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Designing spectral efficient, high-speed wireless links that offer high quality-

of-service and range capability has been a critical research and engineering chal-

lenge. In this thesis, we mainly address the complexity and performance issues of

channel estimation and data detection in multiple-input multiple-output (MIMO)

orthogonal frequency division multiplexing (OFDM) systems over time-varying

channels.

We derive the probability density function (pdf) expressions of the condi-

tion number (i.e., the maximum-to-minimum-singular-value ratio, MMSVR) of the

channel state information matrix of MIMO OFDM systems. It is shown that this

ratio is directly related to the noise enhancement in open-loop systems and provides

a significant insight on the system capacity.

A decision-directed (DD) maximum a posteriori probability (MAP) channel

estimation scheme of MIMO systems is derived. Error performance of a zero-

forcing receiver with the DD MAP and perfect channel estimates is provided and

compared. This scheme has a low complexity and can be applied to time-varying

Rayleigh fading channels with an arbitrary spaced-time correlation function.



We propose an iterative channel estimation and data detection scheme for

MIMO OFDM systems in the presence of inter-carrier-interference (ICI) due to

the nature of time-varying channels. An ICI-based minimum-mean-square error

(MMSE) detection scheme is derived. An expectation-maximization (EM) based

least square (LS) channel estimator is proposed to minimize the mean-square error

(MSE) of the channel estimates and to reduce the complexity of the implementation.

With the estimate of the channel and initially detected symbols, ICI is estimated

and removed from the received signal. Thus more accurate estimation of the channel

and data detection can be obtained in the next iteration.

An EM-based MAP channel estimator is derived by exploiting the fre-

quency/time correlation of the pilot and data sub-carriers. Performance comparison

is made between the proposed schemes and the ideal case – time-invariant channels

and perfect channel estimation. We optimize the data transmission by exploit-

ing the long term correlation characteristics. The transmitted data is successively

detected without an error floor in spatially correlated channels.

The algorithms proposed in this thesis allow low-complexity implementation

of channel estimation and data detection for MIMO OFDM systems over time-

varying fading channels, while providing good error performance.
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Channel Estimation and Data Detection for Mobile MIMO OFDM

Systems

1. INTRODUCTION

1.1. Background and Motivation

With the rapid growth of wireless communications, there has been an in-

creasing demand for high data rate communications in many applications, such as

wireless local area network (WLAN), wireless metropolitan area network (WMAN),

and home audio/visual (A/V) network. WLAN provides homes, businesses, and

campuses with enhanced opportunities to connect to the Internet outside the lim-

ited area covered by wired networks. In the last ten years, Wi-Fi, which includes

IEEE wireless standards 802.11, 802.11b, 802.11a and 802.11g, provides wireless ser-

vices in WLAN. Based on IEEE 802.16 specifications, worldwide inter-operability

of microwave access (WiMax) is emerging as a last-mile broadband wireless Inter-

net access solution. It provides wireless services in WMAN and it has the potential

to make broadband service available in regions where it is currently not feasible,

particularly in rural communities. Home A/V network involves wireless connection

of electronic and data devices for the convenient access to information and enter-

tainment. The main challenge of all these wireless applications is to support high

data rate of over one hundred megabits per second with limited bandwidth and

restricted power consumption.

Multiple-input multiple-output (MIMO) systems use multiple transmit and

receive antennas to create multiple spatial channels between the transmitter and
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receiver. MIMO systems have been shown to provide high spectral efficiencies [1,

2], which offers the basis for increasing the data rate with limited bandwidth. If

perfect channel state information (CSI) is available at the receiver, the average

capacity grows linearly with the smaller of the numbers of transmit and receive an-

tennas under certain channel conditions. The major potential advantage of MIMO

is that signals at both the transmitter and receiver sides are processed in a way

such that either the quality measured by bit error rate (BER) or the data rate

of the system can be improved. The performance improvement of MIMO systems

can be assessed by diversity gain and spatial multiplexing gain. Diversity gain is

achieved by transmitting the same signal over multiple independent fading environ-

ments, e.g., time, frequency and space. Space-time coding (STC), space-frequency

coding (SFC), and space-time-frequency coding (STFC) are designed to exploit the

diversity gain. In [3], Alamouti proposed an orthogonal space-time block coding

for systems with two transmit antennas, which requires low-complexity decoding

and provides full diversity gain. Space-frequency codes that achieve the maximum

diversity gain and optimal coding advantage in frequency-selective MIMO fading

channels were proposed in [4, 5]. The upper bound for pairwise word error proba-

bility of space-time-frequency codes was derived in [6].

Spatial multiplexing gain is evaluated by the linear increase in capacity with-

out additional power or bandwidth resources. This gain is realized by transmitting

independent data streams from individual antennas to maximize data rates. V-

BLAST (vertical Bell Labs Layered space-time) proposed in [7, 8] is an effective

approach to achieve spatial multiplexing gain. However, the interference between

signals simultaneously transmitted from the multiple transmit antennas consider-

ably increases the detection complexity. The optimal detection scheme is maxi-

mum likelihood (ML) where the receiver compares all possible combinations of the
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transmitted symbols with the observed ones. However, it suffers from significant

increase in complexity, which grows exponentially with the number of transmit

antennas. It could become prohibitive with many antennas and high-order mod-

ulations. Thus, several suboptimal detection schemes have been developed, e.g.,

zero-forcing (ZF) and minimum-mean-square error (MMSE). Both ZF and MMSE

can decouple spatial interference by matrix inversion. ZF detection scheme will

result in poor performance due to the large noise enhancement under certain ill-

conditioned channels. MMSE scheme enhances the detection accuracy by utilizing

the noise and interference statistics.

An open-loop MIMO is a system where the CSI is only required at the

receiver, while in the closed-loop MIMO, CSI is also required at the transmitter

as well. By exploiting CSI at both the transmitter and receiver, full diversity gain

and full spatial multiplexing gain can be achieved by eigen-beamforming. However,

feeding back CSI to the transmitter with limited delay and cost is not a trivial task,

especially for mobile communications for which the channel exhibits fast-fading [9,

10]. It is shown in [11] and [12] that the relative gain in capacity of closed-loop

systems over open-loop systems is significant at low signal-to-noise ratios (SNR),

but it converges to zero as SNR increases.

Orthogonal frequency division multiplexing (OFDM), a multi-carrier mod-

ulation technique, divides the wideband channel into many narrow parallel sub-

channels, thus increasing the symbol duration and reducing the inter-symbol-

interference (ISI) due to multipath [13–16]. OFDM has been used in digital video

and audio broadcasting, e.g., terrestrial digital video broadcasting (DVB-T), and is

a promising technique for future high data rate wireless systems. Demodulation and

modulation are efficiently implemented by means of fast Fourier transform (FFT)

and inverse fast Fourier transform (IFFT). To mitigate the ISI caused by the chan-
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nel multipath spread, each block of IFFT coefficients is preceded by a cyclic prefix

(CP) whose length is at least equal to the channel length. The signal is orthogonal

under the assumption that the channel is time-invariant. It allows the system to

transmit data reliably in a time-dispersive, or frequency-selective, channel without

the need for a complex time-domain equalizer [17].

The combination of MIMO and OFDM has been designed to improve the

quality of service (QoS) and/or data rate of the system by exploiting the multi-

plexing gain and/or the diversity gain. Evolving wireless standards, such as the

mobile WiMax (IEEE 802.16e) and Wi-Fi (IEEE 802.11n), will employ multiple

transmit and receive antennas with OFDM modulation for increased spectral effi-

ciency and improved performance. However, the system performance relies on the

knowledge of CSI at the receiver. Perfect channel estimates can be obtained only

if the channel is noiseless and time invariant. Inter-carrier-interference (ICI) due

to the nature of time-varying and rapid channel variations makes perfect channel

estimates impossible in mobile channels [18–20].

CSI can be estimated by using either non-blind pilot assisted approaches that

a fraction of the bandwidth is allocated to the known training sequence or blind

approaches. The latter can be implemented by exploiting the statistical information

or the deterministic information of the transmitted symbol properties (e.g., finite

alphabet, constant modulus, etc.). Compared with the pilot assisted scheme, blind

channel estimation requires long time of data observation. A very slow convergence

rate limits the application of the statistical approach to mobile channels [21] and

the huge computation complexity due to the maximization operation restricts the

deterministic approach [22, 23]. For pilot assisted channel estimation scheme [24],

two pilot insertion patterns were considered: one exploits the frequency-domain

correlation by inserting pilot symbols on certain sub-carriers; the other exploits the
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time-domain correlation by inserting pilot symbols on all sub-carriers at some time

slots. For slow-fading channels, the time-domain approach, owing to the slower

correlation decaying rate, requires fewer pilot symbols than the frequency-domain

approach. In [25], channel estimation algorithms based on comb-type pilots with

improvements through interpolation at data frequencies were studied. Performance

bound of a pilot assisted least square (LS) channel estimator over a multipath slowly

fading channel was derived in [26]. Recent works [22, 27] have adopted the quasi-

static model, assuming that the channel coefficients remain approximately constant

over the entire OFDM symbol duration. Under this assumption, there is no ICI.

However, this assumption is no longer valid for fast-fading channels, especially

when the number of sub-carriers is large. ICI makes channel estimation more

challenging in mobile channels. In order to mitigate ICI effects, various detection

structures were proposed and compared in [24]. These schemes generally have a

high complexity. In [28], an iterative multistage channel estimator, which iteratively

cancels ICI by maximizing the signal-to-noise-plus-ICI ratio was derived. A Kalman

filter based scheme to estimate the state-transition matrix of time-varying MIMO

OFDM channels and a scheme based on minimizing the mean-square error (MSE)

of a cost function were developed in [29, 30] and [27, 31], respectively. The discrete

Fourier transform (DFT) and discrete cosine transform (DCT) interpolation-based

channel estimation schemes were proposed in [32–34] for MIMO OFDM systems.

1.2. Objective and Contributions

In this thesis, we propose low-complexity channel estimation and data de-

tection schemes for MIMO OFDM systems over frequency-selective and fast-fading

channels. MIMO OFDM communication systems are described and the statistical
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properties of the simulation models for the time-varying Rayleigh fading channels

are also discussed in Chapter 2. The advantage of implementing multiple antennas

at the transmitter and receiver is shown by reviewing the average and outage ca-

pacity of MIMO systems. It is also demonstrated that the CSI at the transmitter

does not dramatically increase the average capacity when the SNR is high.

Because of the high sensitivity of MIMO detection scheme with respect to

the channel matrix properties, channel modelling is particularly critical to assess

the performance of various MIMO configurations. In Chapter 3, we derive the

analytical probability density function (pdf) expression of the condition number

(i.e., maximum-to-minimum-singular-value ratio, MMSVR) of the CSI matrix. We

show that this ratio is directly related to the noise enhancement in open-loop MIMO

systems and it provides a significant insight on the overall system capacity. The

pdf of this ratio could be used to predict the relative performance of various MIMO

configurations with respect to each other without complex system-level simulations.

The pdf can also be used to compute the probability of whether certain channels will

fail in high-throughput mode. Extensive channel analysis simulations are performed

for different MIMO configurations to validate the accuracy of the derived closed-

form pdf of the MMSVR.

In order to exploit the potential advantage of MIMO systems, channel in-

formation has to be estimated at the receiver. A decision-directed (DD) maximum

a posteriori probability (MAP) channel estimation scheme for MIMO time-varying

fading channels is derived in Chapter 4. With the estimate of the channel matrix

for the current symbol interval, a zero-forcing (ZF) receiver is applied to detect

the spatially multiplexed data on a symbol-by-symbol basis. Symbol decisions are

then fed to the channel predictor for estimation of channel coefficients in future

symbol intervals. Simulated error performance of a ZF receiver with the DD MAP
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and perfect channel estimates is provided and compared. This scheme has a low

complexity and can be applied to time-varying Rayleigh fading channels with an

arbitrary spaced-time correlation function. The fading rate has a high impact on

system performance, and the proposed scheme is more appropriate for channels with

low to medium Doppler shifts. Large block length between adjacent pilot blocks

can be deployed with the proposed scheme, which results in minimum overhead for

pilot symbols. For wideband transmission, OFDM is combined with MIMO scheme

to mitigate the ISI over frequency-selective fading channels.

In fast-fading channels, ICI could be very severe for OFDM systems with

a large number of sub-carriers. We propose an iterative channel estimation and

data detection scheme for MIMO OFDM systems over frequency-selective and fast-

fading channels. After analyzing ICI for each sub-carrier, we derive an ICI-based

minimum-mean-square error (MMSE) detection scheme to significantly improve the

initial detection accuracy. In order to minimize the mean square error (MSE) of

the least square (LS) channel estimate, consecutive rows of Hadamard matrix are

designed as pilot sequences for transmit antennas. The complexity of the imple-

mentation can be very high due to the frequent inversion of large size matrices.

Therefore, in Chapter 5, an expectation maximization (EM) based LS channel esti-

mator is derived to reduce the receiver complexity while maintaining a high system

performance.

MAP algorithms generate optimal results. However, for many applications,

the computational complexity could be prohibitive due to the need of inversion of

large-size matrices. By exploiting the channel statistical information and employ-

ing low rank approximation, we derive an EM-based MAP channel estimator of

MIMO OFDM systems to achieve excellent performance without the need of any

matrix inversion. Channel estimates are initially obtained by EM-based LS algo-
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rithm. Then, a successive interference cancellation (SIC) scheme is considered for

the data detection. With the estimate of the channel and the detected data, the

ICI component is approximated and removed from the received signals. Finally, the

detected symbols and the received signals after ICI cancellation are fed back to the

derived EM-based MAP estimator to refine the CSI. In Chapter 6, the simulated

error performance of the proposed scheme is compared with that of the LS scheme

and the ideal case – time-invariant channels and perfect channel estimation. Most

recent work is based on the assumption of uncorrelated MIMO spatial channels.

However the channel can be correlated due to the small angular spread and/or not

large enough antenna spacing. In this thesis, the system performance in spatially

correlated channels is also analyzed. Via such analysis, we optimize, by exploit-

ing the long term correlation characteristics, the data transmission to eliminate an

error floor.

1.3. Notation Summary

Acronyms and mathematical notations are listed below.

Notation Description

(·)T Transpose

(·)H Hermitian

(·)∗ Complex conjugate

(·)† Pseudo-inverse

(·)1/2 Matrix square-root

(·)−1 Matrix inversion

δ(·) Dirac delta

trace(·) Sum of diagonal elements
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det(·) Matrix determinant

MIMO Multiple-input multiple-output

OFDM Orthogonal frequency division multiplexing

i.i.d. Independent and identically distributed

BTS Base transceiver station

SU Subscriber unit

RCG Relative capacity gain

ZF Zero-forcing

MMSE Minimum-mean-square error

ML Maximum likelihood

MAP Maximum a posterior probability

EM Expectation maximization

ISI Inter-symbol-interference

ICI Inter-carrier-interference

CSI Channel state information

MMSVR Maximum-to-minimum-singular-value ratio

BER Bit error rate

SNR Signal-to-noise ratio

SVD Singular-value decomposition
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2. MIMO OFDM COMMUNICATION SYSTEMS

The blockdiagram of a MIMO OFDM system is shown in Fig. 2.1. At the

transmitter side, the source bitstream is mapped to a symbol stream by the digital

modulator. Spatial multiplexing is a MIMO technique that independent multiple

symbol streams are transmitted at the same frequency band over different spatial

channels. Each of the parallel output symbol streams corresponding to a particular

transmit antenna follows the same procedure. Pilot symbols are inserted based

on the prior-known pilot patterns. The modulation of OFDM could be efficiently

implemented by using IFFT. A CP is usually appended to each OFDM symbol to

avoid ISI due to the effect of channel multipath spread. Then the symbol stream is

parallel-to-serial (P/S) converted for transmission. At the receiver side, the guard

interval of each OFDM symbol is removed. The demodulation of OFDM could be

implemented by using FFT. Then the CSI can be extracted and estimated by using

the received signal and the pilot information. Transmitted symbols are detected

based on the processed received signal and the estimated CSI. Finally, the detected

symbols are demodulated to restore the transmitted bitstream.

2.1. MIMO Channels and Properties

This section describes the mobile MIMO wireless channels, which are char-

acterized as time-varying. Because there are obstacles and reflectors in the wireless

propagation channels, the transmitted signals arrive at the receiver from various di-

rections over multiple paths. The received signal is the summation of these arriving

waves with different phase, amplitude, and delay. If the waves of multipath signals

undergo phase reversal, reduction of the signal strength at the receiver can occur.

This kind of phenomenon is called multipath fading, which is generally modeled
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FIGURE 2.1. Blockdiagram of a MIMO OFDM system.

as Rayleigh fading [35, 36]. It is a major obstacle to the reliability of the wireless

channels and causes significant degradation in the performance of digital wireless

communications systems.

Different arrival time of the multiple reflections of the transmitted signal

may result in ISI. This time dispersion of the channel is called multipath delay

spread or channel delay spread, which is an important parameter to access the

performance of wireless systems. Common measures of multipath delay spread are

the root-mean square (rms) delay spread and maximum multipath delay. For a

reliable wireless communication without using an adaptive equalizer or other anti-

multipath techniques, the transmitted data rate should be smaller than the coherent

bandwidth, which equals approximately the inverse of the channel multipath spread.
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2.1.1. Information Theory of MIMO

The system capacity is defined as the maximum transmission rate such that

the probability of error could be arbitrary small. Consider a MIMO system with

NT transmit and NR receive antennas over a frequency-flat fading channel, which

can be modeled as

y =

√
Es

NT

Hs + n (2.1)

where Es is the transmitted symbol energy, y is the NR×1 received signal vector, s is

the NT×1 transmitted signal vector, H is the NR×NT MIMO CSI matrix, n is the

additive white complex Gaussian noise with E{nnH} = N0INR
, and (·)H denotes

Hermitian. Let us define ρ as the signal-to-noise ratio (SNR) at any receiver antenna

(i.e., ρ = Es

N0
). With equal power (EP) transmission for NT transmit antennas, the

system capacity can be expressed as [1]

CEP (H) = log2

[
det(INR

+
ρ

NT

HHH)

]
(2.2)

where det(·) denotes the determinant operator. The normalization by the number

of transmit antenna, NT , ensures a fixed total transmit power. Eq. (2.2) can be

rewritten in an eigenmode form as

CEP (H) =
m∑

i=1

log2(1 +
λiρ

NT

) (2.3)

where m is rank of the MIMO channel matrix and λi is the i-th eigenvalue of the

Wishart matrix Q, which is defined as [60]

Q =





HHH , NR ≥ NT

HHH , NT > NR.
(2.4)

Thus the capacity of MIMO systems grows linearly with the smaller of the number

of transmit and receive antennas rather than logarithmically. Eq. (2.2) and Eq.
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(2.3) only describe the instantaneous channel capacity of a fixed or one realization

of the wireless channel. The capacity of the random channel can be characterized

by two values: the average (or ergodic) capacity and outage capacity.

The average capacity (CEP,A) can be obtained by averaging over all realiza-

tions of the CSI matrix as

CEP, A = E{CEP (H)} (2.5)

where E{·} denotes statistical expectation.

Example: Fig. 2.2 shows the average (or ergodic) capacity of spatially

uncorrelated MIMO Rayleigh fading channels versus SNR with different MIMO

configurations. (NT , NR) denotes a MIMO system with NT transmit antennas and

NR receive antennas. It is shown in the figure that the average capacity grows

linearly with the smaller of the numbers of transmit and receive antennas.

Let us define the fixed transmission rate as TR. The outage capacity,

CEP, O, ε, is defined as the maximum achievable rate with the outage probability of

ε.

CEP, O, ε = {TR : Prob{CEP (H) < TR} < ε}. (2.6)

Example: Fig. 2.3 shows the outage probability of spatially uncorrelated

MIMO Rayleigh fading channels versus SNR with different MIMO configurations.

The fixed transmission rate TR is set to be 4 bits per second per Hz.

Let V denote the covariance matrix of the transmitted signal s, the channel

capacity can be expressed as

C(H) = max
V

log2

[
det(INR

+ HV HH)
]

(2.7)

with the power constrain of trace(V ) ≤ ρ. If the CSI is unknown at the trans-

mitter and the transmitted signal has Gaussian distribution, the equal power with
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FIGURE 2.2. Average capacity of spatially uncorrelated MIMO Rayleigh fading

channels versus SNR.

uncorrelated sources is the optimal solution. If the CSI is fed back to the trans-

mitter, the optimal covariance matrix can be obtained by the water-filling (WF)

algorithm. And more power is dynamically allocated to the good condition chan-

nels while keeping the same total transmission power. The channel capacity of one

specific MIMO system is defined as

C ≡
NT∑
i=1

log2

[
1 +

Piλi

σ2

]
(2.8)

where σ2 is the noise variance at the receive antenna and λi is the eigenvalue of

the Wishart matrix defined in Eq. (2.4). In order to obtain the optimal power

allocation, let us define
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channel versus SNR.

CO ≡
NT∑
i=1

log2

[
1 +

Piλi

σ2

]
+ ν

(
P −

NT∑
i=1

Pi

)
(2.9)

where ν is the Lagrange multiplier. After setting the partial derivative of CO with

respect to Pi to zero (i.e., δCO

δPi
= 0), we obtain

δCO

δPi

=
1

log2

λi/σ
2

1 + Piλi/σ2
− ν = 0. (2.10)

By defining µ = 1
ν log2

, the optimal power allocated to the i-th transmit antenna is

expressed as

Pi =

(
µ− σ2

λi

)+

(2.11)

where µ is determined by the power constraint such that
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NT∑
i=1

Pi = P. (2.12)

The channel capacity with water-filling can be expressed as [2]

CWF =

NT∑
i=1

log2

(
1 +

Piλi

σ2

)

=

NT∑
i=1

log2

[
1 +

(
λiµ

σ2
− 1

)+
]

(2.13)

where (x)+ is defined as

(x)+ =





x, x > 0

0, x ≤ 0.
(2.14)

Since µ is a nonlinear function of the eigenvalues, the optimal capacity can be

analyzed numerically for the random channel.

Example: Analyze the optimal power allocation numerically based on the

water-filling principle for a (3, 3) MIMO channel, whose CSI matrix is expressed as

H =




0.1092− 0.3028i −0.6553 + 0.0836i −0.7821 + 0.4241i

0.1451 + 0.6475i −0.1169− 0.5050i −0.1749− 0.2595i

0.3263 + 0.5736i 0.3248 + 0.5213i 0.3793 + 0.3307i




. (2.15)

The eigenvalues of the corresponding Wishart matrix, λi(i = 1, 2, 3), are

calculated as {2.2508, 0.9010, 0.0527}. Let us assume that the total transmit

power is normalized to 1 and the SNR is 10dB. Thus the noise variance is σ2 = 0.1

and ρ can be calculated as

ρ = 10SNR/10 = 10. (2.16)

Step 1: Assume that non-zero power is allocated to all the channels including

the worst channel with smallest eigenvalue. The µ defined in Eq. (2.11) can be

calculated as
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µ =
P + σ2( 1

λ1
+ 1

λ2
+ 1

λ3
)

3
= 1.0182. (2.17)

However, since σ2

λ3
= 1.8992 and µ < σ2

λ3
, the assumption is not valid.

Step 2: Since the above assumption is not valid, no power is allocated to

channel 3. A new assumption is made such that non-zero power is allocated only

to channel 1 and channel 2, and µ is recalculated as

µ =
P + σ2( 1

λ1
+ 1

λ2
)

2
= 0.5777. (2.18)

Since σ2

λ2
= 0.1110 and µ > σ2

λ2
, this assumption is valid.

Step 3: The optimal power can be calculated as Pi = µ − σ2

λi
. Thus, we

obtain P1 = 0.5333, P2 = 0.4667, and P3 = 0.
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FIGURE 2.4. Channel capacity versus SNR.

The relative capacity gain (RCG) is defined as
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RCG =
CWF − CEP

CEP

(2.19)

where CWF is the capacity with water-filling scheme and CEP is the capacity

achieved with equal power allocation. Fig. 2.4 shows the channel capacity with

water-filling and equal-power transmission. Fig. 2.5 shows the relative capacity

gain of a (2, 2) MIMO system. If the transmitter has channel parameters, power

is optimally allocated to the spatial channel based on the water-filling principle. If

channel information is only available at the receiver, equal power allocation is ap-

plied. In the figure, it proves that the capacity gain due to CSI feedback disappears

gradually with an increased SNR.
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There are two asymptotic values to measure the average capacity CA and the

outage probability ε: spatial multiplexing order (OSP ) and diversity order (OD),

which are defined as

OSP = lim
ρ→∞

CA

log2(ρ)
(2.20)

OD = − lim
ρ→∞

log2(ε)

log2(ρ)
. (2.21)

The spatial multiplexing order is the asymptotic rate at which the average

capacity increases with the log scale of SNR. It is shown in Fig. 2.6 that a MIMO

channel can provide a spatial multiplexing order as large as NT if the number of

transmit antennas is equal to the number of receive antennas (i.e., NT = NR).
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fading channels versus SNR.
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2.1.2. MIMO Frequency-selective and Time-varying Channels

If the signal bandwidth is much smaller than the channel coherent band-

width, then fading across the entire signal bandwidth is highly correlated. This is

referred to as flat fading. On the other hand, if the channel coherence bandwidth

is much smaller than the signal bandwidth, then individual frequencies might be

attenuated and faded differently [37]. In this case, the channel is described as

frequency-selective fading. It occurs if the channel delay spread is significant com-

pared with the symbol period. The current symbol will collide with later ones,

which results in ISI.

Consider a system with NT transmit antennas and NR receive antennas.

The sub-channels are defined as the channels over which the signal is transmitted

from the u-th (1 ≤ u ≤ NT ) transmit antenna to the v-th (1 ≤ v ≤ NR) receive

antenna. Since the signal is band-limited, the time-varying multipath channel can

be represented by using the tapped-delay line model with time-varying coefficients

but fixed tap spacing [87]. The delay spread of the channel determines the length

of the tapped delay line and the tap spacing must be equal to or less than the

reciprocal of the signal bandwidth. Each sub-channel is composed of L + 1 paths,

where L depends on the ratio of the maximum delay spread of the channel to the

OFDM sampling interval. With perfect sample timing, we can denote the discrete

time multipath sub-channel from the u-th transmit antenna to the v-th receive

antenna at time nTs as

Av,u(n) = [Av,u(n, 0), Av,u(n, 1), · · · , Av,u(n, L)]T (2.22)

where (·)T denotes transpose and Av,u(n, l) denotes the tap gain of the l-th path

at time index n. If L equals 0, the channel becomes a memoryless channel and the

frequency response is flat, which results in flat fading.
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2.1.3. Spatially Correlated and Uncorrelated MIMO Channels

Let A(n, l) denote the NR ×NT uncorrelated MIMO fading channel matrix

whose (v, u)-th element is Av,u(n, l). Assume that different paths are uncorrelated,

i.e.,

E
{
vec{A(n, l1)}vecH{A(n, l2)}

}
= 0NT NR

, l1 6= l2 (2.23)

where (·)H denotes Hermitian, 0NT NR
represents NT NR ×NT NR zero matrix, and

vec{A(n, l)} is the NRNT × 1 vector constructed by stacking all of the columns of

matrix A(n, l).

If both the transmit and receive antennas are sufficiently separated under

the rich-scattering environment [38], channel fading processes for different sub-

channels are assumed to be independent and identically distributed (i.i.d.). In

this case, the NT × NT transmitter correlation matrix T l and NR × NR receiver

correlation matrix Rl reduce to identity matrices, i.e., T l = INT
and Rl = INR

.

The propagation scenario considered in this thesis is a typical cellular deployment:

the base transceiver station (BTS) is located in the tower, which is sufficiently high

without any obstruction or local scatterers. The spatial channels at the BTS are

correlated and determined by the BTS antenna spacing and the angular spread

observed at the BTS array [39]. However, the subscriber unit (SU) is surrounded

by many local scatterers and the antenna spacing is large such that the SU antennas

are spatially uncorrelated. In this thesis, we focus our analysis on the downlink case.

Thus, the transmitter refers to BTS and the receiver refers to SU (i.e., Rl = INR
).

An uniform linear array (ULA) at both the transmitter and receiver is assumed.

Let θl and γ2
l , l = 0, 1, · · · , L, represent the mean of the departure angle and the

variance of the departure angular spread for the l-th path, respectively. If there is

no angular spread [39], the transmitter correlation matrix can be represented as
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T l = a(θl)a
T (θl) (2.24)

a(θl) =
[
1, ej2πB cos(θl), · · · , ej2π(NT−1)B cos(θl)

]T

(2.25)

B = fcb/c (2.26)

where B is the relative antenna spacing, b is the absolute antenna spacing, c is the

light speed, and fc is the carrier frequency. If the angular spread is not zero, it is

shown in [40] that the (m,n)-th element of transmitter correlation matrix T l can

be approximated as

[T l]m,n ≈ e−j2π(n−m)B cos(θl)e(−0.5)(2π(n−m)B sin(θl)γl)
2

. (2.27)

The spatially correlated CSI matrix, H(n, l), is defined as [39]

H(n, l) = R
1/2
l A(n, l)T

1/2
l (2.28)

where (·)1/2 denotes matrix square root. With perfect sample timing, we can denote

the discrete time multipath channel at time nTs as

hv,u(n) = [hv,u(n, 0), hv,u(n, 1), · · · , hv,u(n, L)]T (2.29)

where hv,u(n, l) is the (v, u)-th element of matrix H(n, l). This model is assumed

and verified by measurements in [44–47]. In this MIMO fading channel model,

the rank of the CSI matrix H(n, l) is determined not only by the Rayleigh fading

(A(n, l)) but also by the fading correlation at the transmitter and receiver (T l and

Rl). If the angular spread of the l-th path is large, H(n, l) will most likely have

high rank.

2.2. Simulation Model of MIMO Time-varying Channels

Mobile channel simulators are commonly used to test and evaluate the sys-

tems. Many approaches have been proposed for the modelling and simulation of
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mobile radio channels. Among them, the Jakes model [48] has been widely used

for Rayleigh fading channels. The channel of each pair of transmit and receive

antennas is assumed to have L + 1 multipath components and fading processes are

piecewise-constant approximated, which allows the channel coefficients to be con-

stant in one sampling interval and change over different sampling intervals according

to the spaced-time correlation function. Fading processes for different spatial sub-

channels and different paths are all assumed to be independent. Also, the first and

second order statistics of the channel do not change over the entire transmission

horizon.
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FIGURE 2.7. The theoretical and simulated auto-correlation of the modified Jakes

model.

Since Jakes model is a deterministic model and has difficulties in generating

uncorrelated multipath, different modified simulators are proposed in [49–51]. [49]
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FIGURE 2.8. The ideal and simulated cross-correlation of real and imaginary parts

of the modified Jakes model.

proposes a modified Jakes model to generate uncorrelated mutipath waveforms

based on Walsh-Hadamard codewords. This model assumes that Nr equal-strength

rays arrive at a moving receiver with uniformly distributed arrival angle αn (n =

1, 2, · · · , Nr) such that the n-th ray experiences a Doppler shift ωn = 2πfd cos(αn),

where fd is the maximum Doppler shift. fd can be calculated as fd = fcv/c, where

v is the vehicle speed. By setting αn = 2π(n − 0.5)/Nr, the fading waveform can

be modeled with N1 complex oscillators (N1 = Nr/4). The equal power oscillators

are considered in order to eliminate the correlation. The waveform of the model is

defined as

a(t) =

√
2

N1

N1∑
n=1

[cos(πn/N1) + j sin(πn/N1)] cos(ωnt + θn) (2.30)
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FIGURE 2.9. The ideal and simulated cross-correlation of different multipath com-

ponents of the modified Jakes model.

where
√

2
N1

is the normalization factor to ensure E{a(t)a∗(t)} = 1. In order to

generate uncorrelated waveforms, Walsh-Hadamard codewords are used to weigh

the oscillator values before summing. The l-th waveform is generated as

a(t, l) =

√
2

N1

N1∑
n=1

M(l, n) [cos(πn/N1) + j sin(πn/N1)] cos(ωnt + θn) (2.31)

where M(l, n) is the n-th value of the l-th Walsh-Hadamard code sequence. With

a sampling interval of Ts, Av,u(n, l), the (v, u)-th element of matrix A(n, l), is de-

termined by the value of a(nTs, l). The theoretical and simulated auto-correlations

of the waveform are shown in Fig. 2.7. We can see the two results match very

well. The ideal cross-correlation of the real and imaginary parts of the waveform is
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zero and the simulated result is shown in Fig. 2.8. The simulated cross-correlation

of the waveforms of different multipath components is shown in Fig. 2.9 and it is

compared with the ideal result, which is zero as shown in the figure. The model

[49] is considered in this thesis due to its better auto-correlation of the fading

process. But it has a slightly inferior cross-correlation among different multipath

components compared to the simulation model proposed in [50].

After obtaining uncorrelated channel coefficient, Av,u(n, l), for different mul-

tipath and distinct pair of transmit and receive antennas and having the knowledge

of transmitter correlation matrix, the spatially correlated CSI matrix, H(n, l), can

be obtained by Eq. (2.28).
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3. PERFORMANCE MODELLING OF MIMO OFDM SYSTEMS
VIA CHANNEL ANALYSIS

Implementation of high data rate WLAN has been a major focus of research

in recent years. MIMO schemes [52–54] and OFDM [27] can be combined to operate

at the high-throughput (HT) mode, or the diversity mode, or the combination

of both in fading environments [55]. Such systems could achieve high spectral

efficiency and/or a large coverage area that are critical for future-generation wireless

local area networks.

Existing research has relied mainly on obtaining the error-rate performance

curves to determine the throughput and diversity gains [56, 57] of various MIMO

configurations, assuming Rayleigh fading and independent and identically distrib-

uted MIMO OFDM sub-channels. Alternatively, the relative capacity and through-

put of different system configurations can be obtained by using the channel charac-

teristics. If analytical characterizations of the channel are available, this approach

will be more efficient than the former, as it does not require complex system-level

simulations.

Common open-loop linear detection schemes include the ZF and MMSE

schemes [2, 58]. A large condition number (i.e., the maximum-to-minimum-

singular-value ratio, MMSVR) of the CSI matrix implies a high noise enhance-

ment and causes the open-loop schemes to fail in exploiting the available capacity

[59]. Thus, MMSVR could be a convenient and effective metric to characterize the

performance of different MIMO configurations.

The importance and effectiveness of the eigenvalue distribution on MIMO

system capacity and the overall system performance have been well recognized

[60–63]. The eigenvalue analysis for MIMO OFDM systems can be used to reduce

the overall system complexity [64, 65]. In this chapter, we derive the analytical
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probability density function (pdf) of the MMSVR value, which can be used to

predict the relative performance of different MIMO configurations. The pdf can

also be used to estimate the lower bound on the noise enhancement [66] and the

capacity of MIMO channels. We establish the relationship between MMSVR and

the achievable data throughput. Simulation results verify the accuracy of the closed-

form pdf expressions of MMSVR derived in this chapter.

This chapter is organized as follows. In Section 3.1, the MIMO OFDM

system model and the open-loop ZF and MMSE detection schemes [2, 58] will be

described. Section 3.2 introduces the channel model and then derives the pdf of

the MMSVR of the channel matrix, while Section 3.3 provides simulation setup

and discusses channel analysis simulation results for various MIMO configurations.

Concluding remarks are made in Section 3.4.

3.1. System Model and Detection Schemes

3.1.1. System Model

Consider a MIMO OFDM system where the transmitter has NT antennas,

the receiver has NR antennas, and all the transmitted symbols share N sub-carriers.

The frequency domain transmitted sequence from the n-th (n = 1, · · · , NT ) transmit

antenna is represented by Xn,k, where k = 1, · · · , N represents the k-th OFDM

sub-carrier. The sequence received by the m-th (m = 1, · · · , NR) receive antenna is

expressed as

Ym,k =

NT∑
n=1

Hm,n,kXn,k + ζm,k (3.1)

where Hm,n,k is the frequency response of the channel between the n-th transmit

antenna and the m-th receive antenna for the k-th sub-carrier, ζm,k is the frequency
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response of zero-mean additive white Gaussian noise (AWGN) with a one-sided

power spectral density of N0. Let us define the signal transmitted on the k-th

sub-carrier from all the NT transmit antennas as Xk = [X1,k, X2,k, · · · , XNT ,k]
T ,

where (·)T denotes transpose. The received signal as a function of the respective

CSI matrix Hk can be expressed as

Y k = [Y1,k, Y2,k, · · · , YNR,k]
T

=




H1,1,k H1,2,k · · · H1,NT ,k

...

HNR,1,k HNR,2,k · · · HNR,NT ,k




Xk +




ζ1,k

ζ2,k

...

ζNR,k




= HkXk + ζk. (3.2)

We obtain the general system description by vertically stacking the received signal

given in Eq. (3.2) for all N sub-carriers as

Y =
[
Y T

1 , Y T
2 , · · · , Y T

N

]T

= HX + ζ (3.3)

where X = [XT
1 ,XT

2 , · · · ,XT
N ]T , ζ = [ζT

1 , ζT
2 , · · · , ζT

N ]T , and H =

diag[H1, H2, · · · ,HN ] is a block diagonal matrix.

3.1.2. Detection

Open-loop detection schemes require NR ≥ NT if the system operates at

the spatial multiplexing mode. Zero-forcing (ZF) is the simplest open-loop method

in which the estimates of the transmitted signals are obtained by multiplying the

received signal Y with the pseudo-inverse of the CSI matrix as
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X̂ = W ZF Y = H+Y = X + ξ (3.4)

where (·)+ represents the pseudo-inverse, W ZF = H+ is the weight matrix for

the ZF scheme, and ξ = H+ζ. Note that the detection can be carried out on

a sub-carrier by sub-carrier basis if there is no inter-carrier interference. This

method requires channel estimates at the receiver, and since AWGN is not con-

sidered in the estimation process, it might result in a high noise enhancement. At

high signal-to-noise ratios (SNR), the instantaneous noise power of the n-th data

stream transmitted on the k-th sub-carrier is written as [67]

[E{ξξ†}]n×k,n×k = N0

[
WW †]

n×k,n×k
(3.5)

where [·]n×k,n×k denotes the (n× k, n× k)-th component of a matrix, E{·} denotes

expectation, and W could be either W ZF or W MMSE. For a particular CSI matrix

H , the instantaneous noise enhancement factor for the n-th data stream in the

k-th sub-carrier is [WW †]n×k,n×k. When the MMSVR of H is large, the noise

enhancement will be high.

3.2. Analysis of MIMO Channel

3.2.1. Channel Model

Spatial sub-channels (i.e., the channel from transmit antenna n to receive

antenna m) are assumed to be independent. This assumption is valid if the antenna

spacing is greater than half of the wavelength of the carrier under rich-scattering

environment. We adopt the IEEE 802.11 model with an exponential power-delay

profile [69]. The channel is modeled as a finite impulse response (FIR) filter where

all the L + 1 paths are independent complex Gaussian random variables with zero
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mean and average power ω2
l (l = 0, 1, · · · , L). The channel impulse response can

be written as hl = a + jb, where a and b are defined to be random variables

obeying normal distribution with zero mean and variance of ω2
l /2. In this model,

the power of multipath components decreases exponentially. To normalize the

channel energy, the first multipath component is chosen as ω2
0 = (1−β)/(1−βL+1),

where β = e−Ts/τrms , L = 10τrms/Ts, Ts represents the sampling period, and τrms is

the root mean-square (RMS) delay spread of the channel. The energy of the l-th

multipath component is then defined as ω2
l = ω2

0β
l.

3.2.2. Analysis of Channel Characteristics

For the ZF detection scheme to work efficiently, some constraints must be

met. First of all, the number of receive antennas NR should not be, as mentioned

earlier, less than the number of transmit antennas NT . In the downlink of a practical

WLAN system, however, it is preferred to have more antennas at the transmitter

considering power consumption of the receiver. Moreover, the CSI matrix for each

sub-carrier, Hk, should not be an ill-conditioned1 matrix since such a matrix will

cause a high noise enhancement in detection. For open-loop operations, the system

could run in the high throughput (HT) mode (the number of spatial streams equals

the number of transmit antennas) when the received SNR is moderately high. If

the channel is ill-conditioned, detection using the ZF scheme will experience a low

instantaneous SNR, resulting in poor performance. In this case, it might be better

1In this chapter, a non-square matrix is defined to be ill-conditioned if the minimum

singular value of the channel matrix is significantly small compared to the maximum

singular value.
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to switch the system to operate at the diversity mode (the number of spatial streams

is less than the number of transmit antennas).

Let the noise enhancement matrix for the k-th sub-carrier be Ωk, k =

1, · · · , N . For a rank-two2 ZF scheme in the HT mode, using the singular value

decomposition (SVD) of the CSI matrix, we obtain ΩZF,k as

ΩZF,k = W ZF,kW
†
ZF,k = H+

k (H+
k )† = (H†

kHk)
+

= (V kΣ
†
kU

†
kU kΣkV

†
k)

+

= V k(Σ
†
kΣk)

+V †
k

= V k




1/|σk,1|2 0

0 1/|σk,2|2


 V †

k

= |σk,1|−2V k




1 0

0 |σk,1|2/|σk,2|2


 V †

k (3.6)

where σk,1 and σk,2 (σk,1 ≥ σk,2 > 0) represent the singular values of matrix Hk.

1/|σk,1|2 and 1/|σk,2|2 also represent the noise enhancement factors for the two sub-

channels. Let γk = σk,1/σk,2. A large γk value could arise either because σk,2 is

small or because σk,1 is large. From simulation results, it is found that the latter is

unlikely3, thus γk is a good indicator of noise enhancement, and if γk À 1, we can

conclude that the channel is ill-conditioned for the k-th sub-carrier. For an open-

2The main focus of this chapter is on rank-two and rank-three CSI matrices since the

emerging IEEE 802.11n MIMO WLAN standard is expected to have 2 to 4 transmit and

2 to 4 receive antennas.

3The probability of having σk,1 larger than five equals 8.71 × 10−9 for a 2 × 2 system,

1.05 × 10−7 for a 2 × 3 system, 1.17 × 10−6 for a 3 × 3 system, 8.59 × 10−6 for a 3 × 4

system, 5.81× 10−5 for a 4× 4 system and 2.92 10−4 for a 4× 5 system.
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loop system with a rank higher than two, the definition of γk can be generalized as

σk,1/σk,u, where u = min(NT , NR), and σk,1, σk,u are the maximum and minimum

singular values, respectively.

MMSVR is also a good measure of the system capacity lower bound. Using

the alternative capacity representation of [60], the capacity of the k-th carrier can

be written as

Ck =
u∑

i=1

log2

(
1 +

ρk

NT

|σk,i|2
)

(3.7)

where ρk is the SNR of the k-th sub-carrier. Considering σk,1 ≥ σk,2 ≥ · · · ≥ σk,u >

0, a lower bound of the capacity can be written as

Ck ≥ log2

(
1 +

ρk

NT

|σk,1|2
)

+ (u− 1) log2

(
1 +

ρk

NT

|σk,1|2
|γk|2

)
. (3.8)

As mentioned earlier, a large γk value is mostly due to a small σk,u value. This fact

combined with Eq. (3.8) clearly indicates that a high value of MMSVR results in

a considerably lowered system capacity.

The Fourier transform of the channel impulse response of each OFDM carrier

described in Section 3.2.1 has a Gaussian distribution. The singular values of the

CSI matrix for the k-th OFDM carrier, Hk, are the positive square-roots of the

eigenvalues of the positive-definite Wishart matrix given as Qk = H†
kHk, where

(·)† represents Hermitian transpose. To obtain the pdf of γk, the joint pdf of the

eigenvalues of Qk is needed. Let λ1 ≥ λ2 ≥ · · · ≥ λu be the eigenvalues of the

positive-definite matrix Qk. The joint density function of λ1, λ2, · · · , λu are obtained

to be

fλ(λ1, · · · , λu) = K−1
u,ve

−Pi λi

∏
i

λv−u
i

∏
i<j

(λi − λj)
2 (3.9)
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where u = min(NT , NR), v = max(NT , NR), and Ku,v is a normalization factor

[60]. From Eq. (3.9), we can calculate the joint density function of λ1 and λu,

fλ(λ1, λu), from which the joint cumulative distribution function is obtained as

Fλ(λ1, λu) =

∫ λ1

0

∫ λu

0

fλ(α, β)dαdβ. (3.10)

Since the singular values of Hk, σi, i = 1, · · · , u, are the square-root of the eigen-

values λi, i = 1, · · · , u, of the positive-definite matrix Qk, the joint cumulative

distribution of σ1 and σu is

Fσ(σ1, σu) = P (
√

λ1 ≤ σ1,
√

λu ≤ σu)

= P (0 ≤ λ1 ≤ σ2
1, 0 ≤ λu ≤ σ2

u)

= Fλ(σ
2
1, σ

2
u)− Fλ(0, σ

2
u)−

Fλ(σ
2
1, 0) + Fλ(0, 0). (3.11)

Using Eq. (3.11), the probability density function of γ, omitting the subscript for

simplicity of notation in the sequel, can be derived as

fσ(σ1, σu) =
d2Fσ(σ1, σu)

dσ1dσu

(3.12)

fγ(γ) = fγ

(
σ1

σu

)

=

∫ ∞

0

| σu | fσ(σuγ, σu)dσu. (3.13)

For 2 × 2 and 2 × 3 configurations, the distribution of the singular value

ratios obtained using Eqs. (3.9)-(3.13) are

fγ(γ)2×2 =
12γ(−1 + γ2)2

(1 + γ2)4 (3.14)

fγ(γ)2×3 =
120γ3(−1 + γ2)2

(1 + γ2)6 . (3.15)

Similarly for 3× 3 and 3× 4 systems, the distributions of γ obtained by using Eqs.

(3.9)-(3.13) are
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fγ(γ)3×3 =
216(−1 + γ2)7(1 + γ2)(11 + 20γ2 + 11γ4)

(2 + 5γ2 + 2γ4)6
(3.16)

fγ(γ)3×4 =
840γ3(−1 + γ2)7(1 + γ2)(A3×4(γ) + B3×4(γ))

(2 + 5γ2 + 2γ4)9

(3.17)

where

A3×4(γ) = 4107γ2 + 11562γ4 + 15868γ6 (3.18)

B3×4(γ) = 454 + 11562γ8 + 4107γ10 + 454γ12. (3.19)

The methodology of calculating the closed-form theoretical expressions for the pdf

of γ can be easily extended to MIMO OFDM systems with a rank higher than

three.

3.3. Numerical Examples and Discussion

In simulations, an RMS delay spread of τrms = 50ns and the maximum

delay of 10τrms are considered. Statistics are collected based on 10,000 channel

realizations. Each channel tap is modeled as an independent complex Gaussian

random variable. The CSI matrix is decomposed on a per OFDM carrier basis,

and as defined in Section 3.2.2, γk is the ratio of the maximum and the minimum

singular values of Hk for the k-th sub-carrier. The parameters of OFDM symbols

are chosen as in the IEEE 802.11a standard (i.e., 64 sub-carriers in one OFDM

symbol with a sub-carrier frequency spacing of 312.5kHz).

The analytical and simulated pdf of γk, k = 1, · · · , 64, for a 2×2 system and

a 2× 3 system are shown in Fig. 3.1. For both cases, the simulation and analytical

results match very well. Fig. 3.2 shows the simulation and theoretical results for

the system with 3 transmit antennas.
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FIGURE 3.1. Analytical and simulated probability density of MMSVR for 2 × 2

and 2× 3 MIMO OFDM configurations.

The pdf of γ leads directly to results showing which N ×M MIMO config-

uration is an appropriate choice for the high-throughput mode. For instance, it is

well known that an N × (M + 1) open-loop MIMO scheme outperforms an N ×M

system. The pdf of γ derived in this letter confirms this result. For example, the

pdf of γ clearly demonstrates that a 2× 2 spatial multiplexing system will experi-

ence a much higher probability of having an ill-conditioned channel compared to a

2× 3 system. A 3× 3 configuration is found to have a much higher probability of

ill-conditioned channels compared to a 2× 2 system.

The difference of noise enhancement between two MIMO configurations will

result in different throughput. It is shown in [66] that the lower bound of the noise
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FIGURE 3.2. Analytical and simulated probability density of MMSVR for 3 × 3

and 3× 4 MIMO OFDM configurations.

enhancement when ZF detection is adopted is given as the mean of the square of

MMSVR. This bound can be calculated using the analytical expression of the pdf

of MMSVR as

E{γ2
N×M} =

∫ ∞

1

γ2fγ(γN×M)dγ. (3.20)

The mean value of γ2
N×M is calculated to be 19.9636, 7.5452, 41.1853 and 17.9986

for 2 × 2, 2 × 3, 3 × 3 and 3 × 4 MIMO configurations, respectively. Using these

results, the relative throughput gains can be estimated through channel analysis as

10 log10

(
E{γ2

N×N})− 10 log10(E{γ2
N×(N+1)})

)
. Figs. 3.3 and 3.4 show the upper
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FIGURE 3.3. Throughput comparison of MIMO OFDM systems [70].

bound of the throughput curves of MIMO OFDM schemes versus SNR4. It is ob-

served that for a throughput of 80Mbps, the 2× 3 system attains an approximate

4.2dB gain over the 2× 2 system, and the 3× 4 has a gain of 3.6dB over the 3× 3

4Five thousand channel realizations are created. For each realization, the throughput of

each modulation coding scheme (MCS) is calculated. After obtaining the packet error rate

(PER) using the i-th MCS, the corresponding throughput is calculated as Throughput(i)

= D(i)∗ (1−PER(i)), where D(i) is data rate provided by the i-th MCS. The maximum

throughput value over all MCS sets is adopted as the ideal hull throughput for a specific

realization [70].
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FIGURE 3.4. Throughput comparison of MIMO OFDM systems [70].

system. These results match well with the results obtained by using Eq. (3.20):

4.2257dB gain for 2 × 3 over 2 × 2, and 3.5950dB gain for 3 × 4 over 3 × 3. The

improvement provided by an extra receive antenna is attributed to having fewer

ill-conditioned channels.

3.4. Conclusion

We have derived the closed-form pdf expressions of the condition number

(MMSVR) of the channel matrix for various MIMO configurations. These ana-

lytical results can be used to predict the relative performance of MIMO OFDM
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systems without complicated system-level simulations. They can also be applied to

determine the lower capacity bound of such systems. Through the channel analysis,

it is clearly observed that an additional receive antenna could provide significant

performance improvements. The analytical results and the gain/loss of different

configurations predicted using the mean of the square of MMSVR matches well

that obtained through system-level simulations. The results presented in this let-

ter provide a simple and effective way for predicting the relative performances of

different MIMO OFDM configurations.
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4. DECISION-DIRECTED ESTIMATION OF MIMO
TIME-VARYING RAYLEIGH FADING CHANNELS

MIMO communication systems have been shown to provide high spectral

efficiencies [1]. If perfect channel coefficients are available at the receiver, a linear

increase in ergodic capacity is achievable with MIMO systems [60, 71]. Perfect

channel estimates, however, can be obtained only if the channel is either static for

a long time (noise can be averaged out) or perfect (no noise). The rapid phase

and amplitude variations inherent in a time-varying fading channel render perfect

estimates impossible, regardless of the type of channel estimation method used.

Channel estimation has been studied extensively for single-antenna systems (e.g.,

[72–76]). In [68] a pilot embedding method, where low-level pilots are transmitted

concurrently with data, was proposed for turbo decoding in a MIMO system. The

effects of pilot assisted channel estimation on the achievable data rates (capacity

lower bound) over a frequency nonselective, quasi-static fading channel were ana-

lyzed in [77]. In this scheme, periodic pilot signals assigned to different transmit

antennas are assumed to be mutually orthogonal. Although it avoids inter-antenna

interference within the pilot periods, such scheme could significantly lower the spec-

tral efficiency of the system. Throughput of a system with a maximum-likelihood

channel estimator that employs periodic optimal training sequences for block and

continuous flat fading channels was studied in [78]. In [79], an iterative method

was derived to improve the estimation of channel parameters for a MIMO system,

based on the assumption that data decisions have already been made. This method

needs to invert a matrix of size L×L, with L being the frame length per transmit

antenna, for every frame. With practical frame lengths (e.g., L = 130, as applied

in simulations in [79]), the computational load could be prohibitively high.



42

In this chapter, we derive a decision directed (DD) maximum a posteri-

ori probability (MAP) channel estimation scheme for MIMO systems over time-

varying fading channels. A zero-forcing receiver is applied to detect the spatially

multiplexed symbols transmitted in the current symbol interval. The estimated

symbols are then incorporated in the DD MAP channel predictor to obtain esti-

mates of the channel coefficients in future symbol intervals. The proposed scheme

does not rely on the assumption of a quasi-static fading model and can be applied

in a time-varying environment. Compared to most existing schemes, it has a lower

complexity and is capable of operating with significantly less pilot symbols.

4.1. System Model

Consider a communication system with NT transmit and NR receive anten-

nas, denoted as an (NT , NR) system, over a time-varying, frequency-nonselective

Rayleigh fading channel. In the transmitter, data are serial-to-parallel converted

and sent to NT transmit antennas for simultaneous transmission. Each receive an-

tenna responds to each transmit antenna through a statistically independent fading

coefficient. The received signals are corrupted by additive white Gaussian noise

(AWGN), which is statistically independent among different receive antennas. We

focus on the baseband model of a system, which employs M -ary phase-shift keying

(PSK) with zero inter-symbol interference (ISI) design. The results can be easily

extended to a MIMO system employing a more general pulse-amplitude modula-

tion (PAM) scheme. The u-th transmitted data stream (the signal from the u-th

transmit antenna) is expressed as

xu(t) =
∞∑

i=−∞

√
Essu(i)g(t− iT ), u = 1, · · · , NT (4.1)
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where su(i) is the i-th symbol of the u-th data stream, Es is the energy per symbol,

T is the symbol interval, and g(t) is the transmitted Nyquist pulse applied to all

transmitted data streams. Energy of g(t) is normalized to unity, i.e.,
∫∞
−∞ g2(t)dt =

1.

The time-varying fading channel introduces a random amplitude and phase

shift to the transmitted signal. The fading channel process h(t) is modeled as

a normalized, zero-mean, complex wide-sense stationary Gaussian process with a

spaced-time correlation function Φ(∆t) expressed as Φ(∆t) = E{h(t)h∗(t + ∆t)},
where E{·} denotes statistical expectation and (·)∗ represents complex conjugate.

In a typical mobile communication environment, the spaced-time correlation func-

tion of the channel can be modeled as Φ(∆t) = J0(2πfd∆t) [48], where fd represents

the maximum Doppler shift of the channel and J0(·) is the zeroth order Bessel func-

tion of the first kind.

The received signal of the v-th antenna rv(t), v = 1, . . . , NR, is the sum

of signals transmitted from NT transmit antennas and is expressed as

rv(t) =

NT∑
u=1

√
Eshv,u(t)xu(t) + νv(t), v = 1, · · · , NR (4.2)

where hv,u(t) represents the fading process for signals from the u-th transmit an-

tenna to the v-th receive antenna and νv(t) is a complex zero-mean white Gaussian

noise process with power spectral density N0. The received signal rv(t) is filtered

by a matched filter, matched to g(t), and then sampled at the symbol rate of each

data stream.

Let the NT × 1 transmitted signal vector in the i-th symbol interval be

s(i) = [s1(i), s2(i), · · · , sNT
(i)]T , where [·]T denotes transpose. The NR × 1

received signal vector at the i-th discrete-time interval is obtained as

r(i) =
√

EsH(i)s(i) + ν(i) (4.3)
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where ν(i) is the complex zero-mean noise vector. The channel matrix H(i) (NR×
NT ) is expressed as

H(i) =
[
h1(i) h2(i) . . . hNT

(i)
]

=




h1,1(i) h1,2(i) · · · h1,NT
(i)

h2,1(i) h2,2(i) · · · h2,NT
(i)

...
...

hNR,1(i) hNR,2(i) · · · hNR,NT
(i)




(4.4)

where NR×1 column vectors hu(i) = [h1,u(i), h2,u(i), . . . , hNR,u(i)]
T , u = 1, . . . , NT ,

represent the channel coefficients from the u-th transmit antenna to all NR re-

ceive antennas. Each element of H(i) is a zero-mean, complex Gaussian ran-

dom variable of unit variance. In the discrete-time channel formulation adopted

above, the fading process is piecewise-constant approximated in each symbol in-

terval. It is assumed that the temporal variations of the fading processes, hv,u(t),

are such that the piecewise-constant, discrete-time approximation is valid. The

v-th component of r(i) represents the received signal from the v-th receive an-

tenna and is expressed as rv(i) =
∑NT

u=1

√
Eshv,u(i)su(i)+νv(i). Let us assume that

Ĥ(i−L), · · · , Ĥ(i−1), estimates of H(i−L), · · · , H(i−1), and ŝ(i−L), · · · , ŝ(i−1),

estimates of s(i − L), · · · , s(i − 1), have been obtained. At the beginning of the

transmission, these channel coefficients could be obtained by using pilot symbols.

In the proposed channel estimation and data detection scheme, H(i) is obtained

using Ĥ(i − L), · · · , Ĥ(i − 1) and ŝ(i − L), · · · , ŝ(i − 1). Then, s(i) is detected

using Ĥ(i). After that, Ĥ(i− L + 1), · · · , Ĥ(i) and ŝ(i− L + 1), · · · , ŝ(i) are used

to estimate H(i + 1). Periodic pilot blocks can be inserted in the data stream

to improve estimation quality and to stop error propagation when the receiver is

operating in the decision directed mode.
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4.2. Channel Estimation and Data Detection

4.2.1. Decision-directed Channel Estimation

Due to inter-antenna interference, it is impossible to solve for Ĥ(i) based

on the received signal model given in Eq. (4.3) even if an estimate of symbol

vector s(i) is available. Let us assume that estimates of previous symbols, ŝu(i −
L), ŝu(i − L + 1), · · · , ŝu(i − 1), and channel coefficients in previous symbol

intervals, ĥv,u(i−L), ĥv,u(i−L+1), · · · , ĥv,u(i−1), have been made. To estimate

hv,u(i), u = 1, · · · , NT , v = 1, · · · , NR, we consider a sliding window approach

in which ĥv,u(i) is derived from the received signals r(l), l = i − L, · · · , i − 1,

and symbol decisions within a window of L symbols preceding the current symbol.

Specifically, yv,u(l) is constructed as

yv,u(l) =


rv(l)−

NT∑
k=1
k 6=u

√
Esĥv,k(l)ŝk(l)


 /ŝu(l) (4.5)

u = 1, · · · , NT , v = 1, · · · , NR, l = (i− L), (i− L + 1), · · · , (i− 1).

Note that the v-th element of r(l), rv(l), consists of the desired signal, the inter-

antenna interference, and a noise term. Ideally, if the channel is noiseless, feedback

symbol decisions are correct, and channel estimates are perfect, then yv,u(l) in Eq.

(4.5) equals exactly
√

Eshv,u(l), the desired component needed for the decision-

directed channel estimation. In a practical time-varying fading environment, there

will be decision and channel estimation errors, and yv,u(l) does not perfectly repre-

sent the desired signal component
√

Eshv,u(l).

Let us define an L× 1 vector yvu(i, L) and an (L + 1)× 1 vector x(i, L) as

yvu(i, L) = [yv,u(i−L), yv,u(i−L+1), · · · , yv,u(i−1)]T (4.6)
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x(i, L) =




yvu(i, L)

hv,u(i)


 . (4.7)

The covariance matrix of zero-mean vector x(i, L) can be written as F x =

E{x(i, L)xH(i, L)} =




F x11 fx12

fx21 fx22


, where (·)H denotes conjugate transpose and

F x11 = E{yvu(i, L)yH
vu(i, L)} (4.8)

fx12 = E{yvu(i, L)hH
v,u(i)} (4.9)

fx21 = E{hv,u(i)y
H
vu(i, L)} = fH

x12 (4.10)

fx22 = E{hv,u(i)h
H
v,u(i)}. (4.11)

Given the availability of yvu(i, L), estimate of hv,u(i) can be obtained by

maximizing its conditional probability density function p{hv,u(i)|yvu(i, L)} as

ĥv,u(i) = max
hv,u(i)

p{hv,u(i)|yvu(i, L)}. (4.12)

For Rayleigh channels being considered, the (L + 1) × 1 vector x(i, L) is complex

Gaussian1. Therefore, the conditional probability density function can be written

as [72]

p {hv,u(i)|yvu(i, L)} =
p{yvu(i, L), hv,u(i)}

p{yvu(i, L)}

=

1

πL+1|F x|e
−xH(i,L)F −1

x x(i,L)

1

πL|F x11|e
−yH

vu(i,L)F −1

x11yvu(i,L)
(4.13)

1Under normal operation conditions, there will be occasional erroneous decisions on

previously sent symbols ŝu(l). However, a decision error does not affect the Gaussian

distribution of x(i, L). This is because both the channel and noise components are zero-

mean complex Gaussian (Rayleigh magnitude and uniform phase between 0−2π) and a

feedback decision error only introduces a rotation to the phase of the channel coefficient

and noise component of yv,u(l).
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where | · | denotes the determinant of a matrix. By using the matrix inversion

lemma [101], F−1
x is expressed as

F−1
x =




F x11 fx12

fx21 fx22




−1

=




F xi11 fxi12

fxi21 fxi22


 (4.14)

where

F xi11 = (F x11 − fx12f
−1
x22fx21)

−1 (4.15)

fxi22 = (fx22 − fx21F
−1
x11fx12)

−1 (4.16)

fxi12 = −F xi11fx12f
−1
x22 (4.17)

fxi21 = −fxi22fx21F
−1
x11. (4.18)

Note that F x and F x11 are fixed and thus independent of x(i, L). Therefore,

maximizing the conditional probability density function is equivalent to minimizing

the following quadratic function

λ = xH(i, L)F−1
x x(i, L)− yH

vu(i, L)F−1
x11yvu(i, L). (4.19)

By letting the conjugate derivative of λ with respect to hv,u(i) to zero, we obtain

the decision-directed maximum a posteriori probability estimate of hv,u(i) as2

ĥv,u(i) = wHyvu(i, L) (4.20)

where w = (fx21F
−1
x11)

H is the L × 1 tap weight vector. This procedure needs to

be done for all elements of H(i) to form the estimated channel matrix Ĥ(i). It is

2Because received signals and decisions of symbols in previous symbol periods are used

to predict the current channel state, the scheme derived is actually a channel predictor.

Although the term “channel estimation” is usually used to broadly refer to the procedure

from which the channel state is obtained through either prediction or estimation [72], it is

more precise to describe ĥv,u(i) derived in this chapter as a “predictor channel estimate”,

a term adopted in [73].
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assumed that all elements of H(i) are identically distributed. Thus, tap weight w

is common for all coefficients (any combination of v and u). If significant changes

in the channel statistics (e.g., the Doppler shift) have occurred, however, fx21 and

F x11 (thus w) must be updated to reflect such changes.

The DD MAP channel prediction procedure is illustrated in Fig. 4.1. When

applied to the special case of a single-antenna system, the channel estimate de-

rived in this chapter is similar to the linear minimum mean-square error (MMSE)

estimate [72, 74]. The tap weight is the same, but the MAP predictor estimate de-

rived in this chapter combines previous received signals scaled by the corresponding

symbol decisions which form ĥv,u(i), whereas the MMSE estimate given in [72, 74]

combines estimates (e.g., obtained via a maximum likelihood approach) of past

channel trajectory up to time i− 1.

4.2.2. Detection

Given the received signal in Eq. (4.3), s(i) can be detected using several

algorithms such as the maximum likelihood (ML) detection [80, 81], MMSE detec-

tion, zero-forcing (ZF) detection [82, 83], and the BLAST scheme [7, 84]. The ZF

scheme has the lowest complexity and supports orthogonal matrix triangulariza-

tion (QR decomposition) implementation. Moreover, at high signal-to-noise ratios

(SNR), performance of the ZF scheme approaches that of the MMSE scheme. For

these reasons, the ZF scheme will be adopted in this chapter for data detection.

In the ZF scheme, the decision vector for the NT spatially multiplexed sym-

bols in the i-th interval is written as

β(i) = Ĥ+
(i)r(i) (4.21)



49

D D
r

v
(i) r

v
(i-1)

TN

uk
k

kkvs isihE
1

, )1(ˆ)1(ˆ
-

)1(ˆ 1
is

u

r
v
(i-2)

... D

-

)2(ˆ 1
isu

TN

uk
k

kkvs
LisLihE

1

, )(ˆ)(ˆ
-

)(ˆ 1
Lis

u

r
v
(i-L)

TN

uk
k

kkvs isihE
1

, )2(ˆ)2(ˆ

y
vu 

(i, L)

Optimal Combining of y
vu 

(i, L): ),(1

1121
LiyFf

vuxx

)(ˆ
, ih
uv

FIGURE 4.1. The DD MAP channel predictor for MIMO systems.

where (·)+ denotes the pseudoinverse. Because we consider an overdetermined

system (NR ≥ NT ), Ĥ+
(i), omitting symbol index i, can be calculated as

Ĥ+
= [ĤHĤ]−1ĤH

. If channel estimates are perfect (i.e., Ĥ = H), then

β(i) =
√

Ess(i) + ξ(i), where ξ(i) = H+(i)ν(i) is the noise component after the

zero-forcing operation.

4.3. Numerical Examples and Discussion

For all numerical examples, binary phase-shift keying (BPSK) with a data

rate of Rb = 1Mbps is chosen. Bit decisions for the BPSK system are obtained by

slicing the real part of β(i) given in Eq. (4.21) as ŝ(i) = sgn {< [β(i)]}, where

<(·) denotes the real part. The Doppler shift is calculated based on a center

frequency fc = 2.0GHz. Fading processes among all transmit and receive antennas
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FIGURE 4.2. BER versus Eb/N0 with different memory depth L.

are assumed independent and identically distributed; their first and second order

statistics do not change over the entire transmission horizon. Although the proposed

DD MAP scheme does not require periodic pilot bits in principle, errors introduced

in applying Eq. (4.5) will accumulate over bits. Therefore, periodic pilot bits are

added, but with a large block length of K = 600 bits unless explicitly specified

otherwise. Let P (NT ≤ P ¿ K) represent the number of pilot bits in each pilot

period. For small values of P , the fading rates of interest are such that the channel

remains approximately constant during one pilot period. The received signals in

the pilot period are written in an NR×P matrix as Y p = [r(1), r(2), · · · , r(P )] =

HpSp +V p, where r(p) was given in Eq. (4.3), Hp is the channel coefficient matrix
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FIGURE 4.3. BER versus Eb/N0 for different number of transmit and receive

antennas.

in the pilot period, Sp = [s(1), s(2), · · · , s(P )], and V p = [ν(1),ν(2), · · · ,ν(P )].

Hence, channel estimates in the pilot period are obtained as Ĥp = Y pS
+
p .

Memory depth (window length) L for the DD MAP channel predictor affects

the error performance. Fig. 4.2 shows the bit error rate (BER) versus bit-energy-to-

noise-density ratio (Eb/N0) curves of a (2, 3) system with different values of L. The

maximum Doppler shift is fd = 74Hz (fdTb = 7.4× 10−5), which is obtained based

on a vehicular speed of v = 40Km/h. BER curves shown are for memory depths

of L = 3, 5, 7, and 9. For comparison purposes, the error rate curve with perfect

channel estimates is also shown in the aforementioned figure. With the set of system

parameters applied, error performance improves significantly when L increases from
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3 to 7. However, when L increases to over 7, performance improvement is negligible.

With L = 9 and other parameters adopted for a target BER of 10−3, the proposed

scheme performs approximately 2.5dB worse than the case when all coefficients of

the matrix channel are perfectly known to the receiver.

Since channel estimation depends on the accuracy of inter-antenna interfer-

ence cancellation using Eq. (4.5), it is expected that the performance will degrade

when the number of transmit antennas increases. Fig. 4.3 shows the BER versus

Eb/N0 curves with L = 7 and (NT , NR) = (2, 2), (2, 3), (3, 3), and (3, 4). Other pa-

rameters applied are the same as adopted for Fig. 4.2. Under ideal conditions, the

ZF detection should yield the same error performance for cases of (NT , NR) = (2, 2)
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FIGURE 4.5. Performance comparison of the proposed scheme and the scheme

with the channel treated as block fading.

and (NT , NR) = (3, 3), if the received signal energy per symbol per antenna is the

same [67]. With actual channel estimates, it is observed that a (3, 3) system per-

forms worse than a (2, 2) system.

The fading rate quantified by the Doppler shift affects the performance of

any channel estimation schemes. If channel phase and magnitude remain constant

over a number of bits, accurate channel estimates are possible. As the fading

rate increases, estimation quality deteriorates. Fig. 4.4 shows BER versus Eb/N0

curves of a (2, 3) system with L = 7 and v = 30, 50, and 70Km/h. Performance

degradation from v = 30Km/h to v = 50Km/h is considerably less significant than

that from v = 50Km/h to v = 70Km/h.
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The rationale behind the quasi-static fading model is that the channel re-

mains approximately constant over one block of data. If this were true, a simple

method would be to apply the channel estimates obtained using pilot symbols em-

bedded with data for data detection in the whole block. This scheme will not work

well when the system is operating over a time-varying fading channel. Fig. 4.5 com-

pares the performance of a (2, 3) system employing the proposed scheme with that

of the scheme based on the quasi-static fading model described above. Fading rate

is calculated based on v = 50Km/h and block lengths of K = 400, 700, and 1000

are evaluated. The proposed scheme performs worse in the low Eb/N0 region (high

BER values), but the scheme based on the quasi-static model reaches an error floor

between 10−2 to 10−3 with the set of system parameters applied. The major factor

causing this behavior of the proposed scheme in the low Eb/N0 region is that higher

error rates result in worse estimates of yvu(i, L).

4.4. Conclusion

A decision directed maximum a posteriori probability channel estimation

scheme for symbol-by-symbol detection in MIMO systems has been derived. This

scheme has a low complexity and can be applied to time-varying Rayleigh fading

channels with an arbitrary spaced-time correlation function. Numerical results indi-

cate that a long memory depth is unnecessary for a system to work well. The chan-

nel estimation quality deteriorates as the number of transmit antennas increases.

The fading rate has a high impact on system performance, and the proposed scheme

is more appropriate for channels with low to medium normalized Doppler shifts.

Large block length between adjacent pilot blocks can be deployed with the proposed

scheme. This results in minimum overhead for pilot symbols. The schemes based
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on the quasi-static channel model reach an error floor whereas the proposed scheme

works very well at high Eb/N0 values.
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5. CHANNEL ESTIMATION FOR MOBILE MIMO OFDM SYSTEM

OFDM is attractive for wideband communications because of its ability to

transform a frequency-selective channel into a series of frequency-flat sub-channels.

This scheme allows the system to transmit data reliably in a time-dispersive, or

frequency-selective, channel without the need of a complex time-domain equal-

izer. MIMO communication techniques [1] can be applied with OFDM to increase

spectral efficiency. It has recently become one of the most significant technical

breakthroughs to solve the bottleneck of high data rate requirement and it is the

key technology in the emerging high data rate standards such as IEEE 802.16

and IEEE 802.11n. In MIMO OFDM systems, flexible transmission and signal

processing techniques can be implemented to provide high quality measured by the

bit-error rate (BER) and/or high data rate by exploiting either the diversity gain

and/or the spatial multiplexing gain. Realizing these gains requires knowledge of

CSI at the receiver, which is often obtained through channel estimation.

There exist two main types of channel estimation schemes: non-blind (or

pilot assisted) schemes, in which a portion of the bandwidth is allocated to training

symbols [24, 28], and blind approaches, which can be implemented by exploiting

the statistical properties [21] or the deterministic information of the transmitted

symbol (e.g., finite alphabet, constant modulus, etc.) [22, 23]. For pilot assisted

schemes, CSI can be estimated by exploiting the frequency correlation and/or the

time correlation of the pilot and data symbols. The estimates are in general reliable,

but pilot symbols imply signaling overhead. On the other hand, blind channel

estimation requires a long data observation interval. The slow convergence rate

limits the application of the statistical approach to mobile channels and a high

computation complexity due to the maximization process restricts the deterministic
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approach. In [25], channel estimation algorithms based on comb-type pilots with

improvements through interpolation at data frequencies were studied. Performance

bound of a pilot assisted least square (LS) channel estimator over a multipath slowly

fading channel was derived in [26]. When applied to OFDM systems over fast-fading

channels, however, this scheme can not perform well due to the large normalized

Doppler shift. A Kalman filter based scheme to estimate the state-transition matrix

of time-varying MIMO OFDM channels and a scheme based on minimizing the

mean-square error (MSE) of a cost function were developed in [29, 30] and [31,

27], respectively. ICI and rapid channel variations make channel estimation more

challenging in mobile channels. In order to mitigate ICI effects, various detection

structures were proposed and compared in [24]. These schemes generally have a

high complexity. In [28], an iterative multistage channel estimator with iterative

ICI cancellation to maximize the signal-to-noise-plus-ICI ratio was derived.

In this chapter, we investigate pilot assisted channel estimation for MIMO

OFDM systems in the presence of ICI due to the nature of time-varying channels.

We firstly apply phase shift orthogonal (PSO) pilot sequences [86] for different

transmit antennas to minimize the MSE of the LS channel estimates. As the LS

scheme requires the inversion of a large-size matrix (up to M×M with M being the

number of sub-carriers dedicated to pilot symbols) every OFDM symbol interval

in fast-fading channels, its complexity becomes prohibitively high. Thus, we derive

an expectation-maximization (EM) based LS channel estimator to avoid matrix

inversions. Fast-fading causes severe ICI in OFDM systems with large number

of densely spaced sub-carriers. This interference becomes particularly disturbing

at normal freeway speed for such systems. With the estimate of the channel for

the current symbol interval and initially detected symbols, the ICI component is

estimated and removed before detecting the transmitted symbols. The detected
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symbols are then fed back to the channel estimator for more accurate estimation

of the channel states in the next iteration.

Maximum a posteriori probability (MAP) channel estimation algorithms

generate optimal results. However, for many applications, the computational com-

plexity could be prohibitively high as it needs to invert large-size matrices. This

chapter develops an iterative channel estimation and data detection scheme for mo-

bile MIMO OFDM systems for which ICI cannot be neglected. The major contribu-

tion is on deriving a low-complexity MAP channel estimator while maintaining high

data-detection performances for time-varying channels. In the proposed scheme,

channel estimates are initially obtained by using an LS algorithm that operates on

pilot symbols only. To avoid matrix inversion, we derive an expectation maximiza-

tion (EM) algorithm to obtain the LS solutions. Then, a successive interference

cancellation (SIC) scheme is incorporated in the data detection process. With the

initial channel estimate and the temporary data decisions, the ICI component is

approximated and cancelled from the received signal. In fast fading channels, LS

estimates based on pilot symbols only might not be sufficient to provide a high de-

tection performance. Once the temporary data decisions and channel estimates are

available, performance could be significantly improved by using a MAP estimator.

In order to lower the complexity, we derive an EM-based MAP estimator by ex-

ploiting the channel statistical information and employing low-rank approximation.

The temporary symbol decisions and the received signal after ICI cancellation are

finally processed by the derived EM-based MAP estimator to refine CSI and data

detection.

Most of the existing research on MIMO detection has assumed uncorrelated

MIMO spatial channels. However, the channel can be correlated due to the small

angular spread and/or antenna spacing. We optimize data transmission by ex-
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ploiting the long-term correlation characteristics and incorporate it in the iterative

process. We provide extensive simulation results to evaluate the error performance

of the proposed scheme, including comparison with that of the LS scheme and the

ideal case − time-invariant channels and perfect channel estimates. We show that

the proposed scheme does not have an error floor even under high Doppler shifts

and in the presence of a high spatial correlation.

5.1. System Model

Consider an (NT , NR) MIMO system, where NT and NR represent the num-

ber of transmit and receive antennas, respectively. A sub-channel is defined as

the channel transmitted from the u-th (1 ≤ u ≤ NT ) transmit antenna to the

v-th (1 ≤ v ≤ NR) receive antenna. If the antennas are sufficiently separated

under the rich-scattering environment [38], channel fading processes for different

sub-channels can be assumed to be independent and identically distributed (i.i.d.).

OFDM with N sub-carriers is followed by a spatial multiplexing block and serial-to-

parallel (S/P) converts the incoming OFDM signals into NT streams for simultane-

ous transmission through the transmit antennas. Since the signal is band-limited,

the time-varying multipath channel can be represented by using the tapped-delay

line model with time-varying coefficients, but fixed tap spacing [87]. The delay

spread of the channel determines the length of the tapped delay line and the tap

spacing must be equal to or less than the reciprocal of the signal bandwidth. The

impulse response of the channel is described by Av,u(n, l), which denotes the tap

gain of the l-th path at time index n for the sub-channel transmitted from the u-th

antenna to the v-th receive antenna. The maximum tap delay is assumed to be

less than or equal to the OFDM guard interval. In this chapter, we assume an
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exponentially decaying multipath power profile, which determines the power dis-

tribution among the taps. The power profile is also assumed to be the same for

all the sub-channels. Thus, fading coefficient Av,u(n, l) is modeled as a zero-mean,

complex, wide sense stationary Gaussian process with a spaced-time correlation

function Φ(n2 − n1, l2 − l1) expressed as [85]

Φ(n2 − n1, l2 − l1) = E{Av,u(n1, l1)A
∗
v,u(n2, l2)}

= ε · J0(2πfdTs(n2 − n1)) · e−l1/Lδ(l2 − l1) (5.1)

where

ε =
1− e−1/L

1− e−(L+1)/L
(5.2)

is a normalization factor to ensure ε ·∑l e
−l/L = 1, E{·} denotes statistical expec-

tation, {·}∗ represents complex conjugate, δ(·) represents the Dirac delta function,

J0(·) is the zeroth order Bessel function of the first kind, fd is the maximum Doppler

shift of the channel in Hz, and Ts is the sampling interval. fd can be calculated

as fd = fcv/c, where fc is the carrier frequency, v is the vehicle speed, and c is

the light speed. The total number of taps is assumed to be L + 1, which depends

on the ratio of the maximum delay of the channel to the OFDM sampling inter-

val. Let A(n, l) denote the NR ×NT MIMO fading channel matrix whose (v, u)-th

element is Av,u(n, l). It is assumed that the fading among different paths is uncor-

related. The NR×NR receiver correlation matrix is assumed to be identity and the

NT ×NT transmitter correlation matrix is denoted by T l. The spatially correlated

CSI matrix, H(n, l), is defined as

H(n, l) = A(n, l)T
1/2
l . (5.3)

With perfect sample timing, we can denote the discrete time multipath channel at

time nTs along the delay paths as
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hv,u(n) = [hv,u(n, 0), hv,u(n, 1), · · · , hv,u(n, L)]T (5.4)

where hv,u(n, l) is the (v, u)-th element of matrix H(n, l). The discrete Fourier

transform of hv,u(n) is expressed as

Hv,u(n) = Fhv,u(n) (5.5)

where F is an N × (L + 1) matrix with F [k, l] = e−j2πkl/N , 0 ≤ k ≤ N − 1,

0 ≤ l ≤ L. The k-th element of the N × 1 vector Hv,u(n), Hv,u(k, n), represents

the frequency response of the channel for the k-th sub-carrier. In this model, the

channel coefficients are assumed to be constant in one sampling interval, which is

much shorter than one OFDM symbol duration, and change over different sampling

interval according to the spaced-time correlation function. In discrete time, the

signal transmitted from the u-th antenna can be represented as

su(n) =

√
Es

N

N−1∑

k=0

du(k) · ej2πnk/N (5.6)

where du(k) is the transmitted data at the k-th sub-carrier from the u-th antenna

and Es is the symbol energy per sub-carrier. The signal received by the v-th antenna

is expressed as

yv(n) =

NT∑
u=1

L∑

l=0

hv,u(n, l)su(n− l) + wv(n) (5.7)

where wv(n) is the zero-mean additive white Gaussian noise (AWGN) with variance

N0. Since the guard interval is not less than the maximum delay of the channel,

there is no inter-symbol-interference (ISI). For simplicity of notation, we let the

symbol energy per sub-carrier be normalized to 1. After removing the guard inter-

val, the received signal can be expressed as

yv(n) =
1√
N

NT∑
u=1

N−1∑

k=0

du(k)Hv,u(k, n)ej2πnk/N + wv(n) (5.8)
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where again Hv,u(k, n) is the k-th element of Hv,u(n) given in Eq. (5.5). After

performing the Fourier transform on the received signal yv(n), the signal at the

k-th sub-carrier can be expressed as

Yv(k)=
1

N

NT∑
u=1

[
du(k)

N−1∑
n=0

Hv,u(k, n)

+
N−1∑

m=0,m6=k

du(m)
N−1∑
n=0

Hv,u(m,n)ej2πn(m−k)/N
]

+ Wv(k) (5.9)

where the second term on the right-hand side represents the ICI component and

Wv(k) =
1√
N

N−1∑
n=0

wv(n)e−j2πnk/N . (5.10)

Let ζv,u(k) represent the ICI component caused by time-varying fading and H̄v,u(k)

denote the mean value of the channel response for the k-th sub-carrier. Eq. (5.9)

can be rewritten as

Yv(k) =

NT∑
u=1

[
du(k)H̄v,u(k) + ζv,u(k)

]
+ Wv(k)

=

NT∑
u=1

du(k)H̄v,u(k) + ζv(k) + Wv(k) (5.11)

where

H̄v,u(k) =
1

N

N−1∑
n=0

Hv,u(k, n). (5.12)

The impulse response of the sub-channel from transmit antenna u to receive antenna

v is expressed as

h̄v,u = [h̄v,u(0), h̄v,u(1), · · · , h̄v,u(L)]T (5.13)

where

h̄v,u(l) =
N−1∑

k=0

H̄v,u(k)ej2πkl/N

=
1

N

N−1∑
n=0

hv,u(n, l). (5.14)
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Most of the recent work (e.g., [22, 27]) has adopted the quasi-static model,

assuming that hv,u(n, l) remains approximately constant over one OFDM symbol

duration. Under this assumption, there is no ICI. However, if the Doppler shift is

high and especially when the OFDM system has large number of densely spaced

sub-carriers, this assumption is no longer valid. In this thesis, a more appropriate

assumption is made such that the channel coefficients are assumed to be constant

in one sampling interval and change over different sampling interval according to

the spaced-time correlation function.

5.2. EM-Based LS Channel Estimation

EM-based LS is a pilot assisted channel estimation scheme to initially esti-

mate the channel coefficients for MIMO OFDM systems in the presence of ICI due

to the nature of time-varying channels. Let ps and M denote the pilot sub-carrier

spacing and the number of sub-carriers dedicated to pilot symbols, respectively.

The received pilot vector at receive antenna v, Y v(p), and transmitted pilot matrix,

Du(p), from transmit antenna u are written as

Y v(p) = [Yv(0), Yv(ps), Yv(2ps), · · · , Yv((M − 1)ps)]
T (5.15)

Du(p) = diag[du(0), du(ps), du(2ps), · · · , du((M − 1)ps)] (5.16)

where diag[·] denotes a diagonal matrix. From Eqs. (5.11) and (5.13), the received

vector of the v-th antenna can be expressed as

Y v(p) = Q(p) · hv + ζv(p) + W v(p) (5.17)

where

Q(p) = [D1(p)F (p),D2(p)F (p), · · · ,DNT (p)F (p)] (5.18)



64

hv = [h̄
T
v,1, h̄

T
v,2, · · · , h̄T

v,NT
]T (5.19)

and F (p) is an M × (L + 1) DFT matrix with F (p)[k, l] = e−j2πkl/N , k =

0, ps, 2ps, · · · , (M − 1)ps, 0 ≤ l ≤ L. The k-th elements of M × 1 vectors ζv(p)

(i.e., ζv(k)) and W v(p) (i.e., Wv(k)) were defined in Eqs. (5.10) and (5.11), respec-

tively. The least square (LS) estimate of hv is simply obtained as

ĥv = (Q(p))
+Y v(p) (5.20)

where (·)+ denotes the pseudo-inverse. Since Q(p) is an M ×NT (L + 1) matrix, it

will have a unique LS channel estimate as long as the number of pilot sub-carriers

M is not less than NT times the number of channel delay taps (L+1). Calculating

the inverse of an NT (L + 1) ×NT (L + 1) square matrix could be computationally

extensive. Thus, it is favorable to ignore the channel taps whose magnitudes are

small, like the method of significant tap catching method (STCM) proposed in [88].

With Lr significant taps (Lr < L + 1), the computation complexity can be reduced

to the inversion of an NT Lr × NT Lr square matrix. However, an irreducible error

floor is introduced since the power-delay profile cannot be completely represented

by the Lr taps [89, 90].

We derive an EM-based LS channel estimation scheme to provide a more

reliable channel estimate than the STCM scheme and at the same time avoid the

inversion of large-size matrices. This algorithm transforms the estimation process

for multiple-input channels into a series of independent single-input single-output

(SISO) channel estimation. Since the received signal is decomposed and estimated

for each sub-channel, it can be implemented more efficiently compared with other

algorithms.

E-step: for u = 1, 2, . . . , NT ,
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Ŷ
(g)

v,u(p) = Du(p)F (p)ĥ
(g)

v,u (5.21)

r̂
(g)
v,u(p) = Ŷ

(g)

v,u(p) + βu

[
Y v(p) −

NT∑
u=1

Ŷ
(g)

v,u(p)

]
(5.22)

where superscript g represents the g-th sub-iteration and
∑NT

u=1 βu = 1. Typically,

βu, u = 1, · · · , NT , are chosen as β1 = · · · = βNT
.

M-step: in order to minimize the detection error, the estimated channel

coefficient can be expressed as

ĥ
(g+1)

v,u = F H
(p)D

−1
u(p)r̂

(g)
v,u(p). (5.23)

Since Du(p) is a diagonal matrix, D−1
u(p) can be obtained via division only.

The channel estimates can be initially set as ĥ
(0)

v,u = 1L+1, (1 ≤ v ≤ NR, 1 ≤ u ≤
NT ), where 1L+1 is an (L + 1)× 1 vector whose elements are all 1’s. Increasing the

number of sub-iterations G will result in better quality of the channel estimates.

However, as will be shown in the numerical examples section, for most common

MIMO OFDM configurations and fading rates, the performance saturates quickly

as G increases; thus, a large G is typically unnecessary.

5.3. Low-complexity MAP Channel Estimation

The transmitted data could be detected by simply employing the EM-based

LS estimates of the channel coefficients. However, in fast time-varying fading chan-

nels, the performance will be significantly improved by employing a MAP channel

estimator. A major problem with applying a MAP estimator is the need of data

matrix inversion for every OFDM symbol. We investigate an EM-based MAP es-

timator which takes the temporary symbol decisions and the received signals after

ICI cancellation to refine CSI. The received signal of the v-th antenna at the k-th
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sub-carrier Yv(k) is expressed by Eq. (5.11). The received vector on all sub-carriers

at antenna v can be expressed as

Y v = D ·Hv + ζv + W v (5.24)

D = [D1, D2, · · · ,DNT
] (5.25)

Du = diag[du(0), du(1), · · · , du(N − 1)] (5.26)

Hv = [(Hv,1)
T , (Hv,2)

T , · · · , (Hv,NT
)T ]. (5.27)

The u-th element of Hv is Hv,u = F h̄v,u, where h̄v,u, u = 1, 2, · · · , NT was defined

in Eq. (5.13) and F is an N × (L + 1) DFT matrix defined in Eq. (5.5). The

k-th elements of vectors Y v, ζv, and W v (i.e., Yv(k), ζv(k), and Wv(k)) have been

defined in Eqs. (5.9), (5.10), and (5.11), respectively. Since the EM algorithm can

decompose the MIMO channels into a series of SISO channels, the received vector

at antenna v can be expressed as

Y v =

NT∑
u=1

Y v,u (5.28)

where

Y v,u = DuHv,u + ξv,u (5.29)

and ξv,u is the component consisting of AWGN and ICI for the sub-channel trans-

mitted from the u-th antenna to the v-th receive antenna. By exploiting the channel

statistical information and employing low rank approximation, an expectation max-

imization (EM) based MAP channel estimator of MIMO OFDM systems is derived

to achieve excellent performance without the need of any matrix inversion.
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5.3.1. MAP Channel Estimation

Maximum a posteriori probability (MAP) algorithm achieves optimal esti-

mates of the channel parameters. It maximizes the probability density function

(pdf) of Hv,u conditioned on the received signal and the transmitted data matrix

as [72]

Ĥv,u = arg max
Hv,u

f
(
Hv,u|Y v,u,Du

)
(5.30)

where f(·) denotes the pdf. It was shown in [72] that the MAP estimate of the

parameter, Ĥv,u, can be expressed as

Ĥv,u = µ + RHDH
u

(
DuRHDH

u + RN

)−1 (
Y v,u −Duµ

)

=
[
RHDH

u

(
DuRHDH

u + RN

)−1
]
· Y v,u +

[
I −RHDH

u

(
DuRHDH

u + RN

)−1
Du

]
· µ (5.31)

where µ and RH denote, respectively, the mean and covariance matrix of Hv,u, and

RN is the covariance matrix of vector ξv,u. For most common OFDM systems, the

number of sub-carrier is a large number (e.g., 128). Therefore, the ICI component,

ζv,u(k), can be approximated as a Gaussian random variable by invoking the central

limit theorem [100]. Once the Doppler shift is estimated, the variance of ICI, σ2
ICI ,

can be estimated as [24]

σ2
ICI =

1

N2

N−1∑

m=0,m6=k

N−1∑
n1=0

N−1∑
n2=0

E
{
Hv,u(m,n1)H

∗
v,u(m,n2)

} · e j2π(n1−n2)(m−k)
N

=
1

N2

N−1∑

m=0,m6=k

N−1∑
n1=0

N−1∑
n2=0

J0

(
2πfdT (n1 − n2)

N

)
· e j2π(n1−n2)(m−k)

N

=
1

N2

N−1∑

m=0, m 6=k

(
N + 2

N−1∑
n=1

(N − n)J0(2πfdTsn) cos
(
2π(m− k)

n

N

))
. (5.32)

ξv,u is assumed to be zero mean with covariance matrix of σ2IN , where IN is N×N

identity matrix and σ2 = σ2
ICI + σ2

AWGN/NT . Eq. (5.31) can be rewritten as



68

Ĥv,u = RHDH
u (DuRHDH

u + σ2I)−1 · Y v,u

= RH(DuRH + σ2 · (DH
u )−1)−1 · Y v,u

= RH(RH + σ2 · (DH
u Du)

−1)−1D−1
u · Y v,u. (5.33)

5.3.2. Low Rank Approximated MAP Channel Estimation

Since the transmitted data Du changes every OFDM symbol interval, the

system complexity could be prohibitively high due to the frequent inversion of

large-size matrices. It was shown in [91] that the instantaneous matrix (DH
u Du)

−1

can be replaced with E{(DH
u Du)

−1} at the expense of a negligible performance

degradation. Assuming a normalized constellation power and equally probable

constellation points, we can easily show that E{(DH
u Du)

−1} = αI, where IN is

an N ×N identity matrix and α equals 1, 1.8889, and 2.6854 for QPSK, 16-QAM,

and 64-QAM, respectively. Thus, Eq. (5.33) can be approximated as

Ĥv,u = RH(RH + σ2 · E{(DH
u Du)

−1})−1D−1
u · Y v,u

= RH(RH + σ2αI)−1D−1
u · Y v,u

= RHR · Ĥv,u,LS

= Γ · Ĥv,u,LS (5.34)

where Γ = RHR and R = RH + σ2αI. Furthermore, Γ can be optimally ap-

proximated by an N × N matrix, Γm, with low rank. It was proven in [92] that

an optimal rank reduction can be achieved by minimizing the trace of the extra

covariance as

min
Γm

tr[(Γ− Γm)R(Γ− Γm)T ]. (5.35)
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The solution of above equation is to make ΓmR1/2 the best low rank approximation

of ΓR1/2. After applying singular value decomposition (SVD) of matrix RH , RH =

UΛUH , ΓR1/2 can be expressed as

ΓR1/2 = RHR−1/2

= RH(RH + σ2αI)−1/2

= UΛUH(U (Λ + σ2αI)UH)−1/2

= UΛ(Λ + σ2αI)−1/2UH (5.36)

where Λ is a diagonal matrix with elements of λm,m = 0, 1, · · · , N − 1. Let X =

Λ(Λ+σ2αI)−1/2 and ∆ = X(Λ+σ2αI)−1/2. The low-rank approximated channel

estimate is derived as

Ĥv,u = UXmUH(U (Λ + σ2αI)UH)−1/2 · Ĥv,u,LS

= UXm(Λ + σ2αI)−1/2UH · Ĥv,u,LS

= U∆mUH ·D−1
u Y v,u (5.37)

where Xm and ∆m are the N × N diagonal matrices whose first L + 1 diagonal

elements are the same as those of X and ∆, respectively. The rest of the diagonal

elements of Xm and ∆m are all 0’s. Thus the first L + 1 diagonal elements of ∆m

are represented as λm

λm+σ2α
,m = 0, 1, 2, · · · , L.

5.3.3. EM-based MAP Channel Estimation

Since the signal power is not changed by the transmitter correlation matrix,

the (m,n)-th element of the covariance matrix RH can be derived as

[RH ]m,n = E
{
H̄v,u(m)H̄∗

v,u(n)
}
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= E

{
L∑

l1=0

h̄v,u(l1)e
−j2πml1

N

L∑

l2=0

h̄v,u(l2)e
−j2πnl2

N

}

=
1

N2
E

{
L∑

l=0

N−1∑
n1=0

hv,u(n1, l)
N−1∑
n2=0

hv,u(n2, l)e
−j2π(m−n)l

N

}

=
1

N2
E

{
L∑

l=0

(
N−1∑
n1=0

N−1∑
n2=0

Av,u(n1, l)Av,u(n2, l)

)
e
−j2π(m−n)l

N

}

= ε

L∑

l=0

e−l/Le
−j2π(m−n)l

N · 1

N2

N−1∑
n1=0

N−1∑
n2=0

J0 (2πfdTs(n2 − n1)) (5.38)

It is assumed that the normalized Doppler shift is less than 0.05. Thus, the

value of J0 (2πfdTs(n2 − n1)) is close to 1. [RH ]m,n can be approximated as

ε
∑L

l=0 e−l/Le
−j2π(m−n)l

N , where the normalization factor ε is defined in Eq. (5.2).

After performing SVD of matrix RH , we can obtain the unitary matrix U and the

singular values λm,m = 0, 1, 2, · · · , L.

The EM-based MAP algorithm can be efficiently implemented as

E-step: for u = 1, 2, . . . , NT ,

Ŷ
(g)

v,u = DuU∆miU
HF ĥ

(g)

v,u (5.39)

r̂(g)
v,u = Ŷ

(g)

v,u + βu

[
Y v −

NT∑
u=1

Ŷ
(g)

v,u

]
(5.40)

where, as the EM-based LS scheme, superscript p represents the g-th sub-iteration

and βu, u = 1, · · · , NT , satisfy
∑NT

u=1 βu = 1 and are typically chosen as β1 = · · · =
βNT

. ∆mi is the pseudo-inverse of diagonal matrix ∆m; the L+1 non-zero diagonal

elements of ∆mi equal λm+σ2α
λm

, m = 0, 1, 2, · · · , L.

M-step: in order to minimize the detection error, the estimated channel

coefficient can be expressed as

ĥ
(g+1)

v,u = F HU∆mUHD−1
u r̂(g)

v,u. (5.41)
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Since Du is a diagonal matrix, its inversion can be obtained by division only. No

matrix inversion is required for the proposed EM-based MAP channel estimator.

This scheme can achieve optimal performance with relatively low complexity.
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6. DATA DETECTION FOR MOBILE MIMO OFDM SYSTEMS

The ultimate goal of a receiver is to detect the transmitted symbols with min-

imum probability of detection error based on the received signal, which is distorted

by the noise and channel. For MIMO OFDM systems, the interference between

signals simultaneously transmitted from the multiple transmit antennas consider-

ably increases the detection complexity. Maximum likelihood (ML) is an optimal

detector. However, the implementation is restricted by the significant increase in

complexity, which exponentially grows with the number of transmit antennas [36].

Thus, several suboptimal detectors have been developed, e.g., zero-forcing (ZF)

and minimum-mean-square error (MMSE) linear detectors. Both ZF and MMSE

can decouple spatial interference by matrix inversion. While reducing the detec-

tion complexity, these receivers suffer a loss in diversity gain. It has been shown

that these receivers achieve a receive diversity order of NR − NT + 1 instead of

the usual NR [82, 52]. Alternative nonlinear receivers have also been considered,

e.g., successive interference cancellation (SIC) [7, 93] detection. Signals transmit-

ted from multiple antennas are detected in an optimal order and the interference is

successively cancelled from the received signal. In reality, the receiver is designed

by balancing the detection performance and the system complexity.

Based on the channel estimation schemes (LS, EM-based LS, EM-based

MAP, etc.) of MIMO OFDM systems described in Chapter 5, the (L + 1) × 1

vector of the channel multipath fading, ĥv,u, can be estimated. Thus the estimate

of the channel frequency response at the k-th sub-carrier, Ĥv,u(k)(v = 1, 2, · · · , NR

and u = 1, 2, · · · , NT ), can be obtained for all the sub-channels by applying Eq.

(5.5). Let Ĥ(k) denote an NR × NT channel matrix whose (v, u)-th element is

Ĥv,u(k) and let Y (k) denote an NR×1 received vector whose v-th element is Yv(k).
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From Eq. (5.11), the received vector at the k-th sub-carrier of MIMO systems can

be expressed as

Y (k) = Ĥ(k)d(k) + N(k) (6.1)

where d(k) is a NT × 1 transmitted vector whose u-th element is du(k) and N(k)

is a NR × 1 noise vector whose v-th element is ζv(k) plus Wv(k).

6.1. ZF and MMSE Detection

A linear approach to recover d(k) from Y (k) is to use a NT × NR weight

matrix W (either W ZF or W MMSE), which linearly combines the elements of Y (k)

to estimate the transmitted symbols, i.e., d̂(k) = WY (k). By inverting the channel

with the weight matrix, the ZF algorithm nulls out the interference introduced from

the channel matrix. The ZF weight matrix is defined as

W ZF = Ĥ(k)† =
(
Ĥ(k)HĤ(k)

)−1

Ĥ(k)H (6.2)

where (·)H denotes Hermitian, (·)−1 denotes matrix inversion, (·)† denotes ma-

trix pseudo-inversion. The drawback of the ZF detection scheme is that nulling

out the interference without considering the noise will increase the noise power

significantly, which results in performance degradation. The analysis is mainly

described in Chapter 3. To avoid this noise enhancement, MMSE detec-

tion scheme minimizes the mean-square of the detection error, i.e., J(W ) =

E
{

(d(k)− d̂(k))H(d(k)− d̂(k))
}

, with respect to W . The optimum weight can

be derived as

W MMSE =
(
Ĥ(k)HĤ(k) + σ2

AWGNINT

)−1

Ĥ(k)H (6.3)



74

where σ2
AWGN is the variance of AWGN noise, INT

is the NT ×NT identity matrix.

In the MMSE scheme, the decision vector for the NT spatially multiplexed symbols

on the k-th sub-carrier is obtained as

d̂(k) =
(
Ĥ(k)HĤ(k) + σ2

AWGNINT

)−1

Ĥ(k)HY (k), k = 0, 1, · · · , N − 1 (6.4)

where d̂(k) is an NT × 1 vector whose u-th element is the estimate of the symbol

transmitted from the u-th antenna at the k-th sub-carrier, d̂u(k), u = 1, 2, · · · , NT .

6.2. ICI-based MMSE Detection

The MMSE scheme would have worked were the channel a slow-fading one,

as in such scenario ICI would have been very mild and could be neglected. In

a fast-fading channel with high Doppler shift, however, the received signal could

be corrupted severely by ICI. Thus, Eq. (6.4) must be modified to incorporate

ICI to the MMSE process, forming the ICI-based MMSE to improve the detection

accuracy in the first iteration when the ICI approximation and cancellation has yet

not begun. Data detection quality in this initial phase of the iterative process will

affect the receiver performance.

Since for most common OFDM configurations, the number of sub-carrier is

a large number (e.g., 128), the ICI component, ζv,u(k), can be approximately as

a Gaussian random variable by invoking the the central limit theorem [100]. The

variance of ζv(k) can be determined by exploiting the ICI power and the number

of transmit antenna as shown in Eq. (5.9) and Eq. (5.11). Once Doppler shift

is estimated, the variance of ζv(k), NT σ2
ICI , can be estimated by Eq. (5.32). The

improved decision vector for the k-th sub-carrier employing the ICI-based MMSE

algorithm is obtained as
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d̂(k) =
(
Ĥ(k)HĤ(k) + (σ2

AWGN + NT σ2
ICI)INT

)−1

Ĥ(k)HY (k) (6.5)

where d̂(k) is an NT × 1 vector whose u-th element is d̂u(k), u = 1, 2, · · · , NT .

In OFDM, a stream of symbols are modulated on many equally spaced par-

allel sub-carriers [17]. Modulation and demodulation are efficiently implemented

by IFFT and FFT. However, the orthogonality of the transmitted symbols is main-

tained only if the channel is time-invariant [28]. This section describes how the

ICI is generated due to the nature of time-varying channel. It is shown that ICI

can cause a significant effect on a system with large number of densely spaced sub-

carriers even for a slowly fading channel. Data detection can be improved based on

the analysis and iterative cancellation of ICI.

In the presence of severe ICI, the ultimate solution would be to cancel it

in the detection process. The channel transfer function can be approximately ex-

pressed by using the first-order Taylor series expansion as [28]

Hv,u(k, n) = Hv,u(k, n0) + H
′
v,u(k, n0)(n− n0). (6.6)

Then, ζv,u(k) given in Eq. (5.11) can be rewritten as

ζv,u(k) =
N−1∑
m=0

Hv,u(m,n0)
′
Ξk(m)d(m) (6.7)

Ξk(m) =
1

N

N−1∑
n=0

(n− n0)e
j2πn(m−k)/N , k = 0, 1, · · · , N − 1, m = 0, 1, · · · , N − 1.

(6.8)

Let Ξ be an N×N matrix whose (k, m)-th element is Ξk(m), k, m = 0, 1, · · · , N−1.

With the initial estimate of the channel and the temporary symbol decisions for all

the sub-carriers, the ICI component is approximated as

ζ̂v,u = ΞH
′
v,ud̂u (6.9)
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d̂u = [d̂u(0), d̂u(1), · · · , d̂u(N − 1)]T (6.10)

ζ̂v,u = [ζ̂v,u(0), ζ̂v,u(1), · · · , ζ̂v,u(N − 1)]T (6.11)

H
′
v,u = diag[H

′
v,u(0, n0), H

′
v,u(1, n0), · · · , H ′

v,u(N − 1, n0)]. (6.12)

The first order derivative of the channel response, H
′
v,u(k, n0), can be estimated by

calculating the difference of H̄v,u(k) between two consecutive OFDM symbols [28].

The ICI component is then cancelled before the next iteration of data detection as

Ŷ v = Y v −
NT∑
u=1

ζ̂v,u (6.13)

where Y v = [Yv(0), Yv(1), · · · , Yv(N − 1)]T . Once the ICI component is cancelled

from the received signal, both channel estimation and data detection should be

significantly improved. The block diagram of the proposed iterative EM-based

LS channel estimation and ICI-based MMSE detection scheme for MIMO OFDM

systems is shown in Fig. 6.1. Recall that for each transmit antenna, N data sym-

bols are transmitted over the N orthogonal sub-carriers during one OFDM sym-

bol period. In the proposed receiver, an EM-based LS channel estimation scheme

described in Chapter 5 is used to estimate the channel coefficients for all the sub-

channels employing the output signals of the FFT block. Then, MMSE detection is

performed based on the ICI power, which can be calculated by exploiting the knowl-

edge of the Doppler shift. Once the temporary hard decisions of the transmitted

symbols are available, the ICI component can be approximated and cancelled from

the received signal. Thus, a refined received signal is constructed for the next itera-

tion. This iterative process of EM-based channel estimation, MMSE detection, and

ICI approximation and cancellation will continue until certain performance criteria

are met. The performance gain and the impact of various choices of the algorithm
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FIGURE 6.1. Block diagram of the proposed iterative EM-based LS channel esti-

mation and ICI-based MMSE detection for MIMO OFDM systems.

and system related parameters with the proposed scheme will be presented and

discussed through numerical examples.

6.3. SIC Detection

Successive interference cancellation (SIC) uses the detect-and-cancel strat-

egy similar to that of decision-feedback equalizer. Either ZF or MMSE can be

used for detecting the signal component used for interference cancellation. It has

been shown that the capacity of MIMO systems decreases in the presence of high

transmit and/or the receive correlations [45, 94]. We will assess the performance

and robustness of the proposed channel estimation schemes in both independent

and highly correlated spatial channels. In highly correlated channels, an adaptive

precoder is needed to optimally adjust the signal power and phase for each antenna
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by exploiting the long-term spatial correlation characteristics of the MIMO chan-

nel. For systems with 2 transmit antennas, a precoder is designed to optimize the

multiple antenna transmission such that data transmitted from different antennas

have the same error probability. The 2× 2 precoder matrix is given as [93]

M =



√

P1 0

0
√

P2e
−jψ


 (6.14)

where ψ = 2πB cos(θl), P1 = (1+ρ)2

1+(1+ρ)2
, P2 = 1

1+(1+ρ)2
, and ρ is the modulus of the

antenna correlation coefficient expressed as ρ = e(−0.5)(2πB sin(θl)γl)
2
. For the special

case of independent MIMO channels, ρ = 0 and ψ = 0, which result in equal power

allocation (P1 = P2 = 1/2) and zero phase-shift. Details of optimal precoder design

for MIMO systems with more than 2 transmit antennas can be found in [93].

Upon obtaining the CSI matrix H(n, l) including spatial correlation effects

by using the proposed scheme described in Section 5.2 or Section 5.3, A(n, l) can

be calculated through Eq. (5.3) for any transmit correlation matrix T l. After

applying a linear zero-forcing filter to the NR × 1 received vector of the k-th sub-

carrier, i.e., g(k) = A(n, l)†Y (k), the symbol transmitted from the first antenna

can be estimated by the dot product of the first column of T
1/2
l and g(k).

d̂1(k) = [T
1/2
l (:, 1)]Hg(k)/

√
P1. (6.15)

Then, the interference coming from the first detected symbol can be subtracted

from g(k) before detecting the next symbol as

ĝ(k) = g(k)−
√

P1T
1/2
l (:, 1)d̂1(k). (6.16)

The symbol transmitted from the second antenna can be estimated as

d̂2(k) = (T
1/2
l (:, 2))H ĝ(k)/(

√
P2e

−jψ). (6.17)
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The block diagram of the iterative EM-based MAP channel estimation and

SIC data detection for MIMO OFDM systems is shown in Fig. 6.2. In the trans-

mitter, the adaptive MIMO precoder [93] utilizes spatial multiplexing scheme and

optimally adjusts the signal power and phase for each antenna by exploiting the

long term spatial correlation characteristics of the MIMO channels. Modulation

and demodulation of OFDM are efficiently implemented by the means of inverse

fast Fourier transform (IFFT) and fast Fourier transform (FFT). In the receiver,

we propose an EM-based least square (LS) channel estimation scheme to initially

estimate the channel coefficients for all the sub-channels by employing the output

signals of the OFDM demodulation. Data is detected by successive interference

cancellation (SIC) scheme. Once the temporary hard decisions of the transmitted

symbols are available, the ICI component can be approximated and cancelled from

the received signal. The received signals after ICI cancellation, the detected sym-

bols and the statistical information of the channels are feedback to the EM-based

MAP scheme to obtain more accurate channel parameters.

1

N
T

EM-based

LS

Channel

Estimation

1

N
R

ICI Cancellation

.

.

.

.

.

.
Adaptive

MIMO

Precoder

SIC

Detection

EM-based MAP

Channel Estimation

OFDM

Modulation

OFDM

Demodulation

FIGURE 6.2. Block diagram of simplified MAP channel estimation and data de-

tection for MIMO OFDM systems.
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6.4. Numerical Examples and Discussion

Error performance of iterative EM-based LS channel estimation and ICI-

based MMSE detection for MIMO OFDM systems is shown in Fig. 6.3 – Fig.

6.8. Simulation results are obtained with N = 128 sub-carriers employing QPSK

modulation. A cyclic prefix of 16 samples is inserted at the beginning of each

OFDM symbol to avoid ISI. One pilot sub-carrier is inserted after every 4 data sub-

carriers. Thus, the pilot spacing in the frequency domain equals 4/(NTs). Since

the multipath spread of the channel is assumed to be LTs, the coherence bandwidth

is approximately equal to 1/(LTs). Let R be the ratio of the pilot spacing to the

channel coherence bandwidth. That is, R = 4L
N

. Since the grid density of the

pilot symbols must satisfy the 2-D sampling theorem in order to recover channel

parameters [95], the pilot spacing must not be greater than half of the coherence

bandwidth, which results in R ≤ 0.5. Thus, R = 0.4375 will be adopted unless

explicitly specified otherwise (e.g., in Fig. 6.6).

It was shown in [86] that to minimize the MSE of the LS channel estimate,

the pilot sequence must be equipowered, equispaced, and phase-shift orthogonal for

each transmit antenna in frequency-selective environments. Let us define Xu1,u2 =

F H
(p)D

H
u1(p)Du2(p)F (p), u1, u2 = 1, 2, · · · , NT , to measure the orthogonality among

the training sequences, where Du(p) and F (p) were defined in Section 5.2. It is

required that

Xu1,u1 = IL+1 (6.18)

Xu1,u2 = 0(L+1)×(L+1), u1 6= u2 (6.19)

where I is the identity matrix and 0 is matrix whose elements are 0’s. The rows

of the Hadamard matrix satisfy the above criteria and will be used as the training

sequences for different transmit antennas.
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FIGURE 6.3. BER versus Es/N0 with and without ICI cancellation

((Nt, Nr) = (2, 3), fdT = 0.113, and G = 9).

Since the normalized Doppler shift fdT , where T is the OFDM symbol du-

ration, describes the channel fading rapidity for a given data rate better than the

absolute Doppler shift fd, fdT will be used for measuring fading rates. Values

of fdT are chosen similar to those adopted in [86]. The channel is assumed to

have 15 multipath components (L = 14) (unless explicitly specified otherwise) with

an exponentially decaying power-delay profile. If both the transmitter and the

receiver antennas are sufficiently separated under the rich-scattering environment

[38], channel fading processes for different sub-channels are assumed to be inde-

pendent and identically distributed (i.i.d.). In simulations, fading processes are

piecewise-constant approximated, allowing the channel coefficients to be constant
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FIGURE 6.4. The effect of the number of sub-iterations in the EM process

((Nt, Nr) = (2, 2), fdT = 0.0452, after 2 iterations of ICI cancellation).

in one sampling interval and change over different sampling intervals according to

the spaced-time correlation function given in Eq. (5.1). The deterministic method

described in [48] has been widely used in simulations to generate frequency-flat

Rayleigh fading channel coefficients with controllable normalized Doppler shifts.

However, it is difficult to generate uncorrelated multipath components using this

approach. Furthermore, there are known problems with the auto-correlation of the

fading process generated using this model. Thus, many modified simulators have

been proposed [49–51]. We adopt the model in [49] in our simulations because it

results in better auto-correlation properties of the fading process than the one in

[48].
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FIGURE 6.5. Comparison of the proposed scheme with a common ZF detection

scheme ((Nt, Nr) = (2, 2) and fdT = 0.0452).

The number of sub-iterations in the EM process G, as mentioned in Sec-

tion 5.2, affects the receiver performance. As will be shown later in Fig. 6.4, for

common system configurations, performance improvements will saturate at G = 9

sub-iterations. Hence, in the EM process for all simulations, G = 9 with step sizes

of β1 = β2 = . . . = βNT
= 1/NT will be adopted unless explicitly specified oth-

erwise. Fig. 6.3 compares the bit-error-rate (BER) performances of the proposed

iterative scheme for a (2,3) MIMO system at a fading rate of fdT = 0.113. The

curve corresponding to the case of no ICI cancellation is obtained by employing

the EM-based channel estimates combined with a common MMSE data detection.

Not considering ICI in the MMSE detection process obviously causes an error floor.
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FIGURE 6.6. The effect of the ratio of pilot spacing to channel coherence band-

width R ((Nt, Nr) = (2, 3) and fdT = 0.113).

The proposed scheme with only two iterations improves the system performance

significantly. However, performance improvements are insignificant with more than

two iterations. Thus, in all the rest of the simulations BER curves will be obtained

after two iterations, except in Fig. 6.5.

In terrestrial digital video broadcasting (DVB-T) systems, normalized

Doppler shift of 0.0452 corresponds to the vehicle speeds of 304.72km/h for the 2k

mode (2048 sub-carriers) and 76.18km/h for the 8k mode (8192 sub-carriers) [28].

Fig. 6.4 shows the BER performance with different number of sub-iterations (G) of

EM algorithm for a (2,2) MIMO OFDM system at a fading rate of fdT = 0.0452.

There is a huge improvement if G is increased from 3 to 9; however the improvement
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FIGURE 6.7. Performance comparison between the proposed scheme and the ideal

case ((Nt, Nr) = (2, 3) and L = 5).

is negligible beyond G = 9 sub-iterations. Fig. 6.5 compares the performance of

the ICI-based MMSE with phase-shift orthogonal training sequence (POTS) with

that of the common ZF detection scheme with orthogonal training sequence (OTS).

Significant performance gains of the proposed scheme over the common ZF scheme

are observed for a (2,2) MIMO system at a medium normalized Doppler shift of

fdT = 0.0452.

The effect of the ratio R defined at the beginning of this section on the BER

performance for a (2,3) MIMO system operating at a fading rate of fdT = 0.113 is

shown in Fig. 6.6. As expected, the lower the ratio, the better the performance.

However with the same channel scenario and system configuration, a lower value
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FIGURE 6.8. The effect of antenna configurations (fdT = 0.113 and R = 0.4375).

of R results in a lower spectral efficiency. It will be useful to see the performance

gap between the proposed scheme with that of the ideal case, which is defined as

zero Doppler shift (thus, no ICI) and perfect knowledge of channel coefficients. In

simulation for the ideal case, fading coefficients are generated based on the quasi-

static model. The BER performance with different Doppler shifts is shown in

Fig. 6.7 for a (2,3) MIMO system and the channel has five multipath components

(L = 4). The performance gap is within 3dB compared to the ideal case with fdT

as high as 0.113.

Fig. 6.8 shows the BER versus Es/N0 curves with fdT = 0.113 and

R = 0.4375 for different numbers of transmit and receive antennas: (NT , NR) =
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(2, 2), (2, 3), (2, 4). Under the same system configuration and fading rate, the

proposed scheme achieves about 4dB gain over the scheme given in [86] for a (2,4)

MIMO system at the BER of 1.2 × 10−3. Also, as expected, a (2, 4) system per-

forms much better than a (2, 2) or a (2, 3) system, as it has the highest diversity gain

provided by large difference between the number of receive and transmit antennas.
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FIGURE 6.9. The effect of the number of sub-iterations in the EM process

(NT = 2, NR = 3, uncorrelated spatial channels).

Error performance of iterative EM-based MAP channel estimation and SIC

detection for MIMO OFDM systems is shown in Fig. 6.9 – Fig. 6.14. Simulation

results are obtained with N = 128 sub-carriers employing QPSK modulation. A

cyclic prefix of 16 samples is inserted at the beginning of each OFDM symbol to

avoid ISI. One pilot sub-carrier is inserted after every 4 data sub-carriers. R is

defined as the ratio of the pilot spacing to the channel coherence bandwidth. That
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FIGURE 6.10. Performance comparison of various channel estimation schemes

(NT = 2, NR = 2, uncorrelated spatial channels).

is, R = 4L
N

. Fading processes for different sub-channels are all assumed to be

independent and identically distributed for spatially uncorrelated MIMO channels.

In terrestrial digital video broadcasting 2k mode (DVB-T) systems, if the vehicle

speed is 134.8km/h, the normalized Doppler shift is 0.02 [28]. Thus, fdT = 0.02 is

considered to be a fairly large Doppler shift for the simulated mobile environment.

In simulations, fading processes are piecewise-constant approximated, allowing the

channel coefficients to be constant in one sampling interval and change over different

sampling intervals according to the spaced-time correlation function given in Eq.

(5.1).
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FIGURE 6.11. Performance comparison of various channel estimation schemes

(NT = 2, NR = 3, uncorrelated spatial channels).

The number of sub-iterations in the EM process G, as mentioned in Section

5.3.3, affects the receiver performance. As will be shown later in Fig. 6.9, for

common system configurations, performance improvements will saturate at G = 9

sub-iterations. Hence, in the EM process for all simulations, G = 9 with step

sizes of β1 = β2 = . . . = βNT
= 1/NT will be adopted unless explicitly specified

otherwise. Figs. 6.10 and 6.11 compare the error performances when the receiver

employs an LS, a MAP, an EM-LS, and an EM-MAP channel estimator for 2, 2)

(i.e., NT = 2, NR = 2) and (2, 3) MIMO OFDM systems. Performance of the

ideal case − zero Doppler shift (thus, no ICI) and perfect knowledge of channel

coefficients − is used as the baseline performance. The EM-MAP scheme performs
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FIGURE 6.12. The effect of the ratio of pilot spacing to channel coherence band-

width (NT = 2, NR = 3, uncorrelated spatial channels).

almost the same as the normal MAP scheme, but the latter is computationally much

more extensive than the former. Approximately 2dB improvement is observed with

the EM-based MAP estimator over the EM-based LS estimator.

The effect of the ratio of pilot spacing to the channel coherent bandwidth on

the BER performance for a (2, 3) MIMO OFDM system operating at a fading rate

of fdT = 0.02 is shown in Fig. 6.12. As expected, the lower the ratio, the better the

performance. However with the same channel scenario and system configuration, a

lower value of R results in a lower spectral efficiency. The performance gap between

the proposed scheme with that of the ideal case increases with larger R.
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FIGURE 6.13. Performance of the proposed scheme with different antenna config-

urations (R = 0.4375, uncorrelated spatial channels).

Fig. 6.13 shows the BER versus Es/N0 curves with the EM-based MAP

channel estimator under fdT = 0.02, R = 0.4375, and different numbers of transmit

and receive antennas: (2, 2), (2, 3), (2, 4). The error performance is also compared

with the ideal case. For all cases simulated, performance of the proposed scheme

is within about 2dB of that of the ideal case. In order to demonstrate the ro-

bustness of the proposed algorithm in the presence of high spatial correlations, the

error performance of a (2, 2) system with different spatial correlation coefficients

(|ρ| = 0.75, 0.93, 0.993, 1) is presented in Fig. 6.14. With the knowledge of channel

correlation matrix, a precoder is applied for transmit power and phase optimiza-

tion. Combined with the proposed EM-MAP estimator and the iterative detection
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FIGURE 6.14. Performance of the proposed scheme in the presence of high spatial

correlation (NT = 2, NR = 2, fdT = 0.04).

scheme, no error floors are observed even under high spatial correlation and fast

fading (fdT = 0.04).

6.5. Conclusion

We have proposed an iterative EM-based LS and ICI-based MMSE detec-

tion scheme for MIMO OFDM systems over time-varying fading channels. This

scheme incorporates an EM algorithm to avoid inversions of large-size matrices in

obtaining the LS channel estimates. This significantly reduces the computational

complexity while the LS performance is still maintained. To improve data detection

performance, variance of ICI caused by time-varying fading is taken into consid-
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eration in the MMSE process of the initial iteration. The ICI component is then

approximated and cancelled in the iterative channel estimation and data detection

process.

An iterative EM-based MAP channel estimation and SIC detection is pro-

posed for MIMO OFDM systems. The initially detected symbols and the received

signals after ICI cancellation are processed by the EM-based MAP estimator to

refine the channel state information (CSI). Simulation results under different chan-

nel environments, MIMO configurations, and other algorithm-related parameters

demonstrate the great robustness of the proposed scheme to fast fading and spatial

correlations. With a fading rate as high as fdT = 0.02, the proposed EM-MAP

scheme achieves an error performance that is within about 2dB of the ideal case −
zero Doppler shift (thus no ICI) and perfect knowledge of channel state informa-

tion. We also observe a 2dB gain of the proposed EM-based MAP scheme over the

least square (LS) scheme at medium normalized Doppler shifts.
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7. CONCLUSIONS

7.1. Summary

In this thesis, we have proposed solutions to address various challenging

physical layer issues of mobile MIMO OFDM systems, including channel analy-

sis and modelling, channel estimation, and data detection. There are four main

contributions in this thesis.

Firstly, we have derived the closed-form pdf expressions of the condition

number (MMSVR) of the channel matrix for various MIMO configurations. These

analytical results can be used to predict the relative performance of MIMO OFDM

systems without complicated system-level simulations. They can also be applied to

determine the lower capacity bound of such systems. Through the channel analysis,

it is clearly observed that an additional receive antenna could provide significant

performance improvements. The analytical results indicating the gain/loss of dif-

ferent configurations predicted using the mean of the square of MMSVR match

the results obtained through system-level simulations very well. The analysis pre-

sented in Chapter 3 provides a simple and effective way to predict the relative

performances of different MIMO OFDM configurations.

Secondly, a decision directed maximum a posteriori probability (MAP) chan-

nel estimation scheme for symbol-by-symbol detection in MIMO systems has been

derived. This scheme has a low complexity and can be applied to time-varying

Rayleigh fading channels with an arbitrary spaced-time correlation function. Nu-

merical results indicate that a long memory depth is unnecessary for a system to

work well. The channel estimation quality deteriorates as the number of transmit

antennas increases. The fading rate has a high impact on system performance and

the proposed scheme is more appropriate for the channels with low to medium



95

Doppler shifts. Large block length between adjacent pilot blocks can be deployed

with the proposed scheme. This results in minimum overhead for pilot symbols.

The schemes based on the quasi-static channel model reach an error floor whereas

the proposed scheme works very well at high Eb/N0 values.

In Sections 5.2 and 6.2, we have derived an expectation maximization (EM)

based LS channel estimation and ICI-based MMSE data detection in MIMO OFDM

systems over time-varying fading channels, respectively. The proposed scheme in-

corporates an EM algorithm to avoid inversions of large-size matrices in obtaining

the LS channel estimates. This significantly reduces the computational complexity

while the LS performance is still maintained. To improve data detection perfor-

mance, variance of ICI caused by time-varying fading is taken into consideration

in the MMSE process of the initial iteration. The ICI component is then approxi-

mated and cancelled in the iterative channel estimation and data detection process.

We have provided a comprehensive performance evaluation of the proposed scheme

with different channel environments, MIMO configurations, algorithm parameters

such as the number of sub-iterations in the EM process, and detection schemes.

Comparison is made between the proposed scheme and existing schemes under

similar system setup and channel conditions. The proposed scheme was found to

have superior performance than existing schemes in fast-fading environments.

Finally, in order to minimize the MSE of the channel estimates and reduce

the complexity of the implementation simultaneously, an EM-based MAP channel

estimator is proposed in Section 5.3. The channel parameters are initially ob-

tained by an EM-based least square (LS) estimator. Then a successive interference

cancellation (SIC) scheme described in Section 6.3 is considered for the data de-

tection. With the estimate of the channel and the detected data for the current

symbol interval, ICI component is approximated and removed from the received
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signals. The detected symbols and the received signals after ICI cancellation are

fed back to the MAP estimator to refine the CSI. 2dB gain is observed by our pro-

posed EM-based MAP scheme over LS scheme at medium normalized Doppler shift

(fdT = 0.02). Performance comparison is made between the proposed scheme and

the ideal case with no Doppler shift and perfect channel estimation. The proposed

scheme achieves excellent performance in fast fading channels with relatively low

complexity. The system performance is also analyzed over the spatially correlated

channels. By exploiting only the long term correlation characteristics, the signal is

optimally transmitted and can be successively detected with no error floor.

7.2. Future Research

Most of the design and analysis in this thesis is based on open-loop MIMO

OFDM systems, which implies no feedback of channel information. However, it has

been shown that channel adaptive transmit beam-forming can improve considerably

the performance of MIMO systems [10, 102] by optimally using the available CSI

information at the transmitter. Furthermore, if only limited feedback bits are

available per fading block due to the limited bandwidth of the feedback link, the

effect on the optimal transmission should be analyzed.



97

BIBLIOGRAPHY

[1] G. J. Foschini, “On limits of wireless communications in a fading environment
when using multiple antennas,” Wireless Personal Communications, vol. 6,
pp. 311–335, Mar. 1998.

[2] D. Gesbert, M. Shafi, D. Shiu, P. Smith and A. Naguib, “From theory to
practice: an overview of MIMO space-time coded wireless systems,” IEEE
Journal on Selected Areas in Communications, vol. 21, pp. 281–302, Apr.
2003.

[3] S. M. Alamouti, “A simple transmit diversity technique for wireless com-
munications,” IEEE Journal on Selected Areas in Communications, vol. 16,
pp. 1451–1458, Oct. 1998.

[4] W. Su, Z. Safar, M. Olfat and K. Liu, “Obtaining full-diversity space-
frequency codes from space-time codes via mapping,” IEEE Transactions on
Signal Processing, vol. 51, pp. 2905–2916, Nov. 2003.

[5] W. Su, Z. Safar and K. Liu, “Full-rate full-diversity space-frequency codes
with optimum coding advantage,” IEEE Transactions on Information Theory,
vol. 51, pp. 229–249, Jan. 2005.

[6] M. Fozunbal, S. W. McLaughlin and R. W. Schafer, “On space-time-frequency
coding over MIMO-OFDM systems,” IEEE Transactions on Wireless Com-
munications, vol. 4, pp. 320–331, Jan. 2005.

[7] G. D. Golden, C. J. Foschini, R. A. Valenzuela and P. W. Wolniansky, “De-
tection algorithm and initial laboratory results using V-blast space-time com-
munication architecture,” IEE Electronics Letters, vol. 35, pp. 14–16, Jan.
1999.

[8] P. W. Wolniansky, G. J. Foschini, G. D. Golden and R. A. Valenzuela, “V-
BLAST: an architecture for realizing very high data rates over the rich-
scattering wireless channel,” Signals, Systems, and Electronics, 1998. ISSSE
98, pp. 295–300, Oct. 1998.

[9] K. Mukkavilli, A. Sabharwal, E. Erkip and B. Aazhang, “On beamforming
with finite rate feedback in multiple antenna systems,” IEEE Transactions on
Information Theory, vol. 49, pp. 2562–2579, Oct. 2003.

[10] A. Narula, M. J. Lopez, M. D. Trott and G. W. Wornell, “Efficient use of
side information in multiple-antenna data transmission over fading channels,”
IEEE Journal on Selected Areas in Communications, vol. 16, pp. 1423–1436,
October 1998.



98

[11] C. N. Chuah, D. Tse, J. M. Kahn and R. Valenzuela, “Capacity scaling in
MIMO wireless systems under correlated fading,” IEEE Transactions on In-
formtion Theory, vol. 48, pp. 637–650, Mar. 2002.

[12] C. N. Chuah, J. M. Kahn and D. Tse, “Capacity of indoor multiantenna array
systems in indoor wireless environment,” in Proc. GLOBECOM, 98, Sydney,
Australia, 1998, pp. 1894–1899.

[13] Y. G. Li, J. H. Winters and N. R. Sollenberger, “MIMO-OFDM for wireless
communications: signal detection with enhanced channel estimation,” IEEE
Transactions on Communications, vol. 50, pp. 1471–1477, Sep. 2002.

[14] L. J. Cimini, “Analysis and simulation of a digital mobile channel using or-
thogonal frequency division multiplexing,” IEEE Transactions on Communi-
cations, vol. 33, pp. 665–675, Jul. 1985.

[15] V. Mignone and A. Morello, “CD3-OFDM: A novel demodulation scheme for
fixed and mobile receivers,” IEEE Transactions on Communications, vol. 44,
pp. 1144–1151, Sep. 1996.

[16] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division
multiplexing using the discrete fourier transform,” IEEE Transactions on
Communications, vol. 19, pp. 628–634, Oct. 1971.

[17] J. A. C. Bingham,“Multicarrier modulation for data transmission: an idea
whose time has come,” IEEE Transaction on Communications, vol. 28, pp. 5-
14, May 1990.

[18] J. Gao and H. Liu, “Decision-directed estimation of MIMO time-varying
Rayleigh fading channels,” IEEE Transactions on Wireless Communications,
vol. 4, pp. 1412–1417, Jul. 2005.

[19] J. Gao, O. C. Ozdural, S. Ardalan and H. Liu, “Performance modeling of
MIMO OFDM systems via channel analysis,” to appear in IEEE Transaction
on Wireless Communications.

[20] J. Gao and H. Liu, “Iterative channel estimation and data detection for mo-
bile MIMO-OFDM systems,” submitted to IEEE Transactions on Wireless
Communications.

[21] B. Muquet and M. de Courville,“Blind and semi-blind channel identification
methods using second order statistics for OFDM systems,” IEEE Int. Conf.
Acoustics, Speech, and Signal Processing , vol. 5, pp. 2745–2748, Mar. 1999.



99

[22] M. C. Necker and G. L. Stuber, “Totally blind channel estimation for OFDM
on fast varying mobile radio channels,” IEEE Transactions on Wireless Com-
munications, vol. 3, pp. 1514–1525, Sep. 2004.

[23] N. Chotikakamthorn and H. Suzuki, “On identifiability of OFDM blind
channel estimation,” in Proc. Vehicular Technology Conference, Amsterdam,
Netherlands, vol. 4, pp. 2358–2361, Sep. 1999.

[24] Y.-S Choi, P. J. Voltz and F. A. Cassara, “On channel estimation and detec-
tion for multicarrier signals in fast and selective Rayleigh fading channels,”
IEEE Transactions on Communications, vol. 49, pp. 1375–1387, Aug. 2001.

[25] S. Coleri, M. Ergen, A. Puri and A. Bahai, “Channel estimation techniques
based on pilot arrangement in OFDM systems,” IEEE Transactions on Broad-
casting, vol. 48, pp. 223–229, Sep. 2002.

[26] T. L. Tung and K. Yao, “Channel estimation and optimal power allocation
for a multiple-antenna OFDM system,” EURASIP Journal on Applied Signal
Processing , vol. 2002, pp. 330–339, Mar. 2002.

[27] G. L. Stuber, J. R. Barry, S. W. McLaughlin, Y. Li, M. A. Ingram and
T.G. Pratt, “Broadband MIMO-OFDM wireless communications,” Proceed-
ings of the IEEE, vol. 92, pp. 271–294, Feb. 2004.

[28] S. Tomasin, A. Gorokhov, H. Yang and J. Linnartz,“Iterative interference
cancellation and channel estimation for mobile OFDM,” IEEE Transactions
on Wireless Communications, vol. 4, pp. 238–245, Jan. 2005.

[29] D. Schafhuber, G. Matz, and F. Hlawatsch, “Kalman tracking of time-varying
channels in wirelss MIMO-OFDM systems,” in Proc. 37th Asilomar Conf.
Signals, Systems, Computers, Pacific Grove, CA, Nov. 2003, pp. 1261–1265.

[30] K. Han, S. Lee, J. Lim, and K. Sung, “Channel estimation for OFDM with fast
fading channels by modified kalman filter,” IEEE Transactions on Consumer
Electronics, vol. 50, pp. 443–449, May. 2004.

[31] Y. Li, “Simplified channel estimation for OFDM systems with multiple trans-
mit antennas,” IEEE Transactions on Wireless Communications, vol. 1,
pp. 67–75, Jan. 2002.

[32] P. Vandenameele, L. Pene, M. Engelr, B. Gyrelinckx and H. Man, “A com-
bined OFDM/SDMA approach,” IEEE Journal on Selected Areas in Com-
munications, vo1. 18, pp. 2312–2321, Nov. 2000.



100

[33] S. Sun, I. Wiemer, C. K. Ho and T. T. Tjhung, “Training sequence assisted
channel estimation for MIMO OFDM,” IEEE Wireless Communications and
Networking Conference, vol. 1, pp. 38–43, Mar. 2003.

[34] Y. Teng, K. Mori and H. Kobayashi, “Performance of DCT interpolation-
based channel estimation method for MIMO-OFDM systems,” IEEE Inter-
national Symposium on Communications and Information Technology, vol. 1,
pp. 622–627, Oct. 2004.

[35] W. T. A. Lopes and M. S. Alencar, “Performance of a rotated QPSK based
system in a fading channel subject to estimation errors,” Microwave and Op-
toelectronics Conference, 2001. IMOC 2001, pp. 27–30, Aug. 2001.

[36] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data
rate wireless communication: performance criterion and code construction,”
IEEE Transactions on Information Theory, vol. 44, pp. 744–765, Mar. 1998.

[37] J. G. Proakis, Digital communications. McGraw Hill, 2000.

[38] V. Pohl, V. Jungnickel, T. Haustein, and C. V. Helmolt, “Antenna spacing in
MIMO indoor channels,” in Proc. of IEEE Vehicular Technology Conference,
pp. 749–753, May 2002.

[39] H. Bolckei, D. Gesbert and A. J. Paulraj, “On the capacity of OFDM-
based spatial multiplexing systems,” IEEE Transactions on Communications,
vol. 50, pp. 225–234, Feb. 2002.

[40] D. Asztely, “On antenna arrays in mobile communication systems: fast fading
and GSM base station receiver algorithms,” Royal Institute of Technology,
Stockholm, Sweden, IR-S3-SB-9611, 1996.

[41] C. Chuah, D. Tse, J. Kahn and R. A. Valenzuela, “Capacity scaling of MIMO
wireless systems under correlated fading,” IEEE Transactions on Information
Theory, vol. 48, pp. 637–650, Mar. 2002.

[42] J. H. Kotecha and A. M. Sayeed, “Transmit signal design for optimal estima-
tion of correlated MIMO channels,” IEEE Transactions on Signal Processing,
vol. 52, pp. 546–557, Feb. 2004.

[43] R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport and J. H. Reed,
“Overview of spatial channel models for antenna array communication sys-
tems,” IEEE Personal Communications, pp. 10–22, Feb. 1998.

[44] C. N. Chua, J. M. Kahn and D. Tse, “Capacity of multi-antenna array sys-
tems in indoor wireless environment,” Proc. IEEE Global Telecommunication
Conference, pp. 1894–1899, Nov. 1998.



101

[45] D. Shiu, G. Foschini, M. Gans and J. Kahn, “Fading correlation and its effect
on the capacity of multielement antenna systems,” IEEE Transactions on
Communications, vol. 48, pp. 502–512, Mar. 2000.

[46] D. Chizhik, F. Rashid-Farrokhi, J. Ling and A. Lozano, “Effect of antenna
separation on the capacity of BLAST in correlated channels,” IEEE Commu-
nication Letters, vol. 4, pp. 337–339, Nov. 2000.

[47] K. Yu, M. Bengtsson, B. Ottersten, P. Karlsson and M. Beach, “Second order
statistics of NLOS indoor MIMO channels based on 5.2 Ghz measurements,”
Proc. IEEE Global Telecommunication Conference, vol. 1, pp. 156–160, Nov.
2001.

[48] W. C. Jakes, Microwave mobile communications. New York, NY: John Wiley
and Sons, Inc., 1974.

[49] P. Dent, G. E. Bottomley and T. Croft, “Jakes fading model revisited,” Elec-
tronics Letters, vol. 29, pp. 1162–1663, Jun. 1993.

[50] Y. Zheng and C. Xiao, “Simulation models with correct statistical properties
for Rayleigh fading channels,” IEEE Transactions on communications, vol. 51,
pp. 920–928, Jun. 2003.

[51] Y. Li and X. Huang, “The simulation of independent Rayleigh faders,” IEEE
Transactions on communications, vol. 50, pp. 1503–1514, Sep. 2002.

[52] A. Pualraj, D. Gore, R. Nabar, and H. Bölcskei, “An overview of MIMO
communications - a key to gigabit wireless,” Proceedings of the IEEE, vol. 92,
pp. 198–218, Feb. 2004.

[53] A. Goldsmith, S. Jafar, N. Jindal and S. Vishwanath, “Capacity limits
of MIMO channels,” IEEE Journal on Selected Areas in Communications,
vol. 21, pp. 684–702, Jun. 2003.

[54] “Supplement to IEEE standard for information technology telecommunica-
tions and information exchange between systems - local and metropolitan
area networks - specific requirements. Part 11: wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications: high-speed physical
layer in the 5 GHz band,” IEEE Std 802.11a-1999, Dec. 1999.

[55] A. van Zelst and T. Schenk, “Implementation of a MIMO OFDM-based wire-
less LAN system,” IEEE Transactions on Signal Processing, vol. 52, pp. 483–
494, Feb. 2004.



102

[56] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamental
tradeoff in multiple-antenna channels,” IEEE Transactions on Information
Theory, vol. 49, pp. 1073–1096, May 2003.

[57] R. Heath and A. Paulraj, “Switching between multiplexing and diversity based
on constellation distance,” Proc. of Allerton Conference on Communication,
Control and Computing, Oct. 2000.

[58] B. Bjerke and J. Proakis, “Multiple-antenna diversity techniques for trans-
mission over fading channels,” Proc. of IEEE Wireless Communications and
Networking Conference, vol. 3, pp. 1038–1042, Sep. 1999.

[59] H. Artes, D. Seethaler and F. Hlawatsch, “Efficient detection algorithms for
MIMO channels: A geometrical approach to approximate ML detection,”
IEEE Transactions on Signal Processing, vol. 51, pp. 2808–2820, Nov. 2003.

[60] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Transactions on Telecommunication Related Technology, vol. 10, pp. 585-595,
Nov. 1999.

[61] M. Chiani, M. Z. Win and A. Zanella, “The distribution of eigenvalues of a
Wishart matrix with correlation and application to MIMO capacity,” Proc.
of IEEE Globecom’03, pp. 1802–1805, Nov. 2003.

[62] C. Martin and B. Ottersten, “Asymptotic eigenvalue distribution and capacity
for MIMO channels under correlated fading,” IEEE Transactions on Wireless
Communication, vol. 3, pp. 1350–1359, Jul. 2004.

[63] R. K. Malik, “The pseudo-Wishart distribution and its application to MIMO
systems,” IEEE Transactions on Information Theory, vol. 49, pp. 2761–2769,
Oct. 2003.

[64] D. Huang and K. B. Letaief, “Pre-DFT processing using eigen-analysis for
coded OFDM with multiple receive antennas,” IEEE Transactions on Com-
munications, vol. 52, pp. 2019–2027, Nov. 2004.

[65] D. Huang and K. B. Letaief, “Symbol based space diversity for coded OFDM
systems,” IEEE Transactions on Wireless Communications, vol. 3, pp. 117–
127, Jan. 2004.

[66] C. Mecklenbrauker and M. Rupp, “Generalized Alamouti codes for trading
quality of service against data rate in MIMO UMTS,” Eurasip Journal of Ap-
plied Signal Processing: Special Isssue on MIMO Comm. and Signal Process-
ing, pp. 662–675, May 2004.



103

[67] H. Liu, “Error performance of MIMO systems in frequency selective Rayleigh
fading channels,” Proc. of IEEE Globecom’03, vol. 4, pp. 2104–2108, Dec.
2003.

[68] H. Zhu, B. Farhang-Boroujeny and C. Schlegel, “Pilot embedding for joint
channel estimation and data detection in MIMO communication systems,”
IEEE Communications Letters, vol. 7, pp. 30–32, Jan. 2003.

[69] S. Halford, K. Halford, and M. Webster, “Evaluating the performance of HRb
proposals in the presence of multipath,” doc: IEEE 802.11-00/282r2, Sep.
2000.

[70] A. Maltsev and A. Davydov, “MIMO-OFDM system performance,” TR 03-05
Intel Nizhny Novgorod Labs (INNL), Nov. 2003.

[71] J. Baltersee, G. Fock and H. Meyr, “Achievable rate of MIMO channels with
data-aided channel estimation and perfect interleaving,” IEEE Journal on
Selected Areas in Communications, vol. 19, pp. 2358–2368, Dec. 2001.

[72] H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Receivers:
Synchronization, Channel Estimation, and Signal Processing, Ch. 14. John
Wiley & Sons, Inc., 1998.

[73] A. Svensson, “1 and 2 stage decision feedback coherent detectors for DQPSK
in fading channels,” Proc. of IEEE Vehicular Technology Conference’95, vol. 2,
pp. 644–648, Jul. 1995.
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