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A COMPARISON OF METHODS

FOR FINDING HAMILTONIAN CIRCUITS IN GRAPHS

I. INTRODUCTION

In the year 1859, Sir William Rowan Hamilton invented a puzzle
end sold it to a game manufacturer in Dublin. The puzzle consisted
of a regular dodecahedron, which is a polyhedron with 12 faces and
20 corners, each face a regular pentagon with three edges meeting
at each corner, The corners were marked with the names of 20 im-
portant cities and the object of the game was to find & route along
the edges of the dodecahedron passing through each of the 20 citieé
exactly once and returning to-the starting_point. This was the be-
.ginning ol Lhe cenceph ol a Humiltlonian circuit,

Before generalizing the concept of a Hamiltonian circuit on a
general graph, a simple graph-and some of its properties shall be
.defined. Abstractly, a graph is a pair (V,E) where V is a finite set
of objects called vertices and E, the set of edges, ie a set of ordered
pairs of vertices. A common representation of such a graph is shown
in Pigure 1., The graph is known as a digraph (directed graph) with edges
having an implied direction eorresponding to the ordered pairs of vertices
in the set of edges.

The graph shown in Figure 1 may be represented in a number of ways.
One of the most useful, the adjacency matrix, is shown in Figure 2.

The adjacency matrix of a graph on N vertices is an.NxN array X

such that X535 7 1 if (i,j) is an element of E and zero otherwise.



The degree of a vertex refers to the number of edges incident upon
it. This may be broken down to in-degree and out-degree referring
to the number of edges entering or leaving the vertex, respectively. .
The adjacency matrix was used to represent the graphs in programming
the algorithms which were tested in this paper.

Several properties may be defined whichAdescribe the overall fea-
tures of the graph. First, the density of the graph may be defined
as the average out-degree of a vertex. For the graph of Figure 1
this number is two. This may also be derived from the adjacency
matrix of Figure 2 by averaging the number of non-zero entries in each
row. |

Secondly, the regularity of a graph may be defined as the amount
of deviation from the average out-degree of a vertex in the graph. The
graph presented in Figure 1 is regular of degree two. From the adja-
cency matrix this can be seen in that there are exactly two non-zero
elements in each row.

With these definitions, the concepﬁ of a Hamiltonian circuit
may be generalized to the case of arbitrary graphs by defining the
circuit to be a sequence of vertices Vi ,Vo,eeeosVsV] that includes
each vertex once and such that (vi,vi+l), 1£i4N-1, and (VN,vl) are
elements of E. A Hamiltonian circuit in the graph of Figure 1 is
1,3,4,5,2,1 . To date the problem of finding a necessary and sufficient
graph theoretic condition for tﬁe existence of a Hamiltonian circuit in
an arbitrary'graph is unsolved. (1) The task of finding a Hamiltonian
circuit in general might be difficult in the sense that there might be

no easier way than to look at all the N! possible permutations of the



Figure 1. A Directed Graph



1 0 0 1 0 1
2 1 0 1 0 0
3 0 0 0 1 1
L 0 1 0 0 1
5 0 1 0 1 0

Figure 2. Adjacency Matrix of the Graph of Figure 1



vertex set and test each for the circuit property described above. (2)

A useful structure in analyzing the search for a Hamiltonian
circuit is the move tree for a graph as shown in Figure 3. The root
of the tree, centered at the top of the figure, 1s the initial vertex
 from which the search is conducted. In Figure 3 the root is C. The
branches of the tree are the chains of edges leading out from the root
and reprgsenting all of the possible paths leading back to the initial
vertex, The tree of Figure'Sb shows the graph of 3a to have three
such possible routes. The depth of a branch in the tree ié the number
of edges traversed until the initial vertex is reached again.

The purpose of this péper is to examine the various classes of
algorithms which héve been proposed for finding Hamiltonian circuits
in érbitrary graphs and to compare their effectiveness with respecf to
the general properties of the graph being examined. These pfoperties
include the size of the graph (number of vertices), the density of the

graph and the regularity which may be présent in the graph.



II. CLASSES OF ALGORITHMS

In this chapter, the list of proposed algorithms for finding
Hamiltonian circuits is broken into four classes. These classeé may
be labeled algebraic, permutation, deduction,‘and the Warnsdorff rule.
The basic steps involved in the execution of each class are outlined
along with examples of the procedure. The advanﬁages and disadvantages

of the various classes are also discussed.

A, ALGEBRAIC

This class of algorithms originates from early attempts at

finding Hamiltonian circuits and involves the simultaneous generation of
all circuits by successive matrix multiplications. (3f6) The algorithm
uses the variable adjacency matrix, B, in which B(i,3)= S E the vertex
iaﬁei, if X(i,3)= 1 in the standard adjacency matrix. . The possible
paths, generated during execution, ére symbolically stored in a column
vector A (i) of length N where N is the number of vertices in the graph.
The vector is modified during the progrdm by sucéeséive multiplications

by B and successive deletions as described in the outline below.

sl: for m=l, let A (i) = X(i,1) for 1 =1 to N

S2: multiply A, by the variable adjacency matrix B
Adey (1) = %B(i,k)*Am(k)

and store result in the vector Aj..
S3: for i = 1 to i = N, delete all terms of the resulting

Aé+l(i) containing vertex label vy and after deletion

= m+ rename A':. as A
set m m+l and Am+l -



Sh: if m is less than N, go to step S2
85: if m = N then element AN(l) contains a symbolic list

of all Hamiltonian circuits in the graph

This class of algorithm suffers from a critical drawback. The
amount of storage space required to symbolically_keep track of all
the partial paths generated after each step quickly becomes prohibitive.
As will be seen in the next section, for some graphs the number of
partial paths near the end of execution may be on the ordef of N! .
Results obtained elsewhere show this method to be much less efficient
than some of the other classes of algorithms examined below and therefore

the algebraic class will not be discussed further. (7)



B. PERMUTATION

This class of algorithms employs a straightforward systematic

and exhaustive search. (8) The basic procedure includes the

systematic consideration of every possible path from the first or

initial vertex.

The descriptive outline presented below is characteristic of

the procedure followed by an algorithm of this class. The initial

vertex is taken as vertex 1 and all branching possibilities from

this vertex are considered.

Sl:

S2:

53

sk

S5:

S6:

start with vertex 1 as current vertex

find next branch possibility from current vertex
to a vertex not in fhe partial path

if a branch possibility exists, advance partial
path to this vertex, make this vertex current and
go to step S2.

if no further branch possibilities exist and the
current vertex is vertex 1, no more circuits exist,
END.

if no branch possibilities exist, backtrack to the
last vertex from which a branch occurred, goto s2.
if all vertices are in partial path and next branch
is to vertex 1 then a Hamiltonian circuit exists;

record the circuit and go to step S5.

The algdrithm has the advantage of being easy to implement

and conceptually straightforward. The procedure is an exhaustive

search and thus will eventually trind all existing Hamiltonian



circuits in the graph. It is a brute force method which steps
through all possibilities, the number of which could become quite
large for a very dense graph. The amount of time taken will depend
largely on how quickly the possible paths terminate.

In Figure 3 a small graph with N = 4 vertices and the tree
répresenting the possible partial paths to the initial vertex is
given. Table 1 gives the sequen&e of moves which a permutation
algorithm would follow in traversing the tree. The algorithm
searches every branch of the move tree to its end and, in this case
takes nine steps to complete the process.

The graph shown as an exampie in Figure 3 has few edges in-
cident on each vertex. If the right'branth-of:the’tree (C-B-D-A-C)
were labeled differently soithat it was the first branch to be
searched, the algorithm would have takenofour steps to find a
circuit, that is, order(N) steps where N is the number of'vertices
in the graph. This is the minimum number of steps required for a
complete circuit since the search must be carried to a depth of N
in the move tree.

In a graﬁh of N vertices in which every vertex +is connected
by an edge to every other vertex, that is, N-1 edges incident on
each vertex, it can be seen that at a depth of k in the move tree,
eath vertex will have (N-1-k) possible branches. For each of these
branch possibilities at depth k there will be a vertex at depth k+1
With (N—l—(k+l)) branch possibilities. Letfing Bk,represent the

number of branches at depth k gives:

By T Bk (N-1- (k1)) B, = (N-1)
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Starting with k = 0 and continuing through the series to k + 1 = N

gives:
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or:

(N-1)!

By
Thus in the worst case, the permutation algorithm might search

order((N-1)!) possible paths.

Figure 3a. Graph on Four Vertices

Depth

Figure 3b. Move Tree of Graph in 3a



Step #

11

TABLE 1
Permutation Algorithm on the

Graph of Figure 3a

Partial Path Comments

C

C-A

C=A-C fail: reaches initial

vertex too soon, back-

track to vertex C

C-B

C-B-A

C-B-A-C fail: backtrack to
vertex B

C-B-D

C-B-D-A

C-B-D-A-C . , - circuit
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C. DEDUCTION

The algorithms inbthis class consist of the same basic pro-
cedure as the permutation class, that is, exhaustive search of all
possibilities for branching. In this class, however, deduction
rules are used at each step to eliminate as many branches as pos-
sible. (9,10) The branches elimiﬁated are those that will lead to
a dead end path.

In the descriptive outline given below, the initial vertex
is again taken as vertex 1 and all branch possibilities are con-
sidered which cannot be eliminated by the deduction rules. In step
82, an admissible partial path is one to which a failure rule does
not apply. These rules are alss given below.

Sl: select vertex 1 as the initial path

S2: test the path for admissibility deleting all branch-
ing possibilities which can be shown to lead to
dead ends.

83: if partial path is admissible, find next possible
branch vertex and extend path to this vertex, goto
step S2.

gh: ir partial ﬁath is inadmissible, delete from the
partial path the last vertex to which a branch oc-
curred, find the next ﬁossible branch from vertex
at end of partial path and extend path to this ver-
tex, goto step S2. |

85: if all branch possibilities from a given #ertex have

been shown inadmissible, goto .step Sh.
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S6: if all branches from &ertex 1 have been ekamined,
no further circuits exist, END.

ST: if all vertices are in partial path and next
branching‘possibility is vertex 1 then a‘Hamilton-
ian circuit exists; record the circuit and goto
gtep Sh.

The test for admissibility in S2 is made by applying the
deduction rules below. Each time the test is applied, some edées
may be deleted and some may be made required edges (those which
must be prgsent in the circuit if it is’to contain the current
pmﬁhlp%h%

Rl: if a vertex has only one edge entering(leaviné) then
that edge is required.

R2: if a vertex has a required edge entering (leaving)
then all other edges entering (leaving) may be
deleted.

R3: fail if any vertex has no edge entering (leaving).

R4: fail if any vertex has two or more required edges
entering (leaving).

Whenever a fail apﬁlies, the partial path becomes inadmissible
and backtracking must occur,

This class of algorithm is much more difficult to implement
than the permutation class described above. This is due to the
rules which must be incorporated and the bookkeeping measures
needed to classify edges and backtrack from dead ends. The search

time, however, should be less than the permutation method due to =



1k

the reduction in the number of branching possibilities at each

step since the elimination of some partial paths by the rules

results in a smaller average length of partial path explored before

reaching a dead end. This may be seen in the example of Table 2,

which lists the steps taken by the deduction algorithm in traver-

sing the move tree of the graph in Figure 3.

Whereags the:permu-

tation algorithm takes nine steps to complete a circuit, the

deduction method, by the elimination of some of the dead end

branches, uses only six steps.

TABLE 2
Deduction Algorithm on

Graph of Figure 3a

Step # . Partial Path
1 C
> C-A
3 C-B
i C-B-D
5 C-B-D-A

6 C=B-D=A-C

Comments

eliminate BA,DA; fail
by R3 since D has né
edge leaving; backtrack
to vertex C

edge BA is eliminated
by R2 since BD is

required

circuit
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The advantages to this algorithm may be outweighed by the
extra time requiféd to apply the deduction rules at eéch step.
The application of these rules may require more time than checking
all possible partial paths. The application of each rule is
quadratic in nature since all of the N° elements of the adjacency
matrix must be examined. If the straightforward permutation algor-
ithm for a particular graph is exponential in time then the appli-~
cation of the deduction rules may provide for a reduction in the

processing time.

D. WARNSDORFF

An algbrithm of this ciass is centered around the application
of a heuristic procedure which may be viewed as an approximation
to a full search ofvthe tree representing the possible paths from
an initial vertex. |

The rule was originally proposed by H. Warnsdorff in 1823 for
finding knight's tours on a chess board. A knight's tour is a
Hamiltonian circuit on the graph formed By using the squares as
vertices and a knight's possible moves'as edges between squares;
Warnsdorff's rule, as originally proposed, called for the selection
of the next move of the knight based on a calculation of which move
connected with the fewest number of further moves. if a tie
occurs it may be broken arbitrarily. Thus for a khight in the
middle of a chess board there are moves to eight possible squares
and Warnsdorff's rﬁle requires that the number of possible moves
from each of these eight squares be found and the knight moved

to the square with the least number of -further moves.
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This rule has been generalized to higher order calculations
by Pohl. (11) The generalized Warnsdorff's rule considers all
paths of k moves and counts the remaining number of connections
for each path. The path with the minimum number of connections at
the k%M move is the one who's first move is selected, provided
that this number is not zero. Ties are broken by going to k + 1
moves., Thus for Warnsdorfff rule as originally stated, k = 1.

Pohl's suggested generalization of Warnsdorff's rule requires
the summation of the degrees of vertices in eaéh possible partial
path of length k from the current vertex. It should be noted that this
is not the only possible generalization of Warnsdorff's rule. An
alternative to the summation might be the selection of the vertex '
which connects with a further vertex of minimum degree. Other
possibilities might include some form of combination of the above
alternatives.

Since Warnsdorff's rule is only an approximation to a full
search of the move tree,’cases exist for which it will not work,
that is, it will not find a complete Hamiltonian circuit éven if
one is present. It is then necessary to complete the search for
a circuit by another algorithm as described below:

S1: pick initial vertex as current vertex, goto S5

g2: find successor of current vertex with least number of
branches greater than zero, add to partiél path and
make it the current vertex

S3: counting branches to the initial vertex, if the degree

of any vertex not in partial path is.zero, go to the
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alternate algorithm

shk: if partial path includes all vertices and branch f?om
current vertex to initial vertex exists then DONE

85: reduce by one the degree of any vertex connected to.

the current vertex and go to step 52

Warnsdorff's rule and the algorithms based upon it suffer
from the disadvantage that the method is not guaranteed to work.

It will always work if taken to a high enough order but tokdo S0
would become costly since this operation would become egquivalent

to the permutation method of searching the full move tree. However,
if the rule reaches a deadlock, it may be poésible to find a circuit
by continuing the search using a second algorithm to hahdlé the
remaining portion of the graph. The results of this paper were
obtained by appen&ing the permutation algorithm to the processing
performed by Warnsdorff's rule.

Warnédorff's algorithm also has the disadvantage that it is not
and exhaustive search. The other classes of algorithms will systema-
tically find all circuits but a Warnsdorff algorithm of an order less
than the number of vertices is oﬁly a partial search of the move tree
and thus will not find all circuits. The algorithm may be useful
in cases where only a single circuit is desired.

The implementation of Warnsdorff algorithm is not straight-
forward. The higher order tie-breaking procedures are difficult
because of the répidly expanding number of partial paths as the

order increases. Also, in appending a second algorithm for use when
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Warnsdorff's rule fails, it may be difficult to match the initial
conditiéns for starting the second algorithm. For example, the
deduction class hasean elaborate set of bookkeeping procedures
which accrue as the progrém is executed. It may be difficult to
Jump into the middle of processing from a Warnsdorff algorithm
which has not been using those bookkeeping procedures.

Warnsdorff's rulé has the advantage of being fast. For first
order searching, it requires only order(N) testé to advance the
partial path. The second or higher orders of tests will be neces=
sary only in case of two or more branch possibilities of equal
degree, which is likely only if the graph is highly regular. Thev
operation of Warnsdorff's rule can be seen in Table 3. Only five
steps are required where the deduction algorithm needs six and the
permutétion nine. In a Warnsdorff algorithm, the sooner the rule
reaches a deadlock, the more the performance will approach that

of thé appended algorithm.
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TABLE 3
Warnsdorff Algorithm on

Graph of Figure 3a

Step # Partial Path Comments
1 c B has connectivity of two, A
has connectivity of zero because 
it is connected to the initial
vertex which is current and so

has had its degree reduced

2 C-B A is again excluded so go to D
3 C-B-D : the only edge is to A
L C-B-D-A

5 C-B-D-A-C circuit



III. EXPERIMENTAL DESIGN. AND RESULTS

A. DESIGN

The experiment was designed for the compariéon of the algor-
ithms in two categories: éerformance in finding a single circuit
in the graph and performance in finding all the circuits of a’
grabh. In finding a single circuit, the algorithms were tested on
graphs with several specific properties to determine if variation
of these properties effected the performance of the algorithm.
.’These properties include the size of the graph, density and the
regularity.

The data used in the experiment-consisted of random graphs
generated by a routine which allowed for variation of the size,
density and regularity of the graph. The basié design of the
graph generation program randomly‘placed 1's in the rows of an
array which bécame the adjacency matrix for the graph. The size
of the graph was controled by the dimension of’the array. The
density of the generated graph was dependent upon the number of
non-zero elements placed in each row of the array. For a given
density, each row of the array must be filled with say k (k = den-
sity) ones placed randomly into N-1 possible locations, the dia-
gonal elements of the array being excluded to eliminate self-loops.
This was accomplished by forming the list of integers from one to
N, scrambling the list using a random number generator and using
the first k entries of the scrambled list as indices for ones in

the current row of the adjacency matrix. The regularity was
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adjusted so that each vertex had a possible range of degfee from k-r

to k+r where r is an integer 1less than or equal to k. This was done by
randomly choosing a number between -r and +r and adding it to k. The
new value of k was then used in the degree procedure above controlling
density. The entire process was repeated for each row of the adjacency
matrix. ,The values of N,k and r were the inpﬁt parameters to the graph
generation routine. |

To insure the presence of a Hamiltonian circuit, the graph generation
program superimposed upon the already existing adjacency matrix, a eecond
adjacency matrix consisting simply of a single Hamiltonian circuit. This
circuits was made random by first generating an array conteininé the
simple circuit 1,2,3,...,8,1 and then using a scrambled list of the
integers from one to N as a mapping to rename the vertices of the simple
circuit. When this Hamiltonian circuit was added to the origiﬁal
adjacency matrix, at most one non-zero element was added to each row thus
making the average density somewhere between k and k+1. Therefore most
of the graphs generated are not perfectly regular but only approximately
regular;

Regression analysis and analysis of variance were used to form
models of the behavior of the algorithms and to piace limits on the
reliability of those models. Many authors do not study the reliability
of the results for performance of algorithms. Instead, the usual proce-
dure is to report the execution times for various test runs of the‘algor— '
ithm on a particular ﬁachine. In this paper, rather than giving the
time of execution as a measure of performance, the number of

operations necessary to reach the completion of
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Qf the program were used as a measure of performance. To do this,
a counter was placed in the programs and the number of arithmetic
and memory operations was recorded. Arithmetic operation included
the operations of addition, subtraction, multiplication,division
and assignment. Memory operations consisted of array references.
A combinatién of the two indicators was then used for the compu-
tational complexity of the program and thus, the algorithm. The
final measurement variable consisted of the weighted sum of the
operations claésed as ‘arithmetic and memory with the latter having
two times the weight of the former. The analysis of performance
was then thained using three repetitions per treatment, that is,
three repetitions for every combination of the parameters.

A major goal of the experiment was to implement and compare
the behavior of Warnsdorff's algorithm with the other two since
no previous comparative studies had ever included a Warnsdorff
algorithm. Also, the characteristics of the.Warnsdorff algorithm
in conjunction with the hybrid formulation described above needed
study.

In the second part of the experiment, the permutation and
deduction algorithms were compared for finding ail the circuits
of a graph. The average amount of computation pér circuit was
used as the measure thus making it independent of the number of
circuits in a particular graph. In this portion of the experiment
the primary interest was the dependence of the algorithms on the
size of the graph, the number of vertices, N, and how that compares

with the N dependence of the algorithm in finding only a single circuit.
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B. RESULTS

The geﬁeral N dependence of the algorithms in finding a
single circuit is displayed in Figure 4. This figure shows the
log of the number of operations versus the size of the graph. The
fitted regression lines for the permutation and deduction algorithms
are givén along with some of the data points for each of the three
algorithms.

The preliminary attempts to fit regression models to the
three algorithms yielded a possible exponential dependednce for both
the permutation and deduction algorithms but only an N or N2 depen-
dénce for the Warnsdorff algorithm. As can Be seen from Figure L4,
performance of the Warnsdorff algorithm was not consistent and a
- high degree of fit with a regression model could not be obtained.
Thus the use of a two—facﬁor analysis of variance was needed tg
-decide if a significant difference did exist between Warnsdorff
and the permutation or deduction groupé. The two-factor
analysis of variance given in Table 4 concluded that there was a
significant difference between the N dependence of the permutation
‘and Warnsdorff groupso’ This can be seen from the large F value
for the interaction mean square. The minimum F value for a 95%
confidence level signifying a différence is approximately 8.70 and
the calculated F value was 11.05 . Thus it can be concluded that
-the two algorithms differ in their dependence on the size of the
graph.

Table 5 contains the results from regression analysis on the
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Source of

Variation
TOTAL

TREATMENT
Algorithm

N

Interaction

ERROR

Sum of

Squares

1.1bkx1013
7.15x101°2
9.1kx10Mt
3.33x101°
2.91x1012

4.21x10%2

TABLE Uk,

Degrees of

Freedom

23

16

TWO FACTOR ANOVA

(Warnsdorff,permutation)vs{N)

Mean

Square

1.02x1012

9.14x10t1

1.11x1012

9.69x1011 "

2.63x10%1

L 22

11.05

sg
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performance of the permutation and deduction algorithms. The
analysis of variance shows a high dégree of fit (91.5%) on the
transformed data ( the log, of the number of operations ) and the
set of t values for the parameters N, PERM and N¥PERM all show a
significance above the 95% confidence level.

The fitted models are then:

OPERATIONperm

i

17.5 exp(.540N)

i

OPERATIONgeg 1108 exp(.274N)

The above equations and their graphs in Figure 4 show clearly that the
deduction algorithm is less efficient than the straightforward
permutation method for NAsmaller than approximately 16. This can be
attributed to the extra processing necessary to apply the deduction
rules. But with an increasing number of verticés, the exponential
nature predominates and the deduction algorithm, with smaller exponent,
prevails.

For Warnsdorff's algorithm in Figure L4, only the data points ére
plotted but the advantage is clear. The points do not indicate a
straight line on the log plot and thus show'Wafnsdorff's procedure
is not of an exponential nature. It should be reiterated that the
~ algorithm is baéically linearly dependent on N until it fails. Failure
or a resort to higher orders of the rule is most likely only for highly
regular graphs.

Table 6 contains the two-factor analysis of ﬁariance to determine
if the chéracter of various algorithms change Wwith a chaﬁge

in the density of the graph. The table does show
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TABLE 5. REGRESSION AND ANOVA

FOR PERMUTATION AND

DEDUCTION (first circuit)

log_ (OPERATIONS) =  7.02
4,16 PERM
t values: Variable Std. Error
CONSTANT .5Th
N .0k2
PERM 811
N¥PERM .059
ANOVA: Source ar S5
TOTAL 23 | 155
REGRESSION 3 | 1k
RESIDUAL 20 13.1
RS = .915
Model:
OPERATIONS = 17.5 exp( .540N)

OPERATIONSd

1108 exp(.27LN)

+.27h W

+,266 N¥PERM

12.2
6.54
5.13

k.50

MS-

6.75
h7.3
.658
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a difference in the performance of the algorithms on graphs of
differing densities, with the computed F at 11.32 indicating a
confidence level for the effect of better than 907; This is to
be expected since there are mdre paitial paths to be explored.
However, there is no apparent change in the characteristic per-
forménce of the algorithms with chaﬂging density. This is
evidenced by the very small interaction term, F= .22, shown in
Table 6.

Table T contains the analysis of variance and regression
model for interpreting the effect of regulgrity on the permutation
algorithm. The two models providing perfofmance as a function of‘

N are:

High Regularity: OPERATIONS, = 23.7 exp(.L96N)

Low Regularity: OPERATIONS, = 27.5 exp(.507TN)

The equations are essentiaily identical indicating that regularity
of a graph hés virtually no effect on the performance of the
permutation method. This is further evidenced by the t values for
the éarameters which differentiate betﬁeen data for regular and
non-regular graphs. For a 60% significance, the minimum t value
is .9hl and both paraméters REG and N¥REG havé t values far below
this level.

Table 8 contains similar results for the parameters which
differentiate regularity in the test on the deduction algorithm.
There too, the t values for those parameters fail to reach even the
60% confidence level. Thus again, as with the permutation method,

regularity of the graph appears to have no effect on the perform-



Source of

Variation

TOTAL

TREATMENT

Density

Algorithm

Interaction

ERROR

Degrees of

Freedom

17

12

TARLE 6.

- 3.85x10"

(density)vs(algorithm)

Sum_of

Squares

8.8hxlOlO

h.76x1010

0

7.54x109

1.51x10°

I, 09x1010

TWO FACTOR ANOVA

Mean

Square

3.85x10%0
3.77x107
7.57x10°

3.40x107

11.32

.22



TABLE 7. REGRESSION AND ANOVA
FOR PERMUTATION ON REGULAR

VS NON-REGULAR

Model (transformed):

log, (OPERATIONS) = 3.32 +.507 N
-.150 REG -.011 N¥REG
t values: Variable Std. Error t
CONSTANT .o8L 3.37
N .072 7.06
REG 1.39 .108
N¥REG .102 .110
ANOVA: Source ar 3S MS
TOTAL 7 65.7 9.39
REGRESSION 3 ' 63.1 21.0
RESIDUAL 3 : 2.58 645
R2 = 961
Model:
OPERATIONS = 27.5 exp(.507N)

OPERATIONS, y = 23.7 exp(.496N)

30
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ance of the algorithm.

Table 9, a two-factor analysis of variance, shows at greater
than the 60% confidence level the-%egularity of a graph does have
an effect upon the performance of the Warnsdorff algorithm. Given
the method of Warnsdorff's rule, comparing the number of edges
incident on adjacent vertices and going to higher order in case of
a tie, the régularity of a graph might be eﬁpected to have a
greater effect upon the performance of this algorithm. Howéver,
the éraphs used in obtaining performance data in the regular
category were only approximatély regular not precisely regular
and thus the full effect of regularity was not measured.

Table 9 also shows an interaction, éignificant to greater
than 90%, between the size of the graph, N, and the degree of
regularity. Thus for larger graphs, the deteriorating effect of
regularity én performance of the method is more pronounced. This
is expected: since with increasing N the number of times a tie
will be enpountered increases.

It is interesting to note that even for approximately
regular graphs, the Warnsdorff aigorithm, on the average, out-
performs both the permutation and deduction methods.

In part two .of the experiment, the performance of the two
exhaustive search algorithms was analyziéd with data representing
operations needed to find all the circuits of a graph. Figure 5
shows the regression model plots of performance of the two methods.
Table 10 contains the analysis of variance and regression model

results pertaining to the performance of the algorithms in finding



TARLE 8, REGRESSION AND ANOVA
FOR DEDUCTION ON REGULAR

VS NON-REGULAR

Model (transformed);:

log. (OPERATIONS) = 6.61 +.331 N
+.825 REG -.085 N¥REG
t values: Variable Std. Error t
CONSTANT 1.11 ‘ 5.94
N .081 L.oT
REG 1.57 .52k
N*REG 115 LThl
ANOVA: Source arf SS MS
TOTAL 7 oh .7 3.52
REGRESSTON 3 | 21.36 - T.12
RESIDUAL oy 3.30 .825
RS = .866
Model:
OPERATIONS; = Th2 exp(.331N)

OPERATIONS4.,= 325 exp(.2L6N)



Source of

Variation

TOTAL
TREATMENT

Regularity

N*Reg

ERROR

’,

Degrees of

Freedom

23

16

TABLE O.

(regularity)vs(N)

Sum of

Squares

1.63x101T

1.34x101t

1.32x1010

7.24x10%0

4.8Lx1010

2.82x101°

TWO FACTOR ANOVA

Mean

Square

1.32x1010
2. 41x10%0
0

1.61xlol

1.76x109

7.65

13.68

9.1k
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all circuits. The measure of performance was the average number
of operations per circuit in the graph. The overall computational

complexity for the permutation process is givep’as:
OPERATIONSp = 28,2 exp (.L66N)

and for the deduction process as:
OPERATIONS; = 1017 exp (.283N)

To test for equivalence between overall performance and first
circuit performance the Bonferroni joint confidence intervals
were employed. To use a 94% family confidence interval, the

coefficient needed is:

B = t(.99, 20) = 2.528

and the confidence intervals become, for first circuit data:

CONSTANT . . . . T.02 + L.h47
N.... .27kt .108
PERM . . . . 4.16 + 2.08

N¥PERM . . . .  .266+ .152

and for total performance:
CONSTANT . . . . 6.93 + .862
N.... .283 .063

PERM . . . . 3.59 + 1.27

N*PERM . . . . .183+ .08k

As is evidenced by the limits of the confidence intervals, each

set of parameter:values is contained within the other's confidence



of the number of operations

loge

deduction

permutation

35

0o

[

84
50
O = permutation
(0 = deduction
5 10 15 20

number of vertices

Figure 5. REGRESSION FIT OF DATA FOR
ALGORITHMS ON RANDOM GRAPHS (average

number of operations per circuit)



TABLE 10. REGRESSION AND ANOVA
TOR PERMUTATION AND DEDUCTION

ON ALL CIRCUITS

Transformed model:

log, (OPERATIONS) = 6.93 +,283 N
-3.59 PERM +.183 N¥*PERM
t values: Yariable 3td., Error t
CONSTANT .3L1 20.3
N .025 11.L
PERM L82 yann
N*PERM - .035 5,18
ANOVA Source ar SS MS
TOTAL 03 | 126 5.49
REGRESSION 3 122 40.5
RESIDUAL 20 4,65 .233
R® = .963
Model:
OPERATIONS, = 28,2 exp(.L66N)
OPERATIONS . = 1020 exp(.283N)

d
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intérval; Thus it can be concluded that the performance of the
algorithms is, on the average, the same for each circuit in a
graph, whether the purpose is to find.one circuit or all circuits.
Therefore in general, for large N, the deduction algorithm's
elimination of certain pathsrallows it to outperform the basic

permutation method.
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Iv. CONCLUSIONS

The main concern in testing these algorithms was their depen-
dence on the size of the graph. Both the permutation and deduction
methods were seen to have an exponential dependence on N, the size
of the éraph. Other factors such as regularity and density were
seen to have little or no effect on the overall N dependence of\
these two algorithms.

As expected, the application of the deduction rules called for
an édditional amount of computation over and above the underlying
permutation structure. Thus the much simpler and more straight-
forwara permutation algorithm outperformed the deduction for smaller
graphs (experimentally, N less than 16). The application of the
deduction rules clearly reduces the exponential factor in the
execution time and thus, unless a very simple application on a
small graph is planned, the deduction algorithm is to be preferred.

Warnsdorff's algorithm is seen to have a non—coﬁsistent
behavior but is much less strongly dependent on N than either of
the other two procedures. This allows for considerable savings
in computational effort. Thus for very large graphs of approxi-
mately 20 or more vertices, in which only a single or a few circuits
are desired, the use of a Warnsdorff algorithmyis imperative.

But, as described above, a Warnsdorff algorithm suffers from
two serious handicaps. First, it is not guaranteed to work and
hence must be augmented by a second algorithm of the permutation

or deduction type. This is an implementational not a computational
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drawback since in the limit of immediaﬁe failure of the Warnsdorff
" algorithm, the execution time simply rises to that of the appendéd
algorithm.

A second disadvantage of the method is that it is not an
exhaustive search and thus cannot be éuaranteed to find all the
circuits ih‘a graph although the algorithm can easily be ammended

to find possibly more than one.

Several closing comments on the testing of algorithms might
be appropriate here. First, the literature displays a wide varia=
tion in the method of analysis of test ;esults on algorithms. One
author may give best and worst observed execution times on a
particular machine, another the average results for a few tests
on a small, restricted set of data. Some form of standardization
of testing procedures and analysis is needed sO published results
on reiated algorithms might be compared more readily.

Lastly, the experimental result gi&en in any study of the
performance of algorithms is probably not independent of the
gquality of the programming used to implement a procedure. Thus
some element of skepticism must be associatéd with any form of

analysis where programming technique is a factor.
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