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Abstract 

Exon skipping is capable of correcting frame-shift and nonsense mutations of 

Duchenne Muscular Dystrophy (DMD). Phase II clinical trials in UK and Netherlands 

have reported induction of dystrophin expression in muscles of DMD patients by 

systemic administrations of both phosphorodiamidate morpholino oligomers (PMO) 

and 2’O methyl phosphorothioate.  Peptide-conjugated PMO (PPMO) offers 

significantly higher efficiency than PMO with the ability to induce near normal levels 

of dystrophin and restores functions in both skeletal and cardiac muscles. Here, we 

examined one year systemic efficacy of PPMO targeting exon 23 in dystrophic mdx 

mice.  LD50 of the PPMO was approximately 85mg/kg. Half life of the dystrophin 

expression was about 2 months in skeletal muscles but shorter in cardiac muscle. 

Biweekly injection of 6 mg/kg PPMO produced higher than 20% dystrophin 

expression in all skeletal muscles, and up to 5% in cardiac muscles with 

improvement in muscle function and pathology, and reduction in the levels of serum 

creatine kinase (CK). Monthly injections of 30mg/kg PPMO restored dystrophin to 

more than 50% normal levels in all of skeletal muscles, but 15% in cardiac muscle. 

This was associated with greatly reduced serum CK levels, near normal histology, 

and functional improvement of skeletal muscles.  Our result demonstrated for the 

first time that one year regular administration of PPMO could be safely applied to 

achieve significant therapeutic effect in animal models.  



 

 

Introduction 

Duchenne muscular dystrophy (DMD) is the most common and lethal muscle 

disorder with onset in early childhood and no effective treatment is available.  DMD 

is mainly caused by nonsense and frame-shift mutations of dystrophin gene, leading 

to the lack of functional dystrophin protein in muscles.  Becker muscular dystrophy 

(BMD), an allelic form of DMD, is caused by mutations that typically create 

shortened, but in-frame transcripts with production of partially functional dystrophin, 

leading to patients with variable or no symptoms.1-3   

Antisense oligomer-mediated exon skipping has been demonstrated with high 

potential for restoration of dystrophin gene open reading frame and induction of 

BMD-like functional dystrophin. Significant progress in exon skipping for DMD has 

been made in the last decade.4-28  Therapeutic potential of exon skipping was first 

demonstrated in dystrophic mdx mice, a model of DMD, by intramuscular injections 

(i.m.).12 Since then, systemic efficacy with functional improvement in muscles has 

been demonstrated in both dystrophic mouse and dog with PMO as the chemistry of 

antisense oligomers.14,18 Phase I clinical trials targeting human dystrophin exon 51 

demonstrated dystrophin expression in muscles injected with specific antisense 

oligonucleotide (AO) of PMO and 2’O methyl phosphorothioate (2OMePS).19,20 

Systemic administration of antisense drug PRO051 (2OMePS) has been conducted 

by Prosensa in DMD patients with a weekly subcutaneous injection regimen for 17 

weeks. Exon 51 skipping and dystrophin expression were reported in a dose-related 

manner in all cohorts (0.5 mg/kg, 2 mg/kg, 4 mg/kg, 6 mg/kg).21 More recently, a 

Phase II clinical trial with repeated weekly i.v. injections of PMO targeting the same 



 

 

human dystrophin exon 51 reported encouraging preliminary results. Up to 20mg/kg 

for each injection of AVI-4658 showed a dose-dependent restoration of dystrophin 

expression.22 At the dosages so far tested, both of chemistries appeared to be well 

tolerated although functional consequence and accumulative effect of long-term 

treatment remain to be demonstrated.    

Limitations for use of the two chemistries, PMO and 2OMePS currently on clinical 

trials, are low efficiency and high variability in exon skipping and dystrophin induction 

in all muscles as revealed by the results from both animal models and the clinical 

trials. It is an especial concern for the very low efficiency of exon skipping in the 

cardiac muscle which is severely affected by the lack of dystrophin expression in 

DMD boys. Results from animal model studies suggest that a detectable dystrophin 

induction in cardiac muscle will require the dosage with PMO at higher than 60mg/kg 

biweekly injection. 23 This has lead to the use of cationic peptides and other 

polymers to improve the efficiency of PMO delivery.15,16,24-28  PMOs conjugated with 

an arginine-rich peptide (PPMO) were able to restore dystrophin expression to near 

normal levels in body-wide skeletal muscles and to about 50% in cardiac muscle at 

the dose of 30mg/kg by single injection. Such high levels of dystrophin expression 

significantly improved functions of both dystrophic skeletal and cardiac muscles.15 

However, it is well documented that the use of positively charged peptides and 

polymers increases toxicity considerably.15,16,26-28 This together with the requirement 

of a life-long AO drug administration for treating DMD necessitates investigation of 

these modified PMOs for their long-term applicability and efficacy in relevant animal 

models in vivo. 



 

 

In the present study, we investigated the acute toxicity and dose-related one year 

efficacy of PPMO treatment targeting mouse dystrophin exon 23 systemically in the 

dystrophic mdx mice. Our results show that PPMO has a high level of acute toxicity 

with LD50 near 85mg/kg. However, the effective dose for inducing more than 20% 

dystrophin in skeletal muscles and 5% dystrophin in cardiac muscle requires only 

6mg/kg biweekly injection, at which no obvious acute and chronic side effect were 

detected. PPMO therefore could be an effective chemistry as AO drugs for long-term 

treatment of DMD. 



 

 

Material and Methods 

Animals, oligonucleotides and in vivo delivery methods 

Ten mdx mice and C57BL/6 (C57) mice aged 4-5 weeks were used in each group. 

Experiments were approved by IACUC Carolinas Medical Center. The 

phosphorodiamidate morpholino oligomer (+07-18) (5'- GGCCAAACCTCG 

GCTTACCTGAAAT- 3') was used against the boundary sequences of exon and 

intron 23 of dystrophin gene and conjugated to the peptide (RXRRBR)2XB (R = 

arginine, X=6-amino hexanoic acid and B = β-alanine) through a non-cleavage 

amide linker to form a peptide-PMO conjugate (PPMO) (AVI BioPharma, Bothell, 

WA). For intravenous administration, PPMO was used in 100 µl saline by retroorbital 

injections, while control mdx mice were injected with 100 µl saline only. Mice were 

killed at desired time points, and muscles were snap-frozen in liquid nitrogen-cooled 

isopentane and stored at -80°C.   

Antibodies and Immunohistochemistry 

Sections of 6 µm were cut from at least two-thirds of muscle length of TA, 

quadriceps, biceps, and gastrocnemius at 100 µm intervals and at least 6 levels from 

all other muscles including heart, diaphragm, intercostals, and abdominal muscles at 

100 µm intervals. The intervening muscle sections were collected for Western blot 

and RT-PCR analysis. The serial sections were stained with rabbit polyclonal 

antibody P7 against dystrophin.  The primary antibody was detected by goat-anti-

rabbit IgGs Alexa 594 (Invitrogen, Eugene, OR). Sections were also stained with 

hematoxylin and eosin for histological assessment.  

Protein Extraction and Western Blot  



 

 

The collected sections were ground into powder and lysed with 200 µl protein 

extraction buffer as described previously.15,16 The protein concentration was 

quantified by Protein Assay Kit (Bio-Rad, Hercules, CA). Proteins were loaded onto 

a 4-15% Tris-HCL gradient gel. Samples were electrophoresed overnight at 10 mA 

at 4°C and blotted onto nitrocellulose membrane overnight at 50 V. The membrane 

was then washed and blocked with 5% skimmed milk and probed with monoclonal 

antibody NCL-DYS1 against dystrophin rod domain (Vector Labs, Burlingame, CA) 

overnight. Antibody against KIM-1 (R&D Systems, Minneapolis, MN) was used for 

detecting kidney injury molecule-1 (KIM-1) expression in the kidney. The bound 

primary antibody was detected by horseradish peroxidase-conjugated goat anti-

mouse IgG for dystrophin (Santa Cruz Biotechnology, Santa Cruz, CA) or 

horseradish peroxidase-conjugated donkey anti-goat IgG for KIM-1 (Millipore, 

Billerica, MA), and ECL Western Blotting Analysis System (Perkin Elmer, Waltham, 

MA). The intensity of the bands obtained from the AO-treated mice muscles was 

measured and compared with that from normal muscles of C57 mice (NIH ImageJ 

1.42 software).  

RNA Extraction and RT-PCR  

The collected Sections were homogenized in TRIzol (Invitrogen) by using an Ultra-

Turrax homogenizer (Janke and Kunkel, Staufen, Germany). Total RNA was then 

extracted and 100 ng of RNA template was used for a 50-µl RT-PCR with RT-PCR 

Master Mix (USB, Cleveland,OH). The primer sequences for the RT-PCR were 

Ex20Fo 5’-AGAATTCTGCCAATTGCTGAG-3’ and Ex26Ro 5’-

TCTTCAGCTTGTGTCATCC-3’ for amplification of mRNA from exons 20 to 26. A 



 

 

total of 40 cycles were carried out for the RT-PCR. Bands with the expected size for 

the transcript with exon 23 deleted were extracted and sequenced. The intensity of 

the bands was measured with the NIH ImageJ 1.42 and percentage of exon skipping 

was calculated with the intensity of the two bands representing both exon 23 

unskipped and skipped as 100%. 

Grip strength test 

Grip Strength was assessed using grip strength meter consisting of horizontal 

forelimb mesh and an angled hind limb mesh (Columbus Instruments, Columbus 

OH).  Five successful hind limb and fore limb strength measurements within 2 

minutes were recorded, and data were normalized to body weight and expressed as 

kilogram force (KGF).   

Measurement of serum creatine kinase and other components  

Mouse blood was taken immediately after cervical dislocation and centrifuged at 

1500 rpm for 3 min. Serum was separated and stored at -80°C. The level of serum 

components was determined by Charles Riverside Laboratories. 



 

 

Results 

LD50 of PPMO in mdx mice. 

Our previous studies have shown that 30mg/kg PPMO was able to induce almost 

normal level of dystrophin expression in all body wide muscles of mdx mice without 

clearly observable acute or chronic toxicity, even after 6 times of biweekly (fortnightly) 

intravenous injection.15 However, acute toxicity remains a serious concern and 

especially a repeated life long administration is required for treating DMD. We 

therefore firstly tested the same PPMO targeting mdx mouse exon 23 by dose 

escalation from 6mg/kg to determine the LD50. All survived mice were sacrificed two 

weeks after injection. As previously reported, all mice injected with 6mg/kg PPMO 

survived without any observable difference from saline injected control mice. All 

mice receiving 30mg/kg PPMO also survived without loss of body weight. The only 

observable change was the reduced activity during the first 2 hours after the 

injection in 3 of this group of mice.  However when the dose of PPMO increased to 

60mg/kg, all mice showed reduced activity after recovered from the anesthesia.  2 of 

10 treated mdx mice died in 5 minutes after the intravenous injection, and another 

one died within 24 hour.  Further increasing PPMO to 90mg/kg and 120mg/kg 

leaded to the death of 5 and 8 out of 10 mice within 2 days after injection 

respectively (Figure 1). The results therefore showed that LD50 of PPMO in mdx 

mice was approximately 85mg/kg.   

 

Half life of the dystrophin expression after single i.v. administration of 30mg/kg 

PPMO   



 

 

Our previous study demonstrated that single i.v. injection of 30mg/kg PPMO induced 

100% and 50% normal levels of dystrophin expression in bodywide skeletal muscles 

and cardiac muscle respectively two weeks after injection. 15 To assess the possible 

half life of dystrophin expression, we applied the same dose of 30mg/kg of the 

PPMO targeting exon 23 by single i.v. injection into mdx mice and examined the 

levels of dystrophin expression at a series of time points, ranging from 2 days, 2 

weeks, 1 month, 1.5 months, 2.5months, 4 months to 5 months after the injections. 

Two days after i.v. injection, nearly 100% efficiency in exon 23 skipping was 

detected with up to 50% dystrophin positive fibers and approximately 20% normal 

levels of dystrophin protein expression by western blot in all of the skeletal muscles 

examined. As high as 40% efficiency in exon 23 skipping was detected in the 

cardiac muscles. However, dystrophin protein was not convincingly detected by 

western blot (Figure 2).   By two weeks, dystrophin expression in skeletal muscles 

was detected in nearly 100% muscle fibers with the protein reaching 80% of normal 

levels or higher.15 Similar levels of dystrophin protein and percentage of dystrophin 

positive fibers were maintained up to two and a half months after the single injection. 

However, the percentage of exon skipping efficiency was significantly reduced, down 

to about 50% at two and a half months after the injection. The levels of dystrophin 

decreased to 30% and 10% of normal levels at 4 and 5 months after the injection 

respectively. In the cardiac muscle, dystrophin expression induced by the single 

dose PPMO reached peak of proximately 70% of normal levels at 1 month after the 

injection, and then decreased to less than 50% and 25% at 1.5 and 2.5 months after 

the injection respectively. No dystrophin was detected at 4 and 5 months in cardiac 



 

 

muscles by both immunohistochemistry and western blot (Figure 2).  The data 

therefore indicates that PPMO induces dystrophin expression about 2 times more 

efficiently in skeletal muscles than in cardiac muscle. Furthermore, the half life in the 

level of dystrophin expression was also longer in the skeletal muscles than in the 

cardiac muscle.  Consistent to our previous results, expression of high levels of 

dystrophin after single 30mg/kg PPMO treatment improved muscle pathology of the 

mdx mice (Figure 3).  The percentage of uncentranucleated muscle fibers increased 

time-dependently from 20% to 40% from 1 month to 4 months after the single dose 

treatment and went back to 30% by 5 months in most of the skeletal muscles except 

diaphragm. Area of muscle degeneration and mononucleocyte infiltration was absent 

in all muscles, including the TA, Quadriceps, Biceps and gastrocnemius examined 

between 2 weeks and 5 months after the treatment.  In diaphragm, the percentage 

of uncentranucleated fibers also increased to the highest level by 2.5 months, but 

then decreased again by 4 months.  This was associated with the increase of areas 

with degenerating fibers and foci of mononucleocyte infiltration.  Thus single dose of 

PPMO treatment provides a shorter period of protection to diaphragm from 

degeneration than to other skeletal muscles.   Serum creatine kinase (CK) levels 

were reduced significantly and remained at the similar low levels from 1 month to 5 

months after the injection (Figure 3). 

 

Biweekly administration of 1.5 mg/kg PPMO for 12 months produced limited 

dystrophin induction and improvement in muscle function   



 

 

The high efficiency of PPMO for dystrophin induction, but with a relatively Low LD 50 

demands a low dose regimen for treating DMD.   We hypothesized that repeated low 

dose PPMO administration might be sufficient to induce dystrophin expression with 

functional significance. The mdx mice were therefore treated with the PPMO at the 

dose of 1.5mg/kg with biweekly i.v. injection for one year (Figure 4). 

Immunohistochemistry for dystrophin expression 2 weeks after the final injection 

showed less than 20% muscle fibers expressing detectable dystrophin, most of them 

with weak signals in bodywide skeletal muscles. The amount of dystrophin protein 

examined by western blots was from barely detectable to less than 5% of normal 

level in any skeletal muscle. This amount of protein was similar to that detected in 

the muscles after single i.v. injection of 1.5mg/kg PPMO, suggesting no significant 

accumulation of efficiency after one year treatment. No clear difference in pathology 

including % of fibers with central nucleation and variation in fiber size in skeletal 

muscles was observed (Figure 5). Consistently the CK levels, the function of the 

skeletal muscles measured by grip force generation of the treated group were not 

significantly improved (Figure 5). No dystrophin expression and exon 23 skipping 

were detected in the cardiac muscle by immunohistochemistry, western blot and RT-

PCR (Figure 4). Body weight, serum enzyme tests and histological examination of 

lung, kidney and liver showed no clear difference between PPMO-treated and 

control mdx mice (Figure 5). 

 

Administration of 6mg/kg PPMO induced high levels of dystrophin expression with 

improvement of muscle pathology and function   



 

 

We then examined the long-term effect of higher dosage of 6mg/kg PPMO by 

regular biweekly i.v. injections (Figure 4). Skeletal muscles after 1 year treatment 

exhibited more than 60% and up to 90% dystrophin-positive fibers in skeletal 

muscles. Considerable variation in levels of dystrophin staining was also clearly 

detected in all muscles.  The levels of dystrophin expression detected by western 

blot ranged from 20% to 50% of normal levels. RT-PCR showed the levels of exon 

23 skipping from 15% to 50% in the skeletal muscles. Histologically, treated skeletal 

muscles exhibited clearly detectable improvement with reduced central nucleation 

and a more homogenous population of fibers in size (Figure 5). However, sporadic 

foci of degeneration and regeneration and monocyte infiltration remained in all 

muscles. Significant improvement was also detected in muscle functions with grip 

force generation (Figure 5). This was supported by the significant reduction in CK 

levels when compared to control mdx mice, although still higher than that of normal 

C57 mice (Figure 5). Expression of dystrophin in cardiac muscle was clearly 

detectable in a proportion of fibers with weak and discontinuous membrane staining 

by immunohistochemistry, but was less than 5% of normal levels (Figure 4). As 

described above in the 1.5mg/kg PPMO treated group, 6mg/kg PPMO did not show 

clear difference in body weight, serum enzyme tests and histological examination of 

lung, kidney and liver when compared with control mdx mice (Figure 5). These 

results suggest that the effect of PPMO treatment at this dosage can achieve 

measurable therapeutic outcome in skeletal muscles without detectable toxicity.  

 



 

 

30mg/kg PPMO monthly treatment restores near normal levels of dystrophin with 

correction of muscle pathology and function  

With the demonstration that the half life of dystrophin induced by single i.v. injection 

of 30mg/kg PPMO was about 2 months, we designed one year treatment of 30mg/kg 

PPMO with a monthly i.v. injection.  One year treatment was able to achieve 

dystrophin expression in near 100% muscle fibers in body-wide skeletal muscles. 

Western blot detected more than 50% of normal levels of dystrophin protein in most 

skeletal muscles although as low as 25% was also detected (Figure 4).  Muscle 

pathology was clearly improved with almost no degenerating fibers in any skeletal 

muscles examined (Figure 5). The fibers within the same muscle became highly 

uniform and with no clear inflammatory cell infiltrations. Foci of degeneration and 

regeneration and monocyte infiltration, which remained in muscles after lower dose 

treatment, were absent in the diaphragm.  Consistently, CK levels were significantly 

reduced when compared to control mdx mice (Figure 5).  Muscle functions as 

measured by grip force generation were significantly improved (Figure 5). The levels 

of dystrophin expression in the cardiac muscle were considerably lower than that 

detected in the skeletal muscles, but dystrophin expression with clearly detectable 

signal was observed in more than 50 % cardiac muscle fibers and the amount of 

dystrophin protein reached 15% in all heart of the PPMO treated mice (Figure 4). 

The mice under this dosage treatment showed no sign of abnormal body weight 

change when compared to the control mdx mice. No pathologic change of the liver, 

kidney and lung was observed by H&E staining (Figure 5). This was supported by 

the serum tests showing normal levels of creatinine, total bilirubin, alkaline 



 

 

phosphatase, Gamma-glutamyltransferase, and Blood Urea Nitrogen (BUN) (Figure 

5). We also examined the levels of kidney injury molecule-1 (KIM-1) expression in 

the kidney of the PPMO treated mice by western blots. All the kidneys from both 

1.5mg/kg and 30mg/kg PPMO treated mice showed barely detectable levels of KIM-

1 expression similar to those from untreated mdx and C57 control mice 

(Supplementary Figure 1). 

 



 

 

Discussion 

Cationic peptides have been widely used for gene and oligonucleotide delivery and 

nick named cell penetrating peptides as they are highly efficient for gene and 

oligonucleotide delivery in cultured cells. However, successful applications of such 

polymers in vivo have been limited. One of the barriers for this limitation is their 

toxicity in vivo.15,24-28  Data from previous studies in mouse models showed that 

dosages inducing near normal levels of dystrophin expression by the PPMO 

(containing cationic peptide, (RXRRBR)2XB sequence (R = arginine, X = 6-

aminohexanoic acid and B = β alanine) did not cause obvious short-term toxicity.15 

PPMO showed no toxic effect at either 20 mg/kg 6 times weekly injections to the 

wild-type mice or 30 mg/kg 3 month biweekly injection to mdx mice.15, 27 At these 

dosages, the side effect was detected in some mice including the acute lethargy 

which can last up to a few hours after systemic injection. There was no clear toxicity 

in the kidney and liver assessed by both histology and the levels of serum enzymes 

at the end of the PPMO intervention. However, toxicity of PPMO has been reported 

as weight loss and tubular degeneration in kidney.26-28 The results from the present 

study confirmed that PPMO at 30mg/kg by monthly injections only caused mild 

lethargy in some mice immediately after the systemic injection. However, further 

increase of the dose of the PPMO to 60mg/Kg leaded to some death of the treated 

mice within 48 hours and the remaining mice showed clear lethargy within 2-4 days. 

More than 80% animals died when the dose was 120mg/kg by a single injection.  

This result suggests that LD50 of the PPMO was about 85mg/kg. All the data 

together supports the notion raised by Moulton et al. that there seems to be a dose 



 

 

threshold for the toxicity of PPMO: below the threshold, the acute toxicity can not be 

clearly observed; above it, the severity of toxicity increases rapidly in a dose-

dependent manner.  The severity of toxicity is also suggested to be dependent on 

the dose frequency.27 One specific concern for PPMO is its potential chronic toxicity 

to kidney. The same peptide conjugated PMO, AVI-5038, as used in this study but 

targeting human exon 50 , was reported to cause tubular degeneration (although 

mild) in the kidneys of monkeys after 4 times of only 9 mg/kg weekly injections.27,28  

Elevated BUN levels were also reported in rat treated with a similar peptide-

conjugated PPMO. 28 However, no clear kidney damage was indicated by histology, 

tests of serum enzyme including BUN and detection of KIM-1 in this study. While 

reason(s) for such discrepancy is not understood, two factors are most likely 

involved. The current study examined the kidney 2 weeks after the last treatment 

whereas the other studies examined the serum and kidney within a week after 

PPMO treatment. A longer interval might provide sufficient time for some damage to 

recover. Perhaps more importantly, different species may respond to the drug 

differently as the reported studies used three different animals. Nevertheless,, the 

low LD50 of the PPMO established in this study and possibly higher sensitivity of 

higher animals including human to the peptide raise serious concern for the safe use 

of the PPMO in clinics, especially for repeated injections which are essential to 

maintain therapeutic levels of dystrophin in bodywide muscles to DMD patients. 

Thus, further studies in higher animal with different dose regimes are essential 

before moving the chemistry to the clinic and the biggest challenge for PPMO as 

antisense drug chemistry is to determine safe and effective dosages.27  



 

 

Threshold effect may also apply to the efficiency of exon skipping with dosing of 

PPMO. AVI-5038targeted to skip human exon 50 is currently in preclinical 

development for DMD patients. Initial efficacy of the PPMO in 4 healthy cynomolgus 

monkey showed that weekly i.v. injection of 9 mg/kg for 4 weeks induced an average 

of 40%, 25%, and 2% exon-skipping effect in diaphragm, quadriceps, and heart 

respectively. 27 However, little exon skipping product was detected with the same 

schedule at a lower dose of 3 mg/kg.   A similar trend was observed from the current 

study.  Nearly all skeletal muscles expressed 20% or higher levels of dystrophin 

protein by western blot and more than 60% fibers clearly stained for dystrophin by 

immunohistochemistry with up to 5% in the cardiac muscle in the mdx mice treated 

with 6mg/kg PPMO. However, exon skipping was hardly detectable by RT-PCR and 

dystrophin protein was detected in less than 20% muscle fibers with 1.5mg/kg 

PPMO treatment. Similarly, dystrophin protein was barely demonstrated in most 

muscles although near 5% expression was detected in some skeletal muscles by 

western blots.  No dystrophin was detected in cardiac muscle. These results indicate 

a non-linear relationship between the dose and the efficiency of dystrophin induction 

with systemically delivered PPMO.  Therefore a threshold dosage of PPMO may be 

required to achieve significant levels of dystrophin production, thus functional 

improvement for DMD patients in clinics.   

Results from the current study with 3 different dosing regimes provided a baseline 

for us to assess a possible therapeutic window for PPMO treatment to DMD. The 

results showed that 30mg/kg monthly treatment was effective for maintaining the 

near normal levels of dystrophin in all muscles with highly significant rescue effect 



 

 

on muscle pathology and functions. Similar to what we observed previously in the 

study of short-term effect with biweekly PPMO administration15, this dosing regimen 

appeared to be safe for long-term administration without observable chronic toxicity 

indicated by the normal levels of serum enzymes for liver and kidney. No pathology 

was revealed by histology of all skeletal muscles, liver, kidney, heart and lung. This 

is further supported by the normal behavior and life span of the treated mice. 

However, despite the high efficacy associated with only mild lethargy immediately 

after the injection, this monthly dosage is apparently too close to the LD50 and 

requires to be tested in higher animals before being considered for clinic applications.  

At the dose of 6mg/kg with a biweekly injection, PPMO induced more than 20% 

dystrophin in all skeletal muscles. Despite clear variation in the distribution and 

levels of dystrophin expression between and within muscles, functional improvement 

was evident by the demonstration of serum CK levels and histopathology. Also 

importantly, this dosage induced significant amount (up to 5%) of dystrophin in 

cardiac muscle in the majority of muscle fibers.  This dosage of PPMO is at least 10 

folds less than the LD50, therefore could be envisaged with potential for long-term 

treatment to DMD in clinics.  

Efficacy of antisense therapy to individual DMD patient, however, depends on many 

other factors, especially the efficiency of individual antisense oligomer and the 

functionality of the truncated dystrophin created by exon skipping. AOs targeting 

individual human dystrophin exon needs to be identified, thus they are inevitably of 

different efficiency in targeted exon skipping. Selection of AO targeting human and 

mouse dystrophin exons uses different cells and animal models. Thus care has to be 



 

 

taken in extrapolating the effective dosage obtained in this study to PPMO 

applications targeting human dystrophin exon in clinics.   A more accurate estimation 

in exon skipping efficiency of individual PMO may become possible when efficiency 

of the first PMO drug currently under clinical trials becomes available. This may be 

achieved by comparing new AO drugs with the PMO of known exon skipping 

efficiency side by side in the same testing system(s), preferably in both cell culture 

and in vivo animal model systemically.   

The functionality of the truncated dystrophin protein created by skipping of different 

exon must also be taken into account for establishing relevant therapeutic dosage. 

Unfortunately, functionality of most of those anticipated truncated dystrophins 

remains to be determined. Such investigations are required for the therapy to apply 

effectively to defined DMD populations and perhaps more important in some cases 

to determine the choice of exon(s) to skip for highest functionality of the restored 

dystrophin.   

In summary, PPMO as antisense drugs has demonstrated the highest efficacy for 

long-term treatment of DMD. LD50 of the PPMO was about 85mg/kg, significantly 

lower than PMO which has been tested safely with the dose of up to 3g/kg in the 

mdx mice. However, the low LD50 may be mitigated by its high efficiency, permitting 

the safe use of lower doses which are still capable of achieving significant long–term 

therapeutic effect.  
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FIGURE LEGENDS  

 

Figure 1. LD50 of PPMO in mdx mice. No death was recorded in the groups treated 

with 6mg/kg PPMO and 30mg/kg PPMO;  3, 5 , and 8 mice were dead from the 

groups (10 mice total for each group) treated with  the PPMO at 60mg/kg , 90mg/kg, 

and 120mg/kg. Analysis of Probits was used to calculate the LD50 from mortality 

rates.    

 

Figure 2. Half life of the dystrophin expression after single i.v. administration of 

30mg/kg PPMO in mdx mice.  A: Detection of dystrophin by immunohistochemistry 

with rabbit polyclonal antibody P7 against dystrophin. Blue nuclear staining with 

DAPI. B: Detection of exon 23 skipping in muscles by RT-PCR. Lane 1, size marker. 

C: Western blot showed levels of dystrophin expression in muscles. D: α-actin as 

loading controls. C57-TA, TA muscle from normal C57 mouse; Cont-TA, TA muscle 

from control mdx mouse. 2 days up to 5 months are time points by which the 

muscles were examined after single i.v. 30 mg/kg PPMO treated mdx mice.  

 

Figure 3. Examination of Pathology, serum and percentage of centranucleated 

muscle fibers at different time points after single i.v. administration of 30mg/kg 

PPMO in mdx mice. A: Histology (H&E staining) of diaphragm, TA and quadriceps 

from 1 month, 2.5 months, 4 months, 5 months time points after the PPMO 

treatment. B: Percentages of uncentranucleated muscle fibers at different time 

points. C: The levels of serum enzymes. Creatine kinase (KU/L), creatinine (mg/L), 



 

 

total bilirubin (mg/L), alanine transaminase (ALT) (U/dL), alkaline phosphatase (ALP) 

(U/dL), Gamma-glutamyltransferase (GGT) (U/L), and Blood Urea Nitrogen 

(BUN)(mg/ml). The significant reductions in creatine kinase levels were observed at 

different point in mdx mice treated with 30mg/kg PPMO when compared with control 

mdx mice. (n=10; *, P≤0.05 compared with C57 mice; # P≤0.05 compared with 

untreated mdx mice. Two-tailed t test).   

 

 Figure 4. Restoration of dystrophin expression after one year i.v.treatment of 

1.5mg/kg, 6mg/kg, and 30mg/kg PPMO. A: Detection of dystrophin by 

immunohistochemistry with rabbit polyclonal antibody P7 against dystrophin. Blue 

nuclear staining with DAPI. B and E: Detection of exon 23 skipping in muscles by 

RT-PCR. Lane 1, size marker. C and F: Western blots showed levels of dystrophin 

expression in muscles.  D and G: α-actin as loading controls. C57-TA, TA muscle 

from normal C57 mouse; Cont-TA, TA muscle from untreated mdx mouse. 1.5 

mg/kg , 6 mg/kg or 30mg/kg iindicate that the muscles were from the mdx mice 

treated with the PMO at the 3 doses mice.  

 

Figure 5. Examination of pathology, serum and skeletal muscle function after one 

year treatment of 1.5mg/kg, 6mg/kg, and 30mg/kg PPMO. A: Histology (H&E 

staining) of TA, quadriceps, diaphragm, kidney and liver from the normal C57 mice 

(C57), control mdx mice (Control), 1.5mg/kg, 6mg/kg and 30mg/kg PPMO-treated 

mdx mice. B: Percentage of uncentranucleated muscle fibers.  Control, muscles 

from control mdx mouse. (n=10;  # P≤0.05 compared with control mdx mice. Two-



 

 

tailed t test). C: Grip strength measurement. Significant improvement was observed 

in the mice after treatment with 6mg/kg and 30mg/kg PPMO.  KGF, kilogram force. 

(n=10; *, P≤0.05 compared with C57 mice; # P≤0.05 compared with control mdx 

mice. Two-tailed t test).  D: The levels of serum enzymes. Creatine kinase (KU/L), 

creatinine (mg/L), total bilirubin (mg/L), alanine transaminase (ALT) (U/dL), alkaline 

phosphatase (ALP) (U/dL), Gamma-glutamyltransferase (GGT) (U/L), and Blood 

Urea Nitrogen (BUN)(mg/ml). A significant reduction in creatine kinase levels was 

observed in mdx mice treated with 6mg/kg and 30 mg/kg PPMO when compared 

with control mdx mice.   
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