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Chapter 1

Introduction

The Fundamental Theorem of Arithmetic, first proved by Gauss [2], states
that every positive integer has a unique factorization into primes. That is,
for every positive integer N ,

N = pa1
1 pa2

2 . . . pak

k

where the pi’s are distinct primes and each ai is a positive integer. This
paper is motivated by a computational question: given an arbitrary integer
N , how might we find a non-trivial factor of N? That is, a factor of N other
than ±N and ±1.

While it is computationally easy to multiply numbers together, factor-
ing a general integer is “generally believed to be hard” [4]. The security
of RSA, the “most widely used public key cryptosystem in the world” [20],
relies on this difficulty. Therefore, the study of integer factorization is of
great practical importance.

The goal of this paper is to describe the Elliptic Curve Method(ECM),
an integer factorization algorithm first proposed by Lenstra in [21]. Before
describing this algorithm, we first discuss some preliminaries. In Chapter
2, we prove some elementary results from number theory and explicitly
describe the RSA algorithm. In Chapter 3, we describe several factorization
algorithms, including Pollard’s Rho algorithm and the Quadratic Sieve. In
Chapter 4, we discuss the algebraic properties of elliptic curves and the
ECM. In Chapter 5, we discuss how performing the ECM with a curve
in Montgomery form reduces computations. We conclude Chapter 5 by
discussing some recent developments of the ECM.
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Chapter 2

Preliminaries

2.1 Greatest common divisors and modular arith-

metic

Definition 2.1. Let a and b be positive integers. If gcd(a, b) = 1 then a is
relatively prime to b.

Definition 2.2. If a − b is a multiple of m, then we write a ≡ b (mod m).

The following property is a basic property of division in the integers.
For positive integers a and b with b < a and b 6= 0, there is a non-negative
integer r such that a = bk + r, where k is some positive integer and r < b.
We will denote r as a mod b.

We will need a way to compute greatest common divisors. The following
algorithm, called the Euclidean Algorithm, finds gcd(x, y), where x and y
are positive integers.

Suppose y < x. Express x as x = m1y+r1, where m1 and r1 are integers
with 0 ≤ r1 < y. If r1 = 0, then y divides x and gcd(x, y) = y. If r1 6= 0,
dividing y by r1 yields y = m2r1 + r2 with 0 ≤ r2 < r1. If r2 6= 0, we divide
r1 by r2 to obtain r1 = m3r2 + r3 where 0 ≤ r3 < r2. Eventually some ri

will be 0, as each ri is a non-negative integer strictly smaller than ri−1. The
process terminates when rk+1 = 0, for some k. Our last three equations are

rk−3 = mk−1rk−2 + rk−1

rk−2 = mkrk−1 + rk

rk−1 = mk+1rk + 0
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with 0 < rk < rk−1. Since rk−1 = mk+1rk, rk divides rk−1. Since rk−2 =
mkrk−1 + rk, rk divides rk−2. Since rk divides rk−2 and rk−1, rk divides
rk−3. By working our way backwards through the equations in this manner
we see that rk divides both x and y. We will now show that rk = gcd(x, y).

Suppose d is a divisor of both x and y. Since x = m1y + r1, d must
divide r1. Since y = m2r1 + r2 and d divides y, if d divides r1 then d also
divides r2. Continuing on, d must divide rk, making d less than or equal to
rk. This proves that rk = gcd(a, b).

Example 2.3. We use the Euclidean Algorithm to calculate gcd(45, 12).

45 = (3)(12) + 9

12 = (1)(9) + 3

9 = (3)(3) + 0

Thus, gcd(45, 12) = 3.

We will use big O notation to describe the number of arithmetic in the
Euclidean Algorithm. Later, we will use big O notation to describe other
integer factorization algorithms.

Definition 2.4. Let N(x) be the number of arithmetic operations it takes
to factor the integer x using some factorization algorithm. We will write

N(x) = O(g(x))

if for some function g(x) there exists a real number x0 and a positive real
number M such that

N(x) ≤ M |g(x)| for all x > x0.

In [17](p.339), Knuth proves that the number of steps required to com-
pute gcd(x, y) using the Euclidean Algorithm is O(lnN), where N = max(x, y).
More precisely, Knuth proves that the number of steps is

⌈

ln(
√

5N)

ln((1 +
√

5)/2)

⌉

− 2 ≈ 2.078 lnN + 1.672

However, each step in the Euclidean Algorithm requires a long division. In
[18](p.13), Cohen states that this long division takes O(ln2 N) operations.
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In total, Cohen states that finding a greatest common divisor of a and b us-
ing the Euclidean Algorithm takes O(ln2 N) operations, including the long
division.

Extending the Euclidean Algorithm allows us to compute the multi-
plicative inverse of x modulo y, provided the inverse exists. In order for this
inverse to exist, we require x and y to be relatively prime. Suppose we have
integers a and b such that

ax + by = gcd(x, y).

If x and y are relatively prime, then

ax + by = 1,

and by considering both sides of this equation mod y, we obtain

ax ≡ 1 (mod y).

Thus, a = x−1 mod y.

The Extended Euclidean Algorithm finds the integers a and b in the
relation ax + by = gcd(x, y), and hence can be used to calculate the mul-
tiplicative inverse of x modulo y, provided x and y are relatively prime.
The Extended Euclidean Algorithm operates as follows. We first perform
the Euclidean Algorithm to find the greatest common divisor of x and y,
storing the values ri, mi, ri−1 at each step. By substituting ri into ri−1 we
can work in reverse to find a solution (a, b) to ax + by = gcd(x, y).

Example 2.5. We calculate a solution to the equation 49a+15b = gcd(49, 15).
In order to do this, we first calculate gcd(49, 15) using the Euclidean Algo-
rithm

49 = (3)(15) + 4

15 = (3)(4) + 3

4 = (1)(3) + 1

3 = (3)(1)

this shows that gcd(49, 15) = 1. We now work in reverse to calculate a
solution to 49a + 15b = 1.
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1 = 4 − (1)(3)

= 4 − (1) (15 − (3)(4))

= (4)(4) − 15

= (4)(49 − (3)(15)) − 15

= (15)(−13) + (49)(4)

Thus, a = −13, b = 4 is a solution to our equation. Taking both sides of
1 = (15)(−13) + (49)(4) modulo 49 shows that −13 ≡ 26 (mod 49) is
(15)−1 mod 49.

In [18](p.16), Cohen states that the Extended Euclidean Algorithm has
the same run time as the Euclidean Algorithm.

2.2 Basic definitions and theorems

Before discussing integer factorization, more preliminaries need to be dis-
cussed.

Proposition 2.6. If x and m are relatively prime and ax ≡ bx (mod m)
then a ≡ b (mod m).

Proof. If ax ≡ bx (mod m) then m divides ax− bx = (a− b)x. We will now
show that m divides a − b, which implies that a ≡ b (mod m). Since x and
m are relatively prime, we can use the Extended Euclidean Algorithm on x
and m to find a c and an e such that

cx + em = 1.

Multiplying both sides of the above equation by (a − b) yields

cx(a − b) + em(a − b) = (a − b).

Since m divides both cx(a − b) and em(a − b), m divides (a − b).

Definition 2.7. The value of the Euler Phi function, denoted by φ(n),
for n a positive integer, equals the number of positive integers less than or
equal to n that are relatively prime to n.
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For any prime p, every positive integer less than p is relatively prime to
p. Thus, φ(p) = p − 1.

Theorem 2.8. If n and b are positive, relatively prime integers then

bφ(n) ≡ 1 (mod n).

We will prove the above theorem momentarily.

Theorem 2.9. (The Chinese Remainder Theorem) Suppose m1, m2, . . . , mr

are positive, pairwise relatively prime integers. Let M = m1m2 . . .mr. Let
a1, a2, . . . , ar be arbitrary integers. Then there exists a unique integer a
modulo M such that a ≡ ai (mod mi) for every i = 1, . . . , r.

Proof. We prove the Chinese Remainder Theorem by constructing such an
a and showing that a is unique modulo M . Let i and j be positive integers
less than or equal to r and let Qi := M

mi
. Observe that Qi is relatively prime

to mi.

Define Mi := Q
φ(mi)
i and a :=

∑r
i=1 aiMi. By Theorem 2.7,

Mi ≡ 1 (mod mi). If j 6= i then mi divides Mj and Mj ≡ 0 (mod mi).
Thus, a ≡ ai (mod mi) for every i = 1, . . . , r. It remains to show that a is
unique modulo M .

Suppose b satisfies the same r congruences as a. Then for each mi,
a ≡ b (mod mi). Thus, every mi divides a − b, making M divide a − b and
a ≡ b (mod M). Therefore, a is unique modulo M .

Theorem 2.10. If m and n are relatively prime, then

φ(mn) = φ(m)φ(n). (2.1)

Proof. Let a be a positive integer less than and relatively prime to mn,
that is, an integer counted by φ(mn). Since a is relatively prime to mn,
a must be relatively prime to each of m and n as well. It follows that a
mod m and a mod n are relatively prime to m and n respectively. From
the uniqueness statement in the Chinese Remainder Theorem, distinct a′s
that are less than and relatively prime to mn will produce distinct pairs of
integers, one counted by φ(n) and the other counted by φ(m). Therefore,
φ(mn) ≤ φ(m)φ(n).
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Conversely, suppose b is an integer counted by φ(m) and c is an integer
counted by φ(n). Since m and n are relatively prime, by the Chinese Re-
mainder Theorem there is a unique integer a with 1 ≤ a < mn such that
a ≡ b (mod m) and a ≡ c (mod n). Thus, the number of pairs (b, c) is at
most φ(mn). The inequality φ(m)φ(n) ≤ φ(mn) follows.

The Prime Number Theorem, a substantial result regarding the distri-
bution of prime numbers among the positive integers, is stated below. A
proof of the Prime Number Theorem can be found in Chapter 6 of [15].

Definition 2.11. The prime counting function, denoted by π(x), equals
the number of prime numbers less than or equal to x, for any positive real
x.

Theorem 2.12. (The Prime Number Theorem) The prime counting func-
tion, π(x), has the same asymptotic behavior as x

ln(x) . That is,

lim
x→∞

π(x)

x/ ln(x)
= 1.

Finally, some elementary results about group theory will be used. A
proof of Lagrange’s Theorem can be found in [12](p.89).

Definition 2.13. Let G be a finite group. The order of G is the number
of elements in G. Let a ∈ G. The order of a in G is the smallest positive
integer k such that ak = e, where e is the identity element of G.

Theorem 2.14. (Lagrange’s Theorem) If G is a group of finite order, then
the order of every subgroup of G divides the order of G. As an immediate
consequence of this, the order of every element of G divides the order of G.

Theorem 2.7 is a consequence of Lagrange’s Theorem, which we will now
show. Suppose N is a positive integer. The set of all non-negative integers
less than and relatively prime to N form a group under multiplication mod-
ulo N . This group will be denoted as (Z/NZ)×. By definition, the order
of (Z/NZ)× is φ(N). If a is an element of (Z/NZ)× with order k then by
Lagrange’s Theorem, k divides φ(N). Let B be a positive integer such that
φ(N) = Bk. It follows that

aφ(N) = aBk = (ak)B ≡ 1B ≡ 1 (mod N),

proving Theorem 2.7.
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2.3 RSA Cryptosystem

The RSA cryptosystem is a public key cryptosystem first proposed by Rivest,
Shamir and Adleman in [28]. Let p and q be two distinct primes and let
pq = N . Let d and e be two integers, representing decryption and encryp-
tion, respectively, such that de ≡ 1 (mod φ(N)). In order for such a d to
exist, we require that e is relatively prime to φ(N). The values N and e are
made public, while p,q, and d are kept private.

Suppose M is a message that is to be sent. We consider each letter of
the alphabet as a distinct positive integer and convert the letters in M to
integers. By concatenating these integers we can consider M as a positive
integer. If M is larger than N then we break M into smaller “blocks” of
integers where the number of digits in each block is less than N . We then
transmit each block separately. We assume that M is less than N and re-
quire that M and N are relatively prime. If M is less than p and q then M is
automatically relatively prime to N . If M is larger than N , the probability
that M is divisible by p or q is “negligible” [7] (p.44). To encode M , we
compute and send E = M e mod N .

To decode E, we use equation (2.8) and the fact that de = kφ(N) + 1
for some positive integer k. We then compute

Ed ≡ (M e)d ≡ M ed ≡ Mkφ(N)+1 ≡ M (mod N). (2.2)

Since M and Ed mod N are positive and less than N , they must be equal.

Using (2.1), if we know the factorization of N , that is, the values of p
and q, then we know

φ(N) = φ(p)φ(q) = (p − 1)(q − 1)

as p and q are relatively prime. We can then compute d using the relation
de ≡ 1 (mod φ(N)) and the Extended Euclidean Algorithm with the inte-
gers e and φ(N). If we know d, we can use (2.2) to recover the message M .
Therefore, if the factorization of N is known then M can be recovered.

In order to keep M from being recovered, we need to choose values of
p and q that are computationally difficult to find, given their product N .
RSA Laboratories, the security company formed by the inventors of the RSA
algorithm, suggest choosing primes p and q of roughly equal length. Here,
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length refers to the number of bits required to express p and q. Thus, p
and q should be roughly half the length of N . As for the size of N , they
recommend using an N of length “1024 bits for corporate use and 2048 bits
for extremely valuable keys” [19].

However, history has shown that RSA is not invulnerable to attacks. In
1977, the authors of RSA published [13], which contained a message that
was encrypted using a 129 digit number for N . They claimed that it would
take “40 quadrillion years” to factor this N . It took less than 20 years. As
described in [10], in 1994 Lenstra used an algorithm called the Quadratic
Sieve, performed on 1,600 computers over the course of eight months to fac-
tor this integer, displaying the message “The Magic Words Are Squeamish
Ossifrage.” This effort won Lenstra a $100 prize, and made mathematicians
around the world wonder what an Ossifrage is. (An Ossifrage is a species of
vulture that are not particularly squeamish.)

Clearly the authors of RSA underestimated the development of both the
theory of integer factorization and the increasing computational power of
computers. As Lenstra has shown, an N that makes RSA computationally
secure now may not be a secure choice in the future. Thus, despite the fact
that RSA is secure against any integer factorization algorithm in practice,
the understanding of these algorithms is crucial to the security of RSA.
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Chapter 3

Factorization Algorithms

3.1 The Sieve of Eratosthenes

Before discussing our first factorization algorithm, we discuss one way to find
prime numbers. We use the Sieve of Eratosthenes, an algorithm that finds all
the prime numbers up to some bound, N . It is attributed to Eratosthenes,
an ancient Greek mathematician.[7](p.19) The algorithm operates as follows:

1. Write the integers from 2 to N : {2, 3, 4, 5, . . . , N}
2. Let p = 2, the first prime number.
3. Starting at p, mark all multiples of p greater than p, up to N .
4. Go to the next unmarked number, let p equal this number.
5. If no more unmarked numbers exist greater than p, stop. Otherwise,
repeat step 3.

We will never mark a prime number, as every number we mark is a mul-
tiple of a prime, and hence, composite. In step 4, this p is guaranteed to be
prime, as if it were not, it would be divisible by some prime less than it, and
would have been marked in a previous iteration. Therefore, once the algo-
rithm has terminated, the list consists of all the prime numbers from 2 to N .

In step 3, it suffices to mark p2 and every multiple of p larger than p2.
This is because any multiple of p less than p2 is a composite integer with
a factor less than p and thus, has already been marked. In step 5, we can
stop the algorithm when p2 is larger than N .

Arithmetically, step 3 is accomplished by computing 2p, 3p, 4p . . . for each
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prime p and stopping when a number larger than N is computed. These
multiplications are the only arithmetic operation in the sieve. For each

prime p < N , this corresponds to
⌊

N
p

⌋

additions. From Theorem 427 in [14]

we have

∑

p≤N, p prime

1

p
= ln lnN + C + O

(

1

lnN

)

for some constant C. It follows that

∑

p≤N, p prime

⌊

N

p

⌋

≤
∑

p≤N, p prime

N

p
= N ln lnN + O(N) = O(N ln lnN)

Thus, the the Sieve of Eratosthenes will take O(N ln lnN) additions to com-
pute the primes less than N .

3.2 Trial Division

The most straightforward factorization algorithm is Trial Division. Suppose
we wish to find a factor of N by Trial Division. We use the Sieve of Era-
tothanes to generate a list of prime numbers. Upon determining a number
to be prime we check if this prime divides N . If it does, N is composite, and

the algorithm stops. Note that if prime factor p of N is larger than
⌊√

N
⌋

then N
p

must be less than
⌊√

N
⌋

. Thus, if Trial Division reaches a prime p

with p2 > N then N is prime and the algorithm terminates.

In practice, Trial Division is performed up to some bound before any
other factorization algorithm is performed, with the primes up to this bound
precomputed. If we wish to prove the primality of N , Trial Division re-
quires at most π(

√
N) divisions. By the Prime Number Theorem, this is

approximately 2
√

N
ln(N) divisions, provided the primes have been precomputed.

Assuming N to be odd, if we wish to avoid generating a list of primes, we

can simply divide N by every odd number less than
√

N , resulting in
√

N
2

divisions. As stated in [9], for a workstation in 2005, “numbers that can
be proved prime via trial division in one minute do not exceed 13 decimal
digits. In one day of current workstation time, perhaps a 19-digit number
can be resolved.”(p. 119)
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Trial Division is ineffective for factoring composite numbers with only
large factors. However if N has a small factor, Trial Division can be quite
successful. In fact, for most numbers it is quite effective, as 88% of all
positive integers have a factor less than 100 and almost 92% have a factor
less than 1000. A proof is given below.

Proposition 3.1. Approximately 88% of all positive integers have a factor
less than 100 and appoximately 92% of all positive integers have a factor less
than 1000.

Proof. The probability that a natural number is not even is (1 − 1
2). The

probability a natural number is not divisible by 3 is (1 − 1
3). For a prime

p the probability that a natural number is not divisible by p is (1 − 1
p
).

These events are independent, so the probability that a natural number is
not divisible by all the primes less than P is

∏

p≤P, p prime

(1 − 1

p
)

Thus, the probability that a number is divisible by a prime less than P is

1 −
∏

p≤P, p prime

(1 − 1

p
)

For P = 100, this is approximately .88 and for P = 1000, this is approxi-
mately .92.

3.3 Fermat’s Little Theorem

We will see that many factorization algorithms use Fermat’s Little Theorem.

Theorem 3.2. (Fermat’s Little Theorem) If p is prime and p does not
divide b then

bp−1 ≡ 1 (mod p). (3.1)

Proof. For prime p, φ(p) = p−1. Since b is relatively prime to p, the theorem
follows from an application of Theorem 2.7.

The following example shows that the converse of Fermat’s Little Theo-
rem is not true.

Example 3.3. Let P = 341 = (11)(31). Note that 2341−1 = 2340 ≡ 1 (mod 341).
P is an example of a number that satisfies Fermat’s Little Theorem, yet is
not prime.
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Definition 3.4. A composite number N is a pseudoprime to base b if
bN−1 ≡ 1 (mod N), with b relatively prime to N . If b = 2, we refer to N
simply as a pseudoprime.

In [7](p. 32), it is stated that there are only 245 pseudoprimes below a
million.

3.4 Pseudoprime Test

We can sometimes use Fermat’s Little Theorem to show that a number
is composite. By the contrapositive of Fermat’s Little Theorem, if b is a
positive integer less than N and bN−1 6≡ 1 (mod N), then N cannot be
prime. The pseudoprime test operates by checking if bN−1 6≡ 1 (mod N) for
a b < N with b relatively prime to N .

A pseudoprime test cannot prove that a number is prime, as there are
composite numbers that satisfy Fermat’s Little Theorem for every base b,
with gcd(b, N) = 1. These numbers are called Carmichael numbers.

Definition 3.5. A composite number N is a Carmichael number if
bN−1 ≡ 1 (mod N) for every integer b relatively prime to N .

Carmichael numbers must be odd, as if N is an even integer greater than
2 then

(N − 1)N−1 ≡ (−1)N−1 ≡ −1 (mod N).

Korselt gives a criteria for recognizing Carmichael numbers based on
their prime factorization. Oddly enough, this was proven by Korselt in 1899,
11 years before Carmichael produced the first example of a Carmichael num-
ber. Pomerance, in [9] (p.134) hypothesizes that Korselt thought Carmichael
numbers did not exist and hoped that his criterion would serve as a first step
towards proving this. In order to prove Korselt’s Criterion for recognizing
Carmichael numbers, we first prove a result from number theory.

Definition 3.6. A number is square-free if it not divisible by the square
of an integer except 1.

Theorem 3.7. (Korselt’s Criterion) A positive composite integer N is a
Carmichael Number if and only if N is square-free and if a prime p divides
N then p − 1 divides N − 1.

14



Proof. Suppose N is a Carmichael Number and let p be an odd prime that
divides N . Let N = peq where q is a positive integer relatively prime to
p. The set of all non-negative integers less than pe that are relatively prime
to pe form a group under multiplication modulo pe. This group is denoted
(Z/peZ)×, and it is cyclic. Let b be a generator of (Z/peZ)×. Since q is
relatively prime to p, q is relatively prime to pe. By the Chinese Remainder
Theorem, there exists an a such that

a ≡ b (mod pe) and a ≡ 1 (mod q).

Since pe and q are relatively prime, and a is relatively prime to pe and
q, a is relatively prime to N . Since N is Carmichael we have
aN−1 ≡ 1 (mod N), aN−1 ≡ 1 (mod pe) and

bN−1 ≡ 1 (mod pe).

By definition, the order of (Z/peZ)× is φ(pe). The only positive integers
less than or equal to pe that are not relatively prime to pe are multiples of
p. These multiples are p, 2p, 3p, . . . pe−1p. There are pe−1 of these multiples,
so φ(pe) = pe − pe−1 = pe−1(p − 1). Since b is a generator of (Z/peZ)×, the
order of b is pe−1(p − 1).

It follows that pe−1(p− 1) divides N − 1. If e > 1, then p divides N − 1.
But p divides N , forcing e = 1. Thus, p−1 divides N −1 and N = pq. Since
this holds for an arbitrary prime p dividing N , N must be square-free.

Now suppose N is square-free, forcing N to be of the form N = p1p2 . . . pm,
where each pi is a distinct prime divisor of N . If b is relatively prime to N
then b is relatively prime to every pi. Furthermore, suppose that pi−1 divides
N for every i. By Fermat’s Little Theorem, bpi−1 ≡ 1 (mod pi). Since pi−1
divides N − 1, by raising both sides of the congruence bpi−1 ≡ 1 (mod pi)
to the N−1

pi−1 -th power, we obtain bN−1 ≡ 1 (mod pi). Thus, for every prime

divisor pi of N , bN−1 − 1 = kipi, where ki is some positive integer and
i = 1, . . . , m.

We have that

(bN−1 − 1)m = p1k1p2k2 . . . pmkm = Nk1k2 . . . km.

which shows that (bN−1 − 1)m ≡ 0 (mod N). By the Chinese Remainder
Theorem, bN−1 − 1 is the unique integer modulo N that satisfies
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bN−1 ≡ 1 (mod pi) every i. Since bN−1 − 1 ≡ 0 (mod N) satisfies
(bN−1 − 1)m ≡ 0 (mod N), it follows that bN−1 − 1 ≡ 0 (mod N). This
shows that N is a Carmichael number.

The smallest example of a Carmichael number is 561 = (3)(11)(17).
This can be seen using Korselt’s Criterion. Other examples of Carmichael
numbers are 1105 = (5)(13)(17), 1729 = (7)(13)(19) and 2465 = (5)(17)(29).

In [32], Alford, Granville and Pomerance prove that there is an infinite
number of Carmichael numbers. This is unfortunate, as there is an infinite
set of numbers which Fermat’s Little Theorem cannot prove are composite.
Additionally, in [32], it is proven that for x > N0, where N0 is some positive

integer, there are at least x
2
7 Carmichael numbers less than or equal to x.

The number N0 has not been explicitly calculated. However, in [9](p. 134),
Crandall and Pomerance hypothesize N0 to be the 96th Carmichael number,
8719309.

3.5 Strong Pseudoprime Test

After proving the following theorem, we will describe the Strong Pseudo-
prime Test.

Theorem 3.8. Suppose N is an odd prime. Write N − 1 = 2st, where t is
odd. If b is not divisible by N then either bt ≡ 1 (mod N) or b2it ≡ −1 (mod N)
for some i with 0 ≤ i ≤ s − 1.

Proof. Observe that

bN−1 − 1 = b2st − 1

= (b2s−1t − 1)(b2s−1t + 1)

...

= (b2s−2t − 1)(b2s−2t + 1)(b2s−1t + 1)

= (bt − 1)(bt + 1)(b2t + 1)(b4t + 1) . . . (b(2s−1)(t) + 1)
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By Fermat’s Little Theorem, bN−1 ≡ 1 (mod N). Thus, N divides at
least one factor on the right side of the equation above. This completes the
proof.

We can use the contrapositive of the above theorem to check if a number
is composite. Suppose N is an odd number, where we write N as N = 1+2st
with t odd. We choose some b relatively prime to N . If bt 6≡ 1 (mod N)
and b2it 6≡ −1 (mod N) for all i with 0 ≤ i ≤ s − 1 then N is a composite
number. This is known as the Strong Pseudoprime Test.

Just as in the Pseudoprime Test, the Strong Pseudoprime Test cannot
prove primality. This is due to the existence of composite numbers that
satisfy the conditions of the Strong Pseudoprime Test.

Definition 3.9. Let N be a composite odd integer. Write N − 1 = 2st
where t is odd. Let b be a positive integer prime to N . Then N is a strong

pseudoprime to the base b if bt ≡ 1 (mod N) or b2it ≡ −1 (mod N) for
some i with 0 ≤ i ≤ s − 1.

There are only 13 strong pseudoprimes to the bases 2,3 and 5 less than
25 × 109. Furthermore, if we consider all of the bases 2,3,5 and 7, there
is only one strong pseudoprime less than 25 × 109 [7](p. 32). This strong
pseudoprime is S0 = 3215031751. Thus, for N < 25 × 109 with N 6= S0, if
a strong pseudoprime test to the bases 2,3,5 and 7 fails to show that N is
composite then N is prime.

Before running a factorization algorithm, it is wise to verify, using a
strong pseudoprime test, that the number we are attempting to factor is in
fact composite. In our further discussions of factorization algorithms, we
assume that N is composite.

3.6 A method of Fermat

Fermat observed that if N = u2 − v2 where u and v are positive integers,
then N = (u + v)(u − v). Thus, if we can write N as the difference of two
squares, we can find a factorization of N . If N = xy is odd and composite,
then

N = xy =

(

x + y

2

)2

−
(

x − y

2

)2
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for x and y positive integers greater than one. Since N is odd, both x + y
and x− y are even, implying that every composite odd number can be writ-
ten as a difference of two square integers. Fermat’s method finds these two
squares, and hence, a factorization of N .

Suppose N is an odd and composite positive integer. We wish to find
a u and a v such that N = u2 − v2. Let z = ⌈

√
N⌉, the smallest possible

value of u. If z2 − N is a square, then we have found a v that works,
and can find a factorization of N . We continue this method by checking if
(z + 1)2 − N, (z + 2)2 − N, . . . are squares.

Example 3.10. Suppose we wish to factor N = 426749. We have that
z = ⌈

√
426749⌉ = 654. Observe that

z2 − N = (654)2 − N = 967

(z + 1)2 − N = (655)2 − N = 2276

(z + 2)2 − N = (656)2 − N = 3587

(z + 3)2 − N = (657)2 − N = 4900 = 702

Thus, N = (657)2 − (70)2 = (657 + 70)(657 − 70) = (727)(587).

Fermat’s method finds the divisor of N that is closest to
√

N . If Fermat’s
method fails to find a divisor of N then N is prime. Proving primality in
this way is very slow. However, if N has a factor close to

√
N , Fermat’s

method operates quickly. This is made precise below.

Proposition 3.11. It takes O(N) trial values of z for Fermat’s method to

prove primality. However, if N has a divisor within (4N)
1
4 of

√
N then

Fermat’s method will be successful in one trial.

Proof. Suppose N = xy, with x the smallest divisor of N greater than or

equal to ⌈
√

N⌉. Fermat’s method terminates when (⌈
√

N⌉ + c)2 =
(

x+y
2

)2

for some positive integer c. This c represents the number of steps in Fermat’s
method. Observe that

c =
x + y

2
− ⌈

√
N⌉

≤ x + y

2
−
√

N

=
xy + y2 − 2y

√
N

2y

18



=
(
√

N − y)2

2y
(3.2)

If N is prime, then y = 1. Thus, it will take Fermat’s method O(N)
steps to prove the primality of N .

From (3.2), Fermat’s method will be successful after one step provided
that y, the largest divisor of N less than or equal to

√
N obeys

(
√

N − y)2 ≤ 2y. Since 2y ≤ 2
√

N , we require that (
√

N − y)2 ≤ 2
√

N ,

or that
√

N − y ≤ (4N)
1
4 . Thus, Fermat’s method is successful after one

iteration provided that N has a factor within (4N)
1
4 of

√
N .

Furthermore, by using congruences and quadratic residues we will not
need to check if every z2 − N is a square.

Definition 3.12. An integer q is a quadratic residue modulo M if it is
congruent to a square modulo M . That is, if there exists an integer x such
that x2 ≡ q (mod M).

Fermat’s method is successful when z2 − N is a square. If z2 − N is a
square then z2−N is a quadratic residue modulo M , for any positive integer
M . This will reduce the number of z’s that can be successful in Fermat’s
method. Two cases are described below.

Proposition 3.13. Let N be a positive, odd and composite integer. Suppose
we wish to find a z such that z2 −N is a square, as in Fermat’s method. If
N ≡ 1 (mod 4), then z must be odd.

Proof. Suppose N ≡ 1 (mod 4). We require that z2 − N is a quadratic
residue modulo 4. The quadratic residues modulo 4 are 0 and 1. If z2 − N ≡ 0 (mod 4),
then u2 ≡ 1 (mod 4) and either z ≡ 1 (mod 4) or z ≡ 3 (mod 4). This
forces z to be odd. If z2 − N ≡ 1 (mod 4), then z2 ≡ 2 (mod 4). Since
2 is not a quadratic residue modulo 4, this cannot occur.

The following proposition follows similarly.

Proposition 3.14. Let N be a positive, odd and composite integer. Suppose
we wish to find a z such that z2 −N is a square, as in Fermat’s method. If
N ≡ 2 (mod 3), then z is a multiple of 3.

Thus, by examining N modulo 3 or 4 we can reduce the computations
in Fermat’s method. Fermat’s method is only used if it is known that N
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has a factor near
√

N . [7](p. 31) However, Fermat’s method can be vastly
improved by shifting our focus from expressing N as a difference of squares
to finding two squares that are congruent modulo N . This notion is utilized
by the Quadratic Sieve.

3.7 The Quadratic Sieve

Fermat’s method finds an x and y that satisfy x2 − y2 = N . However, it suf-
fices to find an x and y that satisfied x2 ≡ y2 (mod N) with x 6≡ ±y (mod N).
The reason for this is if we find such a pair x and y then N will divide
x2 − y2 = (x− y)(x+ y), and gcd(x− y, N) will produce a factor of N . This
factor will not be N , as x 6≡ ±y (mod N) forces gcd(x ± y, N) 6= N . In the
following example, we show a method to find such a pair.

Example 3.15. Suppose we wish to factor N = 1649. As in Fermat’s
method, we use z = ⌈

√
1649⌉ = 41. We calculate a few squares modulo N

for integers greater than or equal to z.

412 = 1681 ≡ 32 (mod 1649)

422 = 1764 ≡ 115 (mod 1649)

432 = 1849 ≡ 200 (mod 1649)

If we were to factor N using Fermat’s method, we would need to continue
to 572, and use the fact that 572 − N = 1600 = 402. However, we can still
factor N if we restrict ourselves to the three squares found above. Observe
that (32)(200) = 6400 = 802 and

(41 · 43)2 ≡ 802 (mod 1649).

We have that (41)(43) = 1764 ≡ 114 (mod 1649) and 114 6≡ ±80 (mod 1649).
By calculating gcd(114 − 80, 1649) = 17 we obtain a nontrivial factor of N .

In this example, we were able to find an x and y that satisfy x2 ≡ y2 (mod N)
with x 6≡ ±y (mod N). We accomplished this by multiplying two quadratic
residues modulo N . The Quadratic Sieve, invented by Pomerance in [26],
attempts to find a set of xi

2 mod N with i = 1, . . . , k whose product forms
the relation

k
∏

i=1

xi
2 ≡ y2 (mod N) with

k
∏

i=1

xi 6≡ ±y (mod N). (3.3)
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If some xi
2 mod N has a prime factor raised to an odd power, and we wish

to use this xi
2 mod N in our product we must find and include another

xi
2 mod N with this prime factor to an odd power. If this prime is large,

finding another quadratic residue with this prime factor raised to an odd
power can be difficult. Thus, we only consider quadratic residues with small
prime factors. That is, when our quadratic residue is B-smooth modulo N ,
for some bound B.

Definition 3.16. An integer is B-smooth if none of its prime factors is
greater than B.

If a positive integer r is B-smooth, then r = pa1
1 pa2

2 . . . p
aπ(B)

π(B) , where
p1, p2, . . . pπ(B) are the primes up to B and each ai is a non-negative integer.
The factorization of r can be denoted by the exponent vector

v(r) = (a1, a2, . . . , aπ(B)).

If r1, r2, . . . rk are all B-smooth then
∏k

i=1 ri is a square if and only if
∑k

i=1 v(ri) has all even coordinates.

We represent each B-smooth xi
2 mod N as the exponent vector v(ri).

We wish to find a set of quadratic residues whose product forms a square.
That is, a set of v(ri)’s that sum to the zero vector modulo 2. It suffices to
find a linear dependency among the vectors v(ri) with entries taken modulo
2.

We consider each exponent vector modulo 2 as an element of the vector

space Z
φ(B)
2 defined over Z2. There is a theorem from linear algebra that if

the number of elements in a set of vectors is larger than the dimension of
the space then the set is linearly dependent. Thus, if we can find more than
π(B) distinct v(ri)’s that are B-smooth then we will be able to establish a
linear dependency among this set. We can then use Gaussian elimination
in the field Z/2Z on a matrix of v(ri)’s to find a linear dependency. With
this linear dependency established, we will have a set of xi mod N ’s of the
form (3.3) and we will be able to find a factor of N .

The success of this algorithm depends on our ability to produce more
than π(B) distinct v(ri)’s that are B-smooth. In order for this to occur, we
need to find at least π(B)+1 distinct xi

2 mod N ’s that are B-smooth. If we
choose B to be small, we will not need as many xi

2 mod N ’s to form a prod-
uct that is a square. However, if B is too small, then we may not find enough
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of these residues. An optimal choice of B must be made. Pomerance, in [27]

conjectures that an optimal value for B is about B = exp
(

1
2

√
lnN ln lnN

)

.

Additionally, he states that the Quadratic Sieve has a running time of about

B2. That is, a running time of about exp
(√

lnN ln lnN
)

.

3.8 Pollard Rho Factorization Method

Pollard’s Rho Algorithm, first described in [25], utilizes an idea similar to
the “birthday paradox”. The birthday paradox is motivated by the following
question: given a random set of people, what is the probability that two
people have the same birthday? With 366 people the probability is 100%,
while a 50% probability is reached with only 23 people.

Proposition 3.17. Suppose we have a set of p distinct numbers. Form a
sequence by choosing numbers at random from this set. Since the set is finite,
our sequence must have a repeated element. When the sequence consists of
more than 1.177

√
p numbers, the probability of there being a repeated element

in this sequence exceeds 50%.

A proof can be found in [4]. Based on the birthday paradox, if we have
a finite set C, a c ∈ C and a function f that takes an element from C and
maps it to a random element in C, then the sequence

c, f(c), f(f(c)), . . .

will have a 50% chance of having a repeated element after 1.177
√

|C| ele-
ments. When we encounter a repeated element our sequence becomes cyclic
and resembles a circle with a tail, or a rho (ρ).

Suppose our set is the finite group Zp = {0, 1, . . . , p − 1} and
f(x) = x2 + a mod p for some fixed integer a. The hope is that f behaves
in a random fashion. If so, then by the birthday paradox, the sequence
mentioned above will have a repeated element after approximately 1.177

√
p

elements. In [6], Brent states that f will behave in a random fashion pro-
vided a 6= 0,−2, based on empirical results. The Pollard Rho algorithm
operates as follows.

Suppose p is a prime divisor of N . Let f(x) = x2 + a with a 6= 0,−2.
We form the sequence

x0, f(x0) mod N, f(f(x0)) mod N, . . .
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using some non-negative integer x0 < N . This sequence corresponds to
a sequence modulo p. The sequence modulo p eventually will have a re-
peated value as it is formed from values in a finite set. Thus, there exists
distinct, positive integers i, j such that f (i)(x0) ≡ f (j)(x0) (mod p) and
gcd(f (i)(x0)− f (j)(x0) mod N, N) is a multiple of p. If this multiple of p is
not N then we have found a non-trivial factor of N .

We do not wish to calculate gcd(f (i)(x0)−f (j)(x0) mod N, N) for every
i and j. Instead, we use an algorithm called Floyd’s cycle finding algorithm
[29] to ease this computation. We compute two sequences,

x0, f(x0) mod N, f(f(x0)) mod N, . . . f (i)(x0) mod N, . . .

and

x0, f(f(x0)) mod N, f (4)(x0) mod N, . . . , f (2i)(x0) mod N . . .

We then take the product of many f (2i)(x0) − f (i)(x0) mod N and then
take the gcd of that product with N . If this gcd produces N then we can
either take a gcd of a product with fewer
f (2i)(x0) − f (i)(x0) mod N ’s, or start over with a new f(x).

By the birthday paradox, we expect to find a factor for i > 1.177
√

p, or
simply after O(

√
p) steps. However, i “can be as large as the smallest prime

divisor” [7](p. 63), as our sequence modulo p may take p terms to cycle.
Because of this, the Pollard Rho algorithm, at its worst case, is comparable
to Trial Division. Despite this shortcoming, the Pollard Rho Algorithm was
used to factor the eighth Fermat number.

Definition 3.18. The n-th Fermat number is Fn = 22n

+ 1.

In [5],R.P. Brent and Pollard used the Pollard Rho Algorithm to find the
complete factorization of the eighth Fermat number F8 = 228

+ 1, finding a
prime factor that is 62 digits long. Furthermore, in [4], a 19 digit factor of
22386 + 1 was found using the Pollard Rho Algorithm.
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Chapter 4

Elliptic curves

In our discussion of elliptic curves, we primarily refer to Chapters 2 and 4
in [31] to provide background information.

Definition 4.1. An elliptic curve over the field K is a curve of the
form y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, where each ai is an element
of the field K.

Definition 4.2. An elliptic curve over K of the form

y2 = x3 + ax + b (4.1)

where a and b are elements of K that satisfy 4a3 + 27b2 6= 0, is said to be
in Weierstrass form.

Theorem 4.3. If K is a field that is not of characteristic 2 or 3 then any
elliptic curve defined over K can be written in Weierstrass form.

Proof. We suppose that K is a field of characteristic 2 or 3. This allows us
to divide by powers of 2 and powers of 3. Starting with an arbitrary elliptic
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curve and then completing the square yields

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

y2 + a1xy + a3y +
a3a1x

2
+

a1
2x2

4
+

a3
2

4
= x3 +

(

a2 +
a1

2

4

)

x2

+
(

a4 +
a1a3

2

)

x +

(

a3
2

4
+ a6

)

(

y +
a1x

2
+

a3

2

)2
= x3 +

(

a2 +
a1

2

4

)

x2

+
(

a4 +
a1a3

2

)

x +

(

a3
2

4
+ a6

)

y1
2 = x3 + a′2x

2 + a′4x + a′6

where y1 = y + a1x
2 + a3

2 , a′2 = a2 + a1
2

4 , a′4 = a4 + a1a3
2 and a′6 = a3

2

4 + a6.

Furthermore, letting x = x1 − a′

2
3 yields

y1
2 =

(

x1 −
a′2
3

)3

+ a′2

(

x1 −
a′2
3

)2

+ a′4

(

x1 −
a′2
3

)

+ a′6

=

(

x1
3 − a′2x1

2 +
1

3
a′2x1 −

1

27
a1

3

)

+ a′2

(

x1
2 − 2a′2x1

3
+

(

a′2
3

)2
)

+ a′4

(

x1 −
a′2
3

)

+ a′6

= x1
3 + x1

(

−1

3
a′2 + a′4

)

+

(

(

a′2
3

)2

− 1

27
a′1

3 − a′xa′4
3

+ a′6

)

= x1
3 + Ax1 + B.

Henceforth, we assume that our field is not of characteristic 2 or 3 and
we will consider elliptic curves in Weierstrass form.

Definition 4.4. The discriminant of the cubic polynomial x3+ax2+bx+c
is a2b2 − 4b3 − 4a3c − 27c2 + 18abc.

For a curve in Weierstrass form, when we mention the discriminant of
the curve we are referring to the discriminant of the cubic x3 + ax + b. The
discriminant of this cubic is −(4a3 + 27b2). From [12] (p. 527), if the dis-
criminant of an elliptic curve over Q is non-zero then the curve has distinct
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roots in R. If a cubic has positive discriminant then the cubic has 3 distinct
real roots and if the discriminant is negative then the cubic has 1 real root.
Elliptic curves over Q can be graphed. Two examples are given in figure 4.1
and figure 4.2.

We regard a tangent line to the elliptic curve at a point as intersecting
the curve twice at that point. From [30] (p. 45), if the discriminant of (4.1)
is non-zero then the curve has a well defined tangent line at every point. It
will be shown below that for an elliptic curve defined over Q with a non-zero
discriminant, every non-vertical line that intersects two rational points on
the curve intersects a third rational point on the curve. This provides us
with a way to define a binary operation on the rational points of an elliptic
curve over defined over Q.
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Figure 4.1: The elliptic curve y2 = x3 + x + 3.
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Figure 4.2: The elliptic curve y2 = x3 − x
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4.1 Addition on an elliptic curve

The rational points on an elliptic curve over Q have an inherent group struc-
ture. We define the operation + below. We begin by defining the operation
on curves over Q geometrically. We then examine the operation arithmeti-
cally. We will need to include the symbol ∞ in our group, which will serve
as our identity element.

Let P1 = (x1, y1) and P2 = (x2, y2), with x1 6= x2, y1 6= y2 be rational
points on an elliptic curve over Q. It is proved below that the line between
P1 and P2 intersects the curve at a third rational point. We will denote this
point as (x, y). The sum of P1 and P2 is defined to be (x, y) reflected about
the x-axis. That is, P1 + P2 = (x,−y). This is illustrated in figure 4.3.

P1

P2

(x,y)

P1+P2

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 4.3: Elliptic curve addition on the curve y2 = x3 − x
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We will now describe this operation arithmetically.

Theorem 4.5. (Elliptic curve addition) For the rational points P1 = (x1, y1)
and P2 = (x2, y2) on the curve y2 = x3 + ax + b, where 4a3 + 27b2 6= 0,
x1 6= x2, and both a and b are rational, + operates as follows:

P1 + P2 = (x3, y3) = (m2 − x1 − x2, m(x1 − x3) − y1), (4.2)

where

m =
y1 − y2

x1 − x2
.

Proof. The slope of the line through P1 and P2 is m = y2−y1

x2−x1
. Since x1, x2, y1

and y2 are rational, m is also rational. The equation of the line intersecting
P1 and P2 is y = m(x−x1)+ y1. Substituting y = m(x−x1)+ y1 into (4.1)
yields:

(m(x − x1) + y1)
2 = x3 + ax + b (4.3)

m2(x − x1)
2 + 2my1(x − x1) + y1

2 = x3 + ax + b
m2x2 − 2xx1m

2 + x1
2m2 + 2my1x − 2my1x1 + y1

2 = x3 + ax + b

0 = x3 − x2m2 + x(2x1m
2 − 2my1 + a) + (b− x1

2m2 + 2my1x1 − y1
2) (4.4)

Since x = x1, x2 satisfy (4.3), they satisfy (4.4). Since x1 6= x2, we have
identified two roots of the cubic (4.4). If (4.4) has two real roots it must
have a third real root, which we will denote as x3.

In general, note that if a monic cubic f(x) has roots α, β and γ, then

f(x) = (x − α)(x − β)(x − γ)

= x3 − (α + β + γ)x2 + (αβ + αγ − βα)x − αβγ (4.5)

We will use (4.5) to write our third root of (4.4), x3, in terms of the known
roots x1 and x2. From (4.5), m2 = x3 + x2 + x1 and x3 = m2 − x2 − x1.
Thus, the third point on both the line and the elliptic curve is

(

m2 − x2 − x1, m(x3 − x1) + y1

)

.

We reflect this point over the x-axis to find P1+P2. Thus, P1+P2 = (x3, y3)
where x3 = m2 − x1 − x2 and y3 = m(x1 − x3) − y1. Observe that since
m, x2, x1 and y1 are rational, both x3 and y3 are rational.
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Suppose now that P1 = (x1, y1) is a rational point with y1 6= 0. We will
now define P1 + P1, which we will denote as 2P1, in the following theorem.

Theorem 4.6. (Elliptic Curve Doubling) For the rational point P1 = (x1, y1)
on the elliptic curve y2 = x3 + ax + b with a and b rational and y1 6= 0,

2P1 = (x3, y3) = (m2 − 2x1, m(x1 − x3) − y1), (4.6)

where

m =
3x2

1 + a

2y1
.

Proof. Suppose P1 = P2 = (x1, y1) with y1 6= 0. In order to derive the
formula for 2P1, we use the line tangent to the elliptic curve at P1. Our curve
is assumed to have non-zero discriminant, and hence, P1 has a well defined
tangent line. We find the slope of this line by implicitly differentiating the
elliptic curve equation. This results in 2y dy

dx
= 3x2 +a. Solving for dy

dx
yields

m = dy
dx

= 3x1
2+a

2y1
. Since x1, a and y1 are rational, m is rational. Proceeding

in the same manner as in the proof of Theorem 4.5 but using x1 = x2,
y1 = y2 and m = 3x1

2+a
2y1

yields

2P1 = (m2 − 2x1, m(x1 − x3) − y1).

Observe that since m, x1 and y1 are rational, 2P1 has rational coordinates.

Equations (4.2) and (4.6) show that the sum of two rational points is
a rational point. However, equation (4.2) does not consider addition of
distinct points that lie on the same vertical line. Also, equation (4.6) does
not account for doubling of a point with a vertical tangent line. As the graph
of an elliptic curve is symmetric with respect to the x-axis, these vertical
lines do not intersect the elliptic curve at a third point. We extend our
notion of addition to include these points by introducing a symbol, ∞, and
considering ∞ to be a point on every vertical line. We extend addition in
this manner by defining the rules described below. Suppose P1 = (x1, y1)
and P2 = (x2, y2) are rational points on a curve defined over Q.

Define P1 + ∞ = P1.

Define ∞ + ∞ = ∞.

If y1 = 0, then 2P1 = ∞.

If x1 = x2 and y1 6= y2, then P1 + P2 = ∞. (4.7)
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The first two equations establish ∞ as the identity element of our ad-
dition. The last two equations show that if P = (x, y) then −P = (x,−y),
establishing an inverse for our addition. We consider the combination of
(4.2), (4.6) and (4.7) as the elliptic curve group law.

Using the group law as our binary operation, the set of all rational points
on an elliptic curve with rational coefficients and the point ∞ form an abelian
group. From the group law, it follows that our addition is commutative. It
is difficult to show that the elliptic curve group law is associative. For a
proof, see [31] (p. 20).

Theorem 4.7. Let E(a,b)(Q) = E ∪ {∞}, where E is the set of all the
rational points on the elliptic curve y2 = x3 + ax + b with 4a2 − 27b2 6= 0, a
and b rational and ∞ as defined above. Using the elliptic curve group law,
E(a,b)(Q) is an abelian group with identity element ∞.

Note that for some pair a, b, E(a,b)(Q) might just be {∞}. the trivial
group. That is, the equation y2 = x3 + ax + b might have no rational so-
lutions (x, y). One such example is the curve y2 = x3 − 5, which Cassels
shows to have no rational solutions in [16]. When the coefficients a and b
are arbitrary rational numbers we will refer to E(a,b)(Q) as E(Q).

The Mordell-Weil Theorem provides additional structure for E(Q), first
proven by Louis Mordell in 1922. [24]

Theorem 4.8. (Mordell-Weil) The group E(Q) is a finitely generated abelian
group.

By the structure theorem for finitely generated abelian groups,

E(Q) ∼= T ⊕ Zr

where T is a finite group and r is a non-negative integer. For details, see
[12] (p.189). The finite group T is known as the torsion subgroup and r is
called the rank of E(Q). We now discuss curves defined over a finite field.

4.2 Reduction of elliptic curves defined modulo N

For a positive composite integer N , we can examine an elliptic curve defined
modulo N , provided a few criteria are satisfied. Since a standing assumption
is that we are working in a field of characteristic neither 2 nor 3, we require
that N is relatively prime to 6. When we describe an elliptic curve modulo
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N , we are referring to a curve of the form (4.1) with a and b non-negative
integer coefficients that are less than N . Also, we require that 4a3+27b2 6= 0
mod N . The points of this curve are of the form (x, y) where x and y are
non-negative integers less than N that satisfy y2 = x3 + ax + b.

To produce a curve modulo N we first choose x0, y0 and a to be any pos-
itive integers less than N . This then defines b = y0

2 − (x0
3 + ax0) mod N .

If gcd(4a3 +27b2, N) = 1, we can then consider the elliptic curve modulo N
given by y2 = x3 + ax + b, with (x0, y0) a point on this curve.

The points on an elliptic curve defined modulo N do not form a group,
as addition is not defined for every two points. We cannot compute elliptic
curve addition or a doubling on the curve modulo N if (x1 − x2) or 2y1

do not have multiplicative inverses modulo N , respectively. That is, we re-
quire both (x1 − x2) and 2y1 to be relatively prime to N . If they are not,
then addition modulo N will fail. Thus, if an addition on an elliptic curve
fails, either gcd(x1 − x2, N) or gcd(2y1, N) will produce a factor of N . This
idea forms the foundation of Lenstra’s Elliptic Curve Factorization Method
(ECM).

For example, consider N = 4453 and the point P = (1, 3) on the curve
y2 = x3 + 10x − 2 mod 4453. We will compute 3P . First, we will compute
2P . The slope of the tangent line at P is

3x2 + 10

2y
=

13

6
≡ 3713 (mod 4453).

To find 6−1 mod 4453 we used the fact that 6 and 4453 are relatively prime.
This yields 2P = (x, y) where

x = 37132 − 2 ≡ 4332, y = −3713(x − 1) − 3 ≡ 3230

To compute 3P we add 2P and P . The slope is

3230 − 3

4332 − 1
=

3227

4331

But 4331 and 4553 are not relatively prime, as gcd(4331, 4553) = 61. We
cannot compute 4331−1 mod 4453 and we cannot compute 3P . We have
however, found that 61 is a factor of 4453.
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4.3 Reduction of curves modulo p

Suppose p 6= 2, 3 is a prime divisor of N . We can reduce a curve defined
modulo N to a curve defined modulo p.

Definition 4.9. Let E(a,b) : y2 = x3 + ax + b be an elliptic curve defined

modulo N . Let ã = a mod p and b̃ = b mod p. The curve
E(ã,b̃) : y2 = x3 + ãx + b̃ is the reduction of E(a,b) modulo p. We will
refer to this curve as E modulo p.

Definition 4.10. If 4a3 + 27b2 mod p 6= 0 then E(ã,b̃) has a good reduc-

tion. If 4a3 + 27b2 mod p = 0 then E(ã,b̃) has a bad reduction.

Henceforth, when discussing the reduction of a curve modulo p, we as-
sume that it is a good reduction. The points (x, y) on the curve E(ã,b̃) are

the non-negative integers that are less than p and obey y2 = x3 + ãx + b̃.
From [31] (p.95), the set of all points on an elliptic curve modulo p with the
element ∞ and the binary operation of addition forms an abelian group, as
in Theorem 4.7. We will denote this group as E(ã,b̃)(Z/pZ), or just E(Z/pZ),

depending on context. We denote the number of points in E(Z/pZ) as Np.
The following theorem, credited to Hasse, states that Np is finite. Hasse’s
proof, which dates back to 1933, can be found in section V of [30].

Theorem 4.11. (Hasse’s Theorem) The number of points in E(Z/pZ) is
finite. Furthermore,

|Np − (p + 1)| ≤ 2
√

p

Hasse’s Theorem implies that

Np ≥ p + 1 − 2
√

p

= (
√

p − 1)2.

as our p is a prime larger than 3, E(ã,b̃)(Z/pZ) is guaranteed to have more
than one point.

Additionally, if gcd(4a3 + 27b2, N) = 1, then gcd(4a3 + 27b2, p) = 1 for
all prime divisors of N . Thus, our curve modulo N can be reduced to a
curve modulo p with coefficients a mod p and b mod p.
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4.4 Lenstra’s Elliptic Curve Integer Factorization

Method

Lenstra proposes the following integer factorization algorithm in [21]. Sup-
pose we wish to factor the integer N where N is relatively prime to 6. In
practice, N has no small factors, as these factors would have been found by
Trial Division. As stated above, the ECM operates “by computing elliptic
curve addition modulo N” and hoping for a failure. If an elliptic curve addi-
tion modulo N fails, then either (x1 −x2)

−1 mod N or (2y1)
−1 mod N do

not exist. That is, they are not relatively prime to N . We can then compute
gcd(x1 − x2, N) or gcd(2y1, N) to produce a factor of N .

We first examine when an addition modulo N fails. Let P1 = (x1, y1)
and P2 = (x2, y2) be two finite points on the elliptic curve modulo N . Sup-
pose that x1 6= x2 and y1 6= y2. If a failure occurs when computing P1 + P2

then (x1 − x2)
−1 does not exist. That is, x1 − x2 is not relatively prime to

N . Suppose x1 − x2 is a multiple of p, where p is a prime factor of N . We
have x1 − x2 ≡ 0 (mod p). If x1 ≡ x2 (mod p), then by the elliptic curve
group law, P1 + P2 = ∞ on the curve reduced modulo p.

Doubling P1 on the curve modulo N will fail if 2y1 is a multiple of p,
where p is some prime factor of N . This will occur when 2y1 ≡ 0 (mod p).
If y1 ≡ 0 (mod p), then 2P1 = ∞ on the curve modulo p. In general, an
addition will fail on the curve modulo N when P1 + P2 = ∞ on the curve
reduced modulo p.

Thus, to factor N we wish to perform elliptic curve additions and dou-
blings modulo N until an addition produces ∞ on some curve modulo p,
where p is a prime divisor of N . We use the following procedure which
attempts generate to the element ∞ of E(Z/pZ). Let

k =
∏

r prime, r≤B

re

for some fixed positive integers e and B. Let P be a point on our curve
modulo N . We then compute kP on the curve modulo N using the elliptic
curve group law.

Recall Np is the number of points on the elliptic curve modulo p. By
Hasse’s Theorem, Np is finite. By Lagrange’s Theorem, the order of the
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point P on the curve reduced modulo p divides Np. If k is a multiple of Np

then kP = ∞ on the curve reduced modulo p. Thus, in order for the ECM
to succeed, we require that for some prime divisor p of N , Np is B-smooth.
Additionally, no prime powers of the form rd with d > e can divide Np. If
this is the case, then kP = ∞ on the curve reduced modulo p, and com-
puting kP on the elliptic curve modulo N will fail. If (x1, y1) + (x2, y2) is
the addition that fails then computing either gcd(x1 − x2, N) or gcd(2y1, N)
will produce a factor of N .

The ECM may produce the trivial factor 1 or the trivial factor N . Sup-
pose N = pq, where p and q are distinct primes. If both Nq and Np are
B-smooth for the same bound B and no prime powers of the form rd with
d > e divide Np or Nq then k will be a multiple of both Nq and Np. In this
case, kP will produce ∞ on both the curve modulo q and the curve modulo
p. Thus, x1−x2 and 2y1 are multiples of both p and q and computing either
gcd(x1 − x2, N) or gcd(2y1, N) will produce N .

In general, suppose N = pa1
1 pa2

2 . . . pal

l , with each pi prime. If every Npi

divides k then the ECM will produce N . If no Npi
divides k, the ECM will

produce 1. When the ECM fails, we can simply try again with a different
curve. In practice, the ECM is run on many curves.

In [21], Lenstra gives a heuristic estimate for the complexity of the ECM.
This complexity estimate depends on the value of B, and Lenstra gives an
optimal value of B as well. This optimal value of B is

B = exp

((√
2

2
+ o(1)

)

√

ln p ln ln p

)

where p is the smallest prime factor of N . Since the value of p is unknown,
a precise value of B cannot be used. Instead, Lenstra suggests using
B = 10000 and arrives at the heuristic estimate of the ECM requiring

exp
(

(
√

2 + o(1))
√

ln p ln ln p
)

arithmetic operations.

Unlike the Quadratic Sieve, the running time of the ECM depends on
the size of the smallest prime factor p, not the number being factored, N .
However, these are only the known estimates and N could be used in both
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and get the same complexity estimate. The ECM has a worst case when
N is a product of two equal primes. In this case, Lenstra states that the

ECM will take exp
(√

lnN ln lnN
)

arithmetic operations, the same as the

Quadratic Sieve.

In practice, the ECM is used to find small factors of a very large integer
with many factors. Once a divisor has been factored out, the remaining
number, if it is composite, can be factored using other factorization tech-
niques.

The largest integer factored using the ECM, as of now, has 73 digits and
was discovered on 6 March 2010 by Joppe Bos, Thorsten Kleinjung, Arjen
Lenstra and Peter Montgomery. For a current list of the largest integers
factored using the ECM, see [1]. Additionally, in [3], Brent describes how
he used the ECM to find a complete factorization of F10, the tenth Fermat
number.

4.5 The ECM in the projective plane

It will be advantageous for us to consider the points on an elliptic curve as
points in the projective plane.

Definition 4.12. Let K be a field. We define the projective plane PK
2

of K to be the equivalence classes of triples (x, y, x) ∈ K×K×K where the
equivalence relation is (x, y, z) ∼ (cx, cy, cz) where c is a non-zero element
of K.

We denote an equivalence class as (x : y : z). If z 6= 0 then
(x : y : z) = (x

z
, y

z
, 1) are the finite points in PK

2. The class with z = 0 is
called the infinity element of PK

2.

Definition 4.13. A polynomial is homogeneous of degree n if it is a
sum of terms of the form axiyjzk with a ∈ K and i + j + k = n.

If F is homogeneous of degree n then F (cx, cy, cz) = cnF (x, y, z). If F
is homogeneous and (x1, y1, z1) ∼ (x2, y2, z2) then F (x1, y1, z1) = 0 if and
only if F (x2, y2, z2) = 0. Thus, a zero of F in PK

2 does not depend on its
equivalence class representative. This is our motivation for considering this
equivalence relation.
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Definition 4.14. The corresponding homogeneous form of (4.1) is

y2z = x3 + axz2 + bz3. (4.7)

We will refer to this form of elliptic curve as the homogeneous Weier-

strass form.

Recall that the ECM relies on producing ∞ on some elliptic curve mod-
ulo p. Our infinity element in projective coordinates is represented by the
class (x : y : 0). Observe that in the homogeneous Weierstrass form (4.7),
our infinity element is represented by the class (0 : y : 0) = (0 : 1 : 0), as
z = 0 implies that x = 0. Thus, our infinity element in projective coordi-
nates does not depend on the value of y.

When using the ECM to factor N , we hope that kP = ∞ on some curve
modulo p, where p is a prime divisor of N . In projective coordinates, ∞ is
represented by (0 : 1 : 0). If kP = (x :: z) when performed on a curve mod-
ulo N and kP = (0 : 1 : 0) on a curve modulo p, where p is some prime factor
of N then z must be a multiple of p, and gcd(z, N) will produce a factor of N .

We have that if kP = [0 :: 0], then nkP = [0 :: 0], for any integer n.
Thus, we simply need to find a multiple of this k. In practice, we compute
kP = (x :: z) using a curve defined modulo N and then check gcd(z, N).
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Chapter 5

Improving the Elliptic Curve

Method

We now focus on improving the Elliptic Curve Method. We wish to reduce
the amount and difficulty of computations in the algorithm while increasing
the likelihood of finding a factor of N . One way of doing so is by using a
curve in Montgomery Form and considering points in the projective plane,
as described below. The idea of using Montgomery curves was first proposed
in [22], which we loosely follow for the remainder of the paper.

5.1 Montgomery Curves

When we add points on an elliptic curve in Weierstrass form, we must com-
pute an inverse element of our field, either (2y1)

−1 or (x1 − x2)
−1. This is

done by using the Extended Euclidean Algorithm, and is an expensive com-
putation. However, in [22], Montgomery shows that using an elliptic curve
of the form by2 = x3 + ax2 + x allows one to perform additions without
having to compute any multiplicative inverses. We will now discuss some
preliminaries regarding these types of elliptic curves.

Definition 5.1. An elliptic curve of the form

by2 = x3 + ax2 + x with b(a2 − 4) 6= 0 (5.1)

will be referred to as being in Montgomery form. Every curve in Mont-
gomery form has a corresponding homogeneous Montgomery form,

by2z = x3 + ax2z + xz2 (5.2)
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Observe that we can go from the Montgomery formula to the homoge-
neous form by replacing x with x

z
and y with y

z
. We assume that the points

on our curve are finite, that is, z 6= 0. Similar to a Weierstrass Curve, our
infinity element for a homogeneous Montgomery form is (0 : 1 : 0). Two
Montgomery curves defined over R are shown in figures 5.1 and 5.2.
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Figure 5.1: The Montgomery curve y2 = x3 − 3x2 + x
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Figure 5.2: The Montgomery curve y2 = x3 + 5x2 + x
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Proposition 5.2. Consider Y 2 = X3+AX +B, an elliptic curve in Weier-
strass form. Suppose A can be written as A = 3−a2

3b2
and B can be written

as B = 2a3−9a
27b3

for some a and b 6= 0 in K. This change of coordinates
changes the elliptic curve in Weierstrass form to the curve in Montgomery
form by2 = x3 + ax2 + x with b(a2 − 4) 6= 0.

Proof. Observe that the change of coordinates X = 3x+a
3b

and Y = y
b
, per-

formed on Y 2 = X3 + AX + B produces by2 = x3 + ax2 + x, a curve in
Montgomery form since

Y 2 = X3 + AX + B;

(y

b

)2
=

(

3x + a

3b

)3

+

(

3 − a2

3b2

)(

3x + a

3b

)

+

(

2a3 − 9a

27b3

)

;

27by2 = (3x + a)3 + 3(3 − a2)(3x + a) + 2a3 − 9a

= (a3 + 9a2x + 27ax2 + 27x3) + 3(−a3 − 3a2x + 3a + 9x) + 2a3 − 9a

= 27x3 + 27ax2 + 27x;

by2 = x3 + ax2 + x.

Recall that we require the coefficients of our Weierstrass curve to obey
4A3 + 27B2 6= 0. Through the same change of variables as above,

4A3 + 27B2 = 4

(

3 − a2

3b2

)3

+ 27

(

2a3 − 9a

27b3

)2

=
4(3 − a2)3 + a2(2a2 − 9)2

27b6
.

=
(a2 − 4)

b6

Thus, if we require 4A3 + 27B2 6= 0 then we require a2 6= 4. We already
have that b 6= 0. The condition b(a2 − 4) 6= 0 follows.

Proposition 5.3. Using the change of variables x
B

= t − A
3B

and v = y
B

,
the curve By2 = x3 + Ax2 + x in Montgomery form is transformed into a
curve in Weierstrass form.

Proof. We start with the Montgomery curve By2 = x3 + Ax2 + x with
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B(A2 − 4) 6= 0. We divide by B3 and then perform the change of variables.

By2 = x3 + Ax2 + x

y2

B2
=

x3

B3
+ A

x2

B3
+

x

B3

v2 =

(

t − A

3B

)3

+
A

B

(

t − A

3B

)2

+
1

B2

(

t − A

3B

)

= t3 +

(

3 − A2

3B2

)

t +
2A3 − 9A

27B3

= t3 + A′t + B′

which is now in Weierstrass form, with coefficients A′ = 3−A2

3B2 and B′ =
2A3−9A

27B3 provided that the discriminant is non-zero. That is, it must be
shown that

4

(

3 − A2

3B2

)3

+ 27

(

2A3 − 9A

27B3

)2

6= 0

In the previous proof, we saw that

4

(

3 − A2

3B2

)3

+ 27

(

2A3 − 9A

27B3

)2

=
(A2 − 4)

B6
.

Thus, the condition B(A2 − 4) 6= 0 shows that the discriminant of t3 +
A′t + B′ is non-zero.

5.2 Addition for elliptic curves in Montgomery form

We now describe the group law for the rational points on a Montgomery
curve defined over Q. These formulas are obtained in the same manner as
equations (4.2) and (4.6).

Theorem 5.4. (Montgomery curve addition) For the rational points
P1 = (x1, y1) and P2 = (x2, y2) on the Montgomery curve By2 = x3 +Ax2 +
x, with x1 6= x2 and y1 6= y2, and A and B rational, + operates as follows:

P1+P2 = (x3, y3) = (Bm2−A−x1−x2, m(2x1+x2+A)−Bm3−y1), (5.3)

where

m =
y1 − y2

x1 − x2
.
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Theorem 5.5. (Montgomery curve point doubling) For the rational point
P1 = (x1, y1) on the Montgomery curve By2 = x3 + Ax2 + x with y1 6= 0,
and A and B rational,

2P1 = (x3, y3) = (Bm2 − A − 2x1, m(3x1 + A) − Bm2y1), (5.4)

where

m =
3x2

1 + 2Ax1 + 1

2By1
.

Equations (5.3), (5.4) and the identities in (4.7) form the Montgomery
curve group law. Just as with a Weierstrass curve, the set of all rational
points on a Montgomery curve over Q and the ∞ element forms a group. Our
motivation for considering this group comes from [22], where Montgomery
shows that using a Montgomery curve with projective coordinates affords
an addition formula that avoids the computation of multiplicative inverses.
We will see that this addition formula does not require the y-coordinates
of points, nor does it produce the y-coordinate of the sum. We will write
(x :: z) to denote a projective coordinate with the y-coordinate disregarded.

Theorem 5.6. (Montgomery addition) Let P1 = (x1, y1) and P2 = (x2, y2)
be two rational points on the Montgomery curve By2 = x3 + Ax2 + x with
x1 6= x2, y1 6= y2 and A and B rational. If P1 + P2 = (X3 :: Z3) and
P1 − P2 = (X4 :: Z4) in projective coordinates then

P1 + P2 = (X3 :: Z3) =
(

Z4(X1X2 − Z1Z2)
2 :: X4(X1Z2 − Z1X2)

2
)

(5.5)

where xi = Xi

Zi
.

Proof. Suppose P1 + P2 = (x3, y3). From (5.3), we have that
x3 = Bm2 − A − x1 − x2. Next, we substitute m = y1−y2

x1−x2
and proceed alge-

braically. In the following arithmetic, we use the substitutions By1
2 = x1

3 + Ax1
2 + x1

and By2
2 = x2

3 + Ax2
2 + x2, which follow from the fact that P1 and P2 are
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points on our curve.

x3 = −A + B

(

y1 − y2

x1 − x2

)2

− x1 − x2

x3(x1 − x2)
2 = B(y1 − y2)

2 − (A + x1 + x2)(x1 − x2)
2

= By1
2 − 2By1y2 + By2

2

− (Ax1
2 − 2Ax1x2 + Ax2

2 + x1
3 − 2x1

2x2 + x1x2
2 + x1

2x2 − 2x1x2
2 − x2

3)

= (x1
3 + Ax1

2 + x1) − 2By1y2 + (x2
3 + Ax2

2 + x2)

− (Ax1
2 − 2Ax1x2 + Ax2

2 + x1
3 − 2x1

2x2 + x1x2
2 + x1

2x2 − 2x1x2
2 − x2

3)

= −2By1y2 + x1 + x2 + x1x2(2A + x2 + x1)

= −2By1y2 + x1
2x2 + Ax1x2 + x2 + x1x2

2 + Ax1x2 + x1

= (x1
2 + Ax1 + 1)x2 − 2By1y2 + (x2

2 + Ax2 + 1)x1

=
(x1

3 + Ax1
2 + x1)x2

x1
− 2By1y2 +

(x2
3 + Ax2

3 + x2)x1

x2

=
(By1

2)x2

x1
− 2By1y2 +

(By2
2)x1

x2

=
B
(

(x2y1)
2 − 2x1y2x2y1 + (x1y

2
1)
)

x1x2

=
B(x2y1 − x1y2)

2

x1y1

We have found that

x3(x1 − x2)
2 =

B(x2y1 − x1y2)
2

x1y1
(5.6)

Let P1 − P2 = (x4, y4). Since −P2 = (x2,−y2), we also have

x4(x1 − x2)
2 =

B(x2y1 + x1y2)
2

x1y1
(5.7)
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Multiplying the two equations (5.6) and (5.7) together yields

x3x4(x1 − x2)
4 =

B2
(

(y1x2)
2 − (y2x1)

2
)2

(x1x2)2

=

(

(x1
3 + Ax1

2 + x1)x2
2 − (x2

3 + Ax2
2 + x2)x1

2
)2

(x1x2)2

=

(

x1x2(x
2
1x2 + x2 − x1x2

2 − x1)
)2

(x1x2)2

= (x2
1x2 + x2 − x1x

2
2 − x1)

2.

Thus,

x3x4(x1 − x2)
2 =

(

x2
1x2 + x2 − x1x

2
2 − x1

x1 − x2

)2

=

(

(x1 − x2)(x1x2 − 1)

x1 − x2

)2

= (x1x2 − 1)2.

For projective coordinates, we replace xi with Xi

Zi
for i = 1, 2, 3, 4 and then

X3X4

Z3Z4
=

(

X1X2
Z1Z2

− 1
X1
Z1

− X2
Z2

)2

X3

Z3
=

Z4(X1X2 − ZZZ2)
2

X4(X1Z2 − X2Z1)2
.

Therefore, we now have a formula for addition of two points on a homo-
geneous Montgomery curve, provided we know their difference. That is, if
P1 + P2 = (x3 :: z3) and P1 − P2 = (X4 :: Z4) then

X3 = Z4(X1X2 − Z1Z2)
2 and Z3 = X4(X1Z2 − X2Z1)

2 (5.8)

In practice, we set

t1 = (X1 − Z1)(X2 + Z2), t2 = (X1 + Z1)(X2 − Z2)

and compute

(X3 :: Z3) = (Z4(t1 + t2)
2 :: X4(t1 − t2)

2).
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Using this method, a Montgomery addition can be computed with four ad-
ditions, two squarings, four multiplications and no inversions, provided that
P1 − P2 = (X4 :: Z4) is known. We now consider doubling a point in Mont-
gomery form.

Theorem 5.7. (Montgomery Doubling)For the rational point P1 = (x1, y1)
on the Montgomery curve By2 = x3 + Ax2 + x with A and B rational,
2P1 = (X3 :: Z3) where

X3 = (X1 + Z1)
2(X1 − Z1)

2 and Z3 = 4Z1X1

(

(X1 − Z1)
2 + X1Z1(A + 2)

)

(5.9)
with x = X1

Z1
.

Proof. Suppose that 2P1 = (x3, y3). From (5.4), we have that

x3 = −A + Bm2 − 2x1, where m =
3x2

1+2Ax1+1
2By1

. Substitution of this value,

and of By1
2 = x1

3 + Ax1
2 + x1 yields the following:

x3 = −A + Bm2 − x1 − x2

x3 = −A + B

(

3x1
2 + 2Ax1 + 1

2By1

)2

− 2x1

(x3)(2By1)
2 = −A(2By1)

2 + B(3x1
2 + 2Ax1 + 1)2 − (2x1)(2By1)

2

4B(x3)(By1)
2 = −4AB(By1)

2 + B(3x1
2 + 2Ax1 + 1)2 − 8Bx1(By1)

2

4x3(x1
3 + Ax1

2 + x1) = −4A(x1
3 + Ax1

2 + x1) + (3x1
2 + 2Ax1 + 1)2

− 8x1(x1
3 + Ax1

2 + x1)

4x3x1(x1
2 + Ax1 + 1) = (x1

2 − 1)2

Replacing xi with Xi

Zi
for i = 1, 3 results in the following:
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4
X1X3

Z1Z3

(

(

X1

Z1

)2

+ A
X1

Z1
+ 1

)

=

(

(

X1

Z1

)2

− 1

)2

X3

Z3
=

Z1

(

(

X1
Z1

)2
− 1

)2

(

(

X1
Z1

)2
+ AX1

Z1
+ 1

)

(4X1)

=
((X1 − Z1)(X1 + Z1))

2 ( 1
Z1

)

(X1
2+AX1Z1+Z1

2

Z2
1

)(4X1)

=
((X1 − Z1)(X1 + Z1))

2

(X1
2 + AX1Z1 + Z1

2)(4X1Z1)

=
((X1 − Z1)(X1 + Z1))

2

((X1 − Z1)2 + X1Z1(A + 2))(4X1Z1)
.

Thus, 2P1 = (X3 :: Z3) where

X3 = (X1 + Z1)
2(X1 −Z1)

2 and Z3 = 4Z1X1

(

(X1 − Z1)
2 + X1Z1(A + 2)

)

.

In practice, we perform a doubling as follows. Let

u = (X1 + Z1)
2, v = (X1 − Z1)

2, b =
A + 2

4
and t = b(u − v) + v

and compute
X3 = uv and Z3 = (u − v)t.

This requires only 5 multiplications.

5.3 Montgomery multiplication

In the context of the ECM, we wish to calculate kP for many positive
integers k and some point P on our curve modulo N . Despite the compu-
tational advantages of Montgomery addition, we are still limited in that we
must know P1 − P2 in order to compute P1 + P2. We will overcome this
limitation by using Lucas chains.
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Definition 5.8. A Lucas chain for an integer k is an increasing sequence
of integers (a0, a1, . . . , al) with a0 = 1, a1 = 2 and al = k such that for every
an, there exists 0 ≤ i, j, m ≤ n such that an = ai + aj where either ai = aj

or |ai − aj | = am for some 0 ≤ i, j, m < n.

Example 5.9. The sequence of powers of 2, (1, 2, 4, 8, 16, 32 . . .) and the Fi-
bonacci sequence with starting point 1, (1, 2, 3, 5, 8, 13, . . .) are Lucas chains.

If a Lucas chain is known, it can be used to compute kP using the Mont-
gomery addition formula (5.5). Suppose (a0, a1, . . . al) is a Lucas chain for
k. First, we compute 2P using the Montgomery doubling formula (5.9). For
n ≥ 2, each an is a term in the Lucas Chain for k, so anP = (aj + ai)P for
some 0 ≤ i, j < n. If ai = aj then anP = (2ai)P can be calculated using
the Montgomery doubling formula (5.9). Suppose |ai − aj | = am. Since
we are assuming we have calculated amP with 0 ≤ m < n, |ai − aj |P has
already been calculated. As |ai−aj |P is known, we can use (5.5) to compute
anP = (aj + ai)P . In this manner, we can successively compute anP for
n = 3, 4, . . . , l, eventually computing kP .

We need a way to generate a Lucas chain for k. If k is even, then k = 2ba,
where b is a positive integer and a is an odd integer. If aP is known, we
can use the Montgomery doubling formula (5.9) b times to arrive at kP .
Computing a doubling using (5.9) does not require a Lucas chain. Thus, we
are only interested in finding Lucas chains for odd numbers. In [23], Mont-
gomery describes the following method, known as the the binary method,
for constructing a Lucas chain for a positive odd integer k.

Let k = dl + dl−12 + dl−22
2 + . . . + d02

l with di ∈ {0, 1} and with l the
largest integer such that 2l < k. Define a0 := d0 = 1 and inductively define
ai = 2ai−1 + di. We will show that the sequence

(a0, a0 + 1, a1, a1 + 1, . . . , al−1, al−1 + 1, al)

forms a Lucas chain for k.

Depending on di, the elements ai+1 and ai+1 +1 can be written as either
2ai, ai +(ai +1) or 2(ai +1), all of which are a sum of two previous elements
of our sequence. These two elements differ by either one or zero. Thus,
the above sequence is a Lucas chain. It remains to show that al = k. By
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definition,

al = 2al−1 + dl

= 2(2al−2 + dl−1) + dl

= 22al−2 + 2dl−1 + dl

= 22(2al−3 + dl−2) + 2dl−1 + dl

= 23al−3 + 22dl−2 + 2dl−1 + dl

...

= d02
l + d12

l−1 + . . . + dl−12 + dl

= k.

We can now use (5.5) to compute anP .

Example 5.10. Suppose we wish to compute kP using (5.5), where k=23.
We begin by constructing a Lucas chain for 23.

Let k = 23 = 24 + 22 + 21 + 20. We have d0 = 1, d1 = 1, d2 = 1, d3 = 0
and d4 = 1. Thus, a0 = 1, a1 = 2, a2 = 5, a3 = 11 and a4 = 23. From this,
a Lucas chain for 23 is

(1, 2, 3, 5, 6, 11, 12, 23).

We compute 2P using (5.9). Since 3P = (2 + 1)P and we know
(2 − 1)P = P , we can use (5.5) to compute 3P . Since 5P = (3 + 2)P and
we know (3−2)P , we can compute 5P using (5.5). We continue this process
to calculate 23P .

5.4 Recent developments

Several extensions of the ECM have been proposed recently. In 2010, it is
proposed [11] that a twisted Edwards curve, that is, a curve of the form

ax2 + y2 = 1 + dx2y2

has an addition that is faster than addition on a Montgomery curve. Addi-
tionally, it is proposed that performing the ECM using a twisted Edwards
curve will find more primes than a Montgomery Curve.
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In 2010, Cossett [8] proposes using hyperelliptic curves. Hyperelliptic
curves are curves of the form y2 = f(x), where f(x) is a polynomial of de-
gree 5 with distinct roots. Addition on a hyperelliptic curve is slower than
on an elliptic curve. Furthermore, finding a prime factor using the “hyper-
elliptic curve method”(HECM) is less likely than with the ECM. However,
Cossett shows that for “decomposable” hypercurves, one run of the HECM
is comparable to two of the ECM. Cosset claims that using the HECM to
factor integers is no worse than the ECM, but hopes that further develop-
ments could make HECM faster than ECM.

5.5 Conclusion

We have now seen several integer factorization algorithms. In Chapter 3,
we described the Pollard’s Rho algorithm and the Quadratic Sieve. We de-
scribed the algebraic properties of elliptic curves and the ECM in Chapter
4. In Chapter 5, we saw that curves in Montgomery form reduce the com-
putation in the ECM. This concludes our exposition of integer factorization
algorithms.
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