AN ABSTRACT OF THE THESIS OF

JOSEPH EARL MEANS for the degree of _____OCTOR OF PHILOSOPHY

in BOTANY AND PLANT PATHOLOGY (PLANT ECOLOGY) presented on July 17,

1980 Title: DRY CONIFEROUS FORESTS IN THE WESTERN OREGON CASCADES
Abstract approved:

<u>Pseudotsuga menziesii</u> dominates the forests of the Pacific Northwest. But though it is dominat, <u>Tsuga heterophylla</u> or <u>Abies amabilis</u> is usually climax. Many researchers have studied <u>Pseudotsuga</u> on the widespread mesic sites where it is seral, but few have examined the relatively rare ecosystems in which <u>Pseudotsuga</u> or its associate <u>Libocedrus decurrens</u> are the climax species. This is a study of the composition, structure and successional dynamics of climax <u>Pseudotsuga</u> and <u>Libocedrus</u> (dry site) forests in the central portion of the Western Cascades in Oregon.

The environment of dry site forests is characterized at seven reference stands (five dry sites) using predawn plant moisture stress (Waring and Cleary, 1967) and temperature growth index (Waring et. al., 1972). As expected, the study type is hotter and drier than adjacent Tsuga-climax sites. The data suggest that low moisture availability is more critical to the occurrence of <u>Pseudotsuga</u>-climax habitat than is high temperature. Seventy-three vegetation plots are located throughout the study area, 56 in dry site stands. The location, composition, and soils of five plant communities, including two phases, are described based on this data set. Information from fire scars and tree ages on the vegetation plots indicates these forests burn at irregular intervals that average 100 years. Since initiation of the oldest cohort, most stands have experienced one or more fires which typically kill only a portion of the trees.

Stand history and successional processes are investigated on two intensive plots using primarily age structures and fire scars. These stands have each been burned twice by fires that consumed only a portion of the canopy. Regeneration following these fires was slow and continued for a century or more.

Height growth of 40 dry site <u>Pseudotsuga</u> is examined and found to start more slowly but continue at a greater rate later in life than Pseudotsgua on mesic sites.

These characteristics of dry site ecosystems have several management implications. A shelterwood silvicultural system is recommended on dry sites. The overstory will ameliorate the hot, dry environment and occupy the site during the long regeneration period. This silvicultural system approximates the natural functioning of these systems more closely than clear cutting.

Maximum mean annual increment occurs relatively later on dry sites due to the slow, prolonged height growth. Relatively slow reproduction further retards mean annual increment. Thus, if high volume growth is a management goal, rotations must be longer than on mesic sites.

Due to relatively linear height growth curves and reverse Jshape diameter distributions on dry sites, McArdle et. al.'s (1961) site index curves and yield tables are not applicable. Dry Coniferous Forests

.

in the Western Oregon Cascades

by

Joseph Earl Means

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy Completed July 17, 1980 Commencement June 1981 APPROVED:

Redacted for Privacy

Professor of Gotany and Plant Pathology in charge of major

Redacted for Privacy

Chairman of Department of Botany and Flant Pathology

Redacted for Privacy

Dean of Graduate Schdol

Date thesis is presented _____ July 17, 1980

Typed by Cheryl A. Graham for _____ Joseph Earl Means

ACKNOWLEDGEMENTS

This thesis is the product of the physical, mental and emotional efforts of many people.

To Dr. Jerry F. Franklin I owe support, helpful discussions, diligent editing of a very rought draft and friendship.

To my wife, Paula, I owe more than I can say; support for a Ph.D. degree and all that entails.

Kevin Short and John Barger, among others, ably assisted in the field and the lab. Warren Pavlat of the Willamette National Forest provided access to aerial photographs and other material. Many other U.S. Forest Service employees provided access to records and answered questions. Lew Manhart and Gerry Hubbe of the U.S. Forest Service spent helpful time in the field.

Nancy Hemstrom and Cindy Tait did much of the original typing, deciphering many heiroglyphics. La Rae Johnston and Dr. Kenton Chambers of the Oregon State University Herbarium provided verification of many plants.

Without the efforts of these people and many others, this thesis would not have been possible.

TABLE OF CONTENTS

1.	Introduction	1
2.	Study Area. . <td< td=""><td>8 5</td></td<>	8 5
3.	Environment	8 2
4.	Vegetation	0155155
	Community Type	5 6
	Pseudotsuga menziesii/Berberis aquifolium/Disporum Community Type. 66 Libocedrus decurrens/Whipplea modesta Community Type. 76 Libocedrus decurrens/Chimaphila Community Type. 76 Floristic Relationships 77 Shrub Correlations. 77 Polar Ordination of Plots. 77 Principal Components Ordination of Plots and Species. 77 Latitudinal and Temporal Species Correlations. 87 General Discussion. 87	0133472
5.	Stand Structure and Developmental History.92Objectives and Hypotheses.92Methods.92Field Methods.94Laboratory Methods.94General Characteristics.94Age Structure and Stand History.102Regeneration.112Soil Characteristics and Stocking Indices.112Synthesis and Conclusions.124	36892 72 5

6.	Methods. Field N Laboran Results.	th	25 25 26 27
7.	Synthesis.		41
	Bibliography	/	46
	Appendix 1 Appendix 2 Appendix 3 Appendix 4 Appendix 5 Appendix 6 Appendix 7 Appendix 8 Appendix 9	Construction of Species Cover Data Sets	62 73 75 81 84 99 58

LIST OF ILLUSTRATIONS

.

Figure		Page
1	Hypothesized relationshipos among 23 forest communi- ties defined by Dyrness in the western Cascades	Ź
2	Location of the Willamette National Forest, its ranger districts, and the H.J. Andrew Experimental Ecological Reserve (HJA) in Oregon	4
3	Seasonal course of precipitation at three weather stations spanning the north-south range of the study area	9
4	lsohyetal map of the study area for the period 1930-1057 using adjusted data and values derived by correlation with phsiographic factors	10
5	Mean monthly air temperature at selected weather stations in the study area for 1956 and 1965	12
6	Average daily maximum air temperatures of selected weather stations in the study area for 1956 to 1965	13
7	Moisture deficit in the north end and near the south end of the study area during 1956 to 1965	14
8	Locations of plots used as reference stands and of intensive study plots	19
9	H.J. Andrews reference stands placed in the temper- ature growth index versus plant moisture stress en- vironmental grid of Waring using primarily 1972 data	25
10	Reference stands placed in the environmental grid of Waring et. al., (1972) using 1978 data	26
11	Temperature growth index versus elevation of reference stands using 1978 data	27
12	Yearly variation in plant moisture stress on dry and modal H.J. Andrews reference stands	29
13	Dry coniferous forest on a south sloping side ridge	36
14	Dry coniferous forest on a south-facing side slope below the brow of a bench	37
15	Dry site <u>Pseudotsuga</u> in a southwest facing landslide scar	38

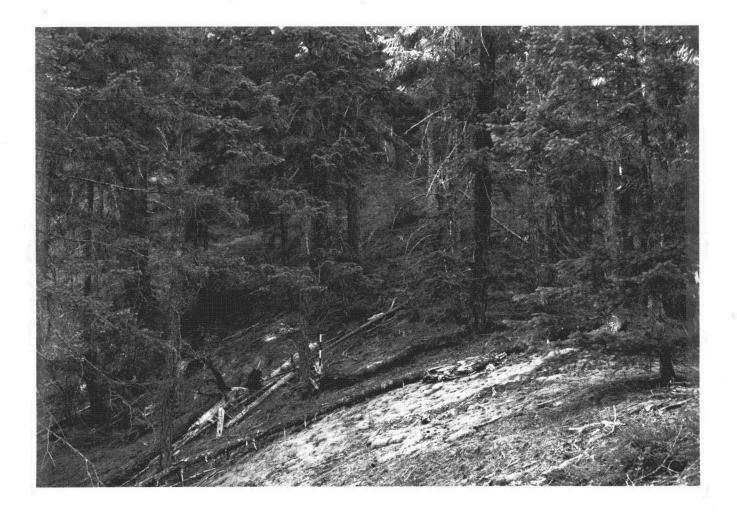
Figure		Page
16	Polar ordination of dry site and mesic plots using unstandardized species cover data.	76
17	Principal components ordination of dry site plots using centered and standardized data	78
18	Principal components ordination of species using centered and standardized dry site plot data	79
19	Histogram of dates of fires on dry site plots	89
20	<u>Pseudotsuga</u> age structure in a transition zone stand on the H.J. Andrews Experimental Ecological Reserve	94
21	<u>Pseudotsuga</u> diameter versus age relationship on intensive plot 2	103
22	Diameter distribution in intensive plot 1, including regeneration	105
23	Diameter distribution in intensive plot 2, including regeneration	106
24	Age distribution of <u>Pseudotsuga</u> and fire scar dates in intensive plot 1	108
25	Age distribution of <u>Pseudotsuga</u> and <u>Libocedrus</u> and fire dates in intensive plot 2	110
26	Basal area in the 100 m ² plots versus total soil depth on the intensive plots	118
27	Sapwood basal area in the 314 m ² plots versus estimated available water-holding capacity to bedrock on the intensive plots	119
28	Number of root ends counted in a 25 cm wide vertical portion of the exposed soil profile versus pit depth	120
29	Height growth curves of three dry site <u>Pseudotsuga</u> trees compared with the site index/height curves	133
30	Error in estimated site index versus total tree age for the stem dissection trees showing increase in error with increasing tree age	134
31	Live stand volume versus age for mesic and dry site Pseudotsuga both with site index of 33.5 m	137

Figure

32	Mean annual increment versus stand age for mesic and	
	dry site <u>Pseudotsuga</u> both with site index of 33.5 m	139

•

LIST OF TABLES


Table		Page
1	Reference stand physical data and community types.	20
2	Observed maximum predawn plant moisture stress and temperature growth index.	23
3	Available water-holding capacity by soil textural class	40
4	Dry site community types recognized with abbreviations, computer codes and member plots.	47
5	Cover and constancy by community taxa in the large data set occuring on three or more dry site plots.	48
6	Basal area and <u>Pseudotsuga</u> site index by community type.	53
7	Dry coniferous forest community stand tables.	54
8	Summary of fire data on the vegetation plots by community type.	62
9	Correlations between cover of selected shrubs in Pseudotsuga climax plots.	74
10	Correlation of species cover with area and tabu- lation of species importance by area for dry site plots in the small data set.	83
11	Correlation of species cover with time since last major fire.	86
12	Topography, bedrock and soils on the intensive plots.	99
13	Basal area and <u>Pseudotsuga</u> site index on the intensive plots.	104
14	Regeneration in gaps and under canopies on the intensive plots.	113
15	Product-moment correlation coefficients between stocking indices and soil characteristics for the seven soil pits on intensive plot 1.	116

Table

16	Product-moment correlation coefficients between stocking indices and soil characteristics from the eight soil pits on intensive plot 2.	117
17	Location, community type and elevation of stem dissection plots.	128
18	Comparison of actual height of 34 dry site <u>Pseudotsuga</u> with site index (predicted height at 100 years).	130
19	Errors in estimated total yield and other stand characteristics caused by the most commonly occurring over-estimate of site index (7 m) using Bulletin 201 on dry coniferous forest in the study area.	136

Page

Frontispiece

Dry Coniferous Forest on the H. J. Andrews Experimental Ecological Reserve

DRY CONIFEROUS FORESTS IN THE WESTERN OREGON CASCADES

INTRODUCTION

<u>Pseudotsuga menziesii</u> dominates and is the major timber species in most of the forested land west of the Cascade crest in the Pacific Northwest. Research on its ecology (e.g., Grier and Logan, 1977; Franklin et. al., 1972) and management (e.g., Isaac, 1943; Bruce et. al., 1977) is extensive but most deal with sites on which <u>Pseudotsuga</u> is seral. These may be at low elevations where <u>Tsuga heterophylla</u> is climax or at higher elevations where <u>Abies amabilis</u> is climax. These generally productive sites cover most of the region.

<u>Pseudotsuga</u> its occasional associate <u>Libocedrus decurrens</u> are apparently climax species (sensu Daubenmire, 1968) on hot, dry sites in the western central Cascades of Oregon (Figure 1, Dyrness et. al., 1974). Dyrness et. al. (1974) characterize these sites as smooth, low elevation, south and southwest facing slopes on shallow, stony loams and silt loams and call them the <u>Pseudotsuga menziesii/Holodiscus</u> discolor habitat type.

In western Oregon <u>Pseudotsuga</u> or <u>Libocedrus</u> climax communities also occur on the east side of the Coast Ranges (Juday, 1977; Anderson, 1967; Bailey, 1966), in the south end of the Willamette Valley (Cole, 1977) and in southwestern Oregon (Mitchell and Moir, 1976; Waring, 1969). To the north <u>Pseudotsuga</u> climax forests are found in Washington (Franklin et. al., 1980; Becking, 1954) and British Columbia (Krajina, 1965; Packee, 1976).

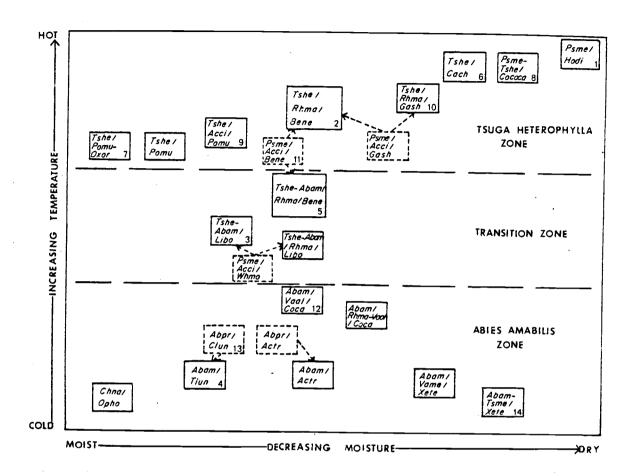


Figure 1. Hypothesized relationships among 23 forest communities defined by Dyrness et al. (1974, figure 5) in the western Cascades. This figure is based on their vegetation ord-ination, somewhat modified by their intuition. The <u>Pseudotsuga menziesii</u> / <u>Holodiscus discolor</u> (Psme/Hodi) habitat type is in the hot, dry corner of the environmental field.

Climax <u>Pseudotsuga</u> ecosystems have received little attention since they are areally limited (occupying two to five percent of the Willamette National Forest^{1/}), and are considered less productive than other sites supporting <u>Pseudotsuga</u>. Consequently the Willamette National Forest now faces allocation of these lands to specific uses with minimal ecological knowledge on which to predict management response. Work on these ecosystems therefore serves two purposes: it fills gaps in basic knowledge of western Oregon forests and contributes biological information needed for management.

The Willamette National Forest was chosen for this study in part because the H.J. Andrews Experimental Ecological Reserve is situated near its center (Figure 2). A dry conifer association has been characterized at the Andrews (Dyrness et. al., 1974) and data are available on its environment relative to climax communities of <u>Tsuga heterophylla</u> (Zobel, et. al., 1976). These and other studies help place the results of this work in the context of the mesic forest matrix in which dry communities occur as islands.

This project evolved beyond the original intention which was an analysis of the <u>Pseudotsuga/Holodiscus</u> association (Dyrness et. al., 1974). As distance from the H.J. Andrews increases, especially to the south, <u>Pseudotsuga</u> and <u>Libocedrus</u> climax communities occur which have decreasing similarity to the <u>Pseudotsuga/Holodiscus</u> association.

A broader definition of the study type as "dry coniferous forest"

Personal communication in 1976 with Lewis Manhart, soil scientist on Willamette National Forest Long Range Planning Team, Eugene, Oregon.

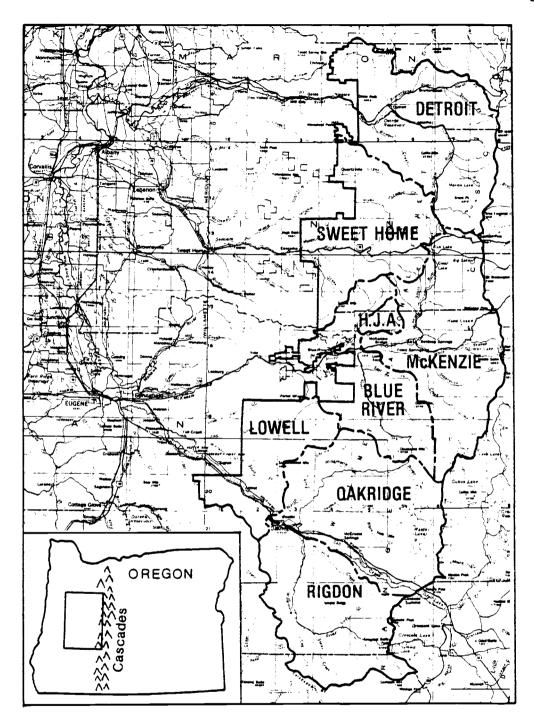


Figure 2. Location of the Willamette National Forest, its ranger districts, and the H.J. Andrew Experimental Ecological Reserve (HJA) in Oregon. The six mile by six mile town ship grid provides scale.

was therefore used to accomodate the variation in forest sites and conditions. Dry coniferous forests are herein defined as forests usually over 100 years old, within the <u>Tsuga heterophylla</u> Zone (Franklin and Dyrness, 1973) lacking significant <u>Tsuga</u> in any size class and more similar to the <u>Pseudotsuga/Holodiscus</u> type than to any other habitat type of Dyrness et. al. (1974). Oak balds of <u>Quercus</u> <u>garrayana</u> which are typically scattered at low elevations along the south-facing slopes of major river drainages (Hickman, 1968, 1976) were not studied. The requirement that study sites not fit any other habitat type was used to separate mesic stands young enough to have no <u>Tsuga</u> reproduction. Some <u>Tsuga</u> climax stands were sampled for comparison with the dry site stands.

This study has two distinct aspects. The first is characterization of floristic and physical features of dry coniferous forests. This work was guided by four objectives:

1. Develop a plant community classification for the dry coniferous forests in the study area, relating it to the classification of Dyrness et. al. (1974).

2. Characterize the floristics, structure, soils, productivity and topographic and geographic locations of these communities.

3. Examine fire history in these stands using fire scars, tree ages and other evidence of past fires.

4. Quantify the temperature and moisture environments of dry coniferous forests and compare them with more mesic sites.

Vegetation analysis addressed the first three objectives and

results are reported in Chapter 4. Measurements of growing season temperatures and plant moisture stress provide the quantitative data for objective 4; results are reported in Chapter 3.

The second major facet of this study is analysis of stand structure and dynamics within the dry coniferous forests. This work was quided by six hypotheses:

1. Trees require more than 50 years to fully reoccupy these sites following a catastrophic disturbance.

<u>Pseudotsuga</u> and <u>Libocedrus</u> are climax in these ecosystems;
 they replace themselves as succession progresses (Whittaker,
 1975).

3. Gap-phase replacement (Watt, 1947; Bray, 1956) is an important mechanism for regeneration in mature stands.

4. Patchy tree distributions are primarily due to variation in soil properties and microtopography and thus are correlated with these factors.

5. The driest sites are occupied by first generation coniferous forests.

6. Height growth curves of <u>Pseudotsuga</u> on dry sites are of different form than those of <u>Pseudotsuga</u> on mesic sites so the site index curves of McArdle et. al. (1961) are inapplicable.

The first five hypotheses guided investigations of stand structure and developmental history; results are described in Chapter 5. Trees were dissected to test the sixth hypothesis and results are reported in Chapter 6.

Tree nomenclature follows Little (1979), and Hitchkock and Cronquist (1973) are followed for other plant species.

• •

STUDY AREA

The study area consists of the Detroit, McKenzie, Blue River, Oakridge and Rigdon ranger districts on the Willamette National Forest (Figure 2). The study area is limited to the western Cascades physiographic province (Baldwin, 1976).

Climate

The macroclimate is summer-dry and winter-wet (Waring and Franklin, 1979). Seasonal characteristics of the precipitation regime are exemplified by three weather stations spanning most of the north south range of the study area (Figure 3). The large decrease in total precipitation from Detroit to Oakridge (41 percent) is roughly paralleled by a decrease in summer precipitation (the sum of June, July and August precipitation) of 27 percent. Thus, though total annual precipitation decreases markedly from north to south, the difference is less in the driest months. Nevertheless, this difference in summer rainfall is probably important to plant growth and distribution.

Much geographic variation in annual precipitation can be seen in Figure 4 that is not evident in limited weather station data. Total estimated precipitation varies from 1015 mm (45 in) near Oakridge to over 3556 mm (140 in) in the upper Blue River drainage as estimated by the U.S. Weather Bureau River Forecast Center (Figure 4). Maximum precipitation reached on any landform and average precipitation decrease strikingly at the McKenzie River and continue to drop further south. There is a marked drop in precipitation from west to east into

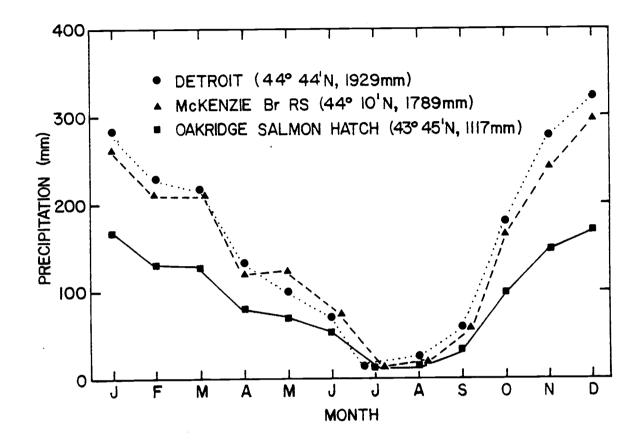


Figure 3. Seasonal course of precipitation at three weather stations spanning the north-south range of the study area. Station latitude and total annual precipitation are given in parentheses. Data is for 1931 to 1960 (Pacific Northwest River Basins Commission, Meteorology Committee 1968).

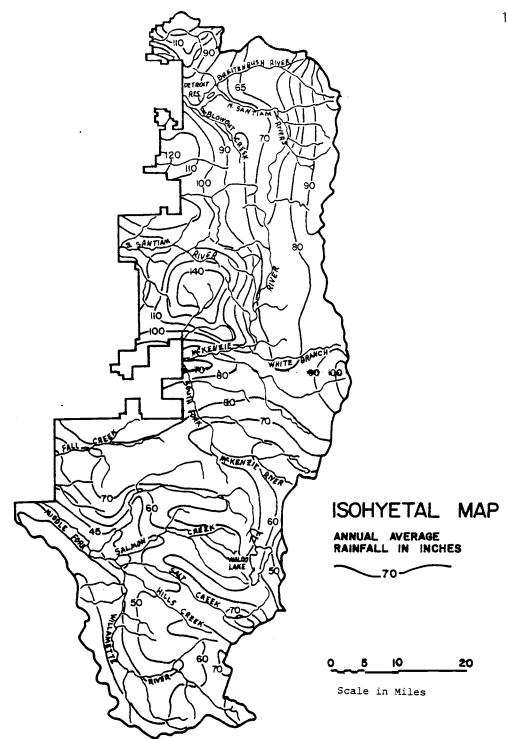


Figure 4. Isohyetal map of the study area for the period 1930-1957 using adjusted data and values derived by correlation with physiographic factors (taken from Legard and Meyer 1973, based on U.S. Weather Bureau River Forcast Center 1964). and across the upper McKenzie River drainage which is continued northward past the Breitenbush River. Precipitation adjacent to all the major rivers is consistently lower than that in the surrounding highlands as might be expected. Though the U.S. Weather Bureau River Forcast Center (1964) does not list sources for the "adjusted data" upon which their extrapolations and correlations are based it is safe to say they were quite limited especially at higher elevations. Thus only interpretations which are consistent or striking are made above. Critical summer precipitation probably follows these geographic patterns to some degree since some of the same physiographic factors probably control it as control total precipitation.

Mean monthly maximum and average daily maximum air temperatures increase with decreasing latitude (Figures 5 and 6). Both Detroit weather stations are included in Figures 4 and 5 because neither is directly comparable to the other two. The Detroit station is at a relatively high elevation and the Detroit Dam Power House station is in a steepsided canyon. Together the Detroit stations show lower average daily maximum and slightly lower mean monthly air temperatures in the north.

Potential evaporation and summer moisture deficit are available for only two stations near the study area (Figure 7). Both locations experience a substantial summer moisture deficit and it is about the same in the north (Detroit) and south (Lookout Point). Lookout Point is about 25 km to the west of the study area and receives less precipitation. Since most of this difference occurs in the winter, the nearly identical potential evaporation regimes lead to similar

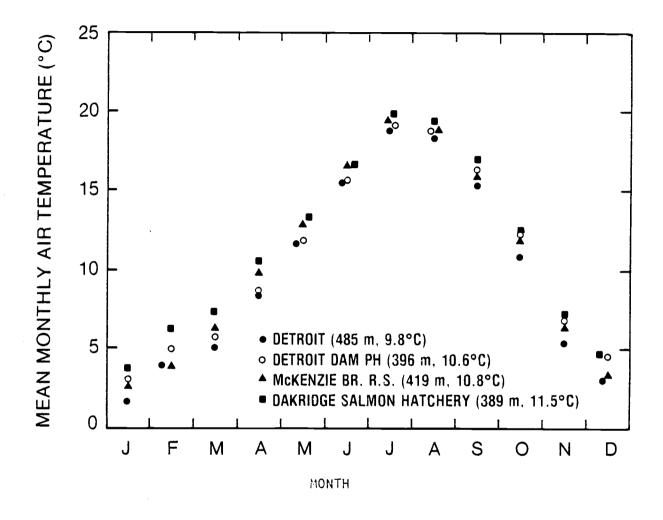


Figure 5. Mean monthly air temperature at selected weather stations in the study area for 1956 to 1965 (Pacific Northwest River Basins Commission, Meteorology Committee 1968). Station elevations and mean annual air temperatures are given in parentheses.

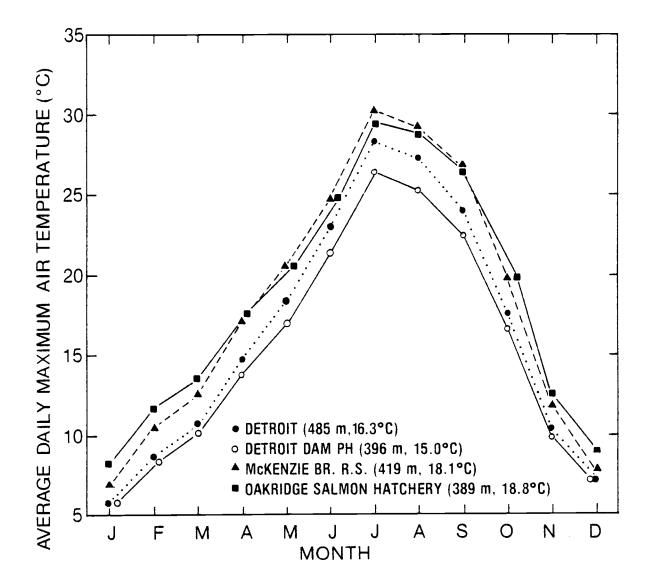


Figure 6. Average daily maximum air temperatures of selected weather stations in the study area for 1956 to 1965 (Pacific Northwest River Basins Commission, Meteorology Committee 1968). Station elevations and yearly averages of daily maximum air temperatures are given in parentheses.

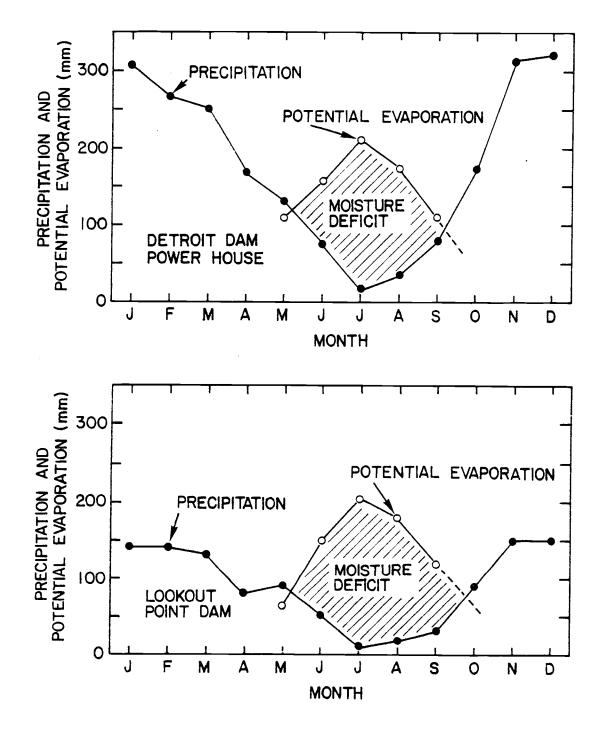


Figure 7. Moisture deficit in the north end (Detroit Dam Power House, deficit 440mm) and near the south end (Lookout Point Dam, deficit 470mm) of the study area during 1956 to 1965 (Pacific Northwest River Basins Commission, Meteorology Committee 1968). Lookout Point Dam is 25 km to the west of the study area.

moisture deficits in the two areas. Evaporative demand is an important controller of plant growth and distribution through its effect on stomatal behavior which can vary from one species to another (Waring et. al., 1975). The limited data in Figure 7 do not indicate that it varies significantly from north to south in the study area. However, this is likely in view of the known differences in evaporative demand in western Oregon (Waring et. al., 1978).

Geology

The Cascade Range is composed primarily of Cenozoic igneous rocks with minor amounts of sedimentary rocks (McKee, 1972). The Oregon Cascade Range is logically divided into the western Cascades composed of Tertiary rocks and the Pliocene and Quaternary High Cascades (Baldwin, 1976). The study area is in the central portion of the western Cascades.

The bedrock geology of the study area is described in detail by Peck et. al. (1964). The Detroit Ranger District in the north and the southern part of the Blue River District are underlain primarily by the Sardine Formation. This formation is composed of flows, breccia and tuffs of hypersthene andesite with lesser amounts of more or less silicic andesite and minor amounts of basalt and dacite.

Most of the McKenzie District, and the eastern edge of the study area as a whole, are underlain by the volcanic rocks of the High Cascades and the Boring Lava, both of Pliocene and Quarternary age. These rocks are generally more basic than those of the Sardine Formation. They are composed of flows and less abundant pyroclastic

rocks of basaltic andesite and olivine basalt.

The majority of the Oakridge and Rigdon Districts in the southern end of the study area are on the Little Butte Volcanic Series. In these districts Peck et. al. (1964) map most of this series as tuff and less abundant domes and flows of andesite, dacite and rhyodacite. The other, quite common, mapping unit is composed of basaltic andesite and olivine basalt flows.

These bedrocks are important soil parent materials but volcanic ash is also important in the study area.

Soils

The study area has generally not been intensively surveyed. Extensive data are available, however (Legard and Meyer, 1973; Willamette National Forest, 1973), and the papers in Heilman et. al. (1979) give a good overview of the soils in the region dominated by <u>Pseudo-</u> tsuga.

Mitchel (1979) states that in this region (western Oregon and Washington), Inceptisols are the most wide spread soils followed by Alfisols and Ultisols. Other soil orders, including Entisols, are more poorly represented. The Willamette National Forest soil resource inventory (Legard and Meyer, 1973; Willamette National Forest, 1973) indicated Inceptisols as the most common order in the study area followed by Alfisols with lesser amounts of Ultisols and Entisols. Brown and Parsons (1973) classified the soils on over half of the 19 H.J. Andrews reference stands as Dystrochrepts; the remaining soils were other Inceptisols and Alfisols. These sources are in general

agreement, especially on the predominance of Inceptisols. The soil taxonomic nomenclature follows the Soil Survey Staff (1975).

Several factors contribute to the predominance of Inceptisols. Mitchel (1979) cites the prevalence of young parent materials, such as occur on sites with active erosion or deposition, and occurrence of parent materials highly resistant to weathering, such as silicic pyroclastics. The volcanic ash mixed with colluvium and residuum in many soils in the study area (Legard and Meyer, 1973) may be younger than other parent materials. The prevalence of volcanic ash (Legard and Meyer, 1973) and high precipitation (at least north of the McKenzie River) promote the formation of allophane (Buol et. al., 1978) and other amorphous clays (Mitchel, 1979) which do not form illuvial horizons (Mitchel, 1979) and so slow profile development. The low bulk densities (below 0.9 gr/cc) of most H.J. Andrews reference stand soils (Brown and Parsons, 1973) probably result in part from volcanic ash parent material and production of amorphous clays in the high rainfall environment.

ENVIRONMENT

Quantification of the dry coniferous forest environment and comparison with environments of <u>Tsuga</u>-climax habitats is the study objective addressed in this chapter.

Methods

During the first field season seven reference stands were established covering most of the latitudinal range of the study area (Figure 8, Table 1). In this study reference stands are tenth hectare vegetation plots where plant moisture stress and soil and air temperatures are measured. Pseudotsuga was judged the climax species on five sites. One stand each in the northern and southern ends of the study area were on sites where Tsuga was judged the climax tree. Environmental comparisons of dry and adjacent more mesic sites at similar elevations were thus possible in these areas as well as at the H.J. Andrews. Specifically, dry site plot 24 was paired with Tsugaclimax plot 43 in the Detroit District and dry site plot 8 was paired with Tsuga-climax plot 44 in the Oakridge District (Table 1). Few good dry sites were found in the Detroit District during the first field season (see Chapter 4) so the Detroit reference stands are substantially higher in elevation than all the other reference stands. Additional data on the reference stand vegetation plots are in Appendices 4, 5 and 7.

At each reference stand predawn plant moisture stress (Waring and Cleary, 1967) was measured during the summers of 1977 and 1978 on one

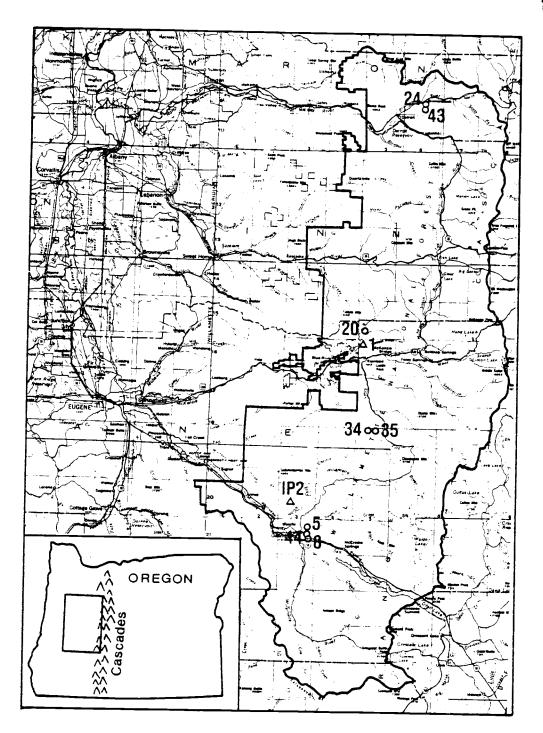


Figure 8. Locations of plots used as reference stands (numbered circles and plot 1) and of intensive study plots (plot 1 and IP2).

Reference stand number <u>1</u> /	Ranger district and elevation (meters)	Slope (%) and aspect (deg)	Topographic position	Community type
24	Detroit 880	68 225	Below brow of bench	<u>Pseudotsuga/Holodiscus</u> /grass <u>Collomia</u> phase
43	Detroit 870	65 170	Top slope draw	Pseudotsuga-Tsuga/Corylus ^{2/}
1 (HJA) <u>3/</u>	Blue River 490	60 230	Side ridge and side slope	Pseudotsuga/Holodiscus-Acer and Pseudotsuga/Holodiscus/ grass, primarily Collomia phas
20 (HJA) <u>3</u> /	Blue River 690	85 180	Side ridge and side slope near ridge crest	Pseudotsuga/Holodiscus/grass both phases and Pseudotsuga/Holodiscus-Acer
2 (HJA) <u>3</u> /	Blue River 520	35 290	Toe slope	<u>Tsuga/Rhododendron/Berberis2/</u>
34	Blue River 900	75 225	Probable old landslide scar	Pseudotsuga/Holodiscus-Acer
35	Blue River 900	60 185	Brow of main ridge	<u>Pseudotsuga/Holodiscus/grass</u> <u>Aspidatis</u> phase
5	0akridge 560	25 210	Middle third side slope	Pseudotsuga/Holodiscus-Acer and Pseudotsuga/Berberis/Disporum
				20

Table 1. Reference stand physical data and community types.

Table 1. continued.

Reference stand <u>1</u> / number	Ranger district and elevation (meters)	Slope (%) and aspect (deg)	Topographic position	Community type
8	0akridge 630	63 260	Top slope side ridge	<u>Pseudotsuga/Holodiscus</u> /grass <u>Collomia</u> phase
44	0akridge 640	75 315	Top slope draw	<u>Pseudotsuga-Tsuga/Corylus</u>

 $\frac{1}{1}$ Listed from north to south. Reference stands which do not have H.J.Andrews numbers are on vegetation plots of this study with the same number.

 $\frac{2}{1}$ These relatively mesic habitat types are defined by Dyrness et al. (1974).

3/ H.J.Andrews reference stand numbers. Vegetation plots 2 and 48 sample portions of reference stands 20 and 1, respectively.

to three meter tall understory Pseudotsuga. In 1978 United Electric thermographs were installed previous to budbreak by understory Pseudotsuga saplings and remained until the end of October. They recorded soil temperature at a depth of 20 cm and air temperature at one mater above the ground with a probe shielded from direct beam solar radiation. Temperature growth index (Cleary and Waring, 1969) was calculated from these data for the growing season. The growing season for reference stand 20 is defined as the period from budbreak of understory Pseudotsuga saplings to the first fall frost or October 15, whichever comes first. This definition has been used at the H.J. And rews since $1973.\frac{2}{}$ The same definition was used for reference stands 5, 8, 44, 35, 24, and 43 except October 30, 30, 30, 20, 1, and 1, respectively, were used instead of October 15 to account for latitudinal changes in growing season length. The temperature growth index and plant moisture stress data locate the reference stands on the environmental grid (Waring et. al., 1972) used at H.J. Andrews (Zobel et. al., 1976).

Results

There is a general trend of greater moisture stress in <u>Pseudo-</u> <u>tsuga</u> in the south than in the north (Table 2). However, the higher elevations of the Detroit reference stands could account for the correlation of increasing stress with decreasing latitude. In both

^{2/} Personal communication with Arthur W. McKee, Site Director, H.J. Andrews Experimental Ecological Reserve.

Table 2. Observed maximum predawn plant moisture stress (mean <u>+</u> standard error when available) and temperature growth index. Moisture stress was measured on one to three meter tall understory <u>Pseudo-</u> <u>tsuga</u> (stands 24,43,1,20,34,35,5,8,44) and <u>Tsuga</u> (stands 43 and 2).

Area and approx. elevation (meters)	Reference sta	and Climax Species	Plant No. trees	Moisture Stress	s (bars) 1978	Temperature growth index (1978 only)
Detroit (880 m)	24 43	<u>Pseudotsuga</u> Tsuga and Pseudotsuga	5 8	14.4 ± 1.0 5.7 ± .6	9.9 ± 1. 9.3 ± 1.2	/ ^
H.J. Andrews (500-700 m)	l 20 2	Pseudotsuga Pseudotsuga Tsuga	6 7 5	15.5 19.1 ± 1.5 6.4	16.0 ± .0 14.3 ± 2.5 7.6 ± .5	8 81
Blue River (900 m)	35 34	<u>Pseudotsuga</u> Pseudotsuga	4 4	16.7 ± 1.1 15.7 ± 2.2	6.5 ± 1.9 9.2 ± 1.	9 74 6 NA <u>1</u> /
Oakridge (600 m)	5 8 4 4	Pseudotsuga Pseudotsuga Tsuga and Pseudotstuga	4 5 6	22.3 ± 3.9 18.4 ± .6 14.3 ± 2.1	13.1 ± 2.0 15.8 ± 1. 7.8 ± 1.9	7 96

<u>l</u>/ Data not available.

•

years trees on <u>Tsuga</u>-climax or -coclimax communities had significantly lower stresses than those on <u>Pseudotsuga</u>-climax communities in the same areas, except at Detroit in 1978.

Stresses were low in 1977 and 1978 partially because of significant August rains. Zobel et. al. (1976) found comparatively wide differences in moisture stress between communities in 1972 when H.J. Andrews reference stand one showed 26 bars (Figure 9), 10 bars higher than in 1977 and 1978.

Temperature growth index shows a pattern similar to plant moisture stress for the year in which it was determined (Figure 10). All dry sites had higher temperature growth indices than the <u>Tsuga</u>-climax or -coclimax sites they were paired with. Temperature growth index was highest in the south and, with the exception of stand 35, decreased steadily with increasing latitude on the dry sites. However, the correlation of temperature growth index with latitude can be explained by its correlation with elevation (Figure 11).

Thermograph and moisture stress data summaries are given in Appendix 2.

Discussion

It is evident that the <u>Pseudotsuga-climax sites</u> are hotter and drier than the <u>Tsuga-climax sites</u>, as assessed by temperature growth index and plant moisture stress. However, the relationship of both of these indices to latitude is confounded by elevation. However, since in all seasons temperature decreases and precipitation increases with

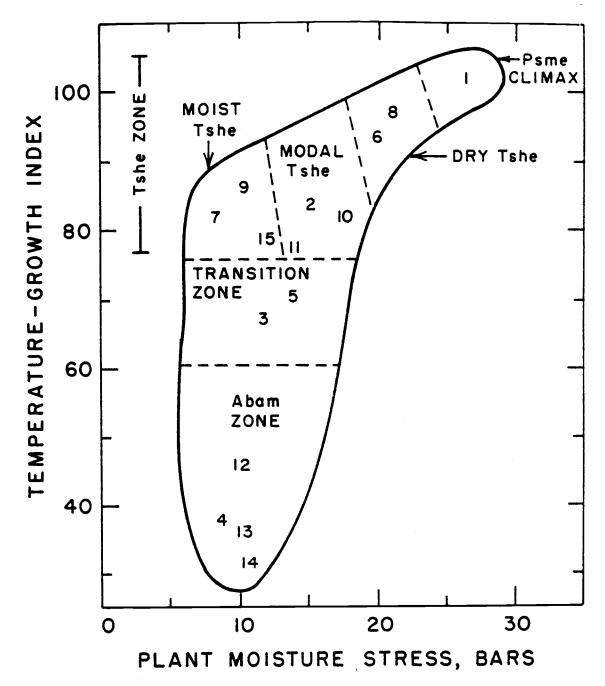


Figure 9. H.J. Andrews reference stands placed in the temperature growth index versus plant moisture stress environmental grid of Waring et al. (1972) using primarily 1972 data (figure 7 of Zobel et al. 1976). Reference stand 1 is in climax <u>Pseudotsuga</u> (Psme). Tshe is <u>Tsuga</u> <u>heterophylla</u>, Abam is <u>Abies</u> amabilis.

Figure 10. Reference stands placed in the environmental grid of Waring et al. (1972) using 1978 data.

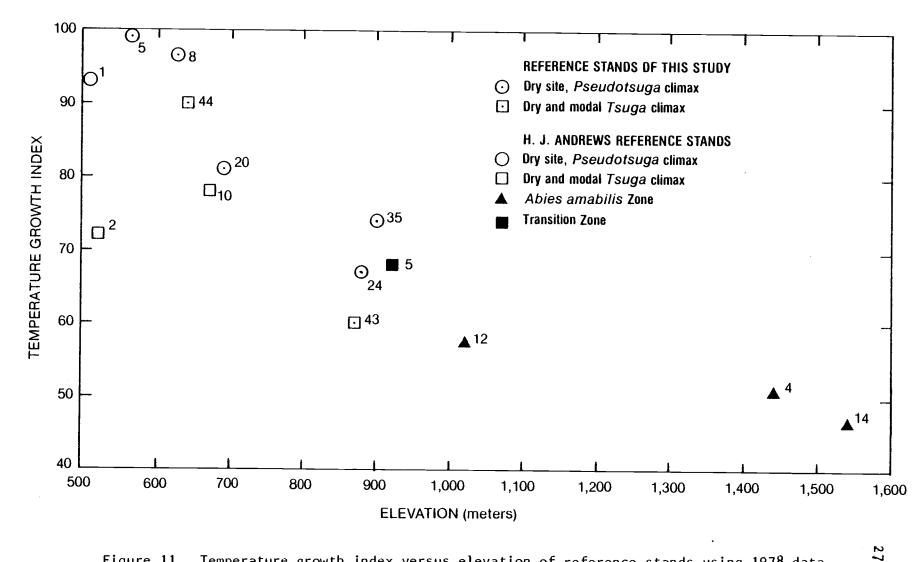


Figure 11. Temperature growth index versus elevation of reference stands using 1978 data.

latitude (Chapter 2), moisture stress and temperature growth index might be expected to decrease with latitude when other site variables are held constant.

The similar moisture stresses on stands 24 and 43 in 1978 can probably be explained by the generally low stresses that year which may make slightly dissimilar sites difficult to distinguish. In a like manner moisture stress on H.J. Andrews reference stands one and eight (same habitat type as plot 43) was similar in one moderate year and quite different in a dry year (Figure 12). The short record shows dry years (i.e., reference stand one moisture stress is over 25 bars) have been relatively uncommon (Figure 12). So short term studies which do not include moisture stress measurements in a dry year may result in poorer separation of sites.

Dry site communities occur over a fairly wide range of temperature growth index values (Table 2). The coldest of these is comparable to that of transition zone reference stand five (Figure 10). There is much overlap of dry site values with indexes of <u>Tsuga</u>-climax sites. However, there is no overlap in moisture stresses in either year's data. Moisture, at least as assessed by maximum predawn plant moisture stress, is more important in distinguishing these sites from <u>Tsuga-</u>climax sites than is temperature, at least as assessed by temperature growth index.

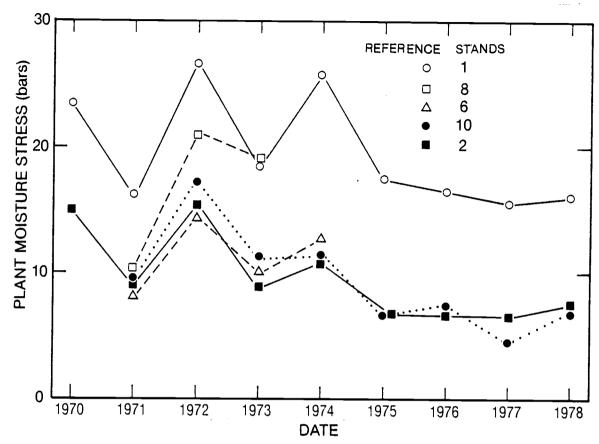


Figure 12. Yearly variation in plant moisture stress on dry and modal H.J. Andrews reference stands. Sources are: 1970-1972, Zobel et al. (1973); 1973-1976, Emmingham and Lundberg (1977); reference stand 8, 1973, computer printout titled "H.J.Andrews thermograph data, 1973" on file at U.S. For. Ser. For. Sci. Lab., Corvallis, Ore.; 1977, 1978 data collected by Bill Emmingham and Art McKee, respectively, and obtained from Fred Bierlmaier, H.J. Andrews Environmental Data Manager.

VEGETATION

Vegetative investigations of dry coniferous forest are reported in this chapter. These are: development of a community classification; characterization of the floristics, structure, soils, productivity and topographic and geographic locations of the communities; and and examination of fire history. Additional data on stand structure, soils and fire history are provided in Chapter 5. Height growth and some of its implications are discussed in Chapter 6.

Methods

This study differs from most northwestern plant community investigations in excluding most of the vegetation in the geographical range covered. In most studies (e.g., Mitchel, 1972; Dyrness et. al., 1974; Atzet, 1979; Franklin et. al., 1980) the geographic boundaries are set and then all or most of the included forest is studied. The dry coniferous forests had, however, already been segregated from the total range of forests in the vicinity of the H.J. Andrews Experimental Ecological Reserve (Dyrness et. al., 1974) because they are <u>Pseudotsuga-</u>climax according to their size class distributions, a feature of considerable interest. Since climax <u>Pseudotsuga</u> forests increase in southwestern Oregon (Franklin and Dyrness, 1973) and are nearly absent in the Washington Cascade Range, the study area was extended north and south of the H.J. Andrews to pick up some of this latitudinal variation.

Field Methods

The study type, herein called "dry site" or "dry coniferous forest," includes <u>Tsuga</u> zone (Franklin and Dyrness, 1973) communities which are usually greater than 100 years old, lack significant <u>Tsuga</u> reproduction, and do not fit into any <u>Tsuga</u> climax (or coclimax) habitat type of Dyrness et. al. (1974). This definition was used as a field guide in selecting dry site plots.

Office and field searches were both used to locate dry sites in the matrix of mesic forests. Initially three days were spent in the supervisors office of the Willamette National Forest in Eugene where color aerial photographs, other source documents and personnel were consulted. Many areas of mature forest on south- to west-facing slopes thought likely to support dry coniferous forest were delineated on maps. Additional potential sites were located throughout the field season by consulting the Total Resource Inventory files and knowledgeable personnel at ranger stations. Using these methods areas of potential dry site stands were located on all major drainages in the study area.

Plots were then located in dry coniferous forest avoiding ecotones to non-dry site vegetation. Typically in this region, vegetation plots are placed in areas of homogenous vegetation, soil and topography with no signs of recent man-caused or natural disturbance (Dyrness et. al., 1974; Mitchel and Moir, 1976; Bailey, 1966; Franklin et. al., 1980; Juday, 1976). This was not possible due to the typical fine-scale heterogeneity of dry site soils and vegetation and frequent occurrence of fire (discussed later). Several plots were also located in <u>Tsuga</u> climax stands especially in the Detroit Ranger District where recent fires (within last 100 years) and the cooler, wetter climate (Chapter 2) result in a small number of suitable dry site stands. In **all**, 73 plots were installed, 57 and 16, respectively, in sites interpreted as dry sites and <u>Tsuga</u> climax habitat.

.Circular plots of 500 or 1,000 m^2 , uncorrected for slope, were used to sample vegetation. The larger plots were more frequently used in order to reduce the general tendency to overestimate basal area and obtain more representative stand tables (Daubenmire and Daubenmire, 1968). Occasionally 500 m^2 plots were used to avoid crossing ecotones or including more mesic vegetation. These large plots tended to average out the within-stand heterogeneity of dry sites. Smaller plots (e.g., 250 m^2 or less) could have been used to sample two or three significantly different plant assemblages in one contiguous piece of dry site. Causes and consequences of this variability are discussed later.

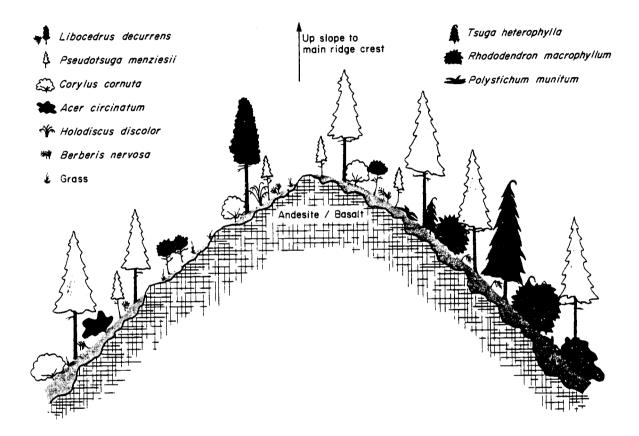
Information collected on the plots included: location, slope (percent), aspect (degrees) and elevation (meters), either from topographic maps or an altimeter, and estimated plant cover in percent for all vascular plant species (Franklin et. al., 1970). Cover of tree species included all unovertopped trees (sensu Smith, 1962), including those in reproductive size classes. Vascular plant species were recorded using the four- to six-character abbreviations of Garrison et. al. (1976). Life form (tree, shrub, herb, etc.) also follows Garrison et. al. (1976). A list of all vascular plant taxa encountered on the vegetation plots and their abbreviations is given in Appendix 1. Notes were taken on topographic location.

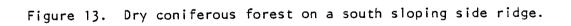
Trees taller than breast height (137 cm) were tallied by 10 cm size classes except diameters of trees greater than 120 cm were recorded individually. Tree regeneration (shorter than breast height) was tallied separately on a minimum of four, 12.5 m^2 circular plots (not corrected for slope) within the main plot. The primary rooting medium (mineral soil or rotten wood) was recorded for each tree and seedling.

Species alpha codes and cover were recorded on TP56 data set forms (Hawk et. al., 1979) which allowed keypunching directly into a non-positional format: species alpha code, cover; species alpha code, cover; etc.

At least two <u>Pseudotsuga</u> were selected as site trees (Husch, Miller and Beers, 1972) when suitable trees were available. More trees were selected when time allowed or when other coniferous species were an important canopy component. Site trees were increment cored at breast height and information for determining height was collected using an abney level. Core length to the pith (when present in the core) or to where the core passed the pith, sapwood thickness, and current incremental growth (rings/cm) were recorded before cores were sealed in plastic straws for transport to the lab and counting under a binocular microscope. Also, the angle between the core and the perpendicular to the rings at the end of the core, and the incremental growth rate (rings/cm) along the perpendicular were recorded on cores which did not pass the pith. Occasionally easily read cores were counted in the field.

One or two soil pits were dug on every plot. One pit was dug when relatively uniform tree stocking, understory vegetation, topography and soil surface indicated relatively uniform soils on the plot. Such uniformity was unusual, however. Where these features varied markedly from one part of the plot to another two soil pits were dug, one in each indicated soil type. Soil pits generally extended to one meter or bedrock. Since the major objective was description of the diagnostic horizons in a pedon (Soil Survey Staff, 1975), this depth guideline was often modified based on the exposed profile. Pit descriptions included local topography, forest floor, depth, texture, structure, consistency, coarse fragments, roots, charcoal, types of rock fragments and bedrock type (when observed).


Evidence of fires, such as charcoal on tree bark, was recorded and fire scars were increment cored and counted in the field with a hand lens or in the lab under a binocular microscope as needed. When trees are scarred they produce shock rings (Shigo and Marx, 1977) which can be identified by their darker appearance. Shock rings in <u>Pseudotsuga</u> and <u>Tsuga</u> become too faint to recognize only one or two cm from the scar. Thus scar dating by boring can require many corings. First the scar face is cored, giving a ring count which underestimates scar age. A second increment core is taken just outside the scar face to find the shock ring, which may be nonexistent, faint or easily identifiable; other wide, dark rings of unknown origin may be present. Successive cores are then taken in the scar face moving toward the outside of the scar until scar ages converge to the shock ring age. Often


several attempts are necessary to find a reliable age of faint shock rings or those obscured by the heart rot that often develops behind scars. Typically four and as many as 12 cores were taken in one scar and some scars could not be aged. When this occurred scars on other trees were usually found and aged.

Laboratory Methods

<u>Non-floristic data</u>. The topographic position of each plot was characterized based on field notes and memory as one of the following. (1) Side ridge on one of the typically accordant ridges of the western Cascades (Figure 13). (2) Below the brow of a bench or ridge (Figure 14). (3) Recent landslide scar (Figure 15). (4) Side slope, generally smooth and not identifiable as one of the other positions. (5) Below a cliff face. (6) Bench with slope less than 30 percent. (7) Main ridge crest. (8) Draw with at most an intermittent stream. Other topographic positions are common but were not sampled in this study.

Cores with narrow rings were counted in the lab under a binocular microscope. The data needed for height calculations and the core data were then used as input to program Ageht (see Appendix 9) which calculated ages when extrapolation was necessary and calculated tree height when it was not already done in the field. Ageht assumes ring width decreases at a constant rate from the pith outward which is more realistic than assuming a constant ring width as is often done but is not identical to the commonly found exponential decrease in ring width with age (e.g., Fritts, 1976). This technique cannot account for early uncored periods of suppression.

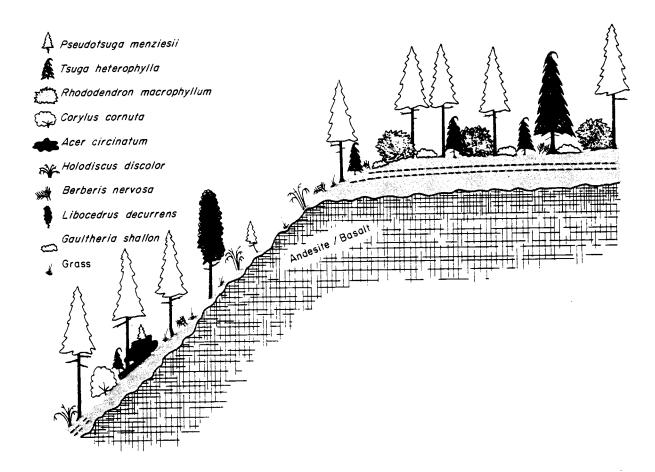


Figure 14. Dry coniferous forest on a south facing side slope below the brow of a bench.

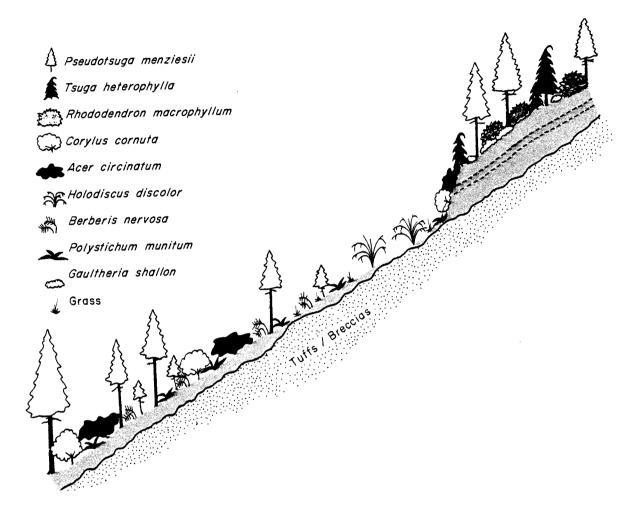


Figure 15. Dry site <u>Pseudotsuga</u> in a southwest facing land slide scar.

Site index was then estimated using the tables in Agricultural Technical Bulletin 201 (McArdle et. al., 1961). King's (1966) site index curves, though an improvement over those in Bulletin 201 because they are polymorphic and derived from sectioned tree data (Curtis, 1964; Jones, 1969), were not used because they are applicable only on trees up to 120 years old.

Soil profile descriptions generally allowed identification to soil order (Soil Survey Staff, 1975), though Ultisols were included in Alfisols since base saturation was not available.

Available soil water holding capacity (0.3 to 15 bars) was estimated for each pit.by program Sh2o (see Appendix 9). This program calculates the effective thickness of each horizon as the product of horizon thickness and 100 minus percent coarse fragments. Effective thickness times the available water capacity for that textural class (Table 3) gives horizon water holding capacity. Horizon capacities were summed to bedrock or a maximum of one meter and used to characterize the plots and communities.

Stand tables (sensu Husch et. al., 1972) and basal areas by tree species and rooting medium were compiled by program Stantab (see Appendix 9) using the tree tally data.

Several methods were used to estimate ages of past fires on the vegetation plots. The stand was assumed to have been initiated by one or more fires and this age called stand age or age of the oldest cohort, was estimated by the age of the oldest tree on the plot. Larger trees were aged with less accuracy because greater extrapolations were necessary in program Ageht. Fires occurring since stand initiation

39,

Soil Textural Class	Available Water-holding Capacity (cm/cm)
Sand	.06
Loamy sand	.07
Sandy loam	. 12
Loam	. 17
Sandy clay loam	. 15
Silt loam	.20
Silt	. 20
Sandy clay	. 16
Clay loam	.20
Silty clay loam	.20
Silty clay	. 16
Clay	.15

Table 3. Available water-holding capacity by soil textural class. These are the median values from the Soil Conservation Service (1971).

1/ A value for silt was not given in the reference so the value for silt loam was used.

.

were usually aged from fire scars. Ten stands had trees with charred bark indicating a fire had occurred but no datable scars associated with that fire. In these stands the fire age was estimated as onehalf of the previous fire age but not greater than 120 years. Fire ages in eight stands were based in marked diameter cohorts and the relationships of these cohorts to diamters of aged trees. Three of these ages were of large old-growth cohorts undatable due to heart rot. These methods are less accurate but only 10 and eight of 135 fire ages are based on char and marked diameter cohorts, respectively, while 89 and 28 fire ages are based on increment cored trees and fire scars, respectively.

The last major fire is the one estimated to have reinitiated 50 percent or more of the canopy based on field observations of stand structure and the stand tables. The effects of disturbances of this size were usually obvious so this age was not difficult to determine from the fire ages.

A fire interval is defined as the length of time between two consecutive fire dates on a plot. As many as four fires occurred per plot. The mean fire interval for a community is calculated as the arithmetic average of all fire intervals on plots in the community.

All ages have been corrected for sampling year and so are as of 1980.

Community classification

The TP56 species cover data sheets were keypunched and the cards run through program Cktp56 (see Appendix 9) which printed the punched

data in a form very similar to the field sheets and so increased the accuracy and speed of keypunch verifying.

Two positionally formatted data sets were produced from this data using the program Simdat2 (see Appendix 9). The first (called "large") data set contained all vascular plant taxa present on three or more plots (131 taxa) and was used in program Aidn and for the species cover tables. In the second (called "small") data set, species which occurred in less than four or five plots or were thought to have little classificatory significance or both were excluded. This data set of 98 taxa was needed for analysis by computer programs with limited array sizes. Minor or difficult to distinguish species of the same genus were lumped in the construction of both data sets (see Appendix 5 for details of their construction). For example, covers of <u>Poly-</u> <u>podium glycyrrhiza</u> and <u>Polypodium hesperium</u> were combined and labeled Polypodium in the second data set.

Development of the community classification followed seven procedures or steps. In general, there was much interaction between the ordination and classification techniques. Judgments were frequently required in choosing methods, defining communities and assigning borderline plots.

1. Two similarity and two dissimilarity measures were computed for each pair of plots using program Aidn. $\frac{3}{}$ These values were consulted throughout the classification for purposes such as assigning

^{3/}Aidn was designed by Dr. Scott Overton of the OSU Statistics Department and was obtained from Dr. David McIntyre of the Department of Botany and Plant Pathology at OSU.

borderline plots to community groups. The similarity measures in Aidn are analogous to covariance and product-moment correlation coefficient.^{5/} The dissimilarity measures used are MacArthur's (1965) distance measure and euclidean distance using species cover proportion so that the sum of all covers on a plot equals 1.0 (Orloci, 1975).

 Plots were divided based on the reproducing tree species as indicated by the diameter distributions (Daubenmire and Daubenmire, 1968). This was the primary criterion used in separating stands in which Pseudotsuga and Libocedrus are climax.

3. Several species of shrubs found on dry sites (e.g., <u>Acer</u> <u>circinatum</u>) are most abundant in moister habitats (Dyrness et. al., 1974). These shrubs were used in initial separation of the <u>Pseudo-</u> <u>tsuga-</u>climax plots along a complex gradient which probably includes moisture. A matrix of correlations (Kendall's tau, Daniel, 1978) facilitated separation of these shrubs from others presumably less strongly limited by moisture. A non-parametric correlation coefficient was used because many species have a skewed cover versus frequency distribution so errors were not expected to be normally distributed.

4. Species cover tables were constructed after steps 2 and 3 using program Order3 (see Appendix 9). This program computes average cover, constancy and importance for the species in each group and thus aided in characterizing groups and identifying plots which should be reassigned. Importance is the square root of the product of average cover (percent) and constancy (percent).

5/ Personal communication with Dr. David McIntyre, June 23, 1980.

5. Polar ordinations (Cottam et. al., 1978) of all plots and dry site plots only were run to determine if groups based on steps 1 through 3 could be separated based on all the species present and to look for other possible groups. Program Ordiflex (Gauch, 1977) proved to be a versatile tool for this and other ordination techniques. Many runs were made using program and user chosen endstands and standardized and unstandardized data. Data standardizations included: (1) species maxima standardized to 100; (2) plot totals relativised to 100; (3) both (1) and (2). The third method is comparable to that of Bray and Curtis (1957).

6. Principal components analysis (Cooley and Lohnes, 1971; Pimentel, 1979) was also run as part of Ordiflex (Gauch, 1977) for the same purposes as polar ordination. The principal components subroutines in Ordiflex give species ordinations along with the plot ordinations. Thus plots and species locations can be examined along corresponding principal components. Principal components analysis has been found to distort coenoclines when the between plot diversity is very large (Gauch and Whittaker, 1972; Noy-Meir and Austin, 1970). This occurs primarily because species rarely distribute themselves linearly as assumed by principal components along extensive environmental gradients. However, dry coniferous forests occupy a narrow portion of the forested environments in the study area (Dyrness et. al., 1974). So it was hoped that between plot diversity would be low enough to use principal components effectively.

7. Reciprocal averaging (available in Ordiflex, Gauch, 1977) was used for the same reasons as PCA and Polar ordination. This technique

was recently introduced to phytosociology by Hill (1973), and has been found to result in less distortion than principal components and polar ordinations when used to ordinate simulated coenclines (Gauch et. al., 1977; Whittaker and Gauch, 1978).

Latitudinal and temporal species correlations. Correlations between species and latitude were examined by coding the areas numerically from north to south and using SPSS (Nie et. al., 1975) to compute the nonparametric correlation coefficient Kendall's tau (Daniel, 1978) between area code and species cover on the dry site plots only. The areas, coded 1 through 7, respectively, are Detroit Ranger District, upper McKenzie River Basin, H.J. Andrews Experimental Ecological Reserve, remainder of the McKenzie Ranger District, Blue River Ranger District (exclusive of the Andrews), Oakridge Ranger District and Rigdon Ranger District.

Correlations between species cover and time since last major disturbance were also investigated using Kendall's tau in SPSS. This was important because strong correlations between species critical to the community classification and time would imply a successional relationship between communities.

Plant Communities

The entities described here are called plant community types and not habitat types because most of the plots used in their descriptions have experienced a major disturbance within the last 160 years. Thus, though the potential climax tree species can often be inferred from size classes when growth habits of the species are known, the vegetation on most plots has probably not stabilized.

This classification was developed using plant cover data almost exclusively, so discernible differences in other community characteristics result from correlations with vascular plant abundance.

Community types with their abbreviations and member plots are in Table 4. Three types are associated with a <u>Pseudotsuga</u> and two with a <u>Libocedrus</u> climax. A key to the plant communities is in Appendix 3. Average cover and constancy of species found on three or more plots are listed by community in Table 5 and are listed for each plot in Appendix 6. It is evident that many species, even some with high constancy, have low cover. A long list of species with low covers is a common characteristic of dry coniferous communities.

Basal areas are higher than expected (Table 6). This is probably due in part to inadvertant placement of plots in areas with high stocking. Any such bias is probably consistent. Basal areas range widely and are highest in the <u>Libocedrus</u> communities. Mean <u>Pseudotsuga</u> 100 year site index (McArdle et. al., 1961) ranges from 35 to 42 m and the communities with higher sites also have higher basal areas.

Stand tables were used to infer climax species status instead of cover of reproductive size trees as is commonly done. In general, the $1,000 \text{ m}^2$ plots seemed to provide representative stand tables (Table 7, Appendix 7).

Variation in stand age, time since last major disturbance and mean interval between fires is large (Table 8) reflecting the varied fire histories of these stands.

Community type name	Abbreviation	Computer Code	Member plots
<u>Pseudotsuga</u> <u>menziesii/Holodiscus</u> <u>discolor/</u> grass	Psme/Hodi/grass	PMHDGR	
<u>Aspidotus densa</u> phase	Psme/Hodi/grass Asde phase	PMHGA	15,27,35,65
<u>Collomia heterophylla</u> phase	Psme/Hodi/grass Cohe phase	PMHGC	8,9,10,12,16,24,30,41, 51,52,53,54,55,56,57, 62,63,68,72
Pseudotsuga menziesii/Holodiscus discolor- Acer circinatum	Psme/Hodi-Acci	PMHDAC	1,2,4,7,17,28,29,34,36, 42,48,58
Pseudotsuga menziesii/Berberis aquifolium/ Disporum	Psme/Beaq/ ùis po	PMBAD I	5,13,14,49,60,64,66, 67,69
Libocedrus decurrens/Whipplea modesta	Lide/Whmo	LDWM	11,18,45,46,50,59,61
Libocedrus decurrens/Chimaphila umbellata	Lide/Chum	LDCU	3,32,47,71,73

Table 4. Dry site community types recognized with abbreviations, computer codes and member plots.

	Pseudo	tsuga/Holodiscu	us/grass	Pseudotsuga/	Pseudotsuga/	Libocedrus/	Libocedrus/
	Aspidotis	ColTomia	both	<u>Holodiscus</u> -	<u>Berberis</u> /	Whipplea	<u>Chimaphila</u>
Таха	phase	phase	phases	Acer	Disporum		
			•	-(cover / const	ancy)	·	
Number of plots	4	19	23	12	9	7	5
Trees							
Abies procera	-	1/5	1/4	-	-		. 1/20
Abies grandis	-	1/11	1/9	-	.6/22	.6/29	.1/40
Acer macrophyllum	-	3/53	3/43	4/50	3/44	5/14	1/60
Arbutus menziesii	12/50	2/42	4/43	8/25	10/44	.2/14	1/20
Castanopsis chrysophylla	-	.8/32	.8/26	.9/50	.2/22		.2/60
Libocedrus decurrens	12/75	9/53	10/57	4/50	7/56	29/86	34/100
Pinus lambertiana	. 1/25	2/37	2/35	3/33	.4/33	.8/43	-
Pinus ponderosa	25/25	-	25/4	-	15/22	8/14	
Pseudotsuga menziesii	67/100	69/100	69/100	71/100	76/100	62/100	52/100
Prunus	-	.1/11	.1/9	-	-	-	-
Quercus garryana	4/25	.6/11	2/13	2/8	. 1/22	-	-
Taxus brevifolia	-	1/5	1/4	.2/17	-	-	. 1/60
Tsuga heterophylla	-	3/11	3/9	1/17	-	-	2/20
Tall Shrubs							
Acer circinatum	. 1/50	1/47	.9/48	7/92	5/22	.8/43	.7/60
Acer glabrum	-	6/5	6/4	-	-	-	-
Amelanchier alnifolia	. 1/25	.3/37	.3/35	.2/42	2/33	-	.1/20

Table 5. Cover and constancy by Community of taxa in the large data set (see Appendix 5) occuring on three or more dry site plots. Cover is calculated as the average over all the plots in which a taxa occurs because this is the expected cover if the species is present. Genus epithets without species include all taxa in the genus not identified to species.

5

,

Table 5. continued.

	Pseudo	tsuga/Holodisc	us/grass	Pseudotsuga/	Pseudotsuga/		Libocedrus
	Aspidotis	<u>Collomia</u>	both	Holodiscus-	<u>Berberis</u> /	Whipplea	<u>Chimaphila</u>
Таха	phase	phase	phases	Acer	Disporum		
				-(cover / consta	ancy)		
Arctostaphylos columbiana		6/11	6/8	6/8		-	1/20
Ceanothus integerrimus	.6/50	.2/11	.4/17	3/25	.2/11	. 1/43	. 1/20
Cornus nuttalli	.1/25	.3/32	. 3/30	3/50	.5/33	.2/14	.4/60
orylus cornuta v. californica	.2/50	2/79	1/74	6/100			
lolodiscus discolor	4/75	6/89	5/84	4/83	3/78 5/100	1/43	2/60
hiladelphus lewisii	-	.5/16	.5/13	.3/8	.9/56	3/86	3/40
Rhamnus purshiana	.3/25	. 3/16	.3/13	.6/50	. 1/11	.1/14	- .2/40
Rhus diversiloba	4/75	4/42	4/48	3/58	5/78	.3/14	.2740
lbes cruentum	-	.2/16	.2/13	.2/8	-		. 1/20
losa gymnocarpa	.7/50	.8/84	.8/78	.4/92	3/100	3/57	. 3/80
lubus parviflorus	-	.2/16	.2/13	3/17	.2/22	-	. 37 00
accinium parvifolium	-	.2/32	.2/26	.5/42	.3/11	.2/43	. 1/40
accinium memranaceum	-	1/5	1/4	-	-	-	. 3/20
Low Shrubs							
erberis aquifolium	.5/100	. 3/58	.4/65	.4/42	3/89	.3/57	.3/60
erberis nervosa	.9/75	4/89	4/87	12/100	5/78	3/86	5/100
imaphila menzlesii	.2/50	.3/63	.3/61	.3/67	.1/33	.3/43	.2/80
imaphila umbellata	-	.7/47	.7/39	.4/58	-	.5/43	3/100
Itheria shallon	-	2/16	2/13	4/33	1/11	-	.1/20
niceria ciliosa	.2/25	.2/11	.2/13	.2/25	.9/33	.3/57	-
niceria hispidula	.1/25	1/32	.9/30	1/8	.2/33	-	-
chistima myrsinites	-	.3/21	.3/17	-	-	.2/43	.3/20
bus ursinus	.1/25	.6/74	.5/65	.6/92	2/89	.3/57	.3/80
mphoricarpos mollis	.3/25	2/89	2/87	2/75	3/100	3/57	.2/40
ipplea modesta	11/75	5/89	6/87	7/92	10/89	15/100	-

Tab	le	5.	cont	inued.
-----	----	----	------	--------

	Pseudotsuga/Holodiscus/grass			Pseudotsuga/	Pseudotsuga/	Libocedrus/	Libocedrus/
	Aspidotis	ColTomia	both	Holodiscus-	Berberis/	Whipplea	<u>Chimaphila</u>
Taxa	phase	phase	phase s	Acer	Disporum		
				-(cover / consta	ancy)		
Herbs							
Achillea millefolium	. 2/50	.1/5	.2/13	.2/8	-	-	-
Achlys triphylla	-	. 5/37	. 5/30	2/58	1/11	7/43	3/80
Adenocaulon bicolor	. 3/25	.5/63	.5/57	.8/50	2/89	2/71	3/40
Allotropa virgata	-	.1/11	.1/9	.2/8	-	-	-
Anemone deltoidea	-	.3/5	.3/4	.2/33	-	.3/43	.3/40
Apocynum androsaemifolium	.5/25	.3/16	.4/26	.2/17	.3/78	. 2/14	-
Arenaria macrophylla	.3/75	.4/84	. 4/83	.5/67	.7/89	.6/100 .	2/60
Aspidotis densa	. 2/50	-	.3/9	.1/8	-	.3/14	-
Aster radulinus	.8/75	. 5/42	.5/48	.8/42	.3/78	2/29	.3/20
Boraginaceae	.3/25	-	.3/4	.3/8	-	.3/14	-
Brodiaea congesta	. 2/50	-	.2/9	.5/25	-	.2/14	.1/20
Calochortus	.3/25	.1/5	.2/9	-	.3/22	. 2/29	-
Campanula prenanthoides	.3/25	. 5/16	. 5/17	-	.3/22	.3/14	.2/20
Campanula scouleri	6/25	. 4/74	.8/65	.7/33	.8/67	. 6/71	2/60
Cirsium	.3/50	.2/5	.3/13	.1/17	-	.3/29	.1/20
Collomia heterophylla	.2/75	.5/79	.5/78	2/33	.3/56	.3/29	2/40
Comandra umbellata	-	-	-	.3/8	.3/11	-	.3/20
Corallorhiza	-	.2/16	.2/13	-	.3/11	-	-
Corallorhiza maculata	-	.2/16	. 2/13	.1/8	.2/22	.1/43	.2/40
Cynoglossum grande	-	.2/16	.2/13	-	.8/67	.1/14	-
Disporum hookeri	-	.2/32	.2/26	.2/25	.2/22	.1/14	-
Disporum	.1/25	.3/16	.3/17	-	. 3/78	1/14	-
Epilobium minutum	.3/50	.2/16	.2/22	.3/25	-	-	-
Fragaria vesca	2/100	.6/95	.8/96	.5/83	1/100	2/71	.3/80
Gallum aparine	.3/25	.3/53	.3/48	.2/25	.3/56	.3/29	.1/20
Galium oreganum	-	-	-	.1/8	.2/22	-	.1/40
Galium triflorum	-	.3/47	.3/39	.3/58	.2/33	.5/43	.3/20
Goodyera oblongifolia	.2/75	.2/68	.2/70	.2/67	.3/89	.3/86	.4/100

Table	5.	conti	nued.
-------	----	-------	-------

	Pseudo	tsuga/Holodiscu	is/grass	Pseudotsuga/	Pseudotsuga/	Libocedrus/	Libocedrus/ Chimaphila
	Aspidotis	Collomia	both	Holodiscus-	Berberis/	Whipplea	cittinapiti ta
Таха	phase	phase	phases	Acer	Disporum		
				-(cover / consta	ancy)		
Habenaria unalascensis	.6/50	.2/21	.3/26	.1/33	.3/44	.1/14	. 3/20 1/100
Hieracium albiflorum	.8/100	.4/100	.5/100	.6/100	.5/100	.7/100	. 3/80
ris	.2/50	.3/47	.3/48	.2/58	.2/56	.2/57	2/20
athyrus nevadensis	.3/25	.3/11	.3/13	.7/17	2/11	3/29	2/20
athyrus polyphyllus	-	9/26	9/22	7/17	5/33	2 (1)	_
igusticum apilfolium	-	-	-	-	.8/33	.3/14 1/43	3/60
innaea borealis	.2/25	1/37	1/35	3/50	.7/78	1/43	5/00
omatium martindalei	-	.6/11	.6/9	.2/17	-	-	_
otus micranthus	.1/25	.3/16	.3/17	.9/25	-	-	.2/20
otus nevadensis	-	1/5	1/4	-	.1/11	-	4/20
upinus latifolius	-	-	-	-	5/11	.3/43	-
adia madioides	.3/50	. 5/53	.4/52	.4/42	. 4/67	.2/14	_
limulus	-	.3/5	.3/4	10/8	-	.3/14	-
onotropa uniflora	-	-	-	.2/17	-	.3/29	-
kontia	.2/50	.4/32	.3/35	-	.3/11 .2/22		-
lemophila parviflora	.3/25	2/16	1/17	.3/17	.4/89	.1/14	_
smorhiza chilensis	-	. 2/21	.2/17	. 2/25		. 1/ 19	-
hlox adsurgens		-	-	-	. 5/33	-	.2/40
olypodium glycyrrhiza	-	.3/5	.3/4	-	-	_	.2/20
Polypodium hesperium	.2/25	.1/16	.1/17	.3/8	.1/22	.3/29	.1/60
Polystichum lonchitis	.2/75	. 2/42	.2/48	.2/42	2/33	3/14	1/40
Polystichum munitum	2/75	1/42	2/48	3/58	.1/11	.6/71	.3/40
olystichum munitum var. imbricans	.3/25	.7/47	.7/43	.6/17	2/22	4/29	.1/20
Polystichum munitum var. munitum	-	.3/16	.3/13	1/17	.3/22	-	-
Psoralea phyosides	-	.3/5	.3/4	-	.3/67	.2/14	.6/40
Pteridium aquilinium	.2/25	1/5	.6/9	.3/17	.2/67	.2/29	.2/20
Pyrola aphylla	.2/25	.2/47	.2/43	.2/33	. 2/0/	-	.3/80
Pyrola picia		.3/32	.3/26	.2/17	-		. ,

Table 5. con	ti	inue	d.
--------------	----	------	----

Taxa Aspidotis phase Collomia phase both phase Holdiscus- Acer Berberis/ Disporum Whipplea Satureja douglasii .3/25 1/32 1/30 .3/25 .5/67 .3/71 Satureja douglasii .3/25 1/32 1/30 .3/25 .5/67 .3/71 Selaginella waltacei .5/75 .3/5 .5/17 .3/8 - - Satureja constancy - - .4/11 .4/9 - - Satifacina racemosa - - - .2/42 .3/11 .2/43 Satifacina stellata - .1/16 .1/13 .1/8 - .4/14 Synthyris reniforms .1/25 .7/26 .8/26 .3/33 .1/44 .1/57 Trintalis Tatifolia .3/50 .7/84 .6/78 .8/92 .7/67 .1/71 Vicia americana .3/25 .3/58 .2/52 .3/42 .3/89 .7/71 Grasses and Grass-Like Plants - - .2/5 <td< th=""><th>Libocedrus/</th><th>Libocedrus/</th><th>Pseudotsuga/</th><th>Pseudotsuga/</th><th>s/grass</th><th>tsuga/Holodiscu</th><th>Pseudot</th><th></th></td<>	Libocedrus/	Libocedrus/	Pseudotsuga/	Pseudotsuga/	s/grass	tsuga/Holodiscu	Pseudot	
Satureja douglasii 3/25 1/32 1/30 3/25 .5/67 3/71 Sedom 3/25 - 3/4 2/8 - - Selaginella wallacei .5/75 .3/5 .5/17 3/8 - - Senecio - - .4/11 .4/9 - - - Sinilacina racemosa - - - .2/42 .3/11 .2/43 Sinilacina stellata - - .1/16 .1/13 .1/8 - .4/11 Synthyris reniforms .1/25 .7/26 .8/26 .3/33 .1/44 .1/57 Trientalis latifolia .3/50 .7/84 .6/78 .8/92 .7/67 .1/71 Vicia sempervirens - - - .7/33 .2/42 .3/49 Vicia sempervirens - - .2/17 .2/42 .6/78 .3/29 Vicia serica .3/25 .3/58 .1/52 .7/44 .1/89 .7/67 Sterica .3/25 .2/52 .3/44 .2/17 .3/11 <t< th=""><th><u>Chimaphila</u></th><th>Whipplea</th><th></th><th></th><th></th><th>Collomia</th><th></th><th></th></t<>	<u>Chimaphila</u>	Whipplea				Collomia		
Satureja douglasii $3/25$ $1/32$ $1/30$ $3/25$ $5/67$ $3/71$ Sedum $3/25$ $ 3/4$ $2/8$ $ -$ Selaginella wallacei $5/75$ $3/5$ $5/17$ $3/8$ $ -$ Senecio $ 4/11$ $4/9$ $ -$ Snilacina stellata $ 1/16$ $1/13$ $1/8$ $ 4/14$ Synthyris reniforms $1/25$ $7/26$ $8/26$ $3/33$ $1/44$ $1/57$ Trientalls latifolia $3/50$ $7/84$ $6/78$ $8/92$ $7/67$ $1/71$ Vancouverla hexandra $2/25$ $2/16$ $2/17$ $2/42$ $6/78$ $3/43$ Vicia sempervirens $ 7/67$ $1/71$ Vicia serviciane $3/50$ $1/68$ $1/65$ $1/78$ $1/89$ $5/86$ Danthonia $4/25$ $ 4/4$ $ -$ Festuca orubra $1/75$			Disporum	Acer	phases	phase	phase	Taxa
Sedum .3/25 .3/4 .2/8 Selaginella wallacei .5/75 .3/5 .5/17 .3/8 Seneclo Sillacina racemosa Sillacina stellata Synthyris reniforms <t< th=""><th></th><th></th><th>у)</th><th>(cover/constan</th><th></th><th></th><th></th><th></th></t<>			у)	(cover/constan				
Selaginella wallacei .5/75 .3/5 .5/17 .3/8 - .3/14 Senecio - .4/11 .4/9 - - .3/14 Senecio - .4/11 .4/9 - - - .3/14 Senecio - - .2/42 .3/11 .2/43 .2/43 .3/11 .2/43 Smilacina stellata - .1/16 .1/13 .1/8 - .4/14 Synthyris reniforms .1/25 .1/26 .8/26 .3/33 .1/44 .1/57 Trientalls latifolia .3/50 .7/84 .6/78 .8/92 .7/67 .1/11 Vancouverina hexandra .2/25 .2/16 .2/17 .2/42 .6/78 .3/43 Viola sempervirens - - .7/33 .2/56 .3/29 .1/11 . Grasses and Grass-Like Plants - .2/5 .2/4 - .1/11 - Bromus - .4/5 4/4 .2/17 .3/11 - - Grasses and Grass-Like Plants - <td< td=""><td>.3/40</td><td>.3/71</td><td>. 5/67</td><td></td><td>1/30</td><td>1/32</td><td>.3/25</td><td>Satureja douglasii</td></td<>	.3/40	.3/71	. 5/67		1/30	1/32	.3/25	Satureja douglasii
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 3/20	-	-					Sedum
iniliacina racemosa - - .2/42 .3/11 .2/43 iniliacina stellata - .1/16 .1/13 .1/8 - .4/14 iniliacina stellata - .1/16 .1/13 .1/8 - .4/14 iniliacina .3/50 .7/84 .6/78 .8/26 .3/33 .1/44 .1/57 frientalis latifolia .3/50 .7/84 .6/78 .8/92 .7/67 .1/71 iraccouveria hexandra .2/25 .2/16 .2/17 .2/42 .6/78 .3/43 iraccouveria hexandra .2/25 .2/16 .2/17 .2/42 .6/78 .3/43 iraccouveria hexandra .3/25 .3/58 .2/52 .3/42 .3/89 .7/11 icia americana .3/25 .3/58 .2/52 .3/44 .6/7 .6/78 ferophyllum tenax - .2/5 .2/4 - .1/11 - Grasses and Grass-Like Plants	.7/40	.3/14	-				.5/75	
milacina ynthyris reniforms - .1/16 .1/13 .1/8 - .4/14 ynthyris reniforms 1/25 .7/26 .8/26 .3/33 .1/44 .1/57 rithium ovatum - .1/5 .1/4 .1/8 - - ancouverlia hexandra .2/25 .2/16 .2/17 .2/42 .6/78 .3/43 icia americana .3/25 .3/58 .2/52 .3/42 .3/89 .7/71 icia americana .3/25 .3/58 .2/52 .3/42 .3/89 .7/71 erophyllum tenax - .2/5 .2/4 - .1/11 - Grasses and Grass-Like Plants - .2/5 .2/4 - .1/11 - romus - .4/5 .4/4 .2/17 .3/11 - - romus vulgaris .3/50 .1/68 .1/65 .1/58 .1/89 .5/86 anthonia .4/25 - .4/4 - - - - ymus glaucus .1/75 .5/37 .8/43 .6/42 <td< td=""><td>.2/20</td><td></td><td></td><td></td><td></td><td>.4/11</td><td>-</td><td></td></td<>	.2/20					.4/11	-	
ynthyris reniforms 1/25 7/26 .8/26 3/33 1/44 1/57 rientalis 1aifolia .3/50 .7/84 .6/78 .8/92 .7/67 1/71 ancouverla hexandra .2/25 .2/16 .2/17 .2/42 .6/78 .3/43 icla sempervirens - - .7/33 .2/26 .3/29 icla sempervirens - .7/33 .2/26 .3/29 icla sempervirens - .7/33 .2/26 .3/29 icrasses and Grass-Like Plants - .2/5 .2/4 .1/11 - Grasses and Grass-Like Plants - .2/5 .2/4 .1/11 - romus - 4/5 4/4 .2/17 .3/11 - romus vulgaris 3/50 1/68 1/65 1/58 1/89 5/86 anthonla 4/25 - 4/4 - - - - isstuca 1/75 .5/37 .8/43 .6/42 .8/33 .5/43 estu	-		-				-	
Trental1s Tatifolia .3/50 .7/84 .6/78 .8/92 .7/67 1/71 rillium ovatum - .1/5 .1/4 .1/8 - - - ancouveria hexandra .2/25 .2/16 .2/17 .2/42 .6/78 .3/43 ancouveria hexandra .2/25 .2/16 .2/17 .2/42 .6/78 .3/43 icia sempervirens - - .7/33 .2/56 .3/29	-							
r111ium ovatum - .1/5 .1/4 .1/8 - - ancouveria hexandra .2/25 .2/16 .2/17 .2/42 .6/78 .3/43 icia sempervirens - - .7/33 .2/56 .3/29 icia americana .3/25 .3/58 .2/52 .3/42 .3/89 .7/11 erophyllum tenax - .2/55 .2/4 - .1/11 - Grasses and Grass-Like Plants - .2/55 .2/4 - .1/11 - romus vulgaris 3/50 1/68 1/65 .1/58 .1/89 .5/66 inthonia 4/25 - 4/4 - - - intus glaucus 1/75 .5/37 .8/43 .6/42 .8/33 .5/43 estuca californica 20/50 1/16 .9/22 - .1/11 - estuca vubra - .1/25 .3/21 .2/22 - .1/11 - occidentalis - 1/68 1/57 .2/67 .3/67 .2/86	.1/20							
ancouver1a hexandra .2/25 .2/16 .2/17 .2/42 .6/78 .3/43 iola sempervirens - - .7/33 .2/56 .3/29 icia americana .3/25 .3/58 2/52 .3/42 .3/89 .7/11 erophyllum tenax - .2/5 .2/4 - .1/11 - Grasses and Grass-Like Plants - .2/5 .2/4 - .1/11 - romus - .4/5 4/4 .2/17 .3/11 - - romus - .4/25 - .4/4 - - - anthonia .4/25 - .4/4 - - - - Tymus glaucus 1/75 .5/37 .8/43 .6/42 .8/33 .5/43 estuca californica 20/50 1/16 .9/22 - 1/11 - estuca rubra 5/50 2/32 2/35 .3/8 2/22 - .6/42 .8/33 .5/43 ocidentalis - 1/68 .1/57 <	3/100						.3/50	
iola sempervirens - - .7/33 .2/56 .3/29 icia americana .3/25 3/58 2/52 .3/42 .3/89 .7/11 erophyllum tenax - .2/5 .2/4 - .1/11 - Grasses and Grass-Like Plants - .2/5 .2/4 - .1/11 - iromus - .2/5 .2/4 - .1/11 - iromus - .4/5 .4/4 - - .1/11 - iromus - .4/25 - .4/4 - - - - Jymus glaucus 1/75 .5/37 .8/43 .6/42 .8/33 .5/43 estuca californica .20/50 .1/16 .9/22 - .1/11 - estuca occidentalis - .1/68 .1/57 .2/67 .3/67 .2/86 estuca subuliflora - .3/16 .3/13 .3/17 .3/11 .7/29 oeleria cristata .7/50 - .7/9 - - -	-						-	
icia americana .3/25 3/58 2/52 3/42 3/89 7/71 icrophyllum tenax - .2/5 .2/4 - .1/11 - Grasses and Grass-Like Plants - .4/5 .4/4 .2/17 .3/11 - fromus - .4/5 .4/4 .2/17 .3/11 - fromus - .4/5 .4/4 .2/17 .3/11 - iromus - .4/5 .4/4 - - - iromus 1/25 .5/37 .8/43 .6/42 .8/33 .5/43 iromus 1/75 .5/37 .8/43 .6/42 .8/33 .5/43 iromus 1/25 .3/21 .2/22 - .1/11 - estuca californica .20/50 .1/16 .9/22 - .4/67 .3/29 estuca occidentalis - .1/68 .1/57 .2/67 .3/67 .2/86 estuca isubuli flora - .3/16 .3/13 .3/17 .3/11 .7/29 - -	-						.2/25	
Grasses and Grass-Like Plants - .2/5 .2/4 - .1/11 - Grasses and Grass-Like Plants aromus - .4/5 .4/4 .2/17 .3/11 - Gromus - .4/5 .1/68 1/65 .1/58 .1/89 5/86 Janthonia .4/25 - .4/4 - - - - Tymus glaucus .1/75 .5/37 .8/43 .6/42 .8/33 .5/43 estuca .1/25 .3/21 .2/22 - .1/11 - estuca californica .20/50 .1/16 .9/22 - .4/67 .3/29 estuca rubra .5/50 .2/32 .2/35 .3/8 .2/22 - estuca subuliflora - .1/68 .1/57 .2/67 .3/67 .2/86 estuca subuliflora - .3/16 .3/13 .3/17 .3/11 .7/29 Greitica subulata .2/25 .1/21 .2/22 .7/17 .9/89 .6/29 delicia subulata .2/25 .1/21 <td>.3/40</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	.3/40						-	
Grasses and Grass-Like Plants Bromus fromus vulgaris 3/50 1/68 1/65 1/58 1/89 5/86 Danthonia 4/25 - 4/4 - - - - Stromus glaucus 1/75 5/37 8/43 .6/42 .8/33 .5/43 estuca 1/25 3/21 2/22 - 1/11 - estuca californica 20/50 1/16 9/22 - 4/67 .3/29 estuca occidentalis - - 1/68 1/57 2/67 3/67 2/86 estuca subuliflora - - - - - - - Goeleria cristata .7/50 - .7/9 - - - - telica subulata 2/25 1/21 2/22 .7/17 .9/89 .6/29 telica harfordii .7/50 - .7/9 - - - testuca subulita .2/25 .1/21 .2/22 .7/17 .9/89 .6/29 testuca subulata .2/25 .1/21	-	7771					.3/25	
Bromus - 4/5 4/4 .2/17 .3/11 - Bromus vulgaris 3/50 1/68 1/65 1/58 1/89 5/86 Danthonia 4/25 - 4/4 - - - Etymus glaucus 1/75 .5/37 .8/43 .6/42 .8/33 .5/43 Festuca 1/25 3/21 2/22 - 1/11 - Festuca 20/50 1/16 9/22 - 4/67 .3/29 Festuca - 1/68 1/57 2/67 3/67 2/86 Festuca rubra - - .3/16 .3/13 .3/17 .3/11 .7/29 Festuca subuliflora - - .7/50 - .7/9 - - - Koeleria cristata .7/50 - .7/9 - - - - Melica subulata 2/25 1/21 2/22 .7/17 .9/89 .6/29 Melica harfordii 3/100 .9/58 1/65 .6/42 .7/44 1/57 <td>-</td> <td>-</td> <td>.1/11</td> <td>-</td> <td>. 2/4</td> <td>. 275</td> <td>-</td> <td>Kerophyllum tenax</td>	-	-	.1/11	-	. 2/4	. 275	-	Kerophyllum tenax
Bromus vulgaris 3/50 1/68 1/65 1/58 1/89 5/86 Danthonia 4/25 - 4/4 - - - Elymus glaucus 1/75 .5/37 .8/43 .6/42 .8/33 .5/43 Festuca 1/25 3/21 2/22 - 1/11 - Festuca californica 20/50 1/16 9/22 - 4/67 .3/29 Festuca occidentalis - 1/68 1/57 2/67 3/67 2/86 Festuca subuliflora - .3/16 .3/13 .3/11 .7/29 Roeleria cristata .7/50 - .7/9 - - Melica subulata 2/25 1/21 2/22 .7/17 .9/89 .6/29 Melica harfordii 3/100 .9/58 1/65 .6/42 .7/44 .9/43 Carex - .2/21 .2/17 .2/8 4/33 .2/29								Grasses and Grass-Like Plants
Danthonia 4/25 - 4/4 - - - Elymus glaucus 1/75 .5/37 .8/43 .6/42 .8/33 .5/43 Festuca 1/25 3/21 2/22 - 1/11 - Festuca californica 20/50 1/16 9/22 - 4/67 .3/29 Festuca coldentalis - 1/68 1/57 2/67 3/67 2/86 Festuca subuliflora - .3/16 .3/13 .3/17 .3/11 .7/29 Festuca subuliflora - .3/16 .3/13 .3/17 .3/11 .7/29 Roeleria cristata .7/50 - .7/9 - - - - Melica subulata 2/25 1/21 2/22 .7/17 .9/89 .6/29 Melica harfordii 3/100 .9/58 1/65 .6/42 .7/44 1/57 Trisetum canescens .5/75 .4/47 .2/52 1/33 .4/67 .9/43 Carex .2/21 .2/17 .2/8 4/33 .2/29	-	-	. 3/11	.2/17	4/4	4/5	-	Bromus
Lymus glaucus 1/75 .5/37 .8/43 .6/42 .8/33 .5/43 Festuca 1/25 3/21 2/22 - 1/11 - Festuca californica 20/50 1/16 9/22 - 4/67 .3/29 Festuca occidentalis - 1/68 1/57 2/67 3/67 2/86 Festuca rubra 5/50 2/32 2/35 .3/8 2/22 - Festuca subuliflora - .3/16 .3/13 .3/17 .3/11 .7/29 Restuca subulata .7/50 - .7/9 - - - Melica subulata .2/25 1/21 2/22 .7/17 .9/89 .6/29 Melica harfordii 3/100 .9/58 1/65 .6/42 .7/44 1/57 Trisetum canescens .5/75 .4/47 2/52 1/33 .4/67 .9/43 Carex 2/21 .2/17 .2/8 4/33 .2/29	.9/60	5/86	1/89	1/58		1/68	3/50	Bromus vulgaris
restuca 1/25 3/21 2/22 - 1/11 - restuca californica 20/50 1/16 9/22 - 4/67 .3/29 restuca occidentalis - 1/68 1/57 2/67 3/67 2/86 restuca rubra 5/50 2/32 2/35 .3/8 2/22 - restuca subuliflora - .3/16 .3/13 .3/17 .3/11 .7/29 coeleria cristata .7/50 - .7/9 - - - telica subulata .2/25 1/21 2/22 .7/17 .9/89 .6/29 telica harfordii .3/100 .9/58 1/65 .6/42 .7/44 .1/57 risetum canescens .2/21 .2/21 .2/17 .2/8 .4/33 .2/29	-	-	-	-	4/4	-	4/25	Danthonia
estuca californica 20/50 1/16 9/22 - 4/67 .3/29 estuca occidentalis - 1/68 1/57 2/67 3/67 2/86 estuca rubra 5/50 2/32 2/35 .3/8 2/22 - estuca subuliflora - .3/16 .3/13 .3/17 .3/11 .7/29 celeria cristata .7/50 - .7/9 - - - delica subulata 2/25 1/21 2/22 .7/17 .9/89 .6/29 delica subulata 2/25 1/21 2/22 .7/17 .9/89 .6/29 delica subulata .7/50 - .7/9 - - - fileseum canescens .7/50 .2/21 .2/22 .7/17 .9/89 .6/29 delica harfordii .3/100 .9/58 .1/65 .6/42 .7/44 .1/57 frisetum canescens .2/21 .2/21 .2/17 .2/8 .4/33 .2/29 <td>-</td> <td>.5/43</td> <td>.8/33</td> <td>.6/42</td> <td>.8/43</td> <td>.5/37</td> <td>1/75</td> <td>Tymus gTaucus</td>	-	.5/43	.8/33	.6/42	.8/43	.5/37	1/75	Tymus gTaucus
estuca occidentalis - 1/68 1/57 2/67 3/67 2/86 estuca rubra 5/50 2/32 2/35 .3/8 2/22 - estuca subuliflora - .3/16 .3/13 .3/17 .3/11 .7/29 coeleria cristata .7/50 - .7/9 - - - telica subulata 2/25 1/21 2/22 .7/17 .9/89 .6/29 telica subulata 2/25 1/21 2/22 .7/17 .9/89 .6/29 telica sarfordii 3/100 .9/58 1/65 .6/42 .7/44 1/57 frisetum canescens 5/75 .4/47 2/52 1/33 .4/67 .9/43 carex .2/21 .2/21 .2/17 .2/8 4/33 .2/29	-	-	1/11	-	2/22	3/21	1/25	estuca
restuca rubra 5/50 2/32 2/35 .3/8 2/22 - restuca subuliflora - .3/16 .3/13 .3/17 .3/11 .7/29 coeleria cristata .7/50 - .7/9 - - - telica subulata 2/25 1/21 2/22 .7/17 .9/89 .6/29 telica harfordii 3/100 .9/58 1/65 .6/42 .7/44 1/57 frisetum canescens 5/75 .4/47 2/52 1/33 .4/67 .9/43 Carex - .2/21 .2/17 .2/8 4/33 .2/29	-	.3/29	4/67	-	9/22	1/16	20/50	estuca californica
restuca subuliflora - .3/16 .3/13 .3/17 .3/11 .7/29 coeleria cristata .7/50 - .7/9 -	.8/100	2/86	3/67	2/67	1/57	1/68	-	estuca occidentalis
Coeleria cristata .7/50 - .7/9 - </td <td>.1/20</td> <td>-</td> <td>2/22</td> <td>. 3/8</td> <td>2/35</td> <td>2/32</td> <td>5/50</td> <td>estuca rubra</td>	.1/20	-	2/22	. 3/8	2/35	2/32	5/50	estuca rubra
telica subulata 2/25 1/21 2/22 .7/17 .9/89 .6/29 telica harfordii 3/100 .9/58 1/65 .6/42 .7/44 1/57 trisetum canescens 5/75 .4/47 2/52 1/33 .4/67 .9/43 Carex .2/21 .2/17 .2/8 4/33 .2/29	.3/20	.7/29	.3/11	.3/17	.3/13	.3/16	-	estuca subuliflora
Aelica harfordíi 3/100 .9/58 1/65 .6/42 .7/44 1/57 Trisetum canescens 5/75 .4/47 2/52 1/33 .4/67 .9/43 Carex - .2/21 .2/17 .2/8 4/33 .2/29	-	-	-	-	.7/9	-	.7/50	Coeleria cristata
Fisetum canescens 5/75 .4/47 2/52 1/33 .4/67 .9/43 Carex - .2/21 .2/17 .2/8 4/33 .2/29	-	.6/29	.9/89	.7/17	2/22	1/21	2/25	
Carex2/21 .2/17 .2/8 4/33 .2/29	.2/60	1/57		.6/42	1/65	.9/58	3/100	lelica harfordii
Carex2/21 .2/17 .2/8 4/33 .2/29	.3/20	.9/43	. 4/67	1/33	2/52	. 4/47	5/75	risetum canescens
2/75 $2/76$ $2/70$ $2/70$. 2/40	2/29	4/33	.2/8	. 2/17	.2/21		
Luzula campestris	. 3/20	.1/14	. 3/44	. 2/56	. 3/70	. 3/68	.3/75	Luzula campestris

Community type	Number of plots	Bas	Pseudotsuga site index	
		Pseudotsuga	sal area (m ² /ha) <u>Libocedrus</u> All species	(m at 100 yrs)
Pseudotsuga/Holodiscus/grass				
Aspidotis phase	4	44 (22)	9 (12) 59 (13)	36 (6)
<u>Collomia</u> phase	19	55 (13)	5 (8) 63 (13)	35 (4)
both phases	23	53 (15)	6 (8) 62 (13)	35 (4)
seudotsuga/Holodiscus-Acer	12	61 (22)	1 (4) 65 (23)	37 (8)
Seudotsuga/Berberis/Disporum	9	69 (28)	5 (9) 79 (32)	41 (3)
_ibocedrus/Whipplea	7	59 (24)	24 (11) 85 (25)	38 (6)
ibocedrus/Chimaphila	5	64 (19)	29 (13) 95 (12)	42 (4)
All dry site plots	56	59 (21)	9 (13) 72 (23)	37 (6)
All <u>Tsuga</u> -climax plots	14	69 (33)	0 (0) 77 (30)	40 (6)

Table 6. Basal area and <u>Pseudotsuga</u> site index (McArdle et al. 1961) by community type. Standard deviations are given in parentheses.

٠

.

Table 7. Dry coniferous forest stand tables by community type. Species 1/ are subdivided by codes for live (L), dead (D), mineral soil rooted (M), and wood rooted (W). Reproduction (REPRO) includes only trees less than 137 cm tall. The 10 cm DBH size classes are identified by their upper diameter limits.

PSEUDOTSUGA MENZIESII/HOLODISCUS DISCOLOR/GRASS COMMUNITY TYPE

ASPIDOTIS DENSA PHASE

		ANCOACE				
		AVERALE	VALUES FOR	<u> </u>	<u> </u>	

SPP Alpha Code	CODES L M - + + D W	REPRO NUM ZHA	+ 10	20 20	NUMBER 30	OF TR 40	EES/HA 50	8¥ 10 60	CM D8 70	H SIZE 80	CLASS 90	ES 1 D O	110	* 120	TREES GT 120CH /HA	TOTAL TREES GT10CH /HA	TOTAL BASAL AREA H2/HA	NUMBR Of Occur
PSME LIDE I ABGR ARME PILA PIPO QUGA		365.4 174.9 0.0 0.0 61.6 0.0 0.0	189.0 79.3 0.0 0.0 0.0 0.0 8.2 0.0	166.7 23.0 2.9 0.0 0.0 2.7 31.4	56.9 8.9 0.0 8.5 3.0 0.0 0.0	29.6 0.0 3.1 0.0 0.0 0.0	5.8 6.0 0.0 0.0 J.0 0.0 0.0	6.2 2.9 0.0 0.0 0.0 0.0	12.6 3.1 0.0 0.0 J.0 J.0 J.0 J.0	21.5 3.1 0.0 0.0 0.0 0.0	11.9 0.0 0.0 0.0 0.0 2.7 0.0	9.2 0.0 0.0 0.0 0.0 0.0 0.0	5.6 0.0 0.0 0.0 0.0 0.0 0.0	0.0 3.1 0.0 0.0 2.7 0.0		326.2 50.1 2.9 11.6 0.0 8.2 31.4	44.2 8.5 .1 .7 0.0 4.5 .6	4 3 1 2 1 1 1
LIVE	TOTALS	602.0	276.4	226.8	74.3	32.8	11.8	9.1	15.6	24.6	14+6	9.2	5.6	5.8	0.0	430.4	58.6	
PSME LIDE PILA PIPO QUGA	0 M 0 M 0 M 0 M 0 M	0.0 0.0 0.0 0.2 0.2	64.7 8.2 0.0 2.7 0.0	2.7 0.0 0.0 5.0 18.8	0.0 0.0 0.0 0.0 0.0	0.0 0.0 3.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 1.0 0.0	0.0 0.0 0.0 0.0	0 • 0 0 • 9 0 • 0 0 • 0 0 • 0	0.0 0.0 0.0 0.0	3.1 0.0 0.0 0.0 3.0	0 • 0 0 • 0 0 • 0 0 • 0	0.0 0.0 0.0 0.0	5.8 0.0 3.1 0.0 18.8	3.0 .0 .3 .0 .4	4 1 1 1 1

5

.

Table 7. continued.

PSEUDOTSUGA HENZIESII/HOLODISGUS DISCOLUR/GRASS COMMUNITY TYPE

COLLOMIA HETEROPHYLLA PHASE

ipp	ODES L M	REPRO NUM	*		-NUMBER	UF TR	REES7 HA	37 16	CM La	H SIZE	CLASS	ES		+	TREES GT 1200m	TOTAL TREES GT16CM	TOTAL Basal Area	NUHB OF
DDE	Û N	ZHA	10	20	30	40	50	66	70	80	90	106	110	120	7 HA	/HA	MZTAA	0000
SHE IDE SBGRAE SBGRAE HER RACLAU UGA A SBBCHAE HAU SBBCHAE HAU SBBCHAE			243.2 21.4 6.33 12.9 1.5 9 1.3 9 1.3 9 1.3 9 1.3 9 1.3 9 1.3 9 1.3 9 1.3 9 1.3 9 1.3 9 1.3 9 1.3 9 1.3 9 1.4 6 3 3.3 9 1.5 1.5 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 1.5 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 1.5 9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	92.7 18.6 1.3 0.0 7.7 1.3 1.8 0.0 1.2 0.0 0.0 0.0 0.0		59.3 9.1 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0	53.1 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	32	15		7 . 0 0 0 0 0	NGLOG 00000000000000000000000000000000000	40000000000000000000000000000000000000		· · · 0 0 · ·	361.3 551.3 1.3 12.3 2.5 5.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	55.32 55.20 .54 .54 .1.30 .00 .30 .01	193 15 15 87 38 22 14 23
IVE TO	TALS	446.9	311.6	130.2	88.9	70.8	70.9	34.9	18.7	13.5	8.9	5.0	4.6	2.0	.7	449.6	63.3	
SME LDE CMA RME ACH UGA SHE	0 M M 00 0 0 M M M M M M M M M M M M M M	Ú.0 0.0 6.0 6.0	33.2 7.1 1.8 1.1 3.1	16.9 .7 0.0 2.4	2.5 0.0 .7 0.0	2.6 0.0 8.0 8.0	1.9 0.0 0.0	3.0 0.0 0.0 0.0 0.0	3.1 0.0 0.0 0.0	3.2 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 0.0 0.0 0.0	0.0 9.0 0.0 0.0	.7 0.0 0.0 0.0	0.0 0.0 0.0 0.0	37.8 •7 •6 2.4	7.2 .0 .0 .1	1

•

Š

Table 7. continued.

PSEUDOTSUGA HENZIESII/HOLODISCUS DISCOLOR/GRASS CONMUNITY TYPE

CODES SPP L N Alpha + + Code d W	REPRO NUM ZHA	*	20	-NUMBER 30	. OF TR 40	.E25/H4 5]	3¥ 10 60	Cri D3 70	H SIZE	CLASS 90	ES	110	* 120	TREES GT 1200m /HA	TOTAL TREES GT10CM /HA	TOTAL BASAL AREA M2/HA	NUM 3Ř Of Occur
PSME L M LIDE L M ABGR L M ABGR L M AGMA L M ACMA L M GACH L M	353.1 83.0 6.0 6.0 9.0 6.0	233.8 31.5 5.2 1.1 10.1 4.8 1.1	105.5 19.6 1.6 0.0 6.3 3.9	65.1 9.3 0.0 3.3 1.1	54.1 7.5 0.0 0.0 0.0 0.0 .5 2.0	53.2 5.9 0.0 0.0 0.0 0.0	27.8 2.0 0.0 0.0 0.0 0.0 0.0	14.6 2.6 0.0 0.0 0.0 0.0 0.0	13.8 1.6 3.0 0.0 0.0 0.0 0.0	7.9 3.0 3.0 3.0 3.0 3.0 3.0	6.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4 . 7 0 . 6 0 . 6 0 . 0 0 . 0 0 . 0 0 . 0	1.7 0.0 0.0 0.0 0.0 0.0 0.0		355.2 50.7 1.1 1.6 0.0 10.1 8.9 2.1	53.4 5.7 .1 .0 .4	23 10 1 1 9 3
H H H H H H H H H H H H H H H H H H H	20.6 6.0 6.0 6.0 6.0 0.0 0.0 0.0	4.9 1.4 2.6 0.0 .5 1.1 0.0 .5 1.1										0 • 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0			4.1 1.4 0.0 8.4 0.0 0.0 0.0 2.2 0.0	1.1 .8 .0 .0 .0 .0 .2 .0	9 1 2 3 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2
LIVE TOTALS	• • •	305.5	147.0	86.4	64.2	60.6	30.4	18.2	15.5	9.9	6.2	4.7	2.7	•.5	• 5 446.3	62.5	3
PSME D M LIDE D M ACHA D M ACHA D M CACH D M PILA D M PILA D M PILA D M TSHE D M		30.7 7.3 1.5 9 2.5 0.0 .5 .5	14.4 0.0 9.0 8.0 3.3 0.0	2.0 9.0 9.0 9.0 9.0 9.0 9.0				2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0				9 • 9 9 • 9	.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		31.6 .6 .5 2.0 3.3 0.0	6.5 .0 .0 .1 .1 .1	23 3 2 1 1 2

* * AVERAGE VALUES FOR 23 PLOTS. * •

•

Table 7. continued.

PSEUDOTSUGA MENZIESII/HOLODISCUS DISCOLOR-ACER CIRCINATUM COMMUNITY TYPE

* AVERAGE VALUES FOR 12 PLOTS. * *

SPP Alpha Code	CODES L M D W	REPRO NUM /HA	*		NUMBER	OF TR 40	EESZHA 50	8¥ 10 60	CH DB 70	⊢ SIZE	GLASS 90	ES		*	TREES GT 120Ch /Ha	TOTAL TREES GT10CH ZHA	TOTAL BASAL AREA M2/HA	NUNBR OF OCCUR	, ,
PSHE	си с и	176.6	165.4	70.8	76.8	60.5	48.4	27.2		13.2		5.1	7.2	1.1	2.9	343.9		12 🐨	-
LIDE ACHA ARHE Gonu Pila Guga Tabr Psme		37.3 39.8 4.6 37.3 0.0 3.1 0.0 20.7 18.6	13.2 13.2 3.0 0.0 0.0	6.2 6.1 3.9 0.0 1.9 1.1 0.0											J.0 0.0 0.0 0.0 0.0 0.0 0.0	13.6 5.2 5.8 1.9 4.2 1.2 1.2 0.0	1.3 .2 .0 1.8 0.0	6431 141 1	
TSHE	Ĕ₩	1 0.0	2.1	1.0	ð. i	5.5	ō.ō	Ŏ.Ċ	ō.ŏ	0.S	ŭ.O	ů.ů	0.0	3.0	0.0	1.0	• 0	2	
LIVE	TOTALS	333.2	197.4	50.0	70.0	63.6	51.0	30.4	22.4	13.2	5.3	6.1	7.2	1.1	3.9	376.6	65.1		
PSNE LIDE I Arhe Psne	О М О М О М	1.0 6.0 0.0 6.0	20.0 1.1 .9 1.9	19.0 0.0 0.8 0.0	7.5 0.5 9.0	2.1 0.0 0.0 J.J	2.2 0.0 0.0 0.0	3. y 0. ù 0. 0 0. 0	1.0 6.0 0.0	0.0 0.0 0.0 0.0	6.0 0.0 0.0 0.0	1.1 6.0 6.0).0 3.0 3.0).0	3.2 J.Q Q.Q Q.Q	0 - 0 0 - 0 0 - 0	9.34 0.0 9.3 0.0	6.8 .0 .1 .0	12 1 2 1	

PSEUDITSUGA MENZIESII/BERBERIS AQUIFOLIUM/DISPORIM COMMUNITY TYPE

• AVERAGE VALUES FOR 9 PLOTS. • •

SPP ALPHA	CODES L M + +	REPRO NUM	+		- NU MBER	OF TREESTHA		B¥ 10	CM Ca	H SIZE	CLASSES			*	TREES	TOTAL TREES	TOTAL Basal	RENUM
CODE	D W	ZHA	10	20	3ú	40	5 î	ΰQ	70	80	90	166	110	120	12ĴCM /HA	GT18CM Zha	AR EA M2/H A	OF Occur
PSHE LIDE Abgra Acma Cach PILA PSHE		140.1 63.2 74.9 22.9 2.0 84.5 15.6	330.2 43.55 44.55 24.53 24.53 0.5 0.5	87.6 46.3 7.9 15.1 0.0 0.0 0.0	59.1 11.7 0.0 2.7 5.2 0.0 J.0 1.1 J.0	3 8.6 4.3 0.0 1.2 0.0 0.3 2.3 0.0	3 D • 2 3 0 • 2 0 • 2 0 0 0 0 0 0 0 0 0 0 0 0 0			12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		8 • 8 0 • 0 0 • 0		3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		326.9 68.6 14.5 22.1 4.0 12.5 1.3	68.8 4.9 138 0 1 3.9 3.9	752231 +22
	TOTALS	398.0	413.7	159.0	90.4	46.4	35.0	27.2	21.8	14.7	19.3	ô.d	11.8	3.5	5.5	444.2	79.1	
PSME LIDE ACMA ARME CACH PILA PIPO		0 • 0 0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	53.8 2.7 5.8 1.2 1.2 0.0	15.2 0.0 12.6 0.3 1.1	3. 6 0. 0 0. 0 0. 0 1. 1	3.0 0.0 0.0 0.0 0.0 1.1	1 • 2 0 • 6 0 • 6 0 • 0 0 • 0 0 • 0	1.1 0.0 0.3 0.3 0.3 0.3 0.3	2.3 0.0 0.0 0.0 1.2	J.G G.J G.G J.G J.G J.G J.J	1.2 J.0 0.0 0.0 0.0 0.0	1.2 6.0 6.0 6.0 6.0 6.0	1 • 2 0 • 6 0 • 6 0 • 0 0 • 0 0 • 0 0 • 6	1.2 0.6 0.0 0.0 0.0	0.6 0.0 0.0 1.8 0.6 1.1	31.8 6.0 9.0 12.6 5.0 5.7	6. L 0 3 . C 2. 7	8213 112

Table 7. continued.

LIBOGEDRUS DEGURRENSZWHIPPLEA MODESTA GOMMUNITY TYPE

SPP	COC	н	REPRO	+		-NU MBER	OF TH	EES/HA	3Y 10	си ра	H SIZE	CLASS	ES		*	TREES GT 120 GM	TREES BASI		IL NUMBR
ALPHA Code	Ď	+ Ж	NUH ZHA	10	20	30	40	53	бŞ	70	80	96	166	110	120	/HA	GT10CH /Ha	AREA M2/HA	ÖCCUF
PSHE LIDE Abgr Acma Arne PILA PILA		H H H H H	192.0 224.8 0.0 31.1 31.1 0.0	43.3 177.5 10.9 0.0 0.0 6.0 0.0	51.3 183.1 0.0 0.0 1.6 0.0	4 8.0 6 1.3 0.0 0.0 0.0 0.0 0.0	30.1 17.9 0.0 5.3 0.0 0.0 0.0	20.9 9.0 0.0 0.0 0.0 0.0			16 • 1 9 • 3 0 • 0 0 • 0 0 • 0 0 • 0		14.1 1.7 0.0 0.0 0.0 1.0 1.0	4 • 7 0 • 0 0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	4 • 9 0 • 0 0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	4 · 3 0 · 0 0 · 0 0 · 0 0 · 0 0 · 0	244.0 308.3 0.0 5.3 0.0 3.1 1.6	58.8 23.9 .0 .5 0.0 1.1 1.1	7 1 1 1 1 1
LIVE	TOTA	ILS.	479.0	231.7	235.9	109.3	53.4	29.9	36.8	26.4	25.4	12.5	18.9	4.7	4.9	4.3	562.3	85.5	
PSHE LIDE PILA PIPD	000	H H H	0.0 0.0 0.0	14.0 24.3 0.0	42.6	1.7	12.5	6.3 0.0 1.7		3.3 8.0 8.6	0.0	0.0 0.0 8.0		0.0		0.0	26.9 47.5 1.7	3.9	

.

LIBOCEDRUS DECURRENS/CHIMAPHILA UMBELLATA COMMUNITY TYPE

						* AVE	RAGE V	AL UE S	FOR	5 PEOT	2							
SPP	CODE	REPRO	*		-NUNBER	OF TR	LEES/HA	3X 10	C M D3	H SIZE	GLASS	ES		+	TREES GT 120CM	TOTAL TREES GT10CM	TOTAL Basal Area	NU NBR OF
ĂĹPHA Code	D W	NUH Zha	10	20	30	40	5 Q	60	70	80	90	160	110	120	1280H 148	ZHA ZHA	M2/HA	OCCUR
PSHE LIDE ABPR ACHA ARME CACHA TSHE THPL			146.0 645.1 0.0 12.8 0.0 5.1 2.6	58.4 143.9 5.1 0.0 2.6 0.0	34.5 49.0 5.1 4.0 12.8 0.0	29.8 30.9 0.0 0.0 2.1 0.0 0.0		1 6 9 8 8 0 0 0 6 0 2 1 0 0 0 0	21.4 2.2 0.0 0.0 0.0 0.0 0.0	12 · 1 4 · 8 0 · 0 0 · 0 0 · 0 0 · 0 0 · 0			4.6 2.4 0.0 0.0 0.0 0.0 0.0 0.0		7 • 1 4 • 0 0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	240.7 263.3 0.0 10.2 0.0 19.2 2.6 0.0	64.1 29.5 .4 .1 1.4 .1	5 5 1 1 1 1
LIVE	TOTAL	5 1324.6	\$13.7	212.1	102.0	62.0	32.6	29.8	23.6	16.8	14.8	18.7	7.0	4 • 3	11.4	536.0	95.5	
PSHE LIDE CACH PSME		7.3	91.7 148.8 0.0 0.0	13.2 15.1 2.1 0.0	0.0 2.2 J.0 J.J	0.0 0.0 0.0	2.4 0.0 0.0	2.4 0.0 0.0	0.0 0.0 0.0 0.0	U . 0 0 . 0 0 . 0 0 . 0	0.0 0.0 0.0 0.0	Ú.Ŭ Ú.Ŭ Ú.Č	0.0 0.0 0.0	2.4 0.0 0.0	0.0 0.0 0.0	20.5 17.3 2.1 2.6	4.1 1.0 .0 1.8	4 4 1 1

Table 7. continued.

TSUGA HETEROPHYLLA ULIMAA OR COCLIMAX SITES

SPP Alpha Code	CODES	REPRO NUM 7H4	+ 1J		-NUHBER 3u		LEES/HA 50			H SIZE		_	110	120	TREES GT 120cm /Ha	TOTAL TREES GT10CH /HA	TOTAL Basal Area M2/H A	NUM 3R Of Occur
P SIDHEM SIDE ABBOGNICHAU ABBOGNICHAU ABBOGNICHAU SIDHEM AACARALUNR ABBOGNICHAU SIDHEM ACARALUNR ABSCHAU SIGNIC SIDHEMA		51.50 136.73 15.33 15.30 12.40 12.40 17.00 17.09 17.09 17.09 17.09	7 5600 505 6990 6 907 6 907 6 1107 17	70.20 170.00 45.20	78.5 4.33 0.00 .80 10.00 .80 10.00 .80 10.00 .80 .8	69.1 1.4 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	3 6	290400000000000000000000000000000000000				14.10 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000000	90000000000000000000000000000000000000	00000000000000000000000000000000000000	90000000000000000000000000000000000000	355.8 4 1.4 4 1.4 4.7 5.8 7 1.1 1.7 3.9 4.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5	69.51 3.6 .1 .0 .1 .2 .0 .0 .1 .1 .1 .1 .1 .1 .0 .1 .1 .1 .0 .1 .0 .0 .1 .1 .0 .0 .1 .1 .0 .0 .1 .1 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	14 12 11 1 5 5 1 8 1 1 2 1 2 4
	TOTALS		259.1	158.0	109.6	78.6	¥6.0	34.4	18.0	11.1	11.7	14.1	4.9	4.0	4.9	496.1	76.9	
PSHE TSHE ABGR ACHA ARHE CACH		0.0 6.0 0.0 0.0	50.3 -3.4 -8		9.5 0.0 0.0	3.4 6.0 0.0	4.2 0.0 0.0	4.0 0.0 0.0	8.0 9.0 9.0 9.0	3.9 0.0 0.0	U.Q Q.Q Q.Q	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4.2 8.8 0.0	3.9 8.8 0.0 0.0	.8 0.0 0.0 0.0	53.4 0.8 0.0	14.3	14 1 1
ARHE GACH PILA PSME	0 H 0 H 0 N 0 N	0.0 0.0 0.0 0.0	3.5 12.2 0.0 1.6		0.0 .8 0.0 0.0		0.0	0.0 G.0 0.0			0.0 0.0 0.0 0.0		8.0 0.0 0.5 0.0	0.0 0.0 0.0 0.0	6 - 0 9 - 0 0 - 6 0 - 9	0.0 16.3 1.4 0.0	.4	6

1/ The species alpha codes are: Psme = Pseudotsuga menziesii, Lide = Libocedrus decurrens, Tshe = Tsuga heterophylla, Abam = Abies amabilis, Abgr = Abies grandis, Abpr = Abies procera, Acgl = Acer glabrum, Acma = Acer macrophyllum, Arme = Arbutus menziesii, Cach = Castanopsis chrysophylla, Conu = Cornus nuttalii, Pila = Pinus lambertiana, Pipo = Pinus ponderosa, Prunu = Prunus spp., Quga = Quercus garryana, Salix = Salix spp., Tabr = Taxus brevifolia, Thpl = Thuja plicata.

Community type	Number of plots	Number of fire intervals	Stand age (age of oldest cohort)	Time since last major fire	Mean interval ^{]/} between fires	Plots experiencing a major fire since initiation of oldest cohort	Plots burned since initiation of oldest cohort		
			mean, (s	tandard deviation),	range	percent			
Pseudotsuga/ Holodiscus/grass									
Aspidotis phase	4	6	196 (104) 94-330	128 (52) 82-197	72 (41) 26-131	50	75		
Collonia phase	19	12	198 (84) 75-337	133 (51) 63-266	107 (65) 34-217	47	58		
both phases	23	18	198 (84) 75-337	132 (51) 63-266	96 (59) 26-217	48	61		
Pseudotsuga/ Holodiscus-Acer	12	11	294 (151) 89-450	162 (89) 89-420	111 (68) 41-232	50	58		
Pseudotsuga/ Berberis Disporum	9	9	226 (85) 96-323	184 (88) 96-322	118 (59) 27-207	33	78		
Libocedrus/ Whipplea	7	7	244 (92) 135-414	194 (52) 135-294	94 (46) 53-186	29	71		
Libocedrus/ Chimaphila	5	4	239 (95) 144-399	155 (57) 98-220	104 (86) 14-216	60 .	60		
All dry site plots	56	50	232 (105) 75-450	156 (69) 63-420	103 (60) 14-232	45	64		
All Tsuga-climax plots	14	5	221 (136) 74-450	150 (86) 74-401	144 (122) 40-284	21	43		

Table 8.	Summary of	fire	data	on	the	vegetation	plots	bу	community	type.

1/ Intervals based on estimated ages of marked diameter cohorts (e.g., uncored large old-growth trees) are not included.

Pseudotsuga menziesii/Holodiscus discolor/grass Community Type

This community type has the widest distribution of all the dry types. It occurs in all the areas sampled and from 525 to 1,250 m in elevation. It occupies south- to west-facing, 42 to 80 percent slopes. Stands are usually on side ridges and below the brows of benches and main ridges but also occupy landslide scars, slopes below cliffs, main ridges and, in one instance, an ordinary side slope. Bedrock geology (Peck et. al., 1964) is about evenly split between the Little Butte Volcanic Series and the Sardine Formation, both of Tertiary age. However, several of the eastern most plots were on the Quaternary and Tertiary volcanics characteristic of the High Cascades. The bedrock observed on the plots includes andesites, breccias, basalts and diorite -- most of the parent materials in the area.

The majority of soils supporting this community are poorly developed and are classed as Inceptisols and Entisols though Alfisols were found on two plots (see description of typical profile in Appendix 8). Soil depths generally range from 20 to 250 cm and contain 20 to 70 (mean 43) percent coarse, fragments. Textures are usually loamy, occasionally coarser and rarely finer. The available water capacity is often low (two to 14, mean seven cm) in the top meter due to shallow profiles, large volumes of coarse fragments and occasionally, coarse textures.

Climax status for <u>Pseudotsuga</u> is indicated by its dominance in the understory (Table 7), although <u>Libocedrus</u> is coclimax in some stands (Appendix 7). Many other tree species occur but are less important (Tables 5 and 7). The tall shrub layer is generally

depauperate except for <u>Holodiscus discolor</u> and, occasionally, <u>Rhus</u> <u>diversiloba</u>. <u>Corylus cornuta</u> and <u>Rosa gymnocarpa</u> are common but generally have low cover. The most important low shrubs are <u>Berberis</u> <u>nervosa</u>, <u>Whipplea modesta</u> and <u>Symphoricarpos mollis</u>. Common herbs are <u>Campanula scouleri</u>, <u>Collomia heterophylla</u>, <u>Fragaria vesca</u>, <u>Hieracium</u> <u>albiflorum</u> and <u>Trientalis latifolia</u> though each average less than one percent cover on the plots where they occur. <u>Lathyrus polyphyllus</u> is an occasional strong dominant. The grasses <u>Bromus vularis</u>, <u>Festuca</u> <u>occidentalis</u>, <u>Melica harfordii</u> and <u>Trisetum canesceus</u> are most common and typically have higher covers (one to two percent) than most herbs.

The oldest cohort in these stands averages 198 years old but the average time since the last major fire was only 132 years (Table 8). This is the result of major fires (fires which initiated at least half of the canopy as judged from the stand tables in Appendix 7 and field observations) on 48 percent of the plots since stand initiation (initiation of the oldest cohort, Table 8). Thus the vegetation on most of these sites was judged floristically immature. This does not necessarily indicate that this community represents an early successional stage of other dry site communities. It may just occupy sites which burn more frequently. This is weakly indicated by the relatively short mean interval between fires of 96 years (Table 8).

Average basal area and site index are slightly lower than the other communities (Table 6). This is probably due in part to younger stands in this type (Table 8) which would have less basal area and result in a smaller over-estimate of site index. Errors in estimated site index are positively correlated with years beyond index age when McArdle et. al.'s (1961) site curves are used on dry site <u>Pseudotsuga</u> (see Chapter 6).

Two phases of this community were recognized, the <u>Aspidotis</u> densa phase and the <u>Collomia heterophylla</u> phase (Table 4).

<u>Aspidotis densa phase</u>. The Asde phase can be called the dry phase of the driest <u>Pseudotsuga</u> community. It is recognized from two plots each in the central and southern portions of the Willamette National Forest. Elevationally, it does not extend as high as the <u>Collomia</u> phase (only to 900 m). Bedrock outcrops average 10 percent cover. Although Alfisols occur in two of four plots, they are probably not typical. In one of these what is probably a Xerorthent over shall bedrock is also present.

<u>Libocedrus</u> appears to be (Table 7) a significant climax component in three of the four stands. Floristicly the <u>Aspidotis</u> phase is distinguished from all other dry communities by higher constancies of <u>Aspidotis densa</u>, <u>Selaginella wallacei</u>, <u>Brodiaea congesta</u>, <u>Circium</u> and <u>Danthonia</u>. Both <u>Selaginella</u> and <u>Aspidotis</u> grow on rocks, though <u>Aspidotis</u> was found most commonly on thin, exposed soil. <u>Brodiaea</u> was found consistently on oak balds (which are not sampled) and much more rarely in the coniferous forest. <u>Brodiaea</u> and <u>Aspidotus</u> are important in two of the dry, non-forested associations of Hickman (1976). Thus this group (<u>Aspidotus</u>, <u>Brodiaea</u> and <u>Selaginella</u>) seems to indicate the dry and/or hot extreme of <u>Pseudotsuga's</u> range in this area. Sporadic occurrence of these species in other <u>Pseudotsuga</u> communities is probably due to drier local microhabitats. The <u>Aspidotis</u> phase also has greater grass cover and species richness than the <u>Collomia</u> phase and is more depauperate in shrubs except for <u>Rhus</u>, <u>Berberis</u> <u>aquifolium</u> and <u>Whipplea</u> <u>modesta</u>.

<u>Collomia Heterophylla</u> phase. This is the major phase of the <u>Pseudotsuga/Holodiscus</u>/grass community incorporating 19 of its 23 plots. Rock outcrops average only three to four percent. Also contrasting with the <u>Aspidotis</u> phase, <u>Libocedrus</u> is judged a significant climax component in only four out of 19 plots (Appendix 7). <u>Acer</u> <u>macrophyllum</u>, <u>Holodiscus</u>, <u>Berberis nervosa</u>, <u>Symphoricarpos mollis</u>, <u>Adenocaulon bicolor</u>, <u>Campanula scouleri</u>, <u>Collomia</u>, <u>Trientalis latio-</u> <u>folia</u>, <u>Vicia americana</u>, and <u>Festuca occidentialis</u> are more important than in the <u>Aspidotis</u> phase.

Pseudotsuga menziesii/Holododiscus discolor-Acer circinatum Community

Туре

This community is located mainly (nine of 12 plots) in the Blue River and McKenzie Districts (Figure 2). It is less common in the southern third of the study area with only two of 26 plots in the Oakridge and Rigdon districts in this type. The <u>Pseudotsuga/Holodiscus</u>-<u>Acer</u> type is found from 490 to 975 m in elevation on south to southwest facing 49 to 80 percent slopes. It usually occurs below the brows of ridges, on side slopes or, occasionally, on landslide scars or side ridges. The plots were divided about evenly between the Little Butte Volcanic Series, the High Cascades Volcanics and the Sardine Formation (Peck et. al., 1964). Bedrock is usually breccia and basalt or, less commonly, andesite and tuffs. The poorly developed soils are usually inceptisols and Entisols although one Alfisol was found (profile description in Appendix 8). Depth to bedrock ranges from 50 to over 250 cm. Most plots have coarse textured soils and the remainder are on loams and silt loams. Coarse fragments range from 23 to 80 (mean 52) percent. These three characteristics explain a low average water holding capacity of 6.6 cm (range 2.1 to 13.0 cm).

<u>Pseudotsuga</u> is climax on all but two plots. <u>Libocedrus</u> is a coclimax species on one of these and <u>Acer macrophyllum</u> dominates tree reproduction on the other (Appendix 7). In this instance the high <u>Acer macrophyllum</u> reproduction is probably a peculiarity of stand history and not indicative of climax status. <u>Libocedrus</u> is less abundant in all size classes in the <u>Pseudotsuga/Holodiscus-Acer</u> than in any other community (Table 7).

Though <u>Holodiscus</u> and <u>Rhus</u> are about as important in the <u>Pseudo-</u> <u>tsuga/Holodiscus/Acer</u> community as in most others, the greater importance of other shrubs is striking. Higher abundances of <u>Acer circin-</u> <u>atum</u>, <u>Corylus cornuta</u>, <u>Berberis nervosa</u>, and <u>Gaultheria shallon</u> make this community structurally as well as floristically distinct from the other dry communities (Table 5). These species and <u>Whipplea</u> dominate the shrub layers. Common herbs include <u>Achlys triphylla</u>, <u>Adenocaulon</u> <u>bicolor</u>, <u>Linnaea boreallis</u>, <u>Polystichum munitum</u> and <u>Trientalis lati-</u> <u>folia</u> (Table 5). Occasional dominat herbs include <u>Lathyrus polyphyllus</u> and <u>Vicia americana</u>. Grasses are less abundant than in most other communities (Table 5). Stand age, time since last major fire and the mean interval between fires are all larger than in <u>Pseudotsuga/Holodiscus</u>/ grass community; thus this community probably burns less frequently. The lower incidence of this community on ridges may partly explain this.

Basal area and site index in the <u>Pseudotsuga/Holodiscus-Acer</u> community are typical for these dry coniferous forests (Table 6).

Pseudotsuga menziessii/Berberis aquifolium/Disporum Community Type

This community type occurs only on the southern ranger districts (Oakridge and Rigdon). Plots range from 495 to 977 m in elevation. They are found on 20 to 67 percent south to west facing slopes. The <u>Pseudotsuga/Berberis/Disporum</u> community occurs on more stable landforms - ordinary side slopes and benches - than other dry types.

All plots are in areas mapped as the Little Butte Volcanic Series (Feck et. al., 1964). Bedrock as indicated by fragments in the soil was about equally divided between andesite, basalt, and breccia. Bedrock outcrops are quite rare (one percent cover on only one plot). Alfisols dominate (eight of nine plots) in contrast to soils associated with other dry conifer communities (see Appendix 8 for profile description). Soil profiles are generally deeper than in other communities, ranging from about 1.0 to over 2.5 m. Textures are generally loams and silt loams in the surface soil and silty clay loams and clay loams in the B horizon. Coarse fragments average only 27 (range 3 to 64) percent, another contrast with other dry conifer types. The estimated water holding capacity of 13 cm (range 7 to 19 cm) in one meter is higher than other communities due to greater soil depth, finer texture and less coarse fragments. Diameter distributions indicate that <u>Pseudotsuga</u> is the climax tree species on five plots and is coclimax with <u>Libocedrus</u> on four plots (Table 7, Appendix 7). <u>Libocedrus</u> is more numerous in the zero to 20 cm diameter range on plots 60 and 66 but these plots are assigned to this community based on consideration of all floristic characters. <u>Libocedrus</u> saplings in both plots are in floristically distinct patches. <u>Arbutus menziesii</u> and <u>Pinus ponderosa</u> are occasionally important trees.

Holodiscus, Rhus, Corylus and Rosa gymnocarpa typically share dominance in the tall shrub layer (Table 5). Whipplea, Berberis nervosa, Symphoricarpos and Berberis aquifolium are the dominant low shrubs. Holodiscus, Philadelphus lewisii, Rhus, Rosa, Berberis aquifolium and Symphoricarpos each reach their greatest importance in this community. Community dominant herbs include Vicia americana, Fragaria vesca and Adenocaulon bicolor (Table 5). Relative lack of Polystichum munitum and greater importance as a group of Disporum, Adenocaulon, Cynoglossum grande, Pteridium aquilinum, Pyrola aphylla and Osmorhiza chilensis help distinguish the Pseudotsuga/Berberis/ Disporum type from other dry communities.

Stand age is typical while time since last major fire and mean interval between fires are slightly higher than most dry forests (Table 8).

Community productivity appears high for dry site forests (Table 6). Mean site index and basal area are 41 m and 79 m²/ha, respectively. This is consistent with the more developed, deeper soils with greater available water-holding capacity on gentler, less exposed slopes.

Libocedrus decurrens/Whipplea modesta Community Type

Four of seven plots representative of this community are located in the Oakridge District with two in the Blue River and one in the Rigdon Districts. It occurs on a wide range of slopes (43 to 72 percent) facing south to west southwest. It is found on brows of ridges, side slopes, landslide scars, side ridges and benches. Plots occur on the Sardine Formation, Little Butte Volcanic Series and High Cascades volcanics of Peck et. al. (1964). Bedrock on the plots is primarily andesite and breccia with some basalt.

Soils are classified primarily as Entisols and Inceptisols except for one plot which had an Alfisol (see Appendix 8 for a description of a typical profile). Soil depth ranges from 50 to about 200 cm and coarse fragments average 26 (range 10 to 50) percent. Surface horizon textures are usually silt loam and loam (occasionally as coarse as sand) and B-horizon textures are similar with the exception of one silty clay loam. These characteristics combine for a wide range in estimated water-holding capacity of 4 - 16 cm (mean 10 cm).

<u>Libocedrus</u> is the primary climax tree on all plots though <u>Pseudo-</u> <u>tsuga</u> is coclimax on one plot and plays a minor role on another, based on size class distributions (Table 7, Appendix 7).

Shrub layer dominants are <u>Holodiscus</u>, <u>Rosa</u>, <u>Whipplea</u>, <u>Berberis</u> <u>nervosa</u>, <u>Berberis</u> <u>aquifolium</u> and <u>Symphoricarpos</u> (Table 5). <u>Rhus</u> is characteristically absent, in contrast to the <u>Pseudotsuga</u> communities. The herbaceous layer is variously dominated by <u>Polystichum munitum</u>, <u>Achlys triphylla</u>, <u>Lathyrus nevadensis</u> and <u>Vicia americana</u>. <u>Bromus</u> <u>vulgaris</u> and <u>Festuca occidentalis</u> are the most common grasses. The mean time since the last major fire on the <u>Libocedrus</u>/ <u>Whipplea</u> plots is high relative to the average dry site (Table 6). This partially explains the higher basal area in this type (Table 8). Total basal area and the proportion made up by <u>Libocedrus</u> are high relative to the <u>Pseudotsuga</u> communities. <u>Pseudotsuga</u> site index at 100 years is 38 m (Table 6).

Libocedurs decurrens/Chimaphila menziesii Community Type

The <u>Libocedrus/Chimaphila</u> community is the most geographically restricted occurring only in the upper McKenzie River drainage (i.e., north of Belknap Springs). Also, it predominates in this area; five of the six dry conifer plots in this area are assigned to the <u>Liboced-</u> <u>rus/Chimaphila</u> type. Its restricted range may account for an elevation span of only 740 to 884 m. Slopes are 37 to 80 percent and aspect ranges from east to west. The <u>Libocedrus/Chimaphila</u> community is found primarily on side ridges but also occurs on the crests and just below the brows of main ridges.

All five plots in this community are on the volcanic rocks of the High Cascades and Boring Lava mapping unit of Peck et. al. (1964). Bedrock is andesite or basalt with some breccia on one plot.

The soils are typically inceptisols though an Alfisol occurs on a portion of one plot. The average plot soil depth ranges from 46 to approximately 200 cm. Both surface and subsurface horizon textures are quite coarse in contrast to all dry communities but the <u>Pseudo-tsuga/Holodiscus-Acer</u> type. Sandy loams are most common with occas-ional loamy sands, silt loams and loams. Coarse fragments range from

23 to 44 (mean 31) percent. These characteristics combine to give an average estimated water-holding capacity of nine cm in the top 100 cm (range five to 11 cm).

<u>Libocedrus</u> dominates the reproductive tree size classes in the Lide/Chum community (Table 7) and <u>Pseudotsuga</u> always dominates the overstory (Table 5). Other common trees are <u>Acer macrophyllum</u>, <u>Castanopsis chrysophylla</u>, and <u>Taxus brevifolia</u> which occur with low covers. <u>Taxus</u> reaches its highest constancy in this community.

The tall shrub layer in the <u>Libocedrus/Chimaphila</u> plots is generally sparse. <u>Holodiscus</u>, <u>Rhus</u>, <u>Rosa</u>, <u>Symphoricarpos</u> and <u>Whipplea</u>, common dry site shrubs, reach their lowest importance here (Table 5). <u>Corylus</u>, <u>Berberis nervosa</u>, and <u>Chimaphilla umbellata</u> are dominant shrubs. <u>Trientalis latifolia</u> and <u>Pyrola picta</u> are characteristic herbs. <u>Trientalis</u> is the most common dominant herb and <u>Achlys</u>, <u>Adenocaulon</u>, <u>Campanula scouleri</u>, and <u>Linnaea</u> dominate occasionally. <u>Bromus vulgaris</u> and <u>Festuca occidentalis</u> are the most common grasses although grass cover is generally low.

Stand age, time since last major disturbance, and mean interval between fires are typical for dry sites (Table 8). Basal areas are the highest of the dry communities (Table 6, Appendix 7). These high values cannot be explained by older stand ages. <u>Libocedrus</u> makes up a relatively high proportion of the basal area, which is similar to the Libocedrus/Whipplea type.

- 72

Floristic Relationships

Shrub Correlation

Examination of the Kendall's tau correlation coefficients between shrub species in Pseudotsuga communities indicated the existence of two groups, the Acer circinatum group and the Holodiscus discolor group (Table 9). Species not shown did not have high similarities to species in either group or were not included because they were present in few plots or were not thought to have classificatory significance. The species in each group are positively correlated with each other, often significantlyso, and species in different groups are uncorrelated or usually negatively correlated. The Acer circinatum group shows much higher covers in the shrubby <u>Pseudotsuga-Tsuga/Corylus</u> habitat type in the H.J. Andrews than in the Pseudotsuga/Holodiscus habitat type (Dyrness et. al., 1974). Dyrness et. al. (1974) interpreted the Pseudotsuga/Holodiscus habitat type to be hotter and drier than the Pseudotsuga-Tsuga/Corylus (Figure 1) and this is supported by temperature and plant moisture stress measurements (Figure 9). Thus the species in the Acer circinatum group appear to be correlated with cooler and moister conditions in this portion of their ranges.

Presence of greater than 10 percent cover of this group is the primary tool used here to assign plots to <u>Pseudotsuga/Holodiscus-Acer</u> community (Table 5). This community is interpreted as being moister and cooler than the <u>Pseudotsuga/Holodiscus</u> grass community based on the known distributions of these species (see above discussion). Comparison of plant moisture stress on the adjacent reference stands 34

	<u>Acer</u> circinatum	<u>Berberis</u> nervosa	<u>Galtheria</u> shallon	<u>Taxus</u> brevifolia	<u>Cornus</u> nutalii	<u>Corylus</u> cornuta	Philadelphus lewisii	Holodiscus discolor	<u>Rhus</u> diversiloba	<u>Rosa</u> gymnocarpa	<u>Berberis</u> aquifolium
<u>Acer</u> circinatum	group										
Acer circinatum											
Berberis nervosa	.201*										
<u>Galtheria</u> shallon	. 145	.066									
<u>Taxus</u> brevifolia	.254**	. 106	125								
<u>Cornus nutalii</u>	. 093	. 209*	013	. 176%							
Corylus cornuta	. 363**	. 247*	.117	. 089	. 272**						
Holodiscus disco	olor group										
<u>Philadelphus lewisii</u>	108	. 038	109	.083	.066	. 235*					
Holodiscus discolor	135	004	223*	081	.077	.116	. 261*				
<u>Rhus</u> diversiloba	114	. 040	132	. 007	119	. 138	. 355**	.187*			
Rosa gymnocarpa	203	. 00 1	038	115	. 044	.077	. 210*	. 384**	. 238*		
Berberis aquifolium	268**	280**	251**	045	063	181*	. 258**	. 150	.054	. 172	

Table 9. Correlations (Kendall's tau (Daniel 1978)) between cover of selected shrubs in <u>Pseudotsuga</u> climax plots.

,

* Significant at .05 level
 ** Significant at .01 level or lower

•

(<u>Pseudotsuga/Holodiscus-Acer</u> community) and 35 (<u>Pseudotsuga/Holodiscus/</u> grass community) (Table 1, Figure 8) is inconclusive due to August rains in 1977 and 1978 (Table 2).

Members of the Holodiscus group (Table 9) occur in all dry site communities (Table 5), and presence of several members of this group is an indication that a site is dry coniferous forest as defined here.

Polar Ordination of Plots

Plot distribution in a two-dimensional polar ordination field is illustrated in Figure 16. End stands on the X axis are plot 35 at zero and plot 43 and 100 and on the Y axis are plot 47 at zero and plot 64 at 100. Species cover values were not standardized in these ordinations so species with high ranges in cover are more important than those with low ranges in placing plots on the axes. The distance measure used was percent dissimilarity (Bray and Curtis, 1957).

The <u>Tsuga-</u> and <u>Libocedrus-</u>climax stands are well separated from most other communities (Figure 16). The <u>Pseudotsuga/Holodiscus-Acer</u> community is intermediate between the <u>Tsuga</u> climax plots and the <u>Pseudotsuga/Holodiscus/grass</u> community. This is a result of the decrease in the shrub species in the <u>Acer circinatum</u> group (Table 9) from the <u>Tsuga</u> climax stands through the <u>Pseudotsuga/Holodiscus-Acer</u> community to the <u>Pseudotsuga/Holodiscus/grass</u> community. The <u>Aspidotis</u> phase of the <u>Pseudotsuga/Holodiscus/grass</u> community is near the zero end of the first axis. Thus, inferences from the vegetation are that moisture increases and temperature decreases from left to right along the X axis.

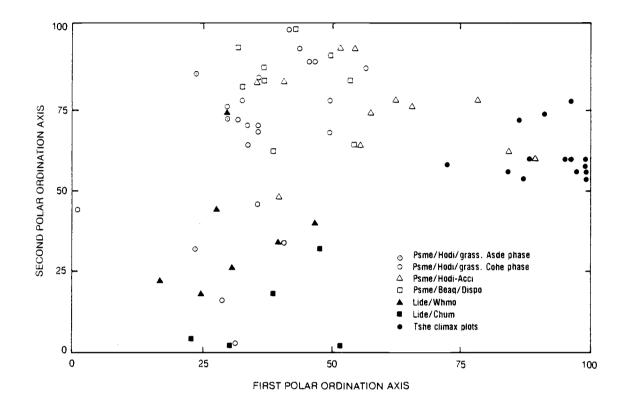


Figure 16. Polar ordination of dry site and mesic plots using unstandardized species cover data.

The Y axis separates the <u>Libocedrus</u> dominated plots from the other dry types based primarily on Libocedrus cover.

The lower part of the Y axis probably also reflects the greater importance of <u>Trientalis</u> and lesser importance of <u>Rhus</u> and <u>Luzula</u> <u>campestris</u> characteristic of the <u>Libocedrus</u> communities as a whole (Table 5). Environmental interpretation of this axis is difficult since little is known about the autecology of these species. Neither axis separates the <u>Pseudotsuga/Berberis/Disporum</u> community from the <u>Pseudotsuga/Holodiscus/grass</u> community.

Plotting of plant moisture stress and temperature growth index at reference stand positions in Figure 16 and the next ordination shows no notable trend in the ordination plane. This is probably due in part to the wide range in reference stand elevation (Chapter 3).

Many ordinations were run, but only two are reported here to conserve space. These two provide examples of the major trends in the data and the separations of communities for which the ordinations were found useful.

Principal Components Ordinations of Plots and Species

Principal components ordination of dry site plots separates the communities differently and illustrates different trends (Figure 17) than does polar ordination (Figure 16).

Figures 17 and 18 are from a centered (Noy-Meir, 1973) and standardized (mean set to zero, variance set to one) (Noy-Meir et. al., 1975) principal components analysis. The ordinations of plots (Figure 17) and species (Figure 18) were done simultaneously using the plot by plot correlation matrix in Ordiflex (Gauch, 1977).

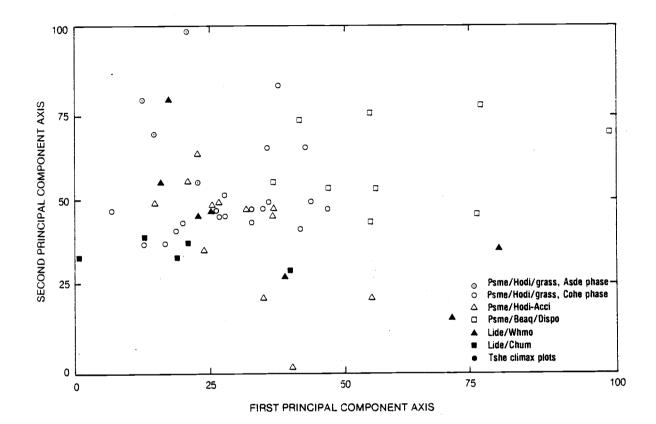
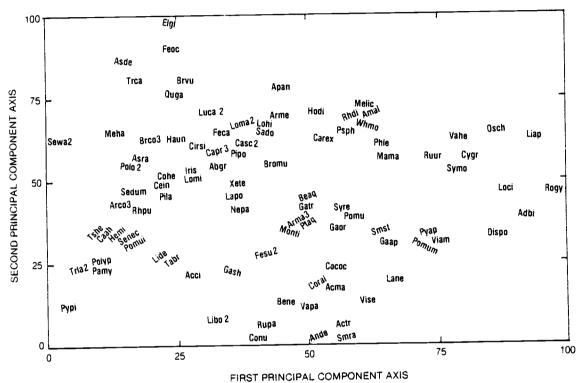



Figure 17. Principal components ordination of dry site plots using centered and standardized data.

Principal components ordination of species using centered Figure 18. and standardized dry site plot data. Species names and abbreviations are listed in Appendix 1.

Typically, the first two or three components are the only interpretable ones and account for a large proportion of the total variance (Pielou, 1977).

The proportion of variance accounted for in several other studies ranges from 20 percent for two axes (Franklin et. al., 1980) to 40 percent for three axes (Orloci, 1966). However, the principal components analysis shown in Figures 17 and 18 accounted for only 13 (two axes) to 18 percent (three axes) of the variation in this data, which is typical of the other centered and standardized principal component analyses performed in this study. This result was not expected since a limited range of vegetation as defined by Dyrness et. al. (1974) was sampled. It is probably due to the wide geographic area studied. As a consequence interpretation of the ordinations is limited.

Several interpretations of the first principal component are possible. The <u>Aspidotis</u> phase of the <u>Pseudotsuga/Holodiscus</u>/grass community is centered in the upper left and the <u>Libocedrus/Chimaphila</u> community is centered below and to the left of the central plot cluster. The first component can in part be interpreted as a latitudinal gradient since the <u>Pseudotsuga/Berberis/Disporum</u> community was found only in the Oakridge and Rigdon Districts. It can also be interpreted as a gradient of subsurface horizon textures. Most plots of the <u>Pseudotsuga/Berberis/Disporum</u> type have clayey B horizons while the <u>Pseudotsuga/Holodiscus/Acer</u> and <u>Libocedrus/Chimaphila</u> communities characteristically have coarse textured soils and those of the <u>Pseudotsuga/Holodiscus</u>/grass are usually intermediate. Correlation of latitude with texture is expected since dry conifer forests occur on more mature soils in the south end of the study area. Plot by plot inspection of latitude and soil texture reveals exceptions to both of these interpretations.

Plots belonging to the <u>Pseudotsuga/Holodiscus-Acer</u> type and <u>Aspidotus</u> phase of the <u>Pseudotsuga/Holodiscus</u>/grass type dominate opposite ends of the second principal component (Figure 18). Thus this axis is probably correlated with increasing drought or temperature based on the interpretations of the species in these communities (see previous discussion). Again, the reference stand data did not help interpret this axis, probably due at least in part to the wide range in reference stand elevation.

Parallels between the principal component ordinations of plots (Figure 17) and of species (Figure 18) are readily apparent. Aspidotis densa (Asde), Selaginella wallacei (Sewa) and Brodiaea congesta (Brco 3), three characteristic species of the Aspidotis phase of the Pseudotsuga/Holodiscus/grass community are in the same corner of the ordination field (Figure 18) as are the plots of this phase (Figure 17). The other species in this vicinity are the grasses Elymus glaucus (Elg1), Festuca occidentalis (Foec), Trisetum canescens (Trca), Bromus vulgaris (Brvu) and Melica harfordii (Meha), and Quercus garryana (Quga), most of which also reach their greatest abundances in the Aspidotus phase (Table 5). Disporum (Dispo), Ligusticum apiifolium (Liap), Cynoglossum grande (Cygr), and Osmorhiza chilensis (Osch) occur in the upper right of Figure 18. These species are characteristic of the Pseudotsuga/Berberis/Disporum community which occurs in the same area in Figure 17. Pyrola picta and Trientalis latifolia which are most abundant in the <u>Libocedrus/Chimaphila</u> community are placed by the species ordinations in the lower left of Figure 18, similar to the placement of this community by the samples ordination (Figure 17). But note that neither species of <u>Chimaphila</u> (both characteristic of this community) are present because they were not thought to have classificatory significance and so not included in the small data set (see earlier discussion of methods and Appendix 5). <u>A priori</u> judgments of ecological significance are often used to reduce large data sets to manageable size but may lead to omission of significant species if not made on a sound basis.

The general correspondence of ordination positions of communities and their characteristic or dominant species is continued for the other communities. This use of principal components analysis was helpful in identifying species characteristic of the communities.

The <u>Acer circinatum</u> and <u>Holodiscus discolor</u> shrub groups (Table 9) are in different parts of this field (Figure 18). The <u>Acer</u> group (Tabr, Acci, Gash, Conu, Bene, Cococ) are in the lower center region and four species in the <u>Holodiscus</u> group (Hodi, Rhdi, Phle, Beaq) are in the upper center (Figure 18). <u>Rosa gymnocarpa</u> (Rogy), also in the <u>Holodiscus</u> group (Table 9), is an exception, being disjunct from both groups at the far right. The juxtaposition of the <u>Holodiscus</u> group with the <u>Acer</u> group supports the interpretation of the Y axis as reflecting increasing drought or temperature.

Latitudinal and Temporal Species Correlations

Species correlations with latitude are a pronounced structural

Таха	Correlation coeffecient1/	Detroit Ranger District	Upper McKenzie basin	H.J. Andrews Exp. Ecol. Res.	Lower McKenzie basin (main fork)	Blue River Ranger District	Oakridge Ranger District	Rigdon Ranger District
Disporum	.637***	0	0	0	2	0	5	5
Festuca californica	·534***	0	0	0	0	1	2	20
Arbutus menziesii	. 447***	0	2	1	0	5	10	19
Philadelphus lewisii	. 392***	0	0	0	Ő	0	2	4
Lonicera hispidula	.385***	0	0	0	0	0	4	3
Campanula prenanthoides	. 382***	0	1	0	0	0	0	ű.
Cynoglossum grande	. 368***	0	0	0	0	0	3	2
Pinus lambertiana	·352***	0	0	2	0	7	2	8
Osmorhiza chilensis	. 350***	1	0	0	0	i	3	3
Pinus ponderosa	.337***	0	0	0	0	0	ó	13
Rhus diversiloba	.313***	0	0	13	5	3	13	13
Apocynum androseamifolium	.303***	1	0	ĩ	õ	ź	í	· 4
Holodiscus discolor	. 299***	21	5	13	14	12	26	20
Berberis aquifolium	.291***	3	3	1	3	5	9	7
Madia madioides	.281***	1	0	5	Ō	1	4	5
Vicia americana	.261**	0	0	12	0	9	15	9
Melica subuliflora	. 253**	0	0	4	0	2	3	7
Adenocaulon bicolor	.234*	5	5	3	0	3	14	5
Psoralea physodes	.237*	0	0	0	0	Ō	0	ī
Synthyris reniformis	.203*	0	1	8	0	0	5	5
Aster radulinus	.186*	0	3	3	3	6	2	5
Arenaria macrophylla	.173	4	7	4	3	5	8	6
Ligusticum apilfolium	. 170	0	Ó	0	õ	õ	2	ĩ
Phlox adsurgens27	NA	0	0	0	0	0	õ	2

Table 10. Correlation (Kendall's tau, Daniel 1978) of species cover with area and tabulation of species importance by area for dry site plots in the small data set. Importance calculations employed cover averaged over all dry site plots in each area.

Таха	Correlation coeffecient1/	Detroit Ranger District	Upper McKenzie basin	H.J. Andrews Exp. Ecol. Res.	Lower McKenzie basin	Blue River Ranger District	Oakridge Ranger District	Rigdon Ranger District
Rhamnus purshiana	391***	4	2	3	2	2	0	
Trientalis latifolia	366***	12	17	8	5	6	7	<u>ь</u>
Pyrola picta	350***	0	4	1	3	ĩ	ó	0
Tsuga heterophylla	369***	5	2	3	ó	Ó	0 0	Ő
Polypodium	301***	2	1	2	0	0	Ō	Ő
Senecio	258**	1	1	1	0	0	0	0
Acer circinatum	255**	3	8	20	24	12	9	ĩ
Taxus brevifolia	244**	0	2	2	0	0	õ	0
Rubus ursinus	225*	7	5	7	11	5	8	4
Heuchera micrantha	224*	0	4	0	0	ō	0	0 0
<u>Cornus nuttallii</u>	212*	7	5	· 3	12	1	3	2
Pachistima myrsinites	208*	0	2	1	2	1	Ō	0
<u>Arctostaphylos</u> columbiana	198*	9	2	0	0	4	0	0
Amelanchier <u>alnifolia</u>	185*	5	1	3	0	1	0	4
<u>Galtheria</u> shallon	170	7	1	2	17	0	2	1
Castanopsis chrysophylla	143	4	3	3	2	2	1	, ,
Acer macrophyllum	122	19	6	9	11	1	9	i.
Berberis nervosa	117	25	18	30	19	19	24	14
Corylus cornuta v. californica	060	25	10	15	12	10	11	10
Libocedrus decurrens	010	9	57	3	7	25	31	19
Chimaphila umbellata ^{2/}	NA	3	18	5	ò	2	2	1

.

Table 10. continued.

-

1/ Correlations passing a two-tailed test of significance at the .005 (***), .01 (**) and .05 (*) level in SPSS (nie et al. 1975) are indicated.

2/ From large data set (see Appendix 5).

feature of the vegetation data (Table 10). The abundance of many species varies significantly from north to south within the Willamette National Forest. If ranger districts closer to the Willamette Valley (Sweet Home and Lowell) had been included additional variation would have been introduced (Juday, 1976).

Naturally, most species attaining greatest importance in the <u>Pseudotsuga/Berberis/Disporum</u> community (Table 5) are inversely correlated with latitude (Table 10). Similarly, species characteristic of the <u>Libocedrus/Chimaphila</u> type (e.g., <u>Chimaphila umbellata</u>) have high importance in the upper McKenzie Basin.

Less than 160 years has been elapsed since the last major fire on approximately half of the dry site plots (Table 8). Very few old undisturbed dry site stands were found. Two-thirds of the stands sampled, and virtually all of those over 300 years old, had been reburned at least once (Table 8). Consequently, some plots may represent relatively early successional stages and not primarily environmental differences. Correlations between species cover and time since last major disturbance were calculated to explore this complication (Table 11).

Very few of the species characteristic of the different communities are correlated with time since the last major disturbance (Table 11). <u>Festuca subuliflora</u>, which finds its greatest abundance in the <u>Libocedrus/Whipplea</u> community, is more common in older stands. <u>Libo-</u> <u>cedurs</u> cover is also correlated with increasing time since disturbance. Both of these correlations probably relate to the greater mean age of the Libocedrus/Whipplea plots (Table 8).

Table 11. Correlation (Kendall's tau (Daniels 1978)) of species cover with time since last major fire. Only correlations passing a two-tailed test of significance at the .005 (***), .01 (**), or .05 (*) level in SPSS (Nie et al. 1975) are given. Dry site plots in the small data set were used.

Species	Correlation	
Festuca subuliflora Arenaria macrophylla Linnaea borealis	.281*** .281*** .267***	
<u>Corallorhiza</u> spp	.256**	
Polystichum <u>lonchitis</u> Libocedrus <u>decurrens</u> Adenocaulon <u>bicolor</u>	.210* .205* .198*	
Smilacinia stellata	- .298***	
<u>Trillium ovatum</u> <u>Arctostaphyllos</u> columbiana Rubus ursinus	232* 230* 186*	

Composition appears to be less affected by time since last major fire than by geographic location in these dry conifer stands. A better classification could certainly be developed if more mature vegetation was available. However, this analysis indicates the present classification is probably not greatly influenced by the youth of many of these stands.

General Discussion

The communities described fit fairly well into the <u>Pseudotsuga</u>/ <u>Holodiscus</u> habitat type on the H.J. Andrews. Dyrness et. al. (1974) include several plots in which <u>Libocedrus</u> is judged climax or coclimax. Most of their plots could be assigned to the <u>Pseudotsuga/Holodiscus</u>-<u>Acer</u> community, although some have affinities to the <u>Pseudotsuga</u>/ <u>Holodiscus/grass type and the Libocedrus</u> types.

Significant intergradation exists among the communities. This is evidenced by the lack of high constancy, high fidelity character species and overlap of community distributions on the ordination planes (Figures 16 and 17).

The large plot size, geographic variation (e.g., in climate, Chapter 2; and flora, Table 10), and youth of some stands probably contributes to the variation within communities and so to the overlap between them. The common occurrence of dry sites as isolated patches in a matrix of <u>Tsuga</u>-climax forest probably increases between **stand** variability. Lack of a well-defined break between dry site and nondry site vegetation based on presence of Tsuga primarily in the Rigdon District also probably contributed to this. In this district <u>Tsuga</u> is much less common and is replaced on some mesic sites by another tolerant species (Minore, 1979) <u>Abies grandis</u> (and its intergrades with <u>Abies concolor</u>). Several stands with <u>Abies grandis</u> reproduction were encountered but not sampled. Restriction of future studies of a single habitat type to a limited geographic area where other habitat types have been (or are currently being) defined will reduce geographic variation and improve study type definition.

Much dry coniferous forest can be viewed as being in an immature stage of primary succession. This relationship is best illustrated by the dry forests in landslide scars (Figure 15) which usually occur in draws. Thin, young soils support dry forest in draws that will usually support more mesic forest when soils mature and deepen. The convex land forms characteristic of most dry sites have soils often kept perpetually young by erosion. In the H.J. Andrews Forest southfacing convex land forms gentle enough to maintain deeper, more mature soils usually are in the <u>Tsuga heterophylla/Castanopsis chrysophylla</u> or other relatively mesic habitat type. Hack and Goodlet (1960) found the same correspondence between relatively xerophytic vegetation and thin, young soils on convex land forms in the Appalachinas.

The temporal distribution of fires on the dry site plots illustrates several points (Figure 19). Older fires are more difficult to detect because their traces are erased by subsequent fires and time. The lack of fires on the vegetation plots during the last 60 years probably reflects initiation of a fire suppression policy in 1915 (Burke, 1979) as well as attempts to sample only relatively mature stands. A marked peak in dated fires occurs between 110 and 140 years

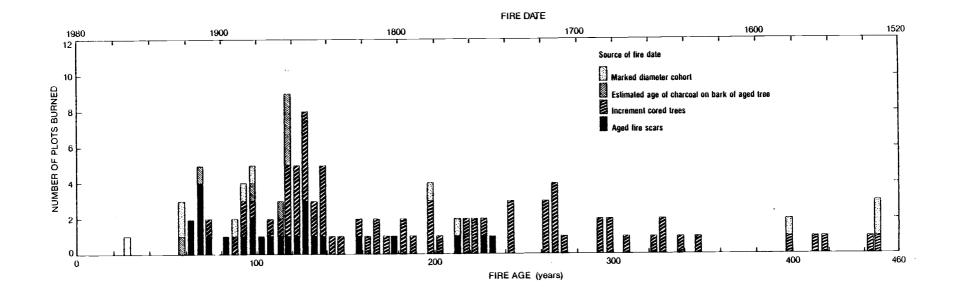


Figure 19. Histogram of dates of fires on dry site plots by five year age classes.

ago (Figure 19). This coincides with the 135 year-old forests on Wildcat Mountain and on the Mount Hood National Forest. $\frac{5}{}$

The concentration of ages between 260 and 275 years ago coincides with the ca. 1703 fire episode of Mount Rainier National Park (Hemstrom, 1979) and a drier than normal Pacific Northwest winter identified by Blasing and Fritz (1976) based on interpretation of tree ring records. The peak in fire scar dates between 60 and 75 years ago corresponds with the 1914 and 1919-1921 peaks in lightning caused fires in the central portion of the Willamette National Forest (Burke, 1979).

The mean interval between fires, an index of fire frequency, has two primary sources of error. Fires with signs obliterated by subsequent fires or time are not included which probably results in an overestimate of mean interval between fires. Omission of stands which have not burned leads to an underestimate of mean interval between fires. Though these errors have opposite effects the net result is probably an underestimate so interpretation is limited.

These dry coniferous forests apparently burn naturally at intermediate intervals and intensities compared to other Pacific Northwest forests. <u>Pinus ponderosa</u> - <u>Abies concolor</u> forests on the eastern slope of the Oregon Cascades have a mean interval between fires of nine to 42 years and contain evidence of many (mean 10 per plot) fires, indicating most fires killed a small portion of the stand (McNeil, 1976). Hemstrom (1979) estimated the natural fire rotation in the relatively moist forests surrounding Mount Ranier to be 465 years (range 213 to

^{5/} Personal observations and personal communications with Jerry F. Franklin.

1033) and characterized the fires as catastrophic (stand destroying). The mean interval between fires on dry sites of 103 years (Table 8) is intermediate compared to these values. Most dry site stands have had at least one non-catastrophic fire since initiation of the oldest cohort which only destroyed part of this cohort (Table 8). So, al-though fires on dry sites are more likely to be catastrophic than in east side <u>Pinus ponderosa</u>, they are less likely to be catastrophic than it Mount Ranier.

Reciprocal averaging results are uninterpretable and so were not used in the classification process. This technique gave very skewed distributions of plots and species in the ordination planes. The species ordinations were dominated by those species with the most skewed distributions (i.e., low cover on most plots but higher cover on one or a few plots). Elimination of such species from early ordination attempts resulted in only minor improvement since the routine found different species with only slightly less skewed distributions. This failure of reciprocal averaging is in contrast to its warm reception by others (Gauch et. al., 1977; Whittaker and Gauch, 1978).

STAND STRUCTURE AND DEVELOPMENTAL HISTORY

Most of the researchers who have identified climax <u>Pseudotsuga</u> vegetation types in western Oregon inferred successional trends from size distributions (Thilenius, 1964; Merkel, 1951; Bailey, 1966; Corliss and Dyrness, 1965; Juday, 1976; Anderson, 1967; Mitchel, 1972; Dyrness et. al., 1974). Cole (1977) examined ages and found early -an-caused fires and recent fire suppression changed the structure and composition of southern Willamette Valley forests.

The size distribution in dry coniferous forests is characterized by large numbers of small over-topped trees in the reproductive size classes with an exponential decline in stem density into the larger size classes which have few individuals (Table 7, Appendix 7). This contrasts with the typically bell-shaped diameter distribution of <u>Pseudotsuga</u> on mesic sites (Appendix 7). Possible causes include: (1) slow restocking of the site following destruction of the previous stand; (2) regeneration during several distinct periods in the history of the stand; and (3) widely differing tree growth rates.

Reconnaissance indicates spatial variation in stem density and understory vegetation is a striking attribute of many dry site stands. In some instances pockets of poor stocking were on obvious areas of thin soil though in other areas correlations were not obvious. Variability in soil factors is known to influence tree distribution and growth (Mader, 1963). These factors include texture and rooting depth (Wilde, 1958). Small landslides are disturbance events common to the study area (Swanson and James, 1974; 1975) which can strongly influence

microtopography, soil depth and other soil properties since the overall shallow soils make these sites sensitive to removal or addition of soil. Thus an investigation of relations between stocking **va**riability soil factors seems appropriate for dry site stands.

Objectives and Hypotheses

The goal in this part of the study is to examine stand structure, successional trends and mechanisms and site history. This is met by fulfilling the following objectives: (1) Examine the relationships of soil depth, estimated water-holding capacity, and microtopography to stem density, basal area, sapwood basal area and number of roots. (2) Examine the age structure of each tree species to investigate regeneration through time. (3) Investigate evidence of fire, windthrow, and other indicators of disturbance history. (4) Look for evidence of a possible previous stand such as logs, stumps, charcoal, and windthrow mounds and pits.

In addition, the following hypotheses guided work not covered by the objectives or focused on particular questions.

1. Trees require more than 50 years to fully reoccupy dry sites after a catastrophic disturbance.

The conventional wisdom (based on typical <u>Pseudotsuga</u>) is that dense <u>Pseudotsuga</u> regeneration occupies a disturbed site quickly (within 20 to 30 years) (Isaac, 1943). However, recent studies in this area have shown that 90 (Figure 20) to 150 years (Franklin et. al., 1976) were required on some mesic sites in past centuries. Regeneration may

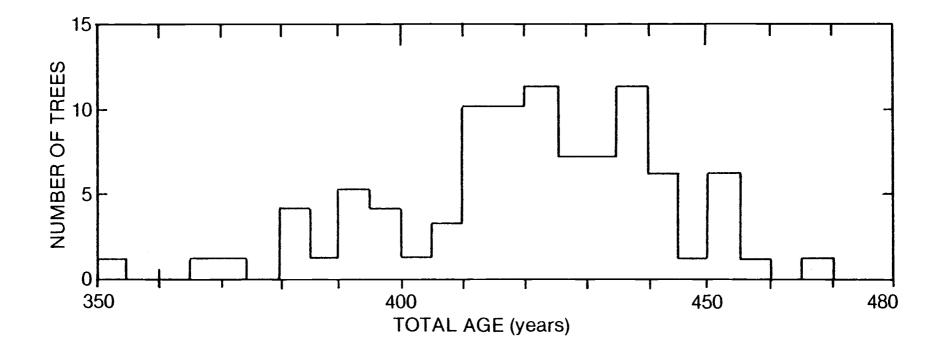


Figure 20. Age structure of <u>Pseudotsuga</u> in a transition zone stand on the H. J. Andrews Experimental Ecological Reserve (by J.E. Means). (From "An old-growth douglasfir stand analysis," talk given at the 50th annual meeting, Northwest Scientific Association, Monmouth, Oregon, 1977.)

take even longer on the severe sites under study. Regeneration time can be estimated from the age structure.

2. <u>Pseudotsuga</u> and <u>Libocedrus</u> are climax in dry coniferous forests so they replace themselves as openings occur in the canopy (Whittaker, 1975).

3. Gap phase replacement (Watt, 1947; Bray, 1956) is an important mechanism for regeneration in mature stands.

Although the study type is called climax <u>Pseudotsuga</u> (Dyrness et. al., 1974), the successional roles of <u>Pseudotsuga</u> and its associates have not been investigated. The key to its successional status is the success of its reproduction in competition with other trees in canopy gaps created by tree mortality. Only relatively old stands which have had significant natural mortality and resultant regeneration can be used to test this hypothesis.

4. Patchy tree distribution is due in part to variation on soil properties so increased stocking is correlated with deeper, less rocky soils on concave landforms.

A small absolute change (40-80 cm) can cause a large relative change (50-100 percent) in soil depth on these shallow sites which probably has a significant impact on tree survival and growth. Relationships between the stocking indices and the soil characteristics are used to test this hypothesis.

5. Dry coniferous forests are not first generation forests. It is possible that some of these stands may be first generation forests on sites which previously supported drier vegetation such as oak savanna (Hickman, 1976). Stumps, logs, charcoal or rootthrow mounds can be evidence of previous stands. However, reconnaissance of some sites reveals few such signs.

Methods

Data for this portion of the study came mostly from two intensive plots though vegetation plot data are also employed. Intensive plot 1 is 3/4 ha added during 1976 to reference stand 1 in the H.J. Andrews Experimental Ecological Reserve and does not include the old reference stand. It was chosen primarily because of the previous research done on Andrews reference stand 1 (Hawk et. al., 1978). This plot is primarily in the <u>Pseudotsuga/Holodiscus-Acer</u> community type but also includes some areas of both phsaes of the <u>Pseudotsuga/Holodiscus/</u> grass type and possible minor areas of moister habitat types of Dyrness et. al. (1974). Vegetation plot 48 is in this intensive plot. This intensive plot sweeps around a side ridge which has steep slopes (Table 12).

Intensive plot 2 is a 50 x 100 m $\frac{1}{2}$ hectare plot seven km north of the town of Oakridge (Figure 8). This plot was chosen because it showed little sign of major disturbance since the oldest trees were initiated, though this assumption was subsequently proved wrong. Intensive plot 2 includes areas of <u>Libocedrus/Whipplea</u>, and <u>Pseudotsuga/Berberis/Disporum</u> types with lesser amounts of the <u>Pseudotsuga/ Holodiscus-Acer</u> type. Vegetation plots 60 and 61 are in this intensive plot. It is at 930 m elevation on moderate slopes (Table 12) with three small side ridges running through it, increasing its variability.

	Intensive Plot 1	Intensive Plot 2	
Elevation (m)	500	930	
Slope (%)	72 (45-92)	55 (45-65)	
Aspect (degrees)	200 (160-237)	230 (195-260)	
Bedrock	Andesite, Breccia	Andesite, (Breccia)	
Soils characteristics			
Soil Orders <mark>1/</mark> Depth (cm)	Inceptisols (Alfisols, Entisols) 132 (11-ca. 250)	Alfisols, Inceptisols Entisols 90 (8-ca.250)	
Coarse particles (%)	54 (43-64)	25 (11-59)	
Textures: A horizon	silt loam (loam, sandy loam)	loam, silt loam	
B horizon Available water-holding capacity to 100 cm (cm)	silt loam, (loam, sandy loam, silty clay loam, clay loam) 6.3 (1.1-9.9)	clay loam, silt loam (silty clay loam, loan 7.8 (1.3-15.8)	

Table 12.	Topography, bedrock and soils on the intensive plots.	Ranges and minor inclusions are given
	in parentheses.	· ·

1/ Soil taxonomy follows Soil Survey Staff (1975).

Field Methods

A slope corrected grid system was installed with metal stakes at 25 m intervals. Mapping objects at a scale of five m to one inch was facilitated with string placed at five m intervals. Probable mapping accuracy is ± one m for two-thirds of the objects mapped. All trees greater than 10 cm (15 cm in plot 1) diameter at breast height (137 cm) were mapped and inventoried (species and diameter were determined). All trees taller than 137 cm (greater than five cm dbh in plot 1) were mapped and inventoried on one quarter of the 25 x 25 m quadrants in both plots. All mapped trees were numbered on the map and on the ground using metal tags. The areal extent of all rootthrow mounds and pits was mapped. Lower diameter limits on intensive plot 1 were slightly different because original mapping and tree tallying was done by the H.J. Andrews vegetation crew.

All canopy gaps created by death of identifiable trees were mapped and young trees (less than 137 cm tall, up to five cm dbh in plot 1) occurring in these gaps were tallied. A live tree or group of trees was selected which matched in size and microenvironment (as indicated by vegetation and topography) those which died and a similar sampling of smaller trees conducted.

Fire and mechanical scars were dated when not too rotten using the same technique as on vegetation plots.

Plots were thoroughly searched for evidence of a previous stand, such as stumps and logs larger than the largest living trees and old rootthrow mounds.

Seven and eight soil pits were described in intensive plots 1 and 2, respectively, chosen to cover the range of basal areas estimated with a 40 factor (ft^2/ac) prism. They were widely spaced so that few individual trees were shared in prism tallies from different pits. This made the stocking indices at each pit as independent as possible. Profile descriptions followed the vegetation plot soil pit methods. In addition, roots were tallied in a 25 cm wide face on the uphill side of each pit for its full depth by three diameter size classes: fine, 2mm - 1 cm; medium, 1 cm - 4 cm; coarse, greater than 4 cm. Depth to bedrock was estimated to 250 cm in four pits (three in plot 1, one in plot 2) over 150 cm deep. Basal area was determined at each pit with an English units 40 factor prism (Husch et. al., 1972) and the tag numbers of the trees in the tally were recorded.

All trees greater than 50 cm dbh and a randomly selected 35 percent sample of those below this size were increment-cored at breast height. Two cores were taken on the opposite side of the tree and the same information taken as on the vegetation plot site trees. This included bark and sapwood thickness on both cores and core age when easily counted. Other cores were returned to the lab in plastic straws.

Laboratory Methods

Increment cores with rings too narrow to count in the field were counted in the lab under a binocular microscope. Then ages (when extrapolation beyond the end of the core was needed) and heights were estimated by program Ageht (Appendix 9).

Stem density at each soil pit was estimated by tallying on the maps all trees less than 15 cm DBH in scale circles of 100 m^2 and 314 m^2 by species.

The two sizes of fixed radius plots and the prism tally provided three estimates of basal area per hectare at each pit.

Sapwood basal area (SBA) at breast height was estimated for both cores on each tree using the formula SBA - 3.14159 (DIB² - DIS²)/4

where DIB = diameter inside bark, and

DIS = diameter inside sapwood,

and the average of these two estimates was used as the sapwood basal area for the tree. For each species at each intensive plot regressions of the general form $ln(SBA) = b_0 + b_1 DBH + b_2 ln(DBH)$ were fit by least squares (Draper and Smith, 1966) using SIPS (Rowe et. al., 1978). The regressions were used to estimate sapwood basal area of uncored trees as needed.

The two fixed radius plots and the prism tally gave three estimates of sapwood basal area per hectare at each pit. The sapwood basal area per hectare represented by each tree in the prism tally was calculated as (Husch, Miller and Beers, 1972, pp. 276-281):

$$SBA(cm^{2}/ha) = SBA(cm^{2})$$
 . $\frac{10,000(m^{2}/ha)}{PA}$

where PA (plot area for that tree in m^2) = BA · 43,560 (ft²/ac)/BAF where BA = individual tree basal area in m^2

BAF = prism basal area factor in ft^2/ac For the 40 factor prism (ft^2/ac) used here this simplifies to SBA(cm^2/ha) = SBA(cm^2) · 116,900(cm^2/ha)/DBH²(cm^2) These values were summed for the prism tally estimate of sapwood basal area per hectare at each pit.

Available water-holding capacity was calculated to a depth of 100 cm and to bedrock for each soil pit using program Sh20 (see Appendix 9) in the same manner as used for the vegetation plot data.

The product-moment correlation coefficient (Snedecor and Cochran, 1967) and the nonparametric correlation coefficient Kendall's tau (Daniel, 1978) were calculated between stocking indices at each soil pit (stem density, basal area, sapwood basal area, and number of roots) and the soil characteristics (depth, percent coarse fragments, effective depth, available water-holding capacity, microtopography) for each intensive plot and for the pooled data from both plots using SPSS (Nie et. al., 1975). The level of significance was calculated using a one-tailed test, reflecting the hypothesis.

Regeneration density was calculated from the tree counts in canopy gaps and under the paired tree canopies on a per hectare basis for each condition, then on a per hectare of forest basis. This was combined with the diameter tally of larger trees to give the diameter distribution. Stocking of zero to five cm DBH trees in intensive plot 2 was taken from the regeneration tallies and the tree tally on vegetation plot 48.

Ideally, age structures are obtained by aging all trees. When only a sample of trees are aged, and ages of the remainder estimated from regressions of age on diameter (as is often done), the detail in the age structure is reduced because the relationship between diameter and age is generally quite poor (Harper, 1977; Blum, 1961). To illustrate, ages of uncored <u>Pseudotsuga</u> in plot 2 could have been estimated by the regression of age on diameter in Figure 21. If so, all 50 to 80 cm trees would have been assigned ages between 170 and 220 years, though most trees in this diameter range are not of this age.

The method used here to estimate ages of uncored trees preserves detail in the distribution of the available ages by assigning each uncored tree the age of a cored tree of similar diameter. All cored trees were grouped by 10 cm diameter class as were all uncored trees. Then each uncored tree was assigned the age of a cored tree in its diameter class until all ages in a given diameter class had been used once. Ages in each diameter class were used again in the same order until all unaged trees had been assigned ages from cored trees in their respective diameter classes.

General Characteristics

The greater basal area of <u>Libocedrus</u> and total basal area on intensive plot 2 (Table 13) are consistant with the average values for the community types represented (Table 6). Both of these features are probably in part due to the greater average age (Figures 24 and 25). Site index is substantially higher on plot 2 than plot 1, though it is quite variable on both plots (Table 13). Diameter distributions on both intensive plots have the classical reverse-J shape (Figures 22 and 23) characteristic though not indicative of an all-aged stand (Whittaker, 1975; Harper, 1977). The overstory of both stands is dominated by <u>Pseudotsuga</u>. Understories are dominated by <u>Pseudotsuga</u>

Figure 21. Diameter versus age relationship of <u>Pseudotsuga</u> on intensive plot 2. Accuracy of point placement is slightly limited because this figure is based on a computer line printer figure. The regression line was fit by least squares.

	Intensive plot 1	Intensive plot 2
Basal area (m ² /ha)		
Pseudotsuga menziesii	59.4	66.7
Libocedrus decurrens	0.0	24.1
Acer macrophyllum	1.3	1.3
Other species $\frac{1}{2}$.7	-
Total	61.4	92.1
Site index (m)	34	43
(mean and range)	(23-42)	(33-52)

Table 13. Basal area and <u>Pseudotsuga</u> site index (McArdle et al. 1961) on the intensive plots.

<u>1</u>/ On plot 1 only, in order of decreasing basal area: <u>Taxus</u> <u>brevifolia</u>, <u>Tsuga heterophylla</u>, <u>Arbutus menziesii</u>.

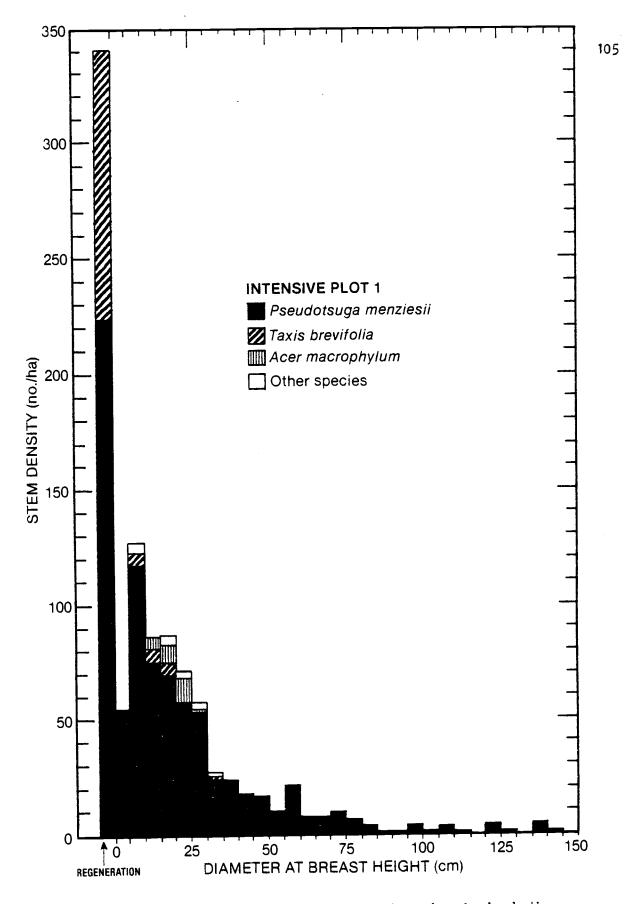


Figure 22. Diameter distribution in intensive plot 1, including regeneration.

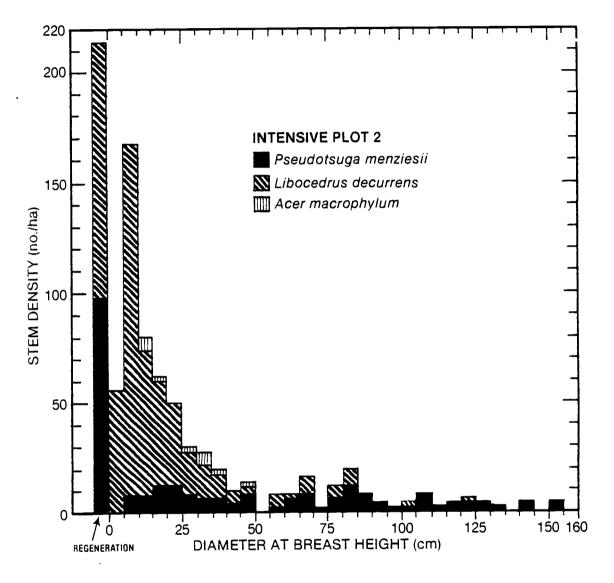


Figure 23. Diameter distribution in intensive plot 2, including regeneration.

and <u>Libocedrus</u> on plots 1 and 2, respectively. The numerous, small <u>Taxus</u> on plot 1 are not surprising for a <u>Pseudotsuga/Holodiscus-Acer</u> stand.

Age Structure and Stand History

The age structure of intensive plot 1 (Figure 24) is not nearly as smooth as a reverse-J shape curve as its diameter distribution (Figure 22). This is partially due to the fact that only a couple of the trees were cored as indicated by the dotted line. But the major peaks are due to the history of tree establishment. All ages and dates in the intensive plots are as of mid-summer, 1978, when the increment coring was done.

There are three major cohorts (Figure 24). A broad age cohort (or perhaps several indistinguishable cohorts) established between 230 and 410 years ago now compose the large diameter, rounded- or broken-topped dominants. Rot, often entering behind fire scars, prevented aging a larger sample of these trees.

A more distinct age cohort was established 140 to 190 years ago. Most of these trees apparently became established following a fire 195 years ago (Figure 24) although the fire age is based on only one scar.

The youngest cohort is 50 to 140 years old. This cohort followed a fire approximately 138 years ago dated by 17 scars spanning a range of three years. This fire correlates with fires which initiated the widespread 135-year-old age class in the Pacific Northwest. $\frac{6}{}$

^{6/} Personal communication with Jerry F. Franklin.

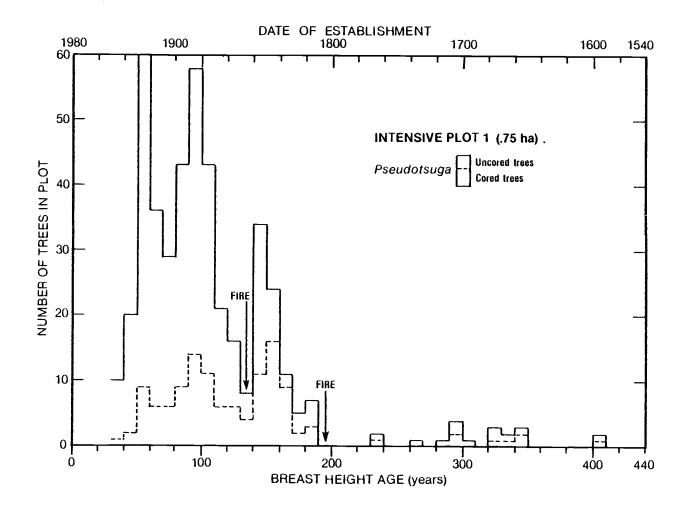


Figure 24. Age distribution of <u>Pseudotsuga</u> and fire scar dates in intensive plot 1. Ages of all trees above the dotted line (when present) are estimated as described in the text.

Both fires probably killed a significant proportion of the canopy trees providing space for the large numbers of trees which have now reached the canopy.

The age structure of intensive plot 2 is also unlike its diameter distribution (Figure 25). This plot has more dominants over 200 years old than intensive plot 1. The oldest cohort consists of only four trees 420 to 470 years old (Figure 25). Although older than the oldest trees aged in intensive plot 1, it is still within the broad "450 year-old" age class identified elsewhere on the H.J. Andrews (Franklin et. al., 1976; Figure 20).

The next cohort was established 180 to 300 years ago following two or more fires (Figure 25). Both of the fire ages between 300 and 340 years old come from a large <u>Libocedrus</u> with a rotten center. Problems in finding shock rings and aging the scar make these fire ages questionable. The date of initiation of this cohort corresponds appropriately to the ca. 1688 fire episode at Mount Ranier National Park (Hemstrom, 1979).

The youngest cohort is 40 to 170 years old (Figure 25). All <u>Libocedrus</u> in this cohort were established following a fire dated 138 years ago. However, one third of the <u>Pseudotsuga</u> in this cohort are older than this fire. This could result from several causes.

The stand map shows all of the trees with charred bark on the top and slopes of the main side ridge running through the plot. This pattern indicates that fires can be very localized in dry site forests. Thus the fire in 1840 may have killed all the young <u>Libocedrus</u> but did not burn the portion of the stand occupied by the 140 to 165 yearold Pseudotsuga.

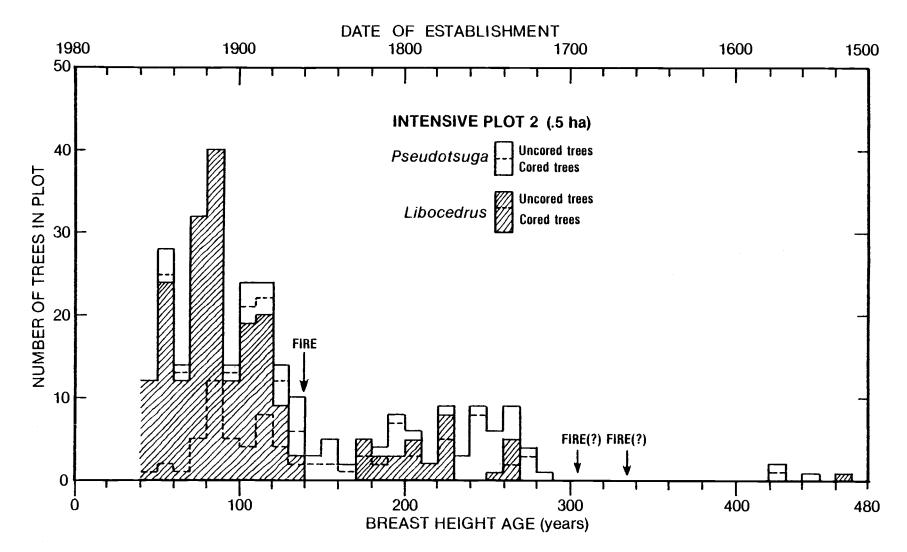


Figure 25. Age distributions of <u>Pseudotsuga</u> and <u>Libocedrus</u> and fire scar dates in intensive plot 2. Ages of all trees above the dotted lines (when present) are estimated as described in the text. Fires followed by question marks are based on fire scars which were difficult to count.

The occurrence of a fire ca. 170 years ago is a distinct possibility. Assuming this and that the 138 year-old fire did not cover the whole stand three compatible hypotheses can explain the differences in the age distributions between <u>Libocedrus</u> and <u>Pseudotsuga</u> in the youngest cohort (Figure 25). <u>Libocedrus</u> may grow more slowly under a partial canopy than <u>Pseudotsuga</u> so that breast height ages of the <u>Libocedrus</u> in this cohort are less. Second, <u>Libocedrus</u> regeneration may have been 30 years behind <u>Pseudotsuga</u> due to climatic factors or lack of good <u>Libocedrus</u> seed crops. Third, the area burned 165 years ago may not have been favorable for Libocedrus establishment.

An alternative hypothesis is that there has been essentially continuous regeneration since the fires 300 + years ago. Thus <u>Pseudotsuga</u> regeneration was established over 230 years and <u>Libocedrus</u> is still regenerating (Figure 25). However, given the moderately distinct age cohorts, a fire scar aged at 138 years, and known common occurrence of non-catastrophic fires in intensive plot 1 and vegetation plots (Table 8) this seems unlikely.

Old rootthrow mounds and pits and logs indicate the present stands are not the first on the intensive plots. Rootthrow mounds and pits are present in all stages, from fresh with a decay class 1 log (Fogel et. al., 1973) to those with decay class 5 logs or no log present. Some pit and mound pairs are barely identifiable as such. A depression is evident in some mounds where the log has completely rotted away.

Though major fires burned both intensive plots ca. 135 years ago, very little dead wood remains. Many trees must have died in that fire

to allow establishment of the large number of younger trees now present. This implies decomposition of tree boles on these warm sites is probably quite rapid. Large logs probably retain enough water to allow rapid decomposition well into the warm summer. Their moisture retention ability is indicated by the predominant occurrence of <u>Tsuga</u> <u>heterophylla</u> on rotten wood when it is found on dry sites (Table 7, Appendix 7).

Detailed stand investigations such as this can yield much information on stand development (Stephens, 1955a: Henry and Swan, 1973; Oliver and Stephens, 1977). However, this method has limitations (Harper, 1977) so only broad age cohorts are interpreted. Trees were cored at breast height (137 cm) so ages are not total ages. Historical information (e.g., scars, tree centers) is lost with time and subsequent disturbances (Henry and Swan, 1973). The biggest problem in investigating stand history using age structures is estimating mortality (Harper, 1977) so the above interpretations of size of disturbances and number of trees killed, based on amount of regeneration following the disturbance, are necessarily qualitative.

Regeneration

Regeneration density is much greater in canopy gaps than under canopies (Table 14). However, gaps cover very little of the area in the intensive plots so regeneration under tree canopies is much more common in the forest as a whole.

The tallest trees found in gaps were 60 and 130 cm in intensive plots 1 and 2, respectively. The tallest trees found under the

Species	Regenera	tion density	Number per hectare of forest			
	Number per 100 m ² of gap	Number per 100 m ² of canopy	In gaps	Under canopy		
Intensive plot 1						
Pseudotsuga menzieii Taxus brevifolia Arbutus menziesii	8.4 0.4 0.4	1.7 1.0 0	32 1 1	191 115 0		
All species	9.1	2.7	35	306		
Intensive plot 2						
Pseudotsuga menziesii Libocedrus decurrens	13.6 1.2	0.8 1.2	22 2	76 114		
All species	14.8	1.9	24	190		

Table 14. Regeneration in gaps and under canopies on the intensive plots.

canopies were less than 35 cm in both plots. The lack of trees between 35 and 137 cm height in areas sampled beneath canopies was also generally observed in the stands. This indicates that these seedlings rarely reach breast height and probably attain canopy height much more rarely than seedlings occurring in gaps despite their larger numbers.

Regeneration following fires, discussed above, probably results in many more canopy dominants than regeneration either in gaps or under canopies. This inference is based on the large number of trees currently in the canopy which were initiated in this manner.

Two factors probably limit the importance of reproduction in small canopy gaps. Although gaps probably occur more often (e.g., in one hectare stands) they cover much less area than most fires. Also, up until age 100 or more, gaps created by death of single trees or small groups are probably closed by neighboring trees. Most gaps mapped were of this size.

This study was designed to examine the importance to reproduction of one to several tree-sized gaps described by Bray (1956). However, in his discussion, Watt (1947, p. 13) allows that "there are exceptional factors of rare or sporadic occurrence, such as storms, fire, drought, epidemics, which create a gape phase of exceptional dimensions." This very broad definition of the gap phase easily includes all regeneration on dry sites (and most other forests) and so is not used as the basis for a hypothesis.

Soil Characteristics and Stocking Indices

On the average, soils on intensive plot 1 are less mature, deeper, and higher in coarse fragments than those in plot 2. However, there is overlap in these features, especially depth. Soil depth is correlated with the stocking indices as expected in both intensive plots (Tables 15 and 16; Figure 26). The same is true for effective depth and available water-holding capacity (Figure 27) which are highly correlated with soil depth. Stocking is usually insignificantly correlated with coarse fragments. Thus the range of rock fragments on these plots apparently have less effect on stocking than does soil depth.

Fixed area plots provided estimates of basal area and sapwood basal area more highly correlated with soil characteristics than those from prism plots. This is due to the inclusion of remote, large diameter trees in prism tallies and so poor estimation of stocking near the pit.

The range in soil characteristics and stocking (which the soil pits were chosen to cover) is generally quite large (Table 12; Figures 26, 27 and 28). The above-ground stocking indices span a larger range in plot 2 than in plot 1. The higher incidence of significant correlations in intensive plot 2 is probably due to this feature, the slightly larger sample size in plot 2, and the better developed stocking in plot 2 indicated by the larger number of older trees.

The relationship of roots counted to pit depth is linear with the exception of one high value (Figure 28) which occurred in a pit

Table 15. Product-moment correlation coefficients between stocking indices and soil characteristics for the seven soil pits on intensive plot 1. Significance at the .05 (*), .01(**), and .005(***) levels using a one-tailed test is indicated.

Stocking Indices	Soil Characteristics							
	Depth		Coarse fragments	Effective depth		Available water-holding capacity		Micro- topography
	of	to	j	to	to	to	to	
	pit	bedrock		100 cm	bedrock	100 cm	bedrock	K
Stem Densities								
In 100 m ² plot							•	
Pseudotsuga	.646	.472	419	.517	. 408	. 528	. 384	+517
In <u>314 m² plot</u>		-	-			-	-	
Pseudotsuga	.792*	.718*	375	.619	.657	.594	.642	2411
Basal Areas								
with 40 Factor prism		.213	.568	127	.160	252	.104	+7080
in 100 m ² plot	.672*	.830*	.143	.375	.816	.230	.798	3*028
in 314 m ² plot	.204	.361	. 534	132	.810	296	. 331	. 327
Sapwood Basal Areas								
with 40 factor prism		. 154	.062	064	.164	094	.177	7.577
in 100 m ² plot	.767*	.692*	016	. 406	.619	.312	.576	5291
in 314 m ² plot	.584	.584	. 393	.152	. 589	032	. 539	9042
<u>Roots</u> (all sizes)	.985***							

•

•

Stocking Indices	Soil Characteristics								
	Depth to to		Coarse fragments	Effective depth to to		Available water-holding capacity to to		Micro- topography	
	pit	bedrock		100 Cm	bedrock	100 cm	bedrock		
tem Densitjes									
In 100 m ² plot									
Pseudotsuga	.759*	.793**	.076	.890***	. 880***	.882***	.876**;	441	
Libocedrus	.332	.217	.342	.248	.135	.271	.237	114	
All species	.787*	.776*	.192	.872***	.822**	.874***	.856***	429	
In 314 m ² plot									
Pseudotsuga	.757*	.748*	.016	.888***	.827**	.872***	.855***	702 ³	
Libocedrus	.452	.357	.701*	.223	.174	. 271	.246	.057	
All species	.855***	.784*	.545	.759*	.693*	.786*	.759*	442	
asal areas									
with 40 factor prism	. 591	.464	.425	.595	. 437	.609	.565	.072	
in 100 m ² plot	.948***		.384	.839**	.933***	.874***	.910***	453	
in 314 m ² plot	·957***	.960***	.377	.853***	.902***	.887***	.915***	464	
apwood basal area									
with 40 factor prism	.575	.524	.516	.565	. 485	.585	.540	.089	
in 100 m ^r plot	.987***		. 524	.883***	.869***	.910***	.901***	573	
in 314 m ² plot	.967***	.891***	.609	.823**	.768*	.855***	.834**	554	
oots (all sizes)	.824*								

Table 16. Product-moment correlation coefficients between stocking indices and soil characteristics from the eight soil pits on intensive plot 2. Roots were counted at five soil plots. Significance at the .05 (*), 101 (**), and .005 (***) levels using a one-tailed test is indicated.

•

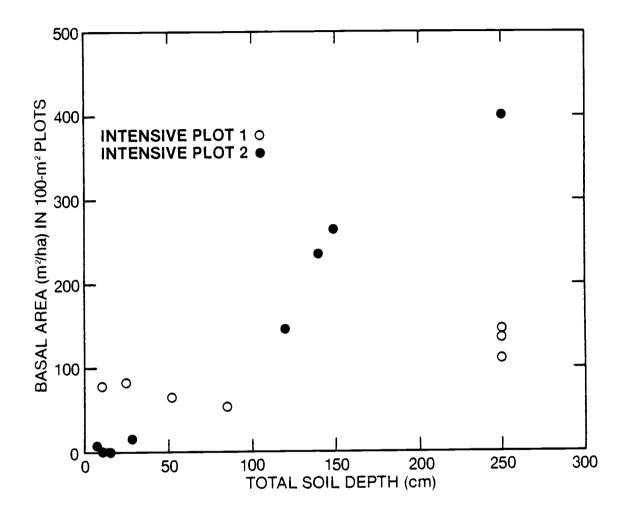


Figure 26. Basal area in the 100 m² plots versus total soil depth on the intensive plots.

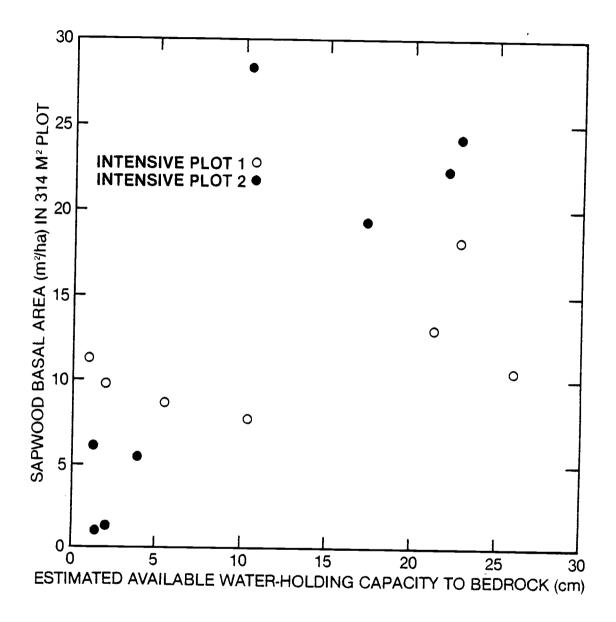


Figure 27. Sapwood basal area in the 314 m² plots versus estimated available water-holding capacity to bedrock on the intensive plots.

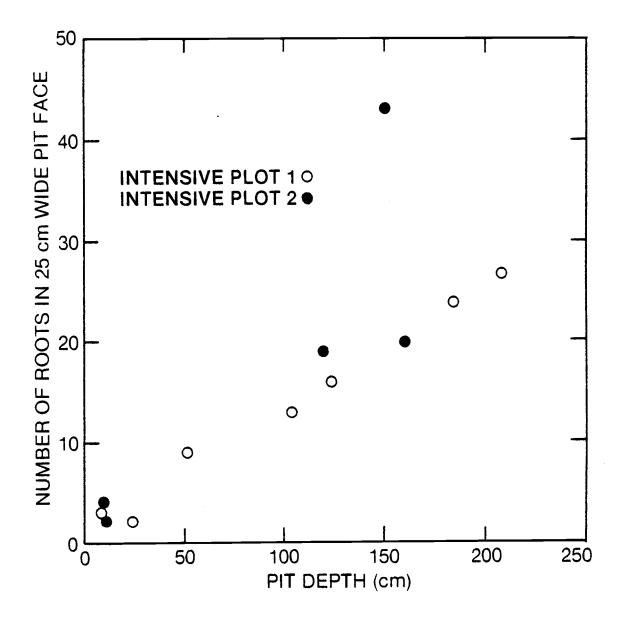


Figure 28. Number of root ends counted in a 25 cm wide vertical portion of the soil profile versus pit depth.

with an abnormally thick A horizon (59 cm) where the roots were concentrated. This indicates the ratio of root density to soil volume is constant with depth and over a wide range of rock content for roots greater than two mm diameter. This is consistent with the general lack of correlation between coarse fragments and stocking.

Extrapolation of the soil-stocking relationships beyond these intensive plots is risky on statistical grounds since only two stands were sampled. Nevertheless, these relationships are in general expected or easily interpreted and so can probably serve elsewhere as working hypotheses.

Synthesis and Conclusions

A general overview of the typical pattern of dry-site stand development can be developed from the intensive plot studies and the vegetation plot data. First, these stands are probably initiated by a large catastrophic fire or fires like most of the surrounding forest (Franklin et. al., 1976; Figure 20). An alternative hypothesis is that they are burned only by fires which kill a portion of the canopy. Some of the oldest trees would be killed by the fires but most would be weakened by decay through fire scars and die from rootthrow, stem break and other causes.

The second process is the repeated occurrence of fires which kill a portion of the canopy trees. These fires may be limited to less than one tenth hectare or cover many hectares. Any portion of the canopy may be killed. Intervals between these fires vary considerably

(Table 2). Several closely spaced fires may initiate a single age cohort.

The third process is regeneration establishment in the newly available growing space. This may proceed for over 150 years following the fire though the probability of younger trees reaching the canopy decreases with time. The shortest regeneration time observed is 60 years between the two-aged fires in intensive plot 1 but judging by the continuity of tree ages this period was truncated by the 133 year old fire.

Due primarily to the large amount of canopy space opened up by some fires, regeneration under the canopy and in gaps made by rootthrow or breakage of one or more trees is of little importance.

The poor relationship between tree age and diameter is made worse by the long time for regeneration establishment. This results in stands which often have a smooth reverse-J shape diameter distribution. This is not the result of continuous tree establishment under the canopy gaps as occurs elsewhere (Bray, 1956).

Site occupancy increases with soil depth and related soil characteristics (Tables 15 and 16). The variability in these soil factors which can occur within a small area (Table 12; Figures 26 and 27) can make vegetation sampling and interpretation of these samples difficult. One of the reasons soils are so variable is that most dry site communities are on convex and geomorphically active areas. Such sites generally have thin soils in which a change in bedrock depth of one meter can result in a two- or three-fold difference in soil depth.

Nature regenerates these stands with a "partial cut" and then establishes trees over the next 60 to 150 years. This scenario has two main management implications. First, shelterwood or single-tree or group-selection system (sensu Smith, 1962) will most closely mimic the natural system. Currently, the most commonly used <u>Pseudotsuga</u> silvicultural system includes clear cutting as the regeneration cut (Williamson, 1973). This is due in part to early failures with selection cuts on mesic sites (Munger, 1950) where partial cuts result in <u>Tsuga</u>-dominated stands. This problem will not occur in the dry coniferous forests studied here.

Second, regeneration may require a considerable period of time no matter what silvicultural system is used. Clear cutting will result in significant regeneration problems on most of these hot, dry sites. Foresters in the Blue River, Oakridge and Rigdon districts indicate slow regeneration is common on some of these sites and the most extreme sites may not restock after five or more plantings. Under the selection system the site is continually occupied with growing stock and rapid regeneration is not critical.

Further management implications are given in Chapters 6 and 7.

HEIGHT GROWTH

<u>Pseudotsuga menziesii</u> has a different height growth curve form in the upper slope forests of the western Cascades (Curtis et. al., 1974b) than it has in lowland and coastal forests (McArdle et. al., 1961). Near the cool upper elevational limits of its range <u>Pseudotsuga</u> starts more slowly and sustains height growth to an older age than it does in the lowlands. It seems logical that <u>Pseudotsuga</u> at the hot, dry extreme of its range might also have a height growth curve form different from that of mesic lowland sites. <u>Pinus ponderosa</u> has been found to have a different height growth curve form on different habitat types (Daubenmire, 1961, 1976) as has <u>Tsuga mertensiana</u> (Johnson, 1980).

The following hypothesis guides this portion of the study: The form of the height growth curve of dominant and codominant <u>Pseudotsuga</u> in dry coniferous forests differs significantly from that of <u>Pseudo-</u> <u>tsuga</u> on mesic sites and site index curves in Bulletin 201 (McArdle et. al., 1961) are, therefore, inapplicable.

Different height growth curve forms result in different site index curve forms (Curtis et. al., 1974a). The actual curve forms of the trees sampled to estimate site index must match those used in site index curve construction or serious errors in estimated site index and volume productivity can result (Herman and Franklin, 1976).

Other site curves are available for westside <u>Pseudotsuga</u> (King, 1966) but they were developed from young trees and can only be used for trees up to 120 years old. Recently developed curves for

<u>Pseudotsuga</u> east of the Cascade crest (Cochran, 1979a) extend to only 100 years. These are not useful in estimating site index in the older stands common in these sites (Table 8).

Methods

Field Methods

Stem dissection plots were located throughout the study area, except the Detroit District where dry sites are rare. The trees selected for stem dissection were in or near vegetation plots so that each dissection site could later be assigned to a plant community.

Several criteria were used for tree selection. Candidate trees were dominants or strong codominants with straight boles showing no signs of past top breakage. Unhealthy crowns, flat or deformed tops, or several (or one large) conks were causes for rejection. Candidates were increment cored at breast height. Trees showing periods of suppressed radial growth or significant rot were not used. These criteria resulted in rejection of 70 to 90 percent of the dominant and strong codominant trees over 200 years old and of 30 to 70 percent of trees between 100 and 200 years old. Effects of past fires (fire scars and resultant butt rot), top breakage, and disease obviously increase with age. Reduced radial growth commonly caused rejection which is not surprising considering current canopy trees often came in under a partial canopy (see Chapter 5).

When sufficient acceptable trees were available several were cut at each location. This allows assessment of the potential bias in site curves due to changes in the tallest tree on the plot through time (Dahms, 1963). When the tallest four to six trees on the plot are selected this potential bias can also be eliminated from the site index curves using the methods of Cochran (1979a, 1979b).

Stem dissection was performed on 40 trees, 20 each in 1977 and 1978. The stem dissection process generally followed that of Herman et. al. (1975). A professional sawyer was hired to fall and buck the large trees. In most cases cross-section disks were taken at stump height, breast height (137 cm above ground level) and at two meter intervals above breast height. Ground level is defined as midslope on the side of the tree. Diameter outside bark was measured circumferentially before the disks were cut. Four inside bark diamters and four inside sapwood diamters were measured after the disks were cut.

During the first year full disks were taken back to the Forestry Sciences Laboratory in Corvallis and radii (radial sections including the pith) cut from them to reduce storage space.

In the second year one diamter was cut from uniform disks in the field. As a general rule full stump disks and often breast height disks were taken to the lab because their radial growth is often irregular and several radii must be measured to characterize it.

Laboratory Methods

Narrow rings were counted with a variable magnification binocular microscope. Radii were prepared with a belt sander or a "Surform" plane depending on whether the wood was dry or moist, respectively. Narrow ring sequences were best counted on smooth sanded surfaces. Standing water improved counting in all cases though it was difficult to sustain on some radii. Ring clarity was not improved with the dyes used (bromocrecial green, methyl orange, floroglucinol (Patterson, 1959)).

Height growth curves were constructed for each tree. Occasionally these curves showed anomalies such as abrupt changes in height growth rate which were often the result of inaccurate initial ring counts. Counts of multiple radii usually cleared up these anomalies. Several trees showed suppressed height growth, usually early in life, or had isolated periods of relatively slow height growth probably indicating significant top breakage. Primarily for these reasons, seven trees were eliminated from further consideration, except for illustrative purposes.

Actual site index (total tree height at 100 years total age) was then compared with that estimated using Bulletin 201 (McArdle et. al., 1961).

Results

Trees were cut in all community types (Table 17). This is fortuitous since the community classification was constructed after the trees were cut. The Rigdon District, where dry sites are most extensive, was sampled most heavily. Individual trees vary widely in age, height, and predicted site index (Table 18).

The height growth curves have a moderately wide range of forms (Figure 29). Some trees, generally those with higher actual site index showed pronounced convexity. Tree 5 on plot 47 had this type of curve form which is similar to the curves of McArdle et. al. (1969).

Plot	number of trees cut	Ranger District	Drainage	Community type	Elevation (m)
3	3	Neilanzie	Upper McKenzia River	Libocedrus/Chimaphila	853
20 <u>1</u> /	3	Blue River	Lookout Creek	Pseudotsuga/Holodiscus-Acer	689
35	4	Blue River	Starr Creek	<u>Pseudotsuga/Holodiscus/grass</u> and <u>Pseudotsuga/Holodiscus-Acer</u>	899
41	2	McKenzie	Deer Creek	Libocedrus/Chimaphila	777
45	6	Blue River	Augusta Creek	Libocedrus/Whipplea	930
47	4	McKenzie	Upper McKenzie River	Libocedrus/Chimaphila and Pseudotsuga/Holodiscus-Acer	792
62	2	Rigdon	Hills Creek Reservoir	<u>Pseudotsuga/Holodiscus</u> /grass Collomia phase	525
63	2	Rigdon	Hills Creek Reservoif	<u>Pseudotsuga/Holodiscus</u> /grass <u>Collomia</u> phase	550
64	2	R i gdon	Middle fork of Willam- ette River	Pseudotsuga/Berberis/Disporum	632
65	1	Rigdon	Middle fork of Willam- ette River	<u>Pseudotsuga/Holodiscus</u> /grass Aspidotus phase	712
67	3	Rigdon	Pine Creek	Pseudotsuga/Berberis/Disporum	765
68	1	Rigdon	Pine Creek	<u>Pseudotsuga/Holodiscus/g</u> rass Collomia phase	814
69	1	Rigdon	Youngs Creek	Pseudotsuga/Berberis/Disporum	977
70	4	Oakridge	North fork of middle fork of Willamette River	Pseudotsuga/Holodiscus-Acer	175 ₁₂ ۵

Table 17.	Location,	community	type	and	elevation	of	stem	dissection	plots.

Table 17. continued

71	2	McKenzie.	Deer Creek	Libocedrus/Chimaphila	740
73	1	McKenzie	Upper McKenzie River	Libocedrus/Chimaphila	853

 $\underline{1}$ / H.J. Andrews Experimental Ecological Reserve reference stand 20.

Plot	Tree	Diameter at Breast Height	Breast height	Total age <u>1</u> /	Total height	Height at 100	Predicted height at	Error in predicted
		(cm)	age 	(meters)	years	100 years	height
3	1	80.3	134	142	44.7	33.9	39.6	.7
20	2	79.0	110	118	44.5	43.2	42.7	5
20	5	56.7	107	115	41.1	39.6	39.6	0
20	6	64.5	117	125	44.6	41.5	39.6	1.9
35 35	1	88.4	97	105	51.3	50.3	50.3	0
35	4	92.7	113	121	51.2	47.8	47.2	5
35	6	91.5	110	118	50.8	47.1	47.2	. 2
41	1	96.4	266	274	48.1	30.1	38.1	7.1
41	2	109.3	245	253	54.2	32.9	44.2	11.3
45	2	83.3	117	125	48.1	43.0	44.2	1.2
45	4	84.9	196	204	48.4	30.3	41.2	10.9
45	5	65.1	123	131	45.0	30.4	32.0	1.6
45	6	68.5	121	129	46.0	39.9	42.7	2.8
45	7	66.5	121	129	43.0	37.4	39.6	2.2
47	5	112.8	207	215	52.3	38.6	42.8	4.1
62	1	81.5	248	256	54.4	37.4	44.2	6.8
62	2	105.6	256	264	55.2	39.4	44.2	4.8
63	1	78.2	260	268	43.6	27.8	33.5	5.7
63	2	103.7	258	266	51.3	37.6	41.2	3.5
64	6	84.5	255	263	48.8	29.4	39.6	10.2
64	7	82.2	250	258	47.8	29.0	38.1	9.1
65	1	84.5	206	214	37.0	26:3	30.5	4.2
67	1	74.7	281	289	52.0	33.6	41.2	7.6 ⁻¹
67	2	84.2	280	288	51.6	33.6	41.2	7.6
67	3	79.5	284	292	55.0	38.1	42.7	4.6

Table 18.	Comparison of actual height of 34 dry site Pseudotsuga with site inde	x (predicted height at 100
	years) using the site curves of McArdle et $\overline{al. (1961)}$.	-

•

Table 18. continued.

68	1	74.4	281	289	45.3	32.0	36.6	4.6
69	1	86.3	134	- 142	44.9	37.9	41.2	3.3
70	1	116.6	255	263	55.7	34.3	44.2	9.9
70	2	107.1	230	238	56.7	38.0	45.7	7.7
, ° 70	3	89.2	118	226	49.2	30.6	41.2	10.6
70	í.	87.1	224	232	51.2	29.8	42.7	12.9
71	$\frac{12}{1}$	143.0	379	387	58.4	19.3	44.2	24.9
, 1 71	2	84.4	176	184	47.3	37.4	40.5	3.1
73	- 7	95.9	134	142	50.5	43.4	45.7	2.4

1/ Calculated as breast height age plus eight years, as is done when site index is estimated (McArdle et al., 1961).

2/ Shows significant height growth suppression. This tree is included for illustrative purposes only (figure 29).

. .

The average or typical curve form is represented by tree 2 from plot 67 (Figure 29). The Bulletin 201 curves overestimate the site of this tree by 7.6 m which is not unusual for a 289 year old tree in this data set (Table 18). Tree 1 from plot 71 has an almost linear height growth curve not typical of these trees. Its height growth was probably suppressed early in life, but this did not prevent it from becoming the oldest and largest tree cut (Table 18).

When appropriate site index curves are used, the accuracy of site estimates decrease as distance from the index age increases (Curtis et. al., 1974a and 1974b) but the estimates should still be unbiased. However, when tree growth and site curve forms do not match, site index estimates are biased and the error increases farther from the index age (Figure 30).

Note that height growth suppression causes some of the largest differences between estimated site index and actual site index (tree height at 100 years) (Figure 3). This does not necessarily imply that site index has been overestimated by this amount because it would probably have been higher if these trees had not been suppressed.

Several causes for the difference between dry site and McArdle et. al.'s (1961) <u>Pseudotsuga</u> site curves are possible. McArdle's curves may inaccurately reflect height growth on mesic westside sites. The guide curve method used by McArdle relies on the assumption that average site quality is constant over the range of stand ages (Curtis, 1964). If average site index of the older stands sampled was lower the site curves would have excessive curvature and overestimates of site would result. Comparison of curves based on stem analyses with

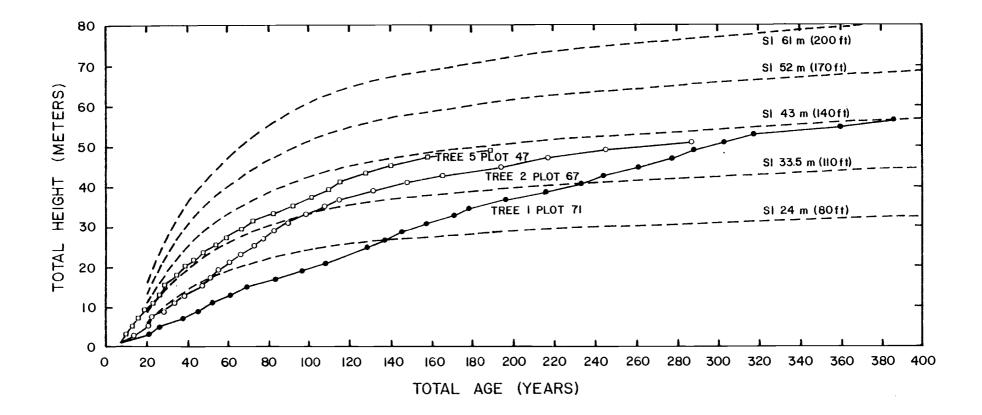


Figure 29. Height growth curves of three dry site <u>Pseudotsuga</u> trees (solid lines) compared with the site index/height growth curves of McArdle et al. (1961) (dashed lines).

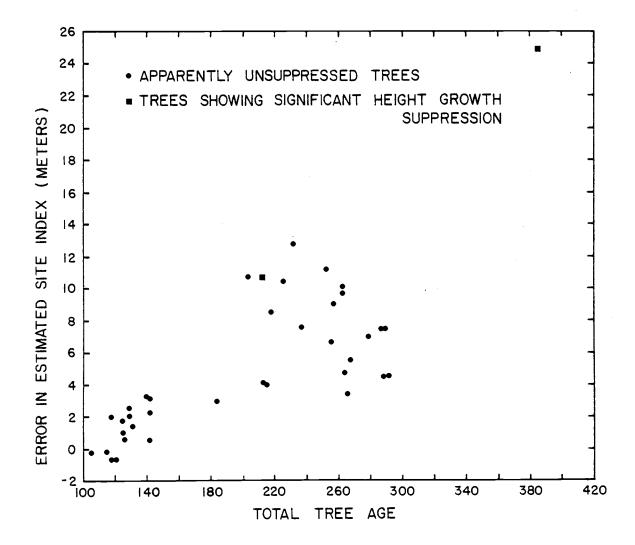


Figure 30. Error in estimated site index versus total tree age for the stem dissection trees showing increase in error with increasing tree age.

McArdle's indicates that McArdle's curves do have greater curvature than height growth curves of primarily mesic, westside <u>Pseudotsuga</u> (King, 1966). Environmental causes are also possible. The relatively severe environment on dry sites may limit the early rapid phase of growth compared to mesic sites. Later in life the lower stocking in some dry site stands (relative to mesic sites) may result in less reduction in height growth by competition than on mesic sites.

Management Implications

The average site index (base age 100 years) of the vegetation plots is 37 m as estimated with the curves of McArdle et. al. (1961). Based on dissected trees older than 150 years, the average overestimate of site index from figure 30 using McArdle's curves is approximately seven m. Under these conditions total yield of a pure <u>Pseudotsuga</u> stand at age 100 would be overestimated by 38 to 84 percent depending on the volume units and scale rules used (Tabld 19). Scale rules with high merchantibility limits give larger overestimates because the stand with the lower site index has proportionately more volume in smaller trees.

The long regeneration period of dry sites (60 to 130 years; see Chapter 5) results in a reverse-J shape diameter distribution (Table 7; Figures 22 and 23) and a partially stocked stand at 100 years. These factors probably cause normal yield tables (e.g., McArdle et. al., 1961), which assume stands are fully stocked and have a bellshape diameter distribution, to overestimate productivity more than shown in Table 19.

Table 19. Errors in estimated total yield and other stand characteristics caused by the most commonly occuring over-estimate of site index (7 m) using Bulletin 201 (McArdle et al. 1961) on dry coniferous forest in the study area. Stand characteristics are taken from Bulletin 201 at age 100 for site indices 100 and 120.

Stand Characteristic	Actual Value	Estimated Value	Error (percent difference)	
Height at 100 years (m)	30	37	20	
Site index (ft)	100	120	20	
Trees in all size classes:				
Trees per hectare	768	591	-23	
DBH of average tree (cm)	29	36	22	
Basal area (m²/ha) ₃	53	60	14	
Net cubic yield (m³/ha)	533	735	38	
Trees greater than 7 inch (1718 cm) DBH: Net cubic yield (m ³ /ha)	525	734	40	
Net yield International 1/8 inch kerf (bdft/ac)	46700	70600	51	
Trees greater than 12 inch (30.5 cm) DBH: Net cubic yield (m ³ /ha) Net yield International	374	639	71	
1/8 inch kerf, minimum 5 inch (12.5 cm) top (bdft/ac) Net yield International	35400	63100	78	
1/4 inch kerf, minimum 8 inch (20.3 cm) top (bdft/ac) Net yield Scribner, 8 inch	26500	4800	81	
(20.3 cm) top, 16 foot (4.9 m) logs (bdft/ac)	22800	42000	84	

.

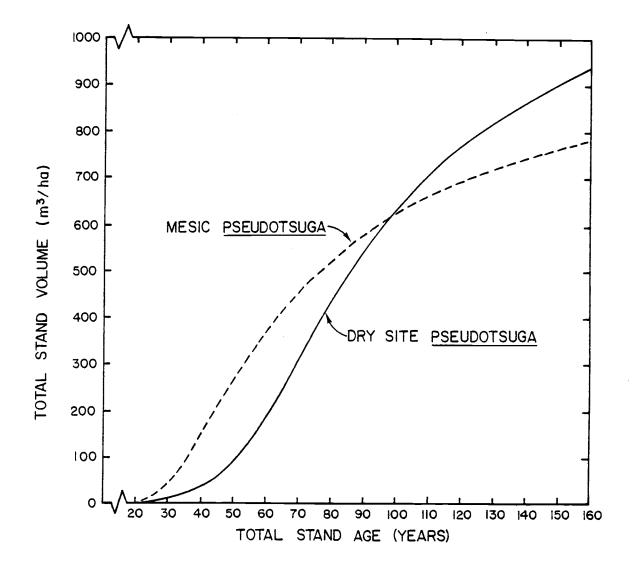


Figure 31. Live stand volume versus age for mesic and dry site <u>Pseudotsuga</u> both with site index 33.5 m. See text for explanation.

The different height growth pattern also probably results in a different pattern of volume growth. Though direct measurements of volume growth are not available, inferences can be made from the height growth patterns (e.g., Curtis et. al., 1974b). The relation-ships of height to age and volume to age in Bulletin 201 (McArdle et. al, 1961) were combined to obtain the relationship between height and volume for site index 110 ft (33.5 m). Then the time course of stand volume was estimated from the height growth of a typical stem dissection tree from this study (tree 2 on plot 67) to approximate that of dry site <u>Pseudotsuga</u> (Figure 31). Mean annual increments calculated from this data and taken directly from McArdle's data for <u>Tsuga</u> climax (mesic <u>Pseudotsuga</u>) forests are shown in Figure 32.

This method of calculating mean annual increment for dry site <u>Pseudotsuga</u> assumes its stand volume is related to height of dominants as in "normal" stands. This assumption is probably not true due to slower initial establishment, different diamter structure and occasionally low stocking on dry sites. However, violations of the assumption can be qualitatively assessed and it allows a comparison.

The dry site stand volume exceeds that of its more mesic counterpart after the index age (Figure 31). This is due to the continued rapid height growth rate of the dry site trees (Figure 29). Two other conclusions result from this height growth pattern.

Maximum mean annual increment of these stands is of similar magnitude but occurs 40 years later in the dry site stand (Figure 32). The slower initial establishment, different diameter distribution, and occasional lower stocking of dry stie stands probably postpones

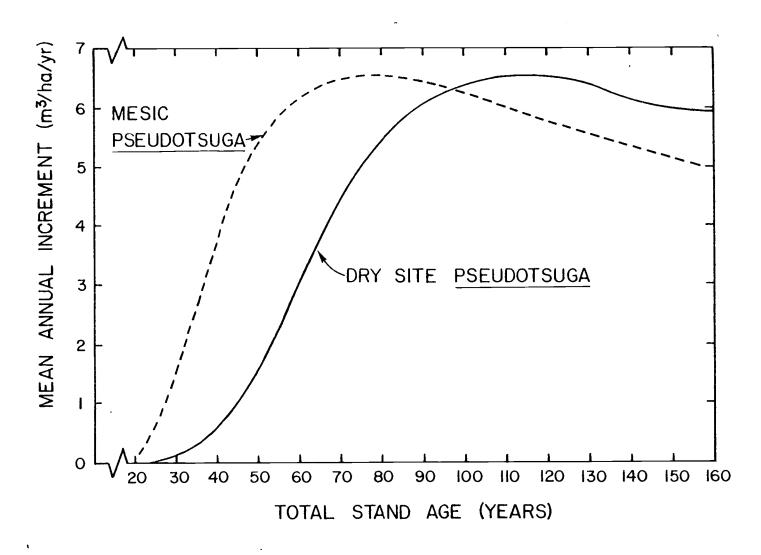


Figure 32. Mean annual increment versus stand age for mesic and dry site <u>Pseudotsuga</u> both with site index 33.5 m. See text for explanation.

maximum mean annual increment even further than indicated here and may also reduce it. Thus rotations on dry sites should be longer than on mesic sites of the same site indices if high volume productivity is a management goal.

The second conclusion is that McArdle et. al.'s (1961) yield tables are not applicable to these dry coniferous forests even if site index estimates are obtained. The different volume growth curves for stands of the same site index illustrate this point (Figures 31 and 32).

The trend of later culmination of mean annual increment on sites with environmental limitations to tree growth becomes even more evident near the limits of aborescent vegetation. Height and basal area growth rates of <u>Pinus monophylla</u> - <u>Juniperous osteosperma</u> stands in Nevada and eastern California are unrelated to age, stocking or basal area in "closed" stands (Meeuwig, 1979). Instead, basal area growth rate and maximum height are apparently site dependent. <u>Tsuga mertensiana</u> dominated forests in the High Cascades of Oregon provide another example (Herman and Franklin, 1976; Johnson, 1980). Height growth patterns of <u>Tsuga mertensiana</u> show much less curvature than <u>Tsuga heterophylla</u> so an analysis similar to the above would show much later culmination of mean annual increment.

SYNTHESIS

The Pacific Northwest is a region of <u>Pseudotsuga menziesii</u>-dominated forests. A very narrow strip of coastal <u>Picea-Tsuga</u> forest and montane and subalpine forests above about 1,300 m are the only significant forested exceptions west of the Cascades. It is both the ecologically and economically dominant species in this region. <u>Pseudotsuga</u> plays these roles due to an unequalled combination of characteristics (Minore, 1979). Under many conditions this long-lived, thick-barked species seeds in rapidly following infrequent catastrophic fires (Isaac, 1943). Its fast-growing progeny dominate subsequent stands. Although it is usually the dominant it is rarely the climax species (Munger, 1940). <u>Tsuga heterophylla</u> and many of <u>Pseudotsuga's</u> other associates are more tolerante (Minore, 1979) and reproduce and grow well under its shade while its own progeny do not (Munger, 1940). <u>Tsuga</u> is the climax species in most of this area though <u>Abies amabilis</u> occupies this role at higher elevations (Franklin and Dyrness, 1973).

Within the matrix of relatively mesic <u>Tsuga</u>-climax sites are patches of hotter and drier habitat where <u>Tsuga</u> is virtually absent and <u>Pseudotsuga</u> or another conifer is climax (Dyrness et. al., 1974). Leaf areas and canopy densities are less than on the mesic sites (Gholz et. al., 1976) which is one reason <u>Pseudotsuga</u> can reproduce under these canopies.

Occurrence of dry sites is determined more by moisture than by temperature. Dry site moisture stresses are consistently higher than those of <u>Tsuga</u> climax sites but overlap in temperature is great (Chapter 3).

Dry site forests show much compositional variety within the Willamette National Forest. Some variability is due to geographical (especially latitudinal) variation in flora (Chapter 4). Dry sites are much more extensive in the south - occurring on more mature soils and gentler land forms. Much of the latitudinal variation in flora and greater extent of dry sites in the south is due to reduced preicitation, higher temperature (Chapter 2) and higher evaporative demand (Waring et. al., 1978) with decreasing latitude.

One important feature of dry site forests is their diversity in composition, structure and productivity. In some respects, it is greater than any other forest type. A small change in environment can make a large difference in community structure and species composition at the hot, dry extreme of coniferous forest growth. As an example, in intensive plot 2 basal area of one m radius plots ranged from three to $153 \text{ m}^2/\text{ha}$ while the vegetation ranged from grass and annual herbs to heavy low shrubs and lush perennial herbs. This is in part due to soil characteristics and topography. As a consequence there is much variability within the community types described here.

Dry coniferous forest commonly occurs on south-facing, steep, convex land forms where thin, poorly developed soils are often apparently perpetuated by erosion. It also occupies gentler land forms, especially in the Oakridge and Rigdon Districts where the <u>Pseudotsuga</u>/ <u>Berberis/Disporum</u> community occurs on gentle slopes with well-developed soils.

Fire is the primary initiator of stands and of younger age classes. Stands initiated following a catastrophic fire are burned at

intervals that average 100 years by fires that kill only part of the overstory. This initiates a new age cohort. This process can lead to three or more cohorts in one stand producing an uneven-aged structure that is in striking contrast to the often even-aged structure of Pseudotsuga on more mesic sites.

Regeneration is slow following these disturbances. Though hard evidence is lacking regeneration is probably slower following complete stand destruction than under partial shade which follows a less destructive fire. Such shade offers respite from high evaporative demands and temperatures.

Height growth of dry site <u>Pseudotsuga</u> is initially slower but sustained to a greater age than that of <u>Pseudotsuga</u> on more mesic sites. Volume and biomass growth should be similarly affected. Several other forests which occur near the environmental limits of arborescent growth appear to have similar trends of biomass accretion.

The patterns of natural stand development discussed above have important management implications. A selection or shelterwood silvicultural system approximates the natural functioning of these ecosystems closer than clear cutting. The partial overstory will buffer extremes of temperature and evaporative demand and so benefit regeneration. It will also utilize the growing space during the regeneration process which is quite long in natural stands. Slow reproduction can be accelerated on some dry sites (e.g., the <u>Pseudotsuga/</u> <u>Berberis/Disporum</u> type) but on the most extreme sites (e.g., the <u>Aspidotis</u> phase of the <u>Pseudotsuga/Holodiscus</u>/grass type) this will be difficult. The number of entries should be minimized on dry sites on steep, easily-eroded, convex land forms. Thus the selection systems, at least with frequent cuttings, should probably not be used on these dry sites. Longer rotations will also lessen management-induced erosion. Soil loss from these thin soils may have a greater effect on vegetative growth than loss from deeper soils.

Some dry coniferous forests may not be appropriate for timber management, due to the low productivity, high erosion hazard, difficult regeneration problems and relatively high values of the other resources. Other values which may be important include scenery ridges are often easily visible - and wildlife - animal trails and deer bedding sites are very common.

Maximum mean annual increment occurs later on dry sites than on mesic sites of similar site index based only on the difference in height growth curves. Typically slow regeneration, even when these sites are planted, will further retard maximum mean annual increment. So if high volume productivity is a management goal, rotations must be longer than on mesic sites. Intermediate cuttings will reduce age of mean annual increment. But their utility for this will be restricted when regeneration is slow and stocking remains low for a significant part of the rotation.

Due to more linear height growth curves and inverse J-shape diameter distribution on dry sites McArdle et. al.'s (1961) site index curves and yield tables are not applicable.

This information on composition, structure and the functioning of dry forests comes in large part from studying old communities which

have relatively stable vegetation and long histories contained in ages, scars, and boles. The primeval forest is valuable for this type of basic forest research.

.

.

BIBLIOGRAPHY

- Anderson, Howard George. 1967. The phytosociology of some vine maple communities in the Mary's Peak watershed. M.S. thesis, Oregon State University, Corvallis. 118 p.
- Atzet, Thomas. 1979. Description and classification of the forests of the upper Illinois River drainage of southwestern Oregon. Ph.D. thesis, Oregon State University, Corvallis. 211 p.
- Bailey, Arthur Wesley. 1966. Forest associations and secondary plant succession in the southern Oregon Coast Range. Ph.D. thesis, Oregon State University, Corvallis. 164 p.
- Baldwin, Ewant M. 1976. Geogology of Oregon, Revised Edition. Kendell/Hunt Pub. Co., Dubuque, Iowa. 147 p.
- Becking, Rudolf Willem. 1954. Site indicators and forest type classification of the Douglas-fir region in western Washington and Oregon. Ph.D. thesis, University of Washingtin Seattle, 159 p.
- Blasing, T.J. and H.C. Fritz. 1976. Reconstructing past climatic anomalies in the North Pacific and Western North America from tree-ring data. Quat. Res. 6:563-579.
- Blum, B.M. 1961. Age-size relationships in all-aged northern hardwoods. USDA For. Serv. Res. Note. No. 125, Northeastern For. Exp. Stn., Upper Darby, Penn. 3 p.
- Bray, J.R., and J.T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27(4): 325-349.
- Brown, R.B. and R.B. Parsons. 1973. Soils of the reference stands --Oregon IBP. Coniferous Forest Biome Internal Report 128. 76 p. University of Washington, Seattle.
- Bruce, David, Donald J. DeMars and Donald L. Reukema. 1977. Douglasfir managed yield simulator -- DFIT user's guide. USDA For. Serv. Gen. Tech. Rep. PNW-57, Pac. Northw. For. & Range Exp. Stn., Portland, Oregon. 26 p.
- Buol, S.W., F.D. Hole and R.J. McCraken. 1973. Soil genesis and classification. Iowa State University Press, Ames. 360 p.
- Burke, Constance J. 1979. Historic fires in the central western Cascades, Oregon. M.S. thesis, Oregon State Univ., Corvallis. 130 p.

- Cleary, B.B. and R.H. Waring. 1969. Temperature: its analysis for the interpretation of plant growth and distribution. Can. J. Bot. 47:167-173.
- Cochran, P.H. 1979a. Site index and height growth curves for Douglasfir in managed, even-aged stands east of the Cascades in Oregon and Washington. USDA For. Serv. Res. Pap. PNW-251, Pac. Northw. For. & Range Exp. Sta., Portland, Oregon 16 p.
- Cochran, P.H. 1979b. Site index and height growth curves for managed, even-aged stands of white or grand fir east of the Cascades Oregon and Washington. USDA For. Serv. Res. Pap. PNW-252, Pac. Northw. For. & Range Exp. Sta., Portland, Ore. 13 p.
- Cole, David. 1977. Ecosystem dynamics in the coniferous forest of the Willamette Valley, Oregon, USA. Jour. Biogeography 4:181-192.
- Cooley, W.W. and P.R. Lohnes. 1971. Multivariate Data Analysis. Wiley, New York. 364 p.
- Corliss, J.F. and C.T. Dyrness. 1965. A detailed soil-vegetation survey of the Alsea area in the Oregon Coast Range. In C.T. Youngberg, ed. Forest Soil Relationships in North America, Oregon State University Press, Corvallis, pp. 457-483.
- Cottam, Grant, F. Glenn Goff and R.H. Whittaker. 1978. Wisconsin comparative ordination.<u>In</u> Ordination of plant communities. Ch. 7, pp. 185-213. R.H. Whittaker, ed. Dr. W. Junk bv, The Hague, The Netherlands.
- Curtis, Robert 0. 1964. A stem-analysis approach to site index curves. For. Sci. 10(2):241-256.
- Curtis, R.D., F.R. Herman, and D.J. DeMars. 1974. Height growth and site index of Douglas-fir in high-elevation forests of the Oregon-Washington Cascades. For. Sci. 20(4):307-315.
- Curtis, Robert O., Donald J. DeMars, and Francis R. Hermon. 1974a. Which dependent variable in site index-height-age regressions? For. Sci. 20(1):74-87.
- Dahms, Walter G. 1963. Correction for a possible bias in development of site index curves from sectional tree data. J. For. 61(1): 25-27.
- Daniel, Wayne W. 1978. Applied nonparametric statistics. Haughton, Mittlin, Boston. 510 p.
- Daubenmire, R. 1961. Vegetative indicators of height growth in ponderosa pine. For. Sci. 7(1):24-34.

- Daubenmire, R. 1968. Plant communities. Harper & Row, New York. 300 p.
- Daubenmire, R. 1976. The use of vegetation in assessing the productivity of forest lands. Bot. Rev. 42:115-143.
- Daubenmire, R., and J.B. Daubenmire. 1968. Forest Vegetation of Eastern Washington and Northern Idaho. Wash. Agr. Exp. Sta., Washington State University, Pullman, 104 p.
- Day, R.J. 1972. Stand structure, succession, and use of southern Alberta's Rocky Mountain forest. Ecol. 53(3):472-478.
- Draper, N.R. and H. Smith. 1966. Applied regression analysis. John Wiley & Sons, Inc., New York. 407 p.
- Dyrness, C.T., J.F. Franklin and W.H. Moir. 1974. A preliminary classification of forest communities in the central portion of the western Cascades of Oregon. Coniferous For. Biome Bull. No. 4, U.S./IBP, University of Washington, Seattle, Washington. 123 p.
- Emmingham, W.H. and G.A. Lundberg. 1977. Climatic and physiological data summaries for the H.J. Andrews reference stand network. Internal Rep. No. 166, U.S.I.B.P., Coniferous For. Biome, University of Washington, Seattle, 109 p.
- Fogel, R., M. Ogawe and J.M. Trappe. 1973. Terrestrial decomposition; a synopsis. Coniferous For. Biome Internal Rep. 135, U.S.I.B.P., University of Washington, Seattle, 12 p.
- Franklin, J.F. and C.T. Dyrness. 1973. Natural vegetation of Oregon and Washington. USDA For. Serv. Gen. Tech. Rep. PNW-8, Pac. Northw. For. and Range Exp. Stn., Portland, Oregon, 417 p.
- Franklin, J.F., C.T. Dyrness, and W.H. Moir. 1970. A reconnaissance method for forest site classification. Shinrin Richi (Japan) 12 (1):1-14.
- Franklin, J.F., L.J. Dempster, and R.H. Waring, eds. 1972. Proceeding - Research on Coniferous Forest Ecosystems - a Symposium. 322 p.
- Franklin, J.F., W.H. Moir, M.A. Hemstrom and S. Greene. 1980. Forest ecosystems of Mount Rainier National Park. Review draft of Pac. Northw. For. & Range Exp. Sta. Res. Pap., Corvallis, Oregon 221 p.
- Franklin, J.F., F. Swanson, P. Morrison, J. Means and C. Woods. 1976. Establishment of old-growth Douglas-Fir stands: some new perspectives. Talk presented at Annu. Meet. of Northwest Scientific Assoc. Mar. 25-27, 1976; Cheney, Washington.

- Fritts, H.C. 1971. Dendroclimatology and denroecology. Quaternary Res. 1(4):419-449.
- Fritts, H.C. 1976. Tree Rings and Climate. Academic Press, New York, 567 p.
- Garrison, G.A., J.M. Skovlin, C.E. Poulton and A.H. Winward. 1976. Northwest plant names and symbols for ecosystem inventory and analysis. Fourth edition. USDA For. Serv. Gen. Tech. Rep. PNW-46, Pac. Northw. For. \$ Range Exp. Sta., Portland, Oregon. 263 p.
- Gauch, H.G., Jr., and R.H. Whittaker. 1972. Comparison of ordination techniques. Ecol. 53(5):868-875.
- Gauch, H.G., Jr., R.H. Whittaker and T.R. Wentworth. 1977. A comparative study of reciprocal averaging and other ordination techniques. J. Ecol. 65(1):157-174.
- Gholz, Henry L., Franklin K. Fitz and R.H. Waring. 1976. Leaf area differences associated with old-growth forest communities in the western Oregon Cascades. Can. J. For. Res. 6(1):49-57.
- Grier, C.C. and R.S. Logan. 1977. Old growth Douglas-fir communities of a western Oregon watershed: biomass distribution and production budgets. (Ecol. Monogr.) 74(4):371-373.
- Hack, John T. and J.C. Goodlet. 1960. Geomorphology and forest ecology of a mountain region in the Central Appalachians. U.S. Geol. Surv. Prof. Pap. 347, 66 p.
- Hanley, D.P., W.C. Schmidt, and G.M. Blake. 1975. Stand structure and successional status of two spruce-fir forests in southern Utah. USDA For. Serv. Res. Paper INT-176, Intermountain For. and Range Exp. Sta., Ogden, Utah. 16 p.
- Harper, John L. 1977. Population biology of plants. Academic Press, New York, 892 p.
- Hawk, G.M., J.F. Franklin, W.A. McKee and R.B. Brown. 1978. H.J. Andrews Experimental Forest reference stand system: establishment and use history. Conif. For. Biome Bull. No. 12, U.S.I.B.P., Coll. For. Res., Univ. of Washington, Seattle. 79 p.
- Hawk, G.M., Mark Klopsch, Ted Thomas, Joe Means and Al Brown. 1979. Vegetation survey crew manual. Unpublished manuscript on file at the Forestry Sciences Laboratory, Corvallis, Oregon.

- Heilman, Paul E., Harry W. Anderson and David M. Baumgartner (eds.). 1979. Forest soils of the Douglas-fir region. Washington State Univ., Coop. Exten. Serv., Pullman, Washington. 298 p.
- Hemstrom, Miles Arthur. 1979. A recent disturbance history of forest ecosystems at Mount Rainier National Park. Ph.D. Thesis, Oregon State University, Corvallis, 67 p.
- Henry, J.D. and J.M.A. Swan. 1974. Reconstructing forest history from live and dead plant material--an approach to the study of forest succession in southwest New Hampshire. Ecol. 55(4):772-783.
- Herman, F.R., D.J. DeMars, and R.F. Woollard. 1975. Field and computer techniques for stem analysis of coniferous forest trees. USDA For. Serv. Res. Pap. PNW-194, Pac. Northw. For. and Range Exp. Stn., Portland, Oregon. 51 p.
- Herman, F.R. and J.F. Franklin. 1976. Errors from application of western hemlock site curves to mountain hemlock. USDA For. Serv. Res. Note PNW-276. Pac. Northw. For. & Range Exp. Sta., Portland, Oregon. 6 p.
- Hickman, James C. 1968. Disjuction and endemism in the flora of the central Western Cascades of Oregon: an historical and ecological approach to plant distributions. Ph.D. thesis, University of Oregon, Eugene. 334 p.
- Hickman, James C. 1976. Non-forest vegetation of the central Western Cascade mountains of Oregon. Northw. Sci. 50(3):145-155.
- Hill, M.O. 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61(1):237-249.
- Hitchocock, C.L. and A. Cronquist. 1973. Flora of the Pacific Northwest. University of Washington Press, Seattle 730 p.
- Husch, B., C.I. Miller and T.W. Beers. 1972. Forest measuration. Wiley, New York. 410 p.
- Isaac, Lea. 1943. Reproductive habits of Douglas-fir. The Charles Lathrop Pack Forestry Foundation. 107 p.
- Johnson, Greg P. 1980. Site index equations for mountain hemlock on three habitat types in the central Oregon Cascades. M.S. thesis, Oregon State University, Corvallis. (in preparation)
- Jones, John R. 1966. Review and comparison of site evaluation methods. USDA For. Serv. Res. Pap. RM-51, Rocky Mtn. For. & Range Exp. Ta., For Collins, Colorado 27 p.

- Juday, G.P. 1976. The location, composition, and structure of oldgrowth forests of the Oregon Coast Range. Ph.D. thesis, Oregon State University, Corvallis. 206 p.
- King, J.E. 1966. Site curves for Douglas-fir in the Pacific Northwest. Weyerhaeuser For. Pap. 8, Weyerhaeuser Co., Centralia, Washington. 49 p.
- Krajina, V.J. 1965. Biogeoclimatic zones and classification of British Columbia. Ecol. West. North. Am. 1:1-17. Publ by Dept. Botany, University of British Columbia.
- Leak, W.B. 1975. Age distribution in virgin red spruce and northern hardwoods. Ecol. 56(6):1451-1454.
- Legard, H.A. and LeRoy C. Meyer. 1973. Willamette National Forest Soil Resource Inventory. Pacific Northwest Region, USDA For. Serv. 167 p.
- Little, E.L., Jr. 1979. Checklist of United States trees. Agric. Handb. No. 541. USDA For. Serv., Washington, D.C. 375 p.
- MacArthur, R.H. 1965. Patterns of species diversity. Biol. Rev. 40:510-533.
- Mader, D.L. 1963. Soil variability--a serious problem in soil-site studies in the Northeast. Soil Sci. Soc. Amer. Proc. 27(6):707-709.
- McArdle, R.E., W.H. Meyer, and D. Bruce. 1961. The yield of Douglasfir in the Pacific Northwest. USDA Tech. Bull. 201 (rev.). 74 p.
- McKee, B. 1972. Cascadia. McGraw-Hill, New York. 394 p.
- McNiel, R.C. 1976. Vegetation and fire history of a ponderosa pinewhite fir forest in Crater Lake National Park. M.S. thesis, Oregon State University, Corvallis. 1971 p.
- Meeuwig, R.O. 1979. Growth characteristics of Pinyon-Juniper stands in the western Great Basin. USDA For. Serv. Res. Pap. INT-238. Intermt. For. & Range Exp. Sta., Ogden, Utah. 22 p.
- Merkle, J. 1951. An analysis of the plant communities of Mary's Peak, western Oregon. Ecol. 32:618-640.

- Minore, D. 1979. Comparative autecological characteristics of northwestern tree species--a literature review. USDA Gen. Tech. Rep. PNW-87, Pac. Northw. For. & Range Exp. Sta., Portland, Oregon. 72 p.
- Mitchel, R.F. 1979. Soil formation, classification and morphology. <u>In</u> P.E. Heilman, H.W. Anderson and D.M. Baumgartner (eds.) Forest soils of the Douglas-fir region. Washington State University Coop. Ext. Serv., Pullman, Washington. p. 157-172.
- Mitchell, R.J. 1972. An analysis of the vegetation of Abbott Creek Natural Area, Oregon. Ph.D. thesis, Oregon State University, Corvallis 131 p.
- Mitchell, R. and W. Moir. 1976. Vegetation of the Abbot Creek Research Natural Area, Oregon. Northw. Sci. 50(1):42-58.
- Munger, T.T. 1940. The cycle from Douglas-fir to hemlock. Ecol. 21 (3):451-459.
- Munger. T.T. 1950. A look at selective cutting in Douglas-fir. J. For. 48(2):97-99.
- Nie, Norman H., C. Hadlai Hull, J.G. Jenkins, K. Steinbreener and D.H. Bent. 1975. SPSS Statistical package for the Social Sciences 475 p.
- Noy-Meir, I. and M.P. Austin. 1970. Principal component ordination and simulated vegetation data. Ecol. 51(3):551-552.
- Noy-Meier, I., D. Walker and W.T. Williams. 1975. Data transformations in ecological ordination. II. On the meaning of data standardization. J. Ecol. 63(3):779-800.
- Oliver, C.D. and E.P. Stephens. 1977. Reconstruction of a mixedspecies forest in central New England. Ecol. 58(3):562-572.
- Orloci, L. 1966. Geometric models in ecology: 1. the theory and application of some ordination methods. J. Ecol. 54(1):193-215.
- Orloci. L. 1975. Multivariate analysis in vegetation research. Dr. W. Junk bv. The Hague, The Netherlands. 276 p.
- Pacific Northwest River Basins Commission, Meteorology Committee. 1969. Climatological Handbook, Columiba Basin States. Vol. 1., Temperature, Parts A and B, 540 p. plus appendices. Vol. 11, Precipitation, 262 p. plus appendices. Vancouver, Washington.
- Packee, E.C. 1976. An ecological approach toward yield optimization through species allocation. Ph.D. thesis, University Minnesota. 740 pp.

- Patterson, A.E. 1959. Distinguishing annual rings in diffuse-porous tree species. J. For. 57(2):126.
- Peck, D.L., A.B. Griggs, H.G. Schlicker, F.G. Wells and H.M. Dale. 1964. Geology of the central and northern parts of the western Cascade Range in Oregon. Geol. Surv. Prof. Pap. 449, U.S. Gov't. Printing Off., Washington, D.C. 56 p.
- Pielou, E.C. 1977. Mathematical Ecology. Wiley, New York. 385. p.
- Pimental, R.A. 1979. Morphometrics, the multivariate analysis of biological data. Kendall/Hunt, Dubuque, Iowa. 276 p.
- Rowe, K., R. Brenne, J. Barnes and K. Ewert. 1978. Statistical interactive programming system (SIPS) command reference manual Cyber-NOS version. Dept. of Statistics, Oregon State University, Corvallis 103 p.
- Shigo, A.L. and H.G. Marx. 1977. Compartmentalization of decay in trees. USDA For. Serv. Agr. Info. Bull. 405, Washington, D.C. 73 p.
- Smith, D.M. 1962. The practice of silviculture. Seventh edition. John Wiley & Sons, Inc., New York. 578 p.
- Snedecor, G.W. and W.G. Cochran. 1967. Statistical Methods. Iowa State University Press, Ames, Iowa 593 p.
- Soil Survey Staff. 1975. Soil Taxonomy. Agric. Handb. No. 436, Soil Conservation Service, U.S. Dept. Agr., 754 p.
- Stephens, E.P. 1955a. The Historical developmental method of determining forest trends. Ph.D. thesis, Harvard University, Cambridge, Massachusetts.
- Stephens, E.P. 1955b. Research in the biological aspects of forest production. J. For. 53(3):183-186.
- Stubblefield, G. and C.D. Oliver. 1978. Silvicultural implications of the reconstruction of mixed alder/conifer stands. <u>In</u> utilization and management of red alder. USDA For. Serv. Gen. Tech. Rep. PNW-70, Pac. Northw. For. & Range Exp. Sta., Portland, Oregon, p. 307-320.
- Swanson, F.J. and M.E. James. 1975. Geomorphic history of the lower Blue River-Lookout Creek Area, Western Cascades, Oregon. Northwest Sci. 49(1):1-11.
- Tesch, S.D. 1975. The composition and dynamics of the tree strata within an old growth Douglas-fir forest in western Montana. M.S. thesis, University of Montana, Missoula. 141 p.

- Thilenius, J. F. 1963. Synecology of the white-oak (<u>Quercus</u> <u>garryana</u> Douglas) woodlands of the Willamette Valley, Oregon. Ph.D. thesis, Ore.State Univ., Corvallis. 151 p.
- U.S. Weather Bureau River Forcast Center. 1964. Mean annual precipitation, 1930-1957, state of Oregon. Pub. by Soil Cons. Serv., U.S. Dept. Agric. in coop. with U.S. Weather Bureau, Portland, Ore., U.S. Dept. Comm. map, 1 leaf.
- Volland, L. A. and M. Connelly. 1978. Computer analysis of ecological data: methods and programs. USDA For. Serv. R6-ECOL-79-003. 22 chap. and append., individual pagination. Pac. Northw. Region, Portland, Ore.
- Waring, R. H. 1969. Forest plants of the Eastern Siskiyous: their environmental and vegetational distribution. Northwest Sci. 43(1): 1-17.
- Waring, R. H. and B. D. Cleary. 1967. Plant moisture stress: evaluation by pressure bomb. Sci. 155:1248-1254.
- Waring, R. H., W. H. Emmingham, H. L. Gholz and C. C. Grier. 1978. Variation in maximum leaf area of conifer forests in Oregon and its ecological significance. For. Sci. 24(1): 131-140.
- Waring, R. H., W. H. Emmingham and S. W. Running. 1975. Environmental limits of an endemic spruce, <u>Picea</u> <u>breweriana</u>. Can. J. Bot. 53(15): 1599-1613.
- Waring, R. H. and J. F. Franklin. 1979. Evergreen coniferous forests of the Pacific Northwest. Sci. 204: 1380-1386.
- Waring, R. H., K. L. Reed, and W. H. Emmingham. 1972. An environmental grid for classifying coniferous forest ecosystems. In Proceedings-Research on Coniferous Forest Ecosystems-A Symposium. Bellingham, Wash., 1972. Pac. Northwest For. & Range Exp. Sta., U.S. For Serv., Portland, Ore.
- Watt, A. S. 1947. Pattern and process in the plant community. J. Ecol. 35(1): 1-22.
- Whittaker, R. H. 1975. Communities and ecosystems. MacMillan Publ. Co., New York. 385 p.
- Whittaker, R. H. and H. G. Gauch, Jr. 1978. Evaluation of ordination of plant communities. Ch. 10, p. 277-336. Robert H. Whittaker, ed. Dr. W. Junk bv, the Hague, the Netherlands.

- Wierman, C.A. and C.D. Oliver. 1978. Crown stratification by species in even-aged Douglas-fir/western hemlock stands of coastal Washington. Can. J. For. Res. 9(1):1-9.
- Wilde, S.A. 1958. Forest Soils. The Ronald Press Co., New York 537 p.
- Willamette National Forest. 1973. Soil resource inventory, Atlas of maps and interpretive tables. U.S. For. Ser., Pacific Northwest Region, Eugene, Oregon. 49 unnumbered pages (to accompany Legard and Meyer, 1973).
- Williamson, R.L. 1973. Coastal Douglas-fir. In U.S. Department of Agr., For. Serv. Silvicultural Systems for the major forest types of the U.S., U.S. Department of Agriculture Handb. No. 445 p. 8-10.
- Willis, G.L. and M.S. Coffman. 1975. Composition, structure, and dynamics of climax stands of eastern hemlock and sugar maple in the Huron Mountains, Michigan. Ford For. Center Tech. Bull. No. 13, Dept. For., Mich. Techn. University, Houghton, Mich. 43 p.
- Zobel, D.B., G.M. Hawk, M.A. McKee and C.T. Dyrness. 1973. Variation in plant moisture stress associated with forest communities in the H.J. Andrews Experimental Forest. Internal Rep. No. 78, U.S. I.B.P., Coniferous Forest Biome, University of Washington, Seattle 15 p.
- Zobel, D.B., A. McKee, G.M. Hawk, and C.T. Dyrness. 1976. Relationships of environment to composition, structure, and diversity of forest communities of the central western Cascades of Oregon. Ecol. Mono. 46(2):135-156.

ADDENDUM TO BILIOGRAPHY

Peck, Morton Eaton. 1961. A manual of the higher plants of Oregon. Second edition. Binfords and Mert. 936 p.

APPENDICES

•

APPENDIX I

SPECIES NAMES AND ABBREVIATIONS

.

This is a complete listing of all taxa identified on the vegetation plots. Names of trees follow Little (1979) and names of all other taxa follow Hitchcock and Cronquist (1973) except for a few uncommon taxa which follow Peck (1961). Abbreviations follow Garrison et. al. (1976).

Abbreviation	Scientific Name	Common Name
Trees		
Abam	Abies amabilis	silver fir
Abpr	Abies procera	noble fir
Abgr	Abies grandis	grand fir
Abgrc	Abies grandis/concolor/	
Acma	Acer macrophyllum	bigleaf maple
Arme	Arbutus menziesii	madrone
Cach	Castanopsis chrysophylla	golden chinquapin
Lide	Libocedrus decurrens	Incense-cedar
Pila	Pinus lambertiana	sugar pine
Pipo	Pinus ponderosa	ponderosa pine
Psme	<u>Pseudotsuga menziesii</u>	Douglas-fir
Prunu	<u>Prunus</u> spp.	cherry
Prem	<u>Prunus emarginata</u>	bitter cherry
Quga	Quercus garryana	Oregon white oakd
Tabr	Taxus brevifolia	pacific yew
Thpl	<u>Thuja plicata</u>	western red-cedar
Tshe	<u>Tsuga heterophylla</u>	western hemlock
Tall Shrubs		
Acci	<u>Acer circinatum</u>	vine maple
Acgl	Acer glabrum	rockymountain maple
Amal	Amelanchier alnifolia	serviceberry
Arco 3	Arctostaphylos columbiana	hairy manzanita golden chinquapin
Cach	Castanopsis chrysophylla	deerbrush
Cein	Ceanothus integerrimus	redstem ceanothus
Cesa	<u>Ceanothus sanguineus</u> Cornu <u>s nuttalli</u>	pacific dogwood
Conu	Cornus stolonifera v.	red-osier dogwood
Costo	occidentalis	
Сосос	<u>Corylus cornuta</u> v. californica	California hazel
Gafr	Garrya fremontii	Freemont silktassel

 $\frac{1}{1}$ Intergrade between <u>Abies grandis</u> and <u>Abies concolor</u> (white fir).

AbbreviationScientific NameCommon NameHodiHolodiscus discolor Osnaronia cerasiformis PhieOsnaronia cerasiformis Usersilana Rhamus purshiana Rhama Rhododendron macrophyllum Rhibesoceanspray Indian plumb Lewis mockorange cascara buckthorn pacific rhododendron poison oak currant, gossebeery shinyleaf goosebeery shinyleaf goosebeery willow red huckleberry willow red huckleberry willow red huckleberry willow red huckleberry thin-leaved huckle- berryLow ShrubsBerberis aquifolium Salix VapaSerberis aquifolium Vaccinium membranaceumshining Oregon grape Cascade Oregon grape Lawstery thin-leaved huckle- berryLow ShrubsBerberis aquifolium Vaccinium membranaceumshining Oregon grape cascade Oregon grape cascade Oregon grape little prince's-pine comon prince's-pine comon prince's-pine comon prince's-pine comon prince's-pine salal Loci Lonicera chispidula Runi Runi Rubus nivalis Runi Ruur Rubus nivalis Ruur Rubus nivalis Ruur Rubus nivalis Ruur Actri Adpe Adiantum pedatum Anten Antenaria spp. Apan Anten Anten Anten Anten Anten Anten Anten Anten Antenaria spp. Apan Anca 3 Aranica and ronica oregon Anserun caudatum Actrica and acalifornica Anserun deltoidea Anserun deltoidea Arnica spp.western yarrow vanilaleaf trailplant andosaemifolium Acara 3 Aranica app. Asca 3Scientific Arnica spp. Asarum caudatumAnserun Anserun Anserun Anserun Acara 3 Aranica app.Asarum caudatum Anserun Anserun Asarum caudatumBerberis acara buckberry vanilaleaf trailplant Anserun 			
OsceOsmaronia cerasiformis cerasiformisIndian plumb Lewis mockorange cascara buckthorn pacific rhododendron macrophyllum Rhamua Rhododendron macrophyllum Rham Rhus diversiloba Ribes RicrIndian plumb cascara buckthorn pacific rhododendron pacific rhododendron willow valle thin-leaved huckleberry thin-leaved huckleberry<	Abbreviation	Scientific Name	Common Name
OsceOsmaronia cerasiformis cerasiformisIndian plumb Lewis mockorange cascara buckthorn pacific rhododendron macrophyllum Rhamua Rhododendron macrophyllum Rham Rhus diversiloba Ribes RicrIndian plumb cascara buckthorn pacific rhododendron pacific rhododendron willow valle thin-leaved huckleberry thin-leaved huckleberry<		Unledience discolor	0000000000
PhilePhiladelphus lewisii cascara buckthornRhpuRhamnus purshiana Rhododendron macrophyllum RhusRhododendron macrophyllum pacific rhododendron poison oakRhodRhusdiversiloba curant, goosebery shinyleaf gooseberry roseRosaRosa spp. Rosa Rosa Rosa Rosa Rosa Rosa Rosa Rosa Rosa WapaRubus parviflorus western thimbleberry willowSalixSalix spp. vapawestern thimbleberry western thimbleberry thin-leaved huckleberry thin-leaved huckleberg thin-leaved huckleberg thin-leaved huckleber berryLow ShrubsBeaq Berberis nervosa Galtheria ovatifolia Galtheria shallon Loci Lonicera ciliosa Lonicera hispidula Pamy Runi Ruur Ruur Rubus lasicoccus Rula Ruur Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Ruur Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Ruur Rubus lasicoccus Rula Rubus lasicoccus Rula Rubus lasicoccus Rula Ruur Rubus lasicoccus Rubus lasicoccus Ruha Ruur Rubus lasicoccus Rubus lasicoccus Ruha Ruur Rubus lasicoccus Rubus lasicoccus Ruha Rubus lasicoccus Ruha Ruur Rubus lasicoccus Rubus lasicoccus Ruha Ruur Rubus lasicoccus Rubus lasicoccus Rubus lasicoccus Rubus lasicoccus Rubus lasicoccus Rubus lasicoccus Rubus lasicoccus Rubus lasicoccus Rubus lasicoccus R			
Rhpu RhmaRhammus purshlana Rhoddendron macrophyllum Rhuscascara buckthorn pacific rhododendron poison oak currant, goosebeery shinyleaf goosebeery shinyleaf goosebeery willowRosa Rosa Rosa Rogy Rosa Rupa VapaRosa gynnocarpa Rosa gynnocarpa Rupa Vaccinium parvilfolium Vaccinium membranaceumbaldhip rose western thimbleberry willow red huckleberry thin-leaved huckle- berryLow ShrubsBeaq Bene Chimaphila umbellata Galtheria shallon Loci Low Galtheria shallon Runi Run			•
RhmaRhoddendron macrophyllumpacific rhododendronRhdiRhus diversilobapoison oakRibesRibes spp.currant, goosebeeryRicrRibes cruentumshinyleaf gooseberryRosaRosa gymocarpabaldhip roseRupaRubus parvifloruswestern thimbleberrySalixSalix spp.willowVameVaccinium parvilfoliumred huckleberryVameVaccinium membranaceumthinleaved huckleberryLow ShrubsBeaqBerberis aquifoliumshining Oregon grapeBeaqBerberis nervosaCascade Oregon grapeChumChimaphila umbellatacommon prince's-pineGavGaltheria shallonsalalLociLonicera ciliosatrumpet honeysuckleLohiLonicera hispidulamyrtle boxwoodRulaRubus lasiococcusmyrtle boxwoodRulaRubus lasiococcusmyrtle boxwoodRuniAdenocaulon bicolortrailplantAdbiAdenocaulon bicolortrailplantAdbiAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernAnemoAnemone deltoideathreeleaf anemoneAnemoAnemone deltoideathreeleaf anemoneAnemoAnemone deltoideathreeleaf anemoneAnemoAnemone deltoideathreeleaf anemoneAnemoAnemone deltoideathreeleaf anemoneAnemoAnemone deltoideathreeleaf anemoneAnemoAnemone deltoideathr			-
RhdiRhusdiversilobapoison oakRibesRibesspp.currant, goosebeeryRicrRibescurrant, gooseberyRosaRosaspp.RogyRosagymnocarpaRupaRubus parvifloruswestern thimbleberryVapaVaccinium parvifoliumred huckleberryVameVaccinium membranaceumthin-leaved huckle-Low ShrubsBeaqBerberis nervosacascado Oregon grapeBeneBerberis nervosaCascado Oregon grapeChumChimaphila menziesiilittle prince's-pineGavGaltheria ovatifoliaOregon wintergreenGashGaltheria shallonsalalLociLonicera cilosatrumpet honeysucklehainiRubus lasiococcusdwarf brambleRuniRubus lasiococcusdwarf brambleRuniAchilea millefoliumvanillaleafAdbiAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernArenoAnemone deltoideathreeleaf anemoneAnemoAnemone deltoideathreeleaf anemoneAntenAnemone oreganaOregon anemoneApanApocynum androsaemifoliumspreading dogbaneArenaria macrophyllaAranica spp.windflowerAnemone oreganaAreaaria macrophyllaspreading dogbaneArenaria spp.Aranica spp.spreading dogbaneArnicaArania californicaspreading dogbaneArnicaArania californica <td< td=""><td></td><td></td><td></td></td<>			
RibesRibesRibescurrant, goosebeeryRicrRibescruentumshinyleaf goosebeeryRosaRosaspp.roseRogyRosagymnocarpabaldhip roseRupaRubusparvifloruswestern thimbleberrySalixSalixspp.willowVameVaccinium membranaceumthin-leaved huckleberryLow ShrubsBeaqBerberisnervosaBeaqBerberisnervosaCascade Oregon grapeBeneChimaphilamenziesiilittle prince's-pineChumChimaphilaumbellatacommon prince's-pineGashGaltheriaostifoliasalalLociLoniceranispidulahary honeysuckleRuniRubuslasicocccusdwarf brambleRuniRubuslasicocccusdwarf brambleRuniAchilleamilefoliumwestern yarrowWhmoWhippleamodestamodest whipplevineHerbsAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernAnemoneAnemone deltoideathreeleaf anemoneAnemoAnemone oreganaOregon anemoneAnemoneArania californicaspreading dogbaneAnemoneArania spp.spreading dogbaneAnemoneArania spp.spreading dogbaneAnemoneArania spp.spreading dogbaneAnorAnemone oreganaOregon anemoneAnorAnemone oreganaOregon			•
RicrRibes Cruentumshinyleaf gooseberry roseRosaRosa spp.roseRogyRosa gymnocarpa Rubus parviflorusbaldhip rose western thimbleberry willowSalixSalix spp.willowVapaVaccinium parvilfolium Paccinium membranaceumred huckleberry thin-leaved huckle- berryLow ShrubsBeaqBerberis nervosa Chimaphila motiesii Low Galtheria ovatifolia Galtheria shalton Rulashining Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon wintergreen salal tonicera ciliosa tumpet honeysuckle hairy honeysuckle myrtle boxwood Rula Ruurmubus inivalis nivalis snow bramble SymoRuurRubus inivalis nivalis Symomodesta winilaleaf traipplat modestaAcmiAchillea millefolium ur Rubus ursinus Whmowestern yarrow varillaleaf traipplat adencauon bicolor traiplat traiplat traiplat traiplat Aden Ation Adenocaulon bicolor Ande Anemone Anemone deltoidea Anita app.western yarrow vanillaleaf traiplat traiplat traiplat traiplat traiplat traiplat traiplat traiplat traipla ingenee traiplat traiplat traiplat Adeo Anemone ivaliii traiplat tr			•
RosaRosa spp.roseRogyRosa gymnocarpa Rupabaldhip rose baldhip rose western thimbleberry willowVapaVaccinium parvilfolium Vaccinium membranaceumwestern thimbleberry thin-leaved huckle- berryVameVaccinium membranaceum Vaccinium membranaceumred huckleberry thin-leaved huckle- berryLow ShrubsBeaq Berberis nervosa Gave Gave Gave Galtheria shallon tonicera ciliosa Chimaphila umbellata Gave Gash Galtheria shallon Rubus nivalis Runi Rubus nivalis Symoshining Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon wintergreen salal tittle prince's-pine Oregon wintergreen salal tonicera ciliosa Runi Rubus nivalis Symo Symphoricarpos mollis Symo Symphoricarpos mollis Symo Actrnow framble Adiantum pedatum maidenheir fern candystick whipplea modestaAcmi Actr Adpe Alial toropa virgata Ande Anemon Anten Anten Anten Anten Arten a Anten Aralia californica Apan Ara a Apan Aralia californica Arnica spp.western yarrow vanillaleaf trailplant modest preading dogbane elt clover Armica spp.Assa 3Aranica spp. Asarum caudatumwindflower trailplant androsaemifolium arnica spreading dogbane elk clover			
Nosa RogyRosa gymocarpa RupaBaldhip rose western thimbleberry willowSalixSalix spp.western thimbleberry willowVaneVaccinium parvilfolium Vaccinium membranaceumwestern thimbleberry willowVameVaccinium membranaceum Vaccinium membranaceumshining Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grapeBeaq BeneBerberis nervosa Chimaphila menziesii Chimaphila umbellata Galtheria shallon Cascade Oregon wintergreen Gash Cascade Oregon wintergreen GashShining Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon wintergreen Salal trumpet honeysuckle hairy honeysuckle myrtle boxwood Runi Ruur Rubus lasiococcus Whmo Whipplea modestashining Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape Somo bramble Pachistima myrsinites sow bramble Pacific blackberry wondlialeaf trailplant Adbi Adenocaulon bicolor Adbi Adenocaulon bicolor Adee Anemone Anten Anten Antenaria spp.western yarrow vanilaleaf trailplant trailplant trailplant trailplant Ande Anemone deltoidea Antenaria spp. Apan Arnica spp. Apan Arnica spp. Asca 3Aralia californica Asca 3 Asarum caudatumArnica Asca 3Aranica spp. Asarum caudatumwestern varrow varilal amerophylla arnica British Columbia			• -
Rupa SalixRubus parvifloruswestern thimbleberry willowVapaVaccinium vaccinium membranaceumwestern thimbleberry willowVameVaccinium vaccinium membranaceumred huckleberry thin-leaved huckle- berryLow ShrubsBeaq Bene Chimaphila Gaov Galtheria Gab Chimaphila umoShining Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon wintergreen salal torice's-pine Common prince's-pine Common prince's-pine Gash Galtheria shallon Salit conicera ciliosa Loci Lonicera ciliosa Rula Runi Runi Ruur Ruur Ruur Ruur Ruur Ruur Ruur Ruur Ruur Actri Adep Adiantum pedatum Actri Adpe Allotroga virgata Adiantum pedatum Actri Adpe Allotroga virgata Anneo Anemone Anemone Anten Anten Anten Antenaria spp. Anten Antenaria spp. Apan Apacycynum androsaemifolium Arnica Spp. Armica spp.western varrow vanillaleaf candystick modesta modestaActi Allotropa virgata Anten Antenaria spp. Apan Arnica spp.windflower Armaica spp. Armica spp. Armica spp. Armica spp. Armica spp.Acta Armica Armica Armica Armica Armica Asca 3Armica spp. Armica spp. Armica spp. Armica A			
SalixSalix spp.willowVapaVaccinium parvilfolium membranaceumred huckleberry thin-leaved huckle- berryVameVaccinium membranaceumred hucklebrry thin-leaved huckle- berryLow ShrubsBeaq BeneBerberis nervosa Chimaphila menziesii Gavvshining Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape Chum Chimaphila umbellata Common prince's-pine Gash Lonicera ciliosa Lonicera ciliosa Lonicera hispidula Rulashining Oregon grape Cascade Oregon grape Salal tonicera ciliosa trumpet honeysuckle sonw bramble Sonw bramble Sonw bramble Run RunRubusRubuslasiococcus novielis sonw bramble sonw bramble modestaActriAchillea millefolium Adei Adenocaulon bicolor Aliotropa virgata Anemone Anten Anten and casep.AnemoAnemone spp. Anemone lyallii Aliotorpa and casamifolium Arnica Asca 3Arenaria Appen Arnica Asca 3Arania californica Asaum caudatumArnica Asca 3Arania californica Asaa 3British Columbia			
VapaVaccinium parvilfolium vamered huckleberry thin-leaved huckle- berryVameVaccinium membranaceumred huckleberry thin-leaved huckle- berryLow ShrubsBeaqBerberis aquifolium BeneShining Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape cascade Oregon wintergreen SalalGaovGaltheria ovatifolia Conicera ciliosa Loci Lonicera ciliosa Loci LohiOregon wintergreen salalNunRubus lasiococcus Symphoricarpos mollis Whmomyrtie boxwood dwarf bramble Pachistima myrsinites myrtle boxwood dwarf bramble Pacific blackberry creeping snowberry modest whipplevineAcmiAchillea millefolium Adenocaulon bicolor Ande Anemone Anten Anten Antenwestern yarrow vanila anemone deltoidea Aralia californica pp.Arnic Arma 3Arenaria spp. Aralia californica Asca 3Memone Aralia californica andocautum			
VameVacciniummembranaceumthin-leaved huckle- berryLow ShrubsBeaqBerberis aquifolium Beneshining Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon grape Cascade Oregon wintergreen GashGavGaltheria ovatifolia Galtheria shallon Lonicera ciliosa LohiOregon wintergreen salal trumpet honeysuckle hairy honeysuckle myrtle boxwood Rula RuiRubus lasiococcus Myrtle boxwood dwarf brambleRuniRubus nivalis Symo WhmoSymphoricarpos mollis Vhipplea modestasestern yarrow vanilaleaf trailplant maidenheir fern candystick daneone panyActriAchillea millefolium Adenocaulon bicolor Ande Anemone Anten Anten Antenwestern yarrow virgata anemone Aremaia spp. Apan Aralia californica Aralia californica Asca 3western yarrow vanilaleaf trailplant antenaria spp. Aralia californica aranica spp. Asca 3			
LowJeterningJeterningLowShrubsBeaqBerberisaquifoliumBeneBerberisnervosaChmeChimaphilamenziesiiChumChimaphilaumbellataGaovGaltheriaovatifoliaGashGaltheriaovatifoliaLociLoniceraciliosaLotiLoniceranivalisNumyPachistimamyrsinitesRulaRubusnivalisRuniRubusnivalisRuurRubusnivalisSymoSymphoricarposmollisWhmoWhippleamodestaHerbsAchilleatrailplantAdeAnemonegeltoideaAllotropa virgatacandystickAndeAnemoneforganaAntenAntenariaspp.AntenAnemoneforganaAntenAnemoneorganaAntenAnemoneforganaAntenAnemoneforganaAntenAnenaria spp.spreading dogbaneAtraiAralia californicaspreading dogbaneAntenAnenariaspp.ApanApocynumandrosaemifoliumAralia californicaspreading dogbaneArraiaArenariaspp.ApanApocynum androsaemifoliumspreading dogbaneAralia californicaAralia californicaspreading dogbaneArraiaArenariaspp.arnicaArraia spp.Aralia calif	•		•
Low ShrubsBeag BeneBerberis aquifolium Berberis nervosa Chamabila menziesiishining Oregon grape Cascade Oregon grape Cascade Oregon grape Little prince's-pine Oregon wintergreen salal trumpet honeysuckle hairy honeysuckle myrtle boxwood dwarf bramble Runi Runi Runi Rubus ursinus Symo WhmoSymphoricarpos mollis whipplea modestamyrtle boxwood dwarf bramble Pacific blackberry creeping snowberry modest whipplevineAcmi Actr Actr Achile Adiantum pedatum Alvi Anemon Allotropa virgata Ande Anemone Anten Anten aria spp.western yarrow vanillaleaf trailplant maidenheir fern candystick windflower threeleaf anemone pusytoes spreading dogbane elk clover bigleaf sandwart arnica Asca 3	Vame	Vaccinium membranaceum	
BeaqBerberis aquifoliumshining Oregon grapeBeneGrimaphila menziesiilittle prince's-pineChumChimaphila umbellatacommon prince's-pineGaovGaltheria ovatifoliaOregon wintergreenGashGaltheria shallonsalalLociLonicera ciliosatrumpet honeysucklehairy honeysucklehairy honeysucklePamyPachistima myrsinitesRulaRubus lasiococcusRuniRubus lasiococcusRuurRubus ursinusSymphoricarpos molliscreeping snowberryWhmoWhipplea modestaHerbsActrActrAchillea millefoliumAtriAdenocaulon bicolorAllotropa virgatacandystickAnemooAnemone deltoideaAntenAnemone deltoideaAntenAnemone deltoideaAntenAnemone deltoideaArnicArenaria macrophyllaArnicAralia californicaBritish ColumbiaArena 3Arenaria macrophyllaArena 3Arenaria macrophyllaArnica spp.spreading dogbaneArnicaAraur caudatumBritish Columbia			berry
BeneBerberisnervosaCascade Oregon grapeChmeChimaphilamenziesiilittle prince's-pineChumChimaphilaumbellatacommon prince's-pineGaovGaltheriaovatifoliaOregon wintergreenGashGaltheriashallonsalalLociLoniceraciliosatrumpet honeysucklePamyPachistimamyrsinitesmyrtle boxwoodRulaRubuslasiococcusdwarf brambleRuniRubusnivalissnow brambleRuurRubusursinusPacific blackberrySymoSymphoricarpos molliscreeping snowberryWhmoMippleamodestamodest whipplevineHerbsAdenocaulonbicolortrailplantAdpeAdiantumpeditidethreeleaf anemoneAllot AleeAnemonegeganaOregon anemoneAnemoAnemoneliily11iily11 anemoneAnemoAnemonely211iily11 anemoneAntenAntenariaspp.pusytoesApanApocynumandrosaemifoliumspreading dogbaneArca 3Araliacalifornicaelk cloverArmicArenariamacrophyllabigleaf sandwartArnicAraniamacrophyllaBritish Columbia	Low Shrubs		
BeneBerberisnervosaCascade Oregon grapeChmeChimaphilamenziesiilittle prince's-pineChumChimaphilaumbellatacommon prince's-pineGaovGaltheriaovatifoliaOregon wintergreenGashGaltheriashallonsalalLociLoniceraciliosatrumpet honeysucklePamyPachistimamyrsinitesmyrtle boxwoodRulaRubuslasiococcusdwarf brambleRuniRubusnivalissnow brambleRuurRubusursinusPacific blackberrySymoSymphoricarpos molliscreeping snowberryWhmoMippleamodestamodest whipplevineHerbsAdenocaulonbicolortrailplantAdpeAdiantumpeditidethreeleaf anemoneAllot AleeAnemonegeganaOregon anemoneAnemoAnemoneliily11iily11 anemoneAnemoAnemonely211iily11 anemoneAntenAntenariaspp.pusytoesApanApocynumandrosaemifoliumspreading dogbaneArca 3Araliacalifornicaelk cloverArmicArenariamacrophyllabigleaf sandwartArnicAraniamacrophyllaBritish Columbia	Beag	Berberis aquifolium	shining Oregon grape
ChmeChimaphila menziesiilittle prince's-pineChumChimaphila umbellatacommon prince's-pineGaovGaltheria ovatifoliaOregon wintergreenGashGaltheria shallonsalalLociLonicera ciliosatrumpet honeysuckleLohiLonicera hispidulahairy honeysucklePamyPachistima myrsinitesmyrtle boxwoodRulaRubus lasiococcusdwarf brambleRuniRubus ursinusPacific blackberrySymoSymphoricarpos molliscreeping snowberryWhmoWhipplea modestamodest whipplevineHerbsAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernAllotropa virgatacandystickAnemoAnemone lyalliilyal anemoneAnemoAnemone lyalliilyal anemoneAntenAntenaria spp.pusytoesApanApocynum androsaemifoliumspreading dogbaneArna 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaArnicArnica spp.arnicaArnicArnica spp.arnicaArnica 3Arenaria macrophyllabigleaf sandwartArnica 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaArnica 3Arenaria macrophyllabigleaf sandwart	•		
ChumChimaphila umbellata Galtheria ovatifolia Galtheria shallon Galtheria shallon Salal Loci Lonicera ciliosa Lonicera ciliosa Lonicera hispidula Pamy Rula Runi Ruur Ruur Ruur Rubus ursinus Symphoricarpos mollis WhmoCommon prince's-pine Oregon wintergreen salal hairy honeysuckle myrtle boxwood dwarf bramble Ruur Ruur Symo WhmoPachistima myrsinites nivalis nivalis snow bramble Pacific blackberry creeping snowberry modestaAcmi Actr Actr Alto Adiantum pedatum Allotropa virgata Ande Anemone Anten Anten Anten Anten Anten Aralia californica Aralia californica Aralia californica Aranic Aranic Aranica spp.common prince's-pine Oregon wintergreen slal Dregon wintergreen slalChimaphila umbellata Lonicera cilosa Pathistic Ruur Symphoricera hispidula Munocommon prince's-pine slalAchilea Ruur Symphoricera hispidula Ruur Symphoricarpos mollis Whmocommon prince's-pine slal hairy honeysuckle hairy honeysuckle mayrite boxwood dwarf bramble Ruur Ruur Rubus ursinus Symphoricarpos mollis recepting snowberry modest whipplevine western yarrow vanilaleaf trailplant maidenheir fern candystick trailplant diantum pedatum maidenheir fern candystick threeleaf anemone pussytoes speading dogbane elk clover spreading dogbane elk clover elk cloverArenaria Arenaria Asaca Sarum caudatumAralia californica annica British Columbia			
GaovGaltheria ovatifoliaOregon wintergreenGashGaltheria shallonsalalLociLonicera ciliosatrumpet honeysuckleLohiLonicera hispidulahairy honeysucklePamyPachistima myrsinitesmyrtle boxwoodRulaRubus lasiococcusdwarf brambleRuurRubus ursinusPacific blackberrySymoSymphoricarpos molliscreeping snowberryWhmoWhipplea modestamodest whipplevineHerbsActriAchyls triphyllavanillaleafAdbiAdenocaulon bicolortrailplantAloeAnemone deltoideathreeleaf anemoneAntenAnemone deltoideathreeleaf anemoneAntenAnemone oreganaOregon anemoneAntenAntenaria spp.pussytoesAralia californicaspreading dogbaneelk cloverArma 3Arania californicabigleaf sandwartArnicArania gsp.arnicaAsca 3Asarum caudatumBritish Columbia			
GashGaltheriashallonsalalLociLoniceraciliosatrumpet honeysuckleLohiLonicerahispidulahairy honeysucklePamyPachistimamyrsinitesmyrtle boxwoodRulaRubuslasiococcusdwarf brambleRuniRubusnivalissnow brambleRuurRubus ursinusPacific blackberrySymoSymphoricarpos molliscreeping snowberryWhmoWhippleamodestamodest whipplevineHerbsAchilleamillefoliumwestern yarrowActrAchylstriphyllavanillaleafAdbiAdenocaulonbicolortrailplantAlviAllotropavirgatacandystickAnemoAnenomespp.windflowerAndeAnemonedeltoideathreeleaf anemoneAntenAnemoneoreganaOregon anemoneAntenAnenariaspp.pusytoesApanApocynumandrosaemifoliumspreading dogbaneAralaArenariamacrophyllabigleaf sandwartArnicaArnica spp.arnicaBritish Columbia			
LociLoniceraciliosatrumpet honeysuckleLohiLonicerahispidulahairy honeysucklePamyPachistimamyrsinitesmyrtleRulaRubuslasiococcusdwarfRuniRubusnivalissnow brambleRuurRubusursinusPacific blackberrySymoSymphoricarposmolliscreeping snowberryWhmoWhippleamodestamodest whipplevineHerbsActriAchilleamillefoliumwestern yarrowActrAchilleamillefoliumwestern yarrowActrAchilleamillefoliumwestern yarrowActrAdiantumpedatummaidenheir fernAllotropavirgatacandystickAnemoAnenomespp.windflowerAndeAnemonedeltoideathreeleaf anemoneAntenAntenariaspp.pusytoesApanApocynumandrosaemifoliumspreading dogbaneAraiaArenariamacrophyllabigleaf sandwartArnicArnicaspp.arnicaAscaAsarumcaudatumBritish Columbia			
LohiLonicera hispidulahairy honeysucklePamyPachistima myrsinitesmyrtle boxwoodRulaRubus lasiococcusdwarf brambleRuniRubus nivalissnow brambleRuurRubus ursinusPacific blackberrySymoSymphoricarpos molliscreeping snowberryWhmoWhipplea modestamodest whipplevineHerbsAcmiAchillea millefoliumwestern yarrowActrAchyls triphyllavanillaleafAdbiAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernAlviAllotropa virgatacandystickAnemoAnemone deltoideathreeleaf anemoneAntenAnemone iyalliilyall anemoneAntenAnemone oreganaOregon anemoneArena 3Arenaria macrophyllaspreading dogbaneArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			trumpet honeysuckle
Pamy RulaPachistima myrsinites Rubusmyrtle boxwood dwarf brambleRuniRubuslasiococcus nivalisdwarf brambleRuniRubusursinus snow bramblePacific blackberry creeping snowberry modest whippleaSymoSymphoricarpos mollis Whmocreeping snowberry modest whippleaHerbsAchillea millefolium Actrwestern yarrow vanillaleaf trailplant addencaulon bicolor Allotropa virgata Anemowestern yarrow vanillaleaf trailplant candystick windflowerAlviAllotropa virgata Anemocandystick Anemone Anemone Anten Antenaria spp.windflower spreading dogbane elk cloverAnemoAnemone oregana Anemone AntenOregon anemone pusytoespusytoes spreading dogbane elk cloverArnicAralia californica Arnic Asca 3Aranica spp. Asarum caudatumBritish Columbia			
Rula Runi Runi Runi Runi RuurRubus Iasiococcus nivalis Symodwarf bramble snow bramble Pacific blackberry creeping snowberry modest whipplea modestaKeni ActrAchillea millefolium Mhipplea modestavestern yarrow vanillaleafActrAchyls triphylla Adenocaulon bicolor Altri Altriawestern yarrow vanillaleafAdbi Adepe Altri Altri Alvi Anemo Ande Anemo Anten Anten Anten Anten Anten Anten Anten Anten Arma 3 Aralia californica Arnic Arnic Asca 3western yarrow vanillefolium western yarrow vanillaleaf western yarrow vanillaleaf trailplant maidenheir fern candystick windflowerAnemo Anemone Anemone Anten Anten Arma 3 Arenaria macrophylla Asca 3Marf bramble spo.Rula Asca 3Arnica spp.windflower pussytoes spreading dogbane elk clover arnica British Columbia			• •
RuniRubusnivalissnow brambleRuurRubusursinusPacific blackberrySymoSymphoricarpos molliscreeping snowberryWhmoWhippleamodestamodest whipplevineHerbsAcmiAchillea millefoliumwestern yarrowActrAchylstriphyllavanillaleafAdbiAdenocaulonbicolortrailplantAdpeAdiantumpedatummaidenheir fernAlviAllotropa virgatacandystickAnemoAnenomespp.windflowerAndeAnemoneoreganaOregon anemoneAntenAntenariaspp.pusytoesApanApocynumandrosaemifoliumspreading dogbaneArcaAraliacalifornicaelk cloverArmaArenariamacrophyllabigleaf sandwartArnicArnicaspp.arnicaAscaAsarumcaudatumBritish Columbia	•		•
RuurRubusursinusPacific blackberrySymoSymphoricarpos molliscreeping snowberryWhmoWhipplea modestamodest whipplevineHerbsAcmiAchillea millefoliumwestern yarrowActrAchyls triphyllavanillaleafAdbiAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernAlviAllotropa virgatacandystickAnemoAnenome spp.windflowerAndeAnemone deltoideathreeleaf anemoneAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArnicAralia californicaelk cloverArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			
SymoSymphoricarpos mollis Whmocreeping snowberry modest whipplevineHerbsAcmiAchillea millefolium Actrwestern yarrow vanilaleafAdbiAchoyls triphylla Adenocaulon bicolor Alviwestern yarrow vanilaleafAdbiAdenocaulon bicolor Alvitrailplant maidenheir fern candystickAnemoAnenome spp. Andewindflower Anemone deltoidea Anemone foregana AntenAntenAntenaria spp. ApanOregon anemone pussytoesArataArenaria macrophylla ArnicAratia californica Asca 3ArnicArnica spp. Asarum caudatumBritish Columbia			
WhmoWhipplea modestamodest whipplevineHerbsAcmiAchillea millefoliumwestern yarrowActrAchyls triphyllavanillaleafAdbiAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernAlviAllotropa virgatacandystickAnemoAnenome spp.windflowerAndeAnemone deltoideathreeleaf anemoneAnly 2Anemone oreganaOregon anemoneAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArca 3Aralia californicabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			-
HerbsAcmiAchillea millefoliumwestern yarrowActrAchyls triphyllavanillaleafAdbiAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernAlviAllotropa virgatacandystickAnemoAnenome spp.windflowerAndeAnemone deltoideathreeleaf anemoneAnly 2Anemone oreganaOregon anemoneAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArnicArnica spp.bigleaf sandwartArnicArnica spp.British Columbia	•		
AcmiAchillea millefoliumwestern yarrowActrAchyls triphyllavanillaleafAdbiAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernAlviAllotropa virgatacandystickAnemoAnenome spp.windflowerAndeAnemone deltoideathreeleaf anemoneAnly 2Anemone lyalliilyall anemoneAntenAntenaria spp.pussytoesAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArra 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia		milphed meesed	
ActrAchyls triphyllavanillaleafAdbiAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernAlviAllotropa virgatacandystickAnemoAnenome spp.windflowerAndeAnemone deltoideathreeleaf anemoneAnly 2Anemone oreganaOregon anemoneAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			Vactors Varrow
AdbiAdenocaulon bicolortrailplantAdpeAdiantum pedatummaidenheir fernAlviAllotropa virgatacandystickAnemoAnenome spp.windflowerAndeAnemone deltoideathreeleaf anemoneAnly 2Anemone lyalliilyall anemoneAnorAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			
AdpeAdiantum pedatummaidenheir fernAlviAllotropa virgatacandystickAnemoAnenome spp.windflowerAndeAnemone deltoideathreeleaf anemoneAnly 2Anemone lyalliilyall anemoneAnorAnemone oreganaOregon anemoneAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			
AlviAllotropa virgatacandystickAlviAllotropa virgatacandystickAnemoAnenome spp.windflowerAndeAnemone deltoideathreeleaf anemoneAnly 2Anemone lyalliilyall anemoneAnorAnemone oreganaOregon anemoneAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArma 3Aralia californicaelk cloverArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			•
AnemoAnenome spp.windflowerAndeAnemone deltoideathreeleaf anemoneAnly 2Anemone lyalliilyall anemoneAnorAnemone oreganaOregon anemoneAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArca 3Aralia californicaelk cloverArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			
AndeAnemonedeltoideathreeleaf anemoneAnly 2Anemonelyalliilyall anemoneAnorAnemoneoreganaOregon anemoneAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArca 3Aralia californicaelk cloverArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			•
Anly 2AnemoneIyalliiIyall anemoneAnorAnemoneoreganaOregon anemoneAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArca 3Aralia californicaelk cloverArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			
AnorAnemone oreganaOregon anemoneAntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArca 3Aralia californicaelk cloverArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			
AntenAntenaria spp.pussytoesApanApocynum androsaemifoliumspreading dogbaneArca 3Aralia californicaelk cloverArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia	•		
ApanApocynum androsaemifoliumspreading dogbaneArca 3Aralia californicaelk cloverArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia			-
Arca 3Aralia californicaelk cloverArma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia	Anten		• •
Arma 3Arenaria macrophyllabigleaf sandwartArnicArnica spp.arnicaAsca 3Asarum caudatumBritish Columbia	Apan		
Arnic Arnica spp. arnica Asca 3 Asarum caudatum British Columbia	Arca 3		
Asca 3 Asarum caudatum British Columbia	Arma 3	Arenaria macrophylla	
	Arnic	Arnica spp.	
wildginger	Asca 3	<u>Asarum caudatum</u>	
			wildginger

Abrreviation	Scientific Name	Common Name
As de	Aspidotis densa	podfern
Asra	Aster radulinus	roughleaved aster
	Boraginaceae spp.	Borage family
Borag	Brassicaceae spp.	mustard family
Brass	Brodiaea congesta	northern saitas
Brco 3	Brodiaea howellii	Howell's brodia
Brho Cabu 2	Calypso bulbosa	fairy-slipper
Cabu 2	Calochortus_spp.	thistle
Caloc	Campanula prenanthoides	California harebell
Capr 3	Campanula scouleri	varied-leaf collomia
Casc 2		thistle
Cirsi	<u>Cirsium spp</u> .	small-flowered blue-
Сора	Collinsia parviflora	eyed Mary
Cohe	<u>Collomia heterophylla</u>	varied-leaf collomia
Coum	Comandra umbellata	bastard toad-flax
Сотро	Compositae spp.	aster family
Cony	Convolvus nyctagineus	night-blooming
,		morning glory
Coral	Corallorhiza spp.	coral-root
Coma 3	Corallorhiza maculata	spotted coral-root
Come	Corallorhiza mentensiana	western coral-root
Coca	Cornus canadensis	bunchberry dogwood
Cram	Cryptantha ambiqua	obscure cryptantha
Cygr	Cynoglossum grande	Pacific hound's-tongue
Daca 4	Daucus carota	wild carrot, Queen Anne's lace
Dispo	Disporum spp.	fairybells
Diho	Disporum hookeri	Hooker's fairy bells
Ebau	Eburophyton austiniae	phantom-orchid
	Epilobium angustifolium	firewood
Epan Epmi	Epilobium minutum	<pre>small-flowered willow- weed</pre>
Epwa	Epilobium watsonii	Watson's willow-weed
•	Eriogonum spp.	wild buckwheat
Eriog Erla	Eriophyllum lanatum	wooly eriophyllum
Erar 2	Erysimum arenicola	wallflower
Frve	Fragaria vesca	woods strawberry
	Galium aparine	goose grass
Gaap	Galium oreganum	Oregon bedstraw
Gaor	Galium triflorum	sweetscented bedstraw
Gatr	Galia capitata	bluefield gilia
Gica	Goodyera oblongifolia	rattlesnake-plantain
Goob	Habenaria unalascensis	Alaska rein-orchid
Haun		alumroot
Heuch	Heuchera spp.	small-flowered alum-
Неті	Heuchera micrantha	root
Hial	Hieracium albiflorum	white-flowered hawk- weed
Нуре	Hypericum perforatum	St. John's-wort

.

Abbreviation	Scientific Name	Common Name
Hymo	Hypopitys monotropa	fringed pinesape
lris	Iris spp.	iris
Irch	lris chrysophylla	slender-tubed iris
lrte	lris tenax	Oregon iris
Lamu	Lactuca muralis	wall lettuce
Lathy	Lathyrus spp.	peavine
Lane	Lathyrus nevadensis	peavine
Lapo	Lathyrus polyphyllus	Pacific peavine
Legum	Leguminosae spp.	pea family
Liap	Liugsticum apiifolium	celery-leaved licorice- root
Lilia	<u>Liliaceae</u> spp.	lily family
Liwa	<u>Lilium washingtonianum</u>	Washington lily
Libo 2	Linnaea borealis	twinflower
Loma 2	Lomatium martindalei	few-flowered lomatium
Locr	Lotus crassifolius	big deervetch
Lomi	Lotus micranthus	smell-flowered deer- vetch
Lone 2	Lotus <u>nevadensis</u>	Nevada deervetch
Lopu	Lotus purshiana	Spanish-clover
Lupin	Lupinus spp.	Lupine
Lula	Lupinus latifolius	broadleaf lupine
Mama	<u>Madia</u> madioides	woodland tarweel
Mimul	<u>Mimulus</u> spp.	monkey-flower
Mial	Mimulus alsinoides	checkweed money-flower
Migu	Mimulus guttatus	yellow monkey-flower
Moun 2	<u>Monotropa</u> uniflora	indian pipe
Monti	Montia spp.	montia
Море	<u>Montia perfoliata</u>	miner's lettuce
Mosi	Montia sibirica	western spring beauty
Nepa	Nemophila parviflora	small-flowered nemo- phila
Orchi	Orchidaceae spp.	orchid family
Osch	<u>Osmorhiza</u> chilensis	mountain sweet-cicely
0 xs u	<u>Oxalis suksdorfii</u>	western yellow oxalis
Pera	Pedicularis racemosa	leafy lousewort
Penst	Penstemon spp.	penstemon
Phlox	<u>Phlox</u> spp.	phlox
Phad	Phlox adsurgens	periwinkle penstemon
Polyp	Polypodium spp.	licorice fern
Pogl 4	Polypodium glycyrrhiza	licorice fern
Pohe 2	Polystichium hesperium	mountain hally-farm
Polo 2	Polystichium lonchitis	mountain holly-fern
Pomu	Polystichium munitum_	sword-fern
Pomui	Polystichium munitum v. imbricans	imbricate sword-fern
Pomum	Polystichium munitum v. munitum	common sword-fern

Abbreviation	Scientific Name	Common Name
Prvu	Prunella vulgaris	common selfheal
Psph	Psoralea physodes	California scarf-pea
Ptag	Pteridium aquilinum	bracken fern
Ptan	Pterospora andromedea	pinedrops
Pyrol	Pyrola spp.	wintergreen
Руар	Pyrola aphylla	leafless pyrola
Pypi	Pyrola picta	whitevein pyrola
Pyse	Pyrola secunda	one-sided pyrola
Sapr	Sagina procumbens	procumbent pearlwort
Sado	Satureja douglasii	yerba buena
Saxif	Saxifragaceae spp.	Saxifrage family
Scrop	Scrophulariaceae	Figwort family
Sedum	<u>Sedum</u> spp.	stonecrop
Sesp	<u>Sedum</u> <u>spathulifolium</u>	spatula-leaf stonecrop
Sewa 2	<u>Selaginella wallacei</u>	Wallace's selaginella
Senec	Senecio spp. 2/	groundsel
Sewe	Senecio neowebsteri ^{2/}	Olympia mountain butterweed
Sesy	<u>Senecio sylvaticus</u>	woodland groundsel
Sevu	Senecio vulgaris	common groundsel
Sica 2	<u>Silene</u> campanulata	slender campion
Sime	<u>Silene menziesii</u>	Menzies' silene
Smra	<u>Smilacina racemosa</u>	western solomon-plume
Smst	<u>Smilacina stellata</u>	stary solomon-plume
Stach	<u>Stachys</u> spp.	hedge-nettle
Stri	<u>Stacys rigida</u>	rigid hedge-nettle
Syre	Synthyris reinformis	snow-queen
Tiun	<u>Tiarella unifoliata</u>	coolwort foamflower
Trla 2	Trientalis latifolia	star flower
Trmi	Trifolium microcephalum	small-head clover
Trva	Trifolium variegatum	white-tip clover wake-robin
Trill	Trillium spp.	wake footh western trillium
Trov Umbel	<u>Trillium</u> <u>ovatum</u> Umbellifer <u>ae</u> sp	parsely family
Vahe	Vancouveria hexandra	inside-out-flower
Vise	Viola sempervirens	everygreen violet
Viam	Vicia americana	American vetch
Xete	Xerophyllum tenax	bear-grass
Grasses		·
Agdi	Agrostis diegoensis	thin bentgrass
Bromu	Bromus spp.	brome
Brvu	Bromus vulgaris	Columbia brome
Cyec	Cynosurus echinatus	hodgehog dogtail
Daca	Danthonia californica	California fescue
Dasp	Danthonia spicata	common wild oatgrass
		-

2/ Far from its known ange but a specimen most closely matched this species in Hitchcock and Cronquist (1973).

Abbreviation	Scientific Name	Common Name
Elgi Festu Feca Feoc Feru Fesu 2 Kocr Melic Meha Mesu Poa Trca Grass-like pla	Elymus glaucus Festuca spp. Festuca californica Festuca occidentalis Festuca rubra Festuca subuliflora Koeleria cristata Melica spp. Melica harfordii Melica subulata Poa spp. Trisetum canescens	blue wildrye fescue California fescue western fescue red fescue crinkle awn fescue prairie Junegrass oniongrass Harford's melica Alaska onion grass bluegrass tall trisetum
Carex Cape 5 Luca 2	<u>Carex</u> spp. <u>Carex pennsylvanica</u> Luzula campestris	sedge long stolon sedge field woodrush

APPENDIX 2

REFERENCE STAND DATA SUMMARIES

The locations and physical characteristics of reference stands and methods of data collection are given in Chapter 3 (figure 8, table 1). In the plant moisture stress tables the dates are for the morning the pressure bombing was done. Species abbreviations are defined in Appendix 1. Asterisks in the computer generated thermograph data summarizations indicate values with more than five missing observations in the month.

Reference	Species	Date			
stand number	(number of trees)	0810	0811	0812	0823
24	Psme(5) Tshe(4)	14.8 9.4			14.4
43	Psme(3) Tshe(5) Lide(1)				16.6 10.9 11.9
20	Psme(7)		19.1		
34	Psme(4) Abgr(1) Lide(1)		15.7 11 13		
35	Psme(4) Abgr(1) Lide(1)		16.7 9 18		
5	Psme(4) Lide(2)			22.3 10.7	
8	Psme(5) Lide(1) Quga(1)			18.5 16.5 8.0	
44	Psme(4) Tshe(2)			14.3 16.5	

1977 Predawn plant moisture stress (bar) on the reference stands. Heavy rain (ca. 2.0cm) the night of 770823 prevented sampling most reference stands in late August.

Reference Stand	Species Date (month,day)							
number	of trees	0712	0713	0714	0802	0803	0804	0823
24	Psme (5) Tshe (4)	6.1 4.8					9.9 6.6	
43	Psme (3) Tshe (5) Lide (1)	5.7 4.5 4.6					9.3 5.6 5.6	
20	Psme (7)		9.2			14.9		8.0
34	Psme (4) Abgr (2) Lide (3)		8.2 7.6 4.6			7.1 5.6 5.6		9.2 7.6 5.9
35	Psme (5) Abgr (1) Lide (1)		9.1 5.4 5.1			8.1 7.3 6.3		6.5 6.5 5.4
5	Psme (6) Lide (3)			8.2 6.6	13.1 7.0			
8	Psme (7) Lide (1) <u>O</u> uga (1)			9.4 9.2 4.4	15.8 13.3 7.5			
44	Psme (3) Tshe (3) Lide (1)			6.8 5.2 5.4	7.8 6.6 6.8			

1978 Predawn plant moisture stress (bar) on the reference stands. August rain resulted in lower stresses at two of three reference stands sampled in late August.

Date (month, day)	Stress (bar)	
0713	9.2	
0803	14.9	
0823	8.0	
0913	4.6	
1006	9.2	
1025	12.5	
1025	14.3 <u>-</u> /	

1978 growing season plant moisture stress for seven <u>Pseudo-</u> <u>tsuga</u> in reference stand 20 on the H.J. Andrews

1/ Data for six trees from Art McKee, H.J. Andrews Exp. Ecol. Res. Site Director, on other dates in this year.

DRY CONTFERDUS FOREST

THERMOGRAPH DATA SUMMARY

REFERENCE STAND 5

DATA YEAR 1978

NON	NO. DAY	DAY HEAN AIR TEMP (C)	NIGHT MEAN AIR Tënp (C)	HEAN MAX AIR IEHP (C)	HEAN MIN AIR TEHP (C)	435 44x 41R TE 4P (3)	AÐS MIN AIR Tæmp (C)	AHS RANGE AIR TENP (C)	MEAN Soil Iemp (C)	ABS MAX Soil Tenp (C)	AðS MIN Soil Temp (C)
5	27	11.0	8.6	16.6	4.6	29.6	•2	21.6	9.9	12.0	8.Ũ
Ď	30	16.9	12.4	22.7	9.1	35.9	5.7	22.7	13.5	15.0	12.0
7	31	16.9	15.1	25.6	10.6	38.1	5.6	23.6	15.6	18.0	14.0
8	31	10.8	15.9	24.1	11.6	40.8	7.7	23.4	15.9	19.0	14.0
9	30	14.3	11.0	18.3	8.1	28.2	3.6	18.6	13.4	16.0	12.0
10	31	14.4	10.2	20.0	5.9	30.2	-1.1	23.6	13.6	15.0	11.0
11	14	4.1*	3.7*	9.5*	-1.3*	15.7*	-7.4*	15.0*	9.4*	11.0*	6.0*
	194	15.1	11.0	20.5	7.7	40 • à	-7.4	23.6	13.4	19.0	6.0

ORY CONIFEROUS FOREST

THERMOSRAPH DATA SUMMARY

REFERENCE STAND &

					JATA YEA	R 1978					
MUN	NO. Day	DAY Hean Air Témp (C)	NIGHT MEAN AIR TEMP (3)	MEAN MAX A IR TEHP (C)	MEAN MIN AIR TEMP (C)	ABS MAX AIR TEMP (C)	AUS MIN AIR Temp (C)	ABS Range AIR TEMP (C)	MEAN Soil Temp (C)	ABS HAX Soil Temp (C)	ABS MIN Soil Temp (C)
•	10	7.6*	5 	10.3*	3.2*	17.8*	.1*	13.+*	ù.5*	8.0*	5.0*
î	31	10.3	7.5	14.7	3.4	26.6	-1.5	21.5	3.4	12.0	6.0
э	30	15.0	11.5	20.4	1.2	33.4	4 e 3	21.1	12.7	15.0	10.0
,	31	13.1	14.2	23.3	ڌ . ت	37.3	5.)	23.4	15.5	19.0	13.0
3	31	13.9	14.3	23.7	11.0	40.5	0.0	24.5	15.9	20.0	13.0
9	30	13.5	10.9	18.3	7.3	28.2	1.5	21.1	13.3	16.0	11.0
1 J	31	14.4	10.7	20.7	ó.1	31.1	• 1	23.4	13.3	15.0	10.0
11	14	6.1 •	3.8 •	11.1*	- • ú*	19.2*	-6.6*	16.5*	d.0*	10.0*	4.0*
	216	13.9	10.6	18.9	á . C	40.5	-6.6	24.5	12.3	20.0	4.0

DRY CONIFEROUS FOREST

THERHOGKAPH DATA SJHHARY

REFERENCE STAND 20

DATA YEAR 1978

MUN	N 0 . D A Y	DAY MEAN AIR TLMP (G)	NIGHT HEAN AIR TENP (C)	MEAN MAX AIR TEMP (C)	MEAN MIN AIG Témp (C)	435 44X 4IR TEMP (C)	ABS Min Air Tèmp (C)	ABS Range AIR Tëmp (C)	MCAN SOIL TEMP (C)	AUS MAX SOIL TEMP (C)	ABS MIN SOIL TÉMP (C)
5	20	10.0*	8.3*	14.3.	5.0*	27.3*	1.0*	16.5*	8.5*	11.0*	7.0*
6	30	.15.7	12.3	20.2	9.O	30.7	5.1	18.9	11.9	14-0	10.0
7	31	19.8	15.7	25.3	11.5	36.9	6.5	20.5	12.2	15.0	10.0
8	31	18.4	15.5	23.0	11.8	40.2	7.+	20.5	14.5	18.0	12.0
9	30	13.7	11.0	17.1	8.3	27.2	3.9	18.0	13.2	18.0	10.0
10	31	13.2	10.6	18.4	6.5	27.3	-1.3	17.3	12.3	14.0	9.0
11	14	4.6 =	1,3 *	6.7*	-1.9*	15.8*	-7.4*	12.5*	ð.1*	10.0*	5.0*
	187	14.7	11.0	19.1	d - 1	40.2	-7.4	20.5	12.1	18.0	5.0

•

.

,

DRY CONTFEROUS FOREST

THERMOGRAPH DATA SUMMARY

REFERENCE STAND 24

DATA YEAR 1978

40 N	NU. Day	JAY Héan Air Temp (C)	NIGHT MEAN AIR TEMP (3)	HEAN MAX AIR TEMP (C)	YEAN MIN AIR TEMP (C)	AUS YAX AIR TEMP (3)	AƏS MIN AIR TEMP (C)	ABS RANGE AIR TEMP (C)	MEAN Soil Temp (C)	AUS MAX SOIL TEMP (C)	ABS MIN SOIL TEMP (C)
õ	14	3.7+	1.5*	14.3*	••1*	24.9*	-•1*	13.3*	/.1*	9.0*	5.0*
6	30	15.0	12.5	21.1	3.4	33.0	3.9	21.6	11.5	15.0	10.0
7	31	13.0	14.1	25.6	f . t	37.3	5.3	23.0	13.3	18.0	11.0
đ	31	14.0	1+.2	23.2	11.0	¥0.9	5.5	25.3	15.5	20.0	12.0
э	30	11.7	9.3	15.5	n.5	26.6	1.6	18.9	11.0	15.0	8.0
10	23	14.7*	10.4*	20.4*	5 . 3 *	25.4*	1.1*	19.1*	12.3*	13.0*	11.0*
	159	15.2	11.7	20.7	3.1	40.9	-•1	25.9	12.5	20.0	5.0

•

*

BPY CONIFEROUS FOREST

THERHOGRAPH DATA SJHHARY

REFERENCE STAND 35

					DATA YEA	R 1978					
ИСИ	NO. DAY	DAY MEAN AIR ILMP (J)	NIGHT HFAN AIR Tlhp (C)	HEAN HAX AIR TEHP (C)	Mc AN MIN AIR Tê Mp (C)	ABS MAX AIK TEMP (3)	ABS MIN AIR TEMP (C)	ABS RANGE AIR TEMP (C)	MEAN SOIL Témp (C)	ABS MAX SOIL TEMP (C)	ABJ HIN Soil Tehp (C)
5	20	5.1*	5.7*	11.9*	2.7•	23.8*	-1.3*	16.5.	8.1*	10.0*	7.0*
ó	30	13.3	10.4	18.0	6.9	29.6	2.2	17.5	11.7	13.0	10.0
7	31	17.6	1 1	22.9	10.2	34.1	5.1	17.3	14.6	17.0	12.0
đ	31	17.1	13.8	21.3	10.E	38.6	5.3	18.9	14.8	18.0	12.0
9	30	12.6	9.7	16.2	7.2	28.0	2.2	18.9	12.3	14.0	10.0
10	25	15.4 *	12.2 *	20.4*	3.3+	28.0*	5.1*	17.1*	13.7+	14.0*	13.0*
	167	14.3	11.5	18.3	7.9	39.6	-1.3	18.9	12.8	18.0	7.0

DRY CONIFEROUS FOREST

THERMOGRAPH DATA SJNMARY

REFERENCE STAND 43

DATA YEAR 1975

મંદ્રપ	NO. YAC	YAC Méan 812 10mp 101	NIGHT Méan Air Témp (C)	HEAN Max Air Jemp (C)	MEAN HIN AIR Tèmp (C)	AJS MAX AIR TEMP (3)	AƏS MIN AIR TEMP (C)	ABS RANGE AIR TEMP (C)	ME AN SOIL TEMP (C)	ABS MAX Soil Temp (C)	ABS MIN Soil Temp (C)
•	14	»• 7*	7.0*	12.9*	3 • ů*	2 • • 5 •		16.5*	7.1*	9.0*	6.0*
c	3 ป	1+.5	12.2	20.1	3.3	32.5	3.6	19.5	10.3	12.0	9.0
,	31	17.7	14.5	24.5	9.9	36.0	4.7	21.6	12.8	15.0	10.0
5	31	12.3	13.5	21.5	10.2	38.7	5.J	23.4	13.5	17.0	11.0
t	30	11.1	9.4	14.5	6.5	23.9	.9	15.0	11.1	13.0	9.0
1 9	22	13.3+	10.9 4	18.3*	6.4*	23.5*	.7•	15.7*	11.7*	12.0*	10.0*
	158	1+.2	11.7	19.3	3.0	38.7	3	23.4	11.5	17.0	6.0

.

DRY CONIFEROUS FOREST

THERMOGRAPH DATA SJMMARY

REFERENCE STAND 44

DATA YEAR 1978

NCE	NO. Day	DAY Mean Air Temp (C)	NIGHT MEAN AIR TEMP (3)	HEAN Max Air Temp (C)	MEAN MIN AIR TEMP (C)	435 MAX 4IR TENP (3)	ABS MIN AIR TEMP (C)	ABS RANGE AIR TEMP (C)	MEAN Soil Temp (C)	ABS MAX Soil Temp (C)	ABS MIN Soil Temp (C)
2	27	11.2	3.5	15.9	4.2	26.6	t	20.3	ને • નો	11.0	7.0
ó	30	15.9	12.8	20.9	3.0	34.1	5.7	20.2	11.9	13.0	10.0
,	31	13.1	13.0	23.8	9.7	36.5	4. d	23.+	1 +• J	16.3	12.0
4	31	14.1	14.3	22.9	10.5	40.3	5.9	23.2	1 + • 3	17.0	13.4
÷	30	13.6	10.9	17.6	7.8	27.3	2.7	18.4	13.2	15.0	11.0
10	31	13.1	10.7	19.2	6.1	29.1	-1.1	22.0	12.7	14.0	10.0
11	14	4.2*	2.1 *	8.5*	-2.1*	17.0*	~9.0*	14.5*	9.4*	11.0*	7.0*
	194	14.3	11.2	19.3	1.2	40.3	-9.0	23.4	12.4	17.0	7.0

APPENDIX 3

KEY TO THE PLANT COMMUNITY TYPES

This key is designed to work on dry coniferous communities greater than approximately 100 years in age in the area of this study. This includes the Detroit, McKenzie, Blue River, Oakridge and Rigdon Ranger Districts on the Willamette National Forest in Oregon. Dry coniferous communities are defined as lacking significant <u>Tsuga</u> of any size class and not identifiable as any habitat type of Dyrness et al. (1974) other than their <u>Pseudotsuga/ Holodiscus</u> type. This last requirement excludes mesic sites young enough to have no <u>Tsuga</u> reproduction. <u>Abies grandis</u> (or <u>concolor</u>) is apparently climax in some moderately dry ecosystems, primarily in the southern end of the study area. These communities are also excluded from the definition of dry coniferous forest.

Ideally, plant community definitions and keys are tested in the field and revised several times before use. These have not been field tested but the key does correctly classify all the plots in this data set (Appendix 6). In an effort to assure its reliability much information is included in the key which may prove to be unnecessary following more thorough testing.

- A. <u>Libocedrus</u> <u>decurrens</u> dominates reproductive size classes
- AA. <u>Pseudotsuga</u> <u>menziesii</u> dominates reproductive size classesC
- B. <u>Chimaphila umbellata and Chimaphila menziesii</u> almost always present; <u>Taxus brevifolia and Cornus nutallii</u> usually present; <u>Whipplea modesta</u> and <u>Lonicera</u> <u>ciliosa</u> almost never present. <u>Libocedrus/Chimaphila community</u>
- BB. <u>Whipplea</u> almost always present and usually more than 4% cover; <u>Lonicera ciliosa</u> often present; <u>Chimaphila</u>, <u>Taxus</u> and <u>Cornus</u> usually absent. Libocedrus/Whipplea community
- C. <u>Disporum spp.</u>, <u>Apocynum androsaemi'folium</u>, <u>Osmorhiza chilensis</u>, <u>Vancouveria hexandra and Melica subulata</u> almost always present; <u>Philadelphus lewisii</u>, <u>Cynoglossum grande</u>, <u>Pteridium</u> <u>aquilinum</u>, <u>Satureja douglasii</u>, and <u>Festuca californica</u> usually present <u>Pseudotsuga/Berberis/Disporum community</u>
- CC. <u>Disporum</u>, <u>Philadelphus</u>, <u>Cynoglossum</u>, <u>Pteridium aquilinum</u>, and <u>Festuca californica</u> rare; <u>Apocynum</u>, <u>Osmorhiza</u>, <u>Satureja</u>, Vancouveria and Melica subulata uncommon D
- D. <u>Acer circinatum</u>, <u>Corylus cornuta</u>, <u>Cornus</u>, <u>Taxus</u>, <u>Berberis</u> <u>nervosa</u> and <u>Gaultheria</u> <u>shallon</u> have greater than 10% cover as a group;

Pseudotsuga/Holodiscus-Acer community

DD. Cover of the above group of shrub species less than or equal to 10%.

Pseudotsuga/Holodiscus/grass community . . . E

E. <u>Aster radulinus</u>, <u>Selaginella wallacei and Elymus</u> <u>glaucus</u>, usually present; <u>Achillea millifolium</u>, <u>Aspidotus densa</u>, <u>Brodia conjesta</u>, <u>Cirsium spp.</u>, <u>Epilobium minutum and Koeleria cristata common</u> to occassional, <u>Danthonia spp. occassional; Chima-</u> <u>phila umbellata and Festuca occidentalis</u> rare. <u>Aspidotis phase</u>

EE. Festuca occidentalis and Chimaphila umbellata common; Achillea, Aspidotis, Brodia, Cirsium, Selaginella, Danthonia, Koeleria and Epilobium minutum rare. Collomia phase

APPENDIX 4

PLOT LOCATION AND PHYSICAL CHARACTERISTICS

Soil orders follow the Soil Survey Staff (1975). Water holding capacities were calculated by program Sh2o (see Appendix 9).

Plot	#		sed on tion	Location the Willamette Township (south)	Meridian) Range (east)	Elevation (meters)	Slope (%)			er Pit 2	capad	holding ity(mm) Pit 2
1		NWŁ	31	15	5	689	65	212	Inceptisol	Inceptisol	39	59
2		NEŧ	31	15	5	689	85	180	Inceptisol	Entisol	12	37
3		SEł	31	15	6	853	69	108	Alfisol	Inceptisol	77	90
4		SEŦ	11	21	3	594	75	180	Entisol		215	17
5		SEŁ	11	21	3	564	25	210	Alfisol	Alfisol	153	69
6		NEŁ	9	22	5	1021	62	180	Inceptisol		72	
7		NWŁ	27	22	5	975	81	205	Entisol		21	
8		NEŁ	24	21	3	625	63	260	Inceptisol	Inceptisol	55	45
9	S₩₽	NEŁ	29	20	3	610	70	250	Entisol		53	
10	NWŁ	NWŁ	32	20	3	808	45	202	Incpetisol		117	

Plot#	-	based c ection		Location Willamette Township (south)	Meridian) Range (east)	Elevation (meters)		Aspect (deg.)		der Pit 2	Water H capac Pit 1	ity (mm)
11		SW 1	4	25	4	1113	43	225	Inceptisol		155	
12		NEŁ	5	25	4	945	73	180	Inceptisol		108	
13		SWŁ	27	23	3	732	36	270	Alfisol		128	
14	S₩₽	SEŦ	21	23	3	663	24	202	Alfisol		190	
15	SE‡	SWŦ	34	22	3	526	72	225	Entisol	Alfisol	25	87
16	S₩₽	SWŁ	28	20	4	975	54	270	Entisol		33	
17		NWŁ	8	21	5	960	80	225	Entisol		26	
18	NEŁ	NWŁ	4	21	5	777	70	247	Inceptisol	Entisol	43	9
19	NWł	SWŁ	7	9	7	1249	43	225	Inceptisol		104	
20	SEŦ	SWŁ	14	9	6	884	8	247	Alfisol		95	
21	SWł	SWŁ	14	9	6	815	57	180	Alfisol		89	
22	SE‡	NWŁ	14	10	6	853	63	200	Inceptisol		64	
23	SWŦ	NEŁ	34	9	7	1082	67	200	Entisol	Entisol	47	13
24		SWŁ	27	9	6	884	68	225	Inceptisol		84	
25		SWት	27	8	4	594	62	225	Entisol	Entisol	12	18

176

. .

lot#		(based c Section		Location Willamette Township (south)	Meridian) Range (east)	Elevation (meters)	Slope (%)	•		der Pit 2		nolding ity (mm) Pit 2
26		NWŁ	5	9	4	701	72	225	Inceptisol		54	
27		NE4	35	18	5	610	76	226	Inceptisol	Inceptisol	43	94
28	Nł	NEŁ	35	18	5	914	50	225	Inceptisol		33	
29		SWŁ	29	18	6	846	50	205	Inceptisol	Inceptisol	80	26
30	NWł	SE4	5	16	6	1250	74	225	Inceptisol	Inceptisol	101	62
31	NEł	SE‡	27	15	6	838	38	225	Inceptisol	Inceptisol	151	155
32		SEŦ	27	15	6	884	68	205	Inceptisol		107	
33		SEŦ	11	18	5	1082	75	1-1-2	Inceptisol		79	
34		NW4	22	18	5	899	75	225	Inceptisol		59	
35		NWŁ	22	18	5	899	60	185	Inceptisol	Entisol	48	29
36		NEŁ	23	10	6	701	65	180	Inceptisol		98	
37		SWŁ	35	8	4	792	67	225	Inceptisol	Inceptisol	68	44
38		SWŁ	35	8	4	625	80	270	Entisol		5	
39		SWŁ	7	10	6	686	48	240	Inceptisol		179	
40		SEŦ	10	9	7	1143	72	246	Inceptisol		101	

Plot#		ased on ection		Location Willamette Township (south)	Meridian) Range (east)	Elevation (meters)		Aspect (deg.)		der Pit 2	Water H capaci Pit 1	ity (mm)	
41		NWŁ	14	15	6	777	82	215	Inceptisol	Inceptisol	47	41	_
42		NWŁ	14	16	5	488	80	190	Inceptisol		132		
43		SWŁ	27	9	6	869	65	172	Inceptisol		107		
44		NE북	24	21	3	640	75	315	Alfisol	Inceptisol	193	182	
45		SW抺	26	18	5	930	72	240	Inceptisol		159		
46	SEł	NЕŦ	11	18	5	869	65	170	Alfisol	Alfisol	64	80	
47	NWŁ	S₩₽	1	15	6	792	37	267	Inceptisol		93		
48	NWŁ	SWŁ	6	16	5	492	49	227	Alfisol	Inceptisol	56	93	
49	NWŁ	NWŦ	11	21	3	610	67	254	Alfisol		180		
50	NWŁ	NEŦ	33	19	6	957	30	165	Entisol		74		
51	S₩₽	SWŦ	6	10	6	732	68	212	Entisol		53		
52	NWŁ	NWŁ	7	10	6	716	80	268	Entisol		55		
53	SWŁ	SEե	23	15	5	1097	58	270	Entisol		49		
54	SEł	NE북	14	18	5	847	72	260	Entisol	Entisol	71	92	<u> </u>
55	NEł	NE북	14	18	5	823	67	220	Inceptisol		100		178

•

Plot#	•	ased on ction		Location Willamette Township (south)	Meridian) Range (east)	Elevation (meters)	Slope (%)			der Pit 2		nolding ity (mm) Pit 2
56	SWł	SWŁ	29	15	5	586	77	157	Entisol	Entisol	86	52
57	SWł	S₩ŧ	29	15	5	560	55	215	Entisol	Entisol	39	4
58	NEŁ	NW L	28	15	5	683	74	186	Inceptisol	Inceptisol	106	18
59	NWŁ	SEŁ	20	20	3	910	58	205	Alfisol	Entisol	180	18
60	NWŁ	SEŁ	20	20	3	930	50	230	Alfisol	Alfisol	158	40
61	NWŁ	SE‡	20	20	3	930	60	200	Inceptisol	Entisol	88	13
62	SEŧ	NE4	2	22	3	525	55	204	Inceptisol		147	
63	8E‡	NEŁ	2	22	3	550	42	243	Inceptisol	Inceptisol	110	28
64	NEŁ	SEŁ	21	23	3	632	34	204	Alfisol	Alfisol	147	128
65	SE‡	SEŁ	21	23	3	712	43	204	Alfisol		117	
66	SEŧ	SEŁ	11	21	3	495	32	240	Alfisol		120	
67	NWŁ	SEŁ	27	23	3	765	22	240	Inceptisol		73	
68	S₩ŧ	SWŁ	22	23	3	814	63	283	Inceptisol		9	
69	SWŁ	NEŧ	2	24	3	977	20	210	Alfisol		124	

179

• •

Plot#		(based of Section		Location Willam∉t≹e Township (south)	Meridian) Range (east)			Aspect (deg.)	Soil or Pit 1	der Pit 2		holding ity (mm) Pit 2
70	NEŧ	NWŁ	34	19	5	775	73	266	Inceptisol	Inceptisol	44	41
71	S₩ŧ	swł	11	15	6	740	80	205	Inceptisol	Entisol	88	96
72	S₩₽	SEŁ	23	15	5	1045	80	198	Entisol		98	
73	swł	SEŧ	11	15	6	853	46	130	Inceptisol	Inceptisol	79	28

APPENDIX 5

CONSTRUCTION OF SPECIES COVER DATA SETS

This appendix describes the construction of large and small species cover data sets from the field data sheets. It assumes knowledge of the associated methods in Chapter 4.

Trace values were recorded in the field as .1 to .9 when, respectively, 1 to 9 or more individuals of a species were present on a plot and cover was less than 0.5%. These trace values were changed on the data in TP56 format as follows:

field value: .1 .2 .3 .4 .5 .6 .7 .8 .9

lab value : .1 .1 .1 .2 .2 .2 .2 .2 .3

This was done so that sums of traces (as described below) would give realistic estimates of combined cover. This is important because many species have covers of less than two or three percent on dry sites.

Construction of the Large Data Set

The large data set was constructed in positional format from the TP56 format data using program Simdat2 (Appendix 9). It is limited to the 131 species which occur on three or more vegetation plots. All the species in this data set which occur on three or more dry site plots are listed in table 5. When this data set was constructed the covers of the taxa on each line were summed and given the name of the taxon on the left.

<u>Abies grandis</u> Prunus	<u>Abies concolor</u> Prunus emarginata
Lupinus latifolia	Lupinus
Heuchera micrantha	Heuchera
lris	lris chrysophylla, L. tenax
Mimulus	Mimulus alsinoides, M. guttatus
Montia	<u>Montia perfoliata, M. siberica</u>
Phlox adsurgens	Phlox
Sedum	Sedum spathulifolium
Senecio	Senecio sylvaticus, S. vulgaris,
	S. websteri
<u>Melica subulata</u>	<u>Melica (all bulbous Melicas</u>)
Carex	Carex pennsylvanica
Danthonia	<u>Danthonia californica, D. spicata</u>

Taxa were pooled for these reasons:

 They were felt to be ecologically equivalent (<u>Mimulus</u>, Danthonia). These taxa were present on very few plots.

2. They are not taxonomically distinct (Abies).

3. Problems were encountered in distinguishing closely related taxa because features necessary for identification were not present in some locations or at some times during the field season (<u>Prunus</u>, Iris, Mimulus, Montia, Sedum, Senecio, Carex).

4. Although some individuals were not identified to species all identified plants were of the species listed and unidentified individuals were thought to probably be that species (<u>Lupinus</u>, <u>Heuchera</u>, <u>Phlox</u>, <u>Melica</u>).

Construction of the Small Data Set

The small data set was constructed in positional format from the TP56 format data using program Simdat2 (Appendix 9). It was limited to 98 species so it could be used in computer programs with limited array sizes (e.g. Ordiflex, Gauch 1977). Taxa occuring on less than four or five plots, taxa originally thought not to have ecological significance (e.g. <u>Chimaphila umbellata</u>), and <u>Pseudotsuga</u> were not included. Taxa pooled in the large data set were pooled in the small data set. The following taxa were also pooled.

Corallorhiza	<u>Corallorhiza maculata, C. mertensiana</u>
Disporum	Disporum hookeri
Polypodium	Polypodium glycyrrhiza, P. hesperium
Festuca occidentalis	Festuca rubra, Festuca (small, narrow-
	leaved bunch grasses only)

Taxa were pooled because:

1. They were thought to be ecologically similar and accurate identification of some plants was not possible because samples were lost before they were identified in the lab (<u>Polypodium</u>, <u>Festuca</u>).

2. Problems were encountered in identifying closely related taxa because flowers were not present late in the summer (<u>Corallor</u>-hiza, Disporum).

APPENDIX 6

SPECIES COVER DATA

These tables present cover of all species present on three or more plots, i.e. they present the large vegetation data set (Appendix 5). Tables were produced from the large data set by program Order 2 (Appendix 9). Species abbreviations are given in Appendix 1 and follow Garrison et al. (1976). They are prefixed by a number indicating life form as follows:

1 = grass, 2 = sedge or rush, 3 = herb, 4 = shrub, 5 = tree. Plots are grouped by community. The community summaries include: average cover over the plots in which a species occurs (COV2), constancy (CONS), number of plots in which a species occurs (OCUR), and species importance (IMPO). Importance is calculated as

$$IMPO = \sqrt{COV2 \cdot CONS}$$

Plots 38 and 40 are not included because as outliers they were not included in the classification. Plot 70 is not included because it was taken in a highly disturbed partial cut stand to document conditions where four trees were dissected.

						-				
412 43 344 17 18 11 423 44 10 18 11 423 44 10 18 11 423 44 10 18 11 424 18 14 10 18 11 424 18 14 10 18 11 425 18 14 10 18 11 425 18 14 10 18 11 425 18 14 18 10 18 10 51 18 14 18 18 18 18 18 18 18 18 18 18 18 18 18	PLOIS	15	27	3:	65	2 ب ب ن	í Lhis	UC UR	INPG	
412 45 14 14 14 14 14 14 14 14 14 14 14 14 14						5 - 5			5.	
443 HAD 1 A A A A A A A A A A A A A A A A A A	223							3.	- 51	
443 HAD 1 A A A A A A A A A A A A A A A A A A	i G P					0.0 0.0 0.0		3. 3.		
443 HAD 1 A A A A A A A A A A A A A A A A A A	HA	ii					. 14 .			
443 HAD 1 A A A A A A A A A A A A A A A A A A	E ME	Ż.	3		4	14.4	5	2. 0. 3. 1.	24.	
443 HAD 1 A A A A A A A A A A A A A A A A A A	-Cri			5		17		4.		
443 HAD 1 A A A A A A A A A A A A A A A A A A	UL	17		2	15	1407	75 25 25	ş.	25	
412 440 101 101 101 101 101 101 101 101 101	60	• ÷			25	۰1 5.0		†	25.	
412 440 101 101 101 101 101 101 101 101 101	545	70	ôĴ	52	25	00.0			82	
443 HAD 1 A A A A A A A A A A A A A A A A A A	LINIA .	1.4		~		- A - A		31		
443 HAD 1 A A A A A A A A A A A A A A A A A A	JGA					0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	25	i.		
443 HAD 1 A A A A A A A A A A A A A A A A A A	102	_				4.6		.		
443 HAD 1 A A A A A A A A A A A A A A A A A A	hÉ					3.0	÷.	J.		
443 HAD 1 A A A A A A A A A A A A A A A A A A	LCI		· ·	-1 -	- 1	_ • ÷	5ù •	ć.	2 -	
443 HAD 1 A A A A A A A A A A A A A A A A A A	GL .					4 - 4		- ie		
443 HAD 1 A A A A A A A A A A A A A A A A A A						* }	. 42.		Ž•.	
412 440 101 101 101 101 101 101 101 101 101	<u>s</u> č0 3					يا منه		9 •	<u>ہ</u> ي	
412 440 101 101 101 101 101 101 101 101 101				. +	-1		25. 50. 51. 51. 51. 51. 51. 51. 51. 51. 51. 51	1	3.	
412 440 101 101 101 101 101 101 101 101 101		2		.1	_		511.0		3.	
443 HAD 1 A A A A A A A A A A A A A A A A A A		•2 5 0	ó	••	-1	3.7.93.93	Ź5.	2.	17.	
443 HAD 1 A A A A A A A A A A A A A A A A A A	ILE	. ŭ -						19 -	Ğ.	
412 440 101 101 101 101 101 101 101 101 101	i Pū	-		.3		. 3	25.	1.	Ĵ.	
443 HAD 1 A A A A A A A A A A A A A A A A A A	1 MA						<u>.</u>	ه اي	÷.	
412 440 101 101 101 101 101 101 101 101 101	iUI	4	- 3		1.1.1	÷ 3	75.	1. 3.	15.	
443 HAD 1 A A A A A A A A A A A A A A A A A A	LCR .	-				ύύ 			17. G. 3. 15. G.	
443 HAD 1 A A A A A A A A A A A A A A A A A A	GY	<u> </u>				<u> </u>		<u> </u>		
443 HAD 1 A A A A A A A A A A A A A A A A A A	IPA					ų - ų	4 -		4.	
443 HAD 1 A A A A A A A A A A A A A A A A A A						0.0 0.0 0.0	ų -		<u>ğ</u> .	
443 HAD 1 A A A A A A A A A A A A A A A A A A			7	1	.3		100.		7:	
443 HAD 1 A A A A A A A A A A A A A A A A A A	NE	• 3 2	.3	.3	.3		75 75	3.	5.	
412 440 101 101 101 101 101 101 101 101 101	INF -	Ì	······			ź	5.	ž.	3.	
412 440 HOL 413 440 HOL 413 440 HOL 413 440 HOL 414 HOL 415 H	1UM						- J.	J.	3. ÿ.	
412 440 HOL 413 440 HOL 413 440 HOL 413 440 HOL 414 HOL 415 H	ISH					2 2 1 1 1			_ ف الأحد .	
412 440 HOL 413 440 HOL 413 440 HOL 413 440 HOL 414 HOL 415 H	JOI			•2		.2	25. 25.	1. J.	21212121212 212121212 2121212 212 21	
412 440 101 101 101 101 101 101 101 101 101	inI	-1					25.	1.	2 e	
412 440 101 101 101 101 101 101 101 101 101	MY					. .		ų .	ų -	
44 34CCMr 40 340 81 40 340 81 40 340 81 40 340 81 40 340 81 40 340 81 51 3440 81 51 3440 81 51 3440 81 51 3440 81 51 350 84 51 350 81 55 5 5 350 81 55 5 5 350 81 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	INI					اية م قد	25. 75. 75.			
44 34CCMr 40 340 81 40 340 81 40 340 81 40 340 81 40 340 81 40 340 81 51 3440 81 51 3440 81 51 3440 81 51 3440 81 51 350 84 51 350 81 55 5 5 350 81 55 5 5 350 81 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						• •	- 22 +	. ₹ *	÷.	
4+ 3ACUMA 4-0 3ACUMA 4-0 3ACUMA 4-0 3ACUMA 4-0 3ACUMA 4-0 3ACMA 4-0 3ACMA 4-0 3ACMA 4-0 3ACMA 3-0 3AC	110 110	2	30	3	• •	• •	25		23.	
54 336CO 364 200 364 2	LAT.	-		-	- 1			3.	- 31	
136000000000000000000000000000000000000	. 12						û.	. ii	û.	
136000000000000000000000000000000000000	i a I	.3				0.ú .3 	25.	1.	3.	
136000000000000000000000000000000000000	. √I						، پر فرو، محمد	. j .	- 2 -	
136000000000000000000000000000000000000	IGË						75. 75. 50.		3.	
136000000000000000000000000000000000000	'AN	_	3	1	• 2		75.	3.	Ś.	
136000000000000000000000000000000000000	CMA 3	• 4	~•3`				75.	<u> </u>		
136000000000000000000000000000000000000	NOL .		د ه	• 3	,		- 글날 +	<u> </u>	++	
1545-07 1545-07 1545-07 1545-07 1545-07 1550-05 150		ĩ		_ <u>i</u>	<u> </u>	<u> </u>	25. 25. 25. 25. 25. 25. 25. 25.		5 . 3 . 3 . 3 . 12 .	
57 57 57 57 57 57 57 57 57 57 57 57 57 5	200 3		• 2		• 3	.3	50.	2.		
57 30200 57 30200 57 30200 59 302000 59 30200 59 3000000000000000000000000000000000000	100						- 25 -		3	
57 3CARSC 1 58 3CARSC 1 58 3CARSC 1 56 3C	PR 3 SC 2	· .3				.3	25.	ī.	3.	-
59 30 1851 59 37 10 11 14 61 30 10 14 14 62 30 14 10 10 64 30 14 14 64 30 14 70 1	ASC 2		Ó			6 • Ú	25 .	1.	12.	
59 3238 56 3238 61238 61238 61233 61233 61233 61233 61234 614 614 614 614 614 614 614 614 614 61	IRSI			.3	- 3	··· 3	- 59-	1. 1. 2. 3.	· • •	
61 300 KA 61 300 KA 62 300 Y WA 63 300 I SP0 64 30 I SP0 66 31 SP0 66 31 SP0 66 31 SP0 66 31 SP0 67 31 SP0 70 SP0 7	HE	- 2	• 2		• 3	•<	72.		**	
623 300150 623 300150 653 30150 655 31050 655 31050 657 315240 699 33600 711 3600 711 3600	<u>104</u>							ے آئیے		· · · · · · · · · · · · · · · · · · ·
64 30149 30149 64 30149 65 30149 66 31649 66 31649 66 31640 66 31640 67 31640 69 31640 71 3600 71 36000	MA 3					0.0 0.0 0.0	ų - ų -	ų. ų.		
64 30140 65 301450 66 35241 67 35242 69 36402 69 36402 71 3606	125					- 4.4		·		
65 301500 66 35041 67 35241 67 35240 69 36402 69 36407 70 36068	с но			_	•	6.0	25.	بور مور	13.	
66 35PMI 67 3FRVE 69 3640R 69 3640R 70 3640R 71 36008	SPO				- 1	.1	25	1.	ž.	
67 3FR VE 69 3GAAP 70 3GAOR 71 36000	MI		.3		23		50.	z.		
69 3640R 70 3640R 71 36008	L VĒ	• 2	-3	1	3		100-	-	13.	
69 3GAOR 70 3GATR 71 36003	AP			-	<u>3</u>	قم	<u> </u>	· 1.	_ بَدْ	
70 354TR 71 36008	LOR					ũ - Q	ų -	5-9-6-5- 5-9-6-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	<u> </u>	
· · 71 36008	ATR .			-	-	ų	75. 5.	ų.		
	109		-1	•3 1	• • 2	· • 2	<u> </u>		•	
ZZ SHAUN	<u>LUN</u>			1	-1	• •	5 1	4 •		
73 SHEMI				· · · · <u>1</u> · · ·		û.ŭ 8 .2				
74 3HIAL 75 JIRIS	t 🕂 🖢	1	1	*	.3	• 9	199.	2:	· ·	

PSEUDDTSUJA MENZIESII/HULODISCUS DISCUCOK/GRASS COMMUNITY TYPE ASPIJCTIS DENSA PHASE

76 3. ANE	• •	.3	-		.3	25.	1.	3.	
77 3 5 60					0.0	ų.	j.	ĝ.	
79 3.180 2 66 3.0MA 2			•2		0.0 .2		1.	201001111+ 1100100	
				• 1		<u>_</u>	ـــ ¥ هـــ	<u> </u>	
82 JLCNE 2				• +	0.0 0.0 0.0	<i>د</i> ع ن	1. J. Q. 2.	3.	
63 JLULA	-			-	0.0	ų.	ų.	5.	
64 38488 85 347 Mil	• 3			.3		74.			
EL SHOUN Z					ů. v	<u> </u>		- Ş.	
AT SHENTL		• 2		:13		24.	 2. 2.	<u>.</u>	
89 305CH					0.0	ų.,	ũ.		
90 JPENSI					0.0	<u>.</u>	م آبا م اد	ġ.	
52 3POGL 4					ü.č	ů.	J.		
92 3PDGL 4 93 3PCME 2 94 3PCLO 2	-	~	7	• 2	• ?	<u>,</u>	÷.		
55 3PGRU	• ž	•23	•3		1.7	75	3.		
3F0.HU				3	3_	• جُدْ_			
GA JPSPH					4.4 4.4	č.	0. 0.	<u>.</u>	
SH SPTAG				• 2	-2	25.		Ž.	
160 3PTAN	• 2				ŭ. j	25.	ų.	3.	
102 JPYPI	• •	•			G • C	-ē:	5.	- i :	
103 35400	,			. 3	• 3	22.	1.	ş.	
105 35ENA 2	 1	.3	.3			-75		5.	
106 33ENE.	-				ú.j ú.j	ý.	ه به	÷.	
107 35MRA 108 35MST					0.0		č.		
109 JSYRE	:		_		1.2	25.		5.	
TIL JIRLA 2			.3	• 2		24.	4.	11	
112_JJNKN				i		 23			
113 JVAHE			• 2		6.2	د». ب		2.	
115 3VIAH		.3			.3	25		3.	
116 JAETE					1 10	ú. 3.	ų. V.	1:	
118 13RVU	.3	. 5			2.7	50.	2.	. 2.	
119 134NTn		543		7	ف و به	40	÷.	12.	
121 1FESTU		6			1.07. 20.2		144 144 644 744 644 644 644 644 644 644 644 6		
122 IFEGA	4			.3		5	2	3Ž.	
123 1F=CC 124 1FFBU	:	5				5	<u>y</u> .	13.	
125 1-250 2	-		-		3.2 3.2 3.7			2.4	
125 1KDUR 127 1MESU		•3	1		2.5	2 (2 .	2.	?:	
	لا					_ و يو يو هذ		17.	
129 1TRCA		5	- 9 -	د .	4.d 4.j 3	1 4 4 4 4 4 75 4 75 4 75 4	3.	د ار نا	
131 2LUGA 2	. 3	• 3		د ه	.3	75.	ų.	;	

PLOTS 15 27 35 65 JOV2 JUNS JUNK IMPU

.

.

.

PLOTS	٥	لا	10	12	ΪĐ	24	30	+1	51	52	53	54	55	50	57	62	63	68	72	C0 ¥ 2	CUNS	0008	IMF
540AM 5ABPR 546GR 540MA		2	6	•2		1	1		3	۵	ú	0	٥	£		2		1		0.0 1.0 1.0 2.8 2.4	0. 5. 11. 53.	2.	
54 A ME 50 A C M 51 10E 57 1 L A	4	2 3 15	2 1	•1	2	3	2	25			G	0 1 2 6	16	•1		.1 .2 20	6 2 3	• 3 • 3	• 1	2.4	42.	8.	2
SPIPO SPSHE SPSUNU	76 •1	50	76	75	72	5ŭ	65	63	75 •1	55	75	60	60 2	7L	78	70	75	55	76	.8 9.2 1.6 0.0 68.9	0. 100. 11. 11.	19.	8
5005A 514 dR 515 HE 44 CCI 44 CCI 44 NAL 44 RCO 3 42 E I N					•4	1 12	2	ů,	1	• 3	.1	1 .3 .1	.3	1	.3 .2			•2	1 1 .3 .1	1.5 1.5 1.5 1.2 0.3 6.2	5. 11. *7. 5. 37.	1.29.17.2	
40000 40000 40001 4001 4001 4001 40001	3	3 40	6	1	1	.3	14	.1 .	3 16 .3		.1	1 1	.3	ŝ	• 1	.3	.3	3	:3	1.6	11.	15 17 3	12
42888 42801 42102 42067	3 • 2	8	4	.2	ذ. _ د .	••	.3_			5				.3	.3	15	.3	2 •2 •2	.3 _	3.9	16. 42. 16.	0. 8. 3.	1
4RUPA 4VAPA 4JANE 4JEAQ 4JENE 4JENE 4JENE	. 3 2	•2 3	• 3	1	• - - 2	• 2	.3	.3 .1 .2		11 13	3.3	ĩ	.2	3.2	.3 .3	• 3 • 3	.3	. Z . 3	.3 .2 .2 .3	.2 1.6 .3	162. 565. 853.	5. 6. 1.	
40HUM 4645H	••			territe Market and	• 3 • 3 	• 3	• J 	•; 	• •	• 3	:3		.1	•2 •2	:2			•1	• • • •	2.6	47.	3.	
4_0HT 4PANY 420NZ 43YNJ		3	• 3	• 2	• 3 • 2	• j • 3	• - 2 2	د. 3.	• 3	150	د. د.	• •	.3	1	.3	1	. 3	.3 .3 1 2	.3 .3 .3	1.0	11. 32. 21. 5. 7.	5. 4. 5.	
44110 34011	<u>د</u> ن	÷ 	3 3	2 1 .3	<u>i</u>	1 • 1		.3	• 2	3 3	1.	٥ • 2 • 3	.3 .3	6	*	.3	.3	2	•1	5.2 .5 .5	89. 35. 37. 63.	··· } :	1
3424N 3424N 3426N 342DE 342DE 342EA	•2	1	• 3	• 3		••	• 3	• 3	• 1 • 3 • 3	.3	.3	. 3	.3		.3	. 3	.3	.3	.3	3 3 3	11. 5. 16. 84. 42.	1. 3. 16.	
330685 33860 3 354605		• 1	. . ∠	1				1										3	š	0.0 0.0	ě.	8.	4
3CAPR 3 3CASC 2 3CIRSI 3COHE 3COUN	• 2	• 2	. 3 . 3	- 2 - 3 - 2	د . 		.3	.3	2	. 3 2	.3 .3	• 3 • 3	1	.3 .3	.3	.3	. 3 . 3	. ¹ .3	• 3 • 2	15425	16. 74. 75.	3. 14. 1. 15.	3516

PSEUDUTSUGA KENZIESIIZHGEODISCUS DIUCULUKZUKASS GUNNUNITY TYPE

COLLOHIA HETEROFHYLLA PHASE

187

•

acur	~~~	amm		00111 - 1-1-	-00	Nin				a.om		0-1M890	- m.	140000	0-1N	awin@	-ima-			
CUNS 0	666 111	~~~	KN M	1-0-1 1-0-1 1-0-1	3 OM	- 01		20		200 720	n -1 -0	00000 100000 1010	~94	John NN John	ເລແບບ	001 00 C	بد و م	ວທາທາ	0 J N	1990 1990 1990
Cu12	~~~					••		, -1						1000M3						~~~~
72			.um • •		-447) •		۳.				1		m	(NM)		mm • •		•	: -	±1
¢.	1	m •	m •		m	1	۳.		۳.			m.	-m					, .	*	N.3 •
63		۳.			M.		٦		۳.	м м • •	•	T		.		۳.	•	• •	?	mm →
62	~	NM)		• 2	мм • •	ě	ŝ	. .	۳.	۳.			m	m •		(N) =		•		
j,					.									m m		m •	~			~
44 6			'n		۳.	46		1	. .				- 			नन	~		u m	و
55			m.,		тт • •					٦.			-	۳.		7	-		•	·~ •
5				21	~~ ~			F .	۳.					19 M		-	• 5	, e	v	
53	r.	1,	1		 						Е.	m +	7		•					
52	•		~~		٠.	a				~~~		.1	mm.	N.	-	F	۳.	,	V	m.
19			•••	5.	••				۳.	-1.1 •					.1	.		, ,	•	
-1			••	MIU ••	.	•	~				1	-++\J • •		-4MM + + 4		-1				•
ĴĹ			2.	NN ••	7.	.2						(a m •				2 1	•	. 2		
				ŗ.	۳.		<i>.</i> .					2.				m				n
1		••	in.	.+.4.⊐ ● ●	ŗ.			-				•• •	~	2 -		н •			•	
1		*		M01 •••	m •		2		۳.			•					-	•	•	
17 5	49	•	20	••	-	8		.3	2		-2							-	-4	
30		•	5.1			'M] -4	•	1						~	•				n -	10
n	-	-	•	+ + + +	-	.1			~		~ •	-		2 1				.t.	-	
PLUT	JCORA- JCORA- JCCRA- JCCRA-	301 HO 301 5PC		20040 200000000	346A1 34150	3LANE 3LAFO	4.01	MCOHI 2		34CUN 2 34CNL 2	305CH 3PENSI	374 374 370 370 370 370 370 370 370 370 370 370	3FORUL 3PORUM	074 H0 44 140 144 754 144 754 144 754 144 H0	35EDUA 35EHA 35EHA	JSHER JSHER JSHER JIFLE JFLLA 2		3XE1E 1820HC	10 ANTa	
	999 1010 1010	3004 9004	6~9 6	8 3.41V	かまう	16	907-: 7	3 - 7 CJ	10 40 40 10 4 10	0 0 0	000	-04400 00000	358	1000-10M	0.00	8004 80044 80044	2021			400 JU

	PLUTS	1	2	4	7	17	28	23	3+	36	42	48	53	C0v2	CUNS	OCUR	[HP
1	5484M 548PR 548GR													C.Q	ί. Σ.	0. G.	C
1 2 3	54 8 GR			-							-			L.A	٤.	ý.	ŝ,
- <u>+</u> -	SALMA	- 1	1_	<u> </u>	i	- 4	10			15	 .1	6		-7:9			1 <u>4</u> 14 7
57	SARME SCACH	1	ž		i	152	.2	Ĵ	÷	1	-1		• 1 3	.9	56.	6.	15
à.	SCIDE SPILA	.1	0			٦ź	11	•		-			•	3.3	33.	÷.	. با 1
9 10	SPIPO SPSME	89	53	- 45	65	63	60	85	80	52	80	65	82	76.5	1:::]. 12.	84
	5PRUNU SDUGA		2				۵	3						0	í.	G.	 4,
3	51402	•1			.3		-				9		ų.	•2		<u>2</u> .	- ĉ.
15	STABR STSHE LACCI	16	- 16		8	-	6	+	7	.	13	. 1	2	1.1	72.	11.	25
16	4ACGL 4AMAL	•2		•2			• 2	.3				• 2		L.0 .2	42.	ů. 5.	ŭ. 3.
ι8.	HARCO 3						6							6 . ū 3 . 4	5.	° 1. 3.	7.
19	GONU		2		7	• 3		3		2	<u> </u>				_ <u>.</u>	6.	و کیا
21	40001 4001 40412	3	6	3	14	5	.32	32	33	33	-1	52	.3	5.8	106.	12.	24
23	4PHLE		3	•1	• • 3				.3	• 2	•1		•1	.3	5.	1.	2
25	42 H PU 42 H MA													្វុំ	ú. 56.	0. 3. 7.	
26	42HDI 42ICR	4	1	5	-3	.2	_				1	11	• 3	L.0 3.2	ö.,	1:	14
2 <u>8</u>	441CR <u>470GY</u> 44UPA	.3	3	3	<u> </u>		3	1		1	.3	3		- 2.5	_ <u>_</u> 2	<u></u>	<u> </u>
29	LJADA	.1			i					-	• 3	÷	.3	6.4	44.	ĝ.	5
31 32	474ME			•2	. 2		_	1	.3	. 3		-		• 4		2.	
33	43ENE	16			2023		5	+	.3 20 .3	• 3 15 • 2	15	3	.3	12.3	111. ci.	12.	35.
34			ĩ		. 3	• 3	. 3		• 3	,	. 2		• 3	4.3	50.	3.	3
36- 37-	4645 <u>4</u> 41661 41041					• • • •	-			- 2	<u></u>		•	•2	- 33. 25.	- 3.	
33	4LOHI 4PAMY					÷								1.0	с. ι.		ູ່.
ŧū	42UNI 42UUR	3	1	:	. 7	• 3	;	• 2 • • • • • • • • • • • • • • • • • •	.3	د .	.3		• 3	•2	. ع به ک	114	7
123	45 Y MO	•3 1 12		-	• 3 • 2 7		7	ő	1	- Ę	1	13	ż	£ .5	75.	-11-	24
. 4	SACHI		10	7		2	•	<u>, ż</u>	. 5	:			۔ 		، ۲۲۰ مر	;-	
+5	3461R 34631 34141 34141 34N0E	224	2		.2	ڌ د.	1			3	.3	• 3		1.0	28. 26.		1
• 6 • 7	341 41	- 2	-		.3		.2	•2						- Ż	× .		1
+8 • 7	JAPAN			.1	• •	_				• 1			_	-2	33. 17.	ź.	Ž.
50	JARNA J JASDE				1	3 -	• 3	•3	•1	3		• 3	-	.5 .1	c7.	8.	6.
5 <u>2</u> 53	34584 330540	_	`_	_3			3	2				• 3	.3_	<u>6</u>		 1.	б.
54	<u>34584</u> <u>330845</u> <u>338860</u> <u>358400</u> <u>36400</u> <u>360045</u> <u>360045</u> <u>360045</u> <u>360044</u> <u>360044</u> <u>360044</u> <u>360044</u> <u>30159</u> <u>30159</u>		•2	1								• 3		.5	25	1. 3.	23
25- 56	JCAPR 3	.													£ .	ů.	
57 58 59	JUASC 2 "JCIRSI"			.1 "	. 1	_ • • •	-1-				··· · · · ·	- • 3		.7 1.6	33 -7 -33	- 2.	5.
59 50_	3COHE 3COUM	1	•3	•1				·						1.6	. 33 ف	1.	72
1	JORAL -													- C.J	ų . 8.	1.	ů. 1
52	JCYGR -				•1						·			¢: ۲	. ú .	ģ.	÷.
55	301 HO 301 SPJ				3	تبمق					• 2	_		<u>د :</u> 5	25.	3.	، ک ب
66 67	JOISPJ JEPMI JFRVE	• 3	•3 1	· 2 1			.3	1	.3	• 3	.3	•3	. 3	• 3	25.	3. 16.	3.
58	JGANP			-						<u> </u>					- 25.	، يَاتَ • ترجي	7
69 70	3GAOR 3GATR	• 2			.3		2	.2	•3	.3	• 2	3	-	:3	20.	7	
71 72 73	33005 3HAUN	• 3				•2	.2	• • •	•2 •	• 3	•2 •2	يد. د .	• 3	1	33.		Ž
73	3HEMI				3-			.3		• 2	3	. 5	.3	û . Û	ű. 111.	12.	ú.
νű- 75	3HIAL JIRIS	.3	•	.3	••	.2			•••	1	••	• 5	.1	•0	- 38.	12.	8.3

PSEUDOTSJUA HENZIESII/HULOOISGUS UIJGULUA-AGER GIRGINATUH COPHUNITY TYPE

76	JLANE											1	• 3	.7	17:	ζ.	3.
77	JLAPO JLIAP				 	18 .3	,			. 3	•		•	.7 7.0 5.0 3.0	- <u> </u>	2.	12.
79	3LI80 2 3LCMA 2	3	<u>_1</u> _		10	• • •	•3_				1			2		<u>2</u> .	2.
81 82 83	JLUHI JLONE 2		.3	2								. 3		6.0 6.0	ده، با	J.	<u>5.</u>
1340	JULA -	. 3	.3	1						·		. 1	. 3		ų. 42.	3.	û.
85 86 87	3HINUL 3HOUN 2 -			18	1-		- ··			.3				10.0 2 0.0	17.	1.	2.
	3MENTI 3NE PA		.2											.3	17.	<u> </u>	Ž. <u>.</u>
89 90 - 91	JOSCH JPENSI							• 2	•2	. 3				2.0 0.0 0.0	25. (.	- ŭ.	4 • 4 • 5 •
92	3PHAD 3Pdgl 4					•	•						-	6.9	٤.	ā.	Ú.
93	3POHÉ 2 3POLD 2			• • • • •	• 2	•2			• 2	13			• 3	• 2	42.	1.5.	2.
95	3PGHU 3PGHU1	3		1	2	2		1		13	1	1	1	3.3	56.	- 2. - 2.	3
97 98	3PONUM 3PSPH											2	• 3	1.2	17.	2 • 4 •	4 • ù •
	3PT AQ 3PT AN		·	-				s		• 3 ···	• 3			6 - J	17.	ü. 2. 0.	ů. 2.
	3PYAP 3PYPI		.1		.2				•2	• 1		•1		.2	33.	2.3.	2.23.
103	35 A 00 35 E 0 U M		•-		• -	• 2		• 3		• 2	. 3			1.0 5.0 6.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	25	3.	3.
145	33EWA 2		.3									_		• 3	C •	1• 	1 2 . 3 .
107	JSENEC JSHRA -	• • 2 •	•1		• 2	-					.3		• 4	.2	ί. 72.	5. 1.	3. 1.
109	35YRE 3TRLA Z		·	z	• Z	.3 .3	•		.3	1		. ż	÷.	4.1 2.5 8	33.	4. 11.	9.
111	STROV JUNKN	••	•				-			-	.i				ě .		1.
<u> </u>	3MAHE	• 3			.3			. 2		• 2	:3	• 3		.7	¥ć. 33.	5.	
- 115	JVISE JVIAH JXETE		10-			· ·			• 2	-	••		2	3.4	42.		12.
- 117	1320AU 1320U			3		.	1 -		:	•1	.2	3	.3	1.1	56.	÷:	ž.
119	10ANTH	.2	-	 1			.3		:					u . Ú	 7].	š
121 122 123	1FESTU 1FECA 1FEOC								-					30210000013307 	î. 	<u>5</u> 	
124	IFEOC IFEGU	3	ó	.3	-	· • • •	.3				• 2	•	• 3	2.1 .3	67.	4. 1 2	:2.
- 125 126 127	1FERU 1FESU 2 1KOC8						•4			• 3				.3 (.0	-7-		2. Ú.
127	IKOCR IMESU 19EHA						.3	.3			.3	.3	÷	. 0	17.	2.	ů. 3. 5.
125	111114						- 1		.3		.2	3			33.	17.	1.
130 131	23AREA 2LUCA-2-		•3 …	2			.3				-1	. 3	•1	•2	50.	7.	**

PLOTS 1 2 4 7 17 28 29 34 30 42 48 50 CUV2 CUNS DOUR IMPO

	PLLTS	. 11	15	÷Ĵ	46	5ŭ	59	61	3042	CONS	COUR	IMPO
125	ABAM ABPR ABGR ACMA								1.0 9.0 2.5	ů.	0 .	J. G.
÷ 2	1000	•							- G + Ç	្តុទ្	2.	_Q•
3 3	456K 40 H4	i			-1			5	- • ÷	29.	<u> </u>	4.
	ARME	• č							بر وقر بر وقر	<u>_14e</u> _ 14e	<u>1.</u>	<u></u>
- 75	GACH								23.2	<u>.</u>	ō.	ē.
/ 5	PIDE -	12	12	55	5 • 1	20	25	5ù •3	zš: ž	ŝó.	ģ.	54.
8 5 9 5	PILA	È		6	•1			• 3	. Ó 8. J	43. 14.	<u>ې</u> .	. <u>0</u> +
10 5	PŜHE	50	70	35	56	85	05	50	8.u 61.6	1361	1.	11. 75.
ĨĪ 5	PRUNU	••	••			••	••		61.6 0.0	- E.	ş.	ů.
فِـ جَدَ	Quç <u>a</u>										Q.a	0.
13 5	AGUILPEU RGLILPEU PPRUGREU PPRUGREU PPRUGREU FGCGREU F		ũ		C				0.j		J.	
14 5	AGCI -				6	-1	.3	2			ų.	<u>ų</u> •
16 4	ĀČĞĒ					••	••	-	0.1	÷3. ū.	3.	ĝ.
15 4									6 6 6	ų.	j.	ē.
18 4	ARCO 3									ū.,	3.	
19 i	CCNII CCNII	•1		•1	•2	.2			• •	43.	<u>ې</u> .	Š.
					•2			3		1.4 e. 43 e		2. 7.
22 4	HÖÖI		4	5	• 2	• 13	3	32	3.2	55.	D •	16
	RUPA			· -					+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4	<u>ú</u> a	J.	· ú.
24 4	CHPU 2 mma				-1					14.	j.	1. G.
26 1	RHDI				ų	• · · •		.3		G. 14.	4 4	- 2.
27 i	RIČR							••		-77	1. 	1.
286	<u>zogy —</u>	<u>^2</u>					<u>iq</u>		_3.5.		7.4	. 14
35 6								7	3	, <u>i</u> e	3.	ÿ. 3. 9.
- 31 4	VAHE BEAQ BENE CHME				•1		•1	•3		43. 57.	3.	- 3 •
- 31 4 32 4 33 4	àê xũ	•3 •3		.3 .3	•3		.1			57.		
33 4	BENE	.3	3	.3	1	1	•1		2.c	30.	ġ. 3.	13.
34 4	CHHE	.2			• 2 ¨	3	.3		2. c . 3 . 5	÷3.	3.	<u>ن</u> ه ک
36 1		• 4			• 4	÷			• 2	43.	3.	÷.
37 4				•1			• 3	. 3			<u></u>	
38 4	<u>i</u> çhI —				_		-		2	4	 J.	<u> </u>
394	PANY			•1	•2	.3				+ <u></u> .	د ک	<u>ن</u> د
61 6	RUNI RUUR SYMJ			.3	.3	•2		. 3		57. 57.	J. *•	
41 4 42 4 43 4	SYNJ		•3		.3	••	.1	ö	2.5	57.	4.	12.
43 4	A H MQ	2		1.4	عة	3.	-	1+	15	13Q.	7:	57.
<u>44 3</u>	ACTR						15		0.7 1.7 6.0	43. 71.	<u> </u>	i e
66 3	last		• 3		.ż	3	4	T	1.7	71.	3.	17.
40 3	AD BI AL VI								610		5.	
48 3	h N L Z	-				•3	•2	.3	• ২	₩З.	3.	Š.
<u>49</u> 3	APAN Arma 3	• ž	.3	.3	.3	.3		,	• <u>-</u>	. <u>- </u> !! •	7.	2.
51 3 52 3	ALCE	+	.3	• •	•••	•••	÷	÷	• 5			3.
<u>52</u> 3	ARHA 3 ASCE ASCA			3			.3		1.7	43.	2	2
53 3	ALA BORAJ 3 BALA 3 CASC 2 CASC 2 CASC 2 COUMA COUMA 3 COUMA 3		2					• 3	• 3	14.	1.	2.
	BRCD 3		•2					3	- 42	29.	3.	3.
56 3	APR 3 ASC 2	• 3					••	••	.3	14.	1.	2:
56 3 57 3	LASC 2		1	-	. 3	• 3	• 3	13	• 0	14. 71. 29. 29.	3.	6.
58 3	INSI		• 3	•3				.3	.3	zş.	2.	3.
	1000	•ż	• •						n	5.2.4	2.	3.
61 3	DAA.									<u>µ.</u>	ù a	<u>0</u>
62 3	QUMA 3	•1				• 🕹	•1		• •	÷3.	3.	2.
- 53 36	1166	•:				· · ·		-•1	• ‡	1.4.	1.	1.
61 3 62 3 63 3 64 3 65 3	IHO ISPJ FMI RVE	••					1		1.2	14.	1.	1.
66 3 67 3	PHI								ē.E	1 71.	· 1.	5.
67 31	RV5		:	1	1	,	ş	3	1. ģ	71	5.	1
<u> </u>	402		_				دم_		3 	_2	<u> </u>	
70 33	402 402 412		1				.3	.3	• ૨	+3.	5. 	5.
	EDOS	٠ż	• ¹ / ₃	•3		•3 •1	.3 .	.3		3c.	6.	> •
12 31	1 A UN					•1				14.	b. 1.	Ċ.
75 3	IEMI II AL LRIS	.3	1	• 3	.;	.ż	1	• 3	** #	1057.	3.	С. З.
				* 3								

LIBOGEDRUS GEDURRENSZAHIPPLEA NODESTA GUMMUNITY TYPE

、

PLOTS 11 18	43 46	26	2 7	<u>51</u> 0	342	SNC	UCUR	IN PO	
-------------	-------	----	-----	-------------	-----	-----	------	-------	--

.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3				
.3 .3 .3 .2 .1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3		4		
.3 .3 .3 .2 .1 .3 .3 .3 .6 .3 .3 .3				
.3 .2 .1 .3 .3 .3 .6 .3 .3 .3		14. 0. 14. 29. 71. 14. 20. 14. 20. 71.		0 4. V 5
.3 .2 .1 .3 .3 .3 .6 .3 .3 .3		14. 0. 14. 29. 71. 14. 20. 14. 20. 71.	3.1. 	4
.3 .2 .1 .3 .3 .3 .6 .3 .3 .3		14. 0. 14. 29. 71. 14. 20. 14. 20. 71.	3.1. 	4
.3 .2 .1 .3 .3 .3 .6 .3 .3 .3		14. 0. 14. 29. 71. 14. 20. 14. 20. 71.		
• 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3		14. 0. 14. 29. 71. 14. 20. 14. 20. 71.		
• 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3		14. 0. 14. 29. 71. 14. 20. 14. 20. 71.		
• <u>3</u> • <u>3</u> • <u>3</u> • <u>3</u> • <u>3</u>		14. 0. 14. 29. 71. 14. 20. 14. 20. 71.		
• <u>3</u> • <u>3</u> • <u>3</u> • <u>3</u> • <u>3</u>				
.3 .3				
.3 .3				G • • 7 • • • • • • • • • • • • • • • •
.3 .3				3. 11. 22. 5. 2. 5. 2. 5. 2. 5. 2. 5. 5. 2. 5. 5. 5. 6. 5. 6. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 7. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7
.3 .3		29. 0. 14. 29. 71. 14.		
.3 .3		29. 0. 14. 29. 71. 14.		11. 22. 22. 59. 2. 59. 2. 59. 2. 59. 59.
.3 .3	<u>بر منا</u> د ه ۵۰۵	140		559 2 ¹⁵ 3 2 ¹⁵ 3 0
.3 .1	<u>بر منا</u> د ه ۵۰۵	140	1. 1. 2. 5. 1.	559 2 ¹⁵ 3 2 ¹⁵ 3 0
.3 .1	<u>بر منا</u> د ه ۵۰۵	140	1. 2. 5. 4.	559 2 ¹⁵ 3 2 ¹⁵ 3 0
.3 .1	<u>بر منا</u> د ه ۵۰۵	140	0. 5. <u>4</u> e	559 2 ¹⁵ 3 2 ¹⁵ 3 0
.3 .1	<u>بر منا</u> د ه ۵۰۵	140	i.e. 1.e	5. U 2. 3. 0.
.3 .1	<u>بر منا</u> د ه ۵۰۵	140	i.e. 1.e	2. 2. 3. 0.
-	0.0	<u>.</u>	1. 0. 3.	<u>ن</u> . و .
-		43.	0. 3.	<u>ن</u> . و .
-	4.3	14	1.	۰.
1 3	1.2	57.		~
Ź ·	1.2			7.
		71.	÷ 5.	9.
	بالأنا	14		
.3 .5		43.		4.
د.	7.	29. 71.	2.	3.
79 73	i + i	5 /i.	2.	23.
	0.0	С. й.		-ù. 0.
.3 .3	7.0	5 86.	6.	21.
			ų,	ž.
	0.0	مربة <u>م</u>		
		25	Ž.	3.
.3 .3	1.	, ,,,,,		
	و م ت		2.	4.
		: î.	5.	ζ.
_ <u>1</u>	•	5 29.	2.	ů.
_ <u> </u>	1			
	•			D •
	.3 .3	.3 .3 1.	.3 .3 1.9 66	·3 ·3 1·3 · 60 · 60 · 60 · 60 · 60 · 60 · 60 ·

PLOTS	5	13	14	49	60	04	ġ o	57	59	L012	CONS	OCUR	IMPO
548AM 548PR 548GR										C.0	0. 5.	ű.	ů.
SABGR				1.0		•1		÷		2.8	2Z •	۷.	3.
SACHA	<u></u>	_1	5	•2		2u	15				***- ***	¥.4. ¥.•	21.
551124 551124 551124 551120 551200 551200 551200 551200 5512000 55120000	3		.	. 2	10		15 .3 20	•1	3	16	22. 53. 33. 22.	*25.32	21. 2. 20.
SPILA SPIPO	•	•2	1 10 30 -		_			•1		- 4	33.	3.	4.
PSHE	85	66	· 30 -	75	85	60	63	83	20 75	15.ŭ 76.2	100.		67.
	•÷						.1				22.	2	Ç.
8 58442										6.u (.G	22.0	Ģ.	0.
ACCI			···· · ·	-10 -		• 3 -			•		22.	ù. 2. ù.	11
STSHE 4ACCI			1					9	2	2.3	- 33 -	3.	9.
LAMAL LARCO 3 LARCO 3 LARCONU						•2		_		•••	- 0. 11. <u>33</u> .	1.	0. 1.
40221N 40000 44001 44001 44001 44001 44001 44000 44000 44000 44000 44000 44000 44000 44000	2			3		à	- 1 -	3	• 37	2. 6	<u></u>		15
44201	6 1	12	:	35	1	•72	2	3 7 	7	5.2	76. 199. 56.		15. 23. 7.
4PHLE - 42mPU	•	•1		-		••	••	-			11.	<u>.</u>	1.0
1 42HHA			.1			4	15	• 3		25-9-13-80-0	74		19.
4RICR 4ROGY	3	1	3	6	a	б	.3	2	1.	3.U	100.	<u>.</u>	17.
4RUPA 4VAPA 4VAME 48EAQ	• 3	• 2		• 2						• • • •	22.	2.	2.
4VAME 48EAQ			-			•3		.	2		- <u>-</u>		
43ENE 43ENE 43HME	.3		٠Â	2£ • 3	÷	1	• 3 15	1	-	5.2	89. 70.	8. 7.	20
43ENE 43HHE 40HHE	•1	• -			-	-		•2		3.12 3.12 0.13	33.	3.	17. 20. 2.
	ź			•3	.3	1				يدمنــــــــــــــــــــــــــــــــــــ	$\frac{11}{33}$	3.	
5 4LOHI				•3			• 3	•1		• *	33.	3.	3.
ARUNI	_	_		-		-		-		မှ မမ ပြုမှ မ	3.		ü.
4RUNI 4RUUR 45YMO	12	•3	2 1 3	•3	15	. •3 	. • 3 . · 3 . ·	•3	• 3 • 3	2.4	199. 196.		13. 18. 29.
	43		3	6	15	4	3	1	• 3		07.	8.	
JACTP.	16	1 1	•2	.3	5	•2	• 3	1		1.0	11. 19.	1. 0.	3. 14.
JADBI JALVI	**	-	• •	••	-	•••					<u>.</u> .	ü.	
JANCE JAPAN JAPMA J	-•:	.3	•2	• 3		• 3 -		•1	1	.3	78.	. 7.	5.
JAPAN JAPMA J JASOE JASRA	- 1	• 3		• 3	I	.3		1	- 1		89. _i.	3. ž.	۵. ب
JASCE JASRA JBORAG				3	ڏم_		-3	3	Ē.		<u>78</u>		<u>5.</u>
380RAG 386C3 3 -366L00										1.1 1.1 1.1			Ž.
3CAPP 3 3CASC 2 3CIRS 3COHE	•	•	• 3		2		.3	• 3	• 3	.3	22	2.	3.7.
304498 3 304498 3 3064585 3064585 3064585 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 3000000	1	<u>1</u>		-		····					56.	· · · · · · ·	· · · · ·
300HE		•2	• 2			•3		• 3	• 3			5.	2.
3CORAL 3COMA 3		•1		.2					.3	•3	22.	2.	2.
300RAL 300HA 3 3016R 301F0	1	.2	• 2		- 1 -	• 3	-2	•1			11. 22. 07. 22. 7.0		2.7.2.
301300	•2			• 3	• 3	• 3	• 3	• 3	• 3		7 3.	7.	5.0.
JOISPU JEPMI JFRVE	:	.3	• 3	÷	2	1	23	•3	1	1.4	144.		16.
AAAE		• ÷			<u></u>	<u>_</u>					22. 33.	2. 3.	2. 3.
JGACR JGATR JGLUD	• 3	.3	• 2		• 3	• 3	• 3	•3	.3	• 2	89.	- Ò.	5.
, 3G40R 3G4TR 36408 344UN 346MI 346MI 346MI 31RIS	• • •		•2	. –		•1			• 3	22.52 0 55 0 5 0 5	م جسیب ان آن	4 · ·	3. 0.
A SHIAL TO SHIAL	.3	1	.2	.3	3	• 5	•3	•3			-10 Č	9.	

PSEUDOTSUGA MENZIESII/BERBERIS AQUIFOLIUM/UISPONJM DOMMUNITY TYPE

.

							_						
PLOTS	5	13	1-	47	. ۵۵	 90	_ >7	69	້ຕາງເ	CONS	060 m	IMPU	

	7 4 115		•••			2					2.6		1.	5.
76	3. ANE 3LAPO				• 3	2 		15			2.G 5.4	$\frac{11}{32}$.	3.	13.
78	JLIAP JLIAP	1				3	•ź				:?	33.	3.	5.
79	3L100 2	ڌ ه	• 3	• 2			•2	3	• 3	• 3		78.	7.	7.
<u> </u>	3LOMA 2										<u>نامنی</u> 0 • 0	<u> </u>	_مــــــــــــــــــــــــــــــــــــ	
81 62 83	3LOMI 3LONE 2						• 1				.1	11.	1.	1.
83	3LULA						•1 5 •3	_	_	-	5.0	11. 67.	1.	1:
84	3MAMA	1	• 3				• 3	.3	• 3	• 3	. • *	67.	Þ.	5.
85 86	3MIHUL 3NGUN 2					.				-	ú . ú J . D	Ç.	ů. 	Ç. Q.
87	3NGUN 2 3ngnti					.3					.3	11	i.	2.
68	3NEFA	<u></u>				••					2	11. -22	1.	2.
89	30SCH 3PENST	1	1	•2	.1		• 3	• 3	• 1	د .	• 4	93.	8.	6.
9999345	3PENST								.3	. 3	1.0 .5 1.9	33.	ÿ. 3.	ů. 4.
33	3PHAD 3POGL 4						- 1 -		• •	• 3	2.0			- 31
43	3POHE 2										3.0 	22. 33.	ŭ.	Č.
94	3POLO Z	•1					•1				•1	ZZ.	2.	1.
95	3POHU	5	•1	• 2							۾ م ڌ	- ఫర్తం		
_ <u>96</u> 97	3PGHUI 3PGHUN					3		.3			1.7	11. 22. 22. 67.		<u>1e</u>
36	3PSPH					5	.3	-		.3	د ه	22.	ž.	3.
- 66	39140	.3		•2	··• 3		• • • 2 -	.3		• 3 • 3	• 3	67.	в.	
- 99 10C	3PTAN		-	_		-				•1	• 🛓	11.	֥	3.
161	3PYAP	2	•2	•2		•3					2		6. C.	0.
121 102 103	3PYPI		.3	.3	.3	د.		÷		1	0.0	67.	6.	6.
1 11 1	35A00 35EDUM							-	_	_	_ <u>a</u> .ā_			ŭ
105	35EHA 2 35ENEL										3.3	÷.	ų.	ہ یٰ
106	<u>JSENEL</u>				.3.							11.	ų.	ž.
167	35HRA				• 3 · ·						J.0	Ťċ.	1.	5.
109	JSYRE					3	.3		1	:	1.3		4.	8.
109	3TRLA Z	5.	•2			32	.3	1		. 3	.7	ō7.	ó.	- 7 +
111	STROV						,					ί. 11.	ų.	્રે •
117	<u>_3_INKN</u>		7		.3	7		. 3	1	1	• 0	70.	<u>1</u>	- <u>2</u>
116	3VISE		.3			.3	•23	• 3	•	•1	• 2	20.	5.	- 44
113 114 115 115 116	3VA né 3VISE 3VIAM 3XETE		•3	• 3	• 3	•3 •3 15	3	- 4	•1	.1	3.4	89.	ð.	16.
115	3XETE									•1	:3	11.	֥	1.
	13ROMU 19RVU		3	• • 3	1	•3	2	2	3	. 3	1.4	89.		1.
119	10ANT H	-	•	••	-		-	-	-	••		÷.		- <u>-</u>
119	4 T. C.	.3					- 1-		2		• 8	_ 33		
121	1FESTU			•		1	,	,	,		1.0	11.	1 ·	3.
LZZ.	1FELA	3	1	•3	• 3		3	3 • 2	• 3	12	3.0	0/.	0. 5.	14.
124	1FERU	3	*	-	• •		.3				1.7	27:	4 •	ó.
ĪŽŚ	IFESU 2	-						.3			• 3	ه ټه	1.	2.
	1FESTU 1FECA 1FECC 1FECU 1FECU 1FECU 1FESU 1KDCR 1MESU		-	~	7		7	.3		. 3		<u>.</u>		
127	IMESU		• 3	• 2	.3	23	3	• •	ź	• •	:7	07. 		
29			1		3		.2	.3	• 3	• 3	• *	67.	۰.	ģ.
129 136 131	ITRCA ZCAREX ZLUCA-2-			.3		-	•2 •2 •3			11	***		3.	12.
131	2. UCA - 2-		3			• 3	• 3		• 3		· • 3	***	* •	**

	PLOTS	3	32	47	71	73	Cuv2	CONS)CUR	Імру
_ 1 5	ABAN ABPR ABGR ACMA						a.g	23. 23. 23. 23. 23. 23. 23. 23. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24	1	1.29
- 25	ASPR			1	.1		1	444	12:	ź.
ئے ہے۔	ACMA.		2		•12	1	<u></u>	مذيخ		
22	AR HE CACH			. 1	1 35 35	. 1	1 0 1 0 34 0	2 J.	1. 3. 5.	3.
. 7 5	LIDE	b <u>u</u>	15	+1 +6	35	20	34.0	100.	5.	58.
82	PILA						2.0			6 a
16 5	PSNE	25	63	60	50	63	52.0	100	- 5 •	72
567896112	PRUNU						52.0 52.0	ų.	<u>.</u> .	Q.
13 5	ACCHE RACOHE LPINNA PPSRUASRE ACCHE PPSRUASRE ACCHE PPSRUASRE ACCHE PSRUASRE ACCHE PSRUASRE ACCHE PSRUASRE ACCHE SCOLE S			•1	•1	• •	.1	61.	3.	
13 55 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TSHE				•122	0 1	2.0	NNN ONO	1.	ģ.
15 4				•1 -	2	•1	ີ ນີ້ ນີ້	0 V -	3.	á.
17 4	AHAL				. 1	-	1	Zũ.	1.	. j. j. j.
18 4	ARCD 3				•1		1.3	23.	1.	1.4
20.	<u>2680</u>			.1	<u> </u>	-1		_مَبْدَة		. ج
123 1567 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CINERATERY VERSOLS LIP RACOAL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		4	.1	7	•2	45823313	. Dul -		
23 4	PHLE	G • 1	+				2.4		2. v.	. ų.
24 4	RHPU	• Ī				•2	• 3	43.	ž	ç.
58.2	ZHDI					• • • •	- <u>6</u> .3	_ 3 .	3NG 31	
27 4	RICR	•1	-		•	-	- <u>i</u>	23.	1.	1.
26 6	2067	•			<u> </u>				#. e	2252525
30 4	JAPA			•1	· • 1 • • 3 ·		•1		•••••	2.
-314	VANE -						• 3	40. 20. 50. 50. 10. 10.	1	2.
33 4	BENE		13	•2	- 3	•••••	• • • •	100.	5.	22.
34 4	CHHE	- 3	13 •1 3	•2 •1 10	• 3	·	4 . c 3	ją].		ب. 18.
35 4	GASH	• 3	3	10	• >	4	3.1	13	;:	10.
378.94.44.4	LOCI							<u>.</u>	÷.	
38 4							- U . i.	23.		2
40 4	AUNI			_	-	• 1	• 3 • 1 • 3	2		
41 4	RUUR	• 3		• 3	.3	.3	• 3	0J. 4J.	֥	- Ž
43 4	a H MO				• •	• -	- C - G	ب.	** 	3.
<u></u>	ALHI			_ ,		,	0.000000000000000000000000000000000000			L. S. G. M.
45 3	ADAI		11	.3	. 3	•2	2.6	3 û • 4 j •	2:	15.
- 47 -3	AL VI				-		อี - จุ้			15.
48 3	ANUE		•2			.3	ວ ໃ ບໍ່	ه ټه په د د	y.	
-50-3	ARNA 3		•3					63.	3.	
23 3	ASBE					. 3	1.+ 	23.	ů • 1 -	ه يا
53 3	BORAL						Ú.Ú 1	3.		<u> </u>
22 3	SACD 3	•1					• 1 • • • •	20 20 21 60 21	· · · · · · · · · · · · · · · · · · ·	1-
56 3	CAPR 3	.2			_		-2	2	1.	2.
57 3	CASC 2	•2	3		-3		1.8	<u>ģ</u> ų.	3.	10.
39 3	COHE	2	.3		• 4		- 1.8 - 1 - 2	23.	12:	÷:
<u>د فق</u>	<u> </u>							Z J 🔺		2.
62 3	CUMA 3	.1	.3					4	2	3:
33333333334343434383333333333333333333	CY GR			· · · · · · ·	•	· ·		ą.	ş.	
65 T	OINO OINPO						0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4. 5. 3.	5:	
66-3	EPHI	_	_		-		ũ. i	11		ĝ.
67 3	FRVE	.3	.3		.3	•3	.3	d	**	5.
69 3	GAOR			•1				- 5	ż.	<u> </u>
70 3	GATR		.3	.3	1	د .	• 3	130.	1	2.
69833333 712333 77363 75	AUN		• •	• •	· • 🕹	• •		- 24 - 24 - 24 - 24 - 24 - 24 - 24 - 24	2.	2.
73 3	HEHI	3			- : 1		1.5	<u>_</u>	2.	. ģ.
74 3	41.6P	-3	- 1 -	.3			1.0	1 4 4 A	5.	10.

LIBUGEDRUS DEGURRENSZCH IMAPHILA UMBELLATA SOMMUNITY TYPE

76	3LANE		Z				2.0	23.	1.	
77	JLANE JLAPO JLIAP JLIBO 2		-				6.3	- 4 •		
78	3LIAP		••		-		÷ Q. 0	. J.		
79	3L180 2	7		1	• 2		2.7	64.	3.	1
<u>_</u>	<u>JLOMA 2</u> JLUMI	_						<u>y</u>		_
82	JLONE 2				•2			20.	1.	
81 82 83	3LULA				- 4 -		- 4. 3	20.	1.	
84	3MA MA						0.00 0.00 0.00 0.00	J.	4.	
85	3MIMU_						<u> </u>	ů. 0.	ů.	
86 87	3NGUN 2 3NONTI						6.3		1.	
őź							0.0	منذ	<u> </u>	
69	30SCH						0.0	ų.	Ģ.	1
- 9ā	3PENSI						0.0 0.0	3.	- 1 •	
50 51 93 93	30SCH 3PENSI 3PHAO 3PGGL 4 3PGGL 2 3PGCL0 2	•2				. ,		4 Ú •		
24	3PGGL 4 3POHÉ 2 3PGLO Z	• <				.2	• 2	40. 20. 69.	1.	
32	30010 2	. 1	. 2				- 1	2J.	3.	
95	arunu	•1	• 22			•••	1.2	43.	2.	
96	320401				3_	_ تح م			<u> </u>	
97	3PGHUN.					• 4	0.0	20.	1.	
- 59 100	3PSPH 3PTAQ			1 -		.2	0.0	40.	ž:	
106	707 41			+		• •	L.3			
101	3PY AP		• 2				. 2	2ú . 83 .	1.	
-10Ž	3PYPI	• 3	.23	.3		3. د.	· • 3	83.	ž.	
101 102 103 104	3PY4P 3PYPI 3S400 3S2004		•3		,	د.	1.3 .2 .3 .3	<u> </u>	ç.	
	35EHA 2	•					7		- 2.	
166	3SENEC	.ż			••		. 2	20.	1.	
- 107-	35MRA	27					_ ų • ų	ů. 0.	2.10	
108	3SMST						i•i]	_ 4.•		
109_	352 HA 2 352 HA 2 352 NEC 35 NEC 35 NST 35 YRE 31 ROV 31 ROV	15 -		3	· 1	2	3.5 4.4	23	- <u>.</u>	1
111	STROP C		• •	3	۲	-	3.5	- 3.	ć.	
105 106 107 108 109 115 111 112		_					ũ a ũ	يە أىر		
	JVAHE JVISE JVISE JVIAM JXETE					,	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	40.	- i •	
114	<u>antze</u>		.3			• 3	• 3	40.	_ <u><u> </u> </u>	-
112"	ST FTF								- <u>i</u> .	
117	132084							3.		
- 118-	13R VU		z		.3		.9		3.	
115 114 115 116 117 118 119 129	3XÊTE 13RONU 13RVU 104NTH 16_GL						្រុមអ្	3.	¥ •	
121	1FESTU				_			<u>_</u>	<u> </u>	
122	IFESTU IFECA IFECO IFERU IFESU 2						ŭ . j	ů.		
123	IFEÖC	- 2 -	3	• 3	• 3	· · 1	8	100. 20. 20.	5.	
124	1FERU		:3				• ‡	3	1.	
122345674	IFESU 2 IKDCR		ి				-1 -3 -0-0	2 	1.	
127	1 ME SU						5.3	3.		
124	IMESU IMEHA	.3	1				. 2	ـــدَمَ	ـــد	
129 130 131	ITRCA 2CAREX 2LUCA-2-		.3		•	,	.2	24.	2.1	
130	ZUAREX	-			•2	•2	•4	2	2.	

PLOTS 3 32 47 71 73 4042 CONS DOUR THEO

PLU	S I S	6	19	20	21	22	23	25	26	31	33	37	39	43	44	COVS	JONS	OCUR	IH
5434N 548PR 546GR		•1		1						• 1 1 3	0		6		21.	1.0	17. 17.	2.1.25.	1
54RME 5CACH 5LIDE 5PILA			53	1	12		- 1	12	1	5		2	•2	10	 .	1.0 0.0 3.0	64. 1 g	9.	:
59190 595 ME 597 UNJ 501164	,	85	55 2	•0	75	93	85	70	85 •1	75	85	75	88	50	70	0.0 73.3 1.1	100.	0. 14. 2.	đ
STAAR STSHE 4ACCI 4ACGL 4ACGL 4ARCD		25	.2	35	30 30	Ŷ	.3 12 8 .3	ł	33	16	35	22	•	35 7	4 46	9.4 18.5 3.4	79.	1. 11. 12. 3.	24
4ANAL 4ARCD 4CEIN 4CEIN	3	•1	•		7	2		, 1	.3	7			7.0			. 5	21. 21. 0. 0.	3. G.	
400000 4H301 4PHLE	,	6 6	1		1		52	•2	.3	.3	.3		.313		15		19. 36.	11. 5. 0.	1
IN IN IN <			_	95		.3		. 1	•2		•2	3	• • •			49.0	29. 14. 0.	2.	ź
470GY 470PA 474PA 474HE 49EAQ		<u> </u>	<u>3</u> 1		3	1	<u>ئ.</u>	<u>i</u>		• 3	.2	. 3	.3			1.0 1.6 	_46. 36. 7.	12. 6. 5.	
43EAQ 43ENE 43HME 43HME		7.2	25	ä	• 3 • 2	•3 •3 •3	.3 18	. 3	12	8	•5 •2	.2	70	45	35	30.7	21.	1. 3. 13. 8. 7.	5
4CHME 4CHUM 4CASH 4LOCI 4LOCI 4PANY			.3	15	-			- 2 +	-25	ă	.2	5	3	12	•1	29.1 29.1 3.0		2.	
420NI 42002 437M0 487M0		-1313	• 3 • 3		. 3	• • •		• c • 3	•1 •2	• 3	.2 .3 1	•1	.3	.3 .3 .3	.3	J. 0 .3 1.1 2.1	29. 0. 79. 54.	4. 11. 9. 7.	1
JACHI JACTR JADOI		.ż .3	.3		.3	• 3	17	.3		25 8	1			.3	2	0 5.4 2.1	<u>. й.</u> 54. 36.	ű. 9. 5.	1
JANDE JAFAN	3	• ĉ • ĵ	• 2		•2 •3	د. ۱	•1 •3	.3	•2	.3	.3 .3		.3	• 3 • 3 • 3	•1	.2	7. 71. 21. 57. 4.	1. 19. 3. 8. 9.	
	3		·													0.0		Q.	
337CO 3CALOL 3CAPR 3CASC 3CIKSI 3COHE 3COHE	3 2						• 3	• 3	.3	. 2	• 3			.3	•2	- 0.0 0.0 0.0 0.0	58.	- 0. 7. 0.	

we we common construction of the common construction of the common construction of the common com

TSUGA HETEROPHYLLA CLIMAR OR COCLIMAR SITES

	PLU		6	19	2	21	22	23	25	26	31	33	37	37	43	44 14 I				INPO	
61 62 63	JCORA JCOMA JCOMA JCYGR JDIHO	5ء	.3						•2			•1			•2		.2 .2 .0		3. g		• • •
623 664 665 667	301H0 301SP	3	• 2											.3		.3	.3	14. 7.	. 1.	. 1	•
67 68	JEPHI JFRVE JGAAP		•2				• 4	.3			. 3					.3		36.	5.		•
69012345	301 SP 321 SP 322 MI 322 AP 324 AP		2			.2	23		.1	•1	:3	.3	•1	• 3		.3	0.0	21.			•
- 73 74	3HEHI 3HIAL 3IRIS		.3			. 3	.3	1	. 3	. 3	:3	. 3		•1		1	0.0 .5	54. 14.	2		•
76											• -				1			7.0	. 1.	. 3	•
76 77 78 79	3L100	2	1		.3		.3	2		.3	25	.3		. 3	1	3	0		16	15	• •
81 62 63	3L4 F0 3L1 F0 3L1 F0 3L0 MA 3L0 MA 3L0 ME 3L0 LA 3L0 LA	2															0.0 0.0	C.	. Q.	: 0	•
84 85 86	38788		.3					.3									0.0 0.0 .3	3:		. 0	•
<u>68</u> 89	I 305CH						. 3			\ <u></u>	12			• 2		•2	- 4.0 3.2 9.0	29.	4	. 10 . Ç	•
901 912 933 934 945 945 945	39205 39240 39440 39060 39060 39000 39000 39000																0.ù 0.û 0.0	0. û	. 0.	: :	•
734 95	3PCLO 3PCLO		.2				• 1		. 2	-1 2		• 23	• 2 • 2	• 2	.3		1.3	36.	. 7.	. 8	•
95 97 96	3PCHL	/▲ M	····													7	7.0	7.	. 0	: 7	•
96 59 160 101	10 V A 6		•2	.3		G	.3	•1	7	•2 •1	.3	.3	•5	• 3		•	.1 .2 .2	7.	. 1.	$\frac{1}{2}$	•
101 102 103 	3P YPI 35AD0 351D1 351W4	5	• 2 • 3	.3		. 3		.2		•1	• 2	.2						Q.		Î	•
105	352 HA 352 NE	2	•1														0.0 1	777	. 1	. 1	•
106 107 108 109	35HS1 35YR	[•12						,	•1	2		. 7	. 1	.3		.2	14	. 2	. 1	•
$ \begin{array}{r} 110 \\ 111 \\ -112 \\ 113 \\ 113 \end{array} $	31 KU 31 KU 30 KM	4 2 / /	د .			• 3	.3	1	• 3	.3	.2	.1	• 3	.1			2	Ω.	š	. 2	•
113 114 115	3V158 3V158	5		• 3		. 3	•	.3	.3	. 3	.3	• 3	. 3	•2 3 •2	:3	.3	1.2	36 86 7	. 12	. 10	
116		F	7		2			.3	• 2	• 2	• 1		1			1	0.0	29.	<u></u>	. 0	•
	137.00 137.00 137.00 134.00	Ĭn 	•2	·				• • •	1		• •						0.0		. 0	: 1	•
121	1826	5	٠ż						.3								0.0	î î.	. (. 0	
12	17130 17130 141550	ן גיי						•3			. 2					.3	0.0 0.0	ເ ລ.	3	: 2	•
127	1810	2							3		. 3				3			14	2	: 1	•
129	14Ln/ 17204 20488 2.004	L.							• 3								.3 0.0 0.0	ŝ.	. Ç		•

APPENDIX 7

STAND TABLES

Stand tables produced by program Stantab (Appendix9) are presented for each plot and are summarized by community. The species alpha codes are given in Appendix 1 and follow Garrison et al. (1976). Species are subdivided by CODES for live (L), dead (D), mineral soil rooted (M), and wood rooted (W).

Individual Plot Tables

The headings of the individual plot stand tables contain general plot information and some items relevant mainly to data set structure. Some of the plot data may need explanation. The AREA ID codes, given in Hawk et al. (1979), are prefixed by the letter 0 for Oregon the next three letters are abbreviations defined as follows:

DET Detroit Ranger District MKU upper McKenzie River drainage, t.e. above Belknap Springs MK remainder of McKenzie District HJA U.J. Andrews Exp. Ecol. Res. BR remainder of Blue River District OAK Oakridge District RIG Rigdon District Plot type is either full standard (FS) or half standard (HS)

(Hawk et al. 1979). They are 1000 m^2 and 500 m^2 respectively, and size is the only difference between them.

Landform is a 6 character code depicting geomorphic, hydrologic, and topographic characteristics of the plot (Hawk et al. 1979):

<u>Character 1</u>: Primary ridge position

T = topslope

M = midslope

B = bottom slope

Character 2: geomorphic unit (general lie of the land)

R = ridgetop 0-4 degrees (0-7%) slope

C = creep slope, 4-45 degree (7-100%) slope, usually the edge of the ridge or a bench.

F = fall face, greater than or equal to 45 deg (100%) slope. Includes cliffs, scarps and very steep slopes.

T = upper transport slope, usually 25-35 deg (47-70%) but up to $\frac{1}{45}$ deg (100%) slope. Includes areas of active transport of surface materials (slides, slumps or creep). It is located on the upper third of the transport slope.

M = middle transport slope. Same as T but on middle third of transport slope.

B = bottom transport slope. Same as T but on lower third of transport slope.

D = colluvial top slope, 5 - 25 deg (9-47%) slope. Colluvial or depositional area, including surfaces of inclined slump benches and terrain of gentle relief. It occurs on the upper one third of the colluvial slope.

E = colluvial midslope. Same as D but on middle third of

colluvial slope.

G = colluvial bottom slope. Same as D but on bottom third of colluvial slope.

A = alluvial toeslope, includes areas of gentle relief where alluvial deposition of sediments is or has recently occured to form terraces or plains.

S = stream channels, including the bed and walls of present streams, rivers or annually wet oxbows of nearby streams.

Character 3: primary hydrologic feature of the plot

D = "dry", no visible annual or perennial streams in or near the plot. (Near = 3 plot radii from plot center. Use 1/2 ave dimension of rectangular plot.)

A = annual stream channels in or near plot. Water need not be present during dry season.

P = perennial stream present. Water must be present all year long.

S = seeps common, indicated by local groups of riparian plants.

W = standing water present in or near plot. This may be a lake, pond, marsh, bog or water within 25 cm of surface in soil pit.

<u>Character 4</u>: secondary hydrologic feature code, includes features described under character 3 above which occur as inclusions of greater than 20%.

<u>Character 5</u>: describes topography in the horizontal (across slope) plane.

- C = extreme concavity
- B = slight concavity
- S = smooth terrain
- R = rolling terrain with both concavity and convexity
- V = slight convexity
- W = extreme convexity

<u>Character 6</u>: describes topography in the vertical (up - down slope) plane with the same character 5 codes.

The HABITAT codes are the plant community computer codes in table 4:

PMHDGR	<u>Pseudotsuga/Holodiscus</u> /grass community
PMHGA	Aspidotis phase
PMHGC	<u>Collomia</u> phase
PMHDAC	Pseudotsuga/Holodiscus-Acer
PMBADI	Pseudotsuga/Berberis/Disporum
LDWM	Libocedrus/Whipplea
LDCU	Libocedrus/Chimaphila

Since all vegetation plots were uncorrected for slope the slope correction factor shown was calculated from the slope (5) as

Slope c.f. = 1.0 / (cos (arctan (slope/100.0))) The plot size conversion factor is the number of plots needed to equal one hsctare of area. The product of these (both conversion factors combined) was multiplied by the tree tallies and gave numbers per hectare.

Several headings on the individual plot stand tables may also need explanation:

1. Under reproduction: REPRO LT 137CM

per hectare is labeled

a.	The size of the area sampled	SAMP AREA
	in square meters is labeled	(M2)
b.	The number of trees actually	
	tallied is labeled	TALY
c.	Regeneration density in number	NUM

2. The actual measured diameters (cm) of trees greater than 120 cm DBH is given as well as the number of these trees per hectare (NUM /RA)

3. The total number of stems greater than 10 cm DBH is given on a per hectare basis (TOTAL STEMS GT10CM /HA)

Summary Tables Average values and sample standard errors are provided for each community and for the Tsuga-climax or coclimax plots. Sample standard errors (standard error of the mean) are calculated as

$$SE = \sqrt{\left(\frac{SXX - \left(\frac{SX \cdot SX}{n}\right)}{n}\right)/(n - 1)}$$

where $SXX = \sum_{i=1}^{n} (X^{2}_{i})$ and SX = $\sum_{i=1}^{n} X_i$

/HA

DECK ID TP56 1 STUDY ID DRYD PLOT 15 AREA IO ORIG ESTABLISHMENT DATE 770720 PLOT TYPE FS PLOT AREA (SQ H) 1000.0 ELEVATION (H) 526 SLOPE (%) 72. ASPECT 225 LANDFORM TIDDSS HABITAT PMHGA SLOPE CORRECTION FACTOR 1.23223 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 12.3223 SPP CODES REPRO LT 137CH *----NUM STEMS/HA BY 10CM DBH SIZE CLASSES-----* *--TREES GT 120CM DBH--* TOTAL TOTAL Alpha L M SAMP CODE 1 + D W AREA NUM 0.1-T== MEASURED_DIANS== Y ZHA_GIIOCH_AREA 20 30 40 50 60 70 80 90 100 110 120 (H2) TALY /HA 10 /HA H2/HA PS ME CADE LM 50 50 62 37 0 37 25 12 0 20 493 173 25 74 A 0 12 0 0 0 0 8 Ð 0 289 22 26 0 12 Ō 1Ž 0 12 12 Ō Ō 12 0 Û Ω. ũ Ũ Û 111 ARME LM 5 Ō ۵ Ó Ō 12 0 0 ũ ā ā a Ő ۵ C Ó ā Õ ü 25 2 PILA ĒĤ 246 ŏ č 50 1 Ō 0 n Õ n ۵ 0 0 0 ā Ē ñ ā ۵ 0 LIVE TOTALS 5 Ľ 3 739 185 99 74 86 12 25 12 25 0 0 0 12 Δ. Δ. 345 51 PSME D M D M 50 0 0 12 Ð 0 0 0 0 0 0 0 12 0 0 n n 0 12 Ŭ Đ 0 11 5õ ã Ō Ğ ŏ ۵ 3 â. 1 where the second s DECK ID TP56 1 STUDY IO DRYD PLOT 27 AREA ID OBR ESTABLISHMENT OATE 770801 PLOT TYPE HS PLOT AREA (SQ M) 500.0 ELEVATION (M) 610 SLOPE (%) 76. ASPECT 225 LANDFORM TTDDCB HABITAT PNHGA SLOPE CORRECTION FACTOR 1.25603 PLOT SIZE CONVERSION FACTOR 20.00000 BOTH CONV. FACTORS CONBINED = 25.1205

SPP Alpha	CO	DES	REPRO SAMP	LT	137CH	*	- NUM	STEMS	/HA	8 Y 1	L O C M	08H	SIZE	CL/	SSES	5	*	+ TRE	ES GT	120	CM DE	H+	TOTAL STEMS	TOTAL
ALPHA Code	Ŧ	+ W	AREA (M2)	TALY	NUM ZHA	0.1- 10	20	30	40	50	60	70	80	90	100	110		* MEA	SURED	DIA	MS4	7HA	GT10CM /HA	
PS ME QUGA	L	M M	50 50	2	502 0	25 0	1 26 1 25	25 0	0 0	0	0 0	50	50	25 0	25 0	0	0	0	0	0	00	0	301 126	75 2
LIVE	тот	ALS	50	2	502	25	251	25	0	0	0	50	50	25	25	0	0	0	0	0	0 0	0	427	78
PS ME QUGA	D	M	50 50	0 0	G O	50 0	0 75	0 0	0	0 0	0	0 0	0	0 0	0 0	0	0	0	0 0	0	0 0	0	0 75	0 1

SPP Alpha Code	 		REPRO SAMP AREA (M2)		L37CM NUM /HA	+ 10	- NUM 20	STEMS	7HA 40	50	60		SIZE 80	***		110			MEAS	IREO			1	NUN	TOTAL STENS GI10CM /HA	TOTAL BASAL Area M2/HA
PS ME CA DE	L	M	50 50	23	466 700	47	12	35	23	23	0 1 2	0	23	12 0	12	12	8		0 I)	0	8	0	0 0	152 35	44 5
ĂBĞŔ	Ę		50	ō	Ō	Ŏ	12	Ō	Ō	Ō	Ō	0	0	, Q	0	0	Q		Õ)	<u>0</u>	Ö	Õ	Q	12	0
LIVE	τοτ	ALS	5 Ú	5	1166	47	35	35	23	35	12	0	23	12	12	12	0		0	0	0	0	0	0	198	49
PSHE	0	i Ĥ [™]	50	0	Û	23	0	0	0	0	0	0	0	0	0	0	0	ger 414, a seder 14 .	0	3	0	0	O	0	0	0
Deck 1	1 D	TP 56	. 1	STUDI	IO DR	Y D PI	LOT	65	ARE	A 10	ORI	G	ESTA	BLIS	HNEN	AT DA	TE 7	906	20							
								.					C 1 /	0.05	171	43.	,	SOF	T							
LOT	TYP	E FS	i PL	OT AF	REA (SQ	M) 10/	00.0	ELE	VATI	ON L	M)	712	SLO	UFE			-	ISPEL	CT 20	14						
					EA (SQ) TAT P		00.0	ELE	VATI	ON (M)	712	şĻ	UFE			-	SPEI	21 ZI	14						
ANDF	ORM	MDD	VVD	HAB	TAT P	MHGA			·												SO	COMBI	NED	an a	10.885	3
ANDF	ORM	MDD	VVD	HAB	TAT P	MHGA															SO	COMBI	NED		10.885	3
ANDF	ORM	MDD RREC DES	IDVV TION	HAB) Facto	TAT P	4HGA 8853 +	PLOT -NUM	SIZE STEMS	CON /HA	VERS BY 1	ION Ocm	FACT	OR 1 SIZE	0.00 CLA	000 SSE S	80 5	гн с +	ONV + +	FAI	TOR GT	1	20 CM	D8H	+ NUM		TOTAL BASAL Area
ANDF SLOPE	ORM	MDD RREC DES	REPRO SAMP AREA	HAB) Facto	TAT P 06 1.0 .37CM	4HGA 8853	PLOT -NUM	SIZE	CON /HA	VERS BY 1	ION Ocm	FACT	OR 1 SIZE	0.00 CLA	000 SSE S	80 5	гн с +	ONV + +	FAI	TOR GT	1	20 CM	D8H	+ NUM	TDTAL Stens	TOTAL BASAL
ANDFO SLOPE SPP ALPHA SODE	ORM CO CO L L	MDD RREC DES M H W	REPRO SAMP AREA (M2) 50	HABI Facto	TAT P 1.0 37CM NUM 2HA 0	4HGA 8853 * 0.1- 10 512	PLOT -NUM 20 468	S I Z E S T E M S 3 0 1 3 1	CON /HA 40 22	VERS BY 1	ION Ocm	FACT	OR 1 SIZE	0.00 CLA	000 SSE S	80 5	rh c + 120. 0	CONV + +	. FAI TREE: MEASI	TOR GT	1	20 CM	D8H -+	+ NUM	TDTAL STENS GT10CN ZHA 642	TOTAL BASAL AREA M22HA 36
ANDFO SLOPE SPP ALPHA CODE SME CADE	ORM CO CO L D	MDD RREC DES M H W	REPRO SAMP AREA (M2) 50 50	HAB FACTO LT : TALY.	TAT P 6 1.0 .37CM NUM	4HGA 8853 * 10 512 305 0	PLOT - NUM 20 468 44	SIZE STEMS 30 131 11 22	CON /HA 40 22 0	VERS BY 1	ION 0CM 60 0	FACT DBH 0 0	OR 1 SIZE .80 0 0	0.00 CLA 90 11 0	000 SSE S	80 5	TH C + 120. 0 0	CONV + +	FAI	TOR GT	1	20 CM	D8H +	+ NUM	TDTAL STEMS GT10CM /HA 642 54 22	TOTAL BASAL AREA M2ZHA 36 3
LANDFO SLOPE	ORM CO CO L - - - - - - - - - - - - - - - - - -	MDD RREC DES H H M M M	REPRO SAMP AREA (H2) 50 50 50	HAB) FACT(LT : TALY 0 0 0	TAT P 37CM NUM 2HA 0 0 0 0 0	4HGA 8853 * 0.1- 10 512 305 0 33	PLOT -NUM 20 468 44 0 11	SIZE STEMS 30 131 11 22 0	CON /HA 40 22 0 0	VERS BY 1	ION 0CM 60 0 0 0 0	FACT DBH 70 0 0 0	OR 1 SIZE 80 0	0.00 CLA 90 11 0 11	000 SSE S	80 5 110 11 0 0	(H) (C) + 120 0 11	×	FAI	GTOR GT JRED	1	20 CM I A MS - 0	D8H +	+ NUM	TDTAL Stens Gt10CH ZHA 642 54 22 33	TOTAL BASAL AREA M2/HA 36 3 1 18
ANDFO	ORM CO CO L L L L L L L L L L	MDD RREC DES H H M M M	REPRO SAMP AREA (M2) 50 50	HAB FACTO LT : TALY.	TAT P 1.0 37CM NUM 2HA 0	4HGA 8853 * 10 512 305 0	PLOT - NUM 20 468 44	SIZE STEMS 30 131 11 22	CON /HA 40 22 0	VERS BY 1	ION 0CM 60 0	FACT DBH 0 0	OR 1 SIZE .80 0 0	0.00 CLA 90 11 0	000 SSE S	80 5	TH C + 120. 0 0	×	FAC	GTOR GT JRED	1	20 CM I A MS - 0	D8H +	+ NUM	TDTAL STEMS GT10CM /HA 642 54 22	TOTAL BASAL AREA M2ZHA 36 3

SLOPE CORRECTION FACTOR 1.16619 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 11.6619

LANDFORH TIDDSS HABITAT PMHGA

PLOT TYPE FS PLOT AREA (SQ N) 1000.0 ELEVATION (N) 899 SLOPE (%) 50. ASPECT 185

DECK ID TP56 1 STUDY ID DRYD PLOT 35 AREA ID OBR ESTABLISHMENT DATE 770830

	DTSUGA Edotiș		II/HOLOD PHASE	ISCUS D	ISCOLOR	GRASS	CONNU	NITY	TYPE	· · ·								
	-				<u>*</u>	<u>*</u> AVE	RAGE VA	LUES	FOR	L_PLOT	s <u>. •</u> •		<u></u>		<u>, </u>			
SP P Al Pha	CODES L M + +	REPRO	+				EES/HA					ES		+	TREES GT 120CM	TOTAL TREES GT10CH	TOTAL BASAL AREA	NUMBR OF
CODE	DW	/HA	10	20	30	40	50	60	70	80	90	100	110	120	ZHA	ZHA	H27HA	OCCUR
PSME LIDEI ABGR ARME PILA PIPO QUGA		365.4 174.9 0.0 61.6 0.0 0.0	189.0 79.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	166.7 23.0 2.9 0.0 0.0 2.7 31.4	56.9 0.0 8.5 0.0 0.0 0.0	29.8 J.0 3.1 J.J 0.0 J.J	5.8. 6.0 0.0 0.0 1.0 0.0	6 • 2 2 • 9 0 • 0 0 • 0 0 • 0 0 • 0	12 - E 3 - 1 0 - 0 0 - 0 3 - 0 0 - 0 0 - 0	21.5 3.1 0.0 0.0 0.0 0.0		9.2 0.0 0.0 0.0 0.0 0.0 0.0	5.6 0.0 0.0 0.0 0.0 0.0	3 • 1 3 • 0 0 • 0 2 • 7 0 • 0		326.2 50.1 2.9 11.6 0.0 8.2 31.4	44.2 8.5 .1 0.0 4.5	
LIVE	TOTALS	602.0	276.4	226.8.	. 74.3	32.8	11.8 .	9.1	15.6	24.6	14.6	9.2	5.6	5.8	0.0	430.4	58.6	· · · · · · · · · · · · ·
PSME LIDE PILA PIPO QUGA		0.0 0.0 0.0 0.0 0.0	64.7 8.2 0.0 2.7 0.0	2.7 J.0 0.0 0.0 18.8	0.0 0.0 0.0 0.0 0.0	0.0 0.J 3.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 3.0 0.0	0.0 0.0 0.3 0.3	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	3.1 0.0 0.0 0.0 3.0	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0		5.8 0.0 3.1 0.0 18.8	3.0 .0 .3 .0 .4	4 1 1 1

PSEUDOTSUGA MENZTESTTZHO

206

PSEUDOTSUGA MENZIESII/HOLODISCUS DISCOLOR/GRASS COMMUNITY TYPE

ASPIDOTIS DENSA PHASE

					. ±	t STAN	DARD É	RRORS	FOR .	4 PLO	TS. *	±			1.1.181 A	<u>.</u> ,		ana ang sa
SPP	CODES	REPRO	*		-NUMBER	OF TRE	ESTHA	8Y 10	CM 08	H SIZE	CLASS	ES		*	TREES GT 120CM	TOTAL TREES GT10CM	TOTAL BASAL Area	NUMBR OF
ALPHA CODE	+ + 0 W	NUM	10	20	30	40	50	60	76	80	90	100	110	120	7HA	ZHĂ	H2/HA	OCCUR
0002							с 0	6 3	12.E	.10.7	5.1	6.0	3.3	0.0			112	
PSME	LM	122.1	112.3	163.1	24.7 5.8	. 15.7	5.8	2.9	3.1	3.1	0.0	0.0	0.0	3.1	0.0	23.2	6.1	5
CĂDE	LM	174.9	75.2	10.3	0.0	0.0	0.0	δ. σ	ŭ.ŭ	0 .0	õ.õ	0.0	0.0	0.0	0.0	2.9	•1	12
ABGR ARME	- L M	0.0	0.0 0.3	6.9	5.3	3.1	6.8	ō. ŏ	ð.O	U. Û	Q.Q	0.0	ğ.ğ	0.0	g • Q	6.7	0.0	1
	ΓM	61.6	č. j	č.o	ð . Ö	0.0	0.0	0.0	Q.Q	Q.Q	<u>ğ.</u>	0.0	0.0	0.0	0.0	8.2	4.5	ī
PILA PIPO	Ľм	0.0	8.2	2.7	0.0	0.0	0.0	0.0	9.g	3.0	2.7	0.0	0.0	· 616	ă.ŏ	31.4	6	· ī
QUGĂ	ĩ N	Ŏ.Ŏ	0.0	31.4	0.0	ũ.O	0.0	0.0	0.0	0.0	0.0	U • U		0.0	•••			
-	-				7 . C	49 6		5.9	11.9	10.3	5.7	6.0	3.3	3.4	0.0	116.9	6.6	
LIVÊ	10TAL S	. 243.2		108.5		18.6	8.2										~ ~ ~	4
	D 14	• •		2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.Q	0. ŭ	3.4	2.6	
PSHE	D M D M	0.0	41.4	5.6	ŏ.ŏ	0.0	ŏ.ŏ	0.0	0.0	0.0	0.0	0.0	Q. C	0. 0	0.0			1
CADE PILA	БМ	0.0	ő . D	3.0	3. 0	3.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ŏ.ō	.0	ī
PIPO	ĎЙ	0.0	2.7	õ.õ	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ŏ.ŏ	18.8	.4	ī
QUGA	ĎЙ	0.0	õ. O	18.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0		4.0		2000	• •	

DECK ID TP56 1 STUDY ID DRYD PLOT 8 AREA ID ODAK ESTABLISHMENT DATE 770715

PLOT TYPE FS PLOT AREA (SQ H) 1000.0 ELEVATION (H) 625 SLOPE (%) 63. ASPECT 260 LANDFORM TTUDVN HABITAT PHHGC SLOPE CORRECTION FACTOR 1.18191 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONSINED = 11.8191

SPP	CODES	REPR	0 LT	137CM	+		STENS		3¥ 1	10CM	DgH	SIZE	GLA	SSES	S	*	*TRI	EES G ASURF		UCH ANS-	+80 UN -+-7H	H STEMS	TOTAL BASAL 1 AREA	
CODE	D W	AREA (M2)	TAL	NUM (ZHA	0.1-10	20	30	40	50	50	76	80	96	130	110	120						ZHA	M2/HA	
PSME CADE ARME PRUNI QUGA		50 50 50		946 946 0 0 0 0	47 24 47 47	130 0 0 24	165 0 24 0 0	142 0 0 0	71 0 0	0 0 0 0 0 0 0 0	C C C C	0 0 0 0	0000000	0 0 0 0 0	12 0 0 0 0	0 0 0 0	0	0 0 0 0 0 0	02000	0000	0000	0 52(0 2) 0 2) 0 2)	0 0 6 1 6 0 4 0	
LIVE	TOTALS			4 946	118	15+	-189	142	71	Û	Ĺ	0	0	0	12	0	0	li c	0	6	0 c	0 56 0 L	7 49 7 1	ł
PSNE ARNE QUGA	D M D M D M	50 50 50			59 0 12	47 12 0	0	0 0 0	6 0 1	0 0 0	L G G	0 0	0 0 0	0 0 8	C 0 0	0	0	6 0	3	Ŭ Ĵ	0 0		2 <u>0</u> 0 0	ļ
					a ya wa sa wa			-											•					

DECK ID TP56 1 STUDY ID DRYD PLOT 9 AREA ID DOAK ESTABLISHMENT DATE 770715 PLGT TYPE FS PLOT AREA (SU M) 1000.0 ELEVATION (4) 61C SLOPE (%) 7C. ASPECT 250 LANDFORM MMDDWR HABITAT PMHGC

SLOPE CORRECTION FACTOR 1.22066 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONDINED = 12.2066

																							÷	
SPP	CODES	REPRO	LT	1 37 CM	+	-NUM	STEMS	HA	3¥ 1	. D C N	D3H	SIZE	CLA	SSES		*	*TRE *MEA		120 120	CM D3 MS*	H+ NUM ZHA	TOTAL STENS GT10CH	TOTAL BASAL AREA	
ALPHA Code	. L N + + D W	AREA (M2)	TAL	NUH Y ZHA	0.1-	20	30	40	50	60	76	80	90	100	116	120						/HA	M2/HA	
PSME	LM	50		•	85	134	24	12	12	12	24	24	0	12	Ğ	0	0 0 0 0	G	ů 0	0 0	0	256 12 24	38 2 2	
CADE	L H L H L H	50 50 50	a		12	Ŭ	12	12		Ŭ.	Č G	0	0	Ö	Ŭ	0	0	Ŭ	ů	0 0	ŏ			
ARHE	TOTALS			4 977	110	134	49	24	24	12	24	24	0	12	0	0	0	ũ	Û	00	0	305	42	
PSNE	0 H	50		8 . 8		· 8	. 0	Û	9	ð	G	9	- 0	12	÷G	Û	Û	G	J	6 6	0	12	7	

208

DECK ID TP56 1 STUDY ID DRYD PLUT 10 AREA ID DOAK ESTABLISHMENT DATE 770718 PLOT TYPE HS PLOT AREA (SQ H) 500.0 ELEVATION (H) 808 SLOPE (%) 45. #SPECT 202 LANDFORM TTDDWR HABITAT PMHGC SLOPE CORRECTION FACTOR 1.09659 PLUT SIZE CONVERSION FACTOR 20.00000 BOTH CUNV. FACTORS COMBINED = 21.9317

SPB	CODES	REPRO SAMP	LT	1 37 CH	*	-N UM	STEMS	/HA	3¥ :	18CM	рэн	SIZE	CLA	SSES	5	*	* TR	EES G	T 1	2JUN	DBH		TOTAL
ALPHA CODE	L M + + D n	AREA (M2)	TALY	NUM ZHA	0.1-10	ن 2	3ú	40	50	68	70	30	90	100	116	120	*ME	ASURE	0 0	IAMS			AREA N 27 HA
PSHE CADE ACHA ARHE QUGA	L H H H L H H H H H	500 550 550	1 1 0 0	219 219 219 0	241 22 44	0 0 0 1 0	0 0 4 4	44 0 22 0	110 0 3 2 2	66 0 0 3	101 101 101	2 2 0 0 0		00000		ů 0 0 0	0000		00 0 0 0	0 6 6 6 6) 307 1 0 1 22 1 22	
LIVĒ	TOTALS	50	3	656	307	J	44	ъб	11 j	66	ot	22	0	G	Ĵ	0	G	ú	ċ	0	ů	373	75
PSME ACMA	D M D M	50 50	0	D C	22	Û Û	22 J	0 0	0	D	ŭ	0 C	G	Ú Ú	Ç	Û	0 0	ŭ C	Ċ	ů J	C C	22	1 J

DECK ID TP55 1 STUDY ID DRYD PLOT 12 AREA LD DRIG ESTABLISHHENT DATE 770719 PLOT TYPE FS PLOT AREA (SQ N) 1000.0 ELEVATION (4) 945 SLOPE (%) 73. ASPECT 180 LANDFORM TTUDSS HABITAT PMHGC SLOPE CORRECTION FACTOR 1.23810 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH JUNV. FACTORS COMBINED = 12.3810

CODES REPRO LT 137CH -----NUM STEMS/HA BY 100M DBH SIZE CLASSES------ + --TREES GT 120CM DBH--+ TOTAL TOTAL TOTAL L N SAMP SPP CODES ALPHA L M CODE + + *--MEASURED DIAMS -- * /HA GTIOUN AREA AREA (M2) TALY NUM 0.1-20 30 40 51 50 70 80 90 100 110 120 ZHA. N2/HA Ó **7HA** 10 -62 bc 25 12 0 0 59 2 0 25 0 135 0 0 285 50 50 50 Û 37 12 12 0 87 12 0 0 0 12 8 0 12 Û 12 Q 9000 000 12 ۵ PSME 12 000 50 6 12 000 Õ Ō Ō Ō 000 Ů ű CADE 1 248 ā ň 8 4 50 PILA 347 248 62 87 7+ 99 25 12 12 D ۵ 12 ٤ 12 135 3 a 0 Ũ. 12 66 LIVE FOTALS 50 1 37 G 1 0 12 37 G Ð a 0 PSNE N O N O 50 0 ũ ۵ ۵ ī ň ň ā ň Ĩ, â ũ i.

DECK ID TP55 1 STUDY ID DRYD PLUT 16 AREA IG ODAK ESTABLISHMENT DATE 770721 PLOT TYPE FS PLOT AREA (SQ N) 1000.0 ELEVATION (N) 975 SLOPE (%) 54. ASPECT 270 LANDFORM TCODRS HABITAT PHHGC SLUPE CORRECTION FACTOR 1.13649 PLOT SIZE CONVERSION FACTOR 10.00000 BUTH CONV. FAUTORS CONSINED = 11.3649

.

SPP Alpha Code	CODES	REPEO	LT	137CH	*	-HUH	STERS	Ah N	31	1004	Øsh	SIZE	CLA	ASSES	5 -	+	*TR	EES G	T 1	2904	09 H	1+ MUM	TUTAL	TOTAL DASAL
CODE	С н О м	SAMP AREA (M2)	TALY	NUH ZHA	0.1- 10	20	3u	÷ ₫	50	60	70	8 0	90	100	116	120	*HE	ASURE	0 0	DIAMS	+	ZHA	GT10CM /HA	ARE A M2/HA
PSHE CADE ARME PILA		500 500 500	0 0 1	с С 22 7	68 0 0 0	102 0 0 1	91 11 0 0	8 0 0 0 0 0	114 0 0 11	57 0 0 0	i C C	000	23 0 0 0	0 0 0 0	6 0 6 6	0 0 0	0 0 0	Ú Ú Ú Ú	0000	0000	Ú Ú Ú Ú Ú Ú Ú	0000	466 11 0 11	60 1 0 2
LIVE	TOTALS	50	1	227	68	102	102	80	125	57	G	0	23	٥	C	Û	0	Û	ð	Ú	Ű	C	489	62
P S NE GACH	D M D M	50 50	Ŭ O	ů C	$\frac{1}{3}$	ان د به	6 5	0 ů	3	0 0	Ĺ	0	0	ŭ	c C	ن 0	Û C	Ĺ Ŭ	Ĵ	L D	ч С	0	5+ 5	0 1

DECK ID TP56 1 STUDY ID DKYD PLOT 24 AREA 10 ODET ESTABLISHMENT DATE 770728 PLOT TYPE F5 FLOT AREA (SQ M) 1000.0 ELEVATION (1) 004 SLOPE (%) 68. ASPECT 225 LANDFORM TCEDES HABITAT PMHGC SLOPE CORRECTION FACTUR 1.20930 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTURS COMBINED = 12.0930

SPP Alpha	CODES L N	REPRO	i LT	137Cm	+	-NUM	STEMS	/HA	31 1	8 C H	udh	\$1Zē	GLA	SSES		••••	+IR	EES G	Ţ ļ	2364		* NUN	TOTAL STENS	TOTAL BASAL
CODE	С н С н	AREA (M2)	TALY	NUM ZHA	0.1- 10	20	30	40	50	50	70	8 ũ	90	100	118	120	*ME	ASURE	U Ú	DIANS	*	∕nłA	GT1 BCH Zha	AREA M2/HA
PSHE CADE TSHE ACCH PSHE TSHE		55555555555555555555555555555555555555	200000000000000000000000000000000000000	46- 0 0 0 0 0	780 85 12 60 12 3 48	351 60 12 12 12 12 0	97 24 12 0 12 12	520 10 00 00 00 00	861.080000 31.080000		242000000	24 12 0 0	120000000000000000000000000000000000000	ù 000000000000000000000000000000000000			000000000000000000000000000000000000000	000000000000000000000000000000000000000	ŭ 8000000000000000000000000000000000000			000000000000000000000000000000000000000	593 157 12 12 12 12 12	49 19 100 11
LIVE	TOTALS	50	2	484	100+	469	1 57	97	3ó	6	36	36	12	ų,	Ĺ	0	Ũ	G	Э	a	8	Q	834	71
PSME Acha Cach	D M D M D M	5 U 5 G 5 G	0 0 0		48 12 12	0 0 0	û 0	0 0 0	12	- 0 0	6 0 0	0 0	- D	12			0 0 0	6 6 6	0 0 0	0 0	10 10 10	0	24 0 0	11
																								N

DECK ID TP56 1 STUDY ID DRYD PLOT 30 AREA ID DHK ESTABLISHMENT DATE 770803 PLOT TYPE HS PLOT AREA (SQ H) 500.0 ELEVATION (4) 1256 SLOPE (%) 74. ASPECT 225 LANDFORN TCDDSS HABITAT PMHGC SLOPE CORRECTION FACTOR 1.24403 PLUT SIZE CONVERSION FACTOR 20.60000 BOTH CUNV. FACTORS COMBINED # 24.8605

SPP Alpha	CODES	REPKO SAMP	LT	137CH	•	NUM	STEMS	57 HA	3¥ :	LOCM	изн	SIZE	GLA	ISSES	;	*	* T RE			20 CN	DBH	NUN	TOTAL STEMS	TOTAL BASAL
ALPHA Code	777 D W	AREA (M2)	TALI	NUH ZHA	0.1- 10	2ũ	30	4 Ú	5)	63	76	80	90	100	110	128	* M EA	SURE	E D O	IAMS		7HA	GT10CH /HA	ARE A N2/HA
PSNE CADE Abgr Abpr	L M L M L M	5ú 50 50		0 0 0 0	0 0 25	25 25 0	124 0 0 0	124 25 0	199 0 0 0	25 0 0	50 C 0 0	0000	0 0 0 0	0 0 0 0	ů L L L L L	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0000	0 0 0 0	547 25 25 0	74 2 0
LIVE	TOTALS	50	O)	25	50	124	149	199	25	50	0	D	0	. C	8	0	6	D	0	0	0	597	77
PSHE	DМ	50	Q) (i	124	25	Û	9	0	3	C	Û	0	a	ú	Û	0	Û	Ú	Û	υ	0	25	1

DECK ID TH56 1 STUDY ID DRYG PLUT 41 AREA ID OHKU ESTABLISHHENT DATE 778818 PLOT FYPE FS PLOT AREA (SQ H) 1000.0 ELEVATION (H) 777 SLOPE (%) 82. ASPECT 215 LANDFORM HTDDSS HABITAT PMHGC SLOPE CORKECTION FACTOR 1.29321 PLUT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 12.9321

SPP Alpha Code	C 0 (DËS	SAMP	LT	137CM NUH ZHA	*	-NUM	STEMS	/ HA	37 1	1 B C M	HE G	SIZE	GLA	ISSES	;	*	*TRE	ES GI	12	o CM	<u>р</u> ян- 1	NUM	TOTAL STENS	TOTAL BASAL	
CODE	¥ D	¥	AREA (M2)	TALY	NUM ZHA	0.1-10	20	30	40	5)	60	76	50	90	100	116	128	• == H E1	ISUREI	J. D.L.	AMS		НА	/HA	NZ/HA	
PSME CADE	Ł	M	50 5û	0 2	517	233 65	65 3 9	65 26	39 26	26 39	39 0	ũ	0 1 3	26	0 0	13	13	0	ů ū	ů 0	3	Ű Ű	Û	285 142	62 17	
LIVE			5ú	2	517	297	103	-			39	-	13		-			0	G	0	Û	Ű	0	427	79	
CADE	D	M	50 50	0	Û	39 39	13	13 Ŭ	13	0	Û	Ŭ	13	0 0	. 0	0	0	0	0	Û	0	6	0	39 13	ů	

					X 10 0		PLOT	51			ODE							78717		• • • • •	· · · · · · ·	· · · · · · · · · · · ·				
PLOT	TYF	PE F	S P	LOTA	REA (S	(Q H)	1000.0	ELI	EVAT.	LON	4)	732	SL	OPE	(%)	68.	6	ASPECT	212							
					ITAT																					-
SLOPE	CC	RŘE	CTION	FACT	0R 1.	20930	PLU	T. S IZ	E. COI	I/ERS	ION	FAGT	OR 1	8.00	0.0.0		нС	CONV. F	ACT	DRS	CONB	INED		12.093	3	
SPP ALPHA	٥ç		REPR	0 LT	137CH	*	NUM	ST EHS	5/ HA	8 Y 16	0 C M												NUR	STENS	TOTAL BASAL	
CODE	1	F - ₩	AREA			0.1	0 20	70		50	£ 0					110 1		***HEA	SUR	E 0 1	DIANS		THA-	GTICCN /HA	AREA N 27 HA	
) Wi		TALY	/HA									5 U 0			с U л	n	n	n	n	'n	n	387	60	
PSNE ACMA	Ē	N.	50 50	ŭ		1	2 24	73 12 0	200	133 0	73	Ű	24	ğ	ŏ	j a	ŏ	ğ	ğ	Q	õ	ğ	ă	36	1	,
PRUNJ		. M	50	U	ŭ			-	•	1 1 1 1 7 7	-	U (9 24	•		6	u ۵	0	0	6	u	о 0	0	423	61	
LIVE	• • •		5 1				6 40			133	73		24			<u> </u>			• • = • •			e	0 0	60		ator
PSME	£	M	50	0	0	i i	2 24	12	24	Ũ	0	Ĺ	ú	0	ß	Û	۵	3	Û	ŋ	U	U U	U	00	-	
							:- :- :- :- :-	1. · · · · ·	e.'												-	- ••••				
DECK	10	TP5	6 1	STU	DY ID	DKYJ	PLOT	52	AR	E4 I	0 0 0	ET	EST	BLIS	HME	NT DAI	E	780713								
		PE F	S I	PLOT	AREA C	SQ AD	1000.0) ĒL	EVAT	NGI	(4)	716	SI	.0PE	(%)	80.		ASPECT	268	5						
PLOT	IY			н 6	TAT	PMHG	2																			•
		H HI	DDSS	88	X C T (2 T)		Status in the										_	60.44 V	EACT	nae	COM	RINED) =	12 80.6	2	
LAND	OR						2 PLU	T SIZ	E CO	NVER	SIDN	FAC	TOR :	10.01	0000	901	ГH	LUNA.	FAUI	013	0011			12.000		
LAND	OR							T SIZ	E CO	NVER	SIDN	FAC	TOR :	LŪ.01	0000	901	Гн	CONA.	F AU I	0.03	0011			12.000	-	
LANDA SLOPE	FOR E C	ORKE	GTI0	N FAC	TOF 1	.2806	2 PLÚ																1*	TOTAL	TOTAL	
LANDE SLOPE	FOR E D	ORKE	CTIG	N FAC	TOF 1 137CM Nu	• 2806	2 PLU NUM	1 STEM	S/HA	34	1004	D9H	SIZ	E GL/	SSE	S	•-*	* TR * NF	EES	GT	1236	4 UBF	+ NUM	TOTAL Stems gti uch	TOTAL Basal Area	
LANDA SLOPE	FOR E D	ORKE	CTIG	N FAC	TOF 1 137CH	• 2806	2 PLU NUN 1- 10 20	1 STEM] 30	S/HA 40	3¥ 50	10C4 60	овн 70	SIZ 80	E GL/	SSE	S	•-*	* TR * NF	EES	GT	1236	1 08+ 5+	NUH /HA	TOTAL STEMS GT1 UCH 7HA	TOTAL BASAL AREA H27HA	
LANDF SLOPE SLOPE ALPHI CODE	FOR E C	ORKE	CTIG	N FAC	ТЭ <u>г</u> 1 137См 9 7н	• 2806; • -	2 PLU NUM	1 STEM] 30	S/HA 40	34	10C4 60	овн 70	SIZ 80	E GL/	SSE	S	•-*	* TR * NF	EES	GT	1236	4 UBF	+ NUM	TOTAL STEHS GTIUCH	TOTAL BASAL AREA H27HA	
LANDE SLOPE	FOR C	ORKE UDES L H D W L H L H	CTIO REPI SAMI ARE TH2 5	O LT	TOF 1 137CM Y 7H	• 28063 	2 PLU NUN 1- 10 20	4 STEM 30 26 26	S/HA 40 90	3¥ 50	10C4 60	овн 70	SIZ 80	E GL/	SSE	S	•-*	* TR * NF	EES	GT	1236	1 08+ 5+	NUH /HA	TOTAL STEMS GT1 UCH 7HA	TOTAL BASAL AREA H2/HA 64	

,

•

LANDF	ORH	TC	DURR	HABIT	AT P	MHGC						<u> </u>			<u> </u>									······································
SLOPE	CO	DRRE	CTION	FACTOR	1.1	5603	-PL01	SIZE	E. C OI	NVER	SÍON	FACT	OR 1	0.000	08	0T.H. I	CONV .	FACTO	RS.	COHBI	INED		11.560	3
SPP Alpha Code	L		REPRI SAMP AREA	0 LT 13	TCM	+	-NUM	STEMS	5/HA	BY :	18CM	рзн	SIZE	CLASS							4	NUH	TOTAL STEMS GTIDCH	TOTA BASA AREA
0002) w		TALY	ZHA	10	20	30	40	50	60	76	80		0 110				• •				7HA	H 27 H
PSME CADE ABGR CADE TSHE			500 550 550	0 0 0	0000	23 23 12 12 58	46	81 J 0 0	104	116	92 0 0 0	35 0 0 0	0 0 0 0	0000	0 C 0 0 0 G 0 C	0000	0 0 0 0	0 8 6 0 0	00000	00000	000000	00000	474 0 0 0	6
LIVE	=	· · · · · ·	50	0	0	127	40	81	104	115	92	35	٥	0	υ O	0	G	G	U	0	0	0	474	6
			-	a	n	23	23	a	۵	a	۵	L	a	0 1	2 6	0	0	ų	a	a	ũ	۵	35	
PSME TSHE DECK PLOT	0 10	_		Ö STUDY DT ARE			23 0 PLOT	54 ELE			і жео с сно —		Ĵ Esta	Ö BLISHH OPE (%				260	ů	0)	Ō	C.	
TSHE DECK Plot Landf	Ö IJ TYP Orm	TP5 PE'F 1 TH	50 6 1 5" PL 3DVV	STUDY . OT " ARE	Ū ID DR Artsq At P	YD Р М) 10 NHGC	- PLOT 1031 0	54 ELE	ARE (VAT)	ION	о озё (н) —	847	Ĵ Esta Sl	BLISHM OPE (%	ENT D) 72	ATE 7	- 763720 Aspect	°260 -					0 12,322	
TSHE DECK PLOT LANDF SLOPE SPP	0 ID TYP ORM CO) W TP5 PE F I TH DRRE DDES	50 6 1 5	STUDY OT ARE HABIT FACTOR	Ū IJ DR (A (SQ (AT P (1.2	YU P H) 10 NHGC 3223	PLOT	54 Ele SIZE	ARE IVATI	ION	D OBR (N) SION	847 Fact	Ū ESTA Sl Or 1	3LISHM OPE (% 0.0000	ENT D) 72 0 8	ATE 7	763720 Aspect Conv.	FACTO	RS T−1	COMB) 28CM	INED	= +	TOTAL	3 TOFA BASA
TSHE DECK PLOT LANDF SLOPE	0 ID IVP ORM CO	D W TP5 PE F I TH DRRE DDES	50 6 1 5 Pl DDVV Ction Repri Sarea	STUDY OT ARE HABIT FACTOR	Ū IJ DR (A (SQ (AT P (1.2	YU P H) 10 NHGC 3223	PLOT	54 Ele SIZE	ARE IVATI	ION	D OBR (N) SION	847 Fact	Ū ESTA Sl Or 1	3LISHM OPE (% 0.0000 	ENT D) 72 0 8	ATE 7	763720 Aspect Conv.	FACTO	RS T−1	COMB) 28CM	INED	= +	TOTAL	3 TOTA BASA
TSHE DECK PLOT LANDF SLOPE SALPHA GODE PSME GADE	0 ID TYP 0RM CO) W TP5 PE F I TH DRRE DDES	50 6 1 5 PL DDVV CTION CTION REPR(AREA (M2) 50 50 50	STUDY OT ARE HABIT FACTOR	0 ID DR A (SQ AT F 1.2 7CM NUM	YD P H) 10 HHGC 3223 0.1- 10 653 12 37	PLUT PLUT PLUT	54 ELE SIZE	ARE EVATE E CON	ION NVER: 34	D OBR (N) SION EDCH	847 FACT D3H	Ū ESTA SL IOR 1 SIZE	3LISHM OPE (% 0.0000 	ENT D) 72 0 8 ES	ATE 7	763720 Aspect Conv.	FACTO	RS T−1	COMB) 28CM	INED	= +	TOTAL STEMS GT10CM /HA 185 111	3 FOT A BASA ARE A M27 H 3 1
TSHE DECK PLOT LANDF SLOPE SLOPE SALPHA GODE PSME CADE	0 ID TYP ORM CO CO L	DEF TP5 TH DRRE DES H DES H M M	50 6 1 5 Pl DDVV CTION CTION REPRI SAMP AREA (M2) 50 50	STUDY OT ARE HABIT FACTOF D LT 13 TALY 3	Ū ID DR A (SQ AT F 1.2 7 CM NUM 7 HA	YD P H) 10 NHGC 3223 0.1- 10 653	PLUT 100.0 PLUT NUH 20	54 ELE SIZE STEMS 30 12	A RE IVAT I I C ON I/HA 40 0	ION NVER: 34 50	D 03k (m) SION 10Cn 60 25	8+7 FACI 03H 70 12	0 ESTA SL 10R 1 SIZE 80 37	3LISHM OPE (% 0.0000 	ENT D J 72 0 8 ES 0 110 0 6	ATE 7	763720 Aspect Conv.	260 Facto Eesg Asure	RS T-1 00	COMB) 28CM	INED	= +	TOTAL STEHS GT10CH /HA 185 111	3 3 ASA AREA M27 H 3
TSHE DECK PLOT LANDF SLOPE SALPHA CODE PSME CAOGR CAOGR CAOGR CAOGR CAOGR CAOGR CAOGR CAOGR CAOCA CAOCA CODE CAOCA CODE CAOCA	ID TYP ORM CO L L L L L L L L	D W TP5 PE F I TH DRRE DDES N H M N N N	50 6 1 5 Pl 3D VV CTION REPRI SAHP AREA (M2) 50 50 50 50 50 50 50	STUDY OT ARE HABIT FACTOF D LT 13 TALY 3	Ū ID DR A (SQ AT F 1.2 7 CM NUM 7 HA	YD P H) 10 MHGC 3223 0.1- 10 653 12 37 12 12 12 12	PLUT PLUT 	54 ELE SIZE STEMS 30 12 0 25	ARE EVAT : E CON THA 40 49 0 0 0 0 0	ION NVER: 34 50	D 03k (m) SION 10Cn 60 25	8+7 FACI 703H 70 12 0 0 12 0	0 ESTA SL OR 1 SIZE 80 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3LISHM OPE (% 0.0000 	ENT D J 72 0 8 ES 0 110 0 6	ATE 7	763720 Aspect Conv.	260 Facto Eesg Asure	RS T-1 00	COMB) 28CM	INED	= +	TOTAL STEMS GT10CM /HA 185 111 0 37	3 JASA AREA AREA 1 1

•

13

.

DECK ID TP55 1 STUDY ID DRYD PLOT 55 AREA ID OBR ESTABLISHHENT DATE 780720 PLOT TYPE FS FLOT AREA (SQ H) 1000.0 ELEVATION (H) 823 SLOPE (%) 67. ASPECT 220 LANDFORM TBDDSR HABITAT PHHGC SLOPE CORRECTION FACTOR 1.20370 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 12.0370

SPP ALPHA CODE	CODES	REFRO	LT 1.	37CM	+	-NUM	PIEN2	ZH A	ЗY	10 C M	Dáh	SIZE	CLA	รรธิว	; i	+	+TR	EES (GT d	LZJ CM	JaH		TOTAL	TOTAL BASAL
CODES	Т О м	AREA	TALY	NUM ZHA	0.1- 10	20	30	4 Û	5 G	60	76	8	9 û	150	116	120	* HE)	SURE	E0 1	DIAMS	+ ''	ZHA	GTIOCH /HA	AREA H2/HA
PSME GADE Abgr PILA	L H L H L H	50 51 50	0 0 0	30.30	169 60 48 0	36 106 0 0	35 48 0 1	36 36 0 0	12 12 0	36 12 3	24 12 Ú	Ŭ O O O	12 12 0 12	12 0 0 0	12 6 6 6	0 0 0 0	0 1 1 1 1	5 5 5 5		0 0 0 0	8035	0 0 0 0	217 2+1 12	51 24 7
LIVE	TOTALS	50	0	G	277	144	84	12	24	48	3 E	D	36	12	12	0	0	Ũ	0	Û	Û	Û	459	82
PSNE CADE	D M D M	50 50	ů	۵ ۵	36 72	a	0	8	3 7	0 5	Ē	G	0	3	ŭ C	0 G	0 0	ú C	0 0	ů D	ů G	Û	0 0	0 0

DECK ID TP50 1 STUDY 10 UKYO PLOT 56 AKEA 10 OHJA ESTABLISHHENT DATE 790613 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (M) 586 SLOPE (%) 77. ASPECT 157 LANDFORM TILDVS HABITAT PMHGC SLOPE CORRECTION FACTOR 1.26216 PLOT SIZE JONVERSION FALTOR 10.00000 BOTH CONV. FACTORS COMBINED = 12.6210

SPP	CODES	REPR	<u>D</u> LŢ	137CM	+	-NUM	STEMS	/ HA	3¥ 1	LACM	ран	ŞŢŹĒ	UL4	SSES		+	+TR	EES G	T _1	20CH	DыН	+	TOTAL STENS	TOTAL SASAL
ALPHA Code	ЕМ ++ Dм	SAMP AREA (M2)	TAL	NUM 7 ZHA												120	B	ASURE	D D	IAMS	+	/ HA	GTIBCH Zha	
PS ME ACHA	L M L H	51 50	ĺ	0 C 0 0	101	114 38	189 13	50 0	3ŏ	13 6	Ũ G	0 Q	0 Û	3	25 L	8	0	Û	Ĵ	0	û G	0	429 50	48 1
LIVE	TOTALS	50) 0	101	151	202	50	35	13	Ĺ	0	9	0	25	G	õ	0	G	<u>a</u>	Û	0	480	50
PSHE	Dн	50		0 0	38	25	J	IJ	3	0	Û	13	6	Ű	Ű	13	0	Û	J	Û	Ũ	8	50	19

DECK ID TP56 1 STUDY ID DRYU PLOT 57 AREA ID OHJA ESTABLISHMENT DATE 790613

PLOT TYPE FS PLOT AREA (SQ N) 1000.0 ELEVATION (N) 566 SLOPE (%) 55. ASPECT 215

LANDFORM NTODRE HABITAT PNHGC

SLOPE CORRECTION FACTOR 1.14127 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONDINED # ...11.4127

ALPHA L M SAMP CODE + AREA D N (H2)	TALY /HA	0.1- 10	20	30											NU 8 F U					AREA
and the second				30	48	50	Úà (70	80	90	100	110	120		30 1 2 0	DEAL		2 114	GTIUCH /HA	H 27 HA
PSME LH 50	D D	• - -						-	11		0	•	•	0	0	0 0	0	0	• = -	34
LIVE FOTALS 50	.	91 1	14		183	- 34		• • • • 6	- 11		0				8	0)0	, 0 ·	422	
PSNE DN 50	0 0	57	11	0	11	Q	11	11	0	0	٥	0	0	0	0	0 0	0		46	8

DECK ID TP55 1 STUDY ID DRYD PLOT 62 AREA 10 ORIG ESTABLISHMENT DATE 790619 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (4) 525 SLOPE (%) 55. ASPECT 204 LANDFORM MTDDVS HABITAT PMHGC

SLOPE CORRECTION FACTOR 1.14127 PLUT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONBINED = 11.4127

SPP	CODES	REPRO	LT	1 37 CM	¥	-NUM	STENS	/нА	ЗY	10 C M	йзн	SIZE	CLA	ASSES	5	+	+TRE	ES GI	[12	2 J C M	DBH		TOTAL STENS	TOTAL BASAL	
ĂĹPHA CÕDE	L N + + D W	SAMP AREA (M2)	TAL	NUH 7 ZHA	0.1- 10	20	30	40	5]	60	70	80	90	160	116	120	* MEA:	SUREI	נסים	AMS			GTIBCH	ARE A H2/HA	
PSNE CADE ACMA PILA	L M L M L M	50 50 50		5 1141 0 4 0 0 0 0	1084 114 11 40	114 103 40 0	0 34 6 0	0 11 0 0	11	23	11 1 0 0	11 0 0 0	23	11 0 0 0	0 0 0 0	0000	0 0 0 0	6 6 0	0 0 Ū	000000000000000000000000000000000000000	0 0 ŭ	0000	183 194 46 0	38 16 1 0	6
LIVE	TOTALS	50	5	5 1141	1255	262	34	11	11	46	11	11	23	11	Ű	Q	Û	G	Q	Û	ð	0	422	56	
PSHE	D M	50	ļ	0 0	<u>0</u>	C	0	0	Ĵ.	9	Û	0	0	<u>u</u>	Ĺ	٥	ð	<u>û</u>	<u>a</u>	Û	ũ	٥	0	0	

DECK ID TP55 1 STUDY ID URYD PLUT 63 AREA ID ORIG ESTABLISHMENT DATE 790619 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (4) 550 SLOPE (%) 42. ASPECT 243 LANDFORM MRDDWS HABITAT PHHGC SLOPE CURRECTION FACTOR 1.08462 PLUT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 10.8462

SPP Alpha Code	CODES	REPRO	D LT	137CM		-NUM	STENS	ZHA	3Y 3	183M	08H	SIZE	ů.	ASSES	; -	*	*TR	EES G	T 1	20 CM	DBH-	- # 1 M	TOTAL	TOTAL BASAL AREA	
CODE	¥ ¥ D w	SAMP AREA (M2)	TALY	NUM Z HA	0.1- 10	20	30	+3	5 Q	60	76	ងព្	96	100	110	120	*ME	ASURE	ס יים	IANS-	-+ 7	IA.	GTIUCH /HA	AREA M2/HA	
PSHE CADE ARME PILA	L H L H L N	50 50 50	300	651 0 0	618 Ú 43 43	65 60 62	11 11 0	33 0 0 0	43 0 0 0	43 0 0 0	11 11 0 0	54 0 0	00000	11 0 1 0	G G G G	0 û 0	0 0 0 0	6 6 6	5000	0 9 9	0 0 0 0	0 0 0 0	271 22 65 22	60 4 1 1	
LIVE	TOTALS	50	3	651	705	152	22	33	43	43	22	54	0	11	C	0	Ū	C	0	۵	0	8	380	66	
PSME ARME	D M D H	5C 50	0	0 C	33 22	ų	. Ū	0	3	22	Č	11	Ő	يد ت	ن ن	0	ů Ú	Ú G	Ŋ	0 0	cie.	U U	33 0	10 0	

DECK ID TP56 1 STUDY 10 DRYD PLOT 68 AREA 10 DRIG ESTABLISHMENT DATE 790724 PLOT TYPE FS PLOT AREA (SQ M) 1000.8 ELEVATION (M) 814 SLOPE (%) 63. ASPECT 283 LANDFORM NTEDSV HABITAT FMHGC SLOPE CORRECTION FACTUR 1.18191 PLOT SIZE CUNVERSION FACTOR 10.00000 BOTH CUNV. FAULORS CUMBINED = 11.8191

SPP Alpha	CODES	REPRO	LT 1	37CH	+	-NUM	STEMS	/ нА	31	1004	Dah	SIZE	<u>CL</u>	SSES	<u></u>	+	+TR	EES GI		20 CH	DBH	# M	TOTAL	TOTAL	
CODE	С-Н + + D н	SAHP AREA (M2)	TALY	NUM ZHA	0.1-10	20	30	41	50	۵Q	76	80	98	100	110	120	+HE/	ASURE	0.0	IAMS		A	GT10CN	AREA N 27 HA	
PSHE ABGR ARME CACH PILA	L 11 L 11 L 11	75 75 75	10 0 0 1	1576 () 158	154 24 12	24 24 24	0 0 0 0	12 0 12 0	12] 0	12 0 0	6 6 0	24 0 0	12 0 0	47 0 0	12	0000	000000000000000000000000000000000000000	0 6 0	00700	0 0 0	0 0 0	0000	142 0 35 0	67 0 2 0	
PILA	E H	75	Ŏ	0	24	0	0	- Q -	0	0	C	0	Q	0	0	0	U	0	3	U	U	U	U	U	
LIVE	TOTALS	75	11	1733	213	47	.0	12	12	12	ũ	24	12	47	12	0	0	ũ	۵	0	ü	0	177	69	
PSME	N Q	75	0	Û	0	ن ا .	0	Ð	24	12	35	12	0	12	0	0	Û	G	0	0	۵	0	95	32	

a second and the second s

DECK	10	TP	56	1	ST	UDr	IO	DRYD	P	LOT	72	ARE	A L	D OH	IJA .	ESTA	BLIS	HMEN	T DA	TE 7	798829							
PLOT	TY	ΡΕ	FS	PI	_ OT	ARE	A (SQ N) 1(0.00	ELE	VATI	0 N	(4)	1045	SŁ	OPE	(%)	60.	. 4	ASPECT	198						
CANDF										PLOT	SIZE	CON	VER	SION	I FAC	TOR 1	0.00	1000	80	лна	CGNV .	FACTO	RS	сона	INED	₹	12.8962	
<u>арр</u>	5	ÚD Í	1) L	T 13				NUM	STENS	/ HA									+TR +NE				111	Uni -	TOTAL STEMS GT10CM	TOTA BASA
CODE	•	0		AREA (H2)	TA	LY	NU ZH		10	20	30	4 Ŭ	53					100				A GO A E		1410				M 27 H
PSME ACMA TABR TSHE			1 1 1	75 75 75		1 0 0	17	1 0 0 0	205 1ú2 26 38	231 26 0 Ú	77 38 0	3 d 0 0	77		13 0 6	0 0 0 0	26	00000	13 0 6 0	13 0 0 0) 0 0	0 0 0	0001	0000	000	0000	407 64 0	6
LIVE	T O	TAL	.s	75		1	17	1	371	256	115	38	77		13	0	26	0	13	13		0	0		0	0	551	7
PSME		8 5	1	75 75		0		0 C	77	102	0 13	0 0	a C		3 13 5 C	13	13	0 0	Ű	0	ί C	Ú Ú	6 0	0	ů v	0	154 13	2

217

.

PSEUDOTSUGA MENZIESII/HOLODISCUS DISCOLUR/GRASS COMMUNITY TYPE

COLLONIA HETEROPHYLLA PHASE

				 •	••• AV E	RAGE V	ALUES	FOR 1	9 PLOT	s • · •				· · · -			
SPP Alpha Code	CODES L M + +	REPRO NUM /HA	+	 -NUMBER 30	UF TR 40	EES/HA 5ú	3¥ 16 66	CH 13	H SIZE 80	CLASS 90	ES 106	110	+	TREES GT 1200m /Ha	TOTAL TREES GT16CH /HA	TOTAL BASAL AREA H2/HA	NUHBR Of Occur
PSDEE LISBGRAA AACCHHANUX SABCHHANUX PCJAAAHE SAAAHE SAAHEE SAAHEEE CS		350.57 60.00 11.55 12.00 82.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	243.2 21.4 6.3 12.3 5.9 1.3 5.9 1.3 5.9 1.3 5.9 1.3 5.9 1.3 7.6	66.8 9.00.11 1.00 0.00 1.00 0.00 0.00 0.00 0	59.10 99.10 10.00 10.00 10.00 10.00 00.000000	63.11 00.000000	32 · · · · · · · · · · · · · · · · · · ·								361 50 10 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	55.22 55.22 105 113 1.32 1.32 1.33 1.33 1.33 1.33 1.33	19 13 15 18 7 38 22 11 2 15
	L H TOTALS D H D H D H D H D H	<u> </u>	7.6 311.6 33.2 7.1 1.0 1.1 3.1 .6	.6 88.9 2.5 0.0 .7 0.0 0.0 0.0						8.9 .7 0.0 0.0 0.0 0.0 0.0 0.0			2.0 .7 0.0 0.0 0.0 0.0 0.0 0.0	.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	449.6 37.9 7 2.4 0.0 0.0	63.3 7.2 0 0 0 1 1	19 4 3 2 3 1

218

.

SPP	CODES L H	REPRO	*		-NUMBER	OF TR	EES/HA	8¥ 16	CM 081	SIZE	CLASS			+	TREES GT 12JCM	TOTAL TREES GT10CH	TOTAL BASAL AREA	NUMBR
ALPHA Code	Ŭ Ŵ	NUH Zha	10	20	3ù	40	55	64	70	90	96	100	110	120	ZHA	ZHA	M2/HA	OCCUR
PCTSBGCRAEHA PCTSBGCRAELUGLIREEE AAAAACPRUSAASADH PCTSAAAAACPRUSAASADH PCTSAAAAACPRUSAASADH PCTSTSAAAAACPRUSAASADH		111.3 32.3 0.0 11.5 8.3 12.0 0.0 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	70.9 7.6 3.3 1.30 3.5 0.0 3.5 0.0 6.3 0.0 6.3 0.6		1 3. 60 4. 43 0 3. 60 4. 43 0 1. 1. 0 0. 3. 0 0. 3. 0 0. 1. 0 0. 0 0. 1. 0 0. 0 0. 1. 0 0. 0	9.8 3.4 1.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0						2 • • 0 • 0					3.0 1.60 .02 .22 .21 .0 .22 .21 .0 .20	19 13 1 5 7 7 3 2 2 1 1 2 2
TSHE	Ľ	0.0	4.2	0.0		<u>0.j</u>	0.0	0.0	0.0	ð. Ö	0.0	0.0	0.0	0.0	0.0	• 6	.0	3
LIVE	TOTALS	113.5	81.9	24.3	12.9	9.0	12.7	6.8	4 • 4	3.7	2.8	2.6	1.7	1.1	•7	30.8	3.0	
PSHE CADE AGNA CACH CACH CACH TSHE	DM	0.0	7.6	5.8	1.4	1.5	1.4		2.0	1.3	0.0		0.0 0.0	.7	0.0	*:4 :7	2.1	19 4 3
ACHA ARNE CACH	D N D N	. 0.0	1.1 1.9	.6	0.0	ů.ů ů.ů		0.0	0.0	0.0	0.0 0.0	Ğ. Ç	0.0	9.0	0.0 0.0	2.4		3
TSHE	Ŭ N D N	0.0	•6	0.0	0.0	0.0	0.0	8. Q 9. Q	0.0	0.0	0.0	0.0	8.0	0.0	0.0	0.8	. 0	i

* * STANDARD ERRORS FOR 19 PLOTS. * *

PSEUDOTSUGA MENZIESII/HOLOGISCUS DISCOLOK/GRASS COMMUNITY TYPE

COLLONIA HETEROPHYLLA PHASE

219

بممرد فالبدية متماد مستحد المالا والتي والهوا والالدو

PSEUDOTSUGA MENZIESII/HOLODISCUS DISCOLOR/GRASS COMMUNITY TYPE

.....

CO SPP L Alpha +	DES N REP + NU			-NUMBER	OF TR	EES/HA	- 3¥ 10	CN D3	H SIZE	CLASS	ES		*	TREES GT 1200M	TOTAL TREES GT16CM	TOTAL BASAL AREA	NUM 3Ř DF
CODE O			20	38	40	5)	60	70	80	90	106	110	120	AHN	7 H A	H2/HA	OCCUR
PSHE L LIDE L TSHE L ABGRR L ABPR L ACHEH GACHEH PILA PILA PILA PILA SALIX L FABR CALIX L FABR		31.55 505 5.005 5.101 5.510 1.11 5.510 1.13 5.001 1.13 5.001 1.14 5.000 1.14 5.000 1.14 5.000 1.10 5.000 1.10 5.0000 5.00000 5.00000 5.00000 5.00000000	19.656 10.03991 15935 15935 00	65.1 9.5ù 0.0 3.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0			80000000000000000000000000000000000000	142000000000000000000000000000000000000		7 0000001500000 000001500000 00001 00000	10000 - 20000 - 2000 	40000000000000000000000000000000000000		5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	355.2 50.7 1.1.6 0.0 16.9 8.9 4.1 4.1 4.0 8.4 0.0 8.4 0.0 8.4 0.0 8.4 0.0 8.4 0.0 8.4 0.0 8.4 0.0 8.4 0.0 1.1 1.6 0.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0	53.4 5.7 .01 .44 .11 1.1 .80 .22 .00	23. 101 101 1093 939 1231 1121
CADE L TSHE		• 0 • • • • • • • • • • • • • • • • • •				ŏ:ŏ-		····				ŏ:ŏ		0:0	.5		· · · Š · ····
LIVE TOT	ALS 473	.9 305.5	147.0	86.4	64.2	60.6	30.4	14.2	15.5	9.9	6.2	4.7	2.7	.5	446.3	62.5	
PSHE D LIDE O Acha d Acha d Cach d PILA d PILA d Quga d TSHE O	M	.0 30.7 .0 7.3 .0 1.5 .0 2.5 .0 0.0 .0 0.0 .0 .5	2.0				2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 • 6 0 • 0 0 • 0				0.0 0.0 0.0 0.0 0.0 0.0 0.0	.5 0.0 0.0 0.0 0.0 0.0 0.0	0 • 0 0 • 0	31.6 .6 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	6.5 .0 .0 .1 .1	23 5 2 1 1 2

.

* * AVERAGE VALUES FOR 23 PLOTS. * *

.

PSEUDOTSUGA HENZIESII/HOLODISCUS DISCOLOR/GRASS COMMUNICY TYPE

+ + STANDARU	ERRORS FUR	23 PL 0	rs. + +	

	HA.	CODES L N + +	REPRO	*	20	-NUMBER 3û	OF TR	EES/HA 50	3¥ 10 60	CH 08H 70	SIZE 80	CLASSI 90	ES		# 120	TREES GT 120CH /HA	TOTAL TREES GT10CH /HA	TOTAL BASAL AREA M2/HA	NUMBR Of DCCUR
CODE	-	DH	/HA	10	-			12.3	5.8	4.1	3.5		-2.4	1.5		.5	30.8	3.1	23
PSHE CADE TSHE	L. L. R.	L M	92.6 36.9	61.0 14.0 .5	23.1 6.5	2.8	8./ 2.9 0.J	2.4	1.2		n.0 10	2.1	0.0 0.0	9.9	0.0	0.0	15.0	1.8	10
ABGE	R		6.0 0.0	2.7 1.1 5.0	1.2	1.0 1.0	0.0 0.1	0.0	0.j	0.0	0.0	0.0 0.0	0.0 Ú.0 6.0	0.0 9.0 8.6	0.0 0.0 0.0	0.0 0.0 0.9	1.2 (.0 4.1	.2	1
ABPR ACH ARNE	E	L H	9.5	2 . 7	2.8	1.8	.5 1.2 0.0	8.8 0.0 0.0	5.0 0.0	0.0 0.0	0.û 0.0 0.0	0.0	0.0 0.0	0.0 0.0	ā.ā	0.0	3.4	.2	3
CACH PILI PIPI	A	· Ľ M. ·	14.2	2.8	1:1	0.0		0.0	0.0	0.0	0.0	.5	0.0	0.0	0.8	0.0	1.6	• 8	12
PRUI QUGI	NU A	Ľ H L H	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0 2.0 0.0	9.9 0.0 0.0	0.0 0.0 0.0	1.6 0.0 1.0	0.0 0.0	0.5 0.0 0.0	5.7 Ú.O	• U • 1 • Û	3
SAL I	R		6.0 9.0	.5 1.1 0.0	0.0	Ú. Ú Ú. Ú	0.0 0.j 0.0	0.0	0.0 0.£	0.0 0.0 0.0	0.0 0.0	0.0	Ç.9	9.0 0.0		0.0 0.0	6.0 1.7	• 4	12
PSN CAD TSH			0.0 0.0 	3.5	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	1.2 0.0	3.0		0.0	J.Ö.	0.0	0.0 0.0		0.0	0.0	0.0	¢.0	:0	1 3
LIVI		OTALS	101.3	73.8	27.2	11.7	8.5	11.5	6.1	4.1	3.6	2.5	2.4	1.5	1.1	.5	31.1	2.7	
PSM	Ē	D H	11.ŭ 6.0	9.3 3.7	4.9	1.2 J.0	1.2	1.1	1.2	1.7	1.1	•6 ú•0	1.0	9.9 9.9	. 0.0	0.0	7.4	1.8	23
	A		ŭ.ŭ 0.D		0.0	0.0	0.0	0.0 0.0	Ç. 3	ü.0 0.0	0.0	0.0	Ģ.ù Ģ.Q	0.0		0.0 0.0 0.0	2.0	• 0 • 0 • 0	23
ARH Caci PIL	A	D H	0.0 Ú.Q	1.6	2.0	0.0 0.0	.5	0.0	0.0	0.0	0.0	0.0	G • G G • G G • D	0.0	0.0 0.0	ů.0 0.0		.1 .û	1 1
PIP QUG TSH	Á .	0 M 0 M 0 W	0.0 6.0 0.0	•5	Û.Û 3.3 0.0	Ú. () (). () (). ()	3.0 0.2 0.3	0.j 0.2 0.6	0.J 0.J 0.J	0.0	3.ŭ 0.G	0.0	ι. ι.	0.G	<u>ğ</u> .ğ	0.0 0.0	3.3	• 1	2 1

DECK	ID	TP5	5 1	STUDY J	D DR	YD P	LOT	1	ARE	A II	э эн.	JA	ESTA	BLIS	HHEN	T DAT	E 7	70623							
PLOT	TYP	E FS	5 PL	OT AREA	a (sq	M) 10	0.00	ELE	VAT	ION	(4)	689	SLI	OPE	(%)	65.	A	SPECT	212						
LANDF	DRM	TCI	NCOL	HABITA	T PH	HUAC															· · · -				
SLOPE	E CO	RREC	TION	FACTOR	1.1	9269	PLOT	S IZE		IVER	исіг	FACI	OR 1	0.00		BOT	H C	GNV.	EACTO	RS	CONS	INED	Ħ	11.9269	3
SPEHA	C C C	DES	REPRO	D LT 137			-NUM	STEMS	67 rt A	3¥ :	10 C H	08H	SIZE	CLA	SSES		-*	*TR	EES G	T 1	20 CH	DBH	HUM	TOTAL	TOTAL BASAL
CODE		÷.	AREA (M2)	TALY	NUH ZHA	0.1-10	20				60	70	80	90	100	110 1	20	•NE	ASURE	0.0	JIAMS	+	/HA	GTIOCH /HA	AREA M2/HA
PSHE	L	N	1000	7	83	63	119	262	143	83	48	36	Q	Q	Q	<u>ý</u>	Q	0	ų	J	<u>c</u>	Q	Q	692	67
ARNE	Ľ	M	1000	0	0	12	- 12 - 12	0	រ	ů.	Ū,	0 0 0	Ŭ	0 U	ă	Ğ	0	ů.	, ř	ğ	- ŏ	ŏ	ŏ	12	j D
PILA	-	M	1000	2,	24	0	٥	0	0	0	D	-		U	U		U 7			U n	ч 	· n	- u	764	67
LIVE			1085	9	107		131		143	83	÷8	36	U	U	U	Li C	Ű	U -	u 	U A	, U	U	U O		
PSHE	٥	H	1000	0	0	12	24	12	0	0	12	12	U	a	ų	Ĺ	U	J.	Ŀ	U	i.	IJ	0	60	8
DECK	ID	TP5	b 1	STUDY	ID DR	YD F	LUT	2	AR	EA I	а он	AL.	ESTA	алт:	SHAFN	T GAT	F 7	770623							
PLOT	[Y P	E F	S PI	LOT ARE	A (SQ																				
LANDF	FORM	ГИТ		HABIT																					
SLOPE	E CO	RRE	STION	FACTOR	1.3	1244	PLOT	SIZE	: co	NVER	SION	FACI	OR 1	o . oi	0 0 0 0	តត ា	ь (GNV.	FACTO	291	0.44	INED	-	47 42.	
																					00115	LILU	-	191154	4
	C C C	DES		D LT 137			-NUM	STEMS	67 M A	31	1904	03H	SIZE	CLA	ASSES		-+	* TR	EES G	T 1	LZOCH	ŨоН	+	TOTAL	TOTAL
CODE	+	•	AREA (M2)	ΤΔΙΥ	NUH ZHA	0.1-	23	3	40		، ست منا در ع							*ME	ASURE	0 C	DIAMS	+	NUM Zha	ŠTĖNS gtidcm	BAS AL ARE A
PSME		н	1000	15	197	551	92	144	Ψ¥	20	54	70	0 U	30	100	110 1	20							/hA	H 27 HA
PILA QUGA		H H		1	13 0	551 0	13	144	66 0 0	39 D G	13	13	13	000	13	Ű Č	13	0 0	0	00	0	G Q	0	394 26 13	56
	TOT	ALS	1000	16	210	551	118	144	0 6	39	13	13	13	0	13	ũ	13	0	0	n n	0	С	0	433	0 61
LIVE																									

4 AREA ID OHJA ESTABLISHMENT DATE 770701 DECK ID TP56 1 STUDY ID DRYD PLOT ELEVATION (4) 594 SLOPE (%) 75. ASPECT 163 PLOT TYPE FS PLOT AREA (SQ H) 1000.0 LANDFORM NTUSBC HABITAT PHHDAC SLOPE CORRECTION FACTOR 1.25000 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONDINED = 12.5000 CODES REPRO LT 137CH *----NUM STEMS/HA BY 1034 DBH SIZE CLASSES-----+ *--TREES GT 120CH DBH--* TOTAL NUM STEMS BASAL SPP ALPHA /HA H2/HA NUN 0.1-30 40 50 60 70 80 98 108 110 120 **TREA** CODE 20 10 (M2) TALY /HA DH 212 19 ۵ A Λ 0 12 50 37 12 ۵ 50 100 100 L N 1000 PSNE 8 - . . **G**. A --₽ 8 0 8 ۵ 8 ß 8 0 ۵ 0 0 ۵ 0 0 0 0 0 0 12 25 0 D H 1000 1 PSHE ESTABLISHMENT DATE 770714 AREA ID DOAK PLOT 7 DECK ID TP56 1 STUDY 10 DEYD SLOPE (%) 81. ASPECT 205 PLOT TYPE FS PLOT AREA (SQ H) 1000.0 ELEVATION (N) 975 LANDFORM HTDDSS HABITAT PHHDAG SLOPE CORRECTION FACTOR 1.28690 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONDINED = 12.8690 *----NUH STEHSTHA BY 100H UBH SIZE CLASSES-----+ *--TREES GT 120CH DBH--* TOTAL TOTAL CODES REPRO LT 137CH SPP NUN STENS BASAL ALPHA L'N SAMP *--HEASURED DIANS --+ THA GTIDCH AREA CODE + + AREA NUM 6.1-80 90 100 116 120 /HA H 2/ HA 30 40 5) 60 70 (M2) TALY 20 0 M **ZHA** 10 335 72 51 n 10 -103 39 26 13 26 26 51 64 6 PSHE LM 50 515 77 2 2 Ô. n 0 Ő. ā Å. ă Ō ã. Ô. ۵ a ۵ ACHA 335 72 n 13 0 0 A a a 26 n LIVE TOTALS 50 2 515 142 20 77 26 51 **ž1** 64 13 G ۵ a n n A 0 1 A 8 0 a 44 13 n a 8 A PSME D M 50 a

AREA ID OOAK DECK ID TP56 1 STUDY ID DRYD PLOT 17 ESTABLISHMENT DATE 770721 PLOT TYPE FS PLOT AREA (SQ N) 1003.0 ELEVATION (N) 960 SLOPE (%) 80. ASPECT 225 LANDFORN NHODSV HABITAT PHHDAC PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONDINED = 12.0062 SLOPE CORRECTION FACTOR 1.28062 *----NUM STENS/HA 3Y 100M UBH SIZE CLASSES-----* *--TREES GT 120CH DBH--* TOTAL TOTAL TOTAL STENS BASAL GTINCH AREA SPP CODES REPRO LT 137CM ALPHA CODE SAMP AREA H H NUM --MEASURED DIAMS ---THA 0.1-(HZ) TALY **ZHA** 10 20 30 48 53 60 76 80 90 100 116 120 / HA M 27 HA 0 W 371 0 13 13 C Ú 179 77 13 50 73 PSNE CADE 38 13 26 F H 0 38 13 13 26 38 ទ័ 13 ŏ ō ŏ 13 Õ 26 ۵ Ō ā Õ Ā 0 8 ŏ ā ũ Õ Ã ã ĕ ã Ğ Ā ā á ĒĤ 8 .3 6 8 ARHE PILA ŠÕ. Ĺ ß 0 13 Ω 0 13 Ĵ. ۵ Û Λ n n G Û. °Ø 282 89 LIVE TOTALS 50 Ũ 384 51 26 13 38 38 13 26 38 13 26 ۵ 11 n 10 12 26 PSNE C M D M 50 13 0 0 13 £ 6 13 0 C 0 ũ ă ñ. ñ n G DECK ID TP56 1 STUDY ID DRYD PLOT 28 AREA ID DOR ESTABLISHMENT DATE 770802 PLOT TYPE FS PLUT AREA (SQ H) 1000.0 ELEVATION (4) 914 SLOPE (%) 50. ASPECT 225 LANDFORM TODDHV HABITAT PHHDAG SLOPE CORRECTION FACTOR 1.11803 PLUT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 11.1603 SPP ALPHA CODES REPRO LT 137CM -+----+ +--TREES GT 1200H DBH SIZE CLASSES-----+ +--TREES GT 1200H DBH--+ TOTAL TOTAL *--MEASURED DIAMS--* /HA GTIOCH AREA BASAL AREA (N2) TALY CODE ٠ + NUM 0.1-D N 20 30 /HA 10 -+0 53 63 70 dü 90 100 110 120 /HA H2/HA PSHE 50 224 559 125 155 L н 50 34 ú 157 68 12 11 ĥ 11 11 ۵ a 22 11 50 -447 22 ā ā ā Õ ō м 4 ß Ó Ĝ Õ ă ā Ō L - 8 8 Ω a 2 **1** ā ARHE M Q Ð 11 ð ā ā õ ã 11 0 ۵ A 45 CACH ō 3 L M L H 441 n ñ 0 a 5ŏ PILA ñ đ Ċ 11 14 LIVE TOTALS 50 5 1118 648 78 22 125 155 125 - 11 0 11 11 34 ۵ 11 G 0 a ۵ 34 212 84 PSME 0 M 50 50 n Ω 11 11 Û 0 1 ۵ ۵ 0 8 11 ARME ā D N G

DECK ID TP55 1 STUDY 10 DRVD PLOT 29 AREA ID OBR ESTABLISHMENT DATE 770802

PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (4) 846 SLOPE (%) 50. ASPECT 205

LANDFORN BBDDSS HABITAT PRHDAC

SLOPE CORRECTION FACTOR 1.11803 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONBINED = 11.1803

SPP ALPH	CODES	SAMP			#	-NUM	STENS	57 HA	ЭY	10 CM	09H	SIZE	CL	SSES	5					120CH	08H	NUM	TOTAL STEMS GTINCH /HA	TOT AL DASAL
GODE	D W	AREA (M2)	TALY	NUH ZHA	10	20	30									120						/HA	/HA	AREA H2/HA
PSHE	LN	50	0	0	0	34	45	112	101	78	11	0	0	0	0	0	0	0	0	0	0	0	380	53
LIVE	FOTALS	58	. 0	· · 0 ···	Û	34		112	-1.81						0			- 0	8		· • •	0		
PSNE	D M	50	<u>0</u>	0	11	11	0	Q	0		Q	Q	9	9	Q	Q	Q	0	Q	0	8	Ģ	11	9
AKAL	UN	28		9	Ŭ	U	11	8	ų	U U	U U	U			Ţ			U.	T		U	0		

DECK ID TP56 1 STUDY ID DRYD PLOT 36 AREA ID OBR ESTABLISHMENT DATE 774845 PLOF FYPE FS PLOT AREA (SQ H) 1000.0 ELEVATION (H) 899 SLOPE (%) 75. ASPECT 225 LANDFORM TEDDES HABITAT PHHDAC SLOPE CORRECTION FACTOR 1.25000 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONBINED = 12.5000

SPP Alphi Gode	CODE 4 L N + + 0 N	S	REPRO Samp Area (M2)	LT Taly	137CH Num Zha	• 0.1- 10	-NUM 20	STEMS	/HA 40	3 Y 50	100M 60	D3н 70	SIZE 80	CL4 90	ASSES	110	120	*TRE *MEA	ES GT Sured	120G 0IAN	M 08 S*	H* NUM /HA	TOTAL Stems Gt10Cm /HA	TOTAL BASAL AREA M2/HA
PSHE CADE	LM		50	4	1000														Ô	0 0 0	0 0	ĝ	400 25	65 0
LIVE	TOTAL	S	50	4	1 0 0 0	12	62	62	150	50	50	25	0	12	Q	12	0	0	G	0 0	Q	Û	425	66
PSNE	ЪM		5 ú	0	G	0	12	0	Û	a	0	G	0	0	0	Ű	0	0	ũ	0 0	٥	0	12	0

	TYPE	• •		OT ARE				C L C	*****						• /• #		••••••••							the collection is the set from the	
				HABIT					_												• • • • • •				•
SLOPE	COR	REC	TION	FACTO	R 1.1	9269	PLOI	SIZE	CUN	NER.	JION	FACI	[OR 1	0.03	000	80	тн	LONV.	FACT	ORS	CONR	INED) =	11.926	9
	200 L	M	SAMP) LT 13																			NIEM	TOTAL STEMS GTIDCH	- A A S A I
CODE	ů		AREA (M2)	TALY	ZHA	10	20	30		50			80	90	100	110	120	+ A I	LA 30 4		JINUS		7 1 4	ZHA	M2/H
PSHE CADE ACMA	1 1 1	M	50 50	0 0 2	0 0 477	0 0 119	12 12 24	12 0 0	12 0 0	12 0 0	12 0	36 0 6	36 U U	36 G	24 0 0	36 0 0	0 0 0	0 0 6	ů C G	0 0 0	0 0 0	r G	0 0 0	227 12 24	
IVE	TOTA	ĿŞ	56	2	477	119	40	<u>1</u> 2	12	12	12	36	36	3 ĝ	24	36	. <u>0</u>	<u>.</u> .	Ģ	, și	Ű,	õ	8	262	10
SHE	۵	M	56	ú	C	12	G	0	o	ú	G	۲	ð	Û	J	G	0	3	ũ	û	8	ũ	0	0	
FOK	70 T	-56	1	STUDY	10 08	ען און פ		4.2	4 6 5	Δ Τ 3) OH-		FSTA	a i Ts	HHEN	T DA	T.6 7	70818							
LOT	I Y PE	FS	PL	STUDY OT ARE	A (SQ	M) 10	LUT	42								-		70818							
LOT	TYPE ORM	FS SMG	PL DSS	OT ARE	A (SQ At PM	N) 10 HDAC	_0T 0ú.ŭ	42 ELE	VATI		(4)	4 86	SL(OPE	(%)	dű.		70818 Aspect	193						
PLOT ANDF	TYPE ORM	FS SMG	PL DSS	OT ARE	A (SQ At PM	N) 10 HDAC	_0T 0ú.ŭ	42 ELE	VATI		(4)	4 86	SL(OPE	(%)	dű.		70818 Aspect	193		COHS	INED) =	12.806	2
PLOT . ANDF	TYPE DRM COR COR	FS SMD REC	PL DSS TION REPRO SAMP AREA	OT ARE <u>Haði</u> 1 Fagtur Lt 13	A (SQ A <u>t Ph</u> 1.2 37Cm NUM	M) 10 HDAC 8062 + 6.1-	LGT 04.6 PLOT -NUM	42 ELE SIZE STEMS	VATI Con /Ha	DN (VERS 94 1	(4) 510n L) Cm	4 86 Fact Двн	SLO OR 11 SIZE	DPE 0.00 CLA	(%) 000 SSES	80 80	тн (+	70818 ASPECT JUNV. +TR +ME	193 Fact Ees	ORS St 1	L2JGM	DaH	+	TOTAL Stens Gtigcm	T OT AI BASAI ARE A
ANDF	TYPE ORM COR COR	FS MG KEC	FL DSS TION REPRO SAMP AREA (HZ)	OT ARE HABII Factor Lt 13 Taly	A (SQ At PH 1.2	N) 10 HDAC 8062 + 0.1- 10	LOT 04.6 PLOT -NUM 20	42 ELE SIZE STEMS	VATI Con /HA 40	. Э. М. (IVERS Э. Y 1 53	(4) 510n L) Cm	4 86 Fact Двн	SLO OR 11 SIZE	0.00 CLA 90	(%) 000 SSES	80 80	TH (+ 120	70818 ASPECT LUNV. *TR *HE	193 Fact Ees	ORS St 1	L2JGM	DaH	NUM ZHA	TOTAL STENS GT10CM 7HA	T OT AL BASAI ARE A N 27 HA
PLOT	TYPE DRM COR COR	FS SHG REC	PL DSS TION REPRO SAMP AREA	OT ARE <u>Haði</u> 1 Fagtur Lt 13	A (SQ A <u>t Ph</u> 1.2 37Cm NUM	M) 10 HDAC 8062 + 6.1-	LGT 04.6 PLOT -NUM	42 ELE SIZE STEMS	VATI Con /HA 40	DN (VERS 94 1	(4) 510n L) Cm	4 86 Fact Двн	SLO OR 11 SIZE	DPE 0.00 CLA	(%) 000 SSES	80 80	тн (+	70818 ASPECT JUNV. +TR +ME	193 Fact Ees	ORS St 1	L2JGM	DaH	+	TOTAL Stens Gtigcm	T OT AI BASAI ARE A
ANDF ANDF LOPE	EYPE DRM COR COR COD L D L L L	FS MG KEC	PL DSS TION REPRO SAREA (H2) 50	OT ARE HABII FACTOR LT 13 TALY	A (SQ AT PH 1.2 37CM NUM 7HA 0	N) 10 HDAC 8062 • 0.1- 10 115 0	LOT 06.6 PLOT -NUM 20 77	42 ELE S IZ E STEMS 30 115	VATI CON /HA 40 51 13 0	ЭН (VERS ЭТ 1 53 115	(4) 510n LOCM 60	486 FACT DBH 70 0	SL(OR 11 SIZE 80	0.00 CLA 90 13	(%) 000 SSES	80 80	Тн (+ 120 0	70818 ASPECT .UNV. *TR *ME 185	190 FACT EES ASUR	ORS Sta ED C	LZJGH DIAMS 0	DoH + G	NUM /HA 13	TOTAL STEHS GT10CM 7HA 3d4 26	T OT AI BASAI AREA N 27 H

226

•

DECK ID TP56 1 STUDY ID ORYO PLOT 48 AREA ID DHJA ESTABLISHMENT DATE 780613

PLOT TYPE HS PLOT AREA (SQ H) 500.0 ELEVATION (1) 492 SLOPE (%) 49. ASPECT 227

LANDFORN BCDDWB HABITAT PHHDAC

SLOPE CORRECTION FACTOR: 1.11360......PLOT SIZE CONVERSION FACTOR 20.0000 BOTH CONV. FACTORS COMBINED = 22.2720

SPP ALPHA	CODES	REPR	O LT	1 37 CH		••••	-NUM	ST ENS	/HA	ЗY	19 CM	рэн	SIZE	CL/	ASSE:		#	+TR					NUM	TCTAL STEMS	TOTAL BASAL
CODE	0 H	AREA (H2)	TAL	Y ZH	M U A	•1- 10	20	30	֟	50	60	76	80	90	168	110	120	*ME	ASURE	00	IAMS	+	/HA	GT10CM /Ha	AREA M2/HA
PSHE GONU PSHE	L M L M L W	50 50		0 0 1 22	0 3	89 0 0	134 22 0	· 67 J 0	67 0 0	67 0 0	0 0 1	2 2 0 0	0 0 0	000	0 0 0	Û C Ú	0 0 0	0 0 0	6 0 0	300	6 2 3	Ŭ Ļ	0 0 0	356 22	31 0 0
LIVE	TOTALS	50		1 22	3	89	156	67	67	67	0	22	0	0	0	Ğ	Q	Q	G	ú	ũ	ú	Ŭ	379	32
PSHE PSHE	DW	50 50		0 0	0	22	22 0	45 0	0	8 0	22 0	0 G	0 G	0	ŷ	C G	0	5	ů G	ŭ L	5	0 0	0 0	έρ Γ	9

DECK ID TP56 1 STUDY ID DRYD PLOT 58 AREA ID GHJA ESTABLISHMENT DATE 753614 PLOT TYPE FS PLOT AREA (SQ H) 1000.0 ELEVATION (4) 683 SLOPE (%) 74. ASPECT 165 LANDFORN THOORS HABITAT PHHDAC

SLOPE CORRECTION FACTOR 1.24403 PLOT SIZE CONVERSION FACTOR 10.60000 BOTH CONV. FACTORS CONBINED = 12.4403

SPP					LT	1370	M	+	-NUM	STEMS	АнХ	ЗΥ :	1024	D3H	SIZE	CL	ASSES	,	*	* TR			L2JCM		NUM	STENS	TOTAL JASAL
CODE	-	÷+ D н		REA H2J	TAL		IUN HA	0.1- 10	20	30	40	50	60	70	80	90	103	116	120	* ME	ASURE	DC	DIAMS	+	ЛНА	GT10CM /HA	AREA M 27 HA
PSHE CADE ACHI TABI TSHE				500550	·		6 1 8 4 9	50 75 0 12	124 37 12 12	62 0 0	50 12 0 0	50 0 0 0	62 0 0 0	37 6 6 0	25 0 0	00000	0 0 0 0	6 6 6 6	0 0 0 0	0 0 0 0	666	00.000	0000	-30-303	000000000000000000000000000000000000000	411 50 12 0	57 0 0
LIVE	: T (DTAL	S	50		1 2	249	137	187	62	62	5 Q	62	37	25	۵	0	Ĺ	0	0	û	ú	0	ù	0	405	63
PSME		0 M		50		0	0	62	37	0	25	0	0	G	۵	Û	û	G	12	Ũ	Ű.	J	Û	Ű	Û	75	16

22 \sim L

					•	* AVE	RAGE V	ALUES	FOR 1	2 PLOT	5. • •								1
SPP	CODES	REPRO	+		-NUMBÉR		EES/HA	BY 10	CH DB	F SIZE	GLASS	ES		• • • • •	TREES GT 120CM	TOTAL TREES GT10CH	TOTAL Basal Area	NUNAR OF	
ALPHA Code	й н	NUM Zha	10	20	30	40	50	60	70	40	96	166	110	120	/ HA	/HA	HZTHA	ÖCCUR	ł
PSHE LIDE ARHE CONU PILA UUGA TASHE TSHE		176.6 37.3 37.8 37.3 37.3 37.3 3.1 3.1 20.7 18.6 9.0	165.4 13.2 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.8 4.1 3.9 1.1 1.1 0.0 1.0	76.8 1.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		4 8 • 4 2 8 • 2 0 0 • 0 0 0	27.2 2.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0				6 • 1 0 • 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 . 2 0 . 6 0 . 0 0 . 0			343.9 13.6 5.8 5.8 1.9 4.2 1.1 0.0 1.0	61.4 1.3 .2 .0 1.8 0.0 0.0	12 14 11 12	-
LIVE	TOTALS	333.2	197.4	50.0	78.0	0 3. 0	51.0	34.4	22.4	13.2	8.3	6.1	7.2	1.1	3.9	376.6	65.1		
PSHE LIDE I ARHE PSHE	С н О н О н	1.0 6.0 0.0 4.0	20.0 1.1 .9 1.9	19.0 0.0 0.0 0.0	7 • 5 0 • 5 • 9 0 • 6	2.1 0.0 0.0 0.0 1.0	2.2 0.0 0.2 0.2	3.¥ 0.ŭ 0.0 C.J	1.0 6.0 0.0	0.ŭ 0.ŭ 0.ŭ 0.ŭ	0.0	1.1 0.0 0.0 1.0).0 3.0 9.0 0.0	3.2 J.Q D.C 0.0	0.0 0.0 0.0	40.9 0.0 - 9 0.0	6.8 .0 .1 .0	12 1 2 1	

PSEUDOTSUGA MENZIESII/HOLODISCUS DISCOLOR-ACER CIRCINATUM COMMUNITY TYPE

.

· •

SPP.	CODES	REPRO	*		-NUNDER	OF TR	EESTHA	3¥ 10	CH DBI	H SIZE	CLASS	ES		+	TREES GT 120Ch	TOTAL Trees GT16Cm	TOTAL Basal Area	NUM BR OF
ALPHA Code	Û W	NUH ZHA	10	20	30	40	50	60	70	88	96	166	110	120	ZHĂ	/HĂ	H27HA	ÖCCUR
PSHE CADE ACHA ARHE GACH PILA QUGA TABRE		86.9 37.3 35.8 0.0 37.3 0.0 2.2 0.0 2.2 0.0 2.2 0.0	59.7 6.2 10.2 1.6 6.5 0.0 0.0 0.0 0.0	12.2 3.6 2.3 2.2 0.0 1.9 1.1 1.1 0.0					5.6 0.0 0.0 0.0 0.0 1.1 0.0 0.0				3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			41.5 2.8 3.80 1.9 1.1 1.1 0.0	6.2 1.1 .2 .0 1.2 .0 0.0 0.0	12 6 4 3 1 1 4 1
PSHE TSHE	. L #		1.4					0.0	. ŏ.ŏ	0.0	ă.ă.	. 0.0	ă.ă	ŎĴŎ	ŏIŎ	1.0	📑 Ö	. 2
LIVE	TOTALS	109.7	61.3	14.5	19.9	14+1	10.2	7.9	5.4	4.3	4.1	2.4	3.5	1.1	2.9	39.2	6.0	
PSHE CADE ARNE	D H	1.0	8.4 1.1	6.2	3.8	2.1	1.5	2.2	1.0	0.0	0.0	1.1	0.0	2.3	0.0	11.4	2.7	12
PSHE	<u>— й н</u> 0 н	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ű.Ö	. 0	21

* * STANJARD ERRORS FOR 12 PLOTS. * *

.

.

PSEUDDTSUGA MENZIESII/HOLODISCUS DISCOLOR-AGER CIRGINATUM COMMUNITY TYPE

DECK ID TP55 1 STUDY ID DRYD PLOT 5 AKEA ID DOAK ESTABLISHHENT DATE 770713 PLOT TYPE FS PLOT AKEA (SQ H) 1003.0 ELEVATION (4) 564 SLOPE (%) 25. ASPECT 210 LANDFORH BEDDSV HABITAT PHBADI SLOPE CORRECTION FACTOR 1.03078 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONBINED = 10.3078

	CODES	REPRI	0 LT	137CH	+!	hUr	STEMS	∕ri A	3¥ 1	LO CH	нью	SIZE	CLA	SSE:		+	+TR	EES G'	T 1	2 J C N	ÐöH	+ NI 1 M	TOTAL	TOTAL
CODE	Т ¥ D W	AREA (M2)	TAL	NUM V / HA	+	24	3 u	40	53	5 il	70	60	90	100	110	126	*ME/	SURE	מכ	IAMS	*	ZHA	GTICCM /HA	AREA N 2/ HA
PSNE CADE	LH	0	ł	0 0 0 C	21	52 31	103 21	\$3 0	93 û	62]	ά2 C	0	10 0	Û	ç	Û	G	6 6	e G	3	ů J	0 0	495 52	77
LIVE	TOTALS	0	i	0 G	21	82	124	53	33	82	62	6	10	G	C	G	a	ú	٥	Û	نا	C	546	78
PSHE CADE	D H	i i		0 0 0 C	1 J	31 G	100	100	G 0	3	C C	0	3	ü Ü	C G	0	0 0	C L	00	C G	0 2	0 0	52 0	2 0

DECK ID TP35 1 STUDY ID DRYD PLUT 13 AREA IS DRIG ESTABLISHMENT CATE 770720 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (M) 732 SLOPE (%) 36. ASPECT 270 LANDFORM MEUDSC HABITAT PMBADI SLOPE SURRECTION FACTOR 1.06283 PLUT SIZE CONVERSION FACTOR 10.00000 BUTH CONV. FACTORS COMBINED = 10.6263

SPP	CODES	REPRO) LT 1	37CM	+	-NUM	STENS	/ HA	3Y 1	L0 3 4	Dah	SIZE	CLA	SSES	,	+	+ TR	EES (GT 1	2004	0 SH	+	TOTAL	TOTAL
AL PHA CODE	14 14 D m	SAMP AREA (N2)	TALY	NUM ZHA		20	30	40	53	60	70	80	90	100	110	120	+NE/	ASUR	ED D	IAMS	+	ZHA	TOTAL Stems Gtidom /Ha	AREA M2/HA
PSME ACNA PILA	L M L M L M	5ů 5ů 50	1 3 1	213 638 213	43 0	96 11 1	7 1 0	21 0 0	53 0 0	000	21 0 C	0 Ů 0	32 0 0	6 6 0	G C Q	000	1 0 0	Ŭ G Č	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	000	666	0 0 0	298 11 0	42 0 0
LIVE	TDTALS	50	5	1063	-, 3	106	74	21	53	a	21	G	32	0	G	0	G	3	ũ	ü	ú	ð	308	42
PSHE PIPO	D N D M	50 50	0	0	0	Ū Ū	0	0 0	0	0	0 11	0 0	0	0 0	11 G	0 0	0 0	C Ö	U J	0	10	0 0	11 11	9 4

DECK ID TP56 1 STUDY ID DRYD PLUT 14 AREA ID DRIG ESTABLISHMENT DATE 770720 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (M) 663 SLOPE (%) 24. ASPECT 202 LANDFORM TCODSB HABITAT PMBADI SLOPE CORRECTION FAUTUR 1.02840 PLOT SIZE CONVERSION FACTOR 10.00000 BUTH CONV. FACTORS COMBINED = 10.2040

SPP.	CODES		LT 1	37CH	*	-NUM	STENS	/ rl A	3 Y	1834	йЗh	SIZĒ	CLA	ISSES		*	*TR	EES J	T 1	20Url	0dH	+ NI 1 M	TOTAL	TOTAL
SPP ALPHA CODE	Сп ++	SAMP AREA (H2)	TALY	NUM Z HA	0.1- 10	21	30	4.1	5u	61	7 U	90	90	168	116	120	*ME	ASURE	C 0	IAMS	+	ZHA	ĞŤĨĊĊM ZHA	ARE A H2/HA
PSME ARME PILA PIPO	L H L H L M	50 50 50	1 1 2 0	206 206 411 3	463 0 10 3	-01 51 0 0	267 21 0 0	51 Ü Ü	8 0 0 0	9000	L L L	1 U Û Û J	0 0 1 0	1 0 0 0 0	ن 2 1 ت 1 ت	0000	0 0 0 0 0	Ú L L	טרטר	5000	1.31313	70.50	743 72 21	4) 2 15
LIVE	FOTALS	50	4	823	473	452	288	51	3	C	C	13	10	10	10	8	σ	C	Ľ	Ĵ	C	3	833	57
PSHE ARHE	О М D М	50 51	Ű	۲ ۵	226 21	21 163	D J	ů ů	j	3 S	C L	j G	C Q	ن ب	Ľ	8	0 0	i C	j O	ġ	Ģ.	G C	21 103	1 2

DECK ID TP56 1 STUDY ID DRYD PLOT 49 AREA ID GOAK ESTABLISHMENT DATE 780627 PLOT TYPE FS PLOT AREA (SQ M) 100000 ELEVATION (M) 610 SLOPE (%) 67. ASPECT 254 LANDFORM TTGDSS HABITAT PHBADI SLOPE CORRECTION FACTOR 1.20370 PLUT SIZE CONVERSION FACTOR 10.60000 BOTH CONV. FACTURE COMBINED = 12.0370

SPP	င္စစ္စ	ËS	REPHO	LT 1	137Cm	*	HUM	STEMS	ŹĦĄ	3 ¥ 1	Lũ Chị	рэн	SIZE	ېLA	SSES		*	+TR	EES G	T 1	2JUN			TOTAL STEMS	TÚTAL BASAL
CODE		+ M	AREA	TALY	NUM Zha	0.1- 10	21	30	40	51	60	76	8 J				120	+ME)						GT1 OCM /Ha	AREA N2/HA
PSME CADE ACMA PSME	ل ل ل	1111	50 50 50	0 0 0	0000	12 30 0	12 12 60	30 Ú 24 0	60 0 0	46 0 0	60 0 12	1 2 G G	12 0 0	0000	0	U U U U U U)]]	Ú Č Č		0000	0.000	0 0 0	241 12 84 12	4 U 0 3 3
	TOTA		50	0	0	48	84	60	őŰ	48	72	12	12	0	۵	ũ	Û	3	ũ	Û	a	U	а	349	45
PSHE ACMA	0	M M	50 5ú	0	Û	0 24	24 0	12 G	12 0	Û	0 6	Ú G	j D	0	Ű	G C	Û D	1 L	Ú Ú	ך נ	ŷ	ů O	8	48 0	2 0

DECK ID TP55 1 STUDY ID DRYD PLOT 60 AREA ID DOAK ESTABLISHHENT DATE 790618 PLOT TYPE 65 PLOT AREA (SQ H) 525.0 ELEVATION (4) 930 SLOPE (%) 50. ASPECT 230 LANDFORM TBDDB5 HABITAT PNBADI SLOPE CORRECTION FACTOR 1.11803 PLOT SIZE CONVERSION FACTOR 16.00000 BOTH CONV. FACTORS CONBINED = 17.8885

SPP Alpha Code	C O L	DES	REPRO Samp	LT	137CH	*	-NUM	STEMS	/ HA	3Y 1	NC0.	03H	SIZE	GLA	SSES	;	*	•IRE	ES GI	12	0 CH	неd К	+ IUM	TOTAL STEMS GTIDCH	TOTAL BASAL
CODE	Ð	*	AREA (M2)	TAL	NUM r Zha	0.1-10	23	30	40	50	60	7(80	90	100	116	120	*HEA	SURED	"DI.	AMS-	/	ΉΆ	GT10CH /HA	ARE A M2/HA
PSHE CADE PSHE	L L L	N N	75 75 75		L 149 L 149 L 149	107	26 å	18 54 J	18 18 0	19 15 0	18 0	1 6 6 5	18 0 1	18 0 9	18 0 3	54 6 8	0 0 0	126 0 0	5 6 6	0 0 0	0 0 0	ü G Q	180	197 376 0	111 17 0
LIVE	ŢŎŢ	ALS	75		3 447	107	26 8	72	36	35	10	i b	18	18	18	54	Q	125	ů.	3	0	0	18	572	129

DECK ID TP55 1 STUDY ID DRYD PLUT 54 AREA IB DRIG ESTABLISHMENT DATE 750620 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (M) 632 SLOPE (%) 34. ASPECT 204 LANDFORM MDDDSS HABITAT PMBADI SLOPE CORRECTION FACTOR 1.05622 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 10.5622

SPP AI PHA	CODES	REPRO	LT	137CH	*	-NUM	STENS	ZHA	Э¥ :	1024	Ddh	SIZE	CL/	ASSES	5	*	+TR	EES G	T 1	20 CM	DoH-	* *	Idivr	TOTAL BASAL	
ALPHA Code	Т D W	AREA (H2)	TAL	NUN 7 HA	0.1-10	20	30	44 Lu	50	2 Q	76	80	90	100	110	120	*NE	ASURE	0.0	IANS-	-+ 7	'HA	GT10CH ZHA	AREA H2/HA	
PSHE ARHE PILA	L N L H L H	50 50		211 0 0	665 21 0	95 53 0	11 21 0	53 11 0	11 3 8	11 0 0	21 5 5	11 3 0	32 0 0	0	21 0 0	0	0 0	0 6 0	000	0	Ű	0 0 0	264 84	63 3 0	
LIVE	TUTALS	50	t	211	687	148	32	63	11	11	21	11	32	a	21	. 0	8	0	Q	Û	0	- 0	- 349	66	
PSHE ARME PILA	D M D M D M	50 50 50		0 0 0	74 11 11	11 11 0		0	11	0	0 0 6) 0 0	0 0 0	0 0 0	Ű	0 0 0	0 0 0	0 0	0 0 0	0 0	5 0 0	0	21 11 0	200	

.																		70.04.04				• •		
			61		I I O OR		PLOT	66			0 00							790621						
PLOT		-			REA (SO		100.0	- ELE	VAT		(4)	435	-25	UPE	(%)	32.		ASPECT	248					
		-			TAT PH					• .								0.0				• -	40.400	F
SLOP	EC	ORKE	CTION	FACTO)R 1•4	4995	5F01	I SIZE	UON	4V.E.K.	SION	EAU	IUK 1	1) - () ()			1.11	GUNV .	FAGIUR	(S. 60)	101NE	U.#	10.499	2
SPP	C A	ODES	REPR	0 LT 1	1 37 CM	* == ==	-NUM	STENS	i/HA	ЭY	18CM	ран										NUM	TOTAL	TOTAL BASAL
CODE		7 7 0 m	AREA (M2)	TALY	NUN Zha	0.1-10	20	30	4Ŭ	50	5 Û	70	80			110			ASURED	DIA	MS*	THA	GTIUCH /HA	ARE A H2/H/
PSHE CADE ARME CACH			50 50 50		210 420 6	189 241 199 21	105 31 0	21 10 0	21 0 0	10	000000000000000000000000000000000000000	21 0 0 0	10 0 0	10 0 0	10 0 0	21 0 0 0	31 0 0 0	140	0000	0 0 0			115 168 42 0	20
LIVE			50	3	630	651	136	31	21	10		21	10	10	. 10	21	31	150	1.40	0	0	21	325	12:
PSHE CADE		D H	50 50	0	0 0	21 31 21	ů C	0	0	0	0	21 ((0	10	18 0 1	Ú C C	1 Ü 0 0	Q	0 6 6	0 0 0	ជ រៀ សូ រៀ	0	52 0	31
ARME CACH		D H D H	50		0		ő	Ŭ Û	ů	Ŭ	ä	Ğ	ÿ	ŭ	Ő	ŭ	ŏ	ŏ	Ğ	ŭ	Ğ Ğ	ŏ	ŭ	ì
DECK	ID	TP5	5 1	STUDY	ID OR	YD P	LUT	67	ARE	A 10	0.41	6	ESTA		HMEN	T DAT	IE 7	90723						
PLOT	TYF	PE F	5 PL	OT AR	EA (SQ	M) 10	00.U	ELE	VATI) N C	4)	765	SLO	PE	(%)	22.		SPECT	242					
LANDF	ORM	4 H.G.	DSV	HABI	TAT PH	HADI																		
SLOPE	6 6 6	ORKE	TION	FAGTU	R 1.0	2391	PLOT	SIZE	CON	VERS	r C 1	FALT	OR 10	.00	000	801	FH (CONN.	FAGTOR	S COM	IJINĒ	D =	16.2391	1
S PP Al Pha Code	L L	00ES M + +	REPRO SAMP AREA (M2)		37CM NUM ZHA	* 0.1- 10	-NUM 20	STENS,	/HA +0	ЗҮ 1 50	0 C M 6 0	0 oh 76	SIZE 80			116 1						NUM	TOTAL STEHS GT1 CCH / HA	T OT AL BAS AL Are A H 27 HA
PSHE		_ M	75	0	0	225	41	31	10	31	31	2 <u>ن</u>	20	41	41	Ĺ	Q	134	ÿ	a a a c	i o	10	276	99 1
ABGR PILA	Ľ	L H L H	75 75		1 37	31 31	20	0 0	0	·····	0.	- · · Ď·		Ŭ.	Ŭ Ŭ	- <u>0</u> -	Ū		0 0	0 (1 (· · ů	0	Ó
LIVE	r 0 1	TALS	75	1	1 37	287	61	31	10	31	31	26	2 0	-1	41	ų.	0	134	ú	6 6) Ú	10	297	168
																							20	

233

.

ECK	I D	TP5	5 1	STI	10x	ID	DRYD	PLU	T	69	AR	A I	0 07	l G	ESTA	Bris	HNEN	T DA	TE :	79072	+						
LOT	TYF	E F:	S PL	. or	ARE	EA (S	SQ MJ	1000	.0	ELE	VATI	LON	(4)	977	SL	.OPE	(%)	2ί.		ASPEC	T 21	3					
ANDF	ORI	("HDI	DDSV	H	ABII	AT F	NHADI				ana a 1949 ana				*** * ** * *****												
LOPE	6 6 6	ORREI	CTION	FAI	CTOF	ξ 1.	61980) Pi	LUT	SIZE	C 01	VVER	SIDN	FACT	OR 1	10.01	0000	80	ГН	CONV.	FAG	TORS	COMB	INED	₹	10.198	ũ
PP.	CC	DDES			F 13	57CH	*	N	NU	STENS	/ ni A	31	10CH	D3H	SIZE	E GLA	SSES		*	+T	REES	GŢ	120CH	084	*	TOTAL	ŢŎĬŔ
ODE		н 	SAMP AREA (H2)	TAI	_ Y	NUP / H/	0.1		20	30	40	50	60	70	80	90	160	116	120	-+HI	EASU	RED	DIAMS	+	ZHA	GTIUCH /HA	BASA AREA M27 H
SHE		- M - M	75 75 75	•	200	272		0	92	ε2 10 -0 10	41	20	20	10	31	20	0	0	000	0	0 0 0	0	0	0	000	316 10 0	5
IVE	י דסד	. n NLS	75 75		2	-272	, 2 140	_	92	102	20 51		31	20	51	-20			-0						0-	418	1
SNE-) H) N	75		0		14	3	51 10	10	10							Q	0	153	<u>8</u>	0	<u>a</u>	Ő	10	61 41	2

				<u> </u>		•	+ AVE	RAGE V	ALUES	FOR	9-PLOT	5. * *							
SPP		м	REPRO	+		-NU MBER	OF TR	EE S/HA	8¥ 16	CH CB	H SIZE	CLASS	ES		+	TREES GT 12JGH	TOTAL TREES GT10CH	TOTAL BASAL AREA	NUM BR
ALPHA Gode		+ W	NUM Zha	10	20	3ú	40	51	õQ	70	80	90	100	110	120	/HA	ZHĂ	MZZHA	ÖCCUR
PSHE LIDE AGRA ACHA ARHE CACH PILA PIPO PSNE	L L L		140.1 63.2 0.0 70.9 22.9 0.0 84.5 0.0 16.6	330.25 44.25 22.55 22.53 40.00 00.00	87.6 46.3 7.9 15.1 0.0 0.0 0.0	59.1 11.7 0.0 2.7 3.6 0.0 J.0 1.1 J.0	3 2.6 4.3 0.0 1.2 0.0 0.0 2.3 0.0				12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		8 • 8 6 • 0 6 • 0 6 • 0 6 • 0 6 • 0 6 • 0 7 • 0 7 • 0	10.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		326.9 68.6 2.3 16.5 22.0 6.0 12.5 1.3	6 8. 8 4. 9 . 3 . 9 . 9 . 9 . 9 . 9 . 9	952231
LIVE	TOTA	LS	398.0	413.7	159.0	90.4	46.4	۵.55	27.2	21.8	14.7	19.3	ô. d	11.8	3.5	5.5	444.2	79.1	
PSHE LIDE Acha Arhe Cach PILA PIPO			0.0 0.0 0.0 0.0 0.0 0.0	53.8 4.0 2.7 5.8 1.2 1.2 0.0	15.2 0.0 12.6 0.0 12.1	3.6 0.0 0.0 0.0 0.0 1.0 1.1	3.0 9.1 0.3 0.0 0.0 1.1		1 • 1 0 • J 0 • J 0 • J 0 • J 0 • J	2.3 0.0 0.0 0.0 1.0	1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0	1.2 0.0 0.0 0.0 0.0		1.2 0.4 0.4 0.4 0.0 0.0		0.0 0.0 0.0 0.0 1.1	31.8 0.0 12.6 0.0 5.7	6. L . G . G . G . G . G . C . C . C	8213112

PSEUDJTSUGA MENZIESII/BERBERIS AQUIFOLIUM/DISPORJN COMMUNITY TYPE

PSEUDOTSUGA MENZIESII/BERGERIS AQUIFOLIUM/DISPORJH GUMMUNITY TYPE

SPP ALPH/	CODES L M + +	REPRO	•		-NUNBER	OF TR	EESZHA	3¥ 10	CM 08	H SIZE	ĈL ASS	ES		*	TREES	TREES	TOTAL BASAL	NUMBR
CODE	Ðw	7HA	10	20	36	4 B	51	60	70	60	96	166	110	120	123CM /nA	GT16CM Zha	AREA H2/HA	OF Occur
PSHE CADER ABGRA AGCHEH CALLA PILFO PSHE		30.55 40.09 70.99 40.00 40.00 40.00 40.00	153.1 27.3 3.5 22.0 2.3 3.5 0.0	4.3 23 6.8 7.0 0.0 0.0 0.0	27.4 6.0 2.7 3.1 0.0 1.1 3.5	9.79 2000 2000 2000 2000 2000 2000 2000 20		10.0 2.0 0.0 0.0 0.0 0.0 1.1 1.3	5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		6 0 0 0 1 0 1 0 1 0 1 1 0 1	3	2.32 J.C J.C J.C J.C J.C J.C J.C J.C J.C J.C	61.9 42.5 3.5 11.6 0.2 10.2 10.2	9.3 3.1 .3 .4 .1 .2.7 .3	752231422
	TOTALS	124.4	157	42.0	26.9	8.8	9.4	16.3	5.5	5.1	4.4	4.0	6.ú	3.5	2.9	59.1	10.5	-
PSME CADE ACMA ARME CACH PILA PIPO		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.8 3.5 2.7 3.1 1.2 1.2 1.2	$ \begin{array}{c} 6.0\\ 0.0\\ 11.3\\ 0.0\\ 0.0\\ 1.1.3\\ 0.0\\ 1.1 \end{array} $	1 • 0 0 • 0 0 • 0 0 • 0 0 • 0 0 • 0 1 • 1	1 - 8 5 - 3 5 - 3 5 - 3 5 - 3 5 - 3 1 - 1	1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		2.3 0.0 0.0 0.0 0.0 0.0 1.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.2 0.0 0.0 0.0 0.0 0.0	200 200 200 200 200 200 200 200	1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.200 0.00 0.00 0.00 0.00	3.0 3.0 3.0 5.0 5.0 1.0 1.1	7.2 6.6 1.1.6 1.6 4.5	3.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	8 2 1 3 1 2

* * STANDARD ERRORS FOR 9 PLOTS. * *

DECK ID TP56 1 STUDY ID DRYD PLOT 11 AREA ID DRIG ESTABLISHMENT DATE 770719 PLOT TYPE FS PLOT AKEA (SQ M) 1000.0 ELEVATION (M) 1113 SLOPE (%) 43. ASPECT 225 LANDFORM HEDOVV HABITAT LDWH SLOPE CORRECTION FACTOR 1.08653 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 10.8853

SPP Alpha Code	CODES	REPRO SAMP	LT 1		+	-NUM	STENS	/ HA	3¥ 1	0 C M)3H	SIZE	CLA	SSES			*TRE			OCH Ans-		UM	TOTAL STENS GT18CN	TOTAL BASAL AREA	
CODE	0 m	AREA (M2)	TALY	NUH ZHA	5.1 - 10	20	30	40	53	51	76	80	90	100	110	120							/HA	M27HA	
PSHE CADE Abgr Arne Pila Pipd	L N L N L N L N L N L N	555555555555555555555555555555555555555	0 1 1 1	218 218 218 218 218	261 566 76 0	272 44 0 11	239 22 0 0	441100000000000000000000000000000000000	11 11 0 0 0	22000	ن 11 د د ت ت	11 11 0 0 0	11 0 0 0 0	0 0 11 11	000000	0 0 0 0 0		40000	000000000000000000000000000000000000000	000000	00000	000000	577 142 0 22 11	29 27 0 8 8	
	TOTALS	50	3	653	903	327	261	5 4	22	22	11	22	11	22	C	0	3	ũ	G	9	ů.	0	751	72	
PSME CADE PIPD	0 M 0 M 0 M	50 50	0 0 0	C G G	98 87 0	11 11 J	0 0 0	11 0 0)) ;	11 0 3	11 6 6	0 0 0	0 0 0	6	6 6 11	0 8 11	0 8 0	666	0 0 0	ů O C	0 0 0	0 0 0	44 11 11	8 1 9	

DECK ID TP56 1 STUDY ID DRYD PLOT 18 AREA ID DOAK ESTABLISHMENT DATE 770720 PLOT TYPE FS PLUT AREA (SQ M) 1000.0 ELEVATION (M) 777 SLOPE (%) 7G. ASPECT 247 LANDFORM MHDDSC HABITAT LDHM SLOPE CORKECTION FACTOR 1.22066 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 12.2066

SPP	CODES	REPRO	LT 1	37CH	*	-NUM	STEMS	/HA	З¥	1004	ран	SIZE	CL	ASSES	; -	•••	+TR	EES G	T 1	20 G M	08H	NUM	STERS	TOTAL BASAL
CODE	і L н + + D м	AREA (H2)	TALY	NUM ZHA	0.1-	2ŭ	30	+ Đ	50	50	70	80	90	100	116	120	*ME	ASURE	0 0	IAHS	••*	/HA	GT10CM /HA	TOTAL BASAL AREA M2/HA
PSHE	L n	58	1	244	122	51	<u>G</u>	37	12	12	24	12	24	12	0 C	12	0 0	<u>0</u>	0	0	<u>0</u>	0	134 122	49 21
LIVE	TOTALS	50	1	244	122	61	Q	ól	12	24	24	24	24	12	. 0	12	. 0	û	Ĵ	۵	Û	0	256	70
PSNE Gade	D M D N	50 58	0	Ű	24	Ŭ 12	ů Đ	8	12 0	8	12	0	0	Ŭ	Ű	Ű	0	0 0	0 8	i) Q	3	0	24 12	6 9

DECK IG TP56 1 STUDY ID DRYO PLOT 45 AREA ID OBR ESTABLISHMENT DATE 770831 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (M) 936 SLOPE (%) 72. ASPECT 243 LANDFORM TTDDSS HABITAT LOWN SLOPE CORRECTION FACTOR 1.23223 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONDINED = 12.3223

SPP CODES REPRO LT 137CM *----- NUM STENS/HA BY 100M DBH SIZE CLASSES-----+ *--TREES GT 120CM OBH--+ TOTAL TOTAL ALPHA L A SAMP CODE + + AREA NUM STÉMS BASA --NEASURED DIAMS--* /HA GTICCH AREA BAS AL NUM 0.1-25 36 43 56 50 70 80 90 100 110 120 (H2) TALY 10 D W / HA H2/HA /hA PSNE LΜ 5ŭ 5ŭ ß 12 12 12 12 12 0 25 12 12 12 12 0 0 ۵ 123 0 a 44 27 ŭ -U 246 LH 86 49 12 ۵ 0 ñ 1 a. â LIVE FOTALS 99 50 246 ٥2 62 62 12 12 +9 25 12 12 ۵ 357 71 1 - 12 n ñ. G 1 ú CADE D'H ° 8 · · · · · · · · 0 50 25 25 ۵ 0 З а C i1 D n É ۵ G C 3 n Ω n 25 1

DECK ID TP55 1 STUDY ID DKYD PLOT 46 AREA ID OBR ESTABLISHMENT DATE 773831 PLOT TYPE FS PLOT AREA (SQ H) 1003.0 ELEVATION (H) 859 SLOPE (%) 65. ASPECT 170 LANDFORM NTJORR HABITAT LOWM SLOPE CORRECTION FACTOR 1.19269 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONBINED = 11.9269

SPP CODES REPRO LT 137CH Alpha L M Samp Gode + + Area Num *----NUH STEHS/HA BY 1004 DBH SIZE CLASSES-----* *--TREES GT 1200H DBH--* TOTAL TOTAL TOTAL NUM STEHS BASAL NUM STEMS DASAL *--HEASURED DIAMS--* /HA GTIOCH AREA NUM 0.1-(M2) TALY **ZHA** 10 20 30 40 96 100 110 120 D m 5) 50 76 80 H2/HA /HA 239 954 50 12 298 PSNE LM CADE LM 0 D 30 72 55 12 0 0 £ Λ 9 G 0 61 1 ÷ d 36 0 8 Ő ā ã ā Õ Ō Ā ñ 12 1 LIVE TOTALS 5 1193 50 12 0 40 48 72 95 12 36 ۵ J. £ a. ū a ۵ 310 61 Ľ. ú PSHE D M D M D M 50 0 0 0 0 0 0 0 0 0 0 0 6 0 0 2 2 Q 0 Ú d 000 36 3 ŏ ů. Õ Õ 0 12 0 Ž PTER

DECK ID TP56 1 STUDY ID DRYD PLUT 50 AREA ID DOAK ESTABLISHMENT DATE 780713 PLOT TYPE HS PLOT AREA (SQ H) 500.0 ELEVATION (N) 957 SLOPE (%) 30. ASPECT 165 LANDFORM BGDDSS HABITAT LDWH SLOPE CORRECTION FACTOR 1.04403 PLOT SIZE CONVERSION FACTOR 20.00000 BOTH JUNV. FACTORS COMBINED = 20.8006

SPP Alpha Code	CODES	REPRO) LT	137CM	*	-NUM	STENS	/H A	31	1904	9 9 H	SIZE	CLA	SSES		+	+TRE	ES 3	T 1	20 CH	08H	+ NUN	TOTAL STENS GTIDCM	TOTAL
CODE	Т О м	AREA (M2)	TALI	NUM 1 / HA	0.1- 10	2 U	30	+0	53	60	70	80	90	100	110	120	*NE/	SURE	00	IAMS	• • * '	7HA	GTIUCH /HA	AREA N 2/ HA
PSNE CADE	L H L H	50 50	Ĩ	2 418 0 0	21	919 919	0 209	0 0	21 0	63 0	21 C	42 0	21 0	42	21 0	0 0	8	ů	0	0 0	Ű	0	230 1128	104 29
LIVE	TOTALS	50	â	2 418	21	919	209	ũ	21	63	21	42	21	42	21	ü	٥	Û	Û	ð	J	0Ì	1357	132
PSNE Gade	D M D M	50 50	Ĩ	0 C	0	251		42 U	21	1	۵ ۵	0	0	0	G	0	0	0 G	0	C 0	5	0	63 251	7 5

DECK ID TP56 1 STUDY ID DRYO PLUT 59 AREA ID DOAK ESTABLISHMENT DATE 790618 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (4) 910 SLOPE (%) 48. ASPECT 205 LANDFORM TTOOMY HABITAT LDWM SLOPE CORRECTION FACTOR 1.10923 PLOT SIZE CONVERSION FACTOR 10.00000 BUTH CONV. FACTORS COMBINED = 11.0923

SPP CODES REPRO LT 1370M *----NUM STEMS/HA BY 100M DBH SIZE CLASSES-----* *--TREES GT 1200M DBH++* TOTAL TOTAL Alpha L m Samp Code + + Area NUM 0.1-+--Heasured Dtans++* ZHA GT100M APFA +--MEASURED DIAMS--+ ZHA GTIOCH AREA SAMP AREA (N2) TALY 0.1-ZHÀ ZHA 20 30 40 53 50 70 80 90 100 110 120 MZ/HA Div 73 25 5 û 5 û 2 22 130 11 122 444 0 11 155 22 11 44 ĝ ũ ũ PSME LM ŭ 106 288 22 55 55 33 22 11 11 6 22 130 11 98 LIVE TOTALS 2 166 0 44 0 0 G 6 5 ú 444 22 3 50 50 22 0 ú E G. Ű 0 PSME Ū M D M 3 Ĵ, 3 ű fi 0 D ů i C U D ŭ 4

DECK ID TP55 1 STUDY ID DRYG FLOT 61 AREA IG OUAK ESTABLISHMENT DATE 790618 PLOT TYPE GS PLOT AREA (SQ H) 625.0 ELEVATION (H) 93C SLOPE (%) 6C. ASPECT 2G0 LANDFORM TTEDSV HABITAT LDWM SLOPE CORRECTION FACTOR 1.16619 PLOT SIZE CONVERSION FACTOR 16.00000 BOTH CONV. FACTORS CONBINED = 18.6590

	CODE	S RE	PRO	LT	137CM	+	+NUM	STEMS	/ на	38 1	LO 3 M	0 8H	SIZE	CLA	SSES	; -	+	*TRE	ES G	120	CM	08H	+ TOTA H STEN	TOTAL BASAL MAREA
CODE	i i D W	ĂŘ (H	EA 2)	TALY	NUH / /HA	0.1-10	20	30	40	50	õũ	76	80	90	100	110	120	*HE/	SURE	D DIA	MS-	78	A GTIU	MAREA M2/HA
PSHE GADE Acma	L H L H L H	•	75 75 75	01	155	317	75 187	37 56 0	37 19 37	19 19	19 19 0	19 37 0	19 19	19 0 0	ů ů O	6 0 0	000	130 0 0	0 4 6	0 0 0	0 0 0	0 1 0 9	9 2 0 3 0 3	4 52 5 38 7 4
LIVE	TOTAL	s	75	1	155	330	261	93	93	37	19	56	19	19	0	Ú	0	130	0	0	0	0 1	9 6	6 93

LIBOGEDRUS DEGURRENSZAHIPPLEA MODESTA JUHNUNITY TYPE

- (

*** AVERAGE VALUES FOR 7 PLOTS: ***

CODES SPP L N REPR) *	NUMBER OF TREE	STHA BY 10 CH DBH	SIZE CLASSES	TREE: GT 120 GI	TREES BA	TAL SAL NUHBR EA OF
ALPHA + + NUM Code d W /HA	10 20	30 40	53 60 70	80 96 166 11		ZHA M2	THA OCCUR
PSNE L N 192. LIDE L N 224. ABGR L M 0. ACMA L M 0. ARME L M 31. PILA L M 31. PIPO L M 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 48.0 & 30.1 & 2\\ 61.3 & 17.9 \\ 0.0 & 0.0 \\ 0.0 & 5.3 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7 4.9 4. .0 0.0 0. .0 0.0 0. .0 0.0 0. .0 0.0 0. .0 0.0 0. .0 0.0 0. .0 0.0 0. .0 0.0 0.	0 308.3 2 0 0.0 0 5.3 0 0.0 0 3.1	8.8 7 3.9 7 .0 1 .5 1 1.1 1 1.1 1
LIVE TOTALS 479.	0 231.7 235.9	109.3 53.4 2	9.9 36.8 25.4	25.4 12.5 18.9 4	.7 4.9 4.	3 562.3 8	5.5
PSME D.M	0 24.3 42.6	1.6 1.6	6.3 1.6 3.3 0.0 1.6 0.0 1.7 0.0 0.6 0.0 0.0 4.6	0.0 0.0 0.0 0	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47.4	3.9 5 1.5 6 .3 1 1.3 1

LIBOSEDRUS LECURRENSZNHIPPLEA MODESTA COMMUNITY TYPE

SPP	CODES L H	REPRO	•		-NUMJER	OF TRE	EES/HA	34 IC	CM GBI	H SIZE	CLASS	ES	• •	*	TREES GT 120CM	TOTAL TREES GT10CM	TOTAL BASAL AREA	NUMƏR Of
ALPHA CODE	Р н	NUM /HA	10	20	30	40	5 ü	60	70	80	96	10	110	120	Z HĂ	/HA	M2/H A	ŌCCUR
PSNE CADE Abgr Acha Arne Pila Pila	L H H H H H H H H	74.0 128.1 0.0 31.1 31.1 6.0	36.4 76.9 10.9 0.0 0.0 9.0	38.2 124.7 0.0 0.0 0.0 1.6 0.0	32.4 26.9 0.0 0.0 0.0 0.0	6.7 5.3 0.0 0.0 0.0	8 • 9 0 • 0 0 • 0 0 • 0 0 • 0	14.7 3.0 0.0 0.0 0.0 0.0	4 • 0 5 • 4 0 • 0 0 • 0 0 • 0 0 • 0	6.2 2.6 0.0 0.0 0.0 0.0	4.1 1.6 0.0 0.0 0.0 0.0	7.7 1.7 0.0 0.0 1.6	3.2 0.0 0.0 0.0 0.0 0.0 0.0	3.4 3.3 3.0 0.0 0.0 0.0 0.0	2.9 3.0 0.0 0.0 0.0	60.9 142.2 5.3 6.0 3.1 1.6	9.1 4.3 .5 0.0 1.1 1.1	7 1 1 1 1
	TOTALS	134.4	119.5	123.2	35.2		7.6	11.6	7.1	3.9 0.0	3.7	6.9 û.U	3.2	3.4 0.0	2.9 0.0	150.0 8.6	9.3 1.3	5
PSHE CADE PILA PIPO	0 H 0 H 1 H 1 H	ί.α 0.0 0.0 0.6	14.0 11.2 0.0 0.0		1.7 1.6 0.ŭ 0.0	5.9 1.6 0.0 0.0	3.2 0.3 1.7 0.0	1.6 1.6 0.0 0.0	2.1 0.0 0.0 8.0	0.0 0.0 8.0	0.0 0.0 0.0	0.0 0.0 0.0	0.C 0.0 1.6	ŭ.ŭ D.O ū.G û.8	0.0 0.0 0.0	34.2 1.7 1.6	.8 .3 1.3	6 1 1

* * STANDARD ERRORS FOR 7 PLOTS. * *

	OC N -	d M D	0.111		T T A T	LDCU					•••••••						•								
							81.0	r 5176	- co	NVEZ	5 T 3 N	EAL.		a . 01		80	u r h	CONV.	FACTO	RS	сонал	[N±C) =	12.149	5
JLUFE	UUK		TION	FAUI	JK I	21433	FLU																		-
	C 00		REPRO SAMP) LT :	137CH	*	NUM											+ TR					NUN	STEMS	TOI
CODE		•	AREA (M2)	TALY	NUP ZH4			3ú	4 0				80						ASURE	00	IAHS	*	ZHA	ĞŤĪŬĊN /HA	ARE H2/
PSNE CADE	L		1606 1000	5 88	61 1969		36 61	30 24	24 49	24 49	49 0	49 6	0	24 0	12 12	C O	0 0	0	6 0	Û	0	0 C	0	255 194	
LIVE	TOTA	LS	1688	93	1130	972	97	61	73	73	49	49	Q	24	24	ũ	۵	0	C	Û	G	0	0	450	
PSHE CADE			1000 1000	0 3	36	97	12 Û	0	Û	12	ŭ D	Ũ	0	Ŭ	0	0 C	Ŭ	0	C G	0 0	0	C Q	0	24	
DECK	10 T/	P56	1	STUD	r ID C	RYD	PLOT	32	ARI	Ë4 I.	D NI	Ś	ESTA	BLIS	ниен	NT DA	TE	776804							
PLOT	ΤΥΡΕ	FS	PL	OT A	ÈEN (S	Q MJ 1	ŭ& <u>0</u> . 0	ELE		IDN -	(4)	8 84	SL	OPE	(%)	6ġ		ASPECT	265						
LANDE	ORH (IND	DVS	наы	TAT	LDCU							- share an amount of				water and the second								
SLOPE	COR	KE D	TION	FACT	DR 1.	20930	PLO	T SIZE	E COA	NVERS	SIDN	FALI	IOR 1	0.00	000	80	лн	CUNV.	FALTO	RS	соны	[NE) =	12.093	0
SPP ALPHA		Ħ.	SAMP) LT 1		*		STEMS	i/HA	34 1	1 8 CM	DBH	SIZE	GLI	SSES		+	-		-			NUM	STENS	JOI BAS
CODE	b f		AREA TH2T	TALY	NUM 7 HA				40	50	50	70	80	-98	100	110	120	•ME	ASURE	00	TANS		/HA	GT1 OCH 7HA	- NZ/
PSHE GADE	£ ;	1	50 50	9 1	242	726	24	36 48	24 0	24	. 0	36	0	24 9	36	12 12		135	. Q .	0 0	0	0	12	230 109	
		~	50	1	242	726	- 73	85	- 24	24	A	36	A.	24	-36	-24		- 135	۵	<u>a</u> .			. 12		
LIVE	TOTAL	- 2	20	-	240	120				• •	•		•				-		-	-	-	-			

.

.

242

- .

DECK ID TP56 1 STUDY ID DRYD PLOT 47 AREA ID GHKU ESTABLISHMENT DATE 770921 PLOT FYPE FS PLOT AREA (SQ H) 1000.0 ELEVATION (4) 792 SLOPE (%) 37. ASPECT 267 LANDFORM TCEDSV HABITAT LDCU SLUPE CORRECTION FACTOR 1.06626 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 10.6626

CODES REPRO LT 137CH *-----NUH STENS/HA BY 10CH DEH SIZE CLASSES-----* *--TREES GT 120CH DEH-* TOTAL NUM STENS TOTAL SPP --MEASURED DIAMS -- VHA GTINCH AREA ALPHA L d SAMP AREA name was the final definition of the second s NUH 0.1-CODE (H2) TALY /HA /HA M 2/ HA D N 0 0 0 145 125 135 0 0 235 299 32 11 1 21 11 0 0 0 0 0 000 38 50 50 Ú Ú Ú 11 21 PSNE GADE LM 25 427 480 160 544 235 11 G 11 11 ů ů ã Õ ŭ ۵ 48 1060 3 ā â. 0 0 Õ ٥ 8 0 ABPR LH 8 11 ú ă ă 96 Ť õ ō ā 64 11 11 n 3 Û а 11 8 0 GACH LM 50 0 32 94 a 3 21 145 125 135 0 629 LIVE TOTALS 50 7 1493 1034 405 117 32 11 11 Û ۵ 0 230 32 43 0 0 0 32 43 11 000 000 458 490 8 ÛÛ Ŭ Ŭ Ŭ 000 200 0 0 0 Ŭ Ū PSNE O M 50 3 CĂDE Õ Ő. ā Õ ũ ĎМ 50 50 Õ 0 11 Ďй CACH DECK 13 TP56 1 STUDY 10 DRVJ PLOT 71 AREA 10 ONKU ESTABLISHMENT DATE 790823 PLDT TYPE F5 PLOT AREA (SQ N) 1000.0 ELEVATION (N) 740 SLOPE (%) 80. ASPECT 205 LANDFORM NTODVB HABITAT LUCU SLOPE CORRECTION FACTOR 1.28062 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 12.8062

SPP	CODES	REPRO	D'LT'	137CH	*****	-NUH	STEMS	/ HA	3Y 1	LOCM	03H	SIZE	CL	SSES	5	+	•TR	EES G	T 1	20 CM	081	1+ NUN	TOTAL STENS	TOTAL Basal
ALPHA Code	4 + 0 N	AREA (M2)	TALY	NUH ZHA	0.1- 10	20	30	40	50	68	76	đũ	90	100	116	120	*ME	ASURE	ם ם	IAHS	+	ZHA	ĞTÍBČM /HA	AREA H2/HA
PSHE CADE ACHA ARHE TSHE THPL		100 100 100 100 100	0700	896 0 0	128 655 64 26	3d 26 26	13 77 26	13 51 0	000	1300	000	38	26	1 0 0 0	888	000	143	600	Ú0000	0000	00000	130	154 307 51 0 13	58 21 2 0
THPL	E 0	106	ŏ	ŏ	13	13	ŏ	ŏ	ő	ů	ĩ	2	ŏ	ă	ŭ	ŭ	ŏ	ă	ŭ	ŏ	Ň	ŏ	10	ŏ
LIVE	TOTALS	100	7	896	896	243	115	64	G	13	£	51	26	Û	Û	0	143	û	0	Û	Ű	13	525	81
PSHE	D W	100	0	0	0	0	0	0	0	0	0	0	0	13	G	0	a	ũ	0	0	0	0	13	9

PLOT I	TYPE I	FS P	LOT AF	EA (S	G M)	1000.0	EL	EVAT	ION	(4)	853	SL	OPE.	(%)	40.	ASPE		1.31					
ANDFO SLOPE	ORM TI Jorki	RUDWV	HABI Factu	R 1	LOCU 10073	PL O	T SIZ	E C 01	AVES	SIJN	FACI	OR 1		000 -	BOTH	CONV	- • F	ACTOR	S COI	18IN	€0≇	11.007	3
	CODE	S REPR	0 LT 1	37CH	¥	NUH	STEM	S/HA	ЗY	10 CH	Dah	SIZE	E GLA	SSES		* *	TRE	ES GI	120	CM D	BH+	TOTAL	TOTAL BASAL
CODE	<u>тт</u>			NUI / H/		0 20		-						100	110 12	0	MLA	JUKEL	I UTA	21	·* 7 NA	GTIUCH /HA	HZZ HA
PSME	F d	100		22) 264		0 33 0 209	55	77	44 11	33	22 11	22 11	0	33 8	110	0	0 ·	Ú Ú	0	0		330 407	35
CADE	L H			2862	-			121	55	77	33	33	0	33	11	0	۵	0	٥	0	0 0	737	111
PSNE	h C	100	0		0 13	0 22	0			0	ti o	0	0		<u> </u>	0	0	C C	G	C	10 0 0	22	
CADE	D M			INAPH	ILA UP	BELLAT	Ă,ĨCO		TY T	TYPE	-			•	· · · · · · ·	•••••••••		-					
CADE Iboce	D M DRUS		ENS/CH	INAPH	ILA UP	BELLAT	A CO	rerkg	ТҮ (TYPE	FOR	5	PLOT					-	TREE		TOTAL	TOTAL	
CADE IBOCE	D M	REPR	ENS/CH	INAPH	ILA UP	BELLAT	A CO	rerag	ТҮ (TYPE	FOR	5 0ан	PLOT					•	TREE GT 1200 /14	н	TOTAL TREES GT10C/ /HA	TO TA L Basal Area H2 /H A	NU NƏR Of Occur
CADE	D M DRUS CODES	DECUKR	ENS/CH 0 5 14 1 64 0	IMAPH 10 5.1 2.1 0.0 2.4	ILA Ur 20 58.4 143.9 0.0 5.1 0.0	BELLAT NUHJE 30 	A CO A CO A A A A A A A A A A A A A	/ERAG FREES 8 20 9 11 0 0 0 0	TY (E V) 6/HA 60	ALDE2	FOR 0 CM 7 21 0 21	03H 0 •4 •0 •0	PLOT	CLAS	SSES 100 8 16. 9 2.	11(3			GT 1200	H	GT10C/ /HA 263. 0.1 10.	AREA H2/HA 3 29.5 2 4	0F 0CGUR 5 1 1 1
CADE IBOCE IBOCE LPHA ODE SME IDE IBPR CHA RHE ACH SHE HPL	D M DRUS CODES L H D W L H L H L H L H L H L H L H L H	REPR NUM 7HA 141. 103. 0. 0. 0. 0.	ENS/CH 5 14 1 64 0 1 0 1 0 1	IMAPH 10 6.0 5.1 0.0 2.1 0.0 2.1 0.0 5.1 2.6	20 20 58.4 143.9 0.0 5.1 0.0 2.6 0.0	BELLAT NUHJE 30 34.5 49.6 3.6 5.6 1.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	A CO A CO A OF 40 29. 30. 0. 0. 0. 0. 0. 0. 0.	FREES 8 20 9 11 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0	TY (E V) 6/HA 60 0.0 0.0 0.0 0.0 0.0 0.0	CADE 201 201 201 201 201 201 201 201 201 201	FOR 0 CM 7 21 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	03H 0 • 4 • 2 • 0 • 0 • 0 • 0 • 0 • 0	PL OT SIZE 80 L2:1 4.3 0.0 0.0 0.0 0.0 0.0	CLA: 90 14-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0	SSES 160 8 16- 8 2- 0 6- 0 6- 0 6- 0 0- 0 0- 0 0- 0 0-				GT 1200 / HA 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H 3000000000000000000000000000000000000	GT10C/ /HA 263. 0.1 10. 19. 2.1	AREA H2/HA B 29.5 C 4.1 A 29.5 C 4.1 C 1.4 C 1.4	0F 0CGUR 5 1 1 1
CADE IBOCE IBOCE ILPHA ODE She IDE IBPR ICHA IRME IACHA ISHE IHPL	D M DRUS CODES L H D W L H L H L H L H L H L H L H L H	REPR NUHA 1141- 141- 141- 141- 141- 141- 141- 14	ENS/CH	IMAPH 10 6.0 5.1 0.0 2.1 0.0 2.1 0.0 5.1 2.6	20 20 58.4 143.9 0.0 5.1 2.6	BELLAT 	A CO A CO A OF 40 23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	FREES 8 20 9 11 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1	TY (E V) 6/HA 60 1.6 1.0 1.0 1.0 1.0	3Y 1 60 18-9 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	FOR 0 CM 7 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	03H 0 • 4 • 2 • 0 • 0 • 0 • 0 • 0 • 0	PLOT: SIZE 80 L2.1 4.3 0.0 0.0 0.0 0.0	CLA 90 14-1 0-1	SSES 160 160 160 200 000 000 000 000 000 000 0		6 4 6 6 6 6 6	120 -2.1 2.1 0.0 0.0 0.0 0.0 0.0	ČT 1200 /HA 7- 00 00 00 00 00 00 00 00 00 00 00 00 00	H 3000000000000000000000000000000000000	GT10C/ /HA 263. 0.1 10. 19. 2.	AREA H2/HA 29.5 2 2 2 1 2 1 2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 1 2	0F 0CGUR 5 1 1 1 1

.

LIBDSEDRUS DESURRENS/SHIHAPHILA UNBELLATA GONHUNITY TYPE

-

ţ,

CODES TREES TOTAL GT TREES TOTAL REFRO NUM ZHA SPP L M *-----NU MOCK OF TREES/HA BY 10 CN UBH SIZE CLASSES----------BASAL NUN 3R AL PHA GODE 120UH AREA M2/HA GTIGCH 0F Dи 10 20 30 40 50 ы 70 80 90 120 ZHA ZHA OCCUR 166 110 9.0 8.8 0.0 0.0 2.1 0.0 0.0 25.5 38.1 0.0 5.1 4.9 PSHE CADE ABPR ACMA 5.7 2.2 9.0 7.8 2.9 0.0 7.8 2.4 1.0 2.8 2.4 3.4 9.0 2.1 2.1 0.0 0.0 0.0 2.9 28.2 51.2 0.0 10.2 0.0 87.3 LH 81.8 6.7 1 4.1 6.1 8.5 5 395.1 0.0 0.0 0.0 103.8 5.6 5 LN 5.1 0.0 1 ĒΪ • 4 0.0 0.0 0.0 0.0 J... ARME 12.8 ð.ŭ ũ. (• İ Ĩ 2.1 12.8 0.0 C.0 0.0 0.0 5.1 2.6 0.0 4.0 0.0 19.2 CACH ų., 0.0 1.7 1 TSHE THPL J.ú 0.0 C.ú 0.0 0.0 0.0 : 1 11 LIVE TOTALS 435.Û 59.3 13.7 100.7 12.9 17.2 10.0 10.7 4.3 5.9 69.2 5.5 14.4 6.1 7.9 4.0 PSHE CADE CACH PSME D N D D D D 0.0 7.3 0.0 C.0 6.2 9.4 2.1 0.0 0.0 2.2 ú.ú 0.0 0.0 0.0 2.4 0.0 0.0 2.4 3.0 0.3 0.j J.0 5.4 10.6 2.1 2.6 2.9 91.7 83.7 8.0 0.0 0.0 0.0 0.0 0.ŭ 0.0 3:4 8:0 4 ü.ü U.U J . J J.Q 0.0 11 Ďж ũ. Õ 0.0 0.0 0.0 Ô.Ú 1.8 L a U 2.0

* * STANDARD ERRORS FOR 5 PLOTS. * *

* * * * * AVERAGE VALUES FOR 56 PLOTS. * * * * *

•

SPP Alpha Code	CODES L M + + D W	REPRO NUM /HA	* 10	20	-NUMBER 30	OF TR 40	EES/HA 50	BY 10 60	CM 08 70	H SIZE 80	CLASS 90	ES 100	119	+ 120	TREES GT 120Ch /Ha	TOTAL TREES GT10CM /HA	TOTAL BASAL AREA M2/HA	NUMBR OF Occur
EEEERRAEHUADU SASBORHERUADU SA	LM	243.63 186.30 0.00 23.86 23.86 24.00 23.86 24.00 24.00 24.00 25.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 27.00 26.00 26.00 27.00 26.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 26.00 27.00 26.00 26.00 27.00 26.00 26.00 26.00 27.00 26.00 26.00 27.00 26.00 27.00 26.00 26.00 26.00 27.00 26.00 26.00 27.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 27.00 26.000 26.000 26.000 26.000 26.0000 26.0000000000	201.4.772.07610250252 10.5025000000000000000000000000000000000	26200286402090000050 42 1054 1 020000 0 85 0 0 0 0 0 0	42200046002008007080 38 00004600208007080 5 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 9.10000112200400000000 1.122004000000000 0.00000000000000000000000	4 6.30000024000002 0.00000240000000 0.0000000000	2 4 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0007.000000 00.0007.000000 00.000000000	12.00 00.000 00.000 00.000 00.000000	10.640000044000004	5.74000002220000000 00.00002220000000 00.00000000		2.4400 0.00 0.00 0.00 0.00 0.00 0.00 0.0		325 10.54464080780 325 10.5464080780 32.03.001.670 0.1070 0.1070	59.51 9.004420 1.00110 1.00110 1.000 .000	569 39 1926 16 18 42 4 12 516 1
LIVE	TOTALS	509.7	336.5	153.7	87.9	59.9	+8.5	30.7	21.2	16.3	11.8	9.5	6.6	-3 . 0	3.5	454.6	71.9	
PSHE CADHA ARCHA PILPO QUGA PSHE TSHE			300 201 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13.9 60.20 1.00 1.00 1.00 0.00	3. 42200 0. 42200 0. 42000 0. 40000 0. 40000000000	3.52 0.0 0.0 0.0 0.0 0.0 0.0	20000000 00000000000000000000000000000	2.52 0.00 0.00 0.00 0.00 0.00 0.00	20 00 00 00 00 00			1.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00		1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		32.1 7.8 2.4 1.0 1.1 1.3 0.0	5.9 3.0 10 16 0 20	52847534221

* * * * * STANDARD ERRORS FOR 56 PLOIS. * * * * *

SPP Alpha	CODES L M + +	REPRO NUM	•						CH CB1		CLASS			+	TREES GT 120Cm	TOTAL TREES GT10CM /HA	TOTAL BASAL AREA M2/HA	NUHAR Of Occur
CODE	D W	NUM ZHA	10	20	30	40	50	60	70	89	90	100	110	128	ZHA			
EEEERRA SADERRA SADERRA SADERRA SADER SADE		4=00753407000047200 580000045200 450004580000044000 4500004580000044000 10000044000	38.7 32 1.85 3.85 1.90 1.90 2.50 2.62 1.50 3.62	9926079445203000030 27 011 020000000000000000000000000000000	84 001 100 000 100 00 00 00 00 00 00 00 00	52000,5200400000000 000,520040000000000000000000000000000000		3	5.00000 00000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5				1 0000000000000000000000000000000000000	93000000000000000000000000000000000000	84000000000000000000000000000000000000	N846056849804007040 07 0121 10200 0 0 22 0121 10200 0 0	87000111046011001 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20	53 19267 6 1842 4125 161 1
•	TOTALS	72.7	48.5	20.9	8.7	5.2	5.8	3.8	2.5	2.2	1.7	1.8	1.5	• 9	1.1	26.5	3.1	
PSME CACHA ARCHE PILA PILA PSHE		. 27 60 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1 J.O 9.3 .7 .2 .2 .2 .2	2.7 4.0 1.9 6.0 1.3 0.0 5.0			.8 0.0 0.0 0.0 0.0 0.0 0.0	.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0	 	.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	. 6 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0	00000000000000000000000000000000000000	4.2 4.62 1.98 .83 1.32 6.0	1.1 .1 .0 .0 .4 .2 .0	52847534 221

.

.

,

DECK ID TP55 1 STUDY ID DRYD PLOT 6 AREA ID DOAK ESTABLISHMENT DATE 770714 PLOT FYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (M) 1021 SLOPE (%) 62. ASPECT 180 LANDFORM ITDDSV HABITAT TAACON SLOPE CORRECTION FACTOR 1.17561 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONDINED = 11.7661

SPP	000	ËS	REPRO	LT	137CN	*	-iiUn	STEMS	/ HA	3¥ :	LJCH	D3H	SIZE	CLA	ISSES		+	*TR	EES G	T 1	20 CM	DBH	1*	TOTAL	TOTAL BASAL AREA
SPP Alpha Code		71 + W	SAMP AREA (M2)	TAL	NUN 7 ZHA	D.1- 10	20	30	4มิ	50	6Û	70	80	90	1ũ0	110	120	+HE	ASURE	00	IAMS	••*	ZHA	STEMS Gtiðch /Ha	ARE A N2/HA
PSHE TSHE ACHA		H H H	50 50 50		2 471 0 0	0 59 24	59 0 0	106 0 0	94	35 0 0	35 0 0	35	24 0	12 0 0	ű D S	6 6 0	0 0 0	155 0 0	0 5 0	ů D D	0 0 0	0 0	12 0 0	412 0	81 0 0
LIVE	TOTAL	LŞ	50	į	2 471	82	5 <u>9</u>	106	94	35	35	35	24	12	Q	ć	Q	155	Q	0	Û	Õ	12	412	81
PSME TSHE		M M	5 Ų 5 u		D G D C	24 47	35 (35 0	12	3	0	C C	0 2	0	Û	Ű	0	125	í ú	0 0	0 L	Û Û	12	94 0	18 9

DECK IJ TP55 1 STUDY IJ DRYD PLOT 19 AREA IJ ODET ESTAJLISHHENT DATE 770725 PLOT TYPE HS PLOT AREA (SQ M) 500.0 ELEVATION (H) 1249 SLOPE (%) 43. ASPECT 225 LANDFORH HEDDVC HABITAT THCC SLOPE CORRECTION FACTOR 1.08853 PLOT SIZE GUNVERSION FACTOR 20.00000 BOTH CONV. FACTORS COMBINED = 21.7706

SPP Alpha Code	0	DDES L H	REPRO) LT	137CM	*	-NUM	STEMS	i/ HA	3Y 1	L D C M	HEO	SIZE	CL/	SSES	S	+	+IR	EES G	T 1	L20CN	DBH		IUTAL	TOTAL	
CODE	ĺ	+ + D N	AREA (M2)	TALY	NUM Zha	0.1- 10	20	36	4 0	50	6 O	70	80	90	100	116	120	*HE	ASURE	0 0	DIAMS	* ;	NUH Zha	STEMS GT10CN /HA	BASAL AREA M27 HA	
PSME TSHE ACGL CACH PRUNU		L H L H L H	50 50 50 50	0080	0 0 1742 0	22 87 348 0	0 05 21 8 44	44 0 218	2 2 0 6 5 0	4 4 0 8 0	40850	60000	0000	00000	0000	00000			5000		0 0 0 0 0	0 0 0 0 0	00900	152 0 55 501 44	Ō	
LIVE	T 0 1	TALS	5 ü	8	1742	457	327	2 61	87	44	44	0	0	0	٥	Q	0	0	Û	6	0	0	0	762	48	••••
PSHE CACH	(N C	50 50	0	0	65	0 65	ů ů	0 0	22 0	0	8 0	44	0	0	2 2 0	44 0	0	0 0	C O	0 G	Ű	0 0	131 65	87 2	

•

DECK ID TP56 1 STUDY ID ORYD PLOT 20 AREA ID DDET ESTABLISHMENT DATE 770726 PLOT TYPE HS PLOT AREA (SQ M) 500.0 ELEVATION (4) 884 SLOPE (%) 8. ASPECT 247 LANDFORM TRODVS HABITAT THRNGS SLOPE CORRECTION FACTOR 1.00319 PLOT SIZE CONVERSION FALTOR 20.00000 BOTH CONV. FACTORS COMBINED = 20.0639

SPP Alpha Code	CODES	REPRO	LT	1 37CH	•	-NUM	STEMS	/HA	31	19 CM	озн	SIZE	GLA	SSE	s	*	+TR	EES G	T 1	20CH	08H-		TOTAL	TOTAL BASAL AREA
CODE		AREA	TALY	NUM ZHA	D.1- 10	20	30	40	50	50	70	80	90	160	110	120	*ME	ASURE	0 0	DIAMS	+ 7	ĤĂ	ĞŤĨŬČH /HÅ	ARE A M2/HA
PSNE TSHE Abam Cach	L M L M L M	50 50 50	0 6 0	1204 G O	301 0 20	120 20	6 6 6 0	0 0 2 0 0	20 80 0	40 40 0	0 0 0 0	60 0 0	20 Û 0	000	500 000	000	0 0 0 0	C C 0 0	0000	0 0 0	0 0 0	0000	140 321 20 20	51 30 2
LIVE	TOTALS	50	6	1204	321	140	80	20	100	50	Ũ	60	20	IJ	G	0	0	C	0	۵	ũ	0	502	84
PSME PILA	D M D M	50 50	0 0	C D	ů ů	0 0	0	20	0	20	ê	0	Û	0	ű ű	8	0 0	Ú G	Û	ů	Ú Ú	0	20 20	5 2

DECK ID TP56 1 STUDY ID DRYD PLOT 21 AREA ID DET ESTABLISHMENT DATE 770727 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (4) 815 SLOPE (%) 57. ASPECT 180 LANDFORM ITDDVS HABITAT THCC SLOPE CORRECTION FACTOR 1.15104 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 11.5104

SPP	CODE	S REP	OLT :	1 37Cm	*	-NUM	ST ENS	ZHA	91	10 CH	DBH	SIZE	CLA	SSES		+	+TR	EES	GT 1	2 J C H	081	+	TOTAL	T OT AL
CODE		SAHF ARE (N2)		NUM ZHA	0.1-10	20	30	48	50	6 Ŵ	70	80 ;	,:90	100	110	120	*ME	ASUR	ED 0	IAMS	+	/HA	GT 10GH /HA	BASAL AREA H2/HA
PSNE TSHE CACH	L M L M L M	51 51		0 0 0	23 35 12	150 0 104	173 0 23	115 0 12	81 0 12	46 0	0	0 9 0	000	Ŭ Q Q	ů Q	0 0 0	158 8 0	6 0 0	0 0 0	0 G 0	ů Q Q	12 0 0	576 0 150	70 0 6
LIVE	TOTAL	S 50	0	0	69-	253	196	127	92	46	····· 0···	0	0		<u>0</u>		158	····· 0	0	0	ú	12	725	76
PSME GACH	D H D N	50 50	0	0	127 23	58 35	0	0	ş	0	C O	12	0	0	0 S	12 0	8	G G	0	0	Û	ů	81 35	19 1

DECK ID TP56 1 STUDY ID DRYD PLOT 22 AREA ID ODET ESTABLISHMENT DATE 770727 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (N) 853 SLOPE (%) 65. ASPECT 200 LANDFORM MNDDSS HABITAT THPM SLOPE CORRECTION FACTOR 1.19269 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FALTORS COMBINED = 11.9269

+----* *--TREES GT 120CH DBH SIZE CLASSES-----* *--TREES GT 120CH DBH--* TOTAL TOTAL SPP COULS ALPHA L H CODES REPRO LT 137CH NUM D.1- NUM STEMS BASAL BASAL SAMP N2/ HA 30 40 53 60 70 80 90 100 110 120 10 20 0 w (H2) TALY /HA 310 104 ű 12 24 +0 36 72 45 12 12 24 12 0 145 Û 9 Û ۵ 12 12 50 0 PSHE L M 12 310 184 48 12 12 24 12 8 0 0 145 0 ŭ 36 72 LIVE TOTALS 50 ۵ ۵ 12 12 24 48 48 11 a C 12 0 0 12 Ĺ 0 0 0 ũ ù 0 24 Ð. 0 ۵ ۵ ۵ PSHE h G 5 Ú Ŭ.

DECK ID TP56 1 STUDY ID DRYD PLOT 23 AREA ID OBET ESTABLISHMENT DATE, 770728 PLOT TYPE FS PLOT AREA (SQ H) 1000.0 ELEVATION (4) 1082 SLOPE (%) 67. ASPECT 203 LANDFORM NHODVV HABITAT THACPM

SLOPE CORRECTION FACTOR 1.20370 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONBINED = 12.0370

SPP ALPHA	CODES	REPRO	LT	137CH	+	-NUM	STENS	57 HA	ΞY.	10 CM	DGH	SIZE	CLA	SSE	5	*	+TRE	ES G	T 1	20 C M			TUTAL	TOTAL
CODE	т т D м	ĂREA (M2)	TALY	NUH Zha	0.1- 10	20	30	40	50	50	76	60	90	1 Ü Q	110	120	*HEA	SURE	D 0	IAHS	*		STENS GT10Cm /HA	B AS AL ARE A M2/HA
PSHE GADE TSHE ACHA TABR	L H L H L H L H	50 50 50 50	0 0 0 1	0 0 241	0 72 12 24	0 0 12 0 0	24 0 0	12 12 12 0	60 0 0 0 0	12 J 12 0	4600	12 0 0	24 0 0 0	600000000000000000000000000000000000000	12 0 0 0 0	12 0 0 0		0000	000000000000000000000000000000000000000	0000	000000000000000000000000000000000000000		253 12 60 0	115 1 6 0
LIVE	TOTALS	50	1	241	108	12	24	36	64	24	48	12	24	60	12	12	3	0	0	8	Û	0	325	122
PSME	O M	50	0	····· 0 ·	0		12	12	24	12		8 .			D	0		0	1				··· 60	9

DECK ID TP56 1 STUDY 10 DRYD PLOT 25 AREA ID ODET ESTABLISHMENT DATE 778728 PLOT TYPE FS PLOT AREA (SQ M) 1000.0 ELEVATION (4) 594 SLOPE (2) 62. ASPECT 225 LANDFORM MMDDSS HABITAT THCC SLOPE CORRECTION FACTOR 1.17661 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 11.7661

7

SPP Alpha Code	CUDES	REPRO	LT	137CH	+	-NUN	STEMS						CLA	SSES			+TR			DCN	-	NUM	TOTAL STEMS	TOTAL BASAL	
CODE	0 m	SAHP AREA (H2)	TALY	NUM / /HA	0.1-	2 Ú	. 3ú	40	50	δü	7 C	88			110	120							GTI UCH /hA	H 27 HA	
PSME TSHE CACH		50 50 50) <u>0</u>) 0	165 24 412	141 0 94	100 0 0	235	35 0 0	0 3 8	0 0 0	0 0 0	0 0	0 0 0	Ű Ű	6 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	518 0 94	38 0 3	
	TOTALS	50	Ĺ) (600	235	106	235	35	Q	<u> </u>	õ	9	Q	. Q	. Q	. Q	<u>k</u>	<u>0</u>	Ŷ	Q	Ū.	612	41	
PSHE	0 M 0 M	50 50	ĺ		71 24	12 0	0	0 0	8 3	12	ũ Ú	ů	0 0	Ĉ	ç	Û O	0	ů	0 2	3	Ū	0	24 0	3 0	

DECK ID TP55 1 STUDY ID ORYD PLUT 26 AREA ID DDET ESTABLISHMENT DATE 770728 PLOT TYPE HS PLOT AREA (SQ M) 500.0 ELEVATION (M) 701 SLOPE (%) 72. ASPECT 225 LANDFORM HTGDSS HABITAT THRNGS SLOPE CORRECTION FACTOR 1.23223 PLOT SIZE CONVERSION FACTOR 20.00000 BOTH CONV. FACTORS CONDINED = 24.6447

SPP Alpha Code	C 00	ES M +	REPRO SAMP AREA		137CM	0.1-			6/HA	3Y	10 CM	0dh 76	SIZE 80				+ 120					нас нии тну	STEMS	TOTAL BASAL AREA H2/HA
PSHE TSHE GACH TSHE			(H2) 50 50 50	TALY 0 0 0	/ HA 0 0 0 0 0 0	10 271 25 123	20 444 25 148	30 345 6 0	222	0 0 0 0 0	0000	, . C C C C C C C C	0000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0	0 0 0 0 0	0000	0 0 0	00000	0 0 0 0 0		1010 0 25 148 0	49 0 8 3 0
LIVE PSME ARME GACH	0			1 0 0 9	246 G 0	419 197 49 25	616 0 25	345 U 0 0	222	0 0 0 0 0	0 0 0	0 6 6	0 0 0	0 0 0 0	0 0 0 0	Û Q Q	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 1 0 1 0 1	1183 0 0 25	53 1 0 1

DECK ID TP56 1 STUDY ID DRYD PLOT 31 AREA ID OMKU ESTABLISHMENT DATE 770804 PLOT TYPE FS PLOT AREA (SQ H) 1000.0 ELEVATION (H) 838 SLOPE (%) 36. ASPECT 225 LANDFORM HCDDVS HABITAT PHTHCC SLOPE CORRECTION FACTOR 1.06977 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 10.6977

	CODES	REPRO SAMP	LT	137CH	*	NUN	STEMS	/H A	3Y 1	BCM	рэн	SIZE	CLA	SSES	. -	••••		REES G EASURE		20 GH		NUM	TOTAL STEMS STIDCH	TOTAL BASAL AREA
CODE	÷ + О м	AREA	TALY	NUM Z HA	10	20	34	40	50	60	70	80	90	100	116	120		LA JU LL		TANG		/ 114	ZHA	H 27 HA
PSME CADE Abgr Abpr Cach		55000	0 0 1 1 0	0 0 214 214	32 0 75 11 0	0 J 11 0	21 11 8 0 11	000000000000000000000000000000000000000	21	0000		11 0 0	11 0 0 0	53 00 0	32 6 6	32 0 0 0	125 0 0 0	135 6 6 6	00000	0 0 0 0 0	00000	21 0 0 0	203 11 11 0 11	143 1 1 0 1
LIVE	TOTALS	50	2	428	118	11	43	0	21	0	Û	11	11	53	32	32	125	135	J.	9	Û	21	235	143
PSHE ABGR	0 M D M	50 50	0	Û	9 11	11 0	0	0	3	Û	Ĺ	0	0	ŷ	Û	Û Q	0	Ŭ	0 0	0	ņ	0	11 Ĝ	0

DEGK ID TP56 1 STUDY ID DRYU PLOT 33 AREA ID DBR ESTABLISHMENT DATE 770805 PLOT TYPE FS PLOT AREA (SQ H) 1300.0 ELEVATION (M) 1082 SLOPE (%) 75. ASPECT 112 LANDFORM MMDDBS HABITAT TAACBN SLOPE CORRECTION FACTOR 1.25000 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS COMBINED = 12.5000

SPP		DES	REPRO	ET.	137CM	*****	-NUH	STENS	ZHA	ЗY :	1004	D 3H	SIZE	CLA	SSES	5		* T RE					NUM	STEMS	DAS AL
ÂLPHA Gode	, r , t	н + Ж	SAHP AREA (H2)	TALY	NUM ZHA	0-1- 10	20	30	40	50	5 Ū	70	80	90	100	110	120	+MEA	SUREI	01	A MS -	** 4	/HA	ĞTÍÐCH Zha	AREA H2/HA
PSHE TSHE PSHE TSHE	L L	M M	50 50	1	250 250 250 250	8	0	12 0 0	37	25	12	6 6	25	37	12	12 0 0	000	0 0	0 0 0	6 0 0	0	000	0	175	64
TŠHĒ	Ē	- N	50	Ī	250	Ō	0	0	0	D	0	0	0	0	U	U	U	U	U	U	U	U	U	Ű	•
LIVE	TOT	LS	50	4	1000	0	0	12	37	25	12	G	25	37	12	12	8	0	<u>0</u>	0	۵	ú	0	175	64
PSHE	D	н	50	٥	0	0	0	12	0	12	0	6	8	0	8	12	Û	0	Û	0	0	0	0	37	13

ESTABLISHMENT DATE 770816 AREA ID ODET STUDY ID DRYD 37 PLOT DECK ID TP56 1 ASPECT 225 SLOPE (%) 67. ELEVATION (4) 792 PLOT AREA (SQ M) 1000.0 PLOT TYPE FS LANDFORN HNDDVS HABITAT THRNGS PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CONDINED = 12.0370 SLOPE CORRECTION FACTOR 1.20370 *----NUN STENS/HA BY 1004 OBH SIZE CLASSES------ * *--TREES GT 120CH DBH--* TOTAL TOTAL NUM STENS BASAL 0.1-CODES REPRO LT 137CH SPP ALPHA LA /HA 90 100 110 120 AREA NUH ÷. ``∔ CODE 76 80 20 30 40 50 60 10 /HA Юw (H2) TALY 385 68 Û 0 Ŭ 48 G Q 0 G 12 12 72 0 12 120 24 84 12 36 60 ā ñ 60 2 a Õ G 50 50 ũ PSME ō Õ G 0 Ō 0 12 ā 0 ā ۵ ā ū 0 TSHE CACH PILA a â ۵ G ۵ 0 12 0 1 50 ۵ A ā Ω n ß ā Á 5Å 8 481 71 ۵ n n 6 ۵ Û ۵ 1 0 12 0 48 108 96 36 60 120 Ũ 96 50 Ð LIVE TOTALS 4 Δ 48 A ۵ 14 û A 0 £ 12 n 8 0 36 12 24 56 Ω ۵ DN PSME AREA LO DDET ESTABLISHMENT DATE 770817 PLUT 39 STUDY ID DRYD DECK ID TP55 1 ASPECT 243 PLOT AREA (SQ H) 1003.0 ELEVATION (4) 6 86 SLOPE (%) 48. PLOT TYPE FS LANDFORN NECOSS HABITAT THRMBN BOTH CONV. FACTORS CONSINED = 11.0923 PLOT SIZE CONVERSION FACTOR 10.00000 SLOPE CORRECTION FACTOR 1.10923 *----NUN STENS/HA 3Y 1004 DHH SIZE CLASSES-----+ *--TREES GT 120CN DH--+ TOTAL TOTAL NUM STENS BASAL *--NEASURED DIANS-+* /HA GT10CH AREA CODES REPRO LT 137CH SPP Alpha SAMP AREA (H2) L N NUM 0.1-CODE ÷ /HA H 2/ HA 90 100 110 120 70 80 20 30 40 51 60 TALY /HA 10 0 133 40 ű 22 0 22 22 ۵ 11 ۵

166 11 11 22 177 55 PSME 50 Û ā Ő. 0 ō ā Õ A n û 50 ã 8 n Ō Ā ۵ G 22Ž ۵ TSHE 1 33 Ĝ n Ű 0 ã ۵ 0 ñ 22 ã A 11 ā ñ A 0 ۵ Ā Ó n û n n £ ā Õ ۵ a THPL 11 ñ n 0 ۵ G ñ 50 50 ۵ 11 PSHE 8 ١Û 11 44 ĩĨ Ť 78 TSHE Ĺ Ĥ 0 ۵ A 11 0 ۵ ā 1 ۵ ۵ ۵ A Ô 11 11 û 50 Û ACHA L N G £ 0 244 44 ۵ û a ۵ 22 Ω 22 22 Û 222 477 22 ۵ 0 11 50 144 LIVE TOTALS 1 11 55 11 11 11 0 0 3 3 50 50 8 0 PSNE N G 8 ā ã Ŭ H D H D W ACHA CACH PSHE ā ٥ 44 ō 0 5Ō

DECK ID TP56 1 STUDY ID DRYD PLOT 43 AREA 1D ODET ESTABLISHMENT DATE 770822 PLOT TYPE FS PLOT AREA (SU M) 1000.0 ELEVATION (4) 869 SLOPE (%) 65. ASPECT 172 LANDFORM TBADDS HABITAT PHTHCC SLOPE CORRECTION FACTOR 1.19269 PLOT SIZE CONVERSION FACTOR 10.00000 BOTH CONV. FACTORS CUMBINED = 11.9269

SPP Alpha Code	CODES	AREA	·····		0.1-			/HA	34.7	1304	H6G	SIZE	GLA	SSES	5	•*	* TR * NE	EES G				NUH ZHA	TOTAL STEMS GTIDCH	TOT AL BASAL AREA
	DW	(N2)	TALY	ZHA	1 Ú	20	30	+0	50	60	70	99	90	100	110	120						• • • • • •	/ HA	H27HA
PSHE CADE TSHE CACH TABR TSHE		500000 550000 55000000) 0 1 0 0 3	239 0 0 716	143 12 48 12 36 0 167	36 0 36 48 12	83 0 12 12 12	72 12 0 0 0	24 35 30 00	00 120 00 00 00	000000000000000000000000000000000000000	0000	000000	000000000000000000000000000000000000000	9 056655	12 0 0 0 0 0	135 0 0 0 0 0 0 0	00000000	0000000		C.0C.0000	12 0 0 0 0 0	239 0 95 0 60 12 24	46 11 2 1 1
LIVE 1	TOTALS	50	4	954	417	131	119	83	6 û	12	Û	Û	Q	i)	Ĺ	12	135	4	0	0	0	12	429	60
P S NE CACH	0 H 0 H	50 50	0	Û Û	119 24	3ь 60	24	0 Ú	0	0	í Û	0	Û D	ú O	24 C	ů Ö	C 0	Q Q	ů u	3	1) 11	0 0	¢3 60	23 1

DECK ID TP56 1 STUDY ID DRYD PLOT 44 AREA ID DOAK ESTABLISHMENT DATE 773822 PLOT TYPE HS FLOT AREA (SQ H) 500.0 ELEVATION (4) 646 SLOPE (%) 75. ASPECT 315 LANDFORM HBDDSS HABITAT PHTHCC SLOPE CORRECTION FACTOR 1.25000 PLOT SIZE CONVERSION FACTOR 20.00000 BOTH CONV. FACTORS COMBINED = 25.0000

SPP Alpha	Ú OD ÉS	REPRO	D LT 1	37 CM	*	-NUM	STENS	/HA	37 1	LOCM	ней	SIZE	GLA	SSE	5	-+	*TRE	EES G	T 1	20 CH	Ddh	+	TOTAL	TOTAL	
CODE	т + С м	AREA (M2)	TALY	NUM ZHA	0.1- 10	20	30	40	53	63	70	80	90	100	110 1		*nea	SURE	0 0	IAMS-		VUH ZHA	STENS GT10CM /HA	BASAL AREA H2/HA	
PSME CADE TSHE ACMA	L H L H L M	50 50 50	Û	0 0 0	275 25 75 75	100 25 50	100 5 0	75 0 0	75	25 0 0	50 0 0 0	0 0 0	25 0 0	25		0	0	0 0 0	0000	0 0 0	0 0 0	0	475 25 50	82 0 1	
LIVE	TOTALS	5U	Q	Ũ	450	175	100	75	75	25	50	0	25	25	6	ú	0	ú	a	Ð	0	0	550	84	
PSNE	DM	5 Ú	0	G	75	75	25	0	0	0	Ű	8	0	0	Û	0	0	0	G	8	8	0	100	3	
				•••••••																					

TSUGA HETERJPHYLLA LLIMAA OR COCLIMAA SITES

							ERAJE V	ALUE3	FOR 1	LA PLOT	S	,			· •·	···		- ···· .
SPP Al Pha Code	CODES	REPRO NUM	*		-NUABER		₹EES∕πA	94 TQ		H SIZE		5ES		+	TREES GT 120cm	TOTAL TREES GT10CM	TOTAL Basal Area	NUH BR OF
	DW	/HA	1 J	20	Ĵυ	43	50	54	73	80	90	160	110	120	ZHA	ZHÂ	N27HA	DCCUR
PSDEE LISHAMR ABBCGLAA ABBCGLAA ABBCGLAA CALUNR BABCGHAE AAACCHAU PRBPL ABPL ABPL ABPL ABPL ABPL ABPL ABPL A		5151 1351 1553 15553 1254 054 1254 054 1254 054 054 054 054 054 054	73.5 2.60 53.03 5.05 5.05 5.05 5.05 5.05 5.05 5.	72.9 9.02 17.0 0.0 4.7 5.8 45.7 1.1 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0	78.5 3.3 0.0 0.0 0.0 10.0 0.0 10.0 0.0 0	59.1 1.7 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	36.03 00.00 00	00000000000000000000000000000000000000				14.1 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	90000 3000 0000000 4003000 3000 0000000 4003000 30000000000	40000000000000000000000000000000000000	9 9 9 9 9 9 9 9 9 9 9 9 9 9	355.61 +0.44 04.14 04.79 11.17 13.10 1.17 13.10 5.88 5.88	69.5 .1 3.6 .0 .1 2.0 2.0 .1 .1 .1 .1 .1 .1 .1	14 12 1 1 1 1 5 1 8 1 1 2 1 2 4
LI¥E	TOTALS	464.8	259.1	158.0	109.6	78.6	\$6.0	34.4	18.0	11.1	11.7	14.1	4.9	4.0	4.9	496.1	76.9	•
PSHE TSHE ABGR ACMA ARHE	0 M 0 H 0 H 0 H 0 H	0.0 6.0 0.0 0.0	50.3 3.4 .8		9.5	3.4 0.0 0.0	4.2 0.0 0.0	4.0 0.0 0.0	0.0 0.0 0.0	3.9 8.0 0.0 0.0	U.0 0.0 0.0	. 9 0 0	4.2 0.0 0.0	3.9 0.0 0.0	. 8 0 . 0 0 . 0 0 . 0	53.4 0.0 0.0 0.0	14.3	14 1 1
GACH PILA PSNE	0 H 0 H 0 H	0.0 0.0 0.0	3.5 12.2 0.0 1.6	15.5 0.0	0.0 .8 0.0 7.0				0.0		0.0		0.0					6

TSUGA HETEROPHYLLA CLIMAX OR COCLIMAX SITES

SPP Alpha Code	CODES L n + + D W	KEPRO Num ∕ha	* 10	20	-NUMBER 3û	OF TRE	EESZHA 50	37 1Ŭ 60	CM D31 70	I SIZE BQ	il Ass 90	ES 110	110	+ 120	TREES GI 120Cm /Ha	TOTAL TREES GT1GCH /HA	TOTAL BASAL AREA M2/H A	NUMBR Of Occur
עראאנעראנאראעראטעראנעראעראעראעראעראעראעראעראעראעראעראעראעראע		80303300040020 805.500040020 1555254002090 120175750 120175750 1201750	27.7 21.9 20.0 5.8 65.0 65.0 65.0 65.0 1.7 65.0 1.7 12.8 12.8 12.8 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	31.70 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9	245.000000000000000000000000000000000000	2		90300000000000000000000000000000000000	60000000000000000000000000000000000000	acotocoooacata + • • • • • • • • • • • • • • • • • • •	30000000000000000000000000000000000000	05:5:5 25:7:7:2:5:7 •••••••••••••••••••••••••••••••••••	2330333030303030303 	0.000000000000000000000000000000000000	900000000000000000000000000000000000000	6 2 1 4 4 4 5 1 5 4 4 5 1 5 1 5 4 5 1 5 1 5	8.9 2.1 .0 .0 1.0 .0 1.0 .0 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	144211115181121241
LIVE 1		u.u 147.2	•8 55.4	• 8 44• 3	U.U 26.0	u.u 19.6	U.U 8.2	u.u 9.5	u.u €.0	u.u 4.5	u.u 3.3	U.U 5.5	u.u 2.5	0.0 2.5	1.9	.8 71.2	.u 6.0	1
PSNE TSHE ABCHA ARCHE CACH PILA PSNE	0000000 000000000000000000000000000000	U.0 G.Q Q.0 Q.0 Q.0 Q.0 Q.6 Q.6	16.5 3.4 .8 3.5 5.0 0.0 1.6		3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1. 3 0.0 0.0 0.0 0.0 1.3 0.0	2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.8 8.8 6.0 6.0 0.0 0.0 0.0 0.0	8 0 • 0 0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	3.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9000000 •••••••••••••••••••••••••••••••	2.3 0.0 0.0 8.0 0.0 0.0 0.0	3.2 0.0 0.0 8.0 0.0 0.0 0.0	. 8 0. 0 0. 0 0. 0 0. 0 0. 0		5.9 .0 .0 .2 .1	14 1 1 5 1

* * STANDARD ERRORS FOR 14 PLOTS. * *

APPENDIX 8

SOIL PROFILE DESCRIPTIONS

Six soil profiles are described that are chosen to typify as much as possible the communities and phases in Chapter 4. They illustrate the information included in the vegetation plot soil pit descriptions. Information on soil reaction and color using Monsell color charts was not taken. The soil colors in these descriptions are therefore qualitative and subjective. Plot location, elevation, slope, and aspect and estimated water holding capacity (see Chapter 4 for estimation proceedures) are given in Appendix 4. Soils are classified to the taxonomic level (Soil Survey Staff 1975) appropriate to the data available. Horizon nomenclature and descriptive terms follow Soil Survey Staff (1975). Some taxonomic distinctions and the reference to volcanic ash in the parent material are based on literature interpretations (Brown and Parsons 1973, Mitchel 1979).

Plot 35 <u>Pseudotsuga/Holodiscus</u>/grass community Aspidotis phase

Pit 1

Classification: Ochrept. Topography: Below the brow of a ridge, convex in vertical direction. Parent Material: Basalt and probably volcanic ash.

Colors are for moist soil

0 1-0 cm. Needles, twigs; undecomposed to slightly so.

- A 0-15cm. Dark brown sandy loam; weak fine crumb structure; nonsticky, nonplastic; many fine, common medium roots; 15% gravel; clear smooth boundary.
- C1 15-40 cm. Dark brown sandy loam; weak medium subangular blocky structure; nonsticky, nonplastic; common fine, many medium roots; 20% gravel, 10% cobbles; gradual wavy boundary.
- C2 40-61 cm. Dark brown sandy loam; weak medium subangular blocky structure; nonsticky, nonplastic; common fine, common medium, many coarse roots; 35% gravel, 30% cobbles; abrupt wavy boundary.
- R 61+ cm Weathered basalt, not saprolitic.

Plot 63 <u>Pseudotsuga/Holodiscus</u>/grass community Collomia phase

Pit 1

Classification: Ochrept. Topography: On a main ridge, convex. Parent material: Breccia and probably volcanic ash.

Colors are for moist soil.

0 0.5-0 cm. Needles, twigs, grass, cones, bark.

- A1 0-10 cm. Dark brown loam; moderate medium crumb structure; slightly sticky, slightly plastic; few fine, few medium roots; much animal activity and krotavinas; 20% gravel; clear smooth boundary.
- AB 10-35 cm. Dark brown to dark yellowish brown loam; moderate medium crumb structure; slightly sticky, slightly plastic; common fine, common medium, common coarse roots; much animal activity and krotavinas; slight increase in clay; A and B mixed by animals; 20% gravel, 5% cobbles; gradual smooth boundary.
- B 35-70 cm. Dark yellowish brown loam; weak medium subangular blocky structure; sticky, slightly plastic; common fine, few medium roots; slight increase in clay; 15% gravel, 20% cobbles, gradual smooth boundary.
- C 70-110 cm. Dark yellowish brown loam; weak fine subangular blocky structure; slightly sticky, nonplastic; few fine, few medium roots; 10% gravel, 25% cobbles, 20% stones; abrupt wavy boundary.
- R 110 + cm Moderately weathered and fractured breccia.

Plot 64 Pseudotsuga/Berberis/Disporum community

Pit 2

Classification: Udalf. Topography: Gently sloping bench, smooth. Parent material: Rock fragments in soil are reccia

Colors are for moist soil.

0 3-0 cm. Needles, twigs, moss, grass litter.

- A1 0-5 cm. Dark brown loam; weak coarse crumb breaking to weak fine crumb; slightly sticky, nonplastic, very friable; many fine, many medium roots; 10% gravel; clear wavy boundary.
- A3 5-40 cm. Dark yellowish brown loam; weak medium subangular blocky structure; slightly sticky, slightly plastic, very friable; many fine, many medium, many coarse roots; 15% gravel, 10% cobbles; diffuse wavy boundary.
- B1 40-80 cm. Dark yellowish brown clay loam; moderate medium subangular blocky structure; slightly sticky, slightly plastic, friable; common fine, common medium; 30% gravel, 10% cobbles; 50% of coarse fragments are very saprolitic; diffuse irregular boundary.
- B2t 80-150+ cm. Dark yellowish brown clay loam; weak coarse subangular blocky breaking to moderate fine subangular blocky structure; sticky, plastic, friable; few fine roots; Argillic horizon; thick clay skins on gravel surfaces; 35% gravel, 20% cobbles; 70% of coarse fragments are very saprolitic.

Plot 34 Pseudotsuga/Holodiscus-Acer community

Pit 1

Classification: Dystrochrept.

Topography: In a convex position at the head of a small draw; probably on old landslide scar.

Parent material: Andesitic colluvium and probably volcanic ash.

Colors are for dry soil.

0 3-0 cm. Needles, twigs, branches.

- A 0-20 cm. Light brown sandy loam; weak medium crumb structure; nonsticky, nonplastic; many fine, common medium roots; 30% gravel, 10% cobbles; gradual smooth boundary.
- C1 20-50 cm. Light yellowish brown sandy loam; weak medium subangular blocky structure; slightly sticky, nonplastic; many fine, common medium roots; 25% gravel, 35% cobbles; gradual wavy boundary.
- C2 50-85+ cm. Light yellowish brown sandy loam; weak medium subangular blocky structure; slightly sticky, nonplastic; common medium roots; 25% gravel, 40% cobbles.

Plot 64 Pseudotsuga/Berberis/Disporum community

Pit 2

Classification: Udalf. Topography: Gently sloping bench, smooth. Parent material: Rock fragments in soil are breccia

Colors are for moist soil.

0

3-0 cm. Needles, twigs, moss, grass litter.

- A1 0-5 cm. Dark brown loam; weak coarse crumb breaking to weak fine crumb; slightly sticky, nonplastic, very friable; many fine, many medium roots; 10% gravel; clear wavy boundary.
- A3 5-40 cm. Dark yellowish brown loam; weak medium subangular blocky structure; slightly sticky, slightly plastic, very friable; many fine, many medium, many coarse roots; 15% gravel, 10% cobbles; diffuse wavy boundary.
- B1 40-80 cm. Dark yellowish brown clay loam; moderate medium subangular blocky structure; slightly sticky, slightly plastic, friable; common fine, common medium; 30% gravel, 10% cobbles; 50% of coarse fragments are very saprolitic; diffuse irregular boundary.
- 82t 80-150+ cm. Dark yellowish brown clay loam; weak coarse subangular blocky breaking to moderate fine subangular blocky structure; sticky, plastic, friable; few fine roots; Argillic horizon; thick clay skins on gravel surfaces; 35% gravel, 20% cobbles; 70% of coarse fragments are very saprolitic.

Plot 45 Libocedrus/Whipplea community

Pit 1

Classification: Umbrept. Topography: Below the brow of a main ridge, smooth slope. Parent material: Basaltic/andesitic colluvium with some volcanic ash.

- 0 2-0 cm. Needles, cones and twigs.
- A1 0-25 cm. Very dark brown loam(meist; weak fine crumb structure; slightly sticky, slightly plastic; many fine, few medium roots; 5% gravel; clear smooth boundary.
- AC 25-45 cm. Dark brown loam (moist); weak fine subangular blocky structure; slightly sticky, nonplastic; many fine, common medium roots; 5% gravel; diffuse wavy boundary.
- C1 45-85 cm. Brown loam (dry); weak fine subangular blocky structure; slightly sticky, nonplastic; common medium, many coarse roots; 10% gravel; diffuse smooth boundary.
- C2 85-95 cm. Brown loam (dry); weak fine subangular blocky structure; slightly sticky, nonplastic; few coarse roots; 20% gravel; diffuse smooth boundary.
- C3 95-100+ cm. Light brown (dry); weak fine subangular
 blocky structure; slightly sticky, nonplastic; few coarse roots; 35% gravel.

Plot 73 Libocedrus/Chimaphila community

Pit 1

Classification: Ochrept. Topography: On a main ridge convex. Parent material: Breccia, some andesite.

01 4-2.5 cm. Needles, twigs, cones, bark.

- 02 2.5-0cm. Partially decomposed needles, twigs, comes, bark; 60% is mildly hydrophobic; 60% has grey color due to abundant hyphae.
- A1 0-5 cm. Dark brown (moist) sandy loam, grayish brown (dry); weak medium crumb structure due mainly to roots and hyphae; nonsticky, nonplastic; many fine, few medium roots; 10% gravel; clear wavy boundary.
- A3 5-20 cm. Yellowish brown sandy loam (dry); weak fine subangular blocky structure due to roots and hyphae; nonsticky, nonplastic; many fine, few medium roots; 10% gravel, 20% cobbles; diffuse wavy boundary.
- C1 20-55 cm. Yellowish brown sandy loam (dry); structure same as A3; nonsticky, nonplastic; many fine, common medium, common coarse roots; 15% gravel, 15% cobbles, 5% stones; diffuse wavy boundary.
- C2 55-77 cm. Yellowish brown sandy loam (dry); structure same as A3; nonsticky, nonplastic; common fine, few medium roots; 15% gravel, 20% cobbles, 25% stones; diffuse wavy boundary.
- C3 77-85+ cm. Yellowish brown sandy loam (dry); structure same as A3; nonsticky, nonplastic; few fine, few medium roots; 10% gravel, 15% cobbles,60% stones.

APPENDIX 9

COMPUTER PROGRAMS

This appendix contains brief overviews of the computer programs thought to be of interest to others. Information needed for running the programs is usually available in internal comment statements. Running these programs will often require knowledge of fortran and the operating system of the computer used.

Program Ageht

Ageht (440 lines of code) calculates tree heights and ages from field data in TP56 format (Hawk et al. 1979). Tree heights are calculated in any consistent set of units from slope distance and percent slope to the top and to the bottom of the tree (Husch et al. 1972). The eye height of the person sighting on the tree is taken into consideration. This is only important when the person's eye height is more than 30 percent of the tree height. It is an easily changed internal constant.

Ages are calculated when extrapolations beyond the end of the core are necessary. Data needed are: bark thickness, length of the wooden core, core ring count, rate of growth at the inner end of the core along a radius from the pith, the angle between the core and this radius, and rate of growth in the

youngest centimeter of core. Ageht assumes the pith is at the geometric center of the tree and that ring width decreases constantly from the pith outward. Two estimates of number of rings beyond the core tip are made. The average is added to the core count to estimate age at breast height.

Cktp56

Cktp56 (330 lines of code) reads in TP56 format data (Hawk et al. 1979) and prints it out in a form similar to the field data forms. This makes keypunch verifying faster and more accurate and provides a convenient listing of the punched data deck.

Order 3

Order 3 (460 lines of code) uses data in positional format (e.g. as produced by Simdat2) to print species cover tables like those in Appendix 6. It is based on program Order by Volland and Connally (1978). Species and plots can be output in any order desired. Average cover can be calculated as the mean over all plots or over the plots in which the species occurs. The arrays and all parameters dependent on array dimensions are variably dimensioned in the subroutines. Thus various sizes of species by plot data matrices are easy to accommodate by changing array dimensions and four variables in the main program.

Sh20

This program (215 lines of code) calculates effective depth and available water holding capacity for each horizon to the pit depth, to a selected depth (100 cm in this study) and to bedrock depth (if it is non-zero). For each horizon it requires the following data in TP56 format (Hawk et al. 1979) : thickness, percent coarse particles, and texture. Calculations are described in Chapter 4.

Simdat2

Program Simdat2 (525 lines of code) converts TP56 format data (Hawk et al. 1979) to positional format. Most programs which analyze species cover data require it to be positionally formatted. Simdat2 was written by Al Brown (formerly with the Department of Forest Science at Oregon State University) and was slightly modified for this study. This program was used in construction of the large and small vegetation data sets (Appendix 5). The species and their order in the output data can be determined by the user. Also, Simdat2 allows species to be pooled as described in Appendix 5. Output includes the positionally formatted data, its format, and a list of species ordered as they occur in that data.

Stantab

Stantab (610 lines of code) produces stand tables for each plot and summary tables of averages and standard errors by community. It uses input data in TP56 format. See Appendix 7 for further information on the program and examples of output.