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Deep learning is becoming the latest trend in sensitive applications, such as healthcare,

criminal justice, and finance. As these new applications emerge, adversaries are cir-

cumventing them. Further, there have been concerns about the possibility of bias and

discrimination in predictive applications. In order to address these issues, we propose

an information-theoretic approach to design a continuous high-dimensional data deep

learning framework. We call this framework Gaussian privacy protector (GPP). Our

proposed framework has many advantages: (1) it reduces the problem to the optimal

compression of data about a measure of utility and privacy; (2) it can prevent adversaries

from private mining information from the released data while simultaneously maximiz-

ing the amount of the utility’s information revealed; (3) it adapts the idea of the informa-

tion bottleneck (IB) based on the problem of revealing data, which is often sensitive; (4)

it considers a privacy funnel (PF) problem inspired by utility data as the central part of



data to be revealed; (5) using a similar framework, we show how to achieve fairness in

classification; and (6) this work illustrates the feasibility of creating a centralized plat-

form to support this framework over distributed datasets. We utilize variational lower

bounds of mutual information approximation implemented as supervised learning using

an adversarial training algorithm. We use three datasets: hand-written digits (MNIST),

celeb faces attributes (CelebA), and human activities and postural transitions’ recogni-

tion using smartphone data (HAPT-Recognition) to evaluate our algorithms. The ex-

perimental results on these datasets demonstrate that the proposed approach effectively

removes private information from the datasets while allowing non-private information

to be mined effectively.
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Chapter 1: Introduction

The size and availability of datasets have significantly increased in the past few decades;

private information is becoming more prevalent. Controlling privacy risks has become

a priority for organizations that rely on this data [94]. A preprocessing step is also

needed to compensate for existing biases in decision-making systems. For instance, a

method that hides sensitive data from prying eyes is an excellent way to prevent privacy

leaks [44]. Although it might not appear effective when dealing with high-dimensional

data, such as data on a patient’s health status, microarray gene expression data, and

images [10].

Distributed computing involves designing and studying algorithms that allow a net-

work of computers or devices to solve a common problem. It often fundamentally de-

pends on message passing over device networks to coordinate state variables or de-

cisions. Distributed computing networks have become pervasive in the industrial and

consumer internet of things (IoT) networks [60], distributed learning systems for med-

ical purposes [99], and financial applications [151]. These systems increasingly handle

private and sensitive information, such as medical and financial information. Thus, we

must protect distributed computing systems from privacy attacks by adversaries. Con-

sider a scenario in which adversaries have corrupted or taken control of devices in the

network. Such adversaries may store and exploit the observed information to estimate

the private data associated with non-corrupt devices [63].
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In this work, we propose a variational approach for learning public representations

for high-dimensional data. In presenting this data, we aim to maintain a prescribed level

of relevant information that is not shared by private or sensitive data while minimizing

the remaining information they hold. In other words, we will discuss how to prepare a

dataset so that the privacy of the individuals in it is not compromised and that the pre-

pared dataset is still useful in certain circumstances. We will study in particular a private

data release mechanism based on the idea of optimal compression by projecting the data

onto low-dimensional space, motivated by the idea that low-dimensional representations

would have a smaller sensitivity than the raw data itself. Thus, the amount of privacy

leakage could be significantly lower. This approach also addresses the distributed mul-

tiple data sources’ privacy as training in a centralized framework.

The proposed approach is summarized as follows:

(1) Provides a demonstration of the ”similarity solution” as a means of preserving pri-

vacy and achieving fair classification.

(2) Can be comfortably incorporated into standard representation learning algorithms,

including information bottleneck (IB) and privacy funnel (PF).

(3) Enables the tradeoff between utility and privacy by controlling the dimensions of

data representation.

(4) Proposes a distributed private learning framework for protecting the privacy of sen-

sitive demographic data.



3

1.1 Motivation Behind the Research

Privacy-preserving: In the privacy-preserving era, it is crucial to ensure that the pro-

vided data, while delivering utility, does not expose critical sensitive information. Many

data owners, such as hospitals, cannot share data due to privacy and confidentiality con-

cerns. Additionally, users who want to utilize continuous high-dimensional data face the

lack of suitable privacy-preserving machine learning frameworks. One way to achieve

privacy would be to remove sensitive information from a dataset. Despite this, the util-

ity data can be lost due to the correlation between sensitive and valuable data. A good

example is removing confidential information from an image such as race but retain-

ing gender. Several approaches to privacy-preserving computations for data mining are

available, including anonymization and differential privacy [149], involving some form

of perturbation of the data. The perturbation techniques provide privacy guarantees for

datasets with categorical attributes. However, they may not be suitable for datasets of

continuous high-dimensional data such as images, videos, and audio clips [116] [133].

Also, in some cases, it is possible to reconstruct a part of training data by only observ-

ing the predictions, such as recovering images from a facial recognition system through

model-inversion attack [59]. In addition, it is possible to deduce whether a particular

training point is involved in the model’s training data by observing only the predictions

of the model through a membership-inference attack [136].

Fairness in Classification: The act of discrimination is the unjustified treatment of

individuals based on their membership in, or perception of membership in, a particular

group, and is often a result of the group being treated less favorably than others. In light
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of the increasing use of machine learning algorithms in many areas of our daily lives,

including salary prediction, hiring, and criminal risk assessment, fair machine learning

algorithms must be developed [111]. A majority of current discussions are focused

on improving supervised learning algorithms with fairness requirements, namely that

sensitive information such as gender or race not unfairly affect a learning algorithm’s

performance [51] [85]. The naive approach is to discard sensitive information and use

the other data as raw input. This approach has some proponents in terms of process;

however, the raw data might include important information about sensitive information.

Individual home address information, for example, may be a good indicator of race.

In this regard, it is important to actively decorrelate the mutual relationship between the

target and sensitive information. Accordingly, fairness research aims to design objective

functions that approximate specific fairness notions while simultaneously maximizing

predictive accuracy.

1.2 Research Questions

In this dissertation, we examine real-world scenarios that present significant challenges

when it comes to providing privacy guarantees in practice. The overall goal of this dis-

sertation is to address the following three research questions:

(1) Is it possible to build and evaluate a privacy-preserving deep learning framework for

high-dimensional data that incorporates public data to extract useful information with

solid privacy protections?

(2) Is it possible to train deep learning models using aggregate statistics gathered from
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many data sources without publicizing sensitive information?

(3) Is there a way to incorporate fairness in classification with the deep learning frame-

work?

1.3 Research Scope

Increasing adoption of IoT technologies such as mobile computing and social network-

ing will lead to both conveniences, and privacy concerns [134]. A good example of such

a technology is remote patient monitoring, which has become the norm in patient care

today. These technologies, however, also pose serious privacy concerns and concerns

regarding the logging and transfer of data transactions. For instance, medical data pri-

vacy problems could result from a delay in treatment progress, even endangering the

patient’s life [49]. As another example, smart homes with many internet-connected de-

vices continuously transmit information about the users’ daily activities. Data like this

could be used to infer consumer behavior, which raises privacy concerns [124]. Addi-

tionally, most IoT devices are resource-constrained, requiring low bandwidth and low

computing power [119]. In this dissertation, we use a privacy-preserving framework for

online data communication technology to address the issues mentioned above.

1.4 Research Objectives

The objectives of this study are as follows:

(1) Investigate privacy-preserving and fair classification models, as well as how to se-
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cure sensitive data.

(2) Develop new privacy-preserving algorithms to ensure a high level of privacy protec-

tion while maintaining utility.

(3) Design a centralized training framework in which multiple participants train an ac-

curate global model collaboratively.

(4) Extend the proposed approach to the IB and PF problems.

(5) Provide an optimization framework for determining a fair classifier in machine learn-

ing.

(6) Evaluate the proposed framework using real-life and synthetic datasets, as well as

compare them to existing approaches.

1.5 Research Methodology

This research adopts an information-theoretic approach [29] [30] to preserve the pri-

vacy of continuous high-dimensional datasets, which aims to achieve a privacy-utility

tradeoff between private and non-private data. This research considers a situation where

users have access to two kinds of correlated data. The first type of data is private, while

the second type is not private but is made publicly available. The main idea of our

model is to map continuous high-dimensional data in a given input space to a sanitized

version of that data in new representation space. This new representation conceals any

sensitive information that could indicate whether private events have taken place or not

while preserving as much utility information as possible. Our work is based on a pro-

posed concept called privacy-preserving data release mechanisms [10] [18] [152] to
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achieve a good tradeoff between data utility and data privacy under constrained data re-

lease mechanisms. In our work, we refer to this approach as Gaussian privacy protector

(GPP). Specifically, GPP is a probabilistic mapping training along with an adversarial

network that attempts to recover the private information from the sanitized dataset and

utility network to derive utility for the released data.

The IoT is becoming increasingly popular in sectors such as energy, transportation,

healthcare, and manufacturing. The result is the generation of unprecedented volumes

of data, and this trend will continue. A central approach for analyzing IoT data is lim-

ited by privacy concerns and the requirement for fast processing, low latency, and suffi-

cient bandwidth of the communications network. This research investigates the privacy

problem as a distributed computing environment where multiple GPP can acquire data

and learn together. Also, reduced communication costs were achieved by using low-

dimensional exposed data.

1.6 Contributions

This research makes the following contributions.

• In comparison to previous studies, we introduce GPP framework to capture the

best privacy-utility tradeoff problem on benchmark datasets.

• Our proposed framework can be modified to achieve different privacy-utility trade-

offs, including information bottleneck and privacy funnel.

• The GPP framework removes sensitive information from raw high-dimensional
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data and creates representations as law-dimensional data. Due to this, low dimen-

sional output space introduces a privacy-utility tradeoff.

• The GPP is a privacy-preserving machine learning method that can be applied to

IoT applications as a possible means of reducing communication costs.

• Mutual information is an essential quantity for expressing and understanding the

statistical dependence between random variables. We explicitly formulate the

privacy-preserving issue by a lower bound estimator for the mutual information

based on the variational method.

• We propose a more robust evaluation of real-life problems by considering multiple

adversaries and multiple utility gains.

• With the proposed federated learning model, we offer improved features over tra-

ditional distributed machine learning by learning sensitive data locally and up-

loading the sanitized data to the central server.

1.7 Organization

The rest of the dissertation is organized as follows. In Chapter 2, we provide an overview

of the key concepts and tools discussed throughout the dissertation. Chapter 3 discusses

relevant related work aimed at protecting privacy and ensuring fairness in classification.

We introduce a privacy-preserving algorithm for balancing data privacy and utility in

Chapter 4. We also propose a distributed learning algorithm for learning utility repre-

sentations without sharing raw data. New approaches to building information bottle-
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necks and privacy funnels are explored in Chapter 5. In Chapter 6, we present a fairness

framework for a machine-learning classification system. The results of the experiment

and analysis of the proposed algorithms are presented in chapter 7. In Chapter 8, we

conclude the dissertation and discuss our contributions.

1.8 Publications

1. ”Sequential Game Network (SEGANE) with Application to Online Data Sanitiza-

tion,” IEEE Global Conference on Signal and Information Processing, Anaheim, CA,

USA, 2018.

2. ”Gaussian Privacy Protector for Online Data Communication in a Public World,” 6th

IEEE Big Data Security, Baltimore, MD, USA, 2020.

3. ”A Privacy Filter Framework for Internet of Robotic Things Applications,” 41th

IEEE Symposiumon security and privacy workshops, San Francisco, CA, US, 2020.

4. ”Variational Bound of Mutual Information for Fairness in Classification,” IEEE 22nd

International Workshop on Multimedia Signal Processing, Tampere, Finland, 2020.

5. ”A Non-Negative Matrix Factorization Framework for Privacy-Preserving and Fed-

erated Learning,” IEEE 22nd International Workshop on Multimedia Signal Processing,

IEEE MMSP, Tampere, Finland, 2020.

6. ”Distributed Variational Information Bottleneck for IoT Environments,” IEEE In-

ternational Workshop on Machine Learning for Signal Processing, IEEE MLSP, Gold

Coast, Queensland, Australia, 2021.



10

Chapter 2: Background

In this chapter, we present the background material on which this dissertation is based.

In the following section, we will provide formal definitions of privacy-related terms.

We then survey data models and relevant techniques. In addition, the most common

terminology and mathematical formulations of federated learning are discussed.

2.1 Definitions

Data Holder (Client): Several parties would like to develop a data model (or several

models) to protect sensitive information [138].

Privacy: Companies, organizations, or individuals decide when, how, and what disclo-

sure information to protect [62].

Privacy-preserving: Organizations and individuals can protect their privacy in hostile

environments using privacy-preserving techniques [62].

Private Information (Sensitive or Protected Features): Information that is intended

to remain confidential includes social security numbers, credit card numbers, and health

information [108] [88].

Utility Information (Non-sensitive Features or Public Information): Data such

as names, salary information, and telephone directories that are the result of privacy-

preserving models as outputs [152] [88].
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Adversary: When working with an adversary model, you’re trying to learn sensitive

information from the data holder [34].

Privacy-Utility Tradeoff: The system designer aims to construct a privacy-preserving

model that provides the desired privacy and utility levels while achieving the optimal

tradeoff [152].

2.2 Information Theory

We adopt the same notation for information-theoretic as used quantities used in [42]. In

particular, H stands for entropy, I for mutual information, and KL for Kullback-Leibler

divergence. This dissertation will use the concepts outlined in the following paragraphs.

Entropy: Given a random variable (RV) X and probability mass function P, entropy is:

H(X) =−∑
X

P(X) logP(X) = EX [−logP(X)]. (2.1)

By measuring this, the information content is measured, i.e., expected uncertainty in X .

The following are its properties:

• H(X)≥ 0, entropy is always non-negative.

• H(X) = 0 if and only if X is deterministic.

Conditional Entropy: Based on a RV X and a RV Y , the conditional entropy is:

H(Y |X) = EXEY |X [−logP(Y |X)] = EX ,Y [− logP(Y | X)]. (2.2)
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It has the following properties:

• H(Y | X) 6= H(X | Y ).

• H(Y | X)≥ 0.

Kullback-Leibler Divergence: Assuming two probability distributions on the same

alphabet, P(X) and Q(X), KL divergence KL(P|Q) is a measure of their discrepancy as:

KL(P||Q) = EP

[
log

P(X)

Q(X)

]
. (2.3)

Mutual Information: One of the fundamental quantities of information theory is mu-

tual information, which measures how much information one RV conveys to another.

In other words, the mutual information I(X ;Y ) of two RVs X and Y is a measure of

the dependence between the two RVs, satisfying I(X ;Y ) ≥ 0, with equality if and only

if, X and Y are mutually independent. It is defined as the KL divergence between the

joint distribution P(X ,Y ) and the independent distribution P(X)P(Y ) generated by the

marginal ones:

I(X ;Y ) = KL(P(X ,Y )||P(X)P(Y )) = EX ,Y

[
log

P(X ,Y )
P(X)P(Y )

]
. (2.4)

Mutual information and entropy are related as follows:

I(X ;Y ) = H(X)−H(X | Y ). (2.5)

Note: I(X ;Y ) = I(Y ;X) (symmetry).
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2.3 Classification Task

A classification task involves predicting an outcome Y from label space Y , based on

some observation X from a feature space X . Let P(X ,Y ) be a distribution over X ×Y .

For such problems, we might have access to a data set of n pair (x1,y1) , . . . ,(xn,yn) .

A model, f : X → Y , is called a classification function, and its true risk w.r.t. P is

R( f ) , EP(X ,Y )[L( f (x),y)], where L : Y ×Y → R is a given loss function, for exam-

ple, the cross-entropy (CE) loss or the squared loss. Then L(ŷ,y) quantifies the cost

of classifying ŷ when the true outcome is y and the aim is to ensure that L( f (x),y)

is small. For instance, given a dataset Dn = {(xi,yi)}
n
i=1 ⊆ (X ×Y )n sampled i.i.d.

from P(X ,Y ), and the empirical risk of a neural network classifier f is r̂ ( f | Dn) ,

1
n ∑

n
i=1L( f (xi,θ) ,yi) , with learnable weights θ , the classifier f aim is to classify an x

into one of a finite number of classes (that is, the label space Y is finite) by minimiz-

ing the empirical risk min f E(x,y)∼D [L( f (x,θ),y)]. If all mistakes are equally bad, we

could define f as a binary classifier as follows,

L( f (x),y) = 1( f (x) 6= y) =


1 if f (x) 6= y

0 otherwise
(2.6)

where 1(·) is the indicator function whose value is 1 if its argument is true and 0 other-

wise.
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2.4 Autoencoder

An autoencoder is a type of artificial neural network (ANN) designed for unsupervised

machine learning. It consists of an encoder and a decoder, as depicted in Figure 2.1. Ba-

sically, it reconstructs the original input while compressing the data to produce a more

efficient and compressed representation [76]. As long as the hidden units include the

good features, the autoencoder can minimize the reconstruction error [142].

Figure 2.1: Autoencoder architecture.

Encoder Network: Using an encoder, high-dimensional inputs can be compressed into

latent low-dimensional inputs, which a vector function can describe as:

g : x ∈ Rl 7−→ z ∈ Rm, (2.7)

where gφ (x) is an encoder function parameterized by φ .

Decoder Network: Decoder networks recover the data from the code, probably with

larger and larger output layers, which can be expressed as:

f : z ∈ Rm 7−→ x̂ ∈ Rl, (2.8)

where fθ (z) is a decoder function parameterized by θ .
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Loss Function: The parameters φ and θ are learned together to output a reconstructed

data sample x̂ = fθ

(
gφ (x)

)
that is ideally the same as the original input x. Various loss

functions are used to quantify the error between the input and output, such as CE, or

more specific mean squared error

L(θ ,φ) =
1
n

n

∑
i=0

(
xi− fθ

(
gφ (xi)

))2
. (2.9)

An autoencoder’s sensitivity to input data is a crucial challenge when designing one.

Autoencoders should learn a representation that embeds key data features correctly, en-

code features generalized beyond the training dataset, and capture similarly structured

features for other datasets.

2.5 Deep Learning Based Generative Models

Deep learning has achieved impressive success in applications for which the goal is to

model a conditional distribution P(y|x), with y being a label and x the features. While

the conditional model P(y|x) may be highly accurate on inputs x sampled from the

training distribution, there are no guarantees that the model will work well on x’s drawn

from some other distribution. One way to avoid such over-confidently wrong predictions

would be to train a generative model Pθ (x), parametrize by θ , to approximate the proper

distribution of training inputs P∗(x) and refuse to predict any x that has a sufficiently low

density under Pθ (x). The logical conclusion is that the discriminative model P(y|x) did

not observe enough samples in that area to make a valid judgment for those inputs. The
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generative model can produce or output new examples that could have been derived

from the original dataset, i.e., a generative model aims to approximate the distribution

of actual data [141] [114].

Deep generative models have demonstrated an impressive capacity to generate highly

realistic pieces of content of various types, such as images, texts, and sounds, by rely-

ing on massive data, well-designed network architectures, and intelligent training tech-

niques. Two significant families stand out among these deep generative models and

deserve special attention: generative adversarial networks (GANs) [67] and variational

autoencoders (VAEs) [90].

2.5.1 Generative Adversarial Networks

Originally, vanilla GAN was a two-player minimax game where a neural network rep-

resented each player. The one is a discriminator, while the other is a generator. Figure

2.2 depicts the design idea. The generator creates samples as close to the real data sam-

ples as possible by taking random noise as input. The discriminator takes samples from

both real and generated data and tries to distinguish between them by reporting real or

false output in either case. The optimization task aims to arrive at where the generator

can produce samples that the discriminator cannot differentiate from real ones. In other

words, the discriminator should produce a probability of 0.5 for either real or generated

data. Another way to look at it is that the GANs find structure in the data, which helps

to create more accurate data.

Minimax Loss: GAN can be trained with two loss functions: one for the generator
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and one for the discriminator. In generator training, the generator minimizes the loss

function, whereas the discriminator maximizes it

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))], (2.10)

where D(x) is the discriminator’s estimate of the probability that real data instance x is

real, G(z) is the generator’s output when given noise z, and D(G(z)) is the discrimina-

tor’s estimate of the probability that a fake instance G(z) is real.

Training: The generator and discriminator are the two players in a GAN, where the

weights of their models are updated alternately. The generator tries to reduce the log of

the inverse probability predicted by the discriminator (i.e., minimize log(1–D(G(z)))).

On the other hand, the discriminator aims to maximize the log probability of real im-

ages and the log of inverted probabilities of fake images (i.e., maximize logD(x) +

log(1–D(G(z)))). Algorithm 1 is summarized the GAN training process taken from the

original paper [67].

Figure 2.2: High-level description of the GAN.
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norelsize 1 GAN training algorithm.
1: for number of training iterations do
2: for k steps do

• Sample minibatch of m noise samples
{

z(1), . . . ,z(m)
}

from noise prior pg(z).

• Sample minibatch of m examples
{

x(1), . . . ,x(m)
}

from data generating distri-
bution pdata (x)

• Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

m

∑
i=1

[
logD

(
x(i)
)
+ log

(
1−D

(
G
(

z(i)
)))]

3: end for
• Sample minibatch of m noise samples

{
z(1), . . . ,z(m)

}
from noise prior pg(z).

• Update the generator by ascending its stochastic gradient:

∇θg

1
m

m

∑
i=1

(
1−D

(
G
(

z(i)
)))

.

4: end for

2.5.1.1 Information GAN

An information GAN (InfoGAN) is a form of GAN that learns interpretable and mean-

ingful representations. The mutual knowledge between a fixed small subset of the

GAN’s noise variables and the observations is maximized in this way [167]. In other

words, InfoGAN approaches this problem by splitting the generator input into two parts:

the traditional noise vector z and a new “latent code” vector c. The code vector c is then

made meaningful by maximizing the mutual information between the code c and the

generator output G(z,c). This framework is implemented by simply adding a regular-
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ization term I(c;G(z,c) to the original GAN’s objective function, as in below [39]:

min
G

max
D

VIn f oGAN(D,G) =VGAN(D,G)−λ I(c;G(z,c)), (2.11)

where λ is a weight parameter. Also, we can write the InfoGAN objective function

combines the mutual information lower bound LI with the standard GAN objective as

min
G,Q

max
D

VIn f oGAN(D,G,Q) =VGAN(D,G)−λLI(G,Q). (2.12)

The Variational Bound on Mutual Information: Let c be a random variable repre-

senting the latent information code and xg = G(z,c) be a random variable representing

the generated data produced by generator G from the code c and noise z. we want to find

the variational lower bound on mutual information between two RVs c and xg, with joint

distribution P(c,xg). As shown in [4], this yields a lower bound on mutual information

according to the fact that KL divergence is non-negative gives

I(c;xg) = H(c)−H(c | xg)

= H(c)+ExgEc|xg [logP(c | xg)]

= H(c)+ExgEc|xg

[
log

P(c | xg)Q(c | xg)

Q(c | xg)

]
= H(c)+ExgEc|xg [logQ(c | xg)]+ExgEc|xg

[
log

P(c | xg)

Q(c | xg)

]
= H(c)+Exg,c[logQ(c | xg)]+Exg [KL(P(c | xg)‖Q(c | xg))]

≥ H(c)+Exg,c[logQ(c | xg)].

(2.13)
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This indicates that we can maximize the mutual information I(c;xg) by maximizing

Exg,c[logQ(c | xg)] or by minimizing the negative log likelihood of Q(c | xg). We can

write the lower bound alternatively in the following way:

I(c;xg) = max
Q

{
H(c)+Exg,c logQ(c | xg)

}
, (2.14)

where Q(c | xg) is a discriminator approximation of the posterior P(c | xg).

The InfoGAN Framework: As shown in Figure 2.3, the generator takes random noise

and latent code as input and produces generated data. Discriminator takes samples from

both real and generated data and attempts to differentiate between the two by reporting

real or false output for either sample. The Q network is a fully connected layer tacked

onto the last representation layer of the discriminator, and it is essentially trying to

predict what the latent code is.

Figure 2.3: High-level description of the InfoGAN.
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2.5.2 Variational Autoencoder

The sensitivity of an autoencoder to the input data is the key challenge when designing

one. The sensitivity of an autoencoder to the input data is the key challenge when de-

signing one. While an autoencoder should learn a representation that correctly embeds

the main data features, it should also encode features that generalize outside the original

training set and capture similar features in other datasets [137]. Since the introduction

of autoencoders, numerous variations have been suggested. These variants are primar-

ily intended to correct flaws, such as enhanced generalization, avoid overfitting and

improve the robustness; such notable examples include denoising autoencoder [147],

sparse autoencoder [41], contractive autoencoder [131] and VAE. The idea of VAE is

deeply rooted in the methods of variational bayesian and graphical models. VAE learns

the input data’s underlying distribution parameters rather than just a compressed repre-

sentation, i.e., making its encoder output two vectors of size n: a vector of means, µ ,

and another vector of standard deviations, σ . The relationship between the data input

x and the latent encoding vector z can be defined by Qφ (z|x) as a probabilistic encoder

parameterized by φ , playing a similar role as gφ (x), and Pθ (x|z) as a probabilistic de-

coder parameterized by θ , similar to the decoder fθ (x) introduced above. We note that

the lower-dimensional space z is stochastic: a standard Gaussian distribution.

Variational Inference: The aim of Bayesian statistics is to find a posterior distribution

P(z|x) of a latent variable z given some evidence x. However, computing this posterior
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distribution is usually difficult since, according to Bayes,

P(z | x) = P(x | z)P(z)
P(x)

=
P(x | z)P(z)∫

z P(x | z)P(z)dz
(2.15)

it requires computing the integral over the entire latent space z. To get around the in-

tractability problem, one approximates the posterior with another distribution Qφ (x | z)

in such a way that the similarity measure between the true posterior and the approxi-

mation, Qφ (x | z), is minimized. A deep neural network, the encoder, is used to model

the approximate posterior, Qφ (x | z), which generates distribution statistics that are usu-

ally Gaussian in the latent space. Our goal is to find the variational parameters φ that

minimize KL
(
Qφ (z | x)‖Pθ (z | x)

)
. The optimal approximate posterior is thus:

Q∗φ (z | x) = argmin
φ

KL
(
Qφ (z | x)‖Pθ (z | x)

)
. (2.16)
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Consider the following function:

KL
(
Qφ (z | x)‖Pθ (z | x)

)
= EQφ (z|x) log Qφ (z|x)

Pθ (z|x)

= EQφ (z|x) log Qφ (z|x)Pθ (x)
Pθ (z,x)

= EQφ (z|x)

(
logPθ (x)+ log Qφ (z|x)

Pθ (z,x)

)
= logPθ (x)+EQφ (z|x) log Qφ (x|x)

Pθ (z,x)

= logPθ (x)+EQφ (z|x) log Qφ (z|x)
Pθ (x|z)Pθ (z)

= logPθ (x)+EQφ (z|x)

[
log Qφ (z|x)

Pθ (z)
− logPθ (x | z)

]
= logPθ (x)+KL

(
Qφ (z | x)‖Pθ (z)

)
−EQφ (z|x) logPθ (x | z)

(2.17)

After rearranging the equation’s left and right sides,

logPθ (x)−KL
(
Qφ (z | x)‖Pθ (z | x)

)
= EQφ (z|x) logPθ (x | z)−

KL
(
Qφ (z | x)‖Pθ (z)

)
.

(2.18)

The negation of the equation’s right-hand side is the variational autoencoder’s loss func-

tion. The first term is the reconstruction loss or expected negative log-likelihood of the

data point, and the second term is a regularizer (this is KL between the encoder’s dis-

tribution Qφ (z | x) and Pθ (z)). Therefore the model is optimized by finding optimal

coefficients that minimize lost function as:

θ
∗,φ∗ = argmin

θ ,φ
−EQφ (z|x) logPθ (x | z)+KL

(
Qφ (z | x)‖Pθ (z)

)
(2.19)
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Reparameterization Trick: The loss function’s expectation term invokes generating

samples from z∼ Qφ (z|x). We can not backpropagate the gradient because sampling is

a stochastic operation. The reparameterization trick is used to make it trainable, which

suggests that we randomly sample ε from a unit Gaussian, and then shift the randomly

sampled ε by the latent distribution’s mean µ and scale it by the latent distribution’s

variance σ as:

z = µ +σ � ε, where ε ∼N (0, I). (2.20)

Now, we can optimize the distribution parameters while still sampling randomly from

its distribution. Figure 2.4 illustrates a VAE model with the multivariate Gaussian as-

sumption.

Figure 2.4: Vanila VAE architecture.

2.6 Bayesian Networks

A Bayesian Network BN=<N,A,∆> is a directed acyclic graph (DAG) <N,A> with a

conditional probability distribution for each node, collectively represented by ∆. Each

node n∈N represents a RV, and each edge a∈ A between nodes represents a probabilis-
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tic dependency between the associated nodes [40]. A BN’s joint distribution of n vari-

ables P(X1, . . . ,Xn) is equal to the product of a conditional probability P(node|parents(node))

for all nodes, as shown below [77]:

P(X1, . . . ,Xn) =
n

∏
i=1

P(Xi | X1, . . . ,Xi−1) =
n

∏
i=1

P(Xi | Parents(Xi)) . (2.21)

Inference: Probabilistic inference is the process of calculating the posterior distribution

of variables based on existing evidence. Using some statistical tests such as chi-square

or mutual information, we can find the conditional independence relationships among

the nodes and use these relationships as constraints to construct a BN. In general, a BN

can be used to compute the conditional probability of one node, given values assigned

to the other nodes; hence, a BN can be used as a classifier that gives the posterior prob-

ability distribution of the classification node given the values of other features. We use

nodes to represent dataset attributes when learning BNs from datasets [40] [77].

Separation: The idea of separation is that dependencies can be cut by observing in-

termediate variable(s), i.e., RVs (X ,Z,Y ) satisfy separation if X ⊥ Y | Z (X and Y are

conditionally independent given Z). We can display separation as a graphical model in

which X is separated from Y by the target variable Z, as shown if Figure 2.5.

Figure 2.5: Illustration of a graphical separation.
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2.7 Federated Learning System

According to ubiquitous data collection, individuals constantly produce diverse swaths

of data, including location, health, and financial information. These data streams are

often obtained by distributed learning techniques such as the IoT, ubiquitous sensing,

edge computing, and many other distributed systems. The distributed learning could

fully utilize the low-cost computing resources throughout the network and achieve com-

parable performance with centralized learning. Nevertheless, the leakage of the data,

gradient, and even model during the updating and transmitting process in distributed

learning has raised user privacy and security concerns, limiting its applications in some

specific fields, such as finance and health. A typical scenario for data release privacy

is a trusted server to receive a large volume of data from the clients and then share

the aggregated data with other untrusted organizations for different purposes. Several

privacy-preserving machine learning methods, such as federated learning (FL), are used

to ensure data privacy is not violated during the training or inference process. FL is

a new class of distributed machine learning techniques in which the training process

is regulated without the data being centralized in cloud data centers. FL is, in other

words, a paradigm that enables multiple devices to work together in the training of

machine learning models without sharing potentially sensitive data. A standard FL pro-

cess occurs between centralized internet-enabled servers and the distributed devices and

systems connected via the internet. The FL solution protects privacy by enabling con-

nected devices to push model parameters to centralized servers instead of pulling data

from large datasets. After that, the server pushes back the updated global model to the
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devices. The devices use privacy protection techniques like homomorphic encryption or

differential privacy to update their models [109] [145] [158].

System Model: In general, FL entails training a global model (hosted on a central

server) with data spread through many remote devices (or nodes), each with restricted

bandwidth to connect back to the central server. To make matters even more compli-

cated, data across devices is heterogeneous. The local data is the device-generated data

stored and processed on the device, and the local model is the on-device model trained

on the local data. To retrain the global model, intermediate changes from the local model

are regularly transmitted back to the central server. For instance, assume that we have a

wireless multi-user system with one base station and N users (nodes). Each user i has

ki training data samples for training its local model wi, and K is the total number of

samples over all devices. Figure 2.6 depicts the steps involved in training a model using

the FL framework for wireless application [118] [82]:

Step 1: The base station distributes the initial model to all users.

Step 2: Data is collected at each node i to generate a local model wi.

Step 3: Updated local model parameters are communicated back to the base station to

generated a global model g and broadcasted it back to all users.

Step 4: Steps 2 and 3 are repeated until finding the optimal models to minimize the loss

functions of the users’ models.
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Figure 2.6: Illustration of the application of federated learning for a wireless system.
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Chapter 3: Literature Review

Over the past few decades, machine learning methods have seen countless breakthroughs.

As these methods are increasingly implemented, data privacy has been a growing con-

cern. Many recent works have focused on how to make machine learning more privacy-

preserving and non-discriminatory. This chapter discusses prior work on privacy-preserving

data processing, focusing on standard techniques, distributed systems, and fairness in

machine learning.

3.1 Common Privacy-preserving Approaches

Several formal privacy definitions, also referred to as privacy models, are provided, after

which the anonymized data reveals some formal guarantees. Various privacy concepts,

including k-anonymity, differential privacy, and cryptography, are discussed in the lit-

erature. We review some well-known formal privacy definitions in this section. Not all

these methods are applied to deep learning, but we briefly discuss them for the sake of

comprehensiveness.

K-anonymity: Several generic privacy-preserving models have been suggested to pre-

serve data privacy by raising the amount of uncertainty, such as k− anonymity [140].

It is a privacy model widely used to protect data subjects’ privacy in data sharing sit-

uations and the guarantees that k− anonymity can provide when used to anonymize
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data. With k− anonymity, an original dataset is suppressed or generalized until each

row is identical with at least k− 1 other rows. At this point, the database is said to

be k− anonymous [55]. Any row in a k− anonymized dataset has a maximum proba-

bility of 1/k of being re-identified [19]. Recently, several authors have recognized that

k−anonymity cannot prevent attribute disclosure. The notions of l−diversity [106] and

t−closeness [97] have been proposed as a way of countering the faults of k−anonymity.

In the l− diversity table, there are at least l well-represented values for each sensitive

attribute, and the idea of t− closeness is that the distribution of sensitive data in every

group is not too far from the distribution in the total population [46]. These approaches

are only suitable for low-dimensional data because quasi-identifiers and sensitive at-

tributes cannot be easily defined for high-dimensional data [5].

Differential Privacy: As a state-of-the-art privacy-preserving mechanism, differential

privacy (DP) is a more formal way to open-source a database while keeping all individ-

ual records private by adding well-designed noise (adding random noise to the ground

truth) [53]. A statistical query release is the simplest scenario: a data owner may spec-

ify counting questions, such as ”how many women are in the database?” and obtain

responses that have been tampered with by a small amount of random noise. DP was

introduced in 2006 by Dwork, McSherry, Nissim, and Smith as [52]: A randomized

algorithm M is ε-differentially private if for all S in the range of M, and for any pair of

datasets D and D′ differing in only one row,

P[M(D) ∈ S]≤ exp(ε)P
[
M
(
D′
)
∈ S
]
, (3.1)
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where, P[M(D) ∈ S] denotes the probability that the algorithm M outputs S. A graph-

ical illustration of DP for privacy-preserving is shown in Figure 3.1. We control the pri-

vacy guarantee’s strength by tuning the privacy parameter ε , i.e., the quantity ln P[M(D)∈S]
P[M(D′)∈S] ,

which is also called a privacy loss. The lower the value of the parameter, the more in-

distinguishable the results and, therefore, better privacy protection. The fact that a more

strict privacy guarantee always demands more noise added to the data often limits its ap-

plication scenarios, especially when high accuracy of learning tasks is needed [1] [154].

Implementation of DP in four domains named energy systems, transportation systems,

Figure 3.1: Illustration of the deferential privacy principle.

healthcare, and medical systems, and industrial systems is presented in [74]. DP can

also be achieved with some distributed learning approaches by having each participant

apply differentially private randomization to their data locally before sharing it with the

central server [84] [57] [65]. Also, DP offers a mathematically provable guarantee of

privacy security against various privacy attacks, including differencing, linkage, and re-

construction attacks [53]. A large body of DP mechanisms has been proposed for many

real-world applications [1] [68].

Cryptographic Approaches: Another way for data privacy protection is to use cryp-
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tographic operations to encrypt the dataset [66]. Encryption is based on complex algo-

rithms called ciphers. The primary purpose of encryption methods is to keep sensitive

information secret from others by processing readable data into a long series of random

or pseudo-random ciphers. Homomorphic encryption, garbled circuits, secret sharing,

and secure processors are the most widely used cryptographic techniques [123] [6]. A

typical approach is to use secure multi-party computation (SMC) [160], where each

party uses a set of cryptographic methods and the oblivious transfer scheme to jointly

compute a function using their private data [100]. IoT devices currently use encryption

protocols to protect the privacy of their dada [128] [129], e.g., the health-care indus-

try [121] and smart home use cases [2]. In [113] and [98], deep learning algorithms are

used with encryption to enhance the privacy-preserving by keeping high utility gain and

maintaining low leakage of sensitive information.

Privacy-preserving Data Mining: Within the private preserving framework, privacy-

preserving data mining (PPDM) techniques exist in the database community [110] [112]

[93] whose goal is to prevent association of any instance in a database to a person. In

addition to PPDM, many privacy-preserving machine learning (PPML) techniques [125]

[169] [133] [132] [36] [1] have been proposed to deal with data beyond those in the

traditional databases. Most existing PPML literature ensures that private information

cannot be mined and make no assumption about the non-private information. On the

other hand, our work assumes pre-specified sets of private and non-private information.

Such a formulation makes the proposed data sanitization more effective and provides a

flexible tradeoff between privacy and the ability to mine non-private information from

the sanitized data.



33

Feature Selection: Several studies have investigated feature selection as a tool for ob-

taining privacy for sensitive data [16] [80]. The idea is not to release the complete in-

formation in the data but only selected features. Unlike these studies, the work in [157]

propose a privacy mechanism to minimize the exposure of confidential information that

the client may wish to keep private by zeroing out feature components in the approxi-

mate null space. The framework proposed in [56] transforms data so that the covariance

between data and desired information is increased, while the covariance between data

and confidential information is decreased.

Information-Theoretic Privacy: Information theorists have studied privacy-preserving

notions under the rubric of information-theoretic privacy [18] [152] [107] [48] [143].

Information-theoretic privacy has predominantly been quantified by mutual information,

which models how well an adversary can refine its belief about the data’s private features

with access to the released data. Other works use mutual information minimization

between certain latent variables in various ways. The work in [43] [92] proposed a VAE

based generative model which uses mutual information minimization between the latent

space of a VAE and the feature labels. In [103] independence between latent variables

is enforced by an additional penalty term based on the “Maximum Mean Discrepancy.”

Other works such as [54] [70] [64] have utilized adversarial methods in learning latent

representations which are not as directly comparable to ours.
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3.2 Information Bottleneck

Extracting the relevant data features were previously addressed through the IB method

[143] by formalizing the ideas as an information tradeoff between accuracy and com-

plexity and showing how to compress data while preserving its concerning target in-

formation. Given the raw data variable X and utility variable U , IB operates to get a

compressed version of X while preserving U . Paper [135] shows that the IB can provide

succinct representations with good generalization using smaller sample sizes than are

needed to estimate the underlying distribution by proving several finite sample bounds.

Gaussian IB and its applications have been studies in [37], [163]. The Gaussian lower

bound to the IB curve has been found in [120]; also, they find an embedding of the data,

which maximizes its ”Gaussian part.” The authors in [9] propose to use the variational

method to optimize information bottleneck by first calculated a lower bound of the orig-

inal target and then maximize the lower bound to push the results closer to the actual

optimization problem’s optimal solution. In [8], the authors consider a similar set-up

to that of [9] and study how to improve the network’s classification calibration and the

ability to detect out-of-distribution data. The IB approach has found remarkable appli-

cations in supervised, unsupervised, and generative adversarial learning problems [148],

deep learning [69], clustering [139], and prediction [7].

The privacy funnel (PF) estimates the privacy-utility tradeoff against adversaries

when the log-loss is included in the privacy metric as well as the utility metric [107]. It

assumes that the original data X is turned into sanitized data Z before disclosure. We can

model the problem as finding a mapping X → Z that maximizes the mutual information
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between X and Z, as long as the mutual information between Z and sensitive information

S is smaller than a predefined threshold. In [115], proposes a variational approach that

does not rely on adversarial training and considers the setting of continuous and high-

dimensional disclosed data.

3.3 Federated Learning

Researchers have recently proposed distributed learning architectures that allow mul-

tiple users to share their data to train machine learning models. Training data is gen-

erally composed of a set of instances, each storing values for multiple attributes. Dis-

tributed datasets can result in two types of fragmentation: horizontal fragmentation, in

which subsets of instances are stored in separate locations, and vertical fragmentation, in

which subsets of attributes of instances are stored in different locations [145] [122]. The

sensitive information leakage among parties should be considered due to information

distribution and cooperation among users [166]. Privacy and confidentiality concerns

limit this approach’s application, preventing specific organizations such as medical in-

stitutions from fully benefiting from distributed deep learning [20] [81]. Researchers

have proposed several schemes to protect data privacy under distributed machine learn-

ing architecture to overcome this challenge [15]. FL has recently risen as a promis-

ing solution under the traditional centralized approach of training artificial intelligence

models. The standard formulation of FL enables multiple parties to collaboratively train

a shared global model on their collective data without exposing their private training

data [159] [27]. FL has found numerous practical applications where data is distributed,
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and privacy is essential. For example, it has exhibited exemplary performance and ro-

bustness for healthcare systems [156] and wireless networks [38]. Alternate approaches

to learning a model privately from multiple data sources based on DP has been as pro-

posed in [127] [71] [89] [79] [96].

3.4 Fairness in Machine Learning

In fair machine learning, the central concern is to ensure that the machine learning model

does not discriminate against individuals based on particular attributes (e.g., race or

gender). Various machine learning techniques commonly exercise intuitively unfair be-

haviors, typically due to bias already encoded in the data or minimizing average error

to fit majority populations. Nave approaches would require the algorithm to ignore all

protected attributes such as race, color, religion, gender, or disability. This approach of

fairness, which is called fairness through unawareness, is not achievable as there are

redundant encodings, ways of predicting protected attributes from other features. An-

other approach is fairness through awareness this means we should include the sensitive

attribute as a feature in the training data [73] [35] [146].

Mathematical Notation: In a supervised classification problem, we are given a la-

beled dataset D = {X ,S,Y} ∈X ×S ×Y of n instances (also called samples or in-

dividuals): X is the set of classifier input features, S ∈ {0,1} denotes a protected fea-

ture and Y ∈ {0,1} represents the true label. This data is used to construct a clasefier

C : X → [0,1] predicts a score Ŷ = C(X). In this model, S = 1 is the protected group

(favored population), while S = 0 is the unprotected group (disfavored population). In
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a similar manner, Ŷ = 1 will indicate the preferred outcome, assuming that it represents

the more desirable outcome between the two possible results [83] [170] [75].

3.4.1 Fairness Notions

It is necessary to define a metric for measuring fairness before developing a fair predic-

tor. As a result, what is perceived as fair differs from use case to use case. Generally,

fairness is treated at two different levels: group fairness and individual fairness. An

individual’s fairness can only be expected if we assume a non-discriminatory world and

do not care about addressing discrimination, while group fairness does just the oppo-

site [146] [146].

3.4.1.1 Group Fairness

In recent years, group fairness has received considerable attention resulting in various

fairness criteria that machine learning systems should satisfy. According to group fair-

ness measures, different protected groups must be treated similarly on average [73]

[146]. Overall, there are three significant measures of group fairness:

Demographic Parity: It is one of the most well-known criteria for fairness, also called

Independence. Demographic parity aims to sign a favorable outcome to each subgroup

of a sensitive class at equal rates. Statistically, fairness definitions satisfy demographic

parity if the sensitive attribute S is independent of the prediction Ŷ , i.e., the output be
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independent of the sensitive attribute:

P(Ŷ | S) = P(Ŷ ), (3.2)

which for binary settings, this equals:

P(Ŷ = 1 | S = 0) |= P(Ŷ = 1 | S = 1). (3.3)

The demographic parity, also known as Statistical Parity Difference, at times refers to

binary classification problems with a binary sensitive attribute and considers the differ-

ence between the protected groups and unprotected groups of favorable classifications:

P(Ŷ = 1 | S = 0)−P(Ŷ = 1 | S = 1) ∈ [−1,1]. (3.4)

These metrics lie in the range [-1, 1], where 0 is optimal fairness. Signs of measurement

demonstrate whether a group is protected or unprotected. Similarly, Disparate Impact is

the ratio of favorable classifications for the protected group to those for the unprotected

group:
P(Ŷ = 1 | S = 0)
P(Ŷ = 1 | S = 1)

∈ [0,∞). (3.5)

If the ratio is approximate to 1, it implies fairness [83] [61] [73].

Equalized Odds: According to this definition, equalized odds is met if the prediction Ŷ

is conditionally independent of the protected attribute S, given the actual value Y . This

is equivalent to saying [73] [170]:
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P(Ŷ | Y,S) = P(Ŷ | Y ), (3.6)

which for the binary setting is equivalent to:

P(Ŷ = 1 | Y = y,S = 0) = P(Ŷ = 1 | Y = y,S = 1) for y ∈ {0,1}. (3.7)

Equal Opportunity: Equal opportunity uses the same mathematical formulation as

equalized odds but focuses on one label, Y = 1. In this way, we are able to [73] [170]:

P(Ŷ = 1 | Y = 1,S = 0) = P(Ŷ = 1 | Y = 1,S = 1). (3.8)

3.4.1.2 Individual Fairness

As the name suggests, individual fairness is based on the individual, unlike the last

three measures. Individual fairness assumes a distance metric that captures the similar-

ity between different people and applies a Lipschitz condition to that metric to quan-

tify this. The Lipschitz condition states that any two individuals at a certain distance

d(x1,x2) ∈ [0,1] map to respective distributions M(x1) and M(x2) such that their statis-

tical distances are d(x1,x2) at most. In other words, two individuals M(x1) and M(x2)

who are separated by d(x1,x2) ∈ [0,1] should have indistinguishable outcomes (similar

classification) [50] [146].
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3.4.2 Algorithmic Interventions for Achieving Fairness

This section discusses techniques that aim to improve fairness (remove bias) from clas-

sification outcomes. These techniques can be divided into three different categories:

pre-processing, in-processing, and post-processing [47] [162] [111]. Below, we discuss

each of these categories separately.

Pre-processing: By pre-processing the data, the bias from the training data can be re-

moved, so the classifier does not have to account for discrimination. As a result, the

training process shows only fair examples, resulting in a fair classifier [33] [22]. Based

on this pre-processed data, we expect predictions not to contain illegal or unexplainable

discrimination. In [86], the uniform sampling and preferential sampling methods result

from undersampling and oversampling instances of the four groups based on a binary

sensitive attribute and binary labels. These methods are differentiated by the criteria

used to select duplicated or discarded instances. In an adversarial approach, the objec-

tive is for minimizing the capability of an adversary task to predict the sensitive attribute

from the representation [25] [13] [10] [54]. In the proposed method [165], an adversary

tries to model a sensitive attribute solely based on predictions rather than representa-

tions. The goal of [3] is to achieve demographic parity; the data can be pre-processed

so that the sensitive attribute is independent of utility features.

In-processing: The second strategy consists of modifying the training procedure of

the classifier. The analysis of these methods constrains the behavior of learning algo-

rithms to make sensitive features independent of target labels [32] [87]. Typically, this

involves taking into account one or more fairness constraints when optimizing the clas-
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sifier [23] [24] [155] [161]. Contrary to pre-processing methods, these methods are

less general but can, at least in theory, result in higher utility because the optimizer can

directly account for fairness. The authors of [50] address the problem by building a

predictive model capable of achieving statistical parity and individual equity, which is

to say that similar individuals should be treated equally. In [164], pre-processing and

in-processing are combined by jointly learning a fair representation of the data and the

classifier parameters.

Post-processing: Techniques used for post-processing work by taking a trained classi-

fier might be biased and adjusting based on the protected attributes. [45]. A black-box

algorithm cannot modify the training data or learn the algorithm, so post-processing is

required in which the labels assigned by the black-box model are reselected after the

training phase and then modified by a function [22] [23]. In order to remove unfairness,

a particular decision threshold must be learned for a given score function. Due to the

fact that these strategies rely on sensitive feature data at the decision time, they cannot

be used if sensitive feature data is unavailable [162]. Combine the in-processing and

post-processing methods in [51] by first training the classifiers (each having a different

acceptance rate) for each group. Second, selecting classifiers based on group conditions

that minimize loss functions. The loss function is built from the accuracy loss plus a

penalty term representing the deviation from fairness.
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Chapter 4: Gaussian Privacy Protector

This chapter aims to design a continuous high-dimensional data release mechanism

called the GPP. Thus, GPP can prevent adversaries from mining private information

from publicly released data while accurately revealing as much information about the

utility as possible. We utilize variational lower bounds of mutual information approx-

imation implemented as supervised learning using an adversarial training algorithm.

Furthermore, we demonstrate that a centralized platform suited to this framework can

be designed over distributed datasets.

4.1 Privacy for the Internet of Things Devices

An IoT system may generate or collect sensitive data, such as personal data, patients’

privacy data in healthcare, and business data, usually transmitted and stored on cloud

servers. The increasing use of intelligent devices is connected by the IoT, making data

security and privacy concerns arise. Many existing solutions encrypt data before send-

ing it to a cloud server. However, they often struggle to deal with complex attacks both

during data conversion and after cipher transmission. As a result, privacy is a criti-

cal component of any IoT ecosystem and significant concern that prevents widespread

adoption. This work aims to design a novel data sanitization framework called GPP, pre-

venting adversaries from private mining information from IoT devices while ensuring
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that public information can be detected using the sanitized data, as shown in Figure 4.1.

Consider a scenario where users want to use their data with an untrusted application.

Once provided, data may be used without the users’ consent for purposes other than

those initially intended, leading to serious privacy issues and loss of data sovereignty at

worst. The users need to remove sensitive and application irrelevant features from their

data while keeping the utility features.

Figure 4.1: High-level representation of our privacy-preserving approach for the IoT
devices.

Our framework allows one to customize the privacy-preserving by focusing on what

the target application considers private and utility. To illustrate our idea, we consider

the following scenarios.

Security Cameras: It is possible to use crowd-sourced videos to help find exciting

targets (e.g., crime suspect, lost vehicle) on demand. The requester (e.g., the police)

receives images that include the target (utility information), while all other captured im-

ages (private information) of the onlookers are not disclosed.

Health Systems: We introduce the privacy-preserving issues through the practical sce-

nario shown in Figure 4.2. In a remote health monitoring system, patients are contin-

uously monitored by robots and IoT devices in their residential space. The system’s
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objective is to detect indicators or symptoms of medical conditions based on sensor

measurements. The IoT devices collect the data and send them to specialists through

the internet. While the sensors provide information about patients’ medical conditions,

they may also convey sensitive information they do not want to share. For example,

motion sensor data might disclose the weight or gender or enable their re-identification.

Robots also provide a video recording and chat interface with a mobile base so the re-

mote operator can look around and even drive from place to place. Seeing the patients

in a private setting is a privacy concern. The proposed GPP can be potentially applied to

the robots and IoT devices sensors to filter out private data while guaranteeing that the

disclosed data can be used to detect medical events with high accuracy.

Figure 4.2: Model of a remote health monitoring system under attack.
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4.2 Privacy with Compressed Data

Let x1, . . . ,xn be a random sample independent and identically distributed (iid) of size n

from a distribution P. We call X = (x1, . . . ,xn) a dataset where X ∈X . We wish to find

parameter set value θ ∈ Θ achieving good average performance under a loss function

L(X ,θ). We measure the expected performance of θ ∈Θ via the risk function

R(θ) := EP[L(X ;θ)], (4.1)

where the expectation is taken over some unknown distribution P over the space X .

In the standard formulation of statistical risk minimization, a machine learning model

is given n samples x1, . . . ,xn, each drawn independently from P, and its goal to output

an estimate θ̂ that approximately minimizes the risk function R. In this dissertation,

instead of providing the machine learning model with access to the samples x1, . . . ,xn,

however, we study the effect of giving only some compressed view zi (the output of the

privacy-preserving model) of each datum xi. With θ̂ now denoting an estimator based

on the sanitized samples zi, we explicitly quantify the rate of convergence of R
(

θ̂

)
to infθ∈Θ R(θ) as a function of the number of samples n and the amount of privacy

provided by zi.
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4.3 Preliminaries

4.3.1 Problem Formulation

We consider the problem of a private data owner who aims to prepare his data for public

release to maintain crucial insensitive information while keeping the privacy risk for

sensitive data low. Let X , Z, U , and S be RVs distributed on finite alphabets X,Z,U,

and S respectively. Let X denote continuous high-dimensional raw data, U the utility

attributes that the user is willing to reveal, S the private attributes that the user wants to

hide (e.g., race and age), and Z the released data. We consider x∈Rdx , z∈Rdz , u∈Rdu ,

and s ∈ Rds , where dz� dx, as instances vectors for X , Z, U , and S, respectively. The

s and u can be discrete, continuous, and/or high-dimensional vectors. The goal is to

design a stochastic mapping P(Z|X) takes X as input and generates output Z to provide

information about the utility variable U but provides relatively little knowledge of S. For

instance, xi = [xi
1,x

i
2, ...,x

i
dx
]T might be a face of image i, with dx pixels, the model uses

for making the prediction, ui = [ui
1,u

i
2, ...,u

i
du
]T represents labels of target features (e.g.

facial expressions), si = [si
1,s

i
2, ...,s

i
ds
]T represents sensitive features (e.g. gender, race

and disability), and zi = [zi
1,z

i
2, ...,z

i
dz
]T a released data that loses any information about

sensitive features s while keeping as much other information as possible about u.
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4.3.2 Bayesian Network

From the chain rule, we can write the joint probability of the four RVs X ,Z,U,S as:

P(X ,Z,U,S) = P(X)P(Z|X)P(U |Z,X)P(S|Z,X ,U). (4.2)

If privacy is to be preserved, S and U should be independent given Z. Thus, equation

(4.2) could be written as:

P(X ,Z,U,S) = P(X)P(Z|X)P(U |Z)P(S|Z), (4.3)

where P(X) is the raw data distribution, P(Z|X) is a GPP inference, P(S|Z) is an adver-

sary inference, and P(U |Z) is a utility inference. Figure 4.3 illustrates a Bayesian belief

network for equation (4.3).

Figure 4.3: Bayesian network modeling of the GPP framework.
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4.4 Proposed Approach

4.4.1 Basic Framework

Our goal is to find an optimal probabilistic mapping, P(Z|X), in a way that the trans-

formed data Z are such that an inference of sensitive information P(S|Z) fails to reveal

private information, whereas an inference of non-sensitive information P(U |Z) gener-

ates inference that is as accurate a P(U |X). This tradeoff can be formally stated as:

P(Z|X)∗ = argmin
P(Z|X)∈P

I(Z;S)

s.t. I(Z;U)≥ γ,

(4.4)

where γ is the minimum utility level, and the P is the set of all possible probabilistic

mappings for GPP. The constraint in (4.4) can be written as H(U)−H(U |Z)≥ γ . As a

result, it can be rewritten as:

P(Z|X)∗ = argmin
P(Z|X)∈P

I(Z;S)

s.t. H(U |Z)≤ γ́,

(4.5)

where γ́ = H(U)− γ . The optimization problem in (4.5) has been studied in the context

of optimal design of the privacy-preserving data release mechanism [18] [152].

As we cannot practically search over all possible probabilistic mappings P, we con-

sider a transformation Tθ (X) : X → Z as a type of ANN to find the required P(Z|X)∗,

and θ is the parameter set. The network optimizer finds the optimal parameter set θ ∗ by
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searching the space of all the possible parameter set, Θ, as:

θ
∗ = argmin

θ∈Θ

I(Tθ (X);S)

s.t. H(U |Tθ (X))≤ γ́.

(4.6)

In order to solve (4.6), we have to reformulate it as an unconstrained optimization prob-

lem with a Lagrange multiplier β > 0. Therefore, we can rewrite (4.6) as follows:

θ
∗ = argmin

θ∈Θ

L (θ)

= argmin
θ∈Θ

(I(Tθ (X);S)+βH(U |Tθ (X))),

(4.7)

where L (θ) is the objective function.

Privacy Loss: We need to discover the variational lower bound of mutual information

between Tθ (X) and S

I(Tθ (X);S) = H(S)−H(S|Tθ (X))

= H(S)+ETθ (X)ES|Tθ (X) [logP(S|Tθ (X))] .

(4.8)

In practice, the mutual information term I(Tθ (X);S) is hard to minimize directly as it

requires access to the posterior P(S|Tθ (X)) = P(S,Tθ (X))∫
S P(S,Tθ (X))ds . The integration over S to

calculate P(Tθ (X)) in the denominator is typically intractable because this integral is

unavailable in closed form. Fortunately, we can obtain a lower bound of it by defining

an auxiliary posterior distribution Qφ (S|Tθ (X)) to approximate P(S|Tθ (X)). We define
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Qφ (S|Tθ (X)) as an ANN with weights and biases φ .

I(Tθ (X);S)

= H(S)+ETθ (X)ES|Tθ (X)

[
logQφ (S|Tθ (X))P(S|Tθ (X))

Qφ (S|Tθ (X))

]
= H(S)+ETθ (X)ES|Tθ (X)[logQφ (S|Tθ (X))]+ETθ (X)ES|Tθ (X)

[
log P(S|Tθ (X))

Qφ (S|Tθ (X))

]
= H(S)+ES,Tθ (X)[logQφ (S|Tθ (X))]+ETθ (X)KL[P(S|Tθ (X))||Qφ (S|Tθ (X))].

(4.9)

It must be a probability distribution for the KL divergence to be non-negative, therefore

for the bound to hold

I(Tθ (X);S)≥ H(S)+ES,Tθ (X)[logQφ (S|Tθ (X))]. (4.10)

The bound is tight if P is exactly the same as the conditional distribution Qφ . Therefore,

with the constant H(S) term dropped, we can write this lower bound alternatively in the

following way:

I(Tθ (X);S) = max
φ∈Φ

ES,Tθ (X)[logQφ (S|Tθ (X))]. (4.11)

Utility Loss: The conditional entropy of U given Tθ (X) can be written as:

H(U |Tθ (X)) = max
ψ∈Ψ

EU,Tθ (X)[−logQψ(U |Tθ (X))]. (4.12)

Substituting (4.11) and (4.12) into (4.7) we get

θ ∗ = argmin
θ∈Θ

max
φ∈Φ,ψ∈Ψ

ES,Tθ (X)[logQφ (S|Tθ (X))]+βEU,Tθ (X)[−logQψ(U |Tθ (X))].

(4.13)
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We can obtain θ ∗ using backpropagation with stochastic gradient descent (SGD) for the

multi-objective loss function. We also can determine β as a tradeoff between utility and

privacy through cross-validation over the training dataset.

The minimax formulation in (4.13) is similar to the GAN objective function. It may

be interpreted that GPP is trying to minimize utility loss and maximize privacy loss,

whereas the adversary is trying to minimize privacy loss. This optimization problem

can be practically addressed via the training of three neural networks: GPP Tθ (X) as

an encoder, an adversary Qφ (S|Tθ (X)) and a utility Qψ(U |Tθ (X)) as classifiers. For

notational simplicity, we define utility classifier Qψ(U |Tθ (X)) as Qψ(Z) and adversary

classifier Qφ (S|Tθ (X)) as Qφ (Z).

The CE loss function indicates the distance between what the model believes the

output distribution should be and the original distribution. It is defined as, CE(p,q) =

Ep[−log(q)] where p is the true distribution, and q is the estimated distribution. As

observed in [48], when CE is the loss, (4.13) can be written as:

min
θ

(β ∑
du
i=1 min

ψi
CE(ui,Qψi(z))−∑

ds
i=1 min

φi
CE(si,Qφi(z))), (4.14)

which is the objective function of our approach. The objective function is close to an

adversary task for small β � 1, and large β � 1 is close to a utility task.
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4.4.2 From BN Structure to Deep Neural Networks

Generally, neural networks are not used to model complete probability densities. They

can be interpreted as fitting a probability density function if proper activation functions

are chosen and certain conditions are respected. For instance, when trained with the

CE loss, it represents a conditional distribution of the label given the input [130]. In

this case, for binary label variables, the adversary inference P(S|Z) and utility inference

P(U |Z) will be considered as a Bernoulli distribution. For GPP inference P(Z|X), the Z

is typically referred to as a ‘bottleneck’ because GPP must learn an efficient compression

of the data into this lower-dimensional space with Gaussian distribution. We could

design Z to be the multivariate Gaussian distribution Z ∼N (µ,Σ) by employing the

reparameterization trick of [90], which first: the mean µ and the covariance Σ = LLT

are calculated by a neural network Tθ (X). Then, generate Z = µ+L�ε where ε a vector

of independent standard normal variables ε ∼N (o, I) and � represents element-wise

product. If the encoder outputs representations Z that are different from those from a

standard normal distribution, it will receive a penalty in the loss. The penalty term is

the KL divergence between N (µ,L) and ε . So the full objective function for the GPP

framework with penalty term is:

min
θ

(β ∑
du
i=1 min

ψi
CE(ui,Qψi(Z))−∑

ds
i=1 min

φi
CE(si,Qφi(Z))+KL(N (µ,L)||ε)).

(4.15)

According to (4.15), Figure 4.4 illustrates the architecture of the GPP framework.
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Figure 4.4: Diagram of the Gaussian privacy protector framework.

4.4.3 Training

From an optimization perspective, we aim to minimize the objective function L , as:

θ ∗ = argmin
θ∈Θ

L (θ). (4.16)

In general, the gradient-based learning is used to minimize L , seeking to iteratively

reduce the loss as:

θt+1 = θt−α
∂L
∂θ

. (4.17)

where α is the learning rate [117].

Our goal is to train an encoder to produce an output leading to high inference ac-
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curacy when used for utility information and randomly guessing private information.

GPP maps X into an identity-obscuring low dimensional latent representation Z and up-

dates its objective function from a pre-trained utility and adversary classifiers. Instead

of just training on a single batch, as usually done in deep learning training, the utility

and adversary classifiers should be trained for several batches, k, on the entire dataset

to synchronize the training’s convergence speed model. Algorithm 1 summarizes the

training steps of the GPP.

4.5 Distributed Dataset Framework

4.5.1 Addressing Versus Challenge

While the advantages of distributed learning are well understood, individuals and or-

ganizations are still reluctant to disclose their data, such as health records, financial

information, and research information, in a distributed environment [168]. For example,

consider the traditional federated learning case in which t clients (e.g., mobile devices

or data centers) store local datasets of private information on their respective devices

and would like to cooperate to build a common learning objective. Generally, each

client calculates certain abstract summary information (e.g., neural network parame-

ters) locally and transmits it to an aggregator (central computing server). Then, the

aggregator aggregates these parameters for model updating. The resulting model is then

distributed to all clients, resulting in a joint representative model without directly ex-

changing data [159] [144]. However, although the clients only expose their abstract
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norelsize 2 GPP training algorithm.
Require: b, the batch size; k, steps are used for updating ψ(1,..,du) and φ(1,..,ds) in each

iteration; β , Lagrange multiplier; D= {(xi,ui,si), i = 1, . . . ,n}, training data.
1: Tθ (.),Qψ(1,..,du)

(.),Qφ(1,..,ds)
(.)← Random initialization

2: while θ has not converged do
3: for k steps do
4: Sample

{
xi,ui,si}b

i=1 a batch from the training data.

5:
{

zi}b
i=1← Tθ (

{
xi}b

i=1)
6: Perform SGD-updates for ψ(1,..,du) and φ(1,..,ds)

7: for j = 1 : du do

8: gψ j ←∇ψ j

1
b

b

∑
i=1

CE(ui
j,Qψ j(z

i))

9: ψ j ←ψ j - α . AdamOptimizer(ψ j,gψ j)
10: end for
11: for j = 1 : ds do

12: gφ j ←∇φ j

1
b

b

∑
i=1

CE(si
j,Qφ j(z

i))

13: φ j ←φ j - α . AdamOptimizer(φ j,gφ j)
14: end for
15: end for
16: Sample

{
xi,ui,si}b

i=1 a batch from the training data.

17:
{

ži}b
i=1← Tθ (

{
xi}b

i=1)
18: ε ∼N (0, I)
19:

{
zi}b

i=1← µ(
{

ži}b
i=1)+L(

{
ži}b

i=1)� ε

20: Perform SGD-updates for θ

21:

gθ ←∇θ

1
b

b

∑
i=1

{
β

du

∑
j=1

CE(ui
j,Qψ j(z

i))

−
ds

∑
j=1

CE(si
j,Qφ j(z

i))

+KL
[
N

(
µ(ži),L(ži)

)
||ε
]}

22: θ ←θ - α . AdamOptimizer(θ ,gθ )
23: end while
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network parameters to others, adversaries can still cause privacy leakage [104] [105],

as depicted in Figure 4.5. In this work, distributed GPP provides a suitable solution

for protecting privacy-preserving and secure decentralized machine learning systems by

training sensitive data locally and shares utility data in a distributed learning process.

Figure 4.5: Federated learning system under attack.

4.5.2 Distributed GPP Problem Statement

For distributed GPP computation problem, let D j denote the original dataset denoted by

D j = {x j
i ,u

j
i ,s

j
i }

n j
i=1( j = 1, . . . , t) where n j is the size of the dataset associated with GPP

j and t denotes the number of GPPs. The data x consists of records where each record

stores several attributes’ values. Data of this type has a distributed nature, leading to
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two common types of data partitioning: horizontal and vertical. In a horizontal parti-

tion, GPPs hold values for some records in the dataset. GPPs are vertically partitioned,

containing specific attributes of a dataset. The horizontal method is explored since it is

the most natural and appropriate method for most applications.

4.5.3 Distributed Learning Algorithm

The proposed distributed system consists of three kinds of deep learning networks: dis-

tributed GPP, aggregator (utility classifiers), and adversary classifiers. We formulate

this problem as a learning game among three parties: (1) users using GPP to sanitize

data samples, (2) a cooperative data aggregator learning a utility task using the sanitized

data, and (3) an adversary learning to identify contributors using the same sanitized

data. As shown in Figure 4.6, the proposed distributed system consists of t users. User

i represents a GPP framework that has access to its private labels si, public labels ui,

raw data xi and corresponding transfer function Tθi(x
i). Each user learns an individual

Tθi(x
i) and private label si and sharing the common public label ui. In other words, this

method concerned with enabling multiple GPPs to evaluate utility information jointly

and returns the result to all GPPs, without sharing any information about their private

inputs, i.e., each GPP has its privacy information s and shares the utility information u

with other GPPs. The training of the distributed GPP is described in algorithm 3.
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Figure 4.6: Distributed GPP diagram.

norelsize 3 Distributed GPP learning algorithm.
Require: t, number of GPPs; b, the batch size; k1, ...,kt ,; hyperparameters to be used

for updating φ(1,..,ds) and ψ(1,..,du) in each iteration; β1, ...,βt , Lagrange multipliers.
1: T(1,..,t)θ(1,..,t)

(.),Qφ(1,..,ds)
(.),Qψ(1,..,du)

(.)← Random initialization
2: while θ(1,..,t) has not converged do
3: for itr← 1 to t do
4: Use algorithm 2 from step 3 to 15 to update the utility and adversary classi-

fiers.
5: end for
6: for itr← 1 to t do
7: Use algorithm 2 from step 16 to 23 to update the GPPs.
8: end for
9: end while
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Chapter 5: Frameworks for Information Bottleneck Family

This chapter extends the ideas to obtain compressed representations that preserve rel-

evant information for continuous high-dimensional data, tackled in chapter four. Our

work adapts the IB principle based on private data as the core of the data to be classi-

fied; then, we consider the PF problem inspired by utility data as the central part of data

to be revealed. The representation should ensure reliable reconstruction of the desired

features while still preserving the data’s sensitive parts. Then, we design and evaluate

a distributed learning framework, a system that allows a group of IoT devices to share

data securely to build a utility model.

5.1 Why Information Bottleneck

In recent years, information has become increasingly important to the point where infor-

mation can be seen as an asset, just like stocks or patents. This has driven businesses to

gather more information than ever before, especially with machine learning that allows

businesses to use their aggregate data sets. Therefore, many practical machine learn-

ing applications have emerged that require training on sensitive data, such as financial

fraud detection [153], and medical imaging [101]. The majority of privacy-preserving

methods [53] [26] render unusable schemes because of filtering sensitive data. There-

fore, when the often content of data is sensitive information, and the system’s task is to
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preserve privacy, the problem is reduced to learning public representations of the data;

i.e., representations are informative of the utility data but not informative of the private

information. If the level of utility information is measured with the mutual information,

generating public representations is known as the IB principle [143].

Extracting the relevant data features were previously addressed through the IB method,

which has become an essential element in the information-theoretic analysis deep mod-

els. Given the raw data variable X and utility variable U , IB operates to get a compressed

version of X while preserving U . This section investigates the tradeoff between utility

and privacy in terms of mutual information. More specifically, we aim at maintaining a

certain level of utility information about the data output while minimizing all the other

sensitive information. We tackle the optimization problem with a variational bound on

mutual information approach [10], [12].

5.2 Principle of Data Reduction

Definition 1: (Sufficient Statistics) Let U ∈ U be an unknown parameter and X ∈ X be

a random variable with conditional probability distribution function P(X |U). Given a

function T : X→ Z, the random variable Z = T (X) is called a sufficient statistic for U

if ∀x ∈ X,u ∈ U,

P(X = x |U = u,Z = z) = P(X = x | Z = z), (5.1)
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which can be written as:

P(U = u | X = x) = P(U = u | Z = z). (5.2)

Theorem 1: Let Z be a probabilistic function of X . Then, Z is a sufficient statistic for U

if and only if

I(Z;U) = I(X ;U). (5.3)

Definition 2: (Minimal Sufficient Statistics) A sufficient statistic T (X) is minimal if

T (X) = g(S(X)) for all sufficient statistics S(X).

Theorem 2: If T (X) is minimal sufficient statistic, then

T (X) ∈ argmin
S

I(X ,S(X))

s.t. I(U,S(X)) = I (U,X) .

(5.4)

In other words, it is a statistic that has the smallest mutual information with X while

having the most considerable mutual information with U [135], [58].

The sufficiency is related to the concept of data reduction. Suppose that x takes

values in Rdx . If we can find a sufficient statistic z that takes values in Rdz , then we can

reduce the original data vector x (whose dimension dx is usually large) to the vector of

statistics z (whose dimension dz is usually much smaller) with no loss of information

about the parameter u.
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5.3 Preliminaries

5.3.1 Problem Formulation

Let X , Z, and U be RVs distributed on finite alphabets X,Z, and U respectively. Let

X denote continuous high-dimensional raw data, U the public attributes that the user is

willing to reveal, and Z the released data. We consider x ∈ Rdx , z ∈ Rdz , and u ∈ Rdu ,

where dz� dx, as instances vectors for X , Z, and U respectively. The u can be discrete,

continuous, and/or high-dimensional vector. The goal is to design a stochastic mapping

P(Z|X) takes X as input and generates output Z to provide as much information about

the utility variable U . For instance, xi = [xi
1,x

i
2, ...,x

i
dx
]T might be a face of image i, with

dx pixels, the model uses for making the prediction, ui = [ui
1,u

i
2, ...,u

i
du
]T represents

labels of public features (e.g. facial expressions) and zi = [zi
1,z

i
2, ...,z

i
dz
]T a released data

that keeping as much information as possible about u.

5.3.2 Bayesian Model for Information Bottleneck

Consider a joint distribution over three random variables X ,Z, and U such that:

P(X ,Z,U) = P(X)P(Z|X)P(U |Z,X). (5.5)
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BNs satisfy the local Markov property, which states that a node is conditionally inde-

pendent of its non-descendants given its parents. So that (5.5) can be written as:

P(X ,Z,U) = P(X)P(Z|X)P(U |Z), (5.6)

which represent Bayesian model that uses Bayesian inference for IB computations.

Thus, we obtain the BN structure shown in Figure 5.1.

Figure 5.1: Structure of the Bayesian network for the IB framework.

5.4 Privacy-preserving Under Information Bottleneck

5.4.1 Proposed Approach

This problem was shown in [143]: what is the compressing representation of the vari-

able X relevant for predicting another variable U?. This general problem was shown

to have a natural information-theoretic formulation: Find a compressed representation

of the variable X , denoted by Z, such that the mutual information between X and Z,

I(X ;Z), is as low as possible while keeping the mutual information between Z and U,

I(Z;U), as high as possible. In other word, for each value x ∈ X we seek a possibly

stochastic mapping (transformation) to a representative z ∈ Z, characterized by a con-
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ditional distribution P(z | x), which is the simplest representation of the data such that

it can still be useful according to the measure of utility u ∈U . IB solves the following

optimization problem:

Pz|x = argmin
Pz|x∈P

I(x;z) s.t. I(u;z)≥ γ, (5.7)

where γ is the utility level, and P is the set of all possible probabilistic mapping for

Pz|x. The constraint in (5.7) can be written as H(u)−H(u|z) ≥ γ . So that (5.7) can be

rewritten as:

Pz|x = argmin
Pz|x∈P

I(x;z) s.t. H(u|z)≤ γ̀, (5.8)

where γ̀ = H(u)− γ . By introducing a Lagrange multiplier β > 0, we can express (5.8)

as the variational minimization problem of finding

Pz|x = argmin
Pz|x

(I(x;z)+βH(u|z)). (5.9)

As we cannot practically search over all possible probabilistic mapping P, we consider a

transform Tθ (x) : x→ z, where θ is the parameter set, is a type of ANN to approximate

the required Pz|x and look for the optimal parameter set through training. The network

optimizer finds the optimal parameter set θ ∗ by searching the space of all the possible

parameter set, Θ, as:

θ ∗ = argmin
θ∈Θ

[
I(x;z)+βH(u|z)

]
. (5.10)
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Adversary Part: In our case, we want to find a variational lower bound of mutual

information between x and z

I(x;z) = H(x)−H(x|z)

= H(x)+EzEx|z[logP(x|z)].
(5.11)

In practice, the mutual information term I(x;z) is hard to minimize directly as it requires

access to the posterior P(x|z) = P(x,z)∫
x P(x,z)dx . The marginalization over x to calculate P(x)

in the denominator is typically intractable because this integral is unavailable in closed

form. Fortunately, we can obtain a lower bound of I(x;z) by defining a parametric

probability distribution Qφ (x|z) to approximate P(x|z). We define Qφ (x|z) as an ANN

having weights and biases both are represented by φ .

I(x;z) = H(x)+EzEx|z

[
logQφ (x|z)P(x|z)

Qφ (x|z)

]

= H(x)+EzEx|z[ logQφ (x|z)] +EzEx|z

[
log P(x|z)

Qφ (x|z)

]
= H(x)+Ez,x[logQφ (x|z)]+Ez,xKL[P(x|z)||Qφ (x|z)].

(5.12)

The KL divergence is a non-negative value that indicates how close two probability

distributions are, therefore the lower bound to hold is:

I(x;z)≥ H(x)+Ex,z[logQφ (x|z)]. (5.13)

If P(x|z) = Qφ (x|z), the KL divergence is zero and the bound is tight. So, with the

constant H(x) term dropped, we can write this lower bound alternatively in the following
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way:

I(x;z) = max
φ∈Φ

Ex,z[logQφ (x|z)]. (5.14)

The max problem in equation (5.14) is the objective function of the adversary.

Utility Part: The conditional entropy of u given z can be written as:

H(u|z) = max
ψ∈Ψ

Eu,z[−logQψ(u|z)], (5.15)

sub (5.14) and (5.15) in (5.10) we can find the multi-objective loss function of our ap-

proach as:

θ ∗ = argmin
θ∈Θ

max
φ∈Φ,ψ∈Ψ

[
]Ex,z[logQφ (x|z)]+βEu,z[−logQψ(u|z)]

]
. (5.16)

We obtain θ ∗ using backpropagation with SGD and the multi-objective loss function.

This optimization problem can be practically addressed via the training of three neural

networks: IB model Tθ (x) as an encoder, an adversary Qφ (x|Tθ (x)) as a decoder, and

utility Qψ(u|Tθ (x)) as classifiers. To make the notations simple, we define decoder as

Qφ (z) and classifier as Qψ(z). The equation (5.16) can be rewritten with the help of the

CE loss function as:

min
θ

[
β ∑

du
i=1 min

ψi
CE(ui,Qψi(z))−min

φ
CE(x,Qφ (z))

]
, (5.17)

which is the objective function of our approach. The objective function is close to

adversary tasks for a small β � 1, and for a large β � 1 is close to utility tasks.
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5.4.2 Gaussian Information Bottleneck

The Bayesian networks require prior estimate of the conditional probability distribution.

The variables Z is discrete, in this case, P(U |Z) can be represented as a Bernoulli distri-

bution. The random variable Z is the released data in the IB framework, we required we

require that its conditional distribution be of the form

P(Z | X)∼N (µ(X),σ(X)), (5.18)

where N (µ,σ) is the multivariate Gaussian distribution with mean vector µ and co-

variance vector σ . Using the reparameterization trick in [90], that instead of mapping

the latent variable Z into a fixed vector, we map it into multivariate Gaussian distribution

Z = µ + εσ where ε ∼N (0,I). So, the final BI objective function that we need to

optimize is:

min
θ

[
β ∑

du
i=1 min

ψi
CE(ui,Qψi(z))−min

φ
CE(x,Qφ (z))+KL(N (µ,σ)||ε)

]
. (5.19)

The architecture of the BI framework is illustrated in Figure 5.2. The algorithmic ap-

proach that we use to solve the optimization in (5.19) are detailed in algorithm 4.

5.5 Distributed Information Bottleneck Framework

The proposed approach can be used in the FL setting, where the secure aggregation is

needed. Based on an FL system model, we propose a distributed IB framework, where
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Figure 5.2: Diagram of the Gaussian IB framework.

the IoT devices communicate with each other via an aggregator, which is public clas-

sifiers, and the sensitive data of data owners are kept locally. Figure 5.3 illustrates the

implementation of the distributed IB scheme, and algorithm 5 represents the distributed

datasets algorithm.
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norelsize 4 IB training algorithm.
Require: b, the batch size; k, steps are used for updating ψ(1,..,du) and φ in each itera-

tion; β , Lagrange multiplier; D= {(xi,ui), i = 1, . . . ,n}, training data.
1: Tθ (.),Qψ(1,..,du)

(.),Qφ← Random initialization
2: while θ has not converged do
3: for k steps do
4: Sample

{
xi,ui}b

i=1 a batch from the training data.

5:
{

zi}b
i=1← Tθ (

{
xi}b

i=1)
6: Perform SGD-updates for ψ(1,..,du) and φ

7: for j = 1 : du do

8: gψ j ←∇ψ j

1
b

b

∑
i=1

CE(ui
j,Qψ j(z

i))

9: ψ j ←ψ j - α . AdamOptimizer(ψ j,gψ j)
10: end for

11: gφ ←∇φ

1
b

b

∑
i=1

CE(xi,Qφ (zi))

12: φ ←φ - α . AdamOptimizer(φ ,gφ )
13: end for
14: Sample

{
xi,ui}b

i=1 a batch from the training data.

15:
{

ži}b
i=1← Tθ (

{
xi}b

i=1)
16: ε ∼N (0, I)
17:

{
zi}b

i=1← µ(
{

ži}b
i=1)+σ(

{
ži}b

i=1)� ε

18: Perform SGD-updates for θ

19:

gθ ←∇θ

1
b

b

∑
i=1

{
β

du

∑
j=1

CE(ui
j,Qψ j(z

i))

−CE(xi,Qφ (zi))

+KL
[
N

(
µ(ži),σ(ži)

)
||ε
]}

20: θ ←θ - α . AdamOptimizer(θ ,gθ )
21: end while
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Figure 5.3: Architecture of distributed IB framework.

norelsize 5 Distributed IB learning algorithm.
Require: Dm = {xi

m,ui
m}n

i=1(m = 1, . . . , t), raining data, where n is the size of the
dataset associated with IB framework m, and t denotes the number of IB frame-
works; b, the batch size; k1, ...,kt ,; hyperparameters to be used for updating φ(1,..,t)
and ψ(1,..,du) in each iteration; β1, ...,βt , Lagrange multipliers.

1: Tθ(1,..,t)
(.),Qφ(1,..,t)(.),Qψ(1,..,du)

(.)← Random initialization
2: while θ(1,..,t) has not converged do
3: for itr← 1 to t do
4: Use algorithm 1 from step 3 to 13 to update the utility classifiers and adver-

sary decoders.
5: end for
6: for itr← 1 to t do
7: Use algorithm 5 from step 14 to 20 to update the IB frameworks.
8: end for
9: end while
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5.6 Privacy Funnel

5.6.1 Problem Formulation

Let X = {x1, . . . ,xn} denote the set of the raw data. Similarly, we adopt S = {s1, . . . ,sn}

to denote the set of private labels that the adversary classifier aims to infer, and si =

{s1, . . . ,sds} denotes the corresponding labels of each private class. The private la-

bel can be a discrete, continuous, and/or high-dimensional vector. Let PZ|X , which is

a probabilistic privacy mapping converting X into Z, a disclosed data. In a privacy-

preserving data release, the goal is to find a probabilistic mapping PZ|X such that releas-

ing Z will not violate the privacy of individuals. Without privacy in mind, we could

think of this as a feature transformation. This framework is specified by joint probabil-

ity function PX ,Z,S = PX PZ|X PS|Z,X . For privacy-preserving we want S to be independent

of X for a given Z. So that the joint probability of our approach can be factorized into

PX ,Z,S = PX PZ|X PS|Z , where PX is a raw data, PZ|X is PF inference, and PS|Z is an adver-

sary inference, which forms a BN as shown in Figure 5.4.

Figure 5.4: Structure of the Bayesian network for the PF framework
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5.6.2 Proposed Approach

The PF considers there is a tradeoff between the information that the user shares about x

and the information that the user keeps private about s. Let us consider we pass x through

a probabilistic mapping Pz|x to reveal z to the public. The purpose of this mapping is

to make z informative about x and uninformative about s. In other words, we want to

design Pz|x to maximize the amount of information I(x;z) that the user discloses about

the public information, x, while minimizing the collateral information about the private

variable s measured by I(s;z). The tradeoff between disclosure and privacy in the design

of PF is represented by the following optimization:

Pz|x = argmin
Pz|x∈P

I(s;z)

s.t. I(x;z)≥ γ,

(5.20)

where γ is the disclosure level, and P is the set of all possible probabilistic mapping for

PF. The constraint in (5.20) can be written as H(z)−H(z|x)≥ γ . So that (5.20) can be

rewritten as:
Pz|x = argmin

Pz|x∈P
I(s;z)

s.t. H(z|x)≤ γ̀,

(5.21)

where γ̀ = H(z)−γ . By introducing a Lagrange multiplier β > 0, we can express (5.21)

as the variational minimization problem of finding

Pz|x = argmin
Pz|x∈P

[
I(s;z)+βH(z|x)

]
. (5.22)
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As we cannot practically search over all possible probabilistic mapping P, we consider a

transform Tθ (x) : x→ z, where θ is the parameter set, is a type of ANN to approximate

the required Pz|x and look for the optimal parameter set through training. The network

optimizer finds the optimal parameter set θ ∗ by searching the space of all the possible

parameter set, Θ, as:

θ ∗ = argmin
θ∈Θ

[
I(s;z)+βH(z|x)

]
. (5.23)

First term of (5.23): We will determine a variational lower bound for mutual informa-

tion between z and s
I(s;z) = H(s)−H(s|z)

= H(s)+EzEs|z[logP(s|z)].
(5.24)

In practice, the mutual information term I(s;z) is hard to minimize directly as it requires

access to the posterior P(s|z) = P(s,z∫
s P(s,z)ds . The marginalization over s to calculate P(z)

in the denominator is typically intractable because this integral is unavailable in closed

form. Fortunately, we can obtain a lower bound of I(s;z) by defining a parametric

probability distribution Qφ (s|z) to approximate P(s|z). We define Qφ (s|z) as an ANN

having weights and biases both are represented by φ .

I(s;z) = H(s)+EzEs|z

[
logQφ (s|z)P(s|z)

Qφ (s|z)

]
= H(s)+EzEs|z[logQφ (s|z)]+EzEs|z

[
log P(s|z)

Qφ (s|z)

]
= H(s)+Es,z[logQφ (s|z)]+EzKL[P(s|z)||Qφ (s|z)].

(5.25)
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The KL divergence is a non-negative value that indicates how close two probability

distributions are, therefore the lower bound to hold is:

I(s;z)≥ H(s)+Es,z[logQφ (s|z)]. (5.26)

If P(s|z) = Qφ (s|z), the KL divergence is zero and the bound is tight. So, with the

constant H(s) term dropped, we can write this lower bound alternatively in the following

way:

I(s;z) = max
φ∈Φ

Es,z[logQφ (s|z)]. (5.27)

The max problem in equation (5.27) is the objective function of the adversary.

Second term of (5.23): The conditional entropy of z given x can be written as:

H(z|x) = max
ψ∈Ψ

Ez,x[−logQψ(z|x)], (5.28)

sub (5.27) and (5.28) in (5.23) we can find the multi-objective loss function of our ap-

proach as:

θ ∗ = argmin
θ∈Θ

max
φ∈Φ,ψ∈Ψ

[
Es,z[logQφ (s|z)]+βEz,x[−logQψ(z|x)]

]
. (5.29)

We obtain θ ∗ using backpropagation with SGD and the multi-objective loss function.

Our minimax formulation in (5.29) is similar to a GAN objective function. It can be

interpreted as PF wants to maximize the privacy loss, while the adversary is trying to

minimize privacy loss. This optimization problem can be practically addressed via the
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training of three neural networks: encoder Tθ (x) as PF, decoder Qψ(z|x) as utility, and

an adversary Qφ (s|x̂) as classifiers. The equation (5.29) can be rewritten with help of

the CE loss function as:

min
θ

[
βmin

ψ
CE(x, x̂))−∑

ds
i=1min

φi
CE(si,Qφ (z))

]
, (5.30)

which is the objective function of our approach. The objective function is close to

adversary tasks for a small β � 1, and for a large β � 1 is close to utility tasks. In the

same manner, as in subsection 5.4.2, we can obtain the Gaussian PF as:

min
θ

[
βmin

ψ
CE(x, x̂))−∑

ds
i=1min

φi
CE(si,Qφ (z))+KL(N (µ,σ)||ε)

]
. (5.31)

The solution to (5.31) will defined as an optimal PF for privacy-utility tradeoffs in terms

of autoencoder as PF framework and adversary classifiers. The architecture of the PF

framework is illustrated in Figure 5.5. The algorithmic approach that we use to solve

the optimization in (5.31) are detailed in algorithm 6.
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norelsize 6 PF training algorithm.
Require: Require: b, the batch size. k, a hyperparameter to be used for updating

φ(1,..,m) in each iteration. β , Lagrange multiplier. D = {(xi,si), i = 1, . . . ,n}, train-
ing data.

1: Tθ (.),Qφ(1,..,ds)
(.),Qψ← Random initialization

2: while θ has not converged do
3: for k steps do
4: Sample

{
xi,si}b

i=1 a batch from the training data.

5:
{

zi}b
i=1← Tθ (

{
xi}b

i=1)
6: Perform SGD-updates for φ(1,..,ds) and ψ

7: for j = 1 : ds do

8: gφ j ←∇φ j

1
b

b

∑
i=1

CE(si
j,Qφ j(z

i))

9: φ j ←φ j - α . AdamOptimizer(φ j,gφ j)
10: end for

11: gψ ←∇ψ

1
b

b

∑
i=1

CE(xi,Qψ(zi))

12: ψ ←ψ - α . AdamOptimizer(ψ,gψ)
13: end for
14: Sample

{
xi,si}b

i=1 a batch from the training data.

15:
{

ži}b
i=1← Tθ (

{
xi}b

i=1)
16: ε ∼N (0, I)
17:

{
zi}b

i=1← µ(
{

ži}b
i=1)+σ(

{
ži}b

i=1)� ε

18: Perform SGD-updates for θ

19:

gθ ←∇θ

1
b

b

∑
i=1

{
βCE(xi,Qψ(zi))−

ds

∑
j=1

CE(si
j,Qφ j(z

i))

+KL
[
N

(
µ(ži),σ(ži)

)
||ε
]}

20: θ ←θ - α . AdamOptimizer(θ ,gθ )
21: end while
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Figure 5.5: Diagram of the Gaussian PF framework.
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Chapter 6: Fairness-Aware Machine Learning

Problems arising from the presence of sensitive information are not necessarily privacy-

related. Most classification tasks face the challenges of achieving utility through classi-

fication while also preventing discrimination. We identify fairness in classification as a

challenging concern in this chapter and conduct a formal study. Ideally, fairness should

prevent discrimination against protected group members in classification systems. In

this chapter, we focus on fairness on a group level and fairness through awareness. We

develop a minimax adversarial framework, called the features protector (FP) framework,

to achieve the information-theoretical tradeoff between minimizing distortion of target

data and ensuring that sensitive features have similar distributions.

6.1 Sources of Unfairness

Classification aims to develop a reasonable value for an unknown variable U based on an

observed variable X . For instance, we might use various characteristics such as credit

history and salary to predict whether a loan applicant would pay back the loan. Al-

though it has shown promise in terms of enhanced decision accuracy, its results have

also been shown to be discriminatory to people from certain social classes in certain sit-

uations (e.g., women, blacks). Researchers and practitioners from various backgrounds

have emphasized the ethical and legal issues raised by the use of machine-learned mod-
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els and the potential for such systems to discriminate against particular demographic

groups due to algorithmic decision-making biases [47] [162]. For instance, facial recog-

nition performs extremely poorly for women with darker skin [28], a recruitment tool for

STEM jobs assumes men are more skilled and biased towards women [91], and pedes-

trian detection accuracy in self-driving cars is very low a subgroup of people [150].

In order to address the above challenges, features protector (FP) framework is cover-

ing recent progress to tackle algorithmic fairness problems of deep learning from the

decision-making perspective.

6.2 Preliminaries

6.2.1 Problem Formulation

Let X =
[
x1,x2...,xn] ∈ Rdx×n a raw data matrix, (i.e., is a collection of n data vectors

as columns, each with dx features), X̂ =
[
x̂1, x̂2..., x̂n] ∈ Rdx×n a released data matrix,

U =
[
u1,u2...,un] ∈ Rdu×n a matrix of target (non-sensitive) features (labels) we want

to predict, and S =
[
s1,s2...,sn] ∈ RdS×n a matrix of sensitive demographic features.

We will index observed individuals by superscript, e.g.,
(
xi,si,ui) is the ith individual

in a training dataset. For instance, xi = [xi
1,x

i
2, ...,x

i
dx
]T might be a face image, with

dx pixels, the model uses for making the prediction, ui = [ui
1,u

i
2, ...,u

i
du
]T represents

labels of target features (e.g. facial expressions), si = [si
1,s

i
2, ...,s

i
ds
]T represents sensitive

features (e.g. gender, race and disability), and x̂i = [x̂i
1, x̂

i
2, ..., x̂

i
dx
]T a released image that

loses any information about sensitive features s while keeping as much other information
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as possible about y. The goal of our approach is to find a features mapping gθ (x) (e.g., a

neural network with parameters θ that minimizes a loss function L (θ) such as the CE),

computation performed as: x̂ = gθ (x), such that the protected features vector x̂ can be

used to accurately predict u (equal opportunity), but will typically random guess if used

to predict s (demographic parity). The target labels u and sensitive features s could be

discrete, continuous, and/or high-dimensional data.

6.2.2 Fairness Notions

Technically, association-based notions measure the association between the sensitive

feature and the utility feature and are widely used to assess the strength of discrimination

and the fairness of fairness judgments. In the context of fairness in classification, a

predictor Q(x̂) = û can be consider fair if:

(1) Demographic Parity which requires prediction û do not depend on the sensitive

features s [31]

P(û = 1|s = 1) = P(û = 1|s = 0). (6.1)

The goal here is, the released data x̂ would be uncorrelated with s. Thereby, the advan-

taged outcome u = 1 is independent of sensitive features s. However, the demographic

parity has drawback if P(u = 1|s = 1) 6= P(u = 1|s = 0). As a result of that, we can

present an equivalent standard depend on the true label u.

(2) Equal Opportunity which requires predictions û to be conditional independence of
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the sensitive feature s given u = 1 [161]

P(û = 1|s = 1,u = 1) = P(û = 1|s = 0,u = 1), (6.2)

and for given u = 0

P(û = 0|s = 1,u = 0) = P(û = 0|s = 0,u = 0). (6.3)

If we achieve these, the data released x̂ should be uncorrelated with sensitive feature s

when the predicted label û equals to the true label u.

6.3 Proposed Approach

6.3.1 Formulating the Goal

Our perspective model from viewing the fairness involves three entities: FP, adversary

tasks, and target tasks. In order to satisfy the demographic parity, the adversary tasks

attempts to predict sensitive information denoted by s using the outcome data x̂ from FP

as an input. Meanwhile, FP preventing the adversary tasks from predicting the sensitive

features s accurately. To achieve the equality opportunity, the target tasks attempts to

predict desired information denoted by u from x̂ with high accuracy.

Achieving Fairness: Using the information-theoretic fairness model, we formulate the

problem of finding an optimal FP as follows. Let x a RV denoting the feature vector

consisting of raw data, u, and s two RVs of target and sensitive events, respectively. The
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goal of our approach is to find a transform function gθ (x) that:

Demographic Parity, I(gθ (x);s)≈ 0 (6.4)

Equality Opportunity, I(x,u)≈ I(gθ (x);u). (6.5)

Equation (6.4) ensures that any inference algorithm on the sensitive event using the

transformed data is similar to a random guess. In contrast, equation (6.5) allows a

target classifier to accurately detect the target event using the transformed data. It is

important to note that the performance of the classifier using a feature vector gθ (x) to

identify events u and s depend fundamentally on their mutual information I[gθ (x),u] and

I[gθ (x),s] respectively. Large I[gθ (x),u] implies more information is shared between

gθ (x) and u. Therefore, a good classifier should have higher classification accuracy

with larger I[gθ (x),u]. In contrast, when I[gθ (x),s]≈ 0, no classifier will be better than

a random guess [78] [21]. Therefore, sub gθ (x) by x̂, we can rewrite (6.4) and (6.5) as:

Demographic Parity, min
θ

I(x̂;s) (6.6)

Equality Opportunity, max
θ

I(x̂;u). (6.7)

Framework Objective: The overall objective function of the proposed framework,

stated as follows:

min
θ

LFP(θ) = min
θ

[
I(x̂;s)−λ I(x̂;u)

]
, (6.8)

where λ > 0 determines the relative importance of target versus adversary tasks.
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6.3.2 Features Protector Framework

A naive approach to solve the problem in equation (6.8) would be first estimate the joint

probability mass function P(x,u,s). Based on the estimated P(x,u,s) analytically write

down the mutual information quantities that allow for various optimization algorithms

to find a good solution. For low-dimensional data, this naive approach might work.

However, in many applications, we have a high-dimensional x, u and s and the training

data size is not large enough; in such cases, estimating P(x,u,s) is very difficult. In

the following, we describe our solution approach to tackle this challenge. Variational

methods have recently become popular in the context of inference problems. Variational

mutual information is a particular variational method which aims to find a lower bound

for a mutual information [17].

Sensitive Loss: Let us find a lower bound the mutual information between two random

variables x̂ and s, with joint distribution distribution P(x̂,s)

I(x̂;s) = H(s)−H(s|x̂)

= H(s)+Ex̂Es|x̂[logP(s|x̂)].
(6.9)

In practice, the mutual information term I(x̂;s) is hard to minimize directly as it re-

quires access to P(s|x̂). Fortunately, we can obtain a lower bound of it by defining a

posterior distribution Qφ (s|x̂) to approximate P(s|x̂). We define Qφ (s|x̂) as an ANN has
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parameters φ .

I(x̂;s) = H(s)+Ex̂Es|x̂

[
logQφ (s|x̂)P(s|x̂)

Qφ (s|x̂)

]

= H(s)+Ex̂Es|x̂[logQφ (s|x̂)]+Ex̂Es|x̂

[
log P(s|x̂)

Qφ (s|x̂)

]
= H(s)+Ex̂Es|x̂[logQφ (s|x̂)]+Ex̂KL[P(s|x̂)||Qφ (s|x̂)].

(6.10)

It has to be a probability distribution for the KL divergence to be non-negative therefore

for the bound to hold. Also, the bound is tight if P is exactly the same as the conditional

distribution Qφ , so that we can rewrite (6.10) as:

I(x̂;s)≥ H(s)+Es,x̂[logQφ (s|x̂)] (6.11)

With the constant H(s) term dropped, we can write this lower bound alternatively in the

following way:

I(x̂;s) = max
φ

Es,x̂[logQφ (s|x̂)] (6.12)

Target Loss: Using previous steps, the mutual information between u and x̂ can be

written as:

I(x̂;u) = max
ψ

Eu,x̂[logQψ(u|x̂)] (6.13)

Sub sensitive loss (6.12) and target loss (6.13) in (6.8) we get:

LPF(θ) = min
θ

[
max

φ
Es,x̂[logQφ (s|x̂)]−λ max

ψ
Eu,x̂[logQψ(u|x̂)]

]
= min

θ

[
λ min

ψ
Eu,x̂[logQψ(u|x̂)]−min

φ
Es,x̂[logQφ (s|x̂)]

] (6.14)
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Our minimax formulation in (6.14) is similar to GAN objective function. It can be in-

terpreted as FP wants to minimize both the target and adversary loss terms, while the

adversary is trying to maximize sensitive loss. This optimization problem can be prac-

tically addressed via the training of three neural networks: FP gθ (x) as an autoencoder,

an adversary Qφ (s|x̂) and a target Qψ(u|x̂) as classifiers. To make the notations simple,

we define target classifier(s) as Qψ(x̂) and adversary classifier(s) as Qφ (x̂).

Training Objective Function: Using the FP as an autoencoder, we will add the recon-

struction function to (6.14). Practically, for binary vectors s and u, we can write the

objective function using the CE loss as fellow:

min
θ

[
λ1 ∑

du
i=1 min

ψi
CE(ui,Qψi(x̂))+λ2CE(x, x̂)−

(1−λ1−λ2)λ3 ∑
ds
i=1 min

φi
CE(si,Qφi(x̂))

]
.

(6.15)

The solution to (6.15) will refer to as FP and is define as optimal protector for sensitive-

target tradeoff in term of autoencoder as FP and target and adversary classifiers. Figure

6.1 shows our proposed adversarial framework.

6.3.3 Learning Algorithm

Our goal is for target classifiers Qψ(1,..,du)
(x̂) to predict u and for adversary classifiers

Qφ(1,..,ds)
(x̂) to predict s as well as possible, but for gθ (x) is to make it hard for adversary

classifiers to predict s. The training procedure includes three steps of training as follows:

1) Select a batch b training data and freeze the autoencoder to train adversary and target

loss functions by solving the optimization problems (6.15). In other words, we train
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Figure 6.1: Architecture for the FP framework.

classifiers on the frozen autoencoder. Run the gradient ascent algorithm k iterations to

get good an adversary and a target as classifiers.

2) Freeze adversary and target classifiers, use a new batch b training data to find x̂, Qφ (x̂)

and Qψ(x̂).

3) Solve the optimization problem (6.15) to train the autoencoder.

Our approach for training the autoencoder as FP and the target and adversary classifiers

as players in a game is detailed in learning algorithm 7.
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norelsize 7 FP training algorithm.
Require: b, the batch size. k, steps are used for updating ψ(1,..,du) and φ(1,..,ds) in each

iteration. λ1 and λ2 tradeoff factors.
1: gθ (.),Qψ(1,..,du)

(.),Qφ(1,..,ds)
(.)← Random initialization

2: while θ has not converged do
3: for k steps do
4: Sample

{
xi,ui,si}b

i=1 a batch from training data.

5:
{

x̂i}b
i=1← gθ (

{
xi}b

i=1)
6: Perform SGD-updates for ψ(1,..,du) and φ(1,..,ds)

7: for j = 1 : du do

8: mψ j ←∇ψ j

1
b

b

∑
i=1

CE(ui
j,Qψ j(x̂

i))

9: ψ j ←ψ j - α . AdamOptimizer(ψ j,mψ j)
10: end for
11: for j = 1 : ds do

12: mφ j ←∇φ j

1
b

b

∑
i=1

CE(si
j,Qφ j(x̂

i))

13: φ j ←φ j - α . AdamOptimizer(φ j,mφ j)
14: end for
15: end for
16: Sample

{
xi,ui,si}b

i=1 a batch from the training data.

17:
{

x̂i}b
i=1← gθ (

{
xi}b

i=1)
18: Perform SGD-updates for θ

19:

mθ ←∇θ

1
b

b

∑
i=1

{
λ1

du

∑
j=1

CE(ui
j,Qψ j(x̂

i))+λ2CE(x, x̂)

−(1−λ1−λ2)
ds

∑
j=1

CE(si
j,Qφ j(x̂

i))

}
20: θ ←θ - α . AdamOptimizer(θ ,mθ )
21: end while
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Chapter 7: Experimental Analysis

In this chapter, we will evaluate the privacy-preserving algorithms described in chapters

4 and 5 and the algorithm for fair representations described in chapter 6. Also, we

compare algorithm 2 with the existing literature solutions and present them graphically.

7.1 Datasets

Synthetic MNIST Dataset: The modified national standards and technology (MNIST)

dataset is a handwritten digit dataset consisting of 60,000 training examples and 10,000

testing examples. Each sample is a 28×28 grayscale image [95]. We concatenating two

digits to create one digit, the first set is between 00 and 19, and the second set is between

70 and 89; then, we create three synthetic datasets, one grayscale and two colored for

each set. To keep the image resolution consistent across all experiments, we resize all

the images in synthetic MNIST datasets to 64× 64 pixels. We use 25,000 synthetic

images for training, and 5,000 were used for testing.

CelebA Dataset: Large-scale celebrity faces attributes (CelebA) is a dataset with more

than 200,000 celebrity images, each with 40 binary attribute annotations such as age

(old or young), gender (male or female), whether the person is wearing glasses, and

whether they are smiling. The images are each 218x178 pixels [102]. We prepare three

datasets, each containing 20,000 training images and 2,500 testing images. Each image
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has been cropped and resized to 64×64 pixels.

HAPT-Recognition Dataset: The human activities and postural transitions’ recogni-

tion using smartphone data (HAPT-Recognition) is a dataset based on recordings of 30

participants performing six activities (Walking, Walking Upstairs, Walking Downstairs,

Laying, Sitting) of daily living. Each participant was wearing a mobile phone (Samsung

Galaxy S II) around their waist. A 50Hz constant rate of acceleration and angular ve-

locity was recorded by using its embedded accelerometer and gyroscope. In addition,

the experiments were video-recorded so that the data could be labeled manually. The

dataset includes 10929 instances and 561 features [14]. By selecting 15 participants at

random from a sample of 30 participants, we generate two datasets. We randomly split

each dataset into training instances (70%) and test instances (30%).

7.2 Performance Metric

The receiver operating characteristic (ROC) analysis is one of the most important meth-

ods of measuring performance, as it provides a visual and numerical summary of the

area under the receiver operating characteristic curve (AUC) of the behavior of a clas-

sifier. The ROC curve represents the probability, and the AUC represents the degree

of separability. In this sense, it is a measure of how well a model can distinguish be-

tween classes. The Figure 7.1 shows that the diagonal line represents random classifiers

(AUC = 0.5), suitable for sensitive information classification, which providing random

answers regardless of the input. As long as the AUC is high (approximately 1), the

classifier is more likely to predict 0 classes as 0 and 1 classes as 1, which is optimal for
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utility information classification [126] [72].

Figure 7.1: ROC curves.

7.3 Evaluation of the Proposed Algorithms

7.3.1 Algorithm 2

In this section, we empirically evaluate our proposed GPP model on real-world bench-

mark datasets and synthetic datasets. Three datasets are used: the MNIST dataset, the

CelebA dataset, and the HAPT-Recognition dataset. The networks were trained on Py-
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torch deep learning platform using Adam optimizer with a learning rate of 0.0001. We

set β equal to 1, 0.7 and 1 for MNIST, CelebA, and HAPT-Recognition respectively

and b = 64 for all datasets. We use k = 2 for MNIST and HAPT-Recognition while

k = 4 for CelebA. To evaluate trained GPP, we implement utility and adversary clas-

sifiers as deep neural networks that are trained separately using the sanitized training

instances {(T (xi),ui,si), i = 1, . . . ,n}. Presumably, these classifiers act as ideal classi-

fiers for classifying utility and private data.

Baseline Methods: It is essential to establish baseline performance to our GPP frame-

work. In this work, we compare GPP to three other baseline machine learning algo-

rithms:

• Privacy partial least squares (PPLS): using algorithm 1 from [56].

• Cleaning the null space (CNS): using algorithm 1 from [157].

• Non-negative matrix factorization (NMF): using algorithm 1 from [11].

7.3.1.1 Performance of Bottleneck Dimensions

Bottleneck ”latent space” consists of a compressed representation of sanitized high-

dimensional data, which is all the information that utility and private classifiers can use

to detect public and private events, respectively. It is crucial that GPP design with a

z dimension that includes the most relevant features. As a result, the bottleneck layer

serves as another indicator of the privacy-utility tradeoff.

MNIST-(00-19) Dataset: Any number greater than or equal to 10 is considered a pri-
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vate piece of information. Numbers are odd according to the target’s information. GPP’s

performance was tested with values of z = 40, 60, 60, 80, 100, 120. The comparison is

performed using three methods: PPLS, CNS and NMF. The accuracy results for utilities

and adversaries are depicted in Figure 7.2. Our method achieves the highest accuracy

for the utility classification (number is odd) and randomly guess, which implies vital

privacy preservation for the adversary (number is ≥ 10) at z = 120. GPP achieves the

best compromise of all baseline methods across all bottleneck dimensions z. When it

comes to privacy, NMF achieves the right privacy-preserving level (0.54) at z = 120, but

PPLS and CNS do less well for reducing the privacy risk.

Figure 7.2: MNIST-(00-19) Dataset: number greater or equal to 10 vs odd number.

CelebA-Gender Dataset: Gender is considered a private piece of information. Wear-
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ing glasses and smiling can provide useful information. In order to illustrate the tradeoff

between privacy and utility accuracy, we tune the bottleneck layer, which controls the di-

mensions of the compressing representation, with dimensions z= 100,300,400,500,600.

Figure 7.3 presents the utility accuracy of different compression techniques concerning

adversary detection. At z = 600, our method achieves the highest accuracy for utility

classification (smiling and wearing glasses) and random guess, which implies maintain-

ing crucial privacy for the adversary (gender). With the increasing bottleneck dimension

from 400 to 600, the utility accuracy rises from 90% to 97%. Accordingly, the bottle-

neck dimension adjusts the privacy with utility tradeoff.

Figure 7.3: CelebA-Gender Dataset: Gender vs smiling and wearing glasses.

HAPT-Recognition Dataset: Public information is defined as the identity of a group of
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individuals, while private information is defined as their activities. Figure 7.4 displays

the accuracy results for utility and adversary classifiers. For all z = 20,40,60,80,100

values, GPP achieves the highest accuracy as a compromise with all baseline methods,

as demonstrated in previous experiments. Therefore, we cannot distinguish individuals,

but we can detect their activity accurately. For both GPP and NMF, utility accuracy

increases as z increases, and adversary accuracy decreases. With increasing z, the CNS

is better than PPLS in utility tasks; however, the PPLS is better in adversary tasks.

Figure 7.4: HAPT-Recognition Dataset: Individual identification vs individual activi-
ties.
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7.3.2 Algorithm 3

Experimental analyses of algorithm 3 have been conducted using three datasets: MNIST-

(00-19), CelebA-Smiling, and HAPT-Recognition. To carry out the experiment, we set

β1 and β2 equal to 0.7 for CelebA-Smiling and equivalent to 1 for MNIST-(70-89) and

HAPT-Recognition. The k value is 4 for CelebA-Smiling and 2 for MNIST-(00-19) and

HAPT-Recognition. Adam optimizer’s learning rate is 0.0001. All datasets have b equal

to 64.

MNIST-(00-19) Datasets: In this procedure, two datasets are used, gray and colored.

Forty thousand images were divided equally among the two datasets for training and

2,500 samples for each GPP as a testing dataset. The utility is defined as an odd num-

ber, and an adversary is a number greater than or equal to 10. The GPP maps a 64×64

input image to latent space z ∈ R120. The evaluation of the methodology focuses on its

accuracy. The ROC curves of utility and adversary classifiers are shown in Figure 7.5

based on sanitized training data. AUC approaches 1 for utility classifiers and 0.5 for

adversary classifiers (the average test accuracy over the two datasets). From 0.99 to 1,

we observe a significant improvement in the computation benefits of utility events. In

summary, GPPs produce sanitized features that allow utility data to be mined effectively,

while private data cannot be inferred, i.e., the adversary classifier is like a random guess.

CelebA Datasets: The experiment considers gender as an adversary, smiling as a utility

for the first dataset, wearing glasses as an adversary, and smiling as a utility for the sec-

ond dataset. The number of training images for each dataset is 20,000, and the number
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Figure 7.5: MNIST Datasets: ROC curves for utility and adversary classifiers.

of testing images is 2,500. GPP maps a 64× 64 input image to latent space z ∈ R600.

Figure 7.6 shows that the ROC for the utility classifier (smiling) is quite good, whereas

the ROC for the adversary classifiers (gender and wearing glasses) is an almost random

estimate.

HAPT-Recognition Datasets: Two groups of HAPT-Recognition dataset with 15 par-

ticipants for each group are used in the experiment. The training portion is split ran-

domly into 75 percent, and the testing portion is 25 percent. This GPP has the dimension

z ∈ R100. The Users’ identities are sensitive information, while activity recognition is

the utility part. Figure 7.7 shows that the utility classifier’s ROC is quite good. However,

ROC for the adversary classifier (the average accuracy of both datasets for the adversary

in a test case) is almost random.
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Figure 7.6: CelebA Datasets: ROC curves for utility and adversary classifiers,

7.3.3 Algorithm 4

We evaluated the question: How can we ensure data privacy in a scenario where sensitive

information is so often present? We conducted experiments that empirically addressed

the answer. We define utility information as the two-digit number in a synthetic image.

This type of information is what we want to expose. For all datasets, we set β = 1,

b = 64, and k = 2. To evaluate a trained IB framework Tθ (·), we implement utility

classifier and adversary decoder that are trained separately using the sanitized training

instances {(T (xi),ui), i = 1, . . . ,n}.

To evaluate our proposed method, we conducted experiments on image classifica-

tion. We use synthetic datasets to evaluate our proposed IB framework. Based on

MNIST-(00-19) and MNIST-(70-89) datasets, Figures 7.8 and 7.9 illustrate the optimal
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Figure 7.7: HAPT-Recognition Datasets: ROC curves for utility and adversary classi-
fiers.

IB framework’s performance. IB Framework achieves superior accuracy by maintaining

utility information, two-digit number, which make it easy to classify. In contrast, the IB

framework preserves sensitive features, background image colors, and digits’ colors.

7.3.4 Algorithm 5

For the IB principle, this experiment explores the privacy-preserving in the IoT domain.

In IB distributed training, two IoT devices are integrated with one aggregator, i.e., utility

classifiers, which allow each device to update the sensitive parameters locally and send

their sanitized data to the aggregator. The first framework uses the gray MNIST dataset,

while the second framework uses the colored MNIST dataset.
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Figure 7.8: MNIST-(00-19) Dataset: Input digits of the encoder (top) and output digits
of the decoder (bottom).

In table 7.1, the AUCs for the utility classifiers are shown for the MNIST-(00-19)

and MNIST-(70-89) datasets. Using the table, we can see how algorithm 5 compares

well to algorithm 4 in terms of utility event classification on sanitized data, similar to

raw data performance.
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Figure 7.9: MNIST-(70-89) dataset: Input digits of the encoder (top) and output digits
of the decoder (bottom).

Table 7.1: Results of algorithms four and five.

Datasets
AUC

Raw Data
AUC

Algorithm 4
AUC

Algorithm 5

MNIST-(00-19) 1 0.98 0.99
MNIST-(70-89) 0.97 0.956 0.96

7.3.5 Algorithm 6

In a scenario where utility information is regularly present, how can we ensure data

privacy? We conducted experiments to answer the question empirically. To evaluate
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our work, we use two datasets: gray MNIST-(70-89) dataset and HAPT-Recognition

dataset. The networks were trained using the Adam optimizer with a learning rate of

0.0001. We set β equal to 1 for MNIST and HAPT-Recognition and b = 64 for both

datasets. We use k = 2 for MNIST while k = 3 for HAPT-Recognition.

MNIST-(70-89): We define private data as the two-digit number in the synthetic image

greater than or equal to 80. We want to hide the first digit to ensure that an adversary

cannot guess whether it is eight or seven. In the testing phase, the utility information is

defined as whether the two-digit number in the image is odd.

Figure 7.10 shows the outputs from our learned PF for MNIST-(70-89) images.

There are original images on the top and reconstructed images on the bottom. The

first digit represents a private piece of information that we wish to keep hidden. An

adversary classifier cannot determine whether it is seven or eight due to the perturbation

of the first digit. Figure 7.11 provides ROC curves for utility and adversary classifiers

trained using trained PF and used to evaluate the efficiency of the proposed PF to retain

the data features needed for accurate classification. As can be seen, the AUC is close to

0.96 for the utility classifier and near 0.53 for the adversary classifier. As a result, PF

produces sanitized features that make it possible to mine utility data effectively. Com-

paratively, private data cannot be inferred, i.e., the adversary classifier performs like a

random guess.

HAPT-Recognition Dataset: In the utility part, the activity recognition is featured,

while users’ identities are presented in the sensitive part. According to Figure 7.12, the

ROC for utility classifiers is quite good, while the ROC for adversary classifiers is a

random guess.
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Figure 7.10: MNIST(70-89) Dataset: The top two rows show the original images, and

the remaining rows visualize outputs for original images from our learned PF.

Figure 7.11: MNIST-(70-89) Dataset: ROC curves for utility and adversary classifiers.

7.3.6 Algorithm 7

This section presents numerical experiments with the proposed method on two real-

world datasets: MNIST datasets and CelebA datasets. The networks were trained using
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Figure 7.12: HAPT-Recognition Dataset: ROC curves for utility and adversary classi-

fiers.

the Pytorch deep learning platform using Adam optimizer with a learning rate of 0.0001.

λ1 and λ2 are equal to 0.1 for MNIST and 0.2 for CelebA, and b is equal to 128 for both

datasets. The k value for MNIST is 2 whereas the k value for CelebA is 4.

MNIST Datasets: A private piece of information is defined as any number greater than

or equal to 10 based on MNIST-(00-19) and greater or equal to 80 based on MNIST-

(70-89). The target’s information is that the number is odd.

Figures 7.13 and 7.14 show three sets of images; the top row shows the original im-

ages, and the bottom row shows the reconstructed images based on FP output. Recon-

structed sets indicate that FP successfully removes sensitive features, like digits greater

than 10 for MNIST-(00-19) and digits greater than 80 for MNIST-(70-89) while keeping
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target features, such as digits odd and clear to recognize. In other words, we can never

know the actual value of the first digit found in MNIST-(00-19) if it is one or zero, and

in MNIST-(70-89) if it is seven or eight. In addition, the target data is reconstructed very

closely to the ground truth images.

CelebA Datasets: Three datasets are created for CelebA. In the first dataset, we refer to

smile, i.e., whether or not the individuals in the images smile, hair color, and oval face

as utility information, while gender and straight hair are considered private information.

According to the second dataset, eyeglasses and straight hair are sensitive information,

while the smile, gender, and hair color are not. We consider setting the gender and hair

color as public information while smile and oval face are private information in the third

dataset.

Figures 7.15, 7.16, and 7.17 show the top row as input to FP and the bottom row

as output from FP. The reconstructed examples illustrate the method’s ability to hide

sensitive features while preserving target features in all images.
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Figure 7.13: MNIST-(00-19) Dataset: For utility information, the two-digit number is

odd, whereas for private information, the two-digit number is ≥ 10.
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Figure 7.14: MNIST-(00-19) Dataset: For utility information, the two-digit number is

odd, whereas for private information, the two-digit number is ≥ 80.
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Figure 7.15: CelebA Dataset: Smile, hair color, and oval face as utility information,

while gender and straight hair as private information.

Figure 7.16: CelebA Dataset: Smile, gender, and hair color as utility information, while

eyeglasses and straight hair as private information.
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Figure 7.17: CelebA Dataset: Gender and hair color as utility information while smile

and oval face as private information.
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Chapter 8: Conclusion

8.1 Chapter Four

This chapter proposes GPP, which optimizes privacy-preserving data release mecha-

nisms to minimize distortion of public data while concealing sensitive information. In

this setting, there are two types of highly correlated data: private and useful. GPP is

evaluated specifically in data sanitization, which is simply removing private informa-

tion from the data while keeping the relevant information used to improve the inference

accuracy of non-private information. Specifically, we use adversarially-trained neural

networks to compute a variational approximation of mutual information privacy. Also, a

distributed learning algorithm is demonstrated on a real dataset for the GPP framework.

The experimental results on three datasets MNIST, CelebA, and HAPT-Recognition,

show that the GPP framework is highly effective and achieves the highest classification

accuracy.

8.2 Chapter Five

Our first objective in this chapter is to propose a new framework to achieve privacy

under the IB principle. In general, we consider most of the data that would be exposed

as sensitive, i.e., access to only utility data. We utilize Bayesian networks to specify
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the system of IB and which information terms should be maintained. Also, we present

a novel distributed privacy-preserving framework that implements the IB framework to

ensure privacy within IoT devices. Based on the experiments with four databases, the

proposed approach appears to provide utility information from sanitized data similar to

raw data. In other words, the framework provides utility data while concealing sensitive

and personal information.

The second objective of this chapter is to design, implement, and evaluate a novel

PF framework resilient against adversarial attacks. As a case study, the PF framework

is evaluated in the context of users who wish to reveal data, mainly utility information,

to gain utility while maintaining their privacy. Specifically, we study the case of con-

tinuous, high-dimensional data with private labels that are high-dimensional vectors.

Results on two datasets, MNIST and HAPT-Recognition, show that the PF framework

is highly effective and achieves the highest utility classification accuracy and random

guess for sensitive information.

8.3 Chapter Six

This chapter presents a framework for creating fair representations for data publishing.

A crucial part of this approach is the use of adversarially-trained neural networks. In

the first group, the FP functions as an autoencoder and target classifier. In contrast,

the second network is adversary classifiers that attempt to retrieve sensitive information

from the released data. Our approach offers significant information-theoretically opti-

mal sensitive-target tradeoff, which we demonstrate in experiments using nine datasets.
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Experimental results indicate that our approach generates data with improved fairness

properties while maintaining classification accuracy. Furthermore, the framework is

conceptually simple and can be applied to privacy-preserving data reconstruction.
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