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Is geometry more universal than physics in atmospheric
boundary layer flow?
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[11 We show that the geometry of motions in atmospheric boundary-layer time series
exhibits considerable independence from scale in spite of changing physics. The scale-
independence of structure shapes is shown by using a simple technique to extract

basic shapes from the time series for timescales between 3 s and 2 h. A set of predefined
basic shapes is chosen subjectively as those that occur most frequently in the time

series: sine, step, ramp-cliff and cliff-ramp. The frequency of occurrence of shapes changes
with the timescale, with a pronounced minimum at scales between 2 and 10 min depending

on the stability and the shape function. This is in accordance with the minimum of
kinetic energy between turbulence and mesoscales. However, the ratios of occurrences
between different shapes are approximately scale-independent. What shapes are preferred
depends only on the variable examined. The physics of different shapes and scales is
examined from characteristics of individual shapes. Steep edges of shapes seem to be
predominantly related to downward transport of heat and momentum, which weakens with
increasing scale. Sine shapes on the other hand seem to be related to turbulent eddies
and shear instability at small scales, and to internal gravity waves at larger scales with
stable stratification. Therefore, the physics of individual shapes is shown to change with
scale, while the geometry seems to remain approximately scale-independent.
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1. Introduction

[2] Basic shapes of coherent structures in turbulent
flows frequently include sharp edges or zones of semi-
discontinuities [e.g., Hunt et al., 2010] as often viewed in
terms of ramp-cliff structures of passive scalars [Wilczak,
1984; Warhaft, 2000; Shraiman and Siggia, 2000] and
microfronts [e.g., Mahrt, 1991]. These features were repor-
ted as early as Taylor [1958] for temperature in the atmo-
spheric boundary layer (ABL) and attributed to convective
plumes. Later laboratory and numerical studies showed that
these structures can occur irrespective of the sign of thermal
stability [e.g., Mestayer et al., 1976; Gibson et al., 1977;
Warhaft, 2000, and references therein], without the presence
of a boundary [e.g., Gibson et al., 1977; Wroblewski et al.,
2007], and even appear in two-dimensional random Gauss-
ian velocity fields [Holzer and Siggia, 1994]. Shraiman and
Siggia [2000] and others therefore suggest that the statistics
of the scalar turbulence can be decoupled from the under-
lying velocity field, and as such the scalar intermittency,
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defined as the departure from a gaussian distribution with
the excess of large bursts at smaller scales, is inherent to the
mixing process itself. Due to these characteristics, the scalar
turbulence yielded to a simpler theoretical approach [Shraiman
and Siggia, 2000]. However, it seems that the structure
of turbulent velocity fluctuations is less amenable to such
a treatment.

[3] Events or coherent structures, such as ramp-cliff
patterns discussed above, appear to dominate atmospheric
turbulent flows in canopies due to the canopy-induced
inflection point instability [e.g., Finnigan, 2000]. It has
recently been proposed that these events render the flow
“more deterministic”, in a sense that their presence reduces
the embedding dimensions of underlying phase space
attractors [e.g., Campanharo et al., 2008]. In this manner,
the otherwise highly complex atmospheric turbulent flows
start behaving as lower-dimensional less chaotic systems
[e.g., Wesson et al., 2003]. In addition, there are many dif-
ferent physical processes in the atmosphere, often of abrupt
nature, that force, modify and coexist with the turbulence
over a broad range of scales [e.g., Belusi¢ and Mahrt, 2008],
including atmospheric gravity waves, thermally induced
mesoscale flows and so forth. Therefore, the event-like fea-
tures are ubiquitous in the atmosphere at all scales and sig-
nificantly contribute to flow properties, such as transport
of scalars and generation of smaller scale turbulence [e.g.,
Sun et al., 2004; Vindel and Yagiie, 2011].

[4] The range of scales just larger than the three-
dimensional turbulence, sometimes termed submesoscales,
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appears to be the least understood aspect of the ABL,
particularly in the weak-wind stable ABL. There the flow is
evidently composed of events with a wide range of ampli-
tudes [e.g., Mahrt, 2011]. While large-amplitude well
defined events are more often examined [e.g., Sun et al.,
2002; Viana et al., 2009], the results are not easily extend-
able to common weaker events. Therefore, the origin and
nature of these motions is at this point unknown. The most
probable scenario is that we are witnessing a melange of
gravity waves, drainage flows, shear instabilities, solitons
and other more complex modes.

[5s] Simple visual inspections of various ABL time series
reveal that common shapes appear on a large range of
timescales, from the smallest turbulence scales up to tens
of hours. These shapes may be of any amplitude, but are of
surprisingly similar geometries across the scales in spite of
substantial change of physics with scale. This provokes
another question: Is it possible to distinguish between dif-
ferent scales, having time series with equal number of
points, but not knowing the sampling rate? An answer is
indicated in randomly chosen examples in Figure 1, where
an untrained eye cannot distinguish between the shapes on
different scales.

[6] The purpose of this study is to examine the depen-
dence of different flow geometries on stability and time-
scale, as well as document structural shapes and their
orientations in the time series. Usually, the quest for coher-
ent structures is limited to some expected timescales (such
as 1 min) and to large amplitudes [e.g., Gao et al., 1989;
Krusche and De Oliveira, 2004; Barthlott et al., 2007].
In this study, we apply neither restriction. In contrast to
previous studies, we allow a very large range of timescales,
here between 3 s and 2 h. The large-amplitude limit is
relaxed by not using variance-based methods, but instead
simple linear correlation (section 2). This study is intended
as a preliminary survey in order to gain information and
determine future avenues for in-depth analyses.

2. Data and Methods

2.1. Data

[7] An eddy correlation tower located in Kutina, Croatia
(45.476N, 16.796E) was equipped with 7 levels of Gill
Windmaster and Windmaster Pro sonic anemometers. It was
located in a relatively small (480 m x 120 m) mixed forest,
approximately 20 m high, with a complex direction-depen-
dent footprint including urban and suburban areas, a large
factory, open fields and small hills. Kutina is in a broad
valley surrounded by complex terrain. A mountain ridge
about 10 km to the north of Kutina is about 500 m high.
There were five sonics above the canopy height, and here
we use only the sonic at 40 m above ground level. The
sonic wind and temperature were recorded at 20 Hz sam-
pling frequency. The measurements were performed from
17 September 2008 to 18 October 2009. Data were quality
checked both manually and using an improved version of
Vickers and Mahrt [1997]. No tilt correction was applied,
because the shape-searching analysis in this study is per-
formed only on the temperature and horizontal wind speed.
The vertical velocity is used to complement the information
on the dynamics of different shapes, and it is considered
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only relative to its mean, i.e. in terms of phase alignment
with the temperature and horizontal wind speed. In that
sense, the mean vertical velocities do not impact the analysis.

2.2. Method

[8] The goal is to recognize different structural shapes
from the time series of the wind speed and the temperature.
The geometries of the shapes were subjectively chosen as
the most basic shapes after consulting the time series. These
are: a simple sine function, a step function, a ramp-cliff
function, and a cliff-ramp function (or a reversed ramp-cliff);
see Figure 2. These basic shapes may correspond to certain
physical features in the atmospheric boundary layer: a wave
(sine), a (micro)front (step) [e.g., Mahrt, 2010a], and dif-
ferently oriented turbulent ramp-cliff patterns [e.g., Antonia
et al., 1979]. This paper differs from conditional sampl-
ing studies in that we employ a variety of the most basic
shapes to describe the entire record, rather than choosing one
shape to study a particular structure (for example, using the
step function or ramp functions to study thermals in a
sheared environment).

[9] The method for shape recognition is based on the lin-
ear correlation between a theoretical shape and the time
series as viewed in terms of a moving window of various
scales. The linear correlation is chosen because it is based
on the geometry of a shape more than on its amplitude.
All other methods involving multiplication [e.g., Mahrt,
2010a] or convolution (all power spectral methods, includ-
ing wavelet and Fourier analysis) favor large-amplitude
events. While the latter approach has many advantages, one
of them being that the most energetic features are usually the
most important ones in terms of fluxes, it reduces the
importance of the exact shape of the feature. The shapes
across different scales tend to have very similar geometries,
but significantly different amplitudes. Therefore, the linear
correlation will ensure that primarily shapes with similar
geometries will be extracted. The correlation will nominally
take into account the amplitude of a given feature, because
its amplitude has to be larger than the surrounding “noise” on
smaller timescales in order to be recognized. In that sense, the
linear correlation will extract “clear” shapes of any strength
that are embedded within a “less energetic” environment.

[10] Here the subjective criterion for shape recognition is
based on the absolute correlation coefficient: » > 0.9. The
relatively high value of 0.9 was chosen after several tests in
order to most clearly distinguish between different shapes,
although this choice significantly reduces the final sample
size. The procedure is applied to a range of scales, from the
smallest possible, given the data sampling rate, to the largest
scale with sufficient sample size, limited by the length of the
time series. A theoretical shape with an arbitrarily chosen
width of 60 data points moves sequentially point-by-point
through the time series and the correlation coefficient is
calculated for each location. The time series are suitably
averaged so that 60 data points define the timescale under
consideration. Therefore, the sampling rate of 20 Hz enabled
the minimum shape timescale of 3 s, with subsequent scales
distributed as follows: 18 s, 1 min, 2 min, 5 min, 10 min,
20 min, 30 min, 1 h and 2 h. Scales larger than 2 h were
eliminated due to inadequate sample size. The entire pro-
cedure required a large amount of computational time;
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Figure 1. Wind speed time series with 1000 data points
measured at the same location, given for two different
sampling rates: (top) 60 s and (bottom) 0.05 s.

therefore the smallest two scales (3 and 18 s) were calculated
over a subset of the data, namely over four months roughly
spanning all seasons (January, April, July and September
2009). Each of the shapes can have two orientations with
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respect to the values of the variable, i.e. a shape can start
with (or, as used here, its steeper part can have) either a
positive or negative 0/0t. Therefore, eight shapes are
required for completeness (see Figure 2). In the shape
searching algorithm, the first selected shape has the largest
r for a specific timescale within the entire time series. After
it has been categorized and selected, that part of the time
series is excluded from further analysis in order to avoid
overlaps of different shapes, and the shape with the next
largest » is chosen. This procedure continues, for each
timescale separately, until all shapes with » > 0.9 are
selected. The following describes the progression of indi-
vidual steps.

[11] 1. Sequentially advance a predefined shape function
point-by-point through the entire time series, and calculate »
at each point. Repeat the same procedure for all other pre-
defined shape functions.

[12] 2. Save the properties (location, length, etc.) of the
selected observed structure with the largest value of », and
then remove the corresponding part of the time series.

[13] 3. Select the shape with the next largest . Continue
until all shapes with » > 0.9 have been selected.

[14] 4. Reset the procedure. Block average the unmodified
time series to a scale that is 60 times smaller than the next
desired timescale of shapes. In our case, the next timescale
of shapes is 18 s, so the raw data are averaged to 0.3 s.
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Figure 2. Shape functions used in this study: sine, step, cliff-ramp and ramp-cliff, with both orientations
(positive or negative 0/0t). The orientation is defined based on the steeper part of the shape, except for the
sine function where the distinction is equivalent to a phase shift and is given only for completeness.
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Figure 3. Examples of different 1-h shapes recognized from 1-min averaged wind speed time series.
Black vertical dashed lines indicate the 60 points used for the recognition of the shape. Compare to

Figure 2.

Repeat all previous steps. Continue in the same manner for
all desired scales.

[15] The threshold criterion for the correlation coefficient
was found to be insufficient for theoretical step shapes, and
theoretical sine shapes when correlated with step-like shapes
in the time series, because the correlation of step shapes with
other shapes tends to be large even when other shapes have
gradual changes, which is due to the discontinuity of the
step function [e.g., Anscombe, 1973]. Therefore, additional
criteria are used in order to verify the existence of the sudden
step-related change. These additional criteria were subjec-
tively determined from many observations of falsely recog-
nized step and sine shapes. We require that the difference of
medians of four data points before and after the shape center
is smaller (greater) than 40% of the maximum absolute dif-
ference between any two points in the shape for theoretical
sine (step) function. It should be noted that while providing
visually somewhat better defined structures of recognized
shapes, the overall effect of this procedure on the final
results is minor due to a relatively small number of falsely
recognized shapes in the first place. Due to the asymmetry,
the ramp shapes do not require such criteria. Finally, this
method essentially automatizes visual pattern recognition.
Therefore, the verification of the method is trivial, although
time consuming — a simple visual inspection of the captured
structures [see, e.g., Cava et al., 2004]. An additional test
was performed on a limited portion of the time series, where
the portion of the time series was phase randomized. The
procedure includes taking the Fourier transform of the
original signal, randomizing the phase while keeping the
magnitude of the transform, and reverting back to the time
domain using the inverse Fourier transform. Phase random-
ization should remove coherent structures from the time
series, since they are primarily characterized by phase

correlations [e.g., Armi and Flament, 1985]. The shape-
searching method was then applied to both the original and
phase-randomized portion of the time series. It recognized
about 90% less shapes for phase-randomized data compared
to the original data, which clearly shows that the method is
not recognizing structures where they do not exist. Visual
inspection confirmed that the shapes that were recognized
by the method from phase-randomized data were actual
structures present in the phase-randomized time series,
implying that the phase-randomization did not remove all
coherent structures from the time series.

3. Results and Discussion

[16] Examples of recognized shapes are shown in Figure 3.
Similar structures appear for all the scales examined here.
For example, the sine shape for the smallest scales usually
appears only as a single wavelength embedded within a
chaotic environment abundant in many other shapes. These
are most probably not waves, but the signatures of small
turbulent eddies. On the other hand, trains of sinusoidal
shapes can be occasionally noticed for larger scales with
stable conditions, suggesting gravity waves. Later discussion
will show that for sine shapes, the phase angles between
different variables change with the scale.

[17] Two main aspects of the shapes are examined: the
dependence of the different geometries on the timescale,
and the significant characteristics of different shapes. The latter
reveals that different shapes and scales are associated with
different physical mechanisms. The analysis is separated in
two broad stability categories: unstable conditions (z/L <
— 0.1) and stable conditions (z/L > 0.1), where a single
value of z/L characterizes an entire shape. Here z denotes the
height of the measurements above the displacement height d,
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Figure 4. The number of recognized (left) wind speed and (right) temperature events relative to the theo-
retically maximal number of events for each scale for (top) unstable and (bottom) stable conditions.

where d is estimated as 2/3 of the canopy height yielding
z=27 m, and L is the Obukhov length:
30,

L=—— v
KLg(W'@'V)

k]

where u- is the friction velocity, 6, is the virtual potential
temperature, w is the vertical wind speed, « is the von
Karman constant, g is the gravity acceleration, primes
denote perturbations from 1-min averages, and overbars
denote the time average over the length of the shape.
A stability-dependent averaging time for defining perturba-
tions might have been more appropriate [e.g., Acevedo et al.,
2006; van den Kroonenberg and Bange, 2007], but here, L is
used only for broad classification of the data. The 1-min
averaging time was chosen to minimize contamination of
fluxes by mesoscale motions for stable conditions [e.g., Basu
et al., 2006; Vickers and Mahrt, 2006; Viana et al., 2010].
Tests with using perturbations from 5-min averages showed
negligible differences compared to the 1-min averages. The
influence of anemometer tilt correction is not important for
classification of the data. The stability categories are chosen
to be broad to maximize the sample sizes for larger scales. As
revealed from tests with narrower stability classes, the sen-
sitivity to the choice of the threshold value of z/L is small.

3.1.

[18] The number of occurrences of recognized shapes
is given in Figure 4 as the percentage of the theoretical

Occurrences of Shapes

maximum number of shapes for a certain scale and data
period. The theoretical maximum is the ratio of record length
to the window width, and hence does not depend on the
geometry of the shape. The ratio of numbers of different
recognized shapes for each scale shows whether different
scales foster smoother, wave-like shapes or sharp, front-
or ramp-like shapes.

[19] Figure 4 shows that the number of occurrences for
temperature shapes under unstable conditions has a mini-
mum at roughly 5 min for sine and step functions and at
approximately 10 min for both ramp functions. It is likely
that the ramp functions capture the entire asymmetric ther-
mals whereas the step and sine functions capture the upwind
sharp edge of the thermal and immediate environment. For
temperature with stable conditions, the minimum is located
at smaller timescales. Sine and step shapes have a minimum
at 2 min, and ramps at 5 min. This behavior is consistent
with the expectation that the scale of the turbulence is
smaller for stable conditions compared to unstable condi-
tions. As a working hypothesis, we assume that the motions
on scales smaller than the minimum are turbulent while
larger scales are nonturbulent motions on submeso/meso
scales. That is, the minima in the number of occurrences
could be related to the energy “gap” between the turbulence
and submeso/mesoscales that is sometimes observed in
the power spectra. The later gap is based on kinetic energy
while the former shape gap is based on integrity of the struc-
tures (correlation). The presence of the gap with both types
of scales dependencies suggests well organized turbulent
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Figure 5. Scale dependent vertical heat flux for wind speed and temperature events, for unstable and
stable conditions. Shapes with (left) positive and (right) negative 0/0t (see Figure 2) are contrasted. Vertical
arrows indicate the approximate timescale of the minimum of occurrences (see Figure 4).

structures and well organized meso/submeso structures sepa-
rated by the gap. For wind speed, the decrease of occurrences is
extended over almost all scales for unstable conditions. Larger
scale wind structures are evidently poorly organized in unstable
conditions. Under stable conditions the occurrences have
minimum at about 2 min (Figure 4). Large-scale motions in the
unstable case show much less coherence of the wind field

compared to the temperature field.

[20] For both temperature and wind speed, the increase of
occurrences with increasing scale for scales greater than the
occurrence minimum is much steeper for stable than for
unstable conditions, particularly for sine and step shapes. As
a result, large-scale coherent structures are substantially
more common with stable stratification compared to unsta-
ble stratification. While our analysis does not take into

account amplitudes of shapes, the application of several
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Figure 6. Ratio of numbers of different recognized (left) wind speed and (right) temperature events for
each scale for (top) unstable and (bottom) stable conditions.

amplitude thresholds to both temperature and wind speed
at larger scales did not yield significant differences to this
finding. Presumably, the difference between stable and
unstable shape occurrences is because the stratification leads
to preference for horizontal growth of perturbations while
unstable conditions promote vertical growth. However,
to the best of our knowledge, studies that could confirm or
reject this hypothesis do not exist in the literature.

[21] As an aside, the ramp-cliff shapes exhibit almost
the same behavior as the cliff-ramp shapes, potentially
implying a minor role of the expected asymmetric organi-
zation of the structures due to the shear [e.g., Wilczak, 1984].
However, the physics provides a different picture, as shown
in the following.

[22] The transition between the turbulence and larger
scales is usually identified from the vertical heat flux
cospectra as either the scale where the heat flux falls below
a threshold value or where it first crosses zero. Here we
calculate the heat flux for each shape and scale from the
60 data points within each selected shape. The perturbations
are calculated as deviations from the 60-point mean for each
scale. The flux is thus not the total turbulent flux but rather
the flux associated with only a certain shape and scale. These
fluxes are averaged over all of the data for a given scale
for each shape to provide the scale dependence of the heat
flux for each shape, as depicted in Figure 5. The heat flux
maxima tend to appear at larger timescales for unstable
than for stable conditions, which is in accordance with the

usual observations. The heat flux falls off at smaller scales
for stable conditions, implying smaller “gap” scale for stable
conditions. Figure 5 indicates that the increase of occur-
rences for larger times scales (Figure 4) does not lead to
significant heat flux, consistent with the expectation of little
flux for the mesoscale range.

[23] Distinguishing between the shapes with positive and
negative 0/0¢t (see Figure 2 for the definition) reveals that
certain shapes and orientations contribute to the heat flux
more than others (Figure 5). For temperature shapes in
unstable conditions, the step and ramp-cliff shapes with
sudden temperature decrease (07/0¢t < 0) dominate the flux
for scales between 18 s and 5 min. This is consistent with
asymmetric thermals subject to background wind shear,
where the downwind diffuse part of the structure reaches the
tower before the upwind steep part. The latter corresponds to
the ramp-cliff or step with 07/0¢t < 0 in the time series.
Thermals dominate the heat flux, as expected. Fluxes at
larger timescales for stable conditions are generally consid-
ered to be unreliable, because the very weak vertical motions
in those conditions are hard to measure (see references in
Mahrt [2010b])).

[24] The apparent disagreement between the frequency of
occurrence, where ramp-cliff and cliff-ramp shapes seem to
be equally represented, and the heat flux, where ramp-cliff
shapes with 07/0t < 0 dominate, is probably due to signifi-
cant contribution to the heat flux by only a small number of
ramp-cliff shapes, while the majority of other structures
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Figure 7. Ratio of number of shapes with positive 0/0¢ to number of shapes with negative 6/0¢ for each

shape function. See also Figure 2.

transport less efficiently. These less-active shapes show no
preference for the orientation of the cliff slope. Furthermore,
the site heterogeneity may be responsible for modification
of shapes and hence contribute to the above differences.

[25] The ratio of occurrences between different shapes is
generally roughly independent of scale though it can be
significantly different from unity (Figure 6). This is partic-
ularly visible for the ratio of ramps to sines, which is
approximately constant for all conditions and scales, and
tends to be 0.3 for the temperature and 0.2 for the wind
speed. That is, sine patterns are more frequent than ramp
patterns, but the ratio of frequency of occurrence does not
depend on scale. This semi independence of scale survives
the fact that the physics and vertical transport associated
with these structures (Figure 5) do depend on scale. It may
be that these fundamental shapes are so common that a
similar result would be obtained for many other time series
not even necessarily related to geophysical flows.

[26] The frequencies of the ramp-cliff and cliff-ramp
shapes are similar (see also Figure 4). For temperature, there
are more sharp front-like structures than smoother waves,
except for the smallest scale. For wind speed, the sine shapes
dominate all but the 1-h scale in unstable conditions. The
relative sharpness of the temperature shapes compared to
the wind shapes is probably due to pressure fluctuations
and shear instability, which “act” to smooth out near dis-
continuities in the wind field.

3.2. Common Characteristics of Different Shapes

[27] For the majority of shapes and scales, the increase in
wind speed V across the structure is related to a decrease
in the vertical motion, w, across the structure (not shown).
This behavior corresponds to negative correlation between
w and V, and indicates downward momentum flux. How-
ever, w tends to weaken with increasing scale, so this rela-
tion becomes less clear with increasing scale. For stable
conditions, w and 7 are on average 180° out of phase, while
they are in phase for unstable conditions (e.g., rising warm
air in thermals). Again, this relation weakens with increasing
scale. These relationships are in accordance with the usual
ABL observations and theory, as they essentially represent
the downward momentum flux near the surface, and the
downward (upward) heat flux in stable (unstable) condi-
tions, and that the fluxes become small at the largest scales.

[28] For small and intermediate timescales, the sharp wind
speed shapes (steps and cliffs) have predominantly positive
oV/ot, i.e. their steep edges correspond to rapid increases of
wind speed at the tower. Figure 7 indicates that there are
more shapes whose steeper part corresponds to acceleration
than those that are characterized by deceleration (negative
time derivative). This behavior is consistent with fronto-
genesis on micro scales where horizontal convergence
(speed increases) leads to sharper gradients compared to
decreasing speed. That is, using Taylor’s hypothesis, hori-
zontal convergence (Ou/0x < 0) corresponds to ou/ot > 0
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observed at a fixed point. Similar tendency occurs for tem-
perature shapes for stable conditions, while for unstable
conditions the situation is reverse. Additionally, for almost
all shapes, this tendency decreases or even reverses sign with
increasing scale.

[29] The generation of sharp events by downward motions
and mixing of higher momentum would explain both the
systematic positive 0F/0¢, and the positive (negative) 07/0t
in stable (unstable) conditions. Furthermore, with increasing
scale, the motions become more horizontal and two-dimen-
sional, thus reducing the effect of downward flux and the
associated tendencies in steep parts of the wind speed and
temperature shapes. As expected, the sine shapes generally
show no clear preference.

[30] Unlike all other shapes, the sine shapes exhibit phase
shifts with changing timescale. This is particularly evident
for the temperature shapes in stable conditions (Figure 8).
The phase angle between the averaged w and T 'is 7 at scales
below 2 min. At the two-min scale, w and 7 begin to drift out
of phase and finally reach approximately quadrature at 5 min
and beyond. According to linear theory, the internal gravity
waves do not transport heat, i.e. they are characterized by the
7/2 phase shift between w and 7. On the other hand, the
turbulence and Kelvin-Helmholtz instabilities have, on
average, near 0 or 7 phase angle between w and T [e.g., Rees
et al., 2000]. Therefore, the relative proportion of gravity
waves in the stable boundary layer seems to increase with
timescale up to 5 min, and they dominate the w-7 phase
relationship for larger scales. This agrees well with the
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expected range of periods of atmospheric internal gravity
waves [e.g., Rees et al., 2000]. Below 2 min, the dominant
sine-like shapes are related to either turbulent eddies or
Kelvin-Helmholtz instabilities. The scale range between
1 and 5 min is then an overlap zone with mixed gravity
waves and turbulence, and the prevalence of each probably
depends on stability and wind speed.

4. Conclusion

[31] Extracting predefined shapes using simple linear
correlation enabled a study of basic properties of different
features in atmospheric boundary-layer time series. One year
of high-frequency data were examined to construct the scale
dependence of different shapes and their relationships to
stability from timescales of 3 s to 2 h. The previously known
decrease of energy at scales larger than turbulence scales,
sometimes posed in terms of the mesoscale gap, is evident
from the minima in the frequency of occurrence of shapes
and depends on the thermodynamical stability in accordance
with previous wisdom. However, the ratio of frequencies of
occurrence of different shapes is surprisingly independent of
timescale and seems to depend only on the variable that is
examined. This yields a hypothesis that similar results might
be obtained for other unrelated data sets, as these funda-
mental shapes are the building blocks of a wide range of
different time series.

[32] The shapes captured from the temperature time series
are “sharper” than those from the wind speed time series for
all timescales. This might be related to pressure fluctuations
and shear instability that act to smooth large momentum
gradients. Furthermore, this finding is in broad agreement
with the results from laboratory and numerical studies of
scalar turbulence, where scalar intermittency, which is
associated with steep-edged shapes, is not necessarily related
to steeper shapes in the velocity field. The behavior of sharp
edges of shapes revealed by the shape analysis suggests that
these sharp features are forced by downward motions. This
tendency becomes less obvious with increasing scale, which
is consistent with weakening of vertical motions at larger
scales. Sharp changes of wind speed at smaller and inter-
mediate scales generally correspond to horizontal conver-
gence (micro-frontogenesis) rather than divergence.

[33] The sine shapes are characterized by different phase
relationships between variables for different scales, particu-
larly for stable conditions. For scales less than two minutes,
the phase angle between w and T is 7, indicating active heat
transport by these motions, most probably turbulent eddies
and Kelvin-Helmholtz instability. For scales larger than two
minutes, the phase angle is approximately 7/2, indicating the
dominance of internal gravity waves and hence the lack of
heat transport, which is in agreement with the expected
timescales of gravity waves in the atmosphere.

[34] These results clearly indicate that the physics of the
processes that are responsible for generation of the time
series shapes significantly changes with scale. However, the
geometry of the structures is nearly independent of timescale.

[35] Ramp-cliff and cliff-ramp shapes are shown to have
almost the same frequency of occurrence at all scales.
However, the ramp-cliff patterns with 07/0¢ < 0 dominate the
heat flux at smaller scales in unstable conditions, which is in
agreement with the usual understanding. Although previous
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turbulence studies showed that the ramp-cliff patterns with
negative 0/0t (as defined here) are ubiquitous in turbulent
fluids, an open question remains about what generates these
shapes at different scales in the atmosphere. Also, the gen-
eration mechanisms for other ramp shapes are still unknown.
Further understanding can be obtained from field experi-
ments that include spatial networks of turbulence measure-
ments that extend over several scales. This would enable
better understanding of physical properties and spatial
structure of individual shapes and their relation to the signals
in time domain.
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