiona-
tion factor of benthic denitrification (εBD = 2–4 ‰). Assum-

ing a balanced fixed nitrogen budget, we estimate that pre-
industrial rates of N2 fixation, water column denitrification,
and benthic denitrification were between 195–350 (225), 65–
80 (76), and 130–270 (149) Tg N yr−1, respectively, with our
best model estimate (εBD = 2 ‰) in parentheses. Although
uncertainties still exist, these results suggest that marine N2
fixation is occurring at much greater rates than previously es-
timated and the residence time for oceanic fixed nitrogen is
between∼ 1500 and 3000 yr.

1 Introduction

Biotically available “fixed” nitrogen (fixed-N) is one of the
major nutrients limiting phytoplankton growth in the ocean.
Its generally low abundance in sunlit surface waters limits
the primary production that forms the base of ocean ecosys-
tems and provides energy for more complex, higher-level or-
ganisms (e.g., marine animals). Thereby, fixed-N also limits
the biological sequestration of atmospheric carbon dioxide
(CO2) into biomass, part of which subsequently sinks to-
wards the deep ocean before being respired back into CO2.
This so-called “biological carbon pump” affects the parti-
tioning of CO2 among the ocean and atmosphere. It has been
suggested that large changes in the oceanic fixed-N inventory
can modulate the strength of the biological carbon pump and
thereby influence atmospheric CO2 over glacial/interglacial
timescales (McElroy, 1983; Falkowski, 1997). Since pro-
cesses that control the size of the fixed-N inventory are sensi-
tive to climate (Gruber, 2004; Galbraith and Kienast, 2013),
they may have an important feedback on atmospheric CO2
concentrations in past and future climates.
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N2 fixation (NFix), the conversion of N2 gas into fixed-
N by specialized microorganisms (diazotrophs), provides the
ocean with most of its fixed-N. Other contributions to the
fixed-N pool are from river input and atmospheric N depo-
sition, which are estimated to be approximately an order of
magnitude lower than NFix in pre-industrial times (Galloway
et al., 2004; Codispoti, 2007; Duce et al., 2008; Gruber,
2008). However, industrial N emissions and fertilizer produc-
tion through the Haber–Bosch process that eventually cycles
fixed-N into the atmosphere and rivers have been steadily in-
creasing in recent decades and are estimated to become com-
parable to “natural” NFix in following decades (Galloway et
al., 2004).

Denitrification and anammox (anaerobic ammonium ox-
idation) are the most important fixed-N removal processes
in the ocean. They convert fixed-N into N2 gas under sub-
oxic conditions (O2 < ∼ 10 µM) in the water column and
seafloor sediments. “Canonical” denitrification occurs when
heterotrophic bacteria replace O2 consumption with the re-
duction of nitrate (NO−3 ) to dinitrogen gas (N2) as the elec-
tron acceptor during respiration, once O2 is no longer avail-
able in sufficient quantity. Anammox, on the other hand,
is a chemoautotrophic process that converts nitrite (NO−

2 )

and ammonium (NH+4 ) into N2 gas (Thamdrup and Dals-
gaard, 2002; Kuypers et al., 2003). Since both denitrification
and anammox processes occur in oxygen minimum zones
(OMZs), the relative importance of each process is uncertain.
Recent studies have found that water column denitrification
(WCD) dominates N-loss in the Arabian Sea (Ward et al.,
2009; Bulow et al., 2010), while anammox is more impor-
tant in the eastern tropical South Pacific (ETSP) (Lam et al.,
2009). However, Lam et al. (2009) estimate that nitrate re-
duction, the first step of canonical denitrification, provides at
least two-thirds of the nitrite that anammox consumes, sug-
gesting that canonical denitrification may be the most impor-
tant driver of total N-loss in OMZs. Therefore, we refer to
denitrification as the major fixed-N loss process in this pa-
per.

While the major source and sink processes of the fixed-N
budget, N2 fixation and denitrification, respectively, are rel-
atively well known, estimating their global rates remains a
challenge. Model estimates for N2 fixation have a large range
between∼ 100 and 300 Tg N yr−1 and predict different spa-
tial patterns (Gruber and Sarmiento, 1997; Brandes and De-
vol, 2002; Deutsch et al., 2007; Monteiro et al., 2011; Eugster
and Gruber, 2012), whereas estimates based on extrapolation
of measured in situ rates agree with the low-end model es-
timates near 100 Tg N yr−1 (Karl et al., 2002a; Mahaffey et
al., 2005). However, methods historically used to measure N2
fixation rates have been found to underestimate N2 fixation
by as much as a factor of 2 (Mohr et al., 2010; Großkopf
et al., 2012). Since new important N2-fixing species are also
still being discovered (Montoya et al., 2004; Foster et al.,

2011; Zehr, 2011), more N2 fixation could be taking place in
the ocean than previously thought.

Global estimates of denitrification vary considerably as
well. In the water column, studies suggest global rates be-
tween 50 and 150 Tg N yr−1 and in the sediments gener-
ally between 100 and 300 Tg N yr−1 (Middelburg et al.,
1996; Galloway et al., 2004; Gruber, 2004; Codispoti, 2007;
Bohlen et al., 2012; DeVries et al., 2013; Eugster and Gru-
ber, 2012). Since the high-end estimates for denitrification
are substantially larger than the high-end estimates for N2
fixation, it has led to the debate whether the ocean could
be rapidly losing as much as 400 Tg N yr−1 (Codispoti et
al., 2001; Brandes and Devol, 2002; Seitzinger et al., 2006;
Codispoti, 2007), about 0.07 % of the total nitrate inventory
per year, or whether the nitrogen budget is more balanced
(Gruber and Sarmiento, 1997; Gruber, 2004; Altabet, 2007;
Bianchi et al., 2012).

Stable nitrogen isotopes can provide constraints on
N2 fixation and denitrification because they leave dis-
tinguishable imprints on the ratio of oceanicδ15N, de-
fined asδ15N = [(15N/14N)sample/(15N/14N)std− 1] · 1000 ‰,
where the standard (std) is atmospheric N2. The main
source ofδ15N into the pre-industrial ocean is from di-
azotrophs that fix15N-depleted atmospheric N2 into their
biomass (δ15NDiaz= −2–0 ‰) relative to the deep ocean
δ15NO−

3 = 5 ‰ (Sigman et al., 2000; Somes et al., 2010b),
with minor contributions from atmospheric deposition
(δ15Ndep= ∼−4 ‰) and rivers (δ15Nriv = ∼ 1–4 ‰) (Bran-
des and Devol, 2002). Denitrifying bacteria preferentially
consume15N-depleted nitrate, the lighter and more reac-
tive isotope, during WCD (εWCD = 20–30 ‰), leaving the
oceanic nitrate pool15N-enriched (Cline and Kaplan, 1975;
Brandes et al., 1998; Voss et al., 2001). Benthic denitrifica-
tion (BD) is observed to have a much lower net fractiona-
tion factor (εBD = 0–3 ‰), which is attributed to near com-
plete NO−

3 utilization in pore-water sediments (Brandes and
Devol, 2002; Lehmann et al., 2004). However, recent stud-
ies (Lehmann et al., 2007; Granger et al., 2011; Alkhatib
et al., 2012) investigating fractionation involved with the
nitrification–denitrification loop in the sediments suggest a
larger net fractionation factor (εBD = 4–8 ‰).

The observed global meanδ15NO−

3 provides a constraint
on the fixed-N budget (Brandes and Devol, 2002) since it
is determined by the relative rates of NFix, WCD and BD
and their isotope effects. The input of15N-depleted nitrogen
from NFix must compensate for the preferential removal of
15N-depleted nitrate by denitrification. Modeling studies us-
ing this approach have produced differing results. For exam-
ple, Brandes and Devol (2002) used a one-box model with
fractionation factors ofεBD = 1.5 ‰ andεWCD = 25 ‰. They
estimated a ratio BD : WCD= 3.7 : 1 to match global mean
δ15NO−

3 , supporting the high-end estimates for BD.
Other studies have used more complex box models

(Deutsch et al., 2004; Eugster and Gruber, 2012). Assum-
ing εBD = 0 ‰ andεWCD = 25 ‰, these studies estimate a
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lower BD : WCD ratio of 1.8–2.7 compared to Brandes and
Devol (2002) by accounting for mixing of locally reduced ni-
trate concentrations in suboxic zones with surrounding oxic
waters. Since the mixedδ15NO−

3 value will be weighted to-
wards the higher nitrate concentration of the oxic waters,
the local utilization of nitrate reduces the influence of the
15N-enriched nitrate from WCD on global meanδ15NO−

3 , a
mechanism referred to as the “dilution effect” (Deutsch et al.,
2004).

Altabet (2007) used another one-box model with parame-
terized isotope effects of local nitrate utilization and dilution
during WCD. He argues that these effects would further re-
duce the isotope effect of WCD by∼ 13 ‰ compared to the
inherent microbial process near 25 ‰. Applying this reduced
isotope effect for water column denitrification (∼ 12 ‰), and
0 ‰ for BD, respectively, he estimated a BD : WCD ratio of
∼ 1 : 1. These box model studies highlight how sensitive the
results can be to different assumptions made for the isotope
effects of denitrification.

In this study, we go beyond earlier box model approaches
and employ a global coupled three-dimensional circulation-
biogeochemistry-isotope model to investigate to what extent
rates of N2 fixation and denitrification can be constrained
by δ15N observations in the water column and seafloor sedi-
ments. In particular, we will investigate the uncertainties as-
sociated with (i) the effects of nitrate utilization and dilu-
tion on the isotope effect of WCD and (ii) the net fractiona-
tion factor associated with BD. In addition to water column
δ15NO−

3 observations, a new global seafloor sedimentδ15N
database (Tesdal et al., 2013) is used to evaluate the model
experiments. The rates of N2 fixation and denitrification im-
plicit in the model simulations that most closely simulate ob-
servedδ15NO−

3 and seafloorδ15N then provide our best esti-
mate of Nfix and denitrification in the real ocean.

2 Model description

The global coupled Model of Ocean Biogeochemistry and
Isotopes (MOBI) is based on the version of Somes et
al. (2010b). A technical description of the model is located
in Appendix B and a brief overview is provided below.

2.1 Physical model

The physical model is based on the University of Victoria
Earth System Climate Model (Weaver et al., 2001), version
2.9 (Eby et al., 2009). It includes a general circulation model
of the ocean (Modular Ocean Model 2) with physical param-
eterizations such as diffusive mixing along and across isopy-
cnals, eddy-induced tracer advection (Gent and McWilliams,
1990), the computation of tidally induced diapycnal mix-
ing over rough topography (Simmons et al., 2004), and an
anisotropic viscosity scheme (Large et al., 2001) in the trop-
ics. Nineteen vertical levels are used with a horizontal resolu-
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Fig. 1. Schematic of the marine ecosystem/biogeochemical model
compartments including the nitrogen isotope parameters (colors)
(Somes et al., 2010b). The prognostic variables include 2 nutri-
ents, nitrate (NO−3 ) and phosphate (PO3−

4 ), 2 phytoplankton, N2-

fixing diazotrophs (PDiaz) and other NO−3 -assimilating phytoplank-
ton (PO), as well as zooplankton (Z), sinking detritus (D), and dis-
solved oxygen (O2).

tion of 1.8◦ × 3.6◦. A two-dimensional, single-level energy-
moisture balance model of the atmosphere and a dynamic-
thermodynamic sea ice model are used, forced with pre-
scribed NCEP/NCAR monthly climatological winds (Kalnay
et al., 1996).

2.2 Biogeochemical-ecosystem model

MOBI is an improved version of the model used in Somes et
al. (2010b) (see Fig. 1). The organic compartments include
two classes of phytoplankton, N2-fixing diazotrophs (PDiaz)

and other nitrate assimilating phytoplankton (PO), as well as
zooplankton (Z) and sinking detritus (D). The inorganic vari-
ables include dissolved oxygen (O2) and two nutrients, ni-
trate (NO−

3 ) and phosphate (PO3−

4 ), both of which are con-
sumed by phytoplankton.

This model version deviates from that of Somes et
al. (2010b) by including varying elemental stoichiometry.
While general phytoplankton nitrogen to phosphorus ratio
(N : P) remains at the canonical Redfield ratio (N : P= 16),
diazotroph N : P is set to 40, which is in better agreement
with most observations (N : P= 20–50+; e.g., Letelier and
Karl, 1998 and Sãnudo-Wilhelmy et al., 2004), as well as
an optimality-based growth model (Klausmeier et al., 2004).

www.biogeosciences.net/10/5889/2013/ Biogeosciences, 10, 5889–5910, 2013
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This allows diazotrophs to more efficiently fix N2 into the
ocean when they are P-limited, but does not significantly
change the pattern of N2 fixation. Since zooplankton are ca-
pable of maintaining their own stoichiometry (Sterner and
Elser, 2002), we set zooplankton N : P to 16:1 and assume
that they excrete excess N when grazing diazotrophs. Detri-
tal N and P are explicitly calculated as separate prognostic
variables. The carbon to nitrogen (C : N) ratio for all com-
partments is held constant at C : N= 6.625.

2.2.1 N2 fixation

Diazotrophs grow according to the same principles as the
general phytoplankton class in MOBI, but we account for
some of their different characteristics as follows. N2 fix-
ation is energetically more costly than assimilating fixed-
N. Diazotrophs must break down the strong triple-N bond
and undergo extra respiration to keep the N2-fixing compart-
ment anoxic since O2 inhibits the expression of the N2-fixing
gene (nifH). Thus, the growth rate of diazotrophs is reduced
compared to ordinary phytoplankton, which MOBI consid-
ers by using a handicap factor (cDiaz= 0.13). Diazotrophs
are allowed to grow at low rates in cool waters according
to Eq. (B4), consistent with culture experiments (Pandey et
al., 2004; Le Qúeŕe et al., 2005), whereas in previous model
versions (Schmittner et al., 2008; Somes et al., 2010b) their
growth rates were zero below 15◦C.

Diazotrophs are not limited by nitrate and can outcom-
pete general phytoplankton in surface waters that are de-
pleted in fixed-N, but still contain sufficient phosphate and
iron. They will consume nitrate if available, consistent with
culture experiments (Mulholland et al., 2001; Holl and Mon-
toya, 2005), which is another factor that inhibits N2 fixation
in high-nutrient, low-chlorophyll regions in the model. The
prey-capture rate for zooplankton feeding on diazotrophs is
reduced relative to that for the general phytoplankton class
in order to account for observations (Table 1) (Mulholland,
2007), in contrast to Somes et al. (2010b), who used equal
rates.

Due to uncertainties in the iron cycle (Aumont et al., 2003;
Moore et al., 2004; Galbraith et al., 2010), iron is currently
not included as a prognostic tracer. Instead, iron limitation
is considered using a monthly mask based on modeled ae-
olian dust deposition estimates (Mahowald et al., 2005a,
2006, 2009). This iron limitation mask is multiplied by di-
azotrophs’ maximum growth rate to account for iron limi-
tation (Somes et al., 2010a). Note that this diazotroph iron
limitation mask does not account for upwelled iron. Since up-
welled iron will be accompanied by other macronutrients, we
assume this source of iron is consumed by other phytoplank-
ton. This simplification may lead to an overestimation of iron
limitation of diazotrophs in and around some upwelling re-
gions because complete utilization of upwelled iron by other
phytoplankton will likely not occur in all of these areas (e.g.,
Equatorial Atlantic; Subramaniam et al., 2013). We scaled

our iron limitation mask of diazotrophs to best reproduce
large-scale meridionalδ15N patterns across the Pacific and
Atlantic oceans.

2.2.2 Water column denitrification

WCD occurs when organic matter is respired under sub-
oxic conditions. It is parameterized in MOBI according to
Eq. (B14), which determines the relative amount of nitrate
consumption that takes place during respiration at low am-
bient oxygen concentrations. We use a threshold of 5 µM O2
that sets the oxygen level at which respiration by denitrifica-
tion overtakes aerobic respiration. This parameterization was
designed to best capture the decreasing NO−

3 : PO3−

4 ratios in
suboxic zones. Anammox is also removing fixed-N in these
areas of low oxygen and high organic matter recycling. Al-
though the exact partitioning between WCD and anammox
is not well known, anammox likely depends on the first step
of denitrification (NO−

3 → NO−

2 ) to supply sufficient nitrite
that typically exists in very low concentrations (Lam et al.,
2009). Since MOBI does not differentiate between different
species of dissolved inorganic nitrogen, this WCD parame-
terization is designed to implicitly capture total fixed-N loss
from both canonical WCD and anammox.

2.2.3 Benthic denitrification

BD is included using a new empirical function deduced from
benthic flux measurements (Bohlen et al., 2012) . This func-
tion estimates denitrification in the sediments based on or-
ganic carbon rain rate into the sediments, and bottom wa-
ter O2 and NO−

3 concentrations (Eq. B15). It provides an
efficient alternative to coupling a full sediment model that
would significantly reduce simulation speed. Note that all
organic matter instantaneously remineralizes in the bottom
water when it reaches the seafloor sediment interface. Ni-
trate is then removed from the bottom water according to
this benthic denitrification function. While the organic car-
bon rain rate predicts benthic denitrification rates to first-
order, Bohlen et al. (2012) found a strong non-linear rela-
tionship to the empirical parameter O∗

2 = O2 − NO−

3 in the
bottom water overlying the sediments. BD rates are signifi-
cantly higher as O∗2 decreases (i.e., when O2 is low and NO−

3
is high) for similar organic carbon rain rates.

We use high resolution (1/5◦) bathymetry to account for
shallow continental shelves and other topographical features
that are not fully resolved in MOBI’s coarse-resolution grid
in order to calculate BD (Eq. B15). This scheme considers
particulate organic matter sinking and remineralization, but
it does not influence the physical circulation. Since details of
the circulation that are not resolved in our global model are
responsible for nutrient fluxes in these areas (Fennel et al.,
2006), our model will likely underestimate productivity, rain
rate of carbon into the seafloor, and thus BD there if the BD
rate is not further adjusted. This is one of the reasons why

Biogeosciences, 10, 5889–5910, 2013 www.biogeosciences.net/10/5889/2013/
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Table 1. Model experiment parameter settings. Parameters are the
nitrate threshold for the limitation of WCD (limWCD), BD frac-
tionation (εBD), scaling factor for BD rate (αBD), prey-capture rate
for zooplankton grazing on diazotrophs (ωDiaz), and mortality of
diazotrophs (νDiaz).

Experiment limWCD εBD αBD ωDiaz νDiaz
[µM NO−

3 ] [‰] [mmol m−3
]
−2 d−1 [−1]

1 20 0 1.35 0.11 0.25
2 26 0 1.55 0.1 0.25
3 32 0 1.5 0.15 0.25
4 32 2 1.9 0.078 0.25
5 32 4 3.2 0.001 0.17

See text and Table B1 for additional details.

we provide sensitivity experiments that linearly increase BD
rates by different factors (αBD = 1.35–3.2; Tables 1, 2). Note
that water in contact with this subgrid-scale shelf scheme can
still be influenced from water below through physical mixing
and circulation that can result in too much coupling with the
ocean interior.

2.3 Nitrogen isotope model

The nitrogen isotope model simulates the two stable nitrogen
isotopes,14N and15N, in all N species included in MOBI.
Fractionation results in the preferential incorporation of the
more reactive, thermodynamically preferred14N isotope into
the product of each reaction by a process-specific fractiona-
tion factor,α (Mariotti et al., 1981). We report these values
in the more commonly used “δ” notation, where the frac-
tionation factor takes the formε = (1− α) × 1000. The pro-
cesses in the model that fractionate nitrogen isotopes are phy-
toplankton nitrate assimilation (εassim= 5 ‰), N2 fixation
(εNFix = 1.5 ‰), zooplankton excretion (εexcr= 6 ‰), WCD
(εWCD = 25 ‰), and BD (εBD = 0, 2, 4 ‰). For example, di-
azotroph biomass becomes 1.5 ‰ depleted inδ15N relative
to the source (atmosphericδ15N2 = 0 ‰) giving diazotroph
biomass aδ15N signature of−1.5 ‰ when they fix atmo-
spheric N2 for growth.

We refer to the fractionation factor as theε value cho-
sen for the fractionation equation and the “isotope effect”
as the overall effect the process has on theδ15N distribu-
tion in the ocean. The total isotope effect also includes ef-
fects from source values and processes that alter the impact
of the net fractionation, such as nitrate utilization and dilu-
tion. NFix, for example, has a low fractionation factor, but a
strong isotope effect by introducing very15N-depleted nitro-
gen (δ15NNFix = −1.5 ‰) into the oceanic fixed-N pool rela-
tive to deep ocean meanδ15NO−

3 near 5 ‰. In MOBI, frac-
tionation factors are constant in space and time, and chosen
to best represent estimates from field observations (Somes et
al., 2010b).

2.4 Sensitivity experiments

The model experiments were initialized with World Ocean
Atlas 2009 (WOA09) observations (temperature, salinity,
oxygen, nitrate, and phosphate) (Antonov et al., 2010; Gar-
cia et al., 2010a, b; Locarnini et al., 2010) and integrated for
over 10 000 yr with pre-industrial boundary conditions as the
nitrogen cycle approached equilibrium. While the scarcity
of water column observations makes it difficult to estimate
global meanδ15NO−

3 , vertical δ15NO−

3 profiles throughout
the global ocean converge to∼ 5 ‰ at depths below 2000 m
(Somes et al., 2010b). In our experiments we manually ad-
just the global NFix and BD rates to match this deep ocean
δ15NO−

3 value and observed global mean NO−

3
∼= 30.8 µM by

modifying uncertain parameters (Tables 1, 2). AdjustingαBD
determines the total BD rate. For NFix, we adjust the prey-
capture rate,ωDiaz, and mortality rate,νDiaz, of diazotrophs,
which regulate their net growth. In the following sections,
annual mean results from the final 500 yr of the integrations
are reported.

2.4.1 Water column denitrification experiments

This set of experiments was designed to test the importance
of the isotope effect of WCD on the global ocean mean
δ15NO−

3 . We follow a method introduced by Moore and
Doney (2007) that limits the rate of WCD (limWCD) at ni-
trate thresholds of 20, 26, and 32 µM (Table 2, Fig. 2). These
values were chosen to produce WCD rates that lie within the
range of modern estimates between 50 and 150 Tg N yr−1.
Note that recent studies report a new low-end estimate for
water column denitrification rate (∼ 50 Tg N yr−1) (Eugster
and Gruber, 2013; DeVries et al., 2013), which is not ex-
plicitly tested in our model experiments that cover the range
75–140 Tg N yr−1.

Only the highest threshold applied (limWCD= 32) cap-
tures the average nitrate concentration in the suboxic zones
suggested by WOA09 (∼ 32 µM), while the other exper-
iments underestimate nitrate there. Models with higher
thresholds also have lower levels of nitrate utilization in the
suboxic zones that influences the isotope effect of WCD. In
order to exclude impacts on the distribution of other biogeo-
chemical tracers (oxygen, phosphate), remineralization of or-
ganic matter was left unchanged in these sensitivity experi-
ments. Only nitrate consumption during WCD was turned off
below the respective nitrate threshold.

2.4.2 Benthic denitrification fractionation experiments

Field studies estimate the fractionation factor of BD to be
much smaller than that of water column denitrification, but
to what extent still remains uncertain. The small increase
in bottom waterδ15NO−

3 overlying BD zones suggests the
fractionation factor should be in the range 0–3 ‰ (Brandes
and Devol, 2002; Lehmann et al., 2004). However, more
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Table 2.Model sensitivity experiment results.

Experiment Global results Suboxic zone results

# lim WCD εBD N2 WC Benthic BD : NO−

3 Deep Global NO−

3 δ15NO−

3 NO3 : 15PO4
(µM (‰) fixation deni. deni. WCD (30.8 ocean ocean (33.5 (∼ 12 ‰) (0.760)

NO−

3 ) (Tg N (Tg N (Tg N µM) δ15NO−

3 δ15NO−

3 µM)
yr−1) yr−1) yr−1) (5.0 ‰) (∼ 5.5 ‰)

1 20 0 248 140 108 0.77 31.0 4.95 5.51 24.8 17.5 0.549
2 26 0 232 109 123 1.13 30.8 5.01 5.59 28.7 15.9 0.635
3 32 0 203 86.4 117 1.39 30.2 5.01 5.59 33.3 14.1 0.722
4 32 2 225 75.7 149 1.96 30.6 5.01 5.53 33.2 13.6 0.734
5 32 4 342 75.6 267 3.53 30.4 5.06 5.45 32.9 11.9 0.789

Model results for the different sensitivity experiments in the global ocean and suboxic zone (O2 < 10 µM) with the observational estimate given in parentheses.

Fig. 2. Global distribution of annual vertically integrated N2 fixation (top row), water column denitrification (middle row) and benthic
denitrification (bottom row) for the experiments limWCD= 20,εBD = 0 (left); limWCD= 32,εBD = 0 (center); and limWCD= 32,εBD = 4
(right). See text for model experiment details.

recent studies have suggested a much higher net fractionation
(Lehmann et al., 2007; Granger et al., 2011; Alkhatib et al.,
2012). They suggest the15N-enriched ammonium measured
in the overlying bottom water, presumably released from the
sediments, was due to fractionation during the nitrification–
denitrification loop in the sediments. These studies indi-
cate a net fractionation factor for BD in the range 4–8 ‰.

However, Lehmann et al. (2007) show that shallow regions
have a higher net fractionation compared to deep ocean sites
and the global average net fractionation is likely closer to
4 ‰. Thus we performed experiments with BD net fraction-
ation at 0, 2, and 4 ‰. Since these experiments nearly cover
the full range of previous estimates for BD rates between
∼ 100–300 Tg N yr−1 and BD’s net fractionation factor, they
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likely test the full range of uncertainty of BD’s effect on the
global nitrogen isotope inventory.

3 Results

3.1 Patterns of N2 fixation and denitrification

3.1.1 N2 fixation

Diazotrophs perform N2 fixation primarily in the trop-
ics/subtropics where sufficient atmospheric Fe deposition oc-
curs (e.g., North Atlantic, western Pacific, and north In-
dian Ocean; Fig. 2). Besides temperature and Fe availabil-
ity, another important factor that determines where model
diazotrophs are most abundant includes competition for re-
sources with other phytoplankton (i.e., N vs. P limitation).

Denitrification consumes nitrate and increases N-
limitation “downstream” of denitrification zones. In MOBI,
this creates ecological niches for diazotrophs because they
are not limited by nitrate. This applies not only to the three
WCD zones, but also to the BD zones that occur with greater
global rates and across all ocean basins. In fact, it is the
higher BD rates in the Atlantic Ocean that stimulate higher
N2 fixation rates there in experiment #5 (Fig. 2, right panel)
compared to experiment #3 (Fig. 2, center panel). Nitrate
depletion at the surface thus stimulates N2 fixation as long
as temperatures are high enough and sufficient Fe and P is
available. The spatial pattern of N2 fixation is similar in all
experiments, but with differing rates depending on the total
denitrification rate in each experiment.

3.1.2 Water column denitrification

In MOBI WCD occurs when organic matter is respired in
suboxic zones of the eastern tropical North/South Pacific, the
Bay of Bengal, and the eastern tropical Atlantic (Fig. 2). Note
that in the real ocean, large rates of WCD have been observed
in the Arabian Sea, which is not reproduced in the model. In-
stead, the model displaces the suboxic zone to the Bay of
Bengal, which is very close to the suboxic threshold in na-
ture. Similar discrepancies between simulated and observed
regions of WCD in the Indian Ocean have also been found in
other models (Moore and Doney, 2007; Gnanadesikan et al.,
2012). Its causes are not fully understood and may include a
misrepresentation of coastal currents or precipitation in the
Indian Ocean. Although denitrification is not regularly ob-
served in the Atlantic Ocean, anammox has been measured
in the eastern tropical South Atlantic suggesting that N-loss
events can occur there (Kuypers et al., 2005). Nevertheless,
the model likely significantly overestimates water column N-
loss in the Atlantic Ocean.

Uncertainties in historical O2 measurements and interpo-
lation methods to a global scale make it difficult to assess
the global volume of suboxic waters in MOBI. The global
suboxic volume (O2 < 10 µM) in our experiments is approx-

imately 3 times larger than suggested by uncorrected an-
nual WOA09 observations (Garcia et al., 2010a). However,
Bianchi et al. (2012) found that after correcting for biases
in historical O2 measurements in suboxic zones and apply-
ing improved mapping/interpolation methods, this observa-
tional dataset is likely underestimating the global volume of
suboxic waters by a factor of 3, which would be in general
agreement with our model experiments.

Despite the uncertainty in global suboxic volume, it re-
mains clear that the suboxic zones in the Pacific and Atlantic
are displaced over the productive equatorial regions, where
the large amounts of remineralization that occurs in the wa-
ter column would be expected to result in too much WCD.
This model bias can be attributed to the underestimation of
equatorial and coastal undercurrents that ventilate the OMZs.
To account for this model deficiency, we provide sensitivity
experiments that limit WCD in the upper part of the OMZ at
given NO−

3 thresholds to produce WCD rates that are within
previous estimates (see Sect. 2.4.1) and produce more realis-
tic δ15NO−

3 values and NO−3 utilization levels in the suboxic
zones (see Sect. 3.2.2). Note that the suboxic zones in MOBI
also extend too deep in the water column (to∼ 1500 m),
whereas according to WOA09 observations they do not ex-
tend below∼ 1000 m. Since remineralization rates are much
lower at these depths, only 15 % of total WCD occurs here
which suggests that our best model may still be overestimat-
ing WCD by∼ 15 %.

3.1.3 Benthic denitrification

BD occurs where large amounts of particulate organic car-
bon (POC) sink into the seafloor sediments (Middelburg et
al., 1996; Seitzinger et al., 2006; Fennel et al., 2009; Bohlen
et al., 2012). The largest BD rates in the model occur on the
continental shelves when primary production is high (e.g.,
Bering Sea Shelf, Fig. 2). Although rates are much lower in
the deep seafloor due to less sinking POC, it contains a much
larger area and still significantly contributes to the global
BD rate in the model. The percentage of total BD (including
αBD) simulated on the continental shelves (0–200 m), slopes
(200–2000 m), and deep seafloor (2000–6000 m) is approx-
imately 40 %, 40 %, and 20 %, respectively, which does not
vary by more than±5 % for the different model experiments.
BD occurs across all ocean seafloor basins and thus has a
more broad global distribution compared to WCD, which is
confined to three distinct tropical regions (Fig. 2).

3.2 Observationalδ15N constraints

3.2.1 Seafloorδ15N

We compare sinkingδ15N in the model with a new global
database of seafloorδ15N (Tesdal et al., 2013) (Fig. 3). It
is composed of 2347 bulkδ15N measurements covering all
ocean basins. This seafloorδ15N database provides a more
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Fig. 3.Seafloorδ15N (Tesdal et al., 2012) comparison with model seafloorδ15N with limWCD = 26,εBD = 0; and limWCD= 32,εBD = 0,
2, and 4 ‰ for all experiments shown here. Note a simple diagenetic model was applied to model sinkingδ15N to account for diagenetic
alteration during burial into the seafloor sediments based on seafloor depth (Robinson et al., 2012). See text for additional details.

complete view of the global nitrogen isotope distribution
compared to available water columnδ15NO−

3 observations,
which are sparse in space and time (Somes et al., 2010b).
Since seafloorδ15N measurements represent the accumula-
tion of material spanning the last hundreds to thousands of
years, they remove seasonal, interannual, or anthropogenic
variability that can impact any single water column observa-
tion, making seafloorδ15N an ideal dataset to constrain the
long-term average of the pre-industrial ocean.

Diagenetic alteration ofδ15N occurs as sinkingδ15N be-
comes buried in seafloor sediments, which can potentially
bias the interpretation of bulk sedimentδ15N. A recent anal-
ysis shows a clear relationship of diagenetic alteration with
water depth (Robinson et al., 2012). Data at> 50 sites where
sinking δ15N from traps were compared to seafloorδ15N

show a∼ 0.8–1 ‰ δ15N diagenetic increase per kilometer
of water depth. In our model–data comparison, we accord-
ingly adjust the simulated sinkingδ15N of the particulate or-
ganic nitrogen (PON) reaching the seafloor by increasing it
by 0.9 ‰ km−1 to account for this effect that is not incorpo-
rated into MOBI. This diagenetic enrichment increases the
globally averagedδ15N-PON in the sediments by 3.36 ‰
in the model experiments performed here and makes global
mean values consistent with the observations (Table 3). Note
that this seafloor diagenesis adjustment is only applied for
the model–data comparison and does not affect isotope mass
conservation in the model. The data-masked global seafloor
δ15N average varies somewhat depending on rates of N2 fix-
ation and denitrification in the different model experiments,
but all model experiments show similar values across the
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Table 3.Measures of seafloorδ15N model performance∗.

Experiment Seafloorδ15N evaluation

Southern Ocean Global ocean
# lim WCD εBD Sinking Seafloor Seafloor R NSTD NRMSE Sinking Seafloor Seafloor R NSTD NRMSE

(µM NO−

3 ) (‰) PON full data- PON full data-
full mean masked full mean masked

mean mean mean mean
(%) (5.33 ‰) (%) (7.00 ‰)

1 20 0 1.93 5.37 5.27 0.387 1.24 1.26 4.26 7.63 7.67 0.503 1.93 1.70
2 26 0 2.04 5.45 5.38 0.391 1.25 1.26 4.37 7.73 7.46 0.553 1.6 1.35
3 32 0 2.20 5.61 5.54 0.391 1.26 1.29 4.22 7.58 6.95 0.584 1.18 1.01
4 32 2 2.08 5.48 5.41 0.410 1.25 1.24 4.12 7.48 6.76 0.593 1.08 0.957
5 32 4 2.01 5.42 5.35 0.410 1.23 1.23 3.63 6.99 6.28 0.592 0.975 0.968

∗ Statistical measures are the correlation coefficient (R), the normalized (by the STD of the observations) standard deviation (NSTD), and the normalized (by the STD of the
observations) root mean squared error (NRMSE). Observational estimates, where available, are given in parentheses. Note “full mean” refers to the entire ocean basin, whereas
“data-masked mean” only include grid points where observations exist.

Southern Ocean (Table 3), which is not significantly affected
by denitrification and N2 fixation.

MOBI reproduces the major trends of the seafloorδ15N
dataset (Fig. 3). The isotope effects of phytoplankton NO−

3
assimilation, WCD, and N2 fixation are mainly responsible
for these large-scale patterns ofδ15N in the model. Rel-
atively 15N-depleted sinking nitrogen hitting the seafloor
(δ15N = 0–4 ‰) occur in high-nutrient, low-chlorophyll re-
gions of the Southern Ocean and eastern equatorial Pacific
where NO−

3 utilization by phytoplankton is low. Here phyto-
plankton are able to preferentially incorporate15N-depleted
nitrate into their biomass due to high availability of nitrate
(εassim= 5 ‰). The nitrate utilization isotope effect also pro-
duces more15N-enriched nitrate in surface waters as uti-
lization increases. In the subtropical gyres where nitrate is
nearly fully utilized, phytoplankton must consume this15N-
enriched nitrate remaining in the surface water, causing much
higher sinkingδ15N values there (> 6 ‰), in the absence
of N2 fixation. All model experiments produce similar pat-
terns and regional averages across the Southern Ocean where
surface NO−3 utilization dominates theδ15N trend (Table 3,
Fig. 4).

Very high seafloorδ15N values (> 10 ‰) are observed
near suboxic zones due to the large fractionation factor of
WCD. Modeling the correct extent of the suboxic zones re-
mains a challenge in global coarse-resolution models due to
the limited spatial extent of suboxic zones. While the sub-
oxic zones are generally simulated in the correct ocean basins
(e.g., eastern tropical Pacific, northern Indian), they are all
displaced in the model. Since WCD has a strong local ef-
fect onδ15N, this displacement causes rather poor model fits
when comparing to the seafloorδ15N database (e.g.,r < 0.6,
Table 3). If all OMZ regions with less than 30 µM dissolved
O2 in the model and WOA09 are not included when calcu-
lating the global metrics, the correlation coefficient increases
from 0.59 to 0.68 (in model experiment #4), an indication
that the bias due to the displaced suboxic zones is one of the
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Fig. 4.Comparison of average seafloorδ15N in the Southern Ocean
(50–75◦ S), subarctic/Arctic Ocean (50–75◦ N), tropical North At-
lantic (0–25◦ N), and oxygen minimum zones (O2 < 10 µM) with
observational values in parenthesis. Note we include locations of
observed and simulated OMZs to account for the displaced model
OMZs in this comparison.

main deficiencies of the model. The model experiments that
contain the lowest amount of WCD (limWCD= 32) repre-
sent the seafloorδ15N database the best (Table 3, Fig. 4).

N2 fixation introduces 15N-depleted nitrogen
(δ15NNFix = −1.5 ‰) into the ocean. It occurs primar-
ily in tropical/subtropical waters “downstream” of both
WCD and BD zones where nitrate has been depleted relative
to phosphate and aeolian Fe deposition is high. Aeolian Fe
deposition is generally higher in the western portion of the
ocean basins and in the Northern Hemisphere. In MOBI, this
causes a trend of lower sinkingδ15N values in the northern
subtropical gyres, which is supported by the observational
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seafloorδ15N (Fig. 3), as well as water column observations
(Somes et al., 2010a).

Lowest values of seafloorδ15N occur in the North At-
lantic, which is known to support high rates of N2 fixation
(Karl et al., 2002b). The model experiment that best repro-
duces these low values there has the highest rate of global N2
fixation (Fig. 4). This model experiment also has the highest
rate of BD, which removes fixed-N and stimulates additional
N2 fixation (Fig. 2). Note that atmospheric nitrogen deposi-
tion is not included in this model version. Since pre-industrial
deposition rates are estimated to be approximately an or-
der magnitude lower than N2 fixation (Duce et al., 2008),
it likely has a small effect in this pre-industrial scenario.
However, atmospheric N deposition can introduce even more
15N-depleted nitrogen in the North Atlantic (δ15N ∼= −4 ‰)
(Ryabenko et al., 2012), which could bias the model–data
comparison.

The subarctic oceans contain large, shallow shelves where
BD occurs. Seafloorδ15N show higher values (6–10 ‰) to-
wards the shallow shelves in the Bering Sea, Sea of Okhotsk,
Baffin Bay, and Banks of Newfoundland, despite the fact
that less enrichment during burial occurs on these shallow
shelves (Robinson et al., 2012). The model experiment with
the largest net fractionation factor for BD (εBD = 4 ‰) best
reproduces the observational trends of high seafloorδ15N in
these areas (Fig. 4), although values are still slightly underes-
timated. The other model experiments with smaller fraction-
ation factors produced too lowδ15N throughout this region.
Some of the bias in this region may also be due to the shallow
continental shelves that are not fully resolved in MOBI, nor
the small-scale processes that take place on them. This could
significantly affect surface NO−3 utilization patterns, and thus
seafloorδ15N. Future model versions with higher vertical res-
olution will evaluate this potential model bias. Nevertheless,
this model–data comparison supports the view of net frac-
tionation factors for BD to be≥ 4 ‰, at least in the shallow
subarctic ocean.

3.2.2 Water columnδ15NO−
3

The global ocean meanδ15NO−

3 is determined by the rates
and isotope effects of the source and sink terms of the fixed-
N budget: N2 fixation, WCD, and BD. N2 fixation provides
the ocean with15N-depleted nitrogen (δ15NNFix = −1.5 ‰).
N-loss processes, on the other hand, preferentially consume
this 15N-depleted nitrogen, leaving the global mean nitrate
pool enriched in15N (global meanδ15NO−

3 = ∼ 5.5 ‰). The
average net fractionation that occurs during total N-loss de-
termines how high the global meanδ15NO−

3 will be relative
to the15N-depleted nitrogen source from N2 fixation. We fo-
cus on two isotope effects with high uncertainty in this study:
(i) OMZ nitrate utilization and dilution impacts on the iso-
tope effect of WCD and (ii) the net fractionation factor asso-
ciated with BD.

OMZ nitrate utilization and dilution isotope effect

The elevatedδ15NO−

3 signature produced in suboxic zones
depends on the level of nitrate utilization there. Utilization
is determined by the balance between consumption by deni-
trification and replenishment by circulation and mixing. This
balance determines the averageδ15NO−

3 value that denitri-
fiers consume and convert to N2 gas. The dilution effect takes
into account thatδ15NO−

3 will be weighted towards the wa-
ter parcel with higher nitrate when mixing occurs (Deutsch
et al., 2004). For example, if the nitrate concentration in the
suboxic zone is only half of the nitrate concentration in sur-
rounding oxic waters, theδ15NO−

3 signature of the oxic water
will have twice the influence on totalδ15NO−

3 of these water
masses if they mix together. Note that the dilution effect is
inherently simulated in the physical circulation model.

High levels of nitrate utilization reduce the influence of
the isotope effect of WCD on global meanδ15NO−

3 . As aver-
ageδ15NO−

3 increases in suboxic zones as denitrification oc-
curs, the nitrate removed then becomes more15N-enriched.
The influence of the isotope effect of WCD on global mean
δ15NO−

3 is reduced when the removed nitrogen has a higher
δ15N signature that is closer to global meanδ15NO−

3 .
For example, imagine a situation with high nitrate uti-

lization in which the averageδ15NO−

3 value in the suboxic
zone was 30.5 ‰ (instead of∼ 12–15 ‰ in the real ocean).
The nitrogen removed would then have an isotopic signature
25 ‰ depleted relative to this value, which would be equal to
the global mean (δ15Nremoved=5.5 ‰). In this case, it would
have no influence on global meanδ15NO−

3 , even though den-
itrification is still fractionating the nitrogen isotopes. Thus, as
nitrate utilization increases theδ15NO−

3 signature of the sub-
oxic zone, it reduces the influence of WCD on global mean
δ15NO−

3 .
Experiments with high nitrate utilization in the suboxic

zone require less NFix relative to WCD, and thus lower ra-
tios of BD : WCD, to maintain global meanδ15NO−

3 with a
balance fixed-N budget. The nitrate utilization effect alone
(varying limWCD) required BD : WCD ratios that varied by
nearly a factor of 2 in our range of sensitivity experiments
(Table 2). BD is needed in the model to stimulate additional
N2 fixation to balance global meanδ15NO−

3 to the observed
level. When nitrate utilization is high, the influence of the
isotope effect of WCD is reduced and therefore less BD, and
lower BD : WCD ratios, are required to balance global mean
δ15NO−

3 .
The model experiment that best reproduces nitrate and

δ15NO−

3 observations in the suboxic zone is limWCD= 32
(Table 2, Fig. 5). It gives a good agreement with the amount
of nitrate drawdown, as well as the slope of the increasing
δ15NO−

3 as nitrate is consumed according to off-shelf ob-
servations in suboxic zones. The experiments with higher
levels of nitrate utilization (limWCD= 20, 26) show too
much nitrate consumption there. Due to deficiencies in the
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Fig. 5.Annual meanδ15NO−

3 versus expected nitrate (fNO3) shows

the increase ofδ15NO−

3 as NO−

3 is consumed in suboxic zones
(O2 < 10 µM) from the isotope effect of water column N-loss in
limWCD = 20 (blue), limWCD= 26 (green), limWCD= 32 (red)
and observations (black) from Cline and Kaplan (1975) ([]), Alta-
bet et al. (1995) (1), Brandes et al. (1998) (♦), Voss et al. (2001)
(◦), and Somes et al. (2010b) (�). NoteεBD = 0 ‰ for the model
experiments shown here. Expected nitrate is determined to be at the
elemental ratio 15· PO3−

4 in the model based on experiments where
WCD was switched off (not shown), which is in agreement with the
expected nitrate calculation from Voss et al. (2001) based on nitrate-
density isopycnals. Observations near the seafloor are excluded to
avoid any impact from benthic denitrification.

simulated suboxic zones, it still cannot be confirmed if the
balance between nitrate consumption and replenishment is
completely consistent with suboxic zones in the real ocean
and the limWCD= 32 experiment. However, the high sensi-
tivity of estimated rates of NFix and denitrification in our
model experiments that test different levels of nitrate uti-
lization suggests nitrate utilization plays an important role
in global nitrogen isotope cycling. This highlights the need
for higher resolution models that fully resolve all of the ven-
tilation pathways (e.g., coastal undercurrents and eddies) of
suboxic zones.

Isotope effect of benthic denitrification

Recent studies (Lehmann et al., 2007; Granger et al., 2011;
Alkhatib et al., 2012) have suggested a higher net fraction-
ation factor associated with BD (εBD = 4–8 ‰) compared
to previous estimates (εBD = 1–3 ‰) (Brandes and Devol,
2002; Lehmann et al., 2004). They suggest BD should have
a much higher net fractionation factor due to the measured
highδ15NH+

4 that is presumably released from the sediments
where BD occurs. They propose this signal is due to frac-
tionation during the nitrification–denitrification loop in the
sediments. If this high net fractionation factor is indeed cor-

rect on a global scale, higher BD : WCD ratios would be re-
quired to balance the nitrogen isotope budget because ad-
ditional N2 fixation would be needed to balance this “ex-
tra” 15N-enriched nitrogen produced in the sediments where
BD occurs. However, ammonium efflux from the sediments
is generally much higher on shallow shelves compared to
deep ocean seafloor (Bohlen et al., 2012), suggesting that the
global average fractionation of BD is likely lower than these
estimates (Lehmann et al., 2007). We test the sensitivity of
this effect by running experiments withεBD set to 0, 2, and
4 ‰, while holding the limWCD parameter constant at 32,
which best representedδ15NO−

3 observations in the suboxic
zone.

The range of relative rates of BD : WCD required to
closely reproduce observed global meanδ15NO−

3 for our sen-
sitivity experiments (εBD = 0–4 ‰) varied from 1.4 to 3.5
(Table 2). This large range is mostly caused by variations in
BD rates and suggests that a misrepresentation of this isotope
effect can significantly bias the estimate for the BD : WCD
ratio. The lack of water columnδ15NH+

4 measurements over-
lying sites of BD, most notably in the deep ocean, makes it
difficult to constrain the global response at this time. We note
our data–model analysis with the seafloorδ15N database sup-
ports the high estimates for the net fractionation factor of BD
(εBD ≥ 4 ‰) in the subarctic ocean that contains many shal-
low shelves where BD rates are high (Table 3 and Figs. 3, 4).
Riverineδ15N input is not included in this model, which can
also influence some coastal settings with the input ofδ15N
between 1 and 5 ‰ (Brandes and Devol, 2002). Since river-
ine N input (∼ 25 Tg N yr−1) is relatively small compared to
BD (≥ 150 Tg N yr−1) and introducesδ15N near the oceanic
average, it is unlikely to have a large global impact on the
ratio of BD : WCD in the pre-industrial ocean, but still may
bias the model–data comparison at some locations.

4 Discussion

Our nitrogen isotope sensitivity experiments produce a large
range of potential Nfix and denitrification rates that vary by
over a factor of 2 (Table 2, Figs. 2, 6). We show that dif-
ferent nitrogen isotope parameters chosen for the isotope
effects of WCD and BD significantly affect the estimates
of the BD : WCD ratio needed to satisfy the global mean
δ15NO−

3 constraint. This is in general agreement with pre-
vious box model studies that also estimate a large range from
1 to 3.7 (Brandes and Devol, 2002; Deutsch et al., 2004;
Altabet, 2007; Eugster and Gruber, 2012), when different
isotope effects for denitrification were used in their respec-
tive models. These results show the importance of correctly
modeling each isotope effect to simulate the balance of Nfix
and denitrification that determines the observed global mean
δ15NO−

3 .
We create another global one-boxδ15NO−

3 model (called
0D in the following) that includes N2 fixation, WCD, and BD
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Fig. 6.Results of the one-boxδ15NO−

3 model with different nitrogen isotope parameter settings according to previous configurations (Bran-
des and Devol, 2002; Deutsch et al., 2004; Altabet, 2007) and this study (Table 4). Each panel shows the sensitivity of one parameter on the
ratio of benthic denitrification to water column denitrification (BD : WCD) needed to achieve observed global meanδ15NO−

3 in a steady-state

scenario while all other parameters are held constant:(a) WCD rate,(b) WCD fractionation factor (εWCD), (c) averageδ15NO−

3 value where

WCD occurs,(d) N2 fixation fractionation factor (εNFix), (e)benthic denitrification fractionation factor (εBD), and(f) averageδ15NO−

3 value

where benthic denitrification occurs. NoteεNFix makes diazotroph biomass depleted inδ15N by its associated value. The crosses (X) show
the parameter chosen for each reported model configuration and denotes the BD to WCD ratio of the previous studies as well as coupled
three-dimensional experiments from this study.

to perform a more thorough sensitivity analysis of the key ni-
trogen isotope parameters. The 0D model is designed to cal-
culate the required ratio of BD to WCD to maintain the ob-
served global meanδ15NO−

3 in a steady-state pre-industrial
ocean. The 0D model then calculates the BD to WCD ra-
tio required for different nitrogen isotope parameters chosen
from previous model studies and the sensitivity experiments
from this study (Table 4) using Eq. (A12).

The 0D model used here accurately reproduces the re-
ported BD : WCD ratios of the various model configurations
used in this study as well as previous studies despite the
large range of model design and parameter selections (Ta-
ble 4). This suggests our 0D model may be reliable to esti-
mate the sensitivity of the different nitrogen isotope param-
eters in a steady-state scenario. It shows that the BD : WCD
ratio needed to match global meanδ15NO−

3 is very sensitive
to the level of OMZ nitrate utilization that determines WCD
zoneδ15NO−

3 and net fractionation factor chosen for BD, as
well as other parameters (Fig. 6). The range of uncertainty
for these two effects can alone account for a large range of

estimates for BD (100–280 Tg N yr−1) from previous nitro-
gen isotope models (Brandes and Devol, 2002; Deutsch et
al., 2004; Altabet, 2007; Eugster and Gruber, 2012).

The large uncertainty associated with the net fractiona-
tion factor of BD adds further difficulties to constraining
the BD : WCD ratio using global meanδ15NO−

3 . Our experi-
ments show that increasing this factor from 0 to 4 ‰ requires
almost triple the BD rate needed to maintain the global mean
δ15NO3 at observed levels. Recent estimates suggest that the
net fractionation factor may be even higher (4–8 ‰) due to
fractionation within the nitrification–denitrification loop in
the sediments (Granger et al., 2011; Alkhatib et al., 2012). If
these high-end estimates are validated on a global scale, this
could require larger BD : WCD ratios than our largest value
simulated here (> 3.5). An experiment testingεBD = 6 ‰
in MOBI required too high BD rates to achieve a balanced
global NO−

3 inventory at the modern level in the model and
thus is not included here. However, Lehmann et al. (2007)
show that shallow regions have a higher net fractionation
compared to deep ocean sites and the global average net
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Table 4.δ15N box model parameter list.

εNFix (‰) WCD rate εWCD WCD zone εBD BD zone BD : WCD BD : WCD
(Tg N yr−1) (‰) δ15NO−

3 (‰) (‰) δ15NO−

3 (‰) (0D model) (reported)

B&D02 1 1 75 25 5 1.5 5 4.31 3.73
DEU04 0 70 25 12 0 5 2.69 2.71
ALT07 2 1 90 25 18 0 5 1.01 ∼ 1.00
limWCD = 20,εBD = 0 1.5 144 25 18.2 0 5.86 0.787 0.757
limWCD = 26,εBD = 0 1.5 112 25 15.7 0 5.79 1.13 1.13
limWCD = 32,εBD = 0 1.5 87.6 25 13.8 0 5.74 1.40 1.39
limWCD = 32,εBD = 2 1.5 78.3 25 13.4 2 5.88 1.96 1.96
limWCD = 32,εBD = 4 1.5 77.0 25 11.6 4 5.96 3.58 3.53

1 Brandes and Devol (2002) reported ratio also included isotope effects from atmospheric N deposition, river input, and sediment burial, which are excluded in the 0D one-box
model calculation to maintain consistency with the other model configurations. These processes slightly reduce the BD : WCD ratio and suggests the other model estimates
may be slightly overestimating BD : WCD as well.
2 Altabet (2007) used a combination of reducing the fractionation factor of WCD (to account for circulation effects not included in the one-box model) and increasing WCD
zoneδ15NO−

3 so theδ15N value of nitrogen removed was−7 ‰. We leaveεWCD at 25 ‰ and increase the WCD zoneδ15NO−

3 to 18 ‰ to achieve his suggestedδ15N value
of −7 ‰ for nitrogen removal.

fractionation is likely closer to 4 ‰. Our 0D experiments
also show that no model configuration is able to support a
global net fractionation factor for BD greater than 6 ‰ and
predict BD : WCD ratios in range of observational estimates
(BD : WCD ≤ 4) (Fig. 6e).

MOBI experiments #4 and #5 predict BD rates on the
continental shelves (60 and 108 Tg N yr−1, respectively)
that are on the low-end of most recent estimates (80-
125 Tg N yr−1) (Bianchi et al., 2012; Bohlen et al., 2012;
DeVries et al., 2013) and much lower than another esti-
mate of 250 Tg N yr−1 (Seitzinger et al., 2006). If much
more BD is occurring on the continental shelves than pre-
dicted by MOBI, this can impact the isotope effect of BD be-
causeδ15NO−

3 of bottom water on the shelves is on average
∼ 1.5 ‰ higher compared to the deep ocean in the model due
to its close proximity to surface NO−3 utilization. This would
lead to higher values for the BD zoneδ15NO−

3 parameter,
which would require lower BD : WCD ratios (Fig. 6f). Note
that this parameter has a smaller effect on BD : WCD ratios
compared to the others (Fig. 6), suggesting that its uncer-
tainty is likely lower than the other isotope parameters (e.g.,
net fractionation factor of BD).

The level of nitrate utilization in OMZs has a strong influ-
ence on the isotope effect of WCD. It determines theδ15NO−

3
value in WCD zones that is consumed by denitrifiers. Fig-
ure 6c shows the range of BD : WCD ratios required for given
δ15NO−

3 signatures in the WCD zones for all experiments.
These idealized experiments using the parameter settings of
limWCD = 20, 26, and 32 (whenεBD = 0) show that the dif-
ferent level of nitrate utilization, and its effect onδ15NO−

3
in the WCD zone, is causing the range of BD : WCD ratios
from 0.8 to 1.4 in these experiments. This demonstrates that
if the isotope effect of WCD is not modeled accurately, it can
lead to large biases of the estimates for BD : WCD.

For example, Brandes and Devol (2002) did not account
for the locally highδ15NO−

3 of WCD zones in their one-box
model (Fig. 6c). Theδ15NO−

3 removed during WCD is thus
much more15N-depleted compared to the other models that
take into account nitrate utilization in the suboxic zone. This
increases the isotope effect of WCD in the Brandes and De-
vel (2002) model configuration, and it thus needs more N2
fixation to maintain global meanδ15NO−

3 , which is achieved
by imposing a higher BD : WCD ratio. If they had accounted
for a more realistic suboxic-zoneδ15NO−

3 signature in the
range of the other model configurations, our 0D model sug-
gests their estimate for BD : WCD could have been nearly a
factor of 2 lower (Fig. 6c).

Our MOBI experiment #5 (limWCD= 32, εBD = 4) is in
general agreement with the final results of Brandes and Devol
(2002), suggesting a relatively high rate of BD, despite that
theδ15N model configuration for the isotope effects of water
column and BD is much different (Table 4). This suggests
that even though the simple one-box model of Brandes and
Devol (2002) was able to reach a similar result, it was due to
a different combination of isotope effects that are difficult to
constrain in a one-box model. The fact that MOBI results are
directly comparable toδ15N observations in regions where
denitrification occurs in the water column and sediments al-
lows better validation of the various isotope effects.

The average level of nitrate utilization throughout the
ocean’s prominent suboxic zones remains difficult to assess.
While studies in the eastern tropical North Pacific (ETNP)
and Arabian Sea OMZs do not typically show nitrate de-
pleted below half of its expected value (Brandes et al., 1998;
Voss et al., 2001), recent results from the ETSP suboxic zone
show more than two-thirds of the expected nitrate was con-
sumed with a much smaller fractionation factor (Ryabenko et
al., 2012). They note large rates of BD occurring within close
proximity to WCD were likely contributing to this larger
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nitrate deficit and reduced fractionation. Furthermore, evi-
dence from an eddy entraining suboxic water from the ETSP
OMZ showed an even larger level of nitrate utilization as it
moved offshore (Altabet et al., 2012). These results suggests
that an average level of nitrate utilization in the global sub-
oxic zones may be higher than off-shore observations from
the Arabian Sea and ETNP included in Fig. 4. Since MOBI
does not incorporate these specific isotope effects inferred
from observations in the ETSP OMZ, the model may overes-
timate the global net WCD isotope effect and thus BD : WCD
ratios in the ocean (Altabet, 2007).

The 6-box model of Deutsch et al. (2004) accounts for lo-
cal nitrate utilization with a designated suboxic box, but still
estimates a higher BD : WCD ratio (2.69) compared to the re-
sults from our MOBI experiment in which the fractionation
factor for BD was also set to 0 ‰ (BD : WCD= 1.4). The
most significant difference between the Deutsch et al. (2004)
and the other model configurations is the isotope effect of
N2 fixation. Deutsch et al. (2004) chose aδ15NNFix signa-
ture of 0 ‰, while all other models selected between−1 and
−1.5 ‰. If the Deutsch et al. (2004) study would have chosen
the same value as here (δ15NNFix = −1.5 ‰), our 0D model
suggests this would decrease their estimated BD : WCD ratio
from 2.69 to 1.83, which would then be more consistent with
the results from MOBI. This shows that even small differ-
ences (< 2 ‰) for the isotope effect of N2 fixation can alter
the ratio of BD : WCD by 30 % or even more depending on
the model configuration used (Fig. 6d).

The MOBI experiments that most closely reproduce
seafloor δ15N observations are experiments #4 and #5
(limWCD = 32, εBD = 2 and 4), with εBD = 2 producing
slightly better correlation and root mean squared error
statistics. (Table 2). They predict a range of rates for
N2 fixation, WCD, and BD between 225–342, 76, and
149–267 Tg N yr−1, respectively. These experiments produce
a large range of BD : WCD ratios from 2 to 3.5 and high-
light the high sensitivity of the BD : WCD ratio to the net
fractionation factor of BD. Although the average level of ni-
trate utilization in the suboxic zones is uncertain, our experi-
ments using limWCD= 32 best represent observations from
the ETNP and Arabian Sea. Assuming this range for nitrogen
isotope parameters, our model estimates a potential range for
BD : WCD of 2.0–3.5.

Our model experiments are in general agreement with a
recent 3D inverse model that included nitrogen isotopes to
constrain marine denitrification rates (DeVries et al., 2013).
They similarly show a high sensitivity to the NO−

3 utilization
in the suboxic zone and fractionation factor assumed for BD.
However, they estimate lower ratios of BD : WCD from 1.3
to 2.3 compared to our results with MOBI. The main rea-
sons for this discrepancy are likely that DeVries et al. (2013)
assumed a slightly higher level of nitrate utilization in the
suboxic zones and lower values forεBD = 0–3 ‰, whereas
our high-end estimate for BD : WCD= 3.5 is due to using
εBD = 4 ‰. The high sensitivity to these parameters empha-

sizes the need to better understand and quantify them in fu-
ture studies.

5 Conclusions

Our study uses water columnδ15NO−

3 and seafloorδ15N ob-
servations to constrain the rates of N2 fixation, WCD, and
BD in the global ocean. The uncertainty associated with iso-
tope effects of denitrification in the water column and sed-
iments makes it difficult to constrain N2 fixation and total
denitrification rates. Previous box model studies usingδ15N
have estimated a large range for the ratio of BD : WCD from
1 to 3.7 (Brandes and Devol, 2002; Deutsch et al., 2004;
Altabet, 2007; Eugster and Gruber, 2012). Here we used a
set of experiments with a global coupled three-dimensional
circulation-biogeochemistry-isotope model (MOBI) and a
one-box model to show that nitrate utilization in the suboxic
zone and the net fractionation factor of BD, both of which
are not well constrained by observations, can lead to rates of
BD that vary by over a factor of 2 if not modeled correctly.

With our global coupled three-dimensional model, we are
able to compareδ15N observations in the water column and
seafloor in the regions where denitrification occurs to con-
strain the nitrogen isotope parameters in the model. This
highlights the importance of using models that can resolve
all of the locally important nitrogen isotope effects that affect
δ15N in denitrification zones. The model experiments that
best reproduceδ15N observations in the water column and
sediments estimate the rates of N2 fixation, WCD, and BD
in the ranges of 195–350, 65–80, and 130–270 Tg N yr−1,
respectively, assuming a balanced fixed-N budget in the pre-
industrial ocean. Although uncertainties still exist, this model
result suggests that N2 fixation is occurring at much greater
rates than previously estimated, and the residence time for
oceanic fixed nitrogen is between∼ 1500 and 3000 yr.

Appendix A

Nitrogen isotope model description

A1 Fractionation equation

Fractionation is calculated using kinetic fractionation (Mari-
otti et al., 1981):

15Npro
14Npro

= α
15Nsub
14Nsub

, (A1)

whereα is the kinetic fractionation factor associated with
the process and the Npro and Nsub refer to the nitrogen of
the product and substrate of the reaction, respectively. In
the model, we include15N as the prognostic variable in-
stead of the ratio15N/14N. The15N equations are embedded
within the marine ecosystem model that calculates total N
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(T N =
15N+

14N). Solving Eq. (A1) for15Npro with respect
to T Npro yields

15Npro=
αRsub

1+ αRsub

T Npro, (A2)

whereRsub is the isotopic ratio15N/14N of the substrate of
the reaction.

This equation can be equivalently expressed in the com-
monly used delta (“δ”) notation by applying the relation
(Mariotti et al., 1981):

α = 1− ε/1000, (A3)

which gives positive values forε with this definition.
Eq. (A2) then becomes

15Npro=
β

1+ β

T Npro, (A4)

whereβ = Rsub(1− ε/1000) (Giraud et al., 2000), which is
the nitrogen isotope equation coded into MOBI. Note we
use aRstd value of 1 so that14N and 15N have concen-
trations of the same order of magnitude. This reduces the
impact of numerical noise caused by the advection scheme
on the δ15N value. If the atmospheric N2 ratio was used
(Rstd= 0.0036765), the15N concentration would be over two
orders of magnitude smaller and be more susceptible to nu-
merical noise, which produces erroneousδ15N values. In the
polar oceans (> 80◦ N/S) where numerical noise is the high-
est in our global model, some model grid points still contain
erroneous isotope values so this region is not included in the
statistical analysis.

A2 Coupled model equations

The fractionation equation used for NO−

3 consumption dur-
ing phytoplankton uptake and WCD follows Eq. (A4) where
β = Rsub[1− ε · (1−u)/u · ln(1−u)/1000] andu is the frac-
tion of available total nitrate consumed during each time step.
This fractionation equation is used to ensure that if a signifi-
cant portion of the nitrate pool is consumed in one time step,
mass balance of the different nitrogen isotope species is con-
served. In the experiments here, we artificially limit WCD at
high enough nitrate concentrations (26–32 µM) so this term
[(1−u)/u · ln(1−u)] has a negligible effect for WCD in this
study. Since zooplankton excretion and BD are parameter-
ized in the model, the instantaneous fractionation equation is
used (Eq. A4) with a given fractionation factor to mimic the
net fractionation that occurs during the integrated reaction.

The full set of time-dependent equations for15N that are
embedded into the marine ecosystem biogeochemical model

are as follows:

∂15NO−

3

∂t
=

(
T RDµ∗

DD +
βexcr

1+ βexcr
µ∗

ZZ +
T RPOµ∗

PO
PO

+
T RPDiazµ

∗

PDiaz
PDiaz+

T RPDiazγ GE(PDiaz)Z

−
βassim

1+ βassim
J ∗

OPO −
βassim

1+ βassim
uNO−

3
J ∗

DiazPDiaz

)
×

[
1−

βWCD

1+ βWCD
0.8rO:Nρ

NO−

3
sox LlimWCD

]
−

βBD

1+ βBD
αBDBD · LBD, (A5)

∂15N−PO

∂t
=

βassim

1+ βassim
J ∗

OPO −
T RPOµ∗

PO
PO

−
T RPOG(PO)Z −

T RPOνPOP2
O, (A6)

∂15N−PDiaz

∂t
=

(
βassim

1+ βassim
uNO−

3
+

βNFix

1+ βNFix
(1− uNO−

3
)

)
J ∗

DiazPDiaz−
T RPDiazµ

∗

PDiaz
PDiaz (A7)

−
T RPDiazG(PDiaz)Z −

T RPDiazνPDiazP
2
Diaz,

∂15N−Z

∂t
= γ

[
T RPOG(PO) +

T RPDiazG(PDiaz)
]

Z

−
βexcr

1+ βexcr
µ∗

ZZ −
T RZνZZ2, (A8)

and

∂15N−D

∂t
= (1− γ )

[
T RPOG(PO) +

T RPDiazG(PDiaz)
]

Z

−
T RDµ∗

DD +
T RPOνPOP2

O +
T RPDiazνPDiazP

2
Diaz

+
T RZνZZ2

−
T RDwD

∂D

∂z
, (A9)

whereT RX =
15NX/(15NX+

14NX). Here it suffices to note
that the equations for total nitrogen (14N +

15N) are identical
to the ones for15N, except thatT RX = βX/(1+ βX) = 1 in
the total nitrogen equations. The parameter list is given in
Table B1.

A3 0D model

The one-boxδ15NO−

3 model assumes the fixed nitrogen in-
ventory and the nitrogen isotope inventory are both in steady
state. This yields the following equations for total fixed ni-
trogen andδ15NO−

3 :

NFix = WCD+ BD (A10)

and

NFix ·

(
β

1+ β

)
NFix

= WCD ·

(
β

1+ β

)
WCD

+BD ·

(
β

1+ β

)
BD,

(A11)
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Table B1.Marine ecosystem-biogeochemical parameter list∗.

Parameter Symbol Value Units

Phytoplankton (PO, PD) coefficients
Initial slope of P-I curve α 0.1 (W m−2)−1 d−1

Photosynthetically active radiation PAR 0.43
Light attenuation in water kw 0.04 m−1

Light attenuation through phytoplankton kc 0.03 m−1(mmol m−3)−1

Light attenuation through sea ice ki 5 m−1

Half-saturation constant for N uptake kN 0.7 mmol m−3

Phytoplankton specific mortality rate νPO 0.025 d−1

Maximum growth rate (at 0◦C) a0 0.35 d−1

Phytoplankton fast-recycling rate (at 0◦C) µPO0 0.014 d−1

Diazotrophs’ growth rate handicap cDiaz 0.13 d−1

Diazotroph specific mortality rate νPDiaz 0.025 d−1

Diazotroph fast-recycling rate (at 0◦C) µPDiaz0 0.0016 d−1

Zooplankton (Z) coefficients
Assimilation efficiency γ 0.925
Maximum grazing rate g 1.575 d−1

Phytoplankton prey-capture rate ωPO 5.0 (mmol m−3)−2d−1

Diazotroph prey-capture rate ωPDiaz 0.125 (mmol m−3)−2 d−1

Mortality νZ 0.34 (mmol m−3)−2 d−1

Excretion (at 0◦C) µZ0 0.015 d−1

Detritus (D) coefficients
Remineralization rate (at 0◦C) µD0 0.065 d−1

Sinking speed at surface wD0 13 m d−1

Increase of sinking speed with depth mw 0.06 d−1

E-folding temperature of biological rates Tb 15.65 ◦C

Elemental ratios
Molar oxygen : nitrogen RO:N 10.6
Molar carbon : nitrogen RC:N 6.625
Phytoplankton nitrogen : phosphorus N : PPO 16
Diazotroph nitrogen : phosphorus N : PPDiaz 40
Zooplankton nitrogen : phosphorus N : PZ 16

∗ Ecosystem-biogeochemistry parameter list for experiment #3 (limWCD= 32,εBD = 0). See Table 1 for changes to
parameters for other experiments.

where β = α · Rsub= Rsub(1− ε/1000), consistent with
Eq. (A4). Solving for benthic to WCD ratio yields

BD

WCD
=

(
β

1+β

)
NFix

−

(
β

1+β

)
WCD(

β
1+β

)
BD

−

(
β

1+β

)
NFix

. (A12)

These results are displayed in Table 4 and Fig. 6.

Appendix B

Marine ecosystem-biogeochemistry model description

This appendix provides a description of the parameters used
in the full set of time-dependent equations in the marine
ecosystem model. It suffices to note that the equations for to-

tal nitrogen (14N +
15N) ecosystem variables are identical to

the ones of15N if RX = βX/(1+βX) = 1, which are located
in Appendix A.

The function J ∗

O provides the growth rate of non-
diazotrophic “ordinary” phytoplankton, determined from ir-
radiance (I ), NO−

3 and PO3−

4 .

J ∗

O(I,NO−

3 ,PO3−

4 )=min(J ∗

OI,J
∗

OmaxuN,J ∗

OmaxuP) (B1)

The maximum growth rate is dependent only on temperature
(T ),

J ∗

Omax= a0 · exp(T /Tb), (B2)

such that growth rates increase by a factor of ten over the
temperature range of−2 to 34◦C. Note that all terms with
temperature dependency are denoted with the star symbol
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Fig. B1. Reduction factor applied to water column denitrification
for given NO−

3 concentration (µM) thresholds.

(∗). We usea0 = 0.35 d−1 for the maximum growth rate
at 0◦C which was determined to optimize surface nutrient
concentrations. Under nutrient-replete conditions, the light-
limited growth rateJOI is calculated according to

J ∗

OI =
J ∗

OmaxαI[
J ∗2

Omax+ (αI)2
]1/2

, (B3)

where α is the initial slope of the photosynthesis vs. ir-
radiance (P-I) curve. The calculation of the photosyntheti-
cally active shortwave radiationI and the method of aver-
aging Eq. (B3) over one day is outlined in Schmittner et
al. (2005). This version also includes the correction for the
error in the calculation of light limitation in previous ver-
sions (Schmittner et al., 2008). Nutrient limitation is repre-
sented by the product ofJ ∗

Omax and the nutrient uptake rates,
uN = NO−

3 /(kN + NO−

3 ) anduP= PO3−

4 /(kP+ PO3−

4 ), with
kP= kNrP:N providing the respective nutrient uptake rates.

Diazotrophs grow according to the same principles as
the ordinary phytoplankton class, but are disadvantaged in
nitrate-bearing waters by a lower maximum growth rate,
J ∗

Diazmax:

J ∗

Diazmax= cDiaz · FeLim· a0 · exp(T /Tb). (B4)

The coefficientcDiaz handicaps diazotrophs by dampening
the increase of their maximal growth rate versus that of the
general phytoplankton class with rising temperature. We use
cDiaz= 0.13, such that the growth rate of diazotrophs is 13 %
that of ordinary phytoplankton. This handicap is further de-
creased by the Fe limitation parameter, which is scaled be-
tween 0 and 1 by multiplying a monthly climatology of aeo-
lian dust deposition (Mahowald et al., 2005b, 2006, 2009) by
a constant factor and setting the maximum value to 1 (Somes
et al., 2010a). However, diazotrophs have an advantage in
that their growth rate is not limited by NO−3 concentrations,

J ∗

Diaz(I,PO4)=min(J ∗

DiazI,J
∗

DiazmaxuP), (B5)

although they do take up NO−3 if it is available (see term 1
on the right hand side of Eq. A7). The N : P of model dia-
zotrophs is set to 40: 1.

The first-order mortality rates of phytoplankton and dia-
zotrophs are linearly dependent on their biomass concentra-
tions, PO and PDiaz. Dissolved organic matter and the micro-
bial loop are folded into a single fast-remineralization pro-
cess, which is the product of their biomass and the tempera-
ture dependent term.

µ∗PO = µPO0exp(T /Tb) (B6)

Diazotrophs also die at a linear rate, which is included in this
fast-remineralization process.

µ∗

PDiaz
= µPDiaz0exp(T /Tb) (B7)

The grazing of ordinary phytoplankton by zooplankton re-
mains unchanged from Schmittner et al. (2005) as follows:

G(PO)=
gωPOP2

O

g + ωPOP2
O

, (B8)

whereg is grazing rate,ω is prey-capture rate, and P is phy-
toplankton concentration (Table B1). Note prey-capture rate
is reduced for diazotrophs relative to ordinary phytoplankton
in these experiments (Table 1).

Since diazotrophs have a higher N : P ratio (N : PDiaz = 40)
compared to zooplankton (N : PZ =16), this excess N is in-
stantaneously excreted to nitrate. The grazing formulation for
diazotrophs becomes

G(PDiaz) =
gωDiazP2

Diaz

g + ωDiazP2
Diaz

(
N : PZoop

N : PPDiaz

)
, (B9)

with the instantaneous grazing excretion (GE) term,

GE(PDiaz) =
gωDiazP2

Diaz

g + ωDiazP2
Diaz

(
1−

N : PZoop

N : PPDiaz

)
, (B10)

routed directly to nitrate.
Detritus is generated from sloppy zooplankton feeding and

mortality among the three classes of plankton, and is the only
component of the ecosystem model to sink. It does so at a
speed of

wD =

{
wD0 + mwz,z ≤ 1000m

wD0 + mw1000m,z > 1000m

}
, (B11)

increasing linearly with depthz from wD0 = 7 m d−1 at the
surface to 40 m d−1 at 1 km depth and constant below that,
consistent with observations (Berelson, 2001). The reminer-
alization rate of detritus is temperature dependent and de-
creases by a factor of 2 in suboxic waters, as O2 decreases
from 10 µM to 0 µM:

µ∗

D = µD0exp(T /Tb)[0.75+ 0.25tanh(O2−6)]. (B12)
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c d a b 

Fig. B2.Basin-scale model–data comparison of(a) PO−

4 , (b) O2, (c) apparent oxygen utilization (AOU), and(d) 114C with limWCD= 32,
εBD = 2, model experiment #5.

Remineralization transforms the N and P content of de-
tritus to NO−

3 and PO3−

4 . Photosynthesis produces oxygen,
while respiration consumes oxygen, at rates equal to the
consumption and remineralization rates of PO4, respectively,
multiplied by the constant ratioRO:P. Dissolved oxygen ex-
changes with the atmosphere in the surface layer (Fsfc) ac-
cording to the Ocean Carbon-Cycle Model Intercomparison
Project protocol (Orr, 1999).

Oxygen consumption in suboxic waters (O2 < ∼ 5 µM) is
inhibited, according to

rO2
sox = 0.5[tanh(O2−5) + 1] , (B13)

but is replaced by the oxygen-equivalent oxidation of nitrate,

rNO3
sox = 0.5[1− tanh(O2−5)] . (B14)

Denitrification consumes nitrate at a rate of 80 % of the oxy-
gen equivalent rate, as NO−3 is a more efficient oxidant on

a mol per mol basis (i.e., one mol of NO−

3 can accept 5e−

while 1 mol of O2 can accept only 4e−).
We include the scheme of Bohlen et al. (2012), which pa-

rameterizes BD based on the rain rate of POC (RRPOC) into
the seafloor and bottom water oxygen and nitrate:

BD = αBD

(
0.09782+ 0.22944× 0.9811bwO2−NO−

3

)
×RRPOC. (B15)

BD is the rate at which nitrate is removed from the bottom
water. We assume that the rain rate of carbon into the sed-
iments occurs at a ratio ofRC:N = 6.625 of the nitrogen in
the sinking organic detritus.

Since the continental shelves and other small-scale bathy-
metric features are not well resolved in the model, we use
a subgrid-scale parameterization. The portion of each bot-
tom ocean grid box that is deeper than the real sea floor
is calculated at each location from high-resolution (1/5◦)
bathymetry. The rain rate of carbon that is included in the
BD function in this shelf parameterization is the amount of
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particulate organic carbon that sinks into the portion of the
grid box covered by a shallower continental shelf. In the
model,∼ 30 % of BD occurs within this shelf parameteriza-
tion. The remaining particulate organic matter continues to
sink to greater depths. The coarse-resolution physical circu-
lation model’s inability to fully resolve coastal systems gen-
erally underestimates primary production and sinking carbon
fluxes on these continental shelves, which likely results in
too-low BD rates there. To account for this deficiency, we
multiply the BD transfer function by an arbitrary coefficient
(αBD). This parameter is tuned to set the global deep ocean
δ15NO−

3 in the model to∼ 5 ‰ for each experiment. Figure 2
shows the spatial distribution of BD.
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