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ABSTRACT

Disturbance events strongly affect the composition,

structure, and function of forest ecosystems; how-

ever, existing US land management inventories

were not designed to monitor disturbance. To begin

addressing this gap, the North American Forest

Dynamics (NAFD) project has examined a geo-

graphic sample of 50 Landsat satellite image time

series to assess trends in forest disturbance across

the conterminous United States for 1985–2005. The

geographic sample design used a probability-based

scheme to encompass major forest types and max-

imize geographic dispersion. For each sample

location disturbance was identified in the Landsat

series using the Vegetation Change Tracker (VCT)

algorithm. The NAFD analysis indicates that, on

average, 2.77 Mha y-1 of forests were disturbed

annually, representing 1.09% y-1 of US forestland.

These satellite-based national disturbance rates

estimates tend to be lower than those derived from

land management inventories, reflecting both

methodological and definitional differences. In

particular, the VCT approach used with a biennial

time step has limited sensitivity to low-intensity

disturbances. Unlike prior satellite studies, our

biennial forest disturbance rates vary by nearly a

factor of two between high and low years. High

western US disturbance rates were associated with

active fire years and insect activity, whereas vari-

ability in the east is more strongly related to harvest

rates in managed forests. We note that generating a

geographic sample based on representing forest

type and variability may be problematic because

the spatial pattern of disturbance does not neces-

sarily correlate with forest type. We also find that

the prevalence of diffuse, non-stand-clearing dis-

turbance in US forests makes the application of a

biennial geographic sample problematic. Future

satellite-based studies of disturbance at regional

and national scales should focus on wall-to-wall

analyses with annual time step for improved

accuracy.

Key words: forest disturbance; remote sensing;

landsat; forest ecology.

INTRODUCTION

Change is ubiquitous in forest ecosystems. Forests

experience both seasonality as well as long-term

growth cycles that can vary in duration between
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50 years and 500 or more years (Waring and Running

2007). These long-term changes are punctuated by

mostly short-term disturbances from fire, insects,

disease, and harvest which strongly alter the state and

functioning of the forest (He and Mlandenoff 1999).

Both climate change and the increasing global de-

mand for wood and fiber products are likely to drive

increases in forest disturbance rates (Kurz and others

2008; Nepstad and others 2008). These changes in

disturbance will alter the water and carbon cycles of

forest stands as well as impact the habitat and biodi-

versity of these ecosystems (Lindenmayer and others

2006; Gardner and others 2009). With respect to the

carbon cycle, forest disturbance is now recognized as a

major driver of non-fossil-fuels-related terrestrial

fluxes to the atmosphere (Running 2008; Amiro and

others 2010).

To effectively understand how forest disturbance

impacts forest state and functioning, disturbance

rates need to be quantified at the spatial grain

where human management and natural distur-

bances occur; typically less than 10 ha (Miller

1978; Cohen and others 2002; Kuemmerle and

others 2007; Frolking and others 2009). Further-

more, disturbances need to be quantified at a time

step and spatial scale relevant to the affected pro-

cesses (for example, nationally, annually), and over

a temporal period relevant to establishing baselines

meaningful to forest policy initiatives (historically,

at least as far back as the 1990s) (Böttcher and

others 2008; Masek and others 2008; Kennedy and

others 2012).

In the United States, the lack of consistent, high-

temporal resolution estimates of forest disturbance

remains an important gap in efforts to model and

manage forest carbon at a national scale (USCCSP

2007; Birdsey and others 2009). The US Forest

Service Forest Inventory and Analysis (FIA) Pro-

gram relies on a network of plots to inventory and

monitor forested ecosystems at regional to national

scales. Its current annual inventory system

(McRoberts and others 2005) closely tracks indi-

vidual tree mortality and cause of disturbance

through remeasurement of inventory plots on a

regular cycle (approximately every 5 years in the

east, ten in the west). However, until remeasured

data are available nationally, consistent forest dis-

turbance estimates cannot be constructed. In

addition, FIA is not structured to capture relatively

rare disturbance events. Consequently, today’s

reported US national inventory-based estimates of

disturbance area have drawn upon separate dat-

abases for the extent of harvest (Smith and others

2009), fire (US Environmental Protection Agency

2011), and insect damage (USDA Forest Service

2010). In some cases, these estimates may be

inconsistent. For example, harvest area is derived

from a combination of inventory re-measurement

data, where available, and harvest activity reports

from different National Forests. Insect mortality

typically reflects the gross area affected by insects as

measured by aerial sketch maps over purposively

sampled regions of the country (Johnson and

Wittwer 2008), although recent efforts have begun

to convert these maps into true mortality estimates

(Meddens and others 2012).

Satellite observations may provide a more con-

sistent means for assessing disturbance. Previous

studies estimating national and global forest dis-

turbance patterns have used coarse-resolution

(250 m–1 km) satellite imagery (NOAA AVHRR

and NASA EOS MODIS) (Potter and others 2005;

Mildrexler and others 2009; Potapov and others

2009). Although suitable for detection of large-

area disturbances such as fire and large-scale

clearcuts, coarse-resolution imagery is less capable

of detecting forest management activities than fi-

ner-grained observations from satellites such as

Landsat (Skole and Tucker 1993; Tucker and

Townshend 2000; Bucha and Stibig 2008; Wulder

and others 2008; Potapov and others 2009).

Studies that use imagery of finer spatial grain have

either mapped at too coarse a temporal grain to

detect short-term changes in forest disturbance

rate (Masek and others 2008; Hansen and others

2010) or have focused only a single type of forest

disturbance (for example fire mapping from the

Monitoring Trends in Burn Severity project,

MTBS, Eidenshink and others 2007). The need to

overcome limitations inherent in these previous or

ongoing ground-based and satellite-based distur-

bance analysis efforts has motivated the develop-

ment of the North American Forest Dynamics

(NAFD) project (Goward and others 2008), a core

project of the North American Carbon Program

(Wofsy and Harris 2002).

The study reported here was derived from the

first two phases of NAFD, which employed a geo-

graphic sample of Landsat observations at a rela-

tively high-temporal frequency (approximately

annual time step) over a 20-year period to char-

acterize the dynamics of recent US forest distur-

bance history. A sampling approach was selected

due to the high cost of individual Landsat images

(�$600) when this study was initiated (2005) and

the fact that an annual, wall-to-wall analysis

would involve over 9,000 such images covering

the 442 individual scenes over the conterminous
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US.1 We selected a sample of 50 scenes and for

each we assembled a time series of cloud-mini-

mized, seasonally consistent imagery. The time

series of each pixel in a given image stack was

analyzed using the Vegetation Change Tracker

(VCT) algorithm to detect disturbances (Huang and

others 2010a).

In this study, forest disturbance was defined as any

event that caused either substantial mortality or leaf-

area reduction within a forest stand, including man-

agement activities such as harvest and thinning. As

described more fully in the ‘‘Methods’’ section, the

VCT approach captures most rapid stand-clearing

events (including clearcut harvests and fire), as well

as many non-stand-clearing events (partial harvest,

thinning, storm damage, insect damage). However,

gradual declines in live biomass that occurred over

several years (for example, due to drought or disease)

were mostly not captured. The approach also did not

distinguish between disturbance (mortality followed

by recovery) and permanent conversion of land

cover. Thus, our definition of disturbance corre-

sponds most closely to gross forest cover loss (Hansen

and others 2010). Although knowing the causal

agent of disturbance is extremely important for

understanding specific impacts on ecosystems, this

study has not attempted to assign an agent to each

disturbed patch. Instead, we focus on overall ‘‘turn-

over’’ of live forest area across the county.

Our central objective was to estimate annual

rates of forest disturbance across the conterminous

US. Accomplishing this required the development

and application of novel methods to: (i) select a

probability-based sample of 50 scenes while satis-

fying diverse analytical criteria; (ii) apply an auto-

mated change-detection algorithm to identify forest

disturbance across a Landsat image time series for

each scene, and (iii) assign estimates of sampling

errors associated with this disturbance mapping.

METHODS

Sample Design

Our sample design followed the rules of probabil-

ity-based sampling (Särndal and others 1992),

where each scene had a known, non-zero, positive

probability of inclusion in the sample, and the set

of possible samples was finite and known. This

approach allowed for design-based estimation and

for preferential inclusion of scenes with greater

land or forest area (Gallego 2005), an important

consideration given the effort and cost involved in

the analyses and the central goal of characterizing

forest disturbance. This approach also allowed for

inclusion of other important characteristics: spatial

dispersal of scenes to minimize autocorrelation,

assurance that all major forest types were included

as forest disturbance and recovery dynamics are

largely type-specific, and the ability to leverage

work already completed at a handful of ‘‘targeted’’

scenes available from related projects (for example,

Masek and Collatz 2006; Eidenshink and others 2007).

Fundamental to our sampling design was the

choice of sample unit (geographic area of a single

sample scene) and sample frame (the population of

sample scenes covering the conterminous US). Be-

cause adjacent WRS-2 Landsat frames overlap, the

sample frame was modified such that each scene was

trimmed to include only the unique, non-overlap-

ping area it contained. This ensured that each sam-

ple scene was unique, and simplified the use of

population statistics. Hereafter, our reference to

sample scenes implies the non-overlapping portion

of scenes produced by this process.

As a first step in assuring that scenes with greater

forest cover were preferentially selected as part of

the sample, several scenes with extremely low forest

cover were culled from the sample frame. This was

accomplished by ranking each sample by total forest

area (based on a US forest type map developed by

Ruefenacht and others 2008) from low to high, and

eliminating all ranked scenes for which the total

forest area was below 2% of the cumulative forest

area across all scenes in the frame.

We divided the culled sampling frame into two

strata: eastern and western. This division reflects that

fact that at a gross scale eastern and western US forests

are fundamentally different ecologically and in terms

of how they are managed, both of which could greatly

affect disturbance and recovery dynamics. To accom-

plish this division all Landsat scenes in WRS-2 Path 31

or greater were declared western and all scenes in Path

30 or less were declared eastern. All further steps were

executed separately for each stratum.

For each stratum, samples were drawn from

randomly ordered lists of scenes. Rather than cre-

ating a single list, a set of v (=100,000) scene lists

were created, each with a different random order-

ing, and the final sample was chosen by randomly

selecting one list from the set of lists that met our

preferential criteria: geographic scene dispersion,

maximizing total forest area, forest type diversity,

and inclusion of targeted scenes where we have

1 In this article, we use the term ‘‘scene’’ to refer to the
nominal geographic area of a particular Landsat World-
wide Reference System (WRS-2 path/row). The actual
Landsat acquisitions from specific dates for that area are
termed ‘‘images’’ (see Strahler and others 1986).
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important experience. This provides two important

benefits. First, for any given set of lists, every

scene’s probability of inclusion (p) in the sample

could be calculated directly as its proportional

occurrence in the first n scenes across all lists in the

set. Second, because the probability of inclusion

was calculated directly, it was possible to further

cull the set of lists from the frame to remove those

whose first n scenes, taken together, did not meet

our preferential selection as described above.

The final sample was chosen by randomly

selecting one list per stratum from the final culled

list in each stratum. The sample size (n) for each

stratum was 12 (eastern) and 11 (western), given

that the sample design and list selection was exe-

cuted during the first phase of the project when

only 23 scenes were under consideration. For each

sample scene p was calculated as the number of

times the sample appeared among the first n scenes

in the set of v lists, divided by v. During the second

phase of the project, when we added the next

sequential 13 (eastern) and 14 (western) samples

from the two ordered lists new p were calculated

for each sample by increasing n to 25 for each

stratum. The final set of 50 samples is listed along

with their probabilities of inclusion in Table 1, and

a map illustrating the spatial distribution of the

samples is shown in Figure 1. In addition, a com-

parison of the forest type map used for sample

selection with the forest types represented in our

samples demonstrates that the design was effective

at capturing the diversity of US forest types in

the sample frame (Ruefenacht and others 2008)

(Figure 2).

Deriving the Scene-Level Disturbance
Products

The creation of scene-level NAFD disturbance

products has been described in detail previously

(Huang and others 2009, 2010a, b; Thomas and

others 2011). Here, we briefly summarize the steps

required to map disturbance within each Landsat

sample scene and then describe the quality of the

products in terms of severity and types of distur-

bance detected.

Table 1. Ordered List of the Sample Scenes Chosen in Each Stratum (Eastern, Western) with Probability of
Inclusion

Order Eastern stratum Western stratum

WRS-2

path/row

Probability

of inclusion (p)

WRS-2

path/row

Probability

of inclusion (p)

1 21/37 0.138 37/34 0.117

2 27/38 0.130 35/34 0.234

3 22/28 0.154 34/37 0.183

4 18/35 0.146 37/32 0.157

5 25/29 0.118 47/28 0.183

6 17/31 0.142 36/37 0.213

7 19/39 0.126 41/32 0.213

8 16/36 0.177 43/33 0.198

9 26/36 0.157 41/29 0.162

10 12/31 0.122 35/32 0.112

11 21/39 0.134 45/29 0.173

12 12/27 0.146 44/26 0.137

13 26/34 0.142 42/35 0.137

14 24/37 0.114 42/28 0.208

15 21/30 0.197 44/29 0.168

16 23/35 0.130 46/32 0.188

17 26/37 0.114 46/31 0.223

18 14/31 0.142 42/29 0.157

19 16/35 0.142 46/30 0.178

20 16/41 0.169 47/27 0.157

21 23/28 0.165 48/27 0.168

22 20/33 0.154 40/37 0.152

23 15/31 0.122 34/34 0.193

24 27/27 0.087 33/30 0.183

25 19/36 0.122 45/30 0.152
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At each of the 50 sample locations, a Landsat

image time series was constructed consisting of one

image during the growing season (leaf-on condi-

tions) for (initially) a target of every other year,

between 1985 and 2005. Although biennial image

acquisition was the initial targeted frequency, we

were able to augment most image stacks with

higher temporal frequency (that is, mean intervals

less than 2 years). To optimize detection of change,

images were chosen based on cloud cover and

seasonality, with no attempt to synchronize skip-

ped years in different stacks. Leaf-on seasonality

required acquisition dates between June and Sep-

tember for most of the United States, although the

range was extended to include May and October in

the southern states.

Each image stack was processed to maintain

the highest radiometric and geometric standards

(Huang and others 2009). Imagery was obtained as

standard L1T (orthorectified at-sensor radiance)

files from USGS EROS, and the latest version of the

appropriate sensor calibration parameter set was

applied. Geometric registration was checked and

(as necessary) corrected by automated selection of

image tie points and orthorectification (Huang and

others 2009). The images were then converted to

surface reflectance using the LEDAPS atmospheric

correction package (Vermote and others 1997;

Masek and others 2006) and assembled into a time

series stack clipped to a common geographic extent.

Finally, water, cloud, and cloud shadow were

identified and masked in each image. Water was

mapped through a combination of decreasing

reflectance with wavelength and low NDVI value

(Huang and others 2010a). Clouds were mapped

using a set of visible/top-of-atmosphere temperature

Figure 1. NAFD sample scenes (unique, non-overlapping scene areas) overlaid on the US forest type map (Ruefenacht

and others 2008).
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relationships (Huang and others 2010b). Residual

cloud contamination not identified in this step was

also isolated as single-year ‘‘outliers’’ in the VCT

forest disturbance analysis discussed below, and

removed.

Forest disturbances were mapped from the

Landsat time series stacks using the VCT algorithm

(Huang and others 2010a). The algorithm used an

automated approach to select forest training sam-

ples in each Landsat image and then calculated the

distance in spectral space between each image pixel

and the centroid of the forest training population

(Huang and others 2010a). Pixels close to the

centroid of the forest population in the spectral

space across the entire time period of record were

classified as persistent forest for the entire observ-

ing period. Forest disturbance year for a given pixel

was identified when that pixel’s spectral properties

Figure 2. Fraction of

forest types captured by

the NAFD sample for the

A eastern and B western

strata (gray bars)

compared to the actual

area of each type from the

map of Ruefenacht and

others (2008) (black bars).
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exceeded an expected range of spectral deviation

scores for at least two subsequent sequential time

steps. The algorithm generated maps with classes

for persistent non-forest, persistent forest, water,

and the year of disturbance (Figure 3).

These maps were filtered in both the spatial and

the temporal domains. Filtering was necessary to

reduce false positive detections (‘‘speckle’’) caused

by residual image misregistration (Townshend and

others 2000; Knight and Lunetta 2003). Distur-

bance pixel groups that were adjacent in space and

time (that is, within one time period of each other)

were identified. A majority filter was applied to

achieve a minimum mapping (MMU) of 0.16 ha

(two pixels) for static persistent forest and non-

forest classes and 0.32 ha (4 pixels) for disturbance

classes. Disturbance pixels in groups smaller than

the MMU were converted to a majority class using

decision rules in conjunction with a mode filter in

the local 3 9 3 pixel neighborhood. Majority fil-

tering typically reduced per-scene disturbed area by

about 20%.

Per-scene Disturbance Product Quality

Two approaches were used to describe disturbance

product quality. First, six scenes representative of

a range of forest and disturbance classes were

selected to evaluate VCT performance (Thomas and

others 2011). These locations included a variety of

disturbance types, including forest fire, harvest,

thinning, land-use conversion, and both storm and

insect damage. The maps derived from VCT were

compared to estimates determined independently

using expert visual interpretation of Landsat and

high-resolution satellite imagery. Because no field-

based datasets exist that match the temporal den-

sity and spatial detail of the Landsat observation, a

field-based validation was not undertaken (Cohen

and others 2010). Rather, trained interpreters,

using established photo-interpretation guidelines,

visually evaluated the Landsat TM imagery in

tandem with high-resolution digital imagery such

as that available on the Google Earth. The Google

imagery was used to aid determination of final land

cover/use and to provide geographic context,

whereas the determination of forest change came

from visual interpretation of the Landsat TM

imagery. The interpreters labeled change and

no-change conditions using knowledge of both the

land spectral properties and the spatial context of

the landscape. This process was conducted at over

random 600 points for each of the six validation

scenes, with the points stratified by disturbance

Figure 3. Example of vegetation change tracker (VCT) algorithm output for Landsat WRS-2 path 43 row 33 (Sierra

Nevada, California). The VCT uses per-pixel annual Landsat time series to generate maps with classes for permanent forest,

non-forest, and disturbance occurring in each year. Disturbed patches are color-coded by year of disturbance. Lake Tahoe

is depicted as the blue area in the north-center of the full scene. Zoomed image Small patches of harvest as well as the large

burn scar of the 1992 Cleveland fire.
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class (that is, year of disturbance mapped). For each

scene, accuracy metrics of the VCT map were cal-

culated by comparing that map with the visual

interpretation results.

The results yielded overall per-scene accuracies

of 77–86% and kappa values of 0.67–0.76 (Thomas

and others 2011). Considering only the forest

change classes, omission and commission errors

varied widely due to small sample sizes for indi-

vidual year classes. Forest change users’ accuracies

(100% - commission error%) averaged 55–79%

among the six scenes, although these accuracies

increased by approximately 9% if the VCT year of

disturbance was allowed to be within 1 year of the

reference assignment. In general, omission errors

were higher than commission errors. As a result,

disturbance rates calculated from VCT map prod-

ucts were biased, underestimating total disturbance

by an average of 24% across all validation sites.

Omission errors mainly reflected the limitations of

biennial sampling for capturing subtle disturbances

(for example, mechanical thinning), effects of sea-

sonality within the image time series, and limita-

tions of the VCT algorithm for mapping gradual,

multi-year declines in forest health (that is, stress)

and change in the sparse forests of the western US.

The specific type of disturbance was a lesser

control on accuracy compared to the severity of

disturbance, defined as the fraction of tree cover

killed within the 0.32 ha MMU. Both natural and

anthropogenic stand-clearing disturbances (princi-

pally clear-cut harvest, severe fires, and major

storm events) could be detected with high accuracy

(75–85% detection accuracy), whereas non-stand-

clearing disturbances (including thinning, under-

story burns, and insect defoliation events) were

only detected with 38% accuracy (Thomas and

others 2011). It should be noted that this latter

figure increased to 60% accuracy if the allowable

temporal window was relaxed to ±1 year.

In a second subsequent analysis (unpublished

data), we used the TimeSync Landsat times series

validation tool (Cohen and others 2010) to better

describe omission errors in terms of disturbance

severity and type. TimeSync is a software envi-

ronment to support visualization and interpreta-

tion of Landsat time series data. It includes

simultaneous display of multitemporal Landsat

image subsets, per-pixel Landsat spectral time ser-

ies, and temporal snapshots of high-resolution

imagery available in Google Earth. Interpreters can

use the TimeSync environment to assign land

cover, land use, and change labels to per-pixel

trajectories, and then store this information in an

online database. For this analysis, we examined

150 plots randomly located within each of nine of

the 50 sample scenes. Three severity classes were

defined based on the percent of canopy removed or

killed by disturbance (<34, 34–67, and >67%). In

the high and medium severity classes, 10 and 23%

omission rates were observed. In contrast, the

omission rate for the low severity disturbance class

was 68%. However, although omissions errors

were linked to disturbance intensity, they were not

uniform across disturbance type, indicating an

interaction between severity and causal agent in

terms of omission rates.

For the three dominant types, harvest, fire and

stress, omission rates in the low severity class were

76, 38, and 85%, respectively. This suggests that

fire is the most likely and stress the least likely type

of disturbance detected by VCT, with clear-cut

harvest much more likely to be detected than

selective harvest. For this analysis, we defined

stress as any observation of a spectral trend in the

direction of disturbance that involved the loss of

leaf area (or death) of live woody vegetation and

was supported by observations within Google

Earth. To be declared stress, the spectral trend had

to be multi-year (typically 5 or more years). We

assumed that the large majority of such observa-

tions were associated with insect and disease

activity (largely in conifer forests), recognizing that

some observations were associated more directly

with prolonged drought (for example, in pinyon-

juniper and shrublands). We could not observe

seasonal losses of foliage associated with insects

that would subsequently recover to full or near-full

leaf area the following year (for example, in eastern

deciduous forests). The TimeSync analysis sup-

ported the initial observation that omission error

was greater than commission error and that omis-

sion error was more strongly associated with dis-

turbance severity than type.

Estimation of Area Disturbance Rates and
Uncertainty

To estimate disturbance rates, we first derived

annual totals of disturbed area for each of the 50

NAFD sample scenes by interpolating across miss-

ing years of data within the scene. This was

accomplished by allocating mapped disturbance

from any multi-year period evenly to each year

within that period. For example, if the 1992 image

was missing from the time series, and 10,000 ha of

disturbance was mapped during the 1991–1993

period, 5000 ha of disturbance would be allocated

each to 1992 and 1993. Gaps in the image time

series were asynchronous among samples, and
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more than half of the samples in each stratum

provided data for any given year. Total forest area

was also calculated for each scene by summing

across three mapped classes: persistent forest, dis-

turbed forest, and forest recovering from a pre-time

series disturbance (Huang and others 2010a).

From our samples, total disturbed area per year

and total forest area were estimated for the two

strata using the generalized Horvitz–Thompson

(1952) estimator for unequal-probability designs:

A ¼
Xn

i¼1

yi

pi

; ð1Þ

where A is the unbiased estimate of either forest

area or disturbed area for a given year, yi is the

forest or disturbance area for the ith sample in that

year, and pi is the probability of inclusion for the ith

sample. Proportional forest disturbance rate by

stratum was calculated by dividing this total by the

estimated total forest area in the stratum. Estima-

tion of variance was achieved using the conserva-

tive collapsed stratum variance method (Cochran

1977).

RESULTS

Per-scene Disturbance Rates

Raw, per-scene forest area and disturbance rates for

each of the 50 samples showed significant geo-

graphic variability (Figure 4). Disturbance rates in

the southern United States and Pacific Northwest

were consistently high, both in terms of absolute

area and fraction of mapped forest cover affected.

Samples from the Carolinas, the Gulf Coast, and

northern Louisiana exhibited fractional disturbance

rates in the range of 1.5–2.0% y-1. Absolute and

fractional disturbance rates in the northeast were

considerably lower (<0.5% y-1). Although the

absolute area of disturbance in the interior

(mountain) west was low, the forest cover base in

these locations is limited and generally confined to

mountain environments, and corresponding frac-

tional disturbance rates were quite variable.

Eastern versus Western US Disturbance

Having selected independent sample sets for the

eastern and western United States, disturbance

rates and variances were estimated separately for

each stratum (Figure 5). We found similar average

disturbance rates (1.10 and 1.05% y-1, respec-

tively) for eastern and western forests, and signifi-

cant interannual variability in disturbance rates

within each of the stratum. However, the annual

rates of disturbance were asynchronous in the two

strata. Although both strata showed decreases in

disturbance rate from the late 1980s to the early

1990s, thereafter the trajectories within the two

regions diverged, with disturbance rates peaking in

the east in the late 1990s and in the west in the

early 2000s.

The national sampling approach does not support

disaggregating the results to finer geographic areas

because the probability of inclusion for each sample

scene was calculated assuming two strata. Thus,

there is no way to produce a subregional area

estimate other than simple averaging (that is,

assumed equal probability of inclusion). With that

caveat, we can calculate such ‘‘apparent’’ distur-

bance rates for smaller groups of scenes to inter-

rogate regional patterns. Disturbance rates were

explored independently for groups of scenes within

the northern and southern subregions of the east-

ern stratum, and for groups of scenes within the
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Figure 4. Per-scene results of the NAFD disturbance analysis. The overall length of the bar shows total NAFD derived

forest land area for the WRS-2 sample location (x axis). The black portion of the bar is equal to the area of forest mapped as

disturbed during 1985–2005. Note that samples along coastlines show low forest area due to the large proportion of water

that falls within the samples footprint.
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intermountain and coastal subregions of the wes-

tern stratum (Figure 6). These boundaries corre-

spond to the US Forest Service FIA regions. In the

western US, disturbance rates in the intermountain

west were generally lower than the coastal region,

with the difference becoming more pronounced in

the late-1990s. In the eastern US, the northern and

southern subregions show markedly different

temporal patterns. Although the northern subre-

gion indicates a stable, low rate of disturbance,

disturbance rates in the southeast are much higher

and vary significantly on 5- to 10-year timescales. It

should be noted, however, that because the results

for individual subregions do not come from the full

per-stratum sample, variances cannot be calculated

for these rates. Thus, although the temporal pat-

terns can be broadly interpreted, their statistical

significance is uncertain.

National Disturbance Rates

Aggregating the results from the eastern and wes-

tern strata gives an estimate of national forest dis-

turbance rates since 1985 (Figure 7). We find that

an average of 2.77 y-1 ± 0.36 Mha (1 r) of US

forestland was disturbed each year during the

1985–2005 period. This figure corresponds to a

fractional disturbance rate of 1.09% forestland per

year. The net underestimation bias (see ‘‘Per-scene

Disturbance Product Quality’’ section) suggests that

the VCT algorithm missed about 24% of actual

disturbance that can be detected visually within the

Landsat imagery. Adjusting the NAFD results for

this underestimation bias would increase the

national disturbance rate from 2.77 Mha y-1 (1.09%

forestland y-1) to 3.63 Mha y-1 (1.42% forest-

land y-1).

Unlike studies that report only average distur-

bance rate over multi-year periods our results

suggest that forest disturbance rate can change

rapidly across large regions (Figure 7). The time

series of national disturbance varies about the

mean value, from a low of 0.8% of US forest area in

1992 to a high of 1.4% in 2000. In general, values

during the early 1990s were consistently lower

than average, whereas values in the late 1990s

were consistently higher. The uncertainty bounds

based only on sampling error are less than the

magnitude of the interannual variability, suggest-

ing that these swings in disturbance rates at the

national scale are ‘‘real’’ and not simply artifacts

of the sampling. However, some caution must be

taken given that only sampling errors are shown in

Figures 5 and 7; inclusion of measurement errors

would increase estimated error and reduce confi-

dence in the estimates of interannual variability.

US Forest Area

Total forest area for the conterminous US was also

calculated from the NAFD results, estimated as the

sum of permanent (undisturbed) forest and all

Figure 5. Disturbance

rates and uncertainty

estimates calculated

separately for the eastern

(dark gray) and western

(light gray) strata. Error

bars represent sampling

error (±1r) and western

points are offset by

0.2 years for clarity.
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annual disturbance classes within the VCT classifi-

cation. The estimated total forest areas for the

eastern and western strata were 182 9 106 and

74 9 106 ha, respectively, for a total estimate of

255 9 106 ha. The US Forest Service reported areas

of 157 9 106 and 96 9 106 ha for eastern and

western forestland in 2007, respectively (Smith and

others 2009). Thus, although the NAFD national

forest area corresponds closely to the US Forest

Service national estimate of 253 9 106 ha for for-

estland in the conterminous US, the per-stratum

areas are somewhat different.

DISCUSSION

National Disturbance Rates

The results presented here represent the first

satellite-based estimates of yearly forest distur-

bance for the conterminous United States. From

our geographic sample, we have estimated that, on

average, 1.09% of US forestland was affected by

disturbances each year during the 1985–2005

epoch. It should be noted, however, that our

sample was primarily based on representing forest

type, and the geographic distribution of disturbances

B

A
Figure 6. Disturbance

rates (%forest change per

year) calculated for A the

south and north

subregions of the eastern

stratum and B the

intermountain and

coastal subregions of the

western stratum. The

thickness of each shaded

area gives the disturbance

for that subregion, such

that the upper surface gives

the total disturbed area

for each stratum.
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does not necessarily correspond to that of forest

types. Therefore, there is some additional uncer-

tainty in the national rates not captured by the

estimate of sampling error.

It is of interest to compare our results to data

from US land management inventories, as well as

previous remote sensing studies (Table 2). As noted

in the ‘‘Introduction,’’ there is no single database

from the US forest inventory that tracks the area of

forest disturbance. However, there are independent

reports for the area of harvest (including area

affected by partial harvest) (Smith and others

2009), the area affected by forest fire (EPA 2011),

and the forest area affected by insect mortality

(USDA Forest Service 2010). The age distribution of

US forests reported in the FIA can also be converted

to an average stand-clearing disturbance rate

assuming that all forestland area younger than

20 years experienced a stand-clearing disturbance

event during the last 20 years. This calculation

implicitly excludes non-stand-clearing events that

would reduce stand biomass but not necessarily

alter the FIA age assignment.

Previous remote sensing estimates of US forest

disturbance are given in Masek and others (2008)

based on a 10-year (1990–2000) wall-to-wall

analysis of Landsat imagery, and Hansen and others

(2010) based on 500-m resolution MODIS imagery

for the 2000–2005 time period. Like the NAFD

sample, these estimates represent gross forest cover

loss; that is they include both losses due to distur-

bance (but that will return to forest cover) as well

as losses due to permanent forest conversion

(deforestation). However, the rate of deforestation

in the US is relatively low compared to the turn-

over due to harvest and other forms of disturbance

(Smith and others 2009). Drummond and Loveland

(2010) also used Landsat data in 5- to 7-year

epochs to estimate land-cover transitions in the

eastern US. They found gross forest conversion

(which includes harvest and permanent conver-

sion) of 0.34 Mha y-1, although this cannot be

directly related to the NAFD eastern stratum

because the Drummond and Loveland (2010) study

area only included areas east of the Mississippi and

Ohio Rivers.

Comparing these studies suggests a general con-

sistency among the satellite-based disturbance

estimates (Table 2). The NAFD national results are

higher than those of either Masek and others

(2008) or Hansen and others (2010), presumably

reflecting an improved ability to identify subtle

disturbance signals when using finer spatial reso-

lution data (compared to MODIS) and shorter

mapping intervals (compared to the decadal Land-

sat study). The NAFD rates are also higher than

those calculated from the FIA forestland age dis-

tribution, suggesting that the NAFD results are

identifying a significant amount of partial harvest

(that is, thinning) that would not be severe enough

to reset the FIA stand age. This is corroborated by

the TimeSync assessment that indicated most

moderate and some low severity disturbances were

detected.

All of the satellite-based estimates are consider-

ably lower than the rates obtained by summing the

inventory-based estimates of forest harvest, fire,

and insect mortality. The total area of disturbance

obtained from the inventory reports is about

8.1 Mha y-1, with 4.3 Mha y-1 attributable to

Figure 7. NAFD national

disturbance rates

obtained by combining

results for the eastern and

western strata, calculated

by year (% of

conterminous forest area

disturbed per year). Error

bars Sampling error

(±1r).
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harvest activity alone (Table 2). There are two

likely explanations for the discrepancy. First, the

inventory data generally record the area affected by

a type of disturbance rather than the actual area of

forest disturbed. For example, the insect mortality

estimate is based on the area enclosed by areal

sketch map polygons, whereas only a fraction of

the stands within those polygons have succumbed

(Johnson and Wittwer 2008). Meddens and others

(2012) assessed the actual tree mortality area

within USFS Aerial Detection Survey polygons for

beetle outbreaks in the western US, and estimated

up to 380,000 ha y-1 of actual tree mortality

averaged for the 1997–2010 period. Similarly, the

area considered affected by partial harvest (for

example, selective cutting or strip cuts) may be

less than the actual area cleared. In contrast, the

satellite-based results offer the potential for a more

exact estimate of disturbed crown area.

However, some of the discrepancy also likely

reflects limitations of the current NAFD method-

ology. The methods described here are sensitive to

most severe and moderate disturbances, but com-

monly miss events that kill a small fraction of trees

within the stand or disturbances that emerge

gradually (such as drought or insect mortality). In

addition, the accuracy of the VCT change detection

was hampered by occasional inconsistencies in the

acquisition date of images within the time series.

Using the bias-adjusted figure derived from Thomas

and others (2011) of 3.63 Mha y-1 (1.42% forest-

land y-1) brings the satellite-based disturbance

estimates closer to the inventory figure. Finally,

there remains the possibility that the NAFD

sampling approach introduced some bias into the

results compared to geographically comprehensive

estimates from forest inventories.

Interannual Variability

The NAFD results also suggest significant interan-

nual changes in disturbance rates. However, our

national estimates integrate across the many factors

(forest policy and management, fire ignition, local

economic conditions, land ownership) that deter-

mine forest disturbance rates when viewed at the

local or regional scales. We do know that a primary

causal factor in disturbance rates is forest man-

agement, specifically harvest. The quantity of tim-

ber harvested is a function of societal, economic,

and political processes (Prestemon and Abt 2001).

Harvest rates are heavily influenced by volatile

wood product markets which feed into and are fed

by overall economic activity as measured by GDP

(Daniels 2005; Luppold and Miller 2005).

In the western stratum, the NAFD results show

an early decrease and then significant increases,

peaking in 2000. These dynamics likely relate to

decreased western harvests in the early 1990s,

increased forest fires, particularly in the interior

west in the late 1990s (Daniels 2005; mtbs.gov), and

increased insect activity (Meddens and others 2012)

(Figure 8A). The changes in fire dynamics follow

the widely recognized pattern of drier and warmer

conditions, more frequent fires, and more intense

insect outbreaks over the last two decades in the

western US and Canada (Williams and others 2010;

Westerling and others 2006; Kurz and others 2008).
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In the eastern US, forest harvest appears to the

dominant mechanism for disturbance, particularly

is the southeastern US suggesting that these rates

may be related to US economic activity as reflected

in the gross domestic product (GPD) which strongly

reflects changes in housing starts (Figure 8B)

(Napton and others 2010). Recessions of 1990–

1991 and 2000–2001 caused drops in the rate of

increase of GDP that were mirrored by drops in

eastern forest disturbance, and the period of high-

est disturbance rate (1997–2000) was also a period

of large year over year increase in GDP.

Some caution must be exercised in interpreting

these trends, however. A detailed analysis of the

per-scene results indicates that much of the inter-

annual variability in the eastern stratum was driven

by accelerated harvest between 1996 and 2000 in

two sample scenes in Oklahoma (WRS-2 p26r36)

and eastern Texas (WRS-2 p26r37) (Schleeweis

2012). The sudden increase in harvest rates was

noted at the time by the Assistant State Forester for

Oklahoma (K. Atkinson, personal communication),

and was attributed to a combination of regional

timber prices, local increases in demand and

capacity due to the opening of new chip and stud

mills, and real estate exchanges by timber compa-

nies.

Although the scene-level Landsat VCT products

successfully captured this local acceleration in dis-

turbance, such isolated (in space and time) jumps

in disturbance rate were not built into the original

sampling framework. Two of the drivers of the

sampling scheme were the capture of a range of

forest types (forest diversity) and the maximization

of sample geographic dispersion. Essentially, the

existence of isolated ‘‘pockets’’ of rapid distur-

bance, which could not have been predicted a

priori and thus could not be incorporated into the

sampling framework, raises questions as to the

efficacy of using a limited geographic sample to

fully capture variability in disturbance rates. Simi-

lar points have been made regarding tropical

deforestation, which also exhibits a geographic

‘‘clumping’’ that is difficult to predict a priori

(Tucker and Townshend 2000).

Sample Size and Sampling Error

The analysis of the 50-scene NAFD sample was

conducted in two phases: a first phase using 23

Figure 9. Comparison of phase I (23 scenes, top) and phase II (50 scenes, bottom) estimated disturbance rates (percent

forest cover per year) and sampling error for the eastern (left) and western (right) strata.
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scenes, and a subsequent phase with an additional

27 scenes. This gives us an opportunity to examine

the effect of increased sample size on stratum-level

estimates. Mean disturbance rate and variances

were calculated separately for the samples from the

first phase and the entire 50-scene set. Adding

more scenes to the sample should improve the

precision of the disturbance estimates, and the new

rates should typically lie within two standard

deviations of the estimates from the smaller set.

Comparing the phase 1 and combined phases 1

and 2 results (Figure 9) for the eastern stratum, the

overall temporal pattern is similar, and the indi-

vidual rates from the full set actually lie within the

1 r of the smaller set. However, in the western

stratum, estimates of rates during particular eras

(mid-1980s, 2000–2002) are separated by at least

two standard deviations. Although it is reasonable

to assume that the full set of 50 scenes provides a

more precise estimate than the smaller phase 1

sample, this again illustrates the difficulty in using

a limited geographic sample to capture regional

disturbance rates.

CONCLUSIONS

The NAFD project has used a geographic sample of

Landsat scenes to quantify forest disturbance rates

across the conterminous United States for the

1985–2005 epoch. We found that an average of

2.77 Mha y-1 (1.09% forestland y-1) was dis-

turbed each year during this epoch. Adjusting this

figure for the net measurement error (bias) would

increase it to 3.63 Mha y-1 (1.42% forestland y-1).

Both of these figures are lower than the combined

area affected by harvest, fire, and insect damage

reported from land management inventories,

although the figure is higher than the disturbance

rate of forestland expected from the FIA age dis-

tribution. Much of the discrepancy is associated

with low severity disturbances in which a small

fraction of the canopy cover is killed.

Disturbance rates in the western US appear to have

increased substantially beginning in the late 1990s

and closely track increased fire frequency in the

intermountain west during this period. Rates in the

eastern US more closely tracked variability in eco-

nomic activity (GDP), presumably reflecting fluctu-

ations in harvest. The temporal variability in eastern

disturbance was greater than expected, although it is

unclear whether these variations reflect national

patterns or local ‘‘pockets’’ of increased disturbance.

The work presented in this study points the way

toward a consistent monitoring framework for

US forest dynamics based on interannual satellite

observations. Disturbance rates need to be quanti-

fied at the spatial resolution where human man-

agement and natural disturbances occur and at a

time step relevant to driving processes. Although

available forest inventories provide invaluable

information on US forest dynamics, they have not

been designed to provide a consistent geospatial

view of disturbance. As a result, it is not clear from

those data how long-term changes in land man-

agement and natural disturbance rates ultimately

affect ecosystem structure and functioning across

the nation. In principle, satellite observations can

help meet this need.

The NAFD results described here relied on a

limited geographic sampling, and the divergence in

results between the initial set of 23 samples and the

full set of 50 highlights the difficulty in using such a

sampling approach to constrain disturbance

dynamics. Our detailed analysis of the regional and

local variations in the observed disturbance rates

has revealed that the geography of processes that

drive disturbance and specific local disturbance

events have a strong influence over variations in

area-averaged disturbance rates from year to year

(Schleeweis 2012). As a result, we have turned

toward wall-to-wall, annual mapping in the cur-

rent phase of the NAFD project to circumvent these

limitations. The advent of free Landsat data distri-

bution, coupled with increased computing power,

has led to the use of ‘‘every clear pixel’’ in mapping

land dynamics (Zhu and others 2012). Availability

of such comprehensive information will precipitate

more advanced ecosystem process models that can

ingest the richness of these data, and lead to a

much improved ability to monitor and forecast

ecosystem responses to climate change and human

management. Coupled with repeat-measurement

inventory data, when those become available over

the next several years, we will likely soon have a

powerful system for spatially explicit monitoring of

forest cover in the conterminous US.
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