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A COMPARISON OF METHODS

FOR FINDING HAMILTONIAN CIRCUITS IN GRAPHS

I. INTRODUCTION

In the year 1859, Sir William Rowan Hamilton invented a puzzle

and sold it to a game manufacturer in Dublin. The puzzle consisted

of a regular dodecahedron, which is a polyhedron with 12 faces and

20 corners, each face a regular pentagon with three edges meeting

at each corner. The corners were marked with the names of 20 im-

portant cities and the object of the game was to find a route along

the edges of the dodecahedron passing through each of the 20 cities

exactly once and returning to the starting point. This was the be-

,ginning or the concept or a Hamiltonian circuit.

Before generalizing the concept of a Hamiltonian circuit on a

general graph, a simple graph and some of its properties shall be

defined. Abstractly, a graph is a pair (V,E) where V is a finite set

of objects called vertices and E, the set of edges, is a set of ordered

pairs of vertices. A common representation of such a graph is shown

in Figure 1. The graph is known as a digraph (directed graph) with edges

having an implied direction corresponding to the ordered pairs of vertices

in the set of edges.

The graph shown in Figure 1 may be represented in a number of ways.

One of the most useful, the adjacency matrix, is shown in Figure 2.

The adjacency matrix of a graph on N vertices is an NxN array X

such that xij = 1 if (i,j) is an element of E and zero otherwise.
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The degree of a vertex refers to the number of edges incident upon

it. This may be broken down to in-degree and out-degree referring

to the number of edges entering or leaving the vertex, respectively.

The adjacency matrix was used to represent the graphs in programming

the algorithms which were tested in this paper.

Several properties may be defined which describe the overall fea-

tures of the graph. First, the density of the graph may be defined

as the average, out-degree of a vertex. For the graph of Figure 1

this number is two. This may also be derived from the adjacency

matrix of Figure 2 by averaging the number of non-zero entries in each

row.

Secondly, the regularity of a graph may be defined as the amount

of deviation from the average out-degree of a vertex in the graph. The

graph presented in Figure 1 is regular of degree two. From the adja-

cency matrix this can be seen in that there are exactly two non-zero

elements in each row.

With these definitions, the concept of a Hamiltonian circuit

may be generalized to the case of arbitrary graphs by defining the

circuit to be a sequence of vertices vi,v2,....,vN,vi that includes

each vertex once and such that (vi,vi4.1), and (vN,vl) are

elements of E. A Hamiltonian circuit in the graph of Figure 1 is

1,3,4,5,2,1 . To date the problem of finding a necessary and sufficient

graph theoretic condition for the existence of a Hamiltonian circuit in

an arbitrary graph is unsolved. (1) The task of finding a Hamiltonian

circuit in general might be difficult in the sense that there might be

no easier way than to look at all the N possible permutations of the
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1

3

Figure 1. A Directed Graph

14
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1 2 3 It 5

1 0 0 1 0 1

2 0 1

3 0 0 1 1

0 1 0 0 1

5 1 0 1

Figure 2. Adjacency Matrix of the Graph of Figure 1
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vertex set and test each for the circuit property described above. (2)

A useful structure in analyzing the search for a Hamiltonian

circuit is the move tree for a graph as shown in Figure 3. The root

of the tree, centered at the top of the figure, is the initial vertex

from which the search is conducted. In Figure 3 the root is C. The

branches of the tree are the chains of edges leading out from the root

and representing all of the possible paths leading back to the initial

vertex. The tree of Figure 3b shows the graph of 3a to have three

such possible routes. The depth of a branch in the tree is the number

of edges traversed until the initial vertex is reached again.

The purpose of this paper is to examine the various classes of

algorithms which have been proposed for finding Hamiltonian circuits

in arbitrary graphs and to compare their effectiveness with respect to

the general properties of the graph being examined. These properties

include the size of the graph (number of vertices), the density of the

graph and the regularity which may be present in the graph.
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II. CLASSES OF ALGORITHMS

In this chapter, the list of proposed algorithms for finding

Hamiltonian circuits is broken into four classes. These classes may

be labeled algebraic, permutation, deduction, and the Warnsdorff rule.

The basic steps involved in the execution of each class are outlined

along with examples of the procedure. The advantages and disadvantages

of the various classes are also discussed.

A. ALGEBRAIC

This class of algorithms originates from early attempts at

finding Hamiltonian circuits and involves the simultaneous generation of

all circuits by successive matrix multiplications. (3-6) The algorithm

uses the variable adjacency matrix, B, in which B(i,j)= vj, the vertex

label, if X(i,j)= 1 in the standard adjacency matrix. The possible

paths, generated during execution, are symbolically stored in a column

vector Am(i) of length N where N is the number of vertices in the graph.

The vector is modified during the program by successive multiplications

by B and successive deletions as described in the outline below.

Sl: for m=1, let Am(i) = X(i,l) for i = 1 to N

S2: multiply Am by the variable adjacency matrix B

A/10-1 (i) = L, B(i,k)*Am(k)

and store result in the vector AJm+1

S3: for i = 1 to i = N, delete all terms of the resulting

)
containing vertex label vi and after deletion

set m = m+1 and rename A'- 1
as Amm+
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Sit: if m is less than N, go to step S2

S5: if m = N then element AN(l) contains a symbolic list

of all Hamiltonian circuits in the graph

This class of algorithm suffers from a critical drawback. The

amount of storage space required to symbolically keep track of all

the partial paths generated after each step quickly becomes prohibitive.

As will be seen in the next section, for some graphs the number of

partial paths near the end of execution may be on the order of N! .

Results obtained elsewhere show this method to be much less efficient

than some of the other classes of algorithms examined below and therefore

the algebraic class will not be discussed further. (7)
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B. PERMUTATION

This class of algorithms employs a straightforward systematic

and exhaustive search. (8) The basic procedure includes the

systematic consideration of every possible path from the first or

initial vertex.

The descriptive outline presented below is characteristic of

the procedure followed by an algorithm of this class. The initial

vertex is taken as vertex 1 and all branching possibilities from

this vertex are considered.

Sl: start with vertex 1 as current vertex

S2: find next branch possibility from current vertex

to a vertex not in the partial path

S3: if a branch possibility exists, advance partial

path to this vertex, make this vertex current and

go to step S2.

S4: if no further branch possibilities exist and the

current vertex is vertex 1, no more circuits exist,

END.

S5: if no branch possibilities exist, backtrack to the

last vertex from which a branch occurred, goto S2.

S6: if all vertices are in partial path and next branch

is to vertex 1 then a Hamiltonian circuit exists;

record the circuit and go to step S5.

The algorithm has the advantage of being easy to implement

and conceptually straightforward. The procedure is an exhaustive

search and thus will eventually find all existing Hamiltonian



9

circuits in the graph. It is a brute force method which steps

through all possibilities, the number of which could become quite

large for a very dense graph. The amount of time taken will depend

largely on how quickly the possible paths terminate.

In Figure 3 a small graph with N = 4 vertices and the tree

representing the possible partial paths to the initial vertex is

given. Table 1 gives the sequence of moves which a permutation

algorithm would follow in traversing the tree. The algorithm

searches every branch of the move tree to its end and, in this case

takes nine steps to complete the process.

The graph shown as an example in Figure 3 has few edges in-

cident on each vertex. If the tightlptanohrofzthetree (C-B-D-A-C)

were labeled differently soLthat it was the first branch to be

searched, the algorithm would have takenofour steps to find a

circuit, that is, order(N) steps where N is the number of vertices

in the graph. This is the minimum number of steps required for a

complete circuit since the search must be carried to a depth of N

in the move tree.

In a graph of N vertices in which every vertex is connected

by an edge to every other vertex, that is, N-1 edges incident on

each vertex, it can be seen that at a depth of k in the move tree,

eath vertex will have (N-1-k) possible branches. For each of these

branch possibilities at depth k there will be a vertex at depth k+1

with (N-1-(k+1)) branch possibilities. Letting Bk represent the

number of branches at depth k gives:

Bk+1 = B k (N-1-(k+1)) B
o
= (N-1)
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Starting with k = 0 and continuing through the series to k + 1 = N

gives:

Bk+1 = B (N-1-(1))(N-1-(2))(N-1-(3)) (N-1-(N-2))

or:

BN (N-1):

Thus in the worst case, the permutation algorithm might search

order((N-1)!) possible paths.

C

Figure 3a Graph on Four Vertices

Figure 3b. Move Tree of Graph in 3a

D

Depth

0

1

2

3

4



Step #

1

2

3

4

6

7

8

9

11

TABLE 1

Permutation Algorithm on the

Graph of Figure 3a

Partial Path Comments

C

C-A

C-A-C fail: reaches initial

vertex too soon, back-

track to vertex C

C-B

C-B-A

C-B-A-C

C-B-D

C-B-D-A

C-B-D-A-C

fail: backtrack to

vertex B

circuit
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C. DEDUCTION

The algorithms in this class consist of the same basic pro-

cedure as the permutation class, that is, exhaustive search of all

possibilities for branching. In this class, however, deduction

rules are used at each step to eliminate as many branches as pos-

sible. (9,10) The branches eliminated are those that will lead to

a dead end path.

In the descriptive outline given below, the initial vertex

is again taken as vertex 1 and all branch possibilities are con-

sidered which cannot be eliminated by the deduction rules. In step

S2, an admissible partial path is one to which a failure rule does

not apply. These rules are also given below.

Sl: select vertex 1 as the initial path

S2: test the path for admissibility deleting all branch-

ing possibilities which can be shown to lead to

dead ends.

S3: if partial path is admissible, find next possible

branch vertex and extend path to this vertex, goto

step S2.

S4: if partial path is inadmissible, delete from the

partial path the last vertex to which a branch oc-

curred, find the next possible branch from vertex

at end of partial path and extend path to this ver-

tex, goto step S2.

S5: if all branch possibilities from a given vertex have

been shown inadmissible, goto step S4.
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S6: if all branches from vertex 1 have been examined,

no further circuits exist, END.

S7: if all vertices are in partial path and next

branching possibility is vertex 1 then a Hamilton-

ian circuit exists; record the circuit and goto

step S4.

The test for admissibility in S2 is made by applying the

deduction rules below. Each time the test is applied, some edges

may be deleted and some may be made required edges (those which

must be present in the circuit if it is to contain the current

partial path).

R1: if a vertex has only one edge entering(leaving) then

that edge is required.

R2: if a vertex has a required edge entering (leaving)

then all other edges entering (leaving) may be

deleted.

R3: fail if any vertex has no edge entering (leaving).

R4: fail if any vertex has two or more required edges

entering (leaving).

Whenever a fail applies, the partial path becomes inadmissible

and backtracking must occur.

This class of algorithm is much more difficult to implement

than the permutation class described above. This is due to the

rules which must be incorporated and the bookkeeping measures

needed to classify edges and backtrack from dead ends. The search

time, however, should be less than the permutation method due to
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the reduction in the number of branching possibilities at each

step since the elimination of some partial paths by the rules

results in a smaller average length of partial path explored before

reaching a dead end. This may be seen in the example of Table 2,

which lists the steps taken by the deduction algorithm in traver-

sing the move tree of the graph in Figure 3. Whereas the.permu-

tation algorithm takes nine steps to complete a circuit, the

deduction method, by the elimination of some of the dead end

branches, uses only six steps.

TABLE 2

Deduction Algorithm on

Graph of Figure 3a

Step # ,Partial Path

1 C

2 C-A

3 C-B

4

5

6

C-B-D

C-B-D-A

C-B-D-A-C

Comments

eliminate BA,DA; fail

by R3 since D has no

edge leaving; backtrack

to vertex C

edge BA is eliminated

by R2 since BD is

required

circuit
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The advantages to this algorithm may be outweighed by the

extra time required to apply the deduction rules at each step.

The application of these rules may require more time than checking

all possible partial paths. The application of each rule is

quadratic in nature since all of the N2 elements of the adjacency

matrix must be examined. If the straightforward permutation algor-

ithm for a particular graph is exponential in time then the appli-

cation of the deduction rules may provide for a reduction in the

processing time.

D. WARNSDORFF

An algorithm of this class is centered around the application

of a heuristic procedure which may be viewed as an approximation

to a full search of the tree representing the possible paths from

an initial vertex.

The rule was originally proposed by H. Warnsdorff in 1823 for

finding knight's tours on a chess board. A knight's tour is a

Hamiltonian circuit on the graph formed by using the squares as

vertices and a knight's possible moves as edges between squares.

Warnsdorff's rule, as originally proposed, called for the selection

of the next move of the knight based on a calculation of which move

connected with the fewest number of further moves. If a tie

occurs it may be broken arbitrarily. Thus for a knight in the

middle of a chess board there are moves to eight possible squares

and Warnsdorff's rule requires that the number of possible moves

from each of these eight squares be found and the knight moved

to the square with the least number of further moves.



This rule has been generalized to higher order calculations

by Pohl. (11) The generalized Warnsdorff's rule considers all

paths of k moves and counts the remaining number of connections

for each path. The path with the minimum number of connections at

the kth move is the one who's first move is selected, provided

that this number is not zero. Ties are broken by going to k + 1

moves. Thus for Warnsdorff' rule as originally stated, k = 1.

Pohl's suggested generalization of Warnsdorff's rule .requires

the summation of the degrees of vertices in each possible partial

path of length k from the current vertex. It should be noted that this

is not the only possible generalization of Warnsdorff's rule. An

alternative to the summation might be the selection of the vertex

which connects with a further vertex of minimum degree. Other

possibilities might include some form of combination of the above

alternatives.

Since Warnsdorff's rule is only an approximation to a full

search of the move tree, cases exist for which it will not work,

that is, it will not find a complete Hamiltonian circuit even if

one is present. It is then necessary to complete the search for

a circuit by another algorithm as described below.

Sl: pick initial vertex as current vertex, goto S5

S2: find successor of current vertex with least number of

branches greater than zero, add to partial path and

make it the current vertex

S3: counting branches to the initial vertex, if the degree

of any vertex no in partial path is.zero, go to the
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alternate algorithm

S4: if partial path includes all vertices and branch from

current vertex to initial vertex exists then DONE

S5: reduce by one the degree of any vertex connected to

the current vertex and go to step S2

Warnsdorff's rule and the algorithms based upon it suffer

from the disadvantage that the method is not guaranteed to work.

It will always work if taken to a high enough order but to do so

would become costly since this operation would become equivalent

to the permutation method of searching the full move tree. However,

if the rule reaches a deadlock, it may be possible to find a circuit

by continuing the search using a second algorithm to handle the

remaining portion of the graph. The results of this paper were

obtained by appending the permutation algorithm to the processing

performed by Warnsdorff's rule.

Warnsdorff's algorithm also has the disadvantage that it is not

and exhaustive search. The other classes of algorithms will systema-

tically find all circuits but a Warnsdorff algorithm of an order less

than the number of vertices is only a partial search of the move tree

and thus will not find all circuits. The algorithm may be useful

in cases where only a single circuit is desired.

The implementation of Warnsdorff algorithm is not straight-

forward. The higher order tie-breaking procedures are difficult

because of the rapidly expanding number of partial paths as the

order increases. Also, in appending a second algorithm for use when
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Warnsdorff's rule fails, it may be difficult to match the initial

conditions for starting the second algorithm. For example, the

deduction class has-an elaborate set of bookkeeping procedures

which accrue as the program is executed. It may be difficult to

jump into the middle of processing from a Warnsdorff algorithm

which has not been using those bookkeeping procedures.

Warnsdorff's rule has the advantage of being fast. For first

order searching, it requires only order(N) tests to advance the

partial path. The second or higher orders of tests will be neces-

sary only in case of two or more branch possibilities of equal

degree, which is likely only if the graph is highly regular. The

operation of Warnsdorff's rule can be seen in Table-3. Only five

steps are required where the deduction algorithm needs six and the

permutation nine. In a Warnsdorff algorithm, the sooner the rule

reaches a deadlock, the more the performance will approach that

of the appended algorithm.



TABLE 3

Warnsdorff Algorithm on

Graph of Figure 3a

Step # Partial Path Comments

1 C B has connectivity of two, A

has connectivity of zero because

it is connected to the initial

vertex which is current and so

has had its degree reduced

3

5

C-B

C-B-D

C-B-D-A

C-B-D-A-C

A is again excluded so go to D

the only edge is to A

circuit
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III. EXPERIMENTAL' DESIGN AND RESULTS

A. DESIGN

The experiment was designed for the comparison of the algor-

ithms in two categories: performance in finding a single circuit

in the graph and performance in finding all the circuits of a

graph. In finding a single circuit, the algorithms were tested on

graphs with several specific properties to determine if variation

of these properties effected the performance of the algorithm.

These properties include the size of the graph, density and the

regularity.

The data used in the experiment consisted of random graphs

generated by a routine which allowed for variation of the size,

density and regularity of the graph. The basic design of the

graph generation program randomly placed l's in the rows of an

array which became the adjacency matrix for the graph. The size

of the graph was controled by the dimension of the array. The

density of the generated graph was dependent upon the number of

non-zero elements placed in each row of the array. For a given

density, each row of the array must be filled with say k (k = den-

sity) ones placed randomly into N-1 possible locations, the dia-

gonal elements of the array being excluded to eliminate self-loops.

This was accomplished by forming the list of integers from one to

N, scrambling the list using a random number generator and using

the first k entries of the scrambled list as indices for ones in

the current row of the adjacency matrix. The regularity was
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adjusted so that each vertex had a possible range of degree from k-r

to k+r where r is an integer less than or equal to k. This was done by

randomly choosing a number between -r and +r and adding it to k. The

new value of k was then used in the degree procedure above controlling

density. The entire process was repeated for each row of the adjacency

matrix. The values of N,k and r were the input parameters to the graph

generation routine.

To insure the presence of a Hamiltonian circuit, the graph generation

program superimposed upon the already existing adjacency matrix, a second

adjacency matrix consisting simply of a single Hamiltonian circuit. This

circuits was made random by first generating an array containing the

simple circuit 1,2,3,...,N,1 and then using a scrambled list of the

integers from one to N as a mapping to rename the vertices of the simple

circuit. When this Hamiltonian circuit was added to the original

adjacency matrix, at most one non-zero element was added to each row thus

making the average density somewhere between k and k+1. Therefore most

of the graphs generated are not perfectly regular but only approximately

regular.

Regression analysis and analysis of variance were used to form

models of the behavior of the algorithms and to place limits on the

reliability of those models. Many authors do not study the reliability

of the results for performance of algorithms. Instead, the usual proce-

dure is to report the execution times for various test runs of the algor-

ithm on a particular machine. In this paper, rather than giving the

time of execution as a measure of performance, the number of

operations necessary to reach the completion of
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of the program were used as a measure of performance. To do this,

a counter was placed in the programs and the number of arithmetic

and memory operations was recorded. Arithmetic operation included

the operations of addition, subtraction, multiplication,division

and assignment. Memory operations consisted of array references.

A combination of the two indicators was then used for the compu-

tational complexity of the program and thus, the algorithm. The

final measurement variable consisted of the weighted sum of the

operations classed as arithmetic and memory with the latter having

two times the weight of the former. The analysis of performance

was then obtained using three repetitions per treatment, that is,

three repetitions for every combination of the parameters.

A major goal of the experiment was to implement and compare

the behavior of Warnsdorff's algorithm with the other two since

no previous comparative studies had ever included a Warnsdorff

algorithm. Also, the characteristics of the Warnsdorff algorithm

in conjunction with the hybrid formulation described above needed

study.

In the second part of the experiment, the permutation and

deduction algorithms were compared for finding all the circuits

of a graph. The average amount of computation per circuit was

used as the measure thus making it independent of the number of

circuits in a particular graph. In this portion of the experiment

the primary interest was the dependence of the algorithms on the

size of the graph, the number of vertices, N, and how that compares

with the N dependence of the algorithm in finding only a single circuit.



23

B. RESULTS

The general N dependence of the algorithms in finding a

single circuit is displayed in Figure 4. This figure shows the

log of the number of operations versus the size of the graph. The

fitted regression lines for the permutation and deduction algorithms

are given along with some of the data points for each of the three

algorithms.

The preliminary attempts to fit regression models to the

three algorithms yielded a possible exponential dependednce for both

the permutation and deduction algorithms but only an N or N2 depen-

dence for the Warnsdorff algorithm. As can be seen from Figure 4,

performance of the Warnsdorff algorithm was not consistent and a

high degree of fit with a regression model could not be obtained.

Thus the use of a two-factor analysis of variance was needed to

decide if a significant difference did exist between Warnsdorff

and the permutation or deduction groups. The two-factor

analysis of variance given in Table 4 concluded that there was a

significant difference between the N dependence of the permutation

and Warnsdorff groups. This can be seen from the large F value

for the interaction mean square. The minimum F value for a 95%

confidence level signifying a difference is approximately 8.70 and

the calculated F value was 11.05 . Thus it can be concluded that

the two algorithms differ in their dependence on the size of the

graph.

Table 5 contains the results from regression analysis on the
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Source of

Variation

TOTAL

TREATMENT

Algorithm

Interaction

ERROR

Sum of

Squares

1.14xio13

7.15x1012

9.14x1011

3.33x1012

2.91x1012

4.21x1012

TABLE 1. TWO FACTOR ANOVA

(Warnbdorff,permutation)vs(N)

Degrees of Mean

Freedom Square

23

7 1.02x1012

1 9.14x1011

3 1.11x10 12

3 9.69x1011

16 2.63x1011

3.47

4.22

11.05
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performance of the permutation and deduction algorithms. The

analysis of variance shows a high degree of fit (91.5%) on the

transformed data ( the loge of the number of operations ) and the

set of t values for the parameters N, PERM and N*PERM all show a

significance above the 95% confidence level.

The fitted models are then:

OPERATIONperm = 17.-5 exp(.540N)

OPERATIONded = 1108 exp(.274N)

The above equations and their graphs in Figure 4 show clearly that the

deduction algorithm is less efficient than the straightforward

permutation method for N smaller than approximately 16. This can be

attributed to the extra processing necessary to apply the deduction

rules. But with an increasing number of vertices, the exponential

nature predominates and the deduction algorithm, with smaller exponent,

prevails.

For Warnsdorff's algorithm in Figure 4, only the data points are

plotted but the advantage is clear. The points do not indicate a

straight line on the log plot and thus show Warnsdorff's procedure

is not of an exponential nature. It should be reiterated that the

algorithm is basically linearly dependent on N until it fails. Failure

or a resort to higher orders of the rule is most likely only for highly

regular graphs.

Table 6 contains the two-factor analysis of variance to determine

if the character of various algorithms change with a change

in the density of the graph. The table does show



TABLE 5. REGRESSION AND ANOVA

FOR PERMUTATION AND

DEDUCTION (first circuit)

Transformed Model:

loge (OPERATIONS) = 7.02 +.274 N

-4.16 PERM +.266 N*PERM

t values:

ANOVA:

Model:

Variable Std. Error t

CONSTANT .574 12.2

N .042 6.54

PERM .811 5.13

N*PERM .059 4.50

Source df SS MS

TOTAL 23 155 6.75

REGRESSION 3 141 47.3

RESIDUAL 20 13.1 .658

R2 = .915

OPERATIONS = 17.5 exp(.540N)

OPERATIONS d
= 1108 exp(.274N)

27
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a difference in the performance of the algorithms on graphs of

differing densities, with the computed F at 11.32 indicating a

confidence level for the effect of better than 90%. This is to

be expected since there are more partial paths to be explored.

However, there is no apparent change in the characteristic per-

formance of the algorithms with changing density. This is

evidenced by the very small interaction term, F= .22, shown in

Table 6.

Table 7 contains the analysis of variance and regression

model for interpreting the effect of regularity on the permutation

algorithm. The two models providing performance as a function of

N are:

High Regularity: OPERATIONSh = 23.7 exp(.496N)

Low Regularity: OPERATIONS, = 27.5 exp(.507N)

The equations are essentially identical indicating that regularity

of a graph has virtually no effect on the performance of the

permutation method. This is further evidenced by the t values for

the parameters which differentiate between data for regular and

non-regular graphs. For a 60% significance, the minimum t value

is .941 and both parameters REG and N*REG have t values far below

this level.

Table 8 contains similar results for the parameters which

differentiate regularity in the test on the deduction algorithm.

There too, the t values for those parameters fail to reach even the

60% confidence level. Thus again, as with the permutation method,

regularity of the graph appears to have no effect on the perform-



Source of

Variation

Degrees of

Freedom

TABLE 6. TWO FACTOR ANOVA

(density)vs(algorithm)

Sum of Mean

Sauares Square F

TOTAL 17 8.84x1010

TREATMENT 5 4.76x101p

Density 1 3.85x101° 3.85x101° 11.32

Algorithm 2 7.54x109 3.77x109 1.11

Interaction 2 1.51x109 7.57x10
8 .22

ERROR 12 4.09x1010 3.40x109



Model (transformed):

t values:

ANOVA:

Model:

TABLE 7. REGRESSION AND ANOVA

FOR PERMUTATION ON REGULAR

VS NON-REGULAR

loge (OPERATIONS) = 3.32 +.507 N

-.150 REG -.011 N*REG

Variable Std. Error

CONSTANT .981 3.37

N .072 7.06

REG 1.39 .108

N*REG .102 .110

Source df SS MS

TOTAL 7 65.7 9.39

REGRESSION 3 63.1 21.0

RESIDUAL 3 2.58 .645

R2 = .961

OPERATIONSD = 27.5 exp(.507N)

OPERATIONS p.r = 23.7 exp(.496N)
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ance of the algorithm.

Table 9, a two-factor analysis of variance, shows at greater

than the 60% confidence level the regularity of a graph does have

an effect upon the performance of the Warnsdorff algorithm. Given

the method of Warnsdorff's rule, comparing the number of edges

incident on adjacent vertices and going to higher order in case of

a tie, the regularity of a graph might be expected to have a

greater effect upon the performance of this algorithm. However,

the graphs used in obtaining performance data in the regular

category were only approximately regular not precisely regular

and thus the full effect of regularity was not measured.

Table 9 also shows an interaction, significant to greater

than 90%, between the size of the graph, N, and the degree of

regularity. Thus for larger graphs, the deteriorating effect of

regularity on performance of the method is more pronounced. This

is expected since with increasing N the number of times a tie

will be encountered increases.

It is interesting to note that even for approximately

regular graphs, the Warnsdorff algorithm, on the average, out-

performs both the permutation and deduction methods.

In part two.of the experiment, the performance of the two

exhaustive search algorithms was analyzied with data representing

operations needed to find all the circuits of a graph. Figure 5

shows the regression model plots of performance of the two methods.

Table 10 contains the analysis of variance and regression model

results pertaining to the perfOrmance of the algorithms in finding



Model (transformed);

t values:

ANOVA:

Model:

TABLE 8, REGRESSION AND ANOVA

FOR DEDUCTION ON REGULAR

VS NON-REGULAR

loge (OPERATIONS) = 6.61 +.331 N

+.825 REG -.085 N*REG

Variable Std. Error t

CONSTANT 1.11 5.94

N .081 4.07

REG 1.57 .524

N*REG .115 .741

Source df SS MS

TOTAL 7 24.7 3.52

REGRESSION 3 21.36 7.12

RESIDUAL 4 3.30 .825

R 2 = .866

OPERATIONSd
= 742 exp(.331N)

OPERATIONSd.r= 325 exp(.246N)
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TABLE 9. TWO FACTOR ANOVA

(regularity)vs(N)

Source of Degrees of Sum of Mean

Variation Freedom Squares Square F

TOTAL 23 1.63x1011

TREATMENT 7 1-34x1011

1.32x1010 1.32x1010Regularity 1 7.65

N 3 7.24x101° 2.41x101° 13.68

N*Reg 3 4.84x1010 1.61x1010 9.14

ERROR 16 2.82x101° 1.76x109
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all circuits. The measure of performance was the average number

of operations per circuit in the graph. The overall computational

complexity for the permutation process is given as:

OPERATIONSp = 28.2 exp (.466N)

and for the deduction process as:

OPERATIONSd = 1017 exp (.283N)

To test for equivalence between overall performance and first

circuit performance the Bonferroni joint confidence intervals

were employed. To use a 94% family confidence interval, the

coefficient needed is:

B = t(.99, 20) = 2.528

and the confidence intervals become, for first circuit data:

CONSTANT . . . . 7.02 + 1.47

N. . . . .274+ .108

PERM . . . . 4.16 + 2.08

N*PERM . . .266+ .152

and for total performance:

CONSTANT . . . . 6.93 + .862

N . . .283+ .063

PERM . . . . 3.59 + 1.27

N*PERM . . .183+ .084

As is evidenced by the limits of the confidence intervals, each

set of parameter, values is contained within the other's confidence
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TABLE 10. REGRESSION AND ANOVA

FOR PERMUTATION AND DEDUCTION

ON ALL CIRCUITS

Transformed model:

loge (OPERATIONS) = 6.93

3.59 PERM +.183 N*PERM

t values:

ANOVA:

Model:

+,283 N

Variable Std. Error t

CONSTANT .341 20.3

N .025 11.4

PERM .482 7.44

N*PERM .035 5.18

Source

TOTAL

REGRESSION

RESIDUAL

df

23

3

20

R2 = .963

OPERATIONS = 28.2 exp(.466N)

OPERATIONS d
= 1020 exp(.283N)

SS MS

126 5.49

122 40.5

4.65 .233
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interval, Thus it can be concluded that the performance of the

algorithms is, on the average, the same for each circuit in a

graph, whether the purpose is to find one circuit or all circuits.

Therefore in general, for large N, the deduction algorithm's

elimination of certain paths allows it to outperform the basic

permutation method.
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IV. CONCLUSIONS

The main concern in testing these algorithms was their depen-

dence on the size of the graph. Both the permutation and deduction

methods were seen to have an exponential dependence on N, the size

of the graph. Other factors such as regularity and density were

seen to have little or no effect on the overall N dependence of

these two algorithms.

As expected, the application of the deduction rules called for

an additional amount of computation over and above the underlying

permutation structure. Thus the much simpler and more straight-

forward permutation algorithm outperformed the deduction for smaller

graphs (experimentally, N less than 16). The application of the

deduction rules clearly reduces the exponential factor in the

execution time and thus, unless a very simple application on a

small graph is planned, the deduction algorithm is to be preferred.

Warnsdorff's algorithm is seen to have a non-consistent

behavior but is much less strongly dependent on N than either of

the other two procedures. This allows for considerable savings

in computational effort. Thus for very large graphs of approxi-

mately 20 or more vertices, in which only a single or a few circuits

are desired, the use of a Warnsdorff algorithm is imperative.

But, as described above, a Warnsdorff algorithm suffers from

two serious handicaps. First, it is not guaranteed to work and

hence must be augmented by a second algorithm of the permutation

or deduction type. This is an implementational not a computational
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drawback since in the limit of immediate failure of the Warnsdorff

algorithm, the execution time simply rises to that of the appended

algorithm.

A second disadvantage of the method is that it is not an

exhaustive search and thus cannot be guaranteed to find all the

circuits in a graph although the algorithm can easily be amended

to find possibly more than one.

Several closing comments on the testing of algorithms might

be appropriate here. First, the literature displays a wide varia-

tion in the method of analysis of test results on algorithms. One

author may give best and worst observed execution times on a

particular machine, another the average results for a few tests

on a small, restricted set of data. Some form of standardization

of testing procedures and analysis is needed so published results

on related algorithms might be compared more readily:

Lastly, the experimental result given in any study of the

performance of algorithms is probably not independent of the

quality of the programming used to implement a procedure. Thus

some element of skepticism must be associated with any form of

analysis where programming technique is a factor.
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