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1 Introduction

The burning of fossil fuels has contributed to a warming climate over the last century

resulting in the death of wild life and enhancing natural disasters such as hurricanes

and drought. In response there has been a drive to explore and develop alternative and

renewable energy sources such as wind and solar power. The first of these while successful

is not without drawbacks; traditional spinning turbines have high tip speeds which are

detrimental to wildlife while also inducing large mechanical stresses in the turbine itself

decreasing the lifespan of the blade and increasing the cost of manufacturing. The cross

sectional area swept by the turbine is circular making traditional turbine arrays less

economical in flow area with space restrictions such as shallow riverbeds where multiple

smaller turbines would be needed to span the flow area.

Flapping foil energy harvesters seek to improve upon their conventional spinning counter

parts by eliminating the deficiencies listed above. Flapping foil energy harvesters are a

dynamic system typically consists of a foil that is allowed to rotate about a set point

along the chord length and translate perpendicular to the flow. The rotation of the wing,

known as pitch, changes the angle of attack in the flow thereby generating a force that

moves the foil in its translational degree of freedom known as heave; these mechanisms

are shown in Figure 1.1. These novel energy harvesters have much lower tip speeds then

rotating turbines and can be designed to sweep a particular cross section of flow by

varying the amplitude of translation and the span of the foil.

ℎ 𝑡𝑡

𝜃𝜃𝑝𝑝

𝑈𝑈∞

Figure 1.1: Flapping foil with rotational motion θ and translational motion h in a
freestream U∞
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Unlike conventional turbines, flapping foils are unsteady and exhibit a phenomenon

known as dynamic stall. Dynamic stall occurs when a vortex structure named a leading

edge vortex (LEV) forms do to flow separation at the leading edge of the airfoil. As the

angle of attack is increased during the motion, an adverse pressure gradient originates

at the trailing edge and travels up the chord toward the leading edge where it causes

flow separation and the formation of the LEV. An illustration of this process is shown

in Figure 1.2. The LEV creates a low pressure region and when near the surface of the

foil provides significant lift augmentation. The LEV suppresses loss of lift typical of

stall scenarios until it convects away from the foil. These unsteady flow physics have

preoccupied much of the research on both flapping foil energy harvesters and flapping

foil flight.

Experimental flapping foil devices are restricted to three generic configurations. The

first type are fully activated systems in which both pitch and heave motion profiles are

forced regardless of the flow scenario. These devices do not harvest energy but are useful

for investigating how different foil kinematics create different flow regimes. From this

the fundamental physics of the problem can be investigated via force measurements from

load cells or flow visualization such as PIV.

A second device category is semi-activated systems in which the pitch motion is forced

and the foil is allowed to heave from the forces generated by the interaction of the foil

1 2

3 4

Figure 1.2: Process of dynamic stall. (1) Foil is at low angle of attack and flow is
attached over entire chord length. (2) Angle of attack increases and an adverse pressure
gradient develops on the trailing edge. (3) Angle of attack increases further and adverse
pressure gradient travels up towards leading edge. (4) Adverse pressure gradient reaches

the leading edge initiating LEV formation.
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and the fluid. The pitching motion can be thought of as a driving mechanism for the

heaving motion. These devices do extract energy from the flow and are feasible for real

world applications.

Finally fully passive systems require no forced motion of the foil and involve either a

mechanical mechanism to create the sinusoidal pitch such as a rotational spring, or

mechanical coupling of the pitch and heave mechanisms. These devices are desirable

because they require no active input to sustain their motion.

Because the LEV originates from the leading edge, it is anticipated that relative motion

of the leading edge has the potential to affect the energy harvesting performance of

flapping foils. While a limited number of studies have looked at leading edge motion,

the parameter spaces is largely unexplored. It has been shown that passive flexibility at

the leading edge is largely ineffective at increasing energy harvesting performance while

certain active control mechanisms can be beneficial. However, studies looking at a wide

range of leading edge motions are largely absent.

The focus of the following research is twofold. First experiments measuring aerody-

namic forces on a pitching and heaving airfoil with controlled leading edge motion are

conducted to determined how the phase of leading edge motion impacts energy harvest-

ing performance. In addition to experimental force measurements, an inviscid model

with a criteria for vortex shedding at the leading edge will be applied to the foil mo-

tions. This model has been shown to accurately predict forces for flow scenarios in

which the flow is attached at the trailing edge. Here the model is applied to a parameter

range in which flow separation at the trailing edge is anticipated and the foil geometry

changes in time. Therefore, the second focus of this work is to determine whether the

vortex shedding mechanism used here is appropriate for this parameter range, and how

accurately the model is able to reproduce the experimental forces.
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2 Background

2.1 Foil Motion

As seen in Figure 1.1, the motion of the airfoil consists of a sinusoidal pitch θp and heave

motion h with the pitch leading the heave by 90◦ and the beginning of the cycle is the

start of the downstroke:

θp = −θ0 sin (ωt) (2.1)

h = h0 cos (ωt) (2.2)

where ω = 2πf is the angular frequency and f is the heave and pitch frequency. The

time derivative of these quantities is denoted with the overhead dot θ̇p, ḣ respectively.

Positive pitch is considered clock-wise. The foil pitches about a point xp as measured

from the leading edge; all experiments here were done for xp = c/2 where c is the chord

length. The heaving amplitude is h0 = 0.5c, the pitching amplitude is θ0 = 70◦, the

aspect ratio is 2, and Re = 20, 000− 30, 000. The freestream, U∞ is considered uniform

and constant. The hinge of the flexible leading edge segment is xh = c/3 from the

leading edge, and a positive leading edge angle θLE is considered clockwise. Details of

the leading edge motions will be presented in the Experimental Setup.

2.2 Key Parameters and Metrics

The pitch and heave provide the foil with additional motion relative to the fluid making

the pitch angle θp insufficient for characterizing the motion. An effective angle of attack

that takes into account the heave motion is given by

αeff = θp − arctan (ḣ/U∞) (2.3)

The geometric argument for this is shown in Figure 2.1. The pitch motion is omitted

from the formulation since here the foil pitches about the mid-chord and the contribution

of the pitch varies along the chord length. A feathering parameter can be defined as
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−ℎ̇

𝑈𝑈∞

Figure 2.1: Geometric argument for effective angle of attack.

χ =
θ0

arctan (|ḣ0|/U∞)
(2.4)

where |ḣ0| is the heaving velocity amplitude. χ = 1 corresponds to roughly zero net

work done on the foil by the fluid. χ < 1 yields thrust production in which the foil does

net work on the fluid and χ > 1 yields net work done by the fluid on the foil, or energy

harvesting.

The ratio of the foil motion time scale to the convective time scale of the fluid is known

as the reduced frequency

k = fc/U∞ (2.5)

and is a strong governing parameter for dynamic stall scenarios. As k → ∞ the foil

approaches flapping in quiescent air and the flow remains largely attached. As k → 0

the foil motion relative to the freestream motion becomes small and the foil becomes

quasi-steady; at large angles of attack flow separation will occur. When operating at

large pitch amplitudes, high reduced frequencies tend to suppress stall or flow separation

during the cycle [3], greatly impacting energy harvesting potential. Reduced frequency

is similar to a more common parameter Strouhal number St but with a different length

scale. The reduced frequencies tested in this work are k = 0.06, 0.08, and 0.10.

The lift force FY is measured in the experiments conducted here and it acts in the direc-

tion normal to the freestream, parallel to the heave motion, and is non-dimensionalized

to give coefficient of lift:

CY =
FY

1/2ρU2
∞cb

(2.6)
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where ρ is the air density, U∞ is the freestream velocity, c is the chord length, and b is

the span. The instantaneous power harvested from the fluid is calculated from the force

and moment vectors and their alignment with their analogous velocity vectors

P = ḣFY + θ̇pM (2.7)

where M is the moment about the pivot point. At low reduced frequencies and large pitch

amplitudes, the pitch contribution to power is small compared to the heave contribution

[2],[4]. The reduced frequencies tested here are considered low and the contribution from

the pitch is ignored.

P = ḣFY (2.8)

The cycle averaged power coefficient is given by

P̄ =
1

T

∫ T

0
Pdt (2.9)

where T is the cycle period. Finally efficiency for wind energy harvesters is defined in

terms of the power extracted from the flow and the theoretical energy flowing through

the cross sectional area swept by the turbine

η =
P̄

Pfluid
=

P̄
1
2ρU

3
∞bd

(2.10)

where b is the span and d is the largest vertical distance swept by the foil.

2.3 Flapping Foil Energy Harvesters

The performance of flapping foil energy harvesters has been investigated by many au-

thors and a synopsis of the effects of relevant parameters is presented below.
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2.3.1 Reduced Frequency

As discussed above reduced frequency is a measure of how fast the foil is moving com-

pared to the wind speed; it is one parameter that affects how much flow separation

occurs and therefore influences the timing and strength of the LEV. In their parametric

study Kinsey [2] reports an optimal reduced frequency range of k = 0.12−0.18 in which

strong LEV shedding occurs and efficiencies comparable to rotary turbines are reached.

For k < 0.16 power contribution due to pitch is small so as to justify neglecting the pitch

component to power, an assumption that is made in this work. Zhu [4] confirmed this

reduced frequency range and found an optimal reduced frequency of k = 0.15. Other

parametric studies have identified the same optimal reduced frequency range [5], [6]. At

lower reduced frequencies the LEV forms and detaches early and is unable to provide

lift to the foil later in the stroke while at higher reduced frequency the growth and

convection is suppressed [3],[7], [8], [9],[10].

2.3.2 Pitch Amplitude

The first flapping foil energy harvester study by McKinney and Delaurier [11] was at

moderate pitching amplitudes of θ0 = 25◦ and 30◦ where the highest efficiency measured

was 28%. Since then it has been determined that larger pitching amplitudes are optimal;

Kinsey [2] tested a range of pitching amplitudes and found that the optimal range was

between 70−80◦; Zhu [4] confirmed this finding. High pitching amplitudes are necessary

to cause LEV formation; if the pitching amplitude is low enough dynamic stall will not

occur regardless of what the reduced frequency is. Varying pitch amplitude has a strong

effect on the effective angle of attack whose influence on energy harvesting performance

will be discussed shortly.

2.3.3 Heave Amplitude

Kinsey [2] tested only two heaving amplitudes h0 = 1 and 1.5. The lower amplitude

was more efficient but the higher amplitude produced a larger average power coeffi-

cient. Larger heaving amplitudes have increased power but also have larger swept areas,

increasing the amount of energy available to the foil. Zhu [4] tested four heaving ampli-

tudes h0 = 0.25, 0.5, 1, 1.5 and found that h0 = 1 provided the highest efficiency. Kim
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[9] found an optimal heaving amplitude of h0 = 0.8; the heaving amplitude should be

comparable to the chord length for optimal efficiency.

2.3.4 Effective Angle of Attack

Effective angle of attack can be seen as combining the pitch and heave motions into a

single parameter. Kinsey [2] found that an effective angle of attack amplitude of 35◦

is optimal. Kim [9] found that effective angle of attack amplitude should be between

30− 40◦ but only for the optimal reduced frequency range. In contrast, Zhu [4] reports

that efficiency increases with effective angle of attack amplitude for k = 0.12 and that

effective angle of attack amplitude should be greater then 40◦ for high performance.

Trapezoidal pitching profiles are beneficial for low pitching amplitudes [12] but not at

optimal pitching amplitudes [13]. Larger reduced frequencies have smaller effective an-

gles of attack which generate smaller forces, but the heaving velocity increases producing

larger power. Unconventional flapping motions have also been tested [14], [15].

2.3.5 Leading Edge Geometry

Kinsey [2] reported on the effect of different leading edge geometries; no significant vari-

ation in performance was seen over NACA0002, NACA0015, and NACA0020 foils. Rival

[16] found that airfoils with sharp leading edges exhibited slightly earlier LEV initiation

but the growth rates were the same and the effect on performance was secondary; Kim’s

[9] results also support this.

2.3.6 Leading Edge Motion and Camber

Several authors have applied flexible or active control mechanisms to foils so as to mimick

motions found in nature. Liu [17] found that leading edge motion improved the energy

harvesting efficiency for low efffective angle of attack amplitudes by shifting the force

curves to better align with the heaving velocity. Tian [18] investigated flexibility at

both the leading edge and over the entire foil for the optimal parameter range, and

found that neither increased the efficiency compared to the rigid case. An active control

at the leading edge with reduced pitch angle did increase the efficiency. Totpal [7] found

that inertial based flexibility at the leading edge does not improve efficiency or average
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power coefficient for k = 0.04, 0.06, 0.08; it is suggested that larger forces are generated

by larger leading edge tip velocities. Hoke [19] found that time varying camber with

constant chord length can increase the energy harvesting efficiency at optimal operating

conditions.

2.3.7 Trailing Edge Augmentation

Several authors have studied how time varying motion at the trailing edge, or other

enhancements, impacts energy harvesting performance. Liu [17] determined that trailing

edge motion based on a hawkmoth wing increases the lift force magnitudes and the

efficiency for low pitching amplitudes. Passive trailing edge flexibility improves energy

harvesting performance typically by increasing the magnitude of the lift forces [20] ,

[21],[22]. Gurney flaps, both fixed and adaptive, are also beneficial [23].

2.3.8 Other Considerations

Some consideration has been given for high Re where turbulence is expected . Kinsey [24]

conducted CFD at Re=500,000 to study how turbulence affects the energy harvesting in

2D; they found that peak performance occurs at an effective angle of attack amplitude

of 30◦ and that unlike the laminar case peak LEV shedding does not occur for all

peak efficiency cases. 3D effects have also been investigated where reduced efficiencies

are seen compared to the 2D case [25], [26]. Energy harvester prototypes have been

designed and their performance compares well with numerical simulations [27]. Since

energy harvesting setups would likely be installed close the ground, the effect of a shear

flow as opposed to a uniform flow has been investigated [28]. The effects of the inertia

of the foil have also been studied [29].

2.4 Unsteady Inviscid Vortex Models

In addition to experimental results, an inviscid discrete vortex model will be applied

to the energy harvesting regimes investigated. Discrete vortex models represent shed

vorticity in the wake as point vortices thereby modeling the history effects on the un-

steady foil. There are several ways to model the actual foil. One way is to use conformal

mapping and complex potentials to map a circle to an airfoil shape such as an infinitely
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thin foil or a Joukowski foil; this is well documented by Milne-Thompson [30]. Another

formulation known as thin airfoil theory assumes an infinitely thin foil where the bound

vorticity distribution is modeled by a Fourier series. A final way, and the formulation

chosen here, is a panel method in which the geometry of interest is built out of vortices,

sources, and doublets. Both thin airfoil theory and panels methods are documented

extensively in Katz and Plotkin [31].

Studies using discrete vortex models are common and have been used extensively due to

their low computational cost and ability to replicate many real flow physics; some of the

relevant studies are listed here. Katz [32] modeled flow separation near the leading edge

using empirical data to determine the separation point for an unsteady airfoil. Ansari [33]

studied insect flapping motions using a discrete vortex method coupled with the blade

method where kutta conditions were applied to both leading and trailing edges. Ramesh

[34] applied thin airfoil theory to airfoils with large displacements. Ramesh [1] then

extended the model to incorporate shedding at the leading edge with a variable kutta

condition known as the leading edge suction parameter (LESP). Liu [35] applied the

Leishman-Beddos model [36] for trailing edge separation to the discrete vortex method.

In addition some authors have modeled each shear layer and corresponding vortex roll

up with a single point vortex that has a time varying strength [37], [38], [39].
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3 Model Formulation

While high fidelity simulations have become mainstream with advances in computing

power, low order simulations maintain the advantages of being much faster while still

capturing the generic physics of the flow as well as being able to accurately reproducing

quantities such as pressure and force. The model chosen here is a point vortex panel

method applied to an infinitely thin airfoil. This method was chosen due to its simplicity

compared to other panel methods that model the thickness of the foil; thickness is a

secondary effect and the main focus here is on modeling the unsteady flow. Choosing a

panel method over a more analytical option such as thin airfoil theory gives the flexibility

to better model complexities such as camber and relative motion at the leading edge.

Consider a body moving through a fluid with horizontal translation U∞, vertical velocity

ḣ, and rotational velocity θ̇p as seen in Figure 3.1. The model is inviscid and incom-

pressible, and the continuity equation becomes the Laplacian of the potential function

Φ which is called the velocity potential [31]:

∇× ~q = 0 (3.1)

ℎ̇

�̇�𝜃𝑝𝑝

X

Y

𝑈𝑈∞

Figure 3.1: Airfoil motion in the inertial frame (X,Y ) with the coordinate system
(x, y) aligned with the foil chord.
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x
𝑛𝑛1 𝑠𝑠1

𝑛𝑛2
𝑠𝑠2 𝑛𝑛3

𝑠𝑠3
Γ1

Γ2
Γ3

Figure 3.2: Airfoil discretization into panels with vortices marked at the 1/4 panel
length and the collocation points at the 3/4 panel length. Also the normal-tangential

coordinate system for each panel is shown.

~q = ∇Φ (3.2)

∇ · ~q = ∇2Φ = 0 (3.3)

The velocity vector ~q is induced in the otherwise quiescent fluid by the presence of the

airfoil and does not include the translation or rotation of the airfoil; it is considered a

perturbation potential that decays far from the airfoil [31]. Solutions to the Laplace

equation can be superimposed to build other solutions and here point vortices are used

to build the solutions of interest. These vortices have all their vorticity contained at the

vortex center thus enabling inviscid formulations everywhere in the fluid except at the

exact location of any vortex. The influence coefficients, or velocity induced by a point

vortex in the x and y directions respectively, are

uv =
Γv
2π

x− xv√
(x− xv)2 + (y − yv)2

(3.4)

vv =
Γv
2π

y − yv√
(x− xv)2 + (y − yv)2

(3.5)

where Γv is the vortex circulation.
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3.1 Steady Panel Method

Boundary element methods, or panel methods, model the inviscid flow around a body

and allow for the calculation of pressures and forces acting on the body. The airfoil is

discretized into n linear panels each of which contains a point vortex positioned at the

1/4 panel length and the collocation point positioned at the 3/4 panel length (see Figure

3.2). The collocation point is where impermeability is enforced; the sum of the velocity

contributions normal to the surface at each collocation point is zero. This is implemented

via n linear equations, one for each collocation point, where the n unknowns are the

circulation of each vortex on each panel. For the steady case this yields for a collocation

point i

ΣAijΓj − U∞,n,i = 0 (3.6)

where Aij is the influence coefficient of the vortex on panel j on the collocation point on

panel i in panel i’s normal direction and U∞,n,i is the corresponding normal component

of the freestream.

This system of equations implicitly encodes the Kutta condition at the trailing edge as

shown in Figure 3.3. The Kutta condition states that the flow must leave the trailing

edge smoothly making the pressure difference across the trailing edge zero. Here there

is an implied wake panel beyond the last specified panel n with a vortex and collocation

point. The pressure must be zero across this panel, and the vortex on this wake panel

must have zero strength thereby making this equation trivial.

3.2 Unsteady Panel Method

In the unsteady case there are additional velocity contributions from the heaving motion,

pitching motion, vortices shed from the trailing edge, and vortices shed from the leading

edge. All these additional contributions are known at each time step and the equation

for impermeability at a collocation point is now given by

ΣAijΓj = U∞,n,i + ḣn,i + (~̇θp × ~ri)n,i −
∂ΦLEV

∂ni
− ∂ΦTEV

∂ni
(3.7)
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x
Γ𝑛𝑛−1 Γ𝑛𝑛

Γ𝑛𝑛+1 = 0

Figure 3.3: Illustration of implied Kutta condition and wake panel at the trailing
edge.

where ḣn,i and (~̇θp×~ri)n,i are the velocities induced by the foil’s heave and pitch respec-

tively; ∂ΦLEV
∂ni

and ∂ΦTEV
∂ni

are the velocity contributions from all vortices shed from the

leading edge and trailing edge. The subscript n denotes the normal direction.

The coordinate systems are defined as shown in Figure 3.4 where θi is the panel angle

relative to the chord line; for panels on the leading edge, it also encodes the instantaneous

leading edge position. The rotation matrices are

[
us

un

]
=

[
cos
(
θp − θi) −sin

(
θp − θi)

sin
(
θp − θi) cos

(
θp − θi)

][
uX

uY

]
(3.8)

Y

X𝜃𝜃𝑝𝑝 𝜃𝜃𝑖𝑖

x

y

x

y

Figure 3.4: Inertial coordinate system (X,Y ), foil coordinate system (x, y), panel
coordinate system (s, n).
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[
us

un

]
=

[
cos(θi) sin(θi)

−sin(θi) cos(θi)

][
ux

uy

]
(3.9)

In an unsteady flow the bound circulation changes in order to satisfy impermeability

and the Kutta condition; this change in vorticity must be balanced by vorticity being

shed into the fluid due to Kelvin’s circulation theorem.

∑
Γi +

∑
ΓLEV +

∑
ΓTEV = 0 (3.10)

At low angles of attack vorticity is only shed at the trailing edge. The shed vortex

is positioned so as to approximates the shape of the shear layer; from Ansari [33] the

vortex is placed at 1/3 the distance of the previously shed vortex from the trailing edge.

The strength of this shed vortex is an additional unknown and its strength is solved for

iteratively using a 1D newton’s method as given by Katz and Plotkin [31] . The method

is as follows where m is the number of vortices shed from the trailing edge and k is the

newton’s iteration;

1) Guess a value for the recently shed vortex Γm.

2) Solve Eqn 3.7 for the foil circulation Γi

3) Calculate the sum of all circulations f(Γ).

f(Γ)k =
∑

Γi +
m−1∑
j=1

Γj,TEV + Γm,k (3.11)

4) f(Γ) must go to zero; compute an iteration of the newton’s method to calculate the

next guess for Γm.

Γm,k+1 = Γm,k −
Γm,k − Γm,k−1

f(Γ)k − f(Γ)k−1
f(Γ)k (3.12)

5) Now the strength of the vortices on the foil must be re-calculated to enforce imperme-

ability and the Kutta condition via Eqn (3.7). Repeat 2-5 until an appropriate residual

is reached.
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Γ 𝑥𝑥

𝑊𝑊(𝑥𝑥, 𝑡𝑡)

𝑈𝑈∞

Figure 3.5: Depiction of a typical bound vorticity distribution due to flow perfectly
navigating the leading edge, and downwash W (x, t)

3.3 Vortex Shedding at the Leading Edge

The parameter space studied here involves large angles of attack in which dynamic stall

is encountered. Therefore it is necessary to not only shed vortices at the trailing edge but

also at the leading edge to model the LEV. The problem becomes when to shed vortices

and with what circulation strength. Here the model by Ramesh [1] is implemented and

the Leading-Edge-Suction-Parameter (LESP) is used. This quantity comes from thin

airfoil theory in which the bound vorticity is formulated in terms of a Fourier series. In

order for the flow to navigate the leading edge the vorticity at the leading edge must

be large as seen in Figure 3.5; therefore the first Fourier coefficient is paired with a

cotangent term to provide this spike in vorticity at the leading edge.

γ(ν, t) = 2U∞

(
A0(t)

1 + cos ν

sin ν
+
∞∑
n=1

An(t) sin (nν)

)
(3.13)

where ν is a measure of position on the chord in a polar coordinate system with ν = 0

being the leading edge and ν = π the trailing edge. A0 is a measure of how large the

vorticity is at the leading edge and therefore is taken to be the LESP; from Katz and

Plotkin [31]

A0 = − 1

π

∫ π

0

W (x, t)

U∞
dν (3.14)
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where W(x,t) is the downwash and takes into account the foil motion, freestream, and

the velocity potential from the previously shed vortices:

W (x, t) = −(−U∞,n,i − ḣn,i − (~̇θp × ~ri)n,i +
∂ΦLEV

∂ni
+
∂ΦTEV

∂ni
) (3.15)

The LESP can be thought of as a modified angle of attack that takes into account not

only foil motion but also history effects from the wake. Ramesh hypothesized that an

airfoil has a critical LESP value for a given Re and foil geometry; the critical value

is preferably determined from CFD by looking for the first instance of separation at

the leading edge. When this critical value is exceeded a vortex is shed at the leading

edge so as to limit the LESP to the critical value. Physically this limits the amount

of vorticity or suction that the leading edge can sustain. If a vortex was shed from

the leading edge at the previous time step, the current shed vortex is positioned using

the same method as vortices shed from the trailing edge where the vortex is placed so

as to model the shape of the shear layer. Otherwise the vortex is placed based off of

the induced velocity normal to the leading edge from the freestream, heave, and pitch.

To solve for the strengths of the vortices shed at the leading edge and trailing edge a

2D Newton’s method is used. Eqn 3.16 given below is the updated Kelvin’s circulation

theorem, and Eqn 3.17 says that the LESP cannot exceed a critical value. The roots of

these equations, Γq,LEV and Γm,TEV , are found iteratively using Eqn 3.18.

f(Γ)k =
∑
i

Γi +

m−1∑
j=1

Γj,TEV + Γm,k +

q−1∑
j=1

Γj,LEV + Γq,k (3.16)

f(LESP ) =

LESP (t)− LESPcrit LESP > 0

LESP (t) + LESPcrit LESP < 0
(3.17)

∣∣∣∣∣ΓqΓm

∣∣∣∣∣
k+1

=

∣∣∣∣∣ΓqΓm

∣∣∣∣∣
k

−

∣∣∣∣∣∣
∂f(Γ)
∂Γq

∂f(Γ)
∂Γm

∂f(LESP )
∂Γq

∂f(LESP )
∂Γm

∣∣∣∣∣∣
−1

k

∣∣∣∣∣ f(Γ)

f(LESP )

∣∣∣∣∣
k

(3.18)

k + 1 refers to the next iteration values, Γq is the vortex shed at the leading edge, and

Γm is the vortex shed at the trailing edge.

All shed vortices are assumed to convect with the inviscid velocity so as to be force

free. Therefore the induced velocity from each vortex, both shed and attached to the
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foil, is calculated using influence coefficients and summed up with the addition of the

freestream velocity. The inviscid velocity is multiplied by the time step to calculate the

increment in position.

x∗v,t+1 = xv,t +
(
− U∞,x +

∂Φfoil

∂x
+
∂ΦLEV

∂x
+
∂ΦTEV

∂x
)∆t (3.19)

y∗v,t+1 = yv,t +
(
− U∞,y +

∂Φfoil

∂y
+
∂ΦLEV

∂y
+
∂ΦTEV

∂y
)∆t (3.20)

where the ’*’ denotes position in the frame of reference at the current time step. All

calculations are done in the foil frame and there is the additional motion of the coordinate

system relative to the vortices which includes the translation of the frame due to the

heave motion and the rotation of the frame due to pitch. The transformation of the

vortex positions in the previous body coordinate system to the new body coordinate

system is given below.

∣∣∣∣∣xv,t+1

yv,t+1

∣∣∣∣∣ =

∣∣∣∣∣cos(θp,t+1 − θp,t) −sin(θp,t+1 − θp,t)
sin(θp,t+1 − θp,t) cos(θp,t+1 − θp,t)

∣∣∣∣∣
∣∣∣∣∣x∗v,t+1 + (ht+1 − ht)sinθp,t
y∗v,t+1 − (ht+1 − ht)cosθp,t

∣∣∣∣∣ (3.21)

If the calculations were done in the inertial frame this transformation is not needed.

3.4 Vortex Blob Model

Point vortices as previously discussed have infinite velocity as the center of the vortex is

approached. This poses a problem since if two vortices get very close to each other, they

would fling each other unrealistically; mathematically this is a time discretization issue

in which the time step would have to go to zero to provide the resolution to properly

integrate the velocity. The singularity at the vortex center is diffused by implementing

the vortex blob model from Vatistas [40]:

uv =
Γv
2π

y − yv√
((x− xv)2 + (y − yv)2)2 + r4

core

(3.22)
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vv =
Γv
2π

x− xv√
((x− xv)2 + (y − yv)2)2 + r4

core

(3.23)

These equations replace equations 3.4 and 3.5 in calculating influence coefficients. The

blob model expands the area of rotational flow to the area within the core radius rcore

meaning that the analysis is now restricted to the domain outside of these viscous regions.

Here the core radius used is rcore = 1.3U∞∆t proposed by Leonard [41] and used by

Ramesh [1]. Vortices outside of the core radius see the same influence as that from a

point vortex.

3.5 Leading Edge Motion

In this work a flexible leading edge is modeled so as to determine the effect on energy

harvesting performance. The leading edge is a rigid section that is attached to the rest

of the wing via a hinge and undergoes arbitrary relative motion θLE . The velocity of

the leading edge in the inertial frame is

~VLE =

∣∣∣∣∣ 0

ḣ(t)

∣∣∣∣∣+

∣∣∣∣∣ cosθp sinθp

−sinθp cosθp

∣∣∣∣∣
∣∣∣∣∣ θ̇pyLE−θ̇pxLE

∣∣∣∣∣+

∣∣∣∣∣ cosθp sinθp

−sinθp cosθp

∣∣∣∣∣
∣∣∣∣∣ θ̇LEyLE

−θ̇LE(xLE − xhinge)

∣∣∣∣∣
(3.24)

The velocity of the fluid seen by the leading edge due to the foil motion is −~VLE with

the rotation matrix 3.8 to transform from the inertial coordinate system to the normal

tangential coordinate system of each panel on the leading edge.

3.6 Pressure, Force, and Moment Evaluations

The fluid forces acting on the foil can be evaluated using either the unsteady Bernoulli

equation or the momentum impulse formulation. Both will be presented here, starting

with the Bernoulli’s equation in the foil frame.
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3.6.1 Bernoulli’s Equation

From Katz and Plotkin [31]:

P∞ − P
ρ

=
1

2

(
(
∂Φ

∂x
)2 + (

∂Φ

∂y
)2 + (

∂Φ

∂z
)2

)
+
DΦ

Dt
(3.25)

=
1

2

(
(
∂Φ

∂s
)2 + (

∂Φ

∂n
)2

)
− (~U∞ + ~̇θp × ~r) · ∇Φ +

∂Φ

∂t
(3.26)

where s and n denote tangential and normal direction respectively, and t denotes time.

Here Φ is a perturbation potential that includes the influence of vortices on the foil

as well as vortices shed; it does not include the foil motion. The spatial derivative of

the velocity potential is the same regardless of what frame it is evaluated in. Since the

evaluation is in the foil frame, the time derivative has a convective part that takes into

account the motion of the frame

DΦ

Dt
= −(~U∞ + ~̇θp × ~r) · ∇Φ +

∂Φ

∂t
(3.27)

Evaluating the top and bottom sides of the foil and subtracting to get the difference in

pressure across each panel yields

Pl − Pu
ρ

= Γ(s)

(
∂ΦLEV

∂s
+
∂ΦTEV

∂s
− (~U∞ + ~̇θp × ~r)s

)
+
∂

∂t

∫ s

LE
Γ(s)ds (3.28)

where Γ(s) is the bound circulation per unit length. For an in depth derivation of

equation 3.28 see the Appendix A. When a vortex is shed at the leading edge the line of

integration around the foil must go past the leading edge and around this newly formed

vortex. This newly shed vortex contributes to the unsteady term in Eqn 3.28 since it’s

strength is changing in time for the current time step. For infinitely thin foils a leading

edge suction force acts at the leading edge in the chord-wise direction contributing to

the lift [31].

Fs = ρπU2
∞A

2
0 (3.29)

The total lift is given by
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FY =

∫ TE

LE
(Pl − Pu) cos(θp − θ(s))ds+ Fs sin(θp − θLE) (3.30)

Here the leading edge position is encoded in θ(x). The force contribution from the pres-

sure can be broken up into a circulatory component FC and non-circulatory component

FNC

FC = ρ

∫ TE

LE
Γ(s)

(
∂φLEV
∂s

+
∂φTEV
∂s

− (~U∞ + ~̇θp × ~r)s
)

cos(θp − θ(s))ds (3.31)

FNC = ρ

∫ TE

LE

(
∂

∂t

∫ s

0
Γ(s)ds

)
cos(θp − θ(s))ds (3.32)

3.6.2 Vortex Impulse

The lift force can also be calculated based on the impulse of every vortex. From Li [42],

and Bai [43] the lift force is given by

FY = ρ
∑
i

(U∞Γi −
d(Γixi)

dt
) + ρ

∑
i

(
d(miyi)

dt
) + La (3.33)

where mi are the strength of any source terms if present and La is the added mass

contribution. Here U∞ is the free stream velocity in the positive X-direction, not the

velocity of the foil as previously defined. In this model there are no source terms and

the added mass term is considered negligible since the fluid is air. Here a vortex with a

CW rotation is considered positive. Applying the force formulation yields

FY = ρΓb(U∞ −
dxb
dt

)− ρxb
dΓb
dt

+

ρΓLEV (U∞ −
dxLEV
dt

)− ρxLEV
dΓLEV
dt

+

ρΓTEV (U∞ −
dxTEV
dt

)− ρxTEV
dΓTEV
dt

(3.34)

This evaluation only holds in the inertial frame. A physical understanding of each term

is necessary; the 1st, 3rd, and 5th terms are the vortex lift from the bound vorticity,
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vortices shed from the leading edge, and vortices shed from the trailing edge, respectively.

The 2nd, 4th, and 6th terms are unsteady lift contributions from the change in bound

vorticity, time varying strength of vortices shed from the leading edge, and time varying

strength of vortices shed from the trailing edge respectively. The 4th and 6th terms

account for the force generated by shedding vorticity at the salient edges. x denotes a

position vector measured in the inertial frame. The vortex lift terms are dependent on

a velocity deficit between the freestream and the inviscid velocity; As a vortex convects

away from the foil its inviscid velocity approaches the freestream and it’s vortex lift goes

to zero [42].

The 1st, 3rd, and 5th terms are analogous to the circulatory term in the Bernoulli

evaluation with the addition of the leading edge suction force, and the 2nd, 4th, and 6th

terms make up the non-circulatory force

FC + FS = ρΓb(U∞ −
dxb
dt

) + ρΓLEV (U∞ −
dxLEV
dt

) + ρΓTEV (U∞ −
dxTEV
dt

) (3.35)

FNC = −ρxb
dΓb
dt
− ρxLEV

dΓLEV
dt

− ρxTEV
dΓTEV
dt

(3.36)

A comparison of the the Bernoulli force evaluation and the vortex impulse evaluation

is given in Appendix A. All model results shown in this work were calculated using

Bernoulli’s equation.

3.7 Empirical Trailing Edge Separation Model

The parameter space studied here includes the low reduced frequency range in which

flow separation at the trailing edge is anticipated. It is expected that the model as is

currently presented would overpredict the forces [1], [44]. Liu [20] applied the empirical

flow separation correction model formulated by Beddoes and Leishman [36] with some

extensions from Fan [45] to flapping foils at moderate reduced frequencies.

This model calculates a deficiency coefficient that is applied to the calculated forces

rather then adjusting the computed flow. A fictitious separation point along the chord

is calculated from static airfoil data. This fictitious separation point f0,sep is a function

of angle of attack for steady flow:
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f0,sep =

1− 0.3 exp(
|αeff |−α1

S1
) |αeff | < α1

0.04 + 0.66 exp(
α1−|αeff |

S2
) |αeff | ≥ α1

(3.37)

where α1 is the break angle at which the static foil reaches its maximum lift coefficient, S1

describes how gradually the force deviates from the small angle slope, and S2 describes

how quickly lift is lost beyond the break angle. Here the empirical values are taken

from Liu [35] for a NACA0015 foil with α1 = 15.25◦, S1 = 3, and S2 = 2.3. The force

correction is only applied to the circulatory force and suction terms.

CN,sep = CN,circ

(
1 + f

1/2
0,sep

2

)2

(3.38)

Cs,sep = Cs(f0,sep)
1/2 (3.39)

where CN,sep and CN is the adjusted and unadjusted circulatory normal force coefficient

respectively, and Cs,sep and Cs is the adjusted and unadjusted suction force coefficient

respectively. In the unsteady case a first order lag is applied to the separation point

τ1
dfsep
dt

+ fsep = f0,sep(αeff − τ2α̇eff ) (3.40)

where τ1 and τ2 are relaxation constants and the argument for f0,sep is effective angle

of attack adjusted to account for the changing boundary layer [20]. The relaxation

constants are taken from Liu [35] with τ1 = 0.52c/U∞ and τ2 = 4.5c/U∞. The total

adjusted lift is calculated as

CY = (CN,sep + CN,non) cos θ + Cs,sep sin θ (3.41)

where CN,non is the unsteady contribution from the changing bound circulation. Note

that the model only reduces the circulatory and the leading edge suction contributions,

not unsteady contributions. When evaluating CN,sep and Cs,sep for the unsteady case

fsep is used instead of f0,sep.
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4 Experimental Setup and Data Reduction

Here the facilities, equipment, experimental procedure, and data processing methods

will be presented.

4.1 Experimental Setup

4.1.1 Test Facilities

All experiments were conducted at a closed loop recirculating wind tunnel at Oregon

State University with a cross sectional area of 1.37m x 1.52m and turbulence intensity of

less then 1%. The foil was oriented vertically between end plates so as to eliminate the

influence of gravity and suppress 3D effects. The gap distance between the end plates

and foil were 5mm on one side and 10mm on the other side. A FlowKinetics LLC FKT

3DP1A Manometer was used to determine the freestream velocity U∞, and density ρ.

Heaving Scotch Yoke

Pitching Scotch Yoke

Rack and Pinion

Figure 4.1: Device situated in the wind tunnel test section and model of device with
pitching and heaving mechanisms identified.
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Normal Direction
Load Cell

Axial Direction
Load Cell

Figure 4.2: Custom built flexural device to minimize cross talk between load cells in
axial and normal directions.

4.1.2 Flapping Foil Device

The motion device is custom built and consists of a scotch yoke mechanism to generate

the heave motion, and a scotch yoke along with a rack and pinion to generate the pitch

motion. The device setup in the wind tunnel and the pitching and heaving mechanisms

are shown in Figure 4.1. The motors driving the heaving and pitching mechanisms are

G734-1280-4 and G723-400-4 stepper motors from Gecko Drive respectively, with each

controlled by a G203V motor driver. The forces during the cycle were measured using

LSB200 load cells from Futek. Two load cells were used, one to measure the axial load,

or drag, the other to measure the normal load, or force in the lift direction; the force

in the lift direction includes both the lift and the inertial heaving forces. The load cells

were installed in a custom built flexural device meant to minimize cross talk and shown

in Figure 4.2.

4.1.3 Airfoil

The airfoil consists of a titanium rode and 3D printed sections as shown in Figure 4.3.

The 3D printed sections were designed so as to leave the inside of the foil hollow to

reduce the mass; steel stiffening rods were inserted in the chord-wise direction to make

the foil stiff. the leading and trailing edges were elliptical with a major to minor axis

ratio of 6:1 and the aspect ratio of the foil was 2. The chord is c = 150mm and the

thickness of the wing is 6.5mm. The foil has two configurations, one being rigid, the

other with a motor installed to provide active control on the leading edge. The rigid

configuration has stiffening rods inserted from leading edge to trailing edge along the
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Motor Shroud
Motor

Figure 4.3: Wing with motor (yellow) and motor shroud (grey) identified.

(a) (b)

Figure 4.4: (a) Wing with the motor installed, (b) Wing without the motor installed.

chord and a flat segment to occupy the space where the motor would otherwise be.

The motor is inserted into a 3D printed shroud that mechanically attaches to the wing

and the d-shaft of the motor inserts into the leading edge segment. Models of the rigid

and active control configurations are shown in Figure 4.4. The shroud provides an easy

way to install the motor and also reduces the effect of the bluff geometry on the flow

over the wing. The motor shroud has a thickness of 14mm. The motor controlling the

leading edge is a brushed DC Micro Metal Gearmotor HPCB 12V with a 150:1 gear box

ratio from Pololu. An accompanying magnetic encoder provided position tracking with

+/− 0.2◦ resolution.
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4.1.4 Data Acquisition

All motion control and data collection was done using LabVIEW 2013. All data was

filtered by an in house built signal processor and collected at a sampling rate of 200Hz;

the position of the foil was determined by a digital signal activated mid-way through the

upstroke. The leading edge motor was controlled with a digital signal due to hardware

limitations; the motor was either on at the set voltage or off thus providing impulsive

motion at the leading edge. The details of this motion will be discussed shortly.

As stated above the load cells were installed in a flexural device to minimize cross talk

between the two force directions. From Totpal [46] the cross talk was minimized by

calibrating the matrix coefficients in LabVIEW

∣∣∣∣∣FNFA
∣∣∣∣∣ =

∣∣∣∣∣MVNonFN
MVAonFN

MVNonFA
MVAonFA

∣∣∣∣∣
∣∣∣∣∣VN − VN,0VA − VA,0

∣∣∣∣∣ (4.1)

where FN is the force in the normal direction, FA is the force in the axial direction, VN

is the normal direction voltage from a non-zero force in the normal direction, VA is the

axial direction voltage from a non-zero force in the axial direction, and VN,0 and VA,0 are

voltages in the normal and axial direction respectively for no loading in any direction.

A static tarr test was conducted for this calibration as described by Totpal [46].

4.1.5 Experimental Procedure

The wind tunnel is off. The foil is put into the mid upstroke position and if the foil is

configured for leading edge actuation, the leading edge is returned to θLE = 0 so that

it is aligned with the rest of the foil. The physical frequency f and the phase difference

between the pitch and heave are set in LabVIEW. Then the foil is set into motion. If

the foil is in the actuated leading edge configuration a video of the motion is taken at

240fps at 720p resolution. The wind tunnel door is then closed; once one minute has

passed since the beginning of device motion, data collection begins. This is to insure that

mechanical vibrations have steady stated. Data is collected for a total of three minutes.

The first minute is purely inertial forces since the wind is off; Totpal [46] showed that

aerodynamic forces generated by flapping in quiescent air are negligible compared to the

aerodynamic forces with the wind on for this parameter range. After the first minute, the

wind tunnel is turned on. The second minute is a transient period where the freestream
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is ramped up to its set value and becomes steady. Force data from the third minute is

comprised of both inertial forces and the aerodynamic forces of interest. The wind is

turned off and at least two minutes are allowed to pass between trials. The density is

recorded to calculate lift coefficients later. 7− 12 runs are conducted for each data set.

The minimum frequency used was f = 1.25Hz which comes out to 75 flapping cycles

per minute.

4.1.6 Data Reduction

All post processing was done in Python 3. The raw lift force data was first filtered with

a 3rd order forward-backward butter filter with a cutoff frequency of 8Hz. The data

set is separated into two sub sets, one for the first minute comprising the inertial forces,

and one for the third minute comprising the inertial and aerodynamic forces; the second

minute is discarded. The sub set for the first minute is broken up into individual flapping

cycles based on the activation of the digital signal midway through the upstroke. While

the foil is going through the mid upward heave the digital signal is sent for multiple data

points. The middle of this ”plateau” is the true mid upward heave position and the sub

data set is separated into individual flapping cycles based on this separation scheme.

The physical frequency f for a particular data set is determined from this signal. The

median and standard deviation are calculated across all the cycles at each time step;

cycles that contain data points that fall outside of two standard deviations from the

median at any time step are discarded. This is to get rid of individual cycles that

deviate from the steady operation due to rare mechanical occurrences. The remaining

cycles are then cycle-averaged to get a single cycle.

This process is applied to the sub data set for the third minute as well. The first minute

data set is subtract from the third minute data set leaving only the aerodynamic forces;

however, these aerodynamic forces are measured at the load cell and not at the mid

span. In order to move the forces to the mid span the sum of moments is computed

about point A in Figure 4.5.

Faero = FLC
d2 − d1

d2
(4.2)

where FLC is the force measured by the load cell and Faero is the aerodynamic force of

interest. The lift coefficient is then calculated as given in Eqn 2.6.
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4.1.7 Uncertainty Analysis

Uncertainties are calculated via the sequential perturbation method for lift coefficient,

heaving power coefficient, and effective angle of attack. As stated above the forces were

measured using LSB200 load cells from Futek with a rated output (RO) of 22.241N , a

non-linearity of 0.1% RO, hysteresis of 0.1% RO, and non-repeatability of 0.05% RO.

From error propogation theory the total bias uncertainty is 0.033N . The uncertainty in

velocity and density from the FlowKinetics LLC FKT 3DP1A Manometer was 0.24%

RO and 0.5% of the reading respectively. The span and chord were measured and a

conservative estimates of ±0.5mm were used. 95% confidence intervals were calculated

over the 7 − 12 data sets for each set condition; the experimental error was combined

with the bias

xunc =
√
x2
bias + x2

t,95 (4.3)

where xunc is the total uncertainty in x, xbias is the bias uncertainty in x, and xt,95 is

the experimental uncertainty with a 95% confidence interval. Experimental uncertainty

A

𝑑𝑑2

𝑑𝑑1

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐹𝐹𝐿𝐿𝐿𝐿

𝑅𝑅𝐴𝐴

Figure 4.5: Force diagram to move the measured force from the load cell to the
mid-span of the foil.
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for force varies during the cycle due to vibration and imperfections in the mechanical

mechanisms. Uncertainty values for each data point were calculated instead of an average

uncertainty for the entire cycle.

To calculate the uncertainty in the power coefficient the error in heave velocity is needed.

The heaving amplitude h0 was measured by hand and a conservative uncertainty of

±1mm was used. The error in frequency is the standard deviation of the measured

frequency over all the data sets for a set condition.

To calculate the uncertainty in αeff uncertainties in θp, θLE , the distance from the pivot

point to the hinge, and the length of the leading edge segment are needed. Uncertainties

for θp and θLE were determined by taking videos of the foil motion and tracking fudicial

marks; conservative uncertainty values were ±2◦. Human error in resetting the device

before a data set contribute to both these errors; slop between the leading edge motor D-

shaft and the leading edge segment also contributes to uncertainty in θLE . The distance

from the main foil pivot to the hinge and the leading edge segment length were measured

by hand and conservative values for uncertainty were ±0.5mm.

4.1.8 Leading Edge Motion Profiles

The leading edge is impulsively controlled in this setup and its length is 1/3 of the chord

length. The power supply for the leading edge motor was set to 6V and 400mA current

limit. The motor is controlled in LabVIEW where the inputs are the amplitude, the

timing of actuation during each stroke, and the direction of the leading edge motion

relative to main foil pitch. The leading edge motion is impulsive; the leading edge motor

is turned on via a digital signal at the appropriate time and therefore completely off

or completely on with the full voltage applied by the power supply. The LabVIEW

program records the angular position of the leading edge via an encoder and when the

set amplitude has been exceeded by the motion the motor is turned off. The motor

and leading edge section will continue to rotate under their own inertia until friction in

the hinge, motor, and gear box bring them to a halt. There is some deviation between

when the motor is turned off and when the leading edge actually stops moving. The set

amplitude in LabVIEW that produces the desired amplitude was determined through

trial and error.

The leading edge impulsively moves from one set position to another and the timing

of the motion, amplitude, and direction can be manipulated. Here the amplitude was
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kept constant at 40◦. There are six leading edge motions, three of which involve the

leading edge rotating in the same direction as instantaneous θp, and three where the

leading edge rotates in the opposite direction. The motions where the leading edge

rotates in the same direction as the instantaneous pitch will be called positive motions.

The other three motions will be called negative motions. Different positive motions have

different actuation times during the stroke, and the same goes for negative motions. The

visualization of these positive and negative characterization can be seen in Figure 4.6.

During the downstroke when θp is negative,a positive motion would have the leading

edge rotate counter-clock-wise (θ̇LE < 0) at the time of actuation. Positive motions

have θ̇LE < 0 for the downstroke and negative motions have θ̇LE > 0 for the downstroke;

positive and negative motions are defined independent of the main foil pitch velocity θ̇p.

The timing of the leading edge is specified in the LabVIEW program relative to the

beginning of the half cycle (downstroke and upstroke). The end of the leading edge

motion depends on the voltage supplied by the power supply to the motor and amplitude

of the leading edge motion; the momentum of the leading edge, dynamics of the foil

motion, friction in the hinge and gear box attached to the motor, and the aerodynamic

force on the leading edge also impact when the leading edge comes to a halt.

In Figure 4.8 and 4.7 a schematic of the positive and negative motions are shown for

the downstroke where t/T=0 is the top of the cycle and t/T=5/10 is the bottom. The

Positive Motion Negative Motion

𝜃𝜃𝑝𝑝(+) 𝜃𝜃𝑝𝑝(+)

𝜃𝜃𝑝𝑝(−)

�̇�𝜃𝐿𝐿𝐿𝐿(+)

�̇�𝜃𝐿𝐿𝐿𝐿(+)

𝜃𝜃𝑝𝑝(−)

�̇�𝜃𝐿𝐿𝐿𝐿(−)

�̇�𝜃𝐿𝐿𝐿𝐿(−)

Figure 4.6: Positive motion in which the leading edge rotates in the same direction as
the instantaneous pitch angle, and negative motion in which the leading edge rotates

in the opposite direction as the instantaneous pitch angle.
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rigid

P1-

P2-

P3-

P3-

t/T=0 t/T=1/10 t/T=2/10 t/T=3/10 t/T=4/10 t/T=5/10

Figure 4.7: Leading edge during the downstroke for negative motions. The rotational
arrow denotes that the LE has relative angular velocity at that instant. It should be
noted that at t/T=0.1 for P3- the leading edge has just come to rest after actuating

late in the upstroke.
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rigid

P1+

P2+

P2+
t/T=0 t/T=1/10 t/T=2/10 t/T=3/10 t/T=4/10 t/T=5/10

P3+

P3+

t/T=0 t/T=1/10 t/T=2/10 t/T=3/10 t/T=4/10 t/T=5/10

Figure 4.8: Leading edge during the downstroke for positive motions. The rotational
arrow denotes that the LE has relative angular velocity at that instant. It should be
noted that at t/T=0.1 for P3+ the leading edge has just come to rest after actuating

during late in the upstroke.
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Figure 4.9: Camber induced by leading edge.

positive motions are P1+, P2+, and P3+; the negative motions are P1-, P2-, and P3-.

The actuation time for P1+ and P1- is t/T ≈ 0.1, for P2+ and P2- it is t/T ≈ 0.2, and

for P3+ and P3- it is t/T ≈ 0.3. Motion times 1 and 2 are relatively early in the cycle.

Motion 3 is unique in that the leading edge actuates near the end of the stroke and

completes its motion early in the following stroke. Once the leading edge completes it’s

motion it does not return to the zero camber position and align with the rest of the foil;

the leading edge maintains it’s most recent position until actuated in the next upstroke

or downstroke. The amplitude of the leading edge is 40◦ with some variation between

data sets.

The trajectories of the leading edge measured by the encoder during the cycle are given

in 4.10. There is no negative motion P3- data for k=0.10. Both P1+ and P1- initiate

their motions at t/T = 0.1, P1+ with negative θ̇LE , and P1- with positive θ̇LE . Both

P1+ and P1- finish their motions around t/T = 0.3. P2+ and P2- start their motions

at t/T = 0.2 and end their motions around t/T = 0.4. P3+ and P3- start their motions

around t/T = 0.3 and end their motions in the proceeding stroke at t/T = 0.6.

The motion of the leading edge induces instantaneous camber which is captured by a

modified pitch angle

θeff = θp + β (4.4)

where β is the interior angle formed by the camber line and the trailing edge as seen in

Figure 4.9. The position of the leading edge can either add additional pitch to the foil,

or decrease the pitch of the foil. A modified effective angle of attack that accounts for

this camber effect is
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Figure 4.10: Deflection of leading edge during the cycle for all motions. The first,
second, and third rows correspond to k=0.06, 0.08, and 0.10 respectively.
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αeff = θeff + arctan(
ḣ

U∞
) (4.5)

Eqn 4.5 encodes the leading edge motion and will replace Eqn 2.3 for analysis in this

work.

Here additional quantities used to analyze the experimental results will be defined. It is

anticipated that the performance of the flapping motion would be related to the effective

angle of attack at the tip of the leading edge. The velocity of the leading edge tip in the

X-direction and Y-direction in the inertial frame are respectively

VLE,X = θ̇p(yLEcos(θp)−xLEsin(θp)) + θ̇LE(yLEcos(θp)− (xLE −xhinge)sin(θp)) (4.6)

VLE,Y = ḣ+ θ̇p(−yLEsin(θp)−xLEcos(θp)) + θ̇LE(−yLEsin(θp)− (xLE −xhinge)cos(θp))
(4.7)

The effective angle of attack at the leading edge tip is then defined as

αeff,LE = θp + θLE − arctan(
VLE,Y

U∞ − VLE,X
) (4.8)

The feathering parameter for rigid foils was given by Eqn 2.4 where the peak heaving

velocity occurs during the peak pitching amplitude. For foils with time varying leading

edge motion this is not the case and two new quantities are introduced.

χ∗ =
1

T

∫ T

0

θeff

arctan(ḣ/U∞)
dt (4.9)

χ∗LE =
1

T

∫ T

0

θeff

arctan(
VLE,Y

U∞−VLE,X
)
dt (4.10)

where χ∗ is a cycle average feathering parameter that measures over the entire cycle

how effective pitch and heave induced reduction in angle of attack compare. χ∗LE is a

cycle averaged feathering parameter at the leading edge tip.
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5 Results

Here the experimental and model results for the rigid and actuated motions will be

presented. The foil pivots about the mid-chord, the heaving amplitude is h0 = 0.5c,

the pitching amplitude is θ0 = 70◦, the aspect ratio is 2, Re = 20, 000 − 30, 000, and

k = 0.06, 0.08, and 0.10. The leading edge is 1/3 of the chord length.

5.1 Experimental Results

5.1.1 Rigid Cases

Effective angle of attack and coefficient of lift for the rigid cases are shown in Figure 5.1.

Uncertainty for effective angle of attack is high, limiting the comparison to k = 0.06 and

0.10. Effective angle of attack is zero at the beginning of the stroke because the foil is

parallel to the flow and the heaving velocity is zero. At t/T = 0.25 the minimum αeff

is reached coinciding with the highest pitch angle and highest heave velocity. Effective

angle of attack decreases with increasing reduced frequency; αeff,min = −60◦ and −50◦

for k = 0.06 and 0.10 respectively.

The force curves have the same basic shape across all the reduced frequencies; at t/T = 0

the force is negative and from there the force decreases to a primary peak, or minimum

at t/T = 0.1. The force increases until around t/T = 0.25 at which time the force begins

to level out; for k = 0.06 a saddle occurs and for k = 0.10 a secondary peak or local

minimum occurs. The magnitude of the force is greater for the higher reduced frequency

between t/T = 0 and 0.15. Finally the data is not symmetric between the downstroke

and the upstroke for k = 0.10 but this deviation is small.

The power coefficient for the rigid cases are shown in Figure 5.2. Higher reduced frequen-

cies have larger power coefficients and peak instantaneous power occurs at t/T = 0.15

for all cases during the downstroke. All the power coefficients begin to level out around

t/T = 0.25 and then decrease to zero at t/T = 0.45.
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Figure 5.1: Rigid data: a) effective angle of attack, b) lift force coefficient.
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Figure 5.2: Rigid data power coefficient.

5.1.2 Positive Motions

Effective angle of attack and lift coefficient are shown in Figure 5.3 for the positive

motions. The positive motions have reduced |αeff | compared to the rigid case up until

t/T = 0.2. P1+ and P2+ start at positive αeff due to their camber and are decreasing

at the same rate. P1+ and P2+ switch to negative effective angle of attack at around

t/T = 0.05. They continue to decrease at the same rate until t/T = 0.1 when the leading

edge actuates for P1+ causing α̇eff to increase (less negative) for that motion. P1+

reaches a minimum effective angle of attack at t/T = 0.3; for k=0.06 the value is −68◦

and for k=0.10 it is −56◦. P2+ reaches a minimum at t/T = 0.32; for k = 0.06 the

value is −58◦ and for k = 0.10 the value is −50◦.

Both P3+ and the rigid case start at αeff = 0. P3+ exhibits a slower rate of change

of effective angle of attack compared to any other motion until t/T = 0.1. It has the
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Figure 5.3: Effective angle of attack and lift force coefficient for positive motions.
First column is effective angle of attack, second column is lift force coefficient. The

first, second, and third rows correspond to k=0.06, 0.08, and 0.10 respectively.

smallest amplitude with αeff,min = −50◦ for k = 0.06 and αeff,min = −40◦ for k = 0.10.

Additionally, the effective angle of attack amplitude occurs at the mid heave position

which is the same as the rigid case.

Lift coefficients are also shown. For all motions the lift decreases to a primary peak

and then increases back up to a saddle or secondary peak depending on the particular

motion. For k = 0.06 the positive motions have primary peaks shifted later to t/T = 0.15

compared to the rigid case whose primary peak occurs at t/T = 0.1. P1+ and P2+ have
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Figure 5.4: Heaving power coefficients for positive motions. The first, second, and
third rows correspond to k = 0.06, k = 0.08, and k = 0.10 respectively.

primary peak values of −1.25 which are comparable to the rigid case. P3+ has a larger

magnitude primary peak of −1.75 compared to all other motions. At t/T = 0.25 P1+,

P2+ and P3+ show increasing force magnitudes of 1, 1.25, and 1.5 respectively; P3+

produces larger forces up until t/T = 0.42 compared to any other motion.

For k = 0.08, the magnitude of the force coefficients from P1+ and P2+ are smaller

compared to the rigid case at the start of the downstroke; P3+ is close to zero. All

actuated motions have reduced force magnitudes compared to the rigid case until t/T =

0.1. P1+ and P2+ have the same magnitude primary peak of 1.6 which occurs at
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t/T = 0.15. P3+ has the largest primary peak of 2 at the latest time of t/T = 0.2. P1+,

P2+ and P3+ show increasing force magnitudes of 1.3, 1.5, and 1.9 at t/T = 0.22; P3+

produces larger forces compared to any other motion up until t/T = 0.42

For k = 0.10 the primary peaks are largely comparable with values of −1.75 for the

downstroke. Up until t/T = 0.1 the rigid case and P1+ force curves follow each other

closely. At t/T = 0.22 the rigid case, P1+, and P3+ show increasing force values of −1,

−1.5, and −1.75 respectively.

The heaving power coefficients are given in Figure 5.3. All power coefficients shown here

start at zero and rise to a peak between t/T = 0.1 − 0.3. The power coefficients are

predominantly positive. For k = 0.06 at time t/T = 0.22 the rigid case, P1+, P2+, and

P3+ exhibit increasing values of CP = 0.12, 0.17, 0.2, 0.27 respectively. At t/T = 0.33

the power coefficient for the rigid case, P1+, and P2+ are comparable with a value of

0.07.

To briefly summarize, the positive motions have their primary peaks pushed back later

in the stroke compared to the rigid case. For k = 0.06 and 0.08, the primary peak

for P3+ is larger compared to the other motions. All the positive motions have larger

forces later in the cycle after the primary peak has occurred to varying degrees; P3+ has

increased force magnitudes from t/T = 0.2 − 0.45 compared to any other motion. All

the positive motions have reduced effective angle of attack magnitude up until t/T = 0.2

and P3+ has both the smallest rate of change of effective angle of attack early in the

stroke as well as the smallest effective angle of attack amplitude.

5.1.3 Negative Motions

Effective angle of attack and lift coefficients for the negative motions are presented in

Figure 5.5 for k = 0.06 and 0.08. For k = 0.06 P1- and P2-, both start at the same

value of αeff = −13◦ at t/T = 0 and share the same rate of change of effective angle

of attack until t/T = 0.1. At this point P1- actuates, and its effective angle of attack

changes more slowly. The minimum effective angle of attack for P1- occures at t/T = 0.2

and for k = 0.06 the value is αeff,min = −58◦. P2- reaches a more negative value of

αeff,min = −66◦ and at a later time of t/T = 0.22.

Effective angle of attack for the rigid case and P3- both start at zero. P3- has the largest

rate of change in effective angle of attack magnitude of any motion up to t/T = 0.1; for
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Figure 5.5: Force and effective angle of attack for negative motions. Effective angle
of attack is given in the first column and coefficient of force is in the second column.

The first and second rows correspond to k=0.06 and 0.08 respectively.

k=0.06 αeff,min = −70◦, which is the largest amplitude of any motion and it occures at

the same time as the rigid pitch amplitude at t/T = 0.25.

The force curves are also shown in Figure 5.5. P1- and P2- have smaller magnitude

primary peaks compared to the rigid case while P3- and the rigid primary peak are

comparable. For k=0.06, P1- increases from the minimum, or primary peak, to a saddle

value of CY = −0.7 at t/T = 0.2 which is comparable to the rigid case. P2- increases

to a local max of CY = −0.3 at t/T = 0.25 and then decreases to a local minimum of

CY = −0.6 at t/T = 0.37. P3- increases up to a local max at t/T = 0.2 with a value of

−0.2 and sees little change in lift coefficient for the rest of the stroke.

The negative motions have larger magnitudes of αeff then the rigid case for t/T = 0−0.2

and P3- experiences larger rate of change of αeff then any other motion up to t/T = 0.1.

P2- and P3- reach larger effective angle of attack amplitudes compared to the rigid case

and P3- experiences the largest |αeff | of all motions. In the force curves P1- and P2-

show smaller magnitude primary peaks compared to the rigid case while P3- has a

comparable primary peak. Over the interval from t/T = 0.25−0.4, P3- has the smallest
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Figure 5.6: Heaving power coefficients for negative motions with k = 0.06 and 0.08
for the first and second rows respectively

force magnitudes of any motion; P1- produces forces comparable to the rigid case during

this period.

The instantaneous heaving power coefficients are given for the negative motions in Figure

5.6. For k = 0.06, the rigid case has the largest peak power of CP = 0.2 at t/T = 0.15.

P3- follows the rigid data until t/T = 0.1 where the power begins to drop; by t/T = 0.2

the power coefficient is at a saddle of CP = 0.4. P1- has reduced power compared to

the rigid case up t/T = 0.2 at which point the power from the two motions becomes

comparable. P2- shows reduced power compared to the rigid case until t/T = 0.3.

5.1.4 Performance Comparison Over All Data

Here the foil motions across the reduced frequencies will be analyzed using the metrics

discussed in the Data Reduction section. In Figure 5.7 the heaving efficiencies for each

motion and reduced frequency are shown. The rigid cases have efficiencies of 6.25%,

9.5%, and 13.75% for k = 0.06, 0.08, and 0.10 respectively. The negative motions show
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reduced efficiencies compared to the rigid cases; P3- for k = 0.06 has the lowest efficiency

recorded of ηh = 4%. P2+ and P3+ produce larger efficiencies compared to the rigid

cases. For the lowest reduced frequency of k = 0.06 P3+ shows an increase of 43%

against the rigid case; for k = 0.10 P3+ shows an increase in efficiency of 25% compared

to the rigid case.

In Figure 5.8 efficiency is plotted against effective angle of attack amplitude and effective

angle of attack amplitude at the leading edge tip as defined in Eqns 4.5 and 4.8. There

is a negative correlation between αeff,max and efficiency; the largest effective angle of

attack amplitude of 71◦ corresponds to an efficiency of 4%. The lowest effective angle of

attack amplitude of 38◦ corresponds to an efficiency of 17.5%. The spread is wide in some

areas with ηh varying from 7% to 15% at αeff,max = 55◦. Efficiency is roughly correlated

the same against effective angle of attack amplitude at the leading edge where now the

highest efficiency of 17.5% corresponds to αeff,LE,max = 42◦ and the lowest efficiency of

4% corresponds to αeff,LE,max = 42◦.

In Figure 5.9 the heaving efficiencies are plotted vs the two modified feathering parame-

ters χ∗ and χ∗LE as defined in Eqns 4.9 and 4.10. Heaving efficiency shows a wide spread

against χ∗LE with ηh ranging from 6% to 16% at χ∗LE = 1.5. Heaving efficiency shows a

better correlation with χ∗; at χ∗ = 2.5 ηh = 11% to 15% and at χ∗ = 4 the efficiency

ranges from 5% to 8%. Some deviation from the trend is seen at χ∗ = 3.25 where the

efficiency ranges from 6% to 10%.
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Figure 5.7: Efficiency based off the heaving contribution to the power coefficient.
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Figure 5.10: Comparison of panel method results to thin airfoil theory results from
Ramesh [1] and CFD from Kinsey [2].

5.2 Model Results

5.2.1 Validation

The unsteady panel method with vortex shedding is compared against the thin airfoil

theory from Ramesh [1] and CFD conducted by Kinsey [2] in Figure 5.10; the operating

parameters are k = 0.14, h0/c = 1, xp = c/3, and LESPcrit = 0.19 corresponding to a

NACA0015 foil at Re = 1100. At t/T = 0 the panel method has a force of CY = 0.6

where as both the CFD and the thin airfoil theory start at zero. The force coefficient

decreases to CY = −1.8 at t/T = 0.1 and matches well with the CFD and thin airfoil

theory. This is a minimum or primary peak and from here the magnitude of the force

decreases. At t/T = 0.3 the panel method shows a local maximum of CY = −1.5 while

the CFD has a local maximum later at t/T = 0.375 with a value of CY − 1; the thin

airfoil theory has a local maximum slightly before the panel method with a value of

CY = −1.25. All simulations then decrease down to a primary peak at t/T = 0.45;

the thin airfoil theory shows a lift coefficient of CY = −2.75 while the panel method

shows a lift coefficient of CY = −2.1 and the CFD shows a lift coefficient of CY = −1.9.

Overall the panel method captures the generic trends and magnitudes. At t/T = 0 the

panel method has a moment coefficient of CM = −0.25 and for CFD CM = 0.2. At

t/T = 0.1 a peak in moment coefficient occurs with both CFD and the panel method

predicting CM = 0.2. The moment decreases down to CM = −0.25 at t/T = 0.25 for

both the panel method and CFD and then increases up to CM = 0.5 at t/T = 0.45. the

moment from CFD decreases more quickly from here reaching a value of CM = −0.25
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by t/T = 0.5 where as the panel method is around CM = 0.3. The thin airfoil theory

follows the generic trends of the CFD but underpredicts the moment at t/T = 0.2 and

overpredicts the moment at t/T = 0.4.

5.2.2 LESP Analysis

Here the results from the discrete vortex model using the LESP criterion will be com-

pared to the experimental force data. As described in the Model Formulation section,

the critical LESP value is usually determined by looking at flow visualization from CFD

or PIV for the first instance of shear layer rollup at the leading edge; here neither data is

available and instead critical values for each case are determined by running the model

for a wide range of critical LESP values and calculating the normalized root mean square

(NRMS) error between the lift force predicted by the model and that from experiments.

NRMS is calculated as

NRMS =

√
(Cl,model − Cl,exp)2

Cl,exp,max
(5.1)

where Cl,model is the lift coefficient calculated from the model, Cl,exp is the measured

lift coefficient, and Cl,exp,max is the measured lift coefficient amplitude. The range of

LESPcrit is 0 − 0.4 and 16 evenly spaced values are tested. This range was selected

based on critical LESP values that Ramesh reports [1],[44]. The trailing edge separation

correction is not applied to the forces produced by the model for this error minimization

process; applying the trailing edge separation correction decreases the error but does not

change the shape of the curves or the critical LESP at which the minimum error occurs.

The NRMS errors for the positive motions and negative motions are shown in Figures

5.11 and 5.12 respectively. Only two cycles were computed where the second cycle is

used in the NRMS calculation. This saves computation time while still capturing the

trends and magnitudes of the force curves.

For the positive motions in Figure 5.11 the error minimization is concave up and in

some cases oscillates. Most of the error curves see some degree of oscillation and this

could be because the simulation has not steady stated; The rigid case at k = 0.06 has

large oscillations for half of the critical LESP range suggesting that there is no single

critical value for this motion. A Moving average with a 3 value long window was applied
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Figure 5.11: Error minimization to determine the critical LESP for the positive mo-
tions. The LESPcrit value given above each plot is the value which produces the
minimum error based on the filtered curve. The left, middle, and right columns corre-
spond to k=0.06, 0.08, and 0.10 respectively. The first, second, third, and fourth rows

correspond to rigid, P1+, P2+, and P3+ respectively.
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Figure 5.12: Error minimization to determine the critical LESP for the negative
motions. The LESPcrit value given above each plot is the value which produces the
minimum error based off the filtered curve. The left and right columns correspond to
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to the error minimization and the appropriate critical LESP value for each motion was

identified from this curve.

All the k = 0.06 motions have oscillating errors in the range LESPcrit = 0 − 0.2. P1+

and P2+ show large increases in NRMS error as LESPcrit becomes greater then 0.1.

For P3+, LESPcrit = 0.08 for the minimum NRMS and the rate of change of NRMS

near this critical value is small suggesting that the coefficient of force predictions have

reduced sensitivity to how much vorticity is shed at the leading edge.

P1+ for k = 0.10 and P3+ for k = 0.08 are unique in that as the critical LESP values

decreases below 0.15 the NRMS error increases much more rapidly then for the other

motions. The highest minimum error seen is for P2+ at k = 0.10 with NRMS = 0.7

at LESPcrit = 0.24, and the lowest minimum error seen is for P1+ at k = 0.08 with

an error of NRMS = 0.4 at LESPcrit = 0.05. At k = 0.10, P3+ has a minimum

NRMS = 0.6 at LESPcrit = 0.05 and the NRMS error changes very little over the

critical LESP range of 0 − 0.25. All the motions show increasing error with increasing

LESPcrit > 0.25 and all but one motion has an LESPcrit < 0.2.

The LESP analysis for the negative motions is shown in Figure 5.12. The appropri-

ate LESPcrit are all less then 0.17 for the negative motions and NRMS increases with

LESPcrit > 0.17 for all cases. P3- for both k = 0.06 and 0.08, have a common appro-

priate critical value of LESPcrit = 0.11 with NRMS = 0.45 and 0.3 respectively. Both

P1- and P2- for k = 0.08 have a common appropriate critical value of LESPcrit = 0.16

and NRMS errors of 0.65. For k = 0.06 both the rigid case and P2- have appropriate
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Figure 5.13: (a) Critical LESP that produce minimum error vs. cycle averaged
feathering parameter (b) Average critical LESP for each reduced frequency where error

bars denote standard deviation
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critical values of LESPcrit = 0.08 with NRMS = 0.5 and 0.65 respectively. The lowest

error observed is for P3- at k = 0.08 where the error is NRMS = 0.3 and the highest

minimum error seen is NRMS = 0.7 for P1- at k = 0.06 .

The appropriate critical LESP values are plotted vs cycle averaged feathering parameter

in Figure 5.13; averaging for each reduced frequency across LESPcrit and χ∗ is also

shown. The error bars denote standard deviation across their respective quantities.

The spread is wide and there is no clear relationship between critical LESP value and

χ∗. When the quantities are averaged for each reduced frequency there is a weakly

correlated negative relationship between critical LESP value and χ∗. Deviation in χ∗

increases with decreasing k, and deviation in LESPcrit decreases with decreasing k. For

k = 0.10 LESPcrit ranges from 0.075− 0.22 and χ∗ ranges from 3.5− 4.2.

5.2.3 Positive Motions, Comparison to Experimental Data

The model was run for an additional cycle at the appropriate critical LESP value for

each motion and the empirical trailing edge separation correction was applied. The Force

histories predicted by the model are compared against the experiments in Figure 5.14

where DVM is the force calculated from the model without the trailing edge separation

correction, and DVMA is with the correction. While both DVM and DVMA are able to

reproduce generic trends such as the timing of the primary peak and the secondary peak

peak or saddle, both fail to predict the magnitudes of the forces. For the rigid cases

there is little difference between DVM and DVMA; since the empirical force correction

is only applied to the circulatory and suction contributions to the force, this suggests

that these contributions are small compared to the non-circulatory contribution. For

k = 0.06 both DVM and DVMA predict a primary peak at t/T = 0.1 but predict a value

of CY = −2.5 while the experiment shows CY = −1.5. DVM and DVMA then increase

up to a local maximum at t/T = 0.3 while the experiment has a saddle. The rigid case

at k = 0.08 is similar with DVM and DVMA predicting the timing of the primary peak

at t/T = 0.1 and the saddle at t/T = 0.3 but over-predicting the forces by a factor of 2.

For P1+ at k = 0.06, DVM follows the experiment closely between t/T = 0.2 − 0.4,

while DVMA reproduces the primary peak better but over predicts the force later in

the stroke. The same is true at k = 0.08. For k = 0.10, DVMA correctly predicts the

timing of the primary peak as well as its value of CY = −1.6 but does not predict the

loss of lift shown by the experiment between t/T = 0.25− 0.4.
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For P2+ and P3+, DVMA predicts the primary peak value better then DVM but still

fails to show the decrease in lift later in the stroke; this is especially true for k = 0.10

where for P2+ DVM and DVMA have CY = −2 at t/T = 0.4 where as the experiment

has CY = −1. For P3+ at k = 0.06 DVM follows the experiment reasonably well

although it slightly over-predicts the primary peak and saddle.

Overall both DVM and DVMA overpredict the forces, and while DVMA in some in-

stances captures the primary peak magnitude more accurately, DVM captures the shape

of the force curves better. Both DVM and DVMA are unable to capture the loss of lift

later in the stroke for all motions; as reduced frequency increases the model predicts

larger forces later in the cycle further deviating from the experimental forces.

The circulatory and non-circulatory force contributions for the positive motions are

shown in Figure 5.15. Much of the force comes from the non-circulatory part which

includes the force from shedding at the leading edge. There is a peak in non-circulatory

lift around t/T = 0.1 for all k = 0.06 motions and this occurs simultaneously with a

minimum in circulatory force magnitude. For example the rigid case at k = 0.06 has

a non-circulatory peak of −2.5 while at the same instant the circulatory force is close

to zero. The magnitude of the non-circulatory force then decreases and the magnitude

of the circulatory force increases; at t/T = 0.3 the circulatory force is −0.6 while the

circulatory force is −0.4. Near the end of the stroke at t/T = 0.45 the non-circulatory

force has a secondary negative peak while the circulatory force has positive peak; for

the rigid case at k = 0.06 the circulatory force is −1 and the non-circulatory force is

around 0.8.

For P1+ and P2+ at k = 0.10, the first peak in non-circulatory lift occurs later compared

to the lower reduced frequencies; for P1+ the timing of this peak is t/T = 0.13, 0.15,

0.2 for k = 0.06, 0.08, 0.10 respectively. The same trend is seen for P2+. Many of

the motions have a large secondary peak in the non-circulatory force; the rigid case for

k = 0.10 has non-circulatory force value of −2.25 at t/T = 0.42. P2+ at k = 0.08 has a

non-circulatory force of −1.75 at t/T = 0.4. These secondary peaks on non-circulatory

force coincide with the circulatory force increasing to slightly positive values.

5.2.4 Negative Motions, Comparison to Experimental Data

The model results for the negative motions are shown in Figure 5.16 for k = 0.06 and

0.08. Both DVM and DVMA overpredict the forces compared to the experiments. For
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and 0.10 respectively. The rows correspond to the rigid case, P1+, P2+, and P3+

respectively.
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Figure 5.15: Comparison of the circulatory and non-circulatory forces from the model
for the positive motions. C is the circulatory and NC is the non-circulatory. The total
experimental lift force, exp, is also shown. The left, middle, and right columns are
k = 0.06, 0.08, and 0.10 respectively. The rows correspond to the rigid case, P1+,

P2+, and P3+ respectively.
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P1- and P2- DVM and DVMA overpredict the primary peak by a factor of 2 and DVM

predicts smaller force magnitudes then DVMA. DVMA compares well for P1- and P2-

at k = 0.06 over the interval t/T = 0.25− 0.4.

For P3- at k = 0.06 DVM follows the experimental force reasonably well between t/T =

0.1−0.3 after which it incorrectly predicts a large secondary peak while the experimental

force remains small. DVM predicts smaller magnitude forces then DVMA over this

range. At k = 0.08 DVM and DVMA reproduce the shape of the experimental forces

well although both over predict the primary peak by a factory of 2. DVM better predicts

the forces then DVMA.

A breakdown of the circulatory and non-circulatory force contributions for the negative

motions are shown in Figure 5.17. A peak in non-circulatory force occurs early in

the stroke and coincides with a minimum in circulatory force magnitude. For P2- at

k = 0.08 the non-circulatory peak is −2.3 at t/T = 0.3 where as the circulatory force

at this instant is close to zero. The non-circulatory force then decreases in magnitude

until t/T = 0.3 when it either levels out to a saddle or local maximum. For most of the

stroke the non-circulatory force magnitude is significantly larger then the circulatory

force magnitude.

5.2.5 Modified Empirical Adjustment

It was shown in Figures 5.15 and 5.17 that the non-circulatory force contribution from the

model is dominant in this parameter space. In order to better reproduce the experimental

results, empirical force corrections should also apply to the non-circulatory force. Here

the reduction coefficient for the circulatory force is also applied to the non-circulatory

force

CL = (CN,circ + CN,non)

(
1 + f

1/2
sep

2

)2

cos θ + Cs,sep sin θ (5.2)

The results from this correction are shown in Figure 5.18 for the positive motions. For

the rigid cases the model predicts primary peak values of CY = −1.75, −1.6, and −1.3

for k = 0.06, 0.08, and 0.10 respectively which compares well with the experiments. The

loss of lift later in the stroke is reproduced to varying degrees with the model showing

CY = −0.5, −1.1, −1.4 at t/T = 0.3 for k = 0.06, 0.08, and 0.10. As reduced frequency

increases the model deviates from the experiments later in the stroke.
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Figure 5.16: Comparison of lift force computed by the model, both with and without
the empirical force correction, to the experimental data for the negative motions. DVM
is the force predicted by the model without any empirical correction, DVMA is the force
predicted by the model with the empirical force correction, and exp is the force measured
from the experiment. The left and right columns are k = 0.06 and 0.08 respectively.

The rows correspond to the rigid case, P1-, P2-, and P3- respectively.
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Figure 5.17: Comparison of the circulatory and non-circulatory forces from the model
for the negative motions. C is the circulatory and NC is the non-circulatory. The total
experimental lift force, exp, is also shown. The left and right columns are k = 0.06 and
0.08 respectively. The rows correspond to the rigid case, P1-, P2-, and P3- respectively.
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Figure 5.18: Comparison between force predicted by model with the adjustment given
by Eqn 5.2 (”Emp”) and the experimental forces (”Exp”) for the positive motions.
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Figure 5.19: Comparison between force predicted by model with the adjustment given
by Eqn 5.2 (”Emp”) and the experimental forces (”Exp”) for the negative motions.
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The model follows the experiments well for positive motions at k = 0.06. For P1+ at

k = 0.06 the model starts at CY = 0.6 at t/T = 0 but quickly decreases to CY = −1.3

at t/T = 0.15 and increases up to CY = −0.5 at t/T = 0.35 which compares well with

the experiments. For P2+ the model deviates from the experiment at t/T = 0.4 with

CY = −1.1 compared to the experimental value of CY = −0.3. For P3+ the model

predicts the primary peak slightly earlier then the experiment.

At k = 0.08 and 0.10 the model under predicts the force magnitudes during the primary

peak and over predicts the forces later during the stroke. At t/T = 0.15 for P1+ at

k = 0.08 the model shows CY = −1.2 where as the experiment shows CY = −1.5;

later in the stroke at t/T = 0.3 the model has CY = −1 where as the experiment has

CY = −0.3. The model forces for P3+ at k = 0.10 are skewed later in the stroke with

the primary peak occurring at t/T = 0.45 with a value of CY = −2.

The model results with the modified empirical correction for the negative motions are

shown in Figure 5.19. for P1- and P2- at k = 0.06 the model shows CY = −2 at

t/T = 0.1 where as the experiment shows CY = −1. Later in the stroke at t/T = 0.4

the model predicts the force better with CY = −0.75. For P3- at k = 0.06 the model

predicts the correct primary peak value of CY = −1.5 but shows it occuring later at

t/T = 0.15 where as the experiment shows it at t/T = 0.09. Later in the stroke at

t/T = 0.3 the model predicts CY = −0.75 where as the experiment shows CY = −0.4;

at t/T = 0.45 the model has CY = −1.6 where as the experiment has CY = −0.4.

For k = 0.08 the model does not capture the shape of the force curves as well. For

P2- the shape of the forces predicted by the model are roughly quadratic where as the

forces from the experiment have a secondary peak later in the stroke. For P3- the model

correctly predicts the forces from t/T = 0 − 0.1 but does not capture the loss of lift

between t/T = 0.15− 0.3.
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6 Discussion

The experimental data for the rigid cases show improving heaving efficiency with in-

creasing reduced frequency. The force curves for k = 0.06 and 0.08 are indistinguishable

with a large primary peak early in the stroke and a saddle later in the stroke. At the

highest reduced frequency of k = 0.10 a secondary peak is present later in the stroke

and the forces at this time are larger. Increasing reduced frequency decreases effective

angle of attack and more lift is retained later in the stroke.

P2+ and P3+ motions have increased heaving power coefficients and efficiency compared

to the rigid case. For k = 0.06 and 0.08, both P2+ and P3+ shift the primary peak

lift coefficient later in the stroke compared to the rigid case. P3+ shows the largest

primary peak value compared to all other motions. Shifting the primary peak later in

the stroke is beneficial for energy harvesting since the peak force occurs during a higher

heaving velocity. For k = 0.10 the primary peak lift coefficient values for the positive

motions are comparable to the rigid case, but the primary peaks are still shifted later

in the stroke. P2+ and P3+ have larger forces later in the stroke compared to the rigid

case across all reduced frequencies.

The negative motions show decreased heaving power coefficients and efficiency compared

to the rigid case. Both P1- and P2- have reduced primary peaks compared to the rigid

case for both k = 0.06 and 0.08. For P3- the primary peak is comparable to the rigid

case, but the lift decreases to close to zero later in the stroke.

All the positive motions have smaller effective angle of attack compared to the rigid case

up to t/T = 0.1 and P3+ has smaller rate of change of effective angle of attack early in

the stroke. P3+ has the smallest effective angle of attack amplitude of any motion. The

negative motions all have larger effective angles of attack compared to the rigid case up

to t/T = 0.2 and P3- has the largest rate of change of effective angle of attack as well

as the largest effective angle of attack amplitude.

The energy harvesting performance is dependent on effective angle of attack. For this

parameter range, both smaller effective angle of attack early in the stroke and decreased

rate of change of effective angle of attack cause the primary peak to shift later in the

stroke; P1+ and P2+ have reduced |αeff | compared to the rigid case early in the stroke,

and P3+ has both reduced |αeff | and reduced rate of change of αeff . This causes the
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primary peaks to shift later in the stroke compared to the rigid case. P1- and P2- have

large effective angle of attack magnitudes early in the stroke and have reduced primary

peak force values. P3- has large effective angle of attack magnitudes early in the stroke

and also has a high rate of change of effective angle of attack; P3- has very small forces

later in the stroke and it is speculated that this is due to stall from large effective angle

of attack.

The maximum effective angle of attack experienced during the cycle is not enough to

predict the performance of the foil; the history of αeff , when it is large and small during

the stroke, is essential in determining the performance. This was illustrated in Figure

5.9 where the efficiency was plotted against the time averaged feathering parameter χ∗

which includes information on the leading edge motion. The data collapses roughly

linearly in this parameter space.

The model assumes that for fixed airfoil geometry and Reynold’s number there is a single

critical LESP value which determines the maximum suction that the airfoil leading edge

can sustain [1]. The critical LESP values for the rigid cases are close with LESPcrit =

0.08, 0.13, 0.11 for k = 0.06, 0.08, and 0.10. The critical LESP values for both the positive

and negative motions fluctuate; there is no strong relationship between the critical LESP

value and the reduced frequency or the leading edge motion. The vortex shedding

mechanism implemented here is not consistent and is ill suited for this parameter space.

Using the appropriate critical LESP values the model is moderately successful at pre-

dicting generic trends but largely fails to give accurate quantitative values. The model

consistently over estimates the forces sometimes by 100%. In this low reduced frequency

range vortices are shed from the leading edge frequently and this process contributes

significantly to the lift force via the non-circulatory component. As vorticity is shed

from the foil at the leading edge the non-circulatory force increases and the circulatory

force decreases. The non-circulatory force is largely responsible for the primary peak in

force as well as the secondary peak that the model predicts later in the stroke.

Applying an empirical correction only to the circulatory and suction components is

inadequate; a correction should also be applied to the non-circulatory component. Doing

so improves the model comparison to the experiments for some of the motions. While this

modified force evaluation improves the model predictions, at higher reduced frequencies

the primary peak is under predicted and the forces later in the stroke are over predicted.

The model is unable to predict key trends from the experiments; it does not predict how
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the primary peak shifts later in the stroke or the larger forces later in the stroke as seen

in the experiments for the positive motions.
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7 Conclusion

The effect of relative motion at the leading edge of a flapping foil energy harvester in

the low reduced frequency range was studied using force measurements and a low order

discrete vortex model was implemented. It was found that leading edge motion profiles

in which the leading edge is rotated so as to reduce the effective angle of attack can

improve the heaving efficiency of the airfoil. Both reducing the effective angle of attack

early in the stroke and reducing the rate of change of effective angle of attack cause the

primary force peak to shift later in the stroke. Leading edge motions that increase the

effective angle of attack early in the stroke decrease the energy harvesting performance.

Large effective angles of attack early in the stroke coupled with high rate of change of

effective angle of attack cause loss of the lift later in the stroke.

The dicrete vortex model with vortex shedding at the leading edge based on the LESP

is able to predict generic trends but unable to reproduce accurate quantitative values.

Critical LESP values for the rigid cases across the reduced frequencies are similar. The

critical LESP value for almost all motions fall between LESPcrit = 0 − 0.2. There

is no clear relationship between the critical LESP value and the reduced frequency or

leading edge motion; the vortex shedding mechanism is not consistent in this parameter

space. A trailing edge separation correction based on Beddos [36] is inadequate because

it only modifies the force from the bound circulation and here a significant portion of

the force is generated by the vortex shedding process. Applying empirical corrections

to the non-circulatory forces as well modestly improves the results.

While this work focused on reduced frequencies below the optimal range, the results here

are still of interest and could be applied to real world energy harvesters. The optimal

reduced frequency range is generally regarded as fc/U∞ = 0.12− 0.18 and a real world

setup would be designed to fall within that range. However, during above average wind

speeds the foil operation may fall below this reduced frequency range thus decreasing

the performance of the foil. An active control setup such as the one investigated here

could be used to increase the performance during these off peak scenarios.

Future work should investigate whether these trends extend into the moderate to high

reduced frequency range. The power needed to implement the leading edge motion is

currently unknown and would affect the overall performance of the energy harvester.



66

Flow visualization, such as PIV, would reveal how exactly the unsteady flow is affected

by the leading edge motions implemented here. For low order modeling, future efforts

should focus on more robust methods for shedding vorticity at the leading and trailing

edge in these low reduced frequency ranges where the Kutta condition is violated so as

to better reproduce the vorticity distribution in the flow field.
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A An Appendix

A.1 Bernoulli Evaluation

From Katz and Plotkin in tangential and normal coordinates [31]:

P∞ − P
ρ

=
1

2

(
(
∂Φ

∂s
)2 + (

∂Φ

∂n
)2

)
− (~U∞ + ~̇θp × ~r) · ∇Φ +

∂Φ

∂t
(A.1)

To evaluate the last term in Eqn A.1

∇Φ = ~q (A.2)

∇Φ · d~s = dΦ (A.3)

dΦ = qsds+ qndn (A.4)

Now integrate in the tangential direction, s, and the normal direction, n, where the

integration over n is infinitesimal from one side of the panel to the other.

Φ =

∫ s

LE
qsds+

∫ n+

n−
qndn (A.5)

∫ n+

n−
qndn = 0 (A.6)

Φ =

∫ s

LE
qsds =

∫ s

LE

∂Φb

∂s
+
∂Φshed

∂s
ds (A.7)

where φb and φshed are the velocity potentials from the bound vorticity and shed vortices

respectively. LE denotes the leading edge.
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dΦ

dt
=

d

dt

∫ s

LE
qsds =

d

dt

∫ s

LE

∂Φb

∂s
+
∂Φshed

∂s
ds (A.8)

P∞ − P
ρ

=
1

2

(
∂

∂s

(
Φb+Φshed

)2
+
∂

∂n

(
Φb+Φshed

)2)−(~U∞+~̇θp×~r)·∇(Φb+Φshed)+
∂

∂t
(Φ)

(A.9)

From Katz and Plotkin [31] the velocity in the tangential direction on the top and

bottom of a clockwise vorticity distribution is

∂Φb,u

∂s
= Γ(s)/2 (A.10)

∂Φb,l

∂s
= −Γ(s)/2 (A.11)

where u and l denote upper panel side and lower panel side. Subtract the pressure on

the top surface from the bottom surface and simplify to get A.12

Pl − Pu
ρ

= Γ(s)

(
∂Φshed

∂s
− (~U∞ + ~̇θp × ~r)s

)
+
∂Φb,u

∂t
−
∂Φb,l

∂t
(A.12)

Pl − Pu
ρ

= Γ(s)

(
∂Φshed

∂s
− (~U∞ + ~̇θp × ~r)s

)
+
∂

∂t

∫ s

LE
Γ(s)ds (A.13)

When vortex shedding occurs at the leading edge the line of integration must go past

the leading edge around the most recently shed vortex. Therefore the change in vorticity

of the most recently shed vortex contributes to the unsteady term in A.13.

A.2 Bernoulli and Impulse Comparison

The force evaluation using Bernoulli’s equation and the vortex impulse method are

compared for k = 0.10 rigid case in Figure A.1 and the circulatory and non-circulatory

components are shown. The non-circulatory components match nearly perfectly. There

is a small deviation between the circulatory components from each evaluation during
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Figure A.1: Comparison of Bernoulli and vortex impulse force evaluations for k = 0.10
rigid case. ’Bern’:Bernoulli. ’Imp’:Impulse, ’circ’:circulatory, ’non-circ’:non-circulatory.

the mid stroke. The suction force is very small. All model results shown in this work

were calculated using Bernoulli’s equation.

A.3 Comparison of Experimental Forces With and Without

the Motor Present

The measured lift force with the motor installed at the leading edge and without the

motor installed at the leading edge is shown in Figure A.2. The two force curves follow

each other very closely; there is some deviation at the primary peak for the upstroke

but both curves are within each others’ uncertainty.
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Figure A.2: Comparison of the measured lift coefficient with and without the motor
installed at the leading edge.

A.4 Data Reduction Example

In Figure A.4 an example of the force data from the 1st min and 3rd min of data

collection for k = 0.08 rigid case are shown; the forces are transferred to the mid span

using Eqn 4.2. The force data for the first minute is purely inertial forces. The force

data for the third minute is composed of both inertial forces and aerodynamic forces of

interest. The force curves are subtracted and the results are scaled using Eqn 2.6 to get

the lift coefficient. The calculated lift coefficient for all data sets for this set point are

shown.
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Figure A.3: Example of force distributions of the 1st minute, corresponding to the
inertial forces, and the 3rd minute corresponding to the inertial and aerodynamic forces
for k = 0.08 rigid. All forces are moved to the center span of the foil via Eqn 4.2. Error

bars denote two standard deviations over the cycle averaging process.

(a) (b)

Figure A.4: Example of data reduction for k = 0.08 rigid. (a) Lift Coefficient cal-
culated by subtracting the forces from the 1st minute from the 3rd minute. (b) Lift

coefficients from all data sets for the set point.
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