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A brushless doubly-fed machine (BDFM) is a single-frame, self-
cascaded induction machine capable of operating in both the induction
and the synchronous modes. This thesis presents some important
advances concerning dynamic modeling, simulation and analysis of the
BDFM.

Initially, a two-axis model and its associated parameters are developed
and calculated. The development of the model is not subject to the
commonly made assumption that the BDFM is electromagnetically
equivalent to two wound rotor induction motors in cascade connection.
Instead, the model is derived from a rigorous mathematical
transformation of a detailed machine design model. This novel approach
emphasizes not only the analysis of the machine performance in both
dynamic and steady state conditions, but also the design aspects of the
machine by correlating the machine performance with the actual machine
parameters computed from machine geometry.

Using the two-axis model, simulation of the machine dynamic



performance in all conceivable modes of operation is carried out and the
results are compared with test data available with good correlation.

Steady state models, under certain assumptions, are derived based on
the two-axis model. For the synchronous mode, motoring operation, a
solution technique is developed and utilized to perform steady state
performance analysis of the BDFM.

Finally, stability analysis of the machine is examined using the
linearized version of the two-axis model. Since the linearized two-axis
model of the BDFM is time-varying, commonly used eigenvalue analysis
techniques cannot be employed directly to investigate the stability
characteristics of the machine. However, since the system matrix is a
periodic function of time, the theory of Floquet is introduced so that the
original linear time-varying system of equations are transformed into a
set of equivalent system of equations with a constant system matrix.
Eigenvalue analysis is then applied to analyze the stability of the BDFM
system over a wide speed range. Predictions by the eigenvalue analysis
are correlated with test data.

The study concludes that the proposed two-axis model is a good
representation of the BDFM for dynamics, steady state, stability
investigations of the machine and further development of control
strategies for the proposed BDFM system for adjustable speed drive and

variable speed generation applications.
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DYNAMIC MODELING, SIMULATION AND STABILITY ANALYSIS OF
BRUSHLESS DOUBLY-FED MACHINES

INTRODUCTION

Background

The concept of using a self-cascaded induction machine in conjunction
with a bi-directional power electronic converter as an adjustable speed
drive (ASD) or variable speed generator (VSG) has recently been proposed
at Oregon State University [1,2]. It is based on the research effects of several
years related to ASD and VSG applications. By utilization of a self-cascaded
induction machine, which is now referred to as a brushless doubly-fed
machine or BDFM, operated in its doubly-fed version the slip rings of a
commonly used doubly-fed wound rotor ASD or VSG system can be
eliminated while a much lower rating power electronic converter can still
be used.

Fig. a shows a conventional induction motor drive and a brushless
doubly-fed machine drive. Compared with a commonly used ASD system,
the newly proposed BDFM drive or VSG system has the following features:

(1) The stator of the experimental BDFM has two sets of terminals, a
6-pole system and a 2-pole system which are connected to the 60 Hz
utility power supply and a power electronic converter, respectively
[12];

(2) The rotor of the BDFM is a cage construction which is mechanically
simple enough to be die-cast [3];

(3) The bi-directional, adjustable voltage and adjustable frequency power



converter used in the experimental drive is a series resonant con-

verter capable of four quadrant operation. The immediate advan-

tages of the BDFM system are:

(a) Lower cost of machine compared with that of a wound rotor induc-

tion machine;

(b) Lower cost of power converter compared with that of a conventional

induction motor or synchronous motor ASD or VSG systems;

(c) Lower harmonic pollution to the power systems.
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p kodjustcble
P i ~ frequency
CONVENTIONAL 3-PHASE,
DUAL-POLE STATOR,

CAGE-ROTOR, INDUCTION MOTOR
NESTED-CAGE ROTOR MOTOR

Fig. a(i) Conventional induction motor drive
(unidirectional converter at full rating)

(ii) Brushless doubly-fed drive

(bi-directional converter at fractional rating)



Based on the available information in the literature, prototype BDFM's
have been designed and built with a 6-pole and 2-pole structure. However,
laboratory tests showed that although providing insight into the
operational principles, the prototype machines did not achieve the desired
performance in both steady state and dynamic situations which is required
of a practical ASD or VSG system. The performance of the machine can be
significantly improved in terms of efficiency, torque production and
other aspects through stator and rotor redesign. Research was thus planned
for improving the machine performance and it was decided to address the
following aspects

(1) Modeling and analysis of the BDFM, which include

a) Detailed machine design modeling for computer aided design;

b) Dynamic modeling (or d-q modeling) and analysis of the BDFM
for dynamic, stability and control studies;

¢) Equivalent circuit modeling for steady state performance and
machine design studies;

d) Machine electromagnetic field analysis;

e) Parameter identification of the machine using modern system
identification techniques;

(2) Practical application studies, which include

a) VSG of the BDFM system for car generator application;
b) Linear BDFM for electrical railroad vehicles.

(3) Potential market studies

This thesis discusses mainly the study of dynamic and steady state
modeling and analysis of the BDFM based on previous investigations of

the machine modeling and design.



Literature Review

The earliest means of achieving speed control of induction motors was
by use of external resistors. In order to use external resistors, wound rotor
induction motors had to be utilized. To avoid the use of slip rings,
researchers were looking for other alternatives. In 1893 and 1894,
Steinmetz of U.S.A. and Gorges of Germany independently filed two
patents to claim a new way of achieving speed control through cascade
connection of two induction motors. Later, there were several attempts to
develop a 'single unit' cascade induction motor to reduce the cost and
improve machine performance. It was first shown by Hunt in 1907 [4] that
cascading of two induction motors for the purpose of speed control could
be incorporated in one machine frame through ingenious stator and rotor
winding design.

Creedy [5] made significant improvements on self-cascade induction
motors by designing more effective stator and rotor windings. He proposed
a 6 and 2-pole machine on which the original stator of the lab machine at
OSU was based. Creedy also developed a logic for effective rotor
configuration design.

No additional machine design was reported until in the early 1970's
when notable rotor design progress was achieved by Broadway [3]. The so-
called "Broadway rotor" is a cage structure which resembles closely that of a
conventional induction motor. The advantages of the cage rotor lie in its
simplicity, ruggedness and ease of manufacture. While pursing the design
of the machine for low speed motor and high speed generator applications,
Broadway also developed steady state equivalent circuits for induction and

synchronous modes of operation from the basic assumption that the



machine is equivalent to two induction motors connected on a common
shaft. He claimed that the parameters used for the steady state models were
based on computations using well established formulas. However, no
information concerning this can be extracted from the publications [3]. In
the synchronous mode of operation, Broadway restricted himself to dc
excitation on the control winding, hence, he could not achieve wide range
of speed control when the machine was running as a doubly-fed
synchronous motor.

Synchronous behavior of the self-cascaded induction motors over wide
speed ranges was studied by Smith in 1967 [6]. Starting from two separate
induction motors, Smith obtained a simple equivalent circuit with which
he investigated the synchronous operation of the system in steady state
conditions.

Kusko [7] and Shibata [8] investigated the use of a power electronic
converter to extract the slip power of this type of machine in both
induction and synchronous modes of operation. The equivalent circuits
used for this analysis were essentially the same as those by early
researchers.

In the synchronous mode of operation, stability problems may arise
when control over a wide speed range is required. The problem was
studied by Cook and Smith using a linearized model based on two wound
rotor induction motors [9]. The effects of parameter variation on the
dynamic performance of the machine is discussed in [10]. It was shown
that although unstable operation could occur in some speed ranges, simple
feedback schemes could be used to stabilize the machine in the unstable

regions.



A common feature of all the above analytical and experimental work is
its basis on the assumption that the machine is equivalent to two
magnetically separated wound rotor motors of different pole numbers
electrically connected and mounted on a common shaft. Although this
approach is appropriate for conceptual understanding of the operation
principles of the BDFM, it is not adequate for detailed machine and drive
system design.

Moreover, most published work is limited to steady state performance
analyses. Dynamic characteristics, such as machine run-up, synchroni-
zation, machine response to sudden change of load torque and many
others have not been addressed.

More recently, Wallace et al have developed a detailed machine design
model to investigate the machine performance under all operating
conditions [11]. The model was developed by considerations of basic stator
coils and nested rotor loops and the interaction between them. By the use
of modern digital computers, the model has been used to investigate the
dynamic performance of the machine by providing time domain solutions
to every stator coil group and rotor loop currents, electromagnetic torque as
well as shaft position and speed [12]. The simulation model has also been
successfully employed to investigate the stator and rotor design based on
steady state performance evaluations.

In [13,15], stator winding design is considered by means of variation of
coil span, distribution of windings, alternative coil-group connections and
adoption of isolated windings. The study concludes that the isolated
winding option for the two stator systems gives a better overall

performance for two given operational conditions at constant load torque.



The design of more effective rotor configurations is discussed in {14,15].
The best alternative for the rotor structure is selected in such a way that for
each option the torque contribution from each individual short circuited
loop is computed and the overall machine efficiency is evaluated for two
given control frequencies. Based on the computer simulation results,for
the most promising of its rotor structures examined, the machine efficiency
is increased, on the average, by more than ten percent for the two given
control frequencies compared with the basic Broadway design.

In addition to utilizing the detailed model for machine design,
electromagnetic field analysis has also been carried out by Alexander [16],
which, to a large extent, enhances the understanding by providing
fundamental insight into the operation of the BDFM. The study also

provides information about how to design the machine more effectively.

The Approach of this Research

In this thesis, a simplified dynamic model is developed and used to
perform dynamic simulation in both induction and synchronous modes of
operation [17].

Conventional approaches consider the BDFM as two magnetically
separated wound rotor induction machines connected electrically on the
rotors. This enables well established induction motor d-q models to be
applied directly to perform d-q analysis. Unlike these previous approaches,
the d-q model described here is obtained from the direct mathematical
transformation of the detailed machine design model. Since the detailed
machine design model, under certain assumptions, is a true mathematical
representation of the BDFM the simplified model must also be valid for

describing the dynamic behavior of the machine with specified accuracies.



The reason for adopting this approach is based on the argument that
although the BDFM is electrically equivalent to two wound rotor induction
machines in cascade connection, in practice there exists in the single-frame
machine only one rotor capable of providing coupling to both stator
systems. The development of the Broadway rotor makes it even more
difficult, if not impossible, to separate physically the cage structure to obtain
the two equivalent three phase windings and their parameters. Therefore,
for cage rotor BDFM, it is appropriate to work from the original physical
configuration of the machine to develop analytical tools.

As will be shown in the next Chapter, the BDFM under consideration
possesses a much more complex winding structure than those of most
other AC electric machines. Hence, the performance equations for
describing the behavior of the machine are much higher in order than
those of other machines. For the detailed representation of the BDFM, it
has been shown that the machine is represented by a set of 35th order
nonlinear differential equations in machine variables. To transform these
equations into a two-axis model, which is the minimum order dynamic
representation of the BDFM, will undoubtedly provide an ultimate
challenge. In addition, the necessity for obtaining the model parameters
from the detailed model through a rigorous computational process adds
even more complexity.

The main advantage of the modeling approach lies in the fact that it
allows for not only the investigation of the dynamic behavior of the
machine but also the computation of the machine parameters from
machine geometry and the d-q model parameters from the rules of the

transformation process. This is believed to be essential in the present



situation when parameter identification techniques for the BDFM are still
being developed.

The development of the two-axis model results in a substantial order
reduction compared with that of the detailed model. Thus, it can be used
for development of control strategies for the BDFM as a possible
alternative drive system.

The two-axis model has been used to perform dynamic simulation
studies and the results are compared with the available test data [18].
Dynamic simulations performed include machine run-up in induction
mode, dc and ac synchronization and synchronous behavior of the
machine.

Steady state equivalent circuits for different modes of operation have
also been derived from the two-axis representation. These steady state
models, although derived using simplifying assumptions, can be shown to
represent the fundamental nature and the basic operational principles of
the BDFM and have thus improved upon the traditionally used equivalent
circuits [3,6,7,8] by providing for all possible modes of operation. A
method for solving the steady state equations in synchronous mode of
operation for ASD applications of the system is developed and used to
carry out steady state performance analysis.

Stability analysis of the BDFM under the synchronous mode of
operation is also carried out using the linearized version of the two-axis
model [19]. The analysis is based on the Lyapunov's indirect method in
which the original nonlinear two-axis model is linearized around some
equilibrium point. Since the two-axis model has to be expressed

exclusively in the rotor reference frame, the resultant linearized system is
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found to be time-varying and commonly used eigenvalue analysis cannot
be performed directly. = A new method is thus proposed in which
eigenvalue analysis is carried out based on a transformed linear time-
invariant model using the generalized theory of Floquet. The theoretical
analysis is correlated with test data and predictions given by the original

nonlinear two-axis model.

Outline of the Thesis

Following the Introduction, the basic structure and operational
principles of the BDFM are discussed in Chapter 1. In Chapter 2, the
dynamic equations of the BDFM in machine variables are derived followed
by the machine parameter computation in Chapter 3. In Chapter 4, a two-
axis model and its parameters are developed and computed. Dynamic
simulation of the BDFM is presented in Chapter 5 and steady state models
and performance analyses are given in both the induction and the
synchronous modes of operation in Chapter 6. Chapter 7 discusses the

stability analysis of the BDFM under the synchronous mode of operation.
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1. THE STRUCTURE AND THE OPERATIONAL
PRINCIPLES OF THE BDFM

In this chapter, the basic structure of the BDFM is described in detail,

followed by a discussion of the operational principles of the BDFM.

1.1 Stator Winding Configurations

The basic structure of the stator windings, due to the work by Hunt and
Creedy, can have two notable forms: a common winding structure and a
separate (or isolated) winding structure [15]. The first OSU laboratory
prototype was constructed based on the former and the second on the latter.
Since this research work was begun when the first machine was in use, the
entire analyses of the machine started by consideration of the common
winding option. It will be shown later that under certain assumptions
these two forms of winding structure are functionally identical. However,
it is noted that it is much easier to analyze the isolated winding
configuration than the common winding case.

Fig. 1-1 shows the basic stator and rotor configurations of the 6-pole and
2-pole experimental BDFM under consideration. The machine has a
double layer winding in 36 stator slots. 36 individual coils are connected
into 9 coil groups, which, in turn, are arranged in three Y-connected sets.
These coils groups can be considered as being positioned at 0°, 40° and 80°
degrees from a reference axis. Two independent three phase supplies
representing the 60Hz utility grid and the output of an adjustable voltage,
adjustable frequency power converter are applied to the six terminals,
namely A,B,C and a,b,c, respectively. The distribution and interconnection

of the coil groups are such that balanced three phase currents flowing from
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Fig. 1-1 Stator and rotor configurations of the 6- and 2-pole BDFM
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the grid produce an airgap field of 6-poles, whereas currents supplied by the
power electronic converter produce an airgap field of 2-poles.

The purpose of two sets of stator winding configuration described above
is to avoid the use of slip rings that would be necessary for either cascade
connection of two individual induction motors or a conventional doubly-
fed generator or motor. Thus, slip-power recovery can be realized in
normal operational conditions through one set of stator windings.

From the design point of view, the advantage of the common winding
scheme has the feature of increasing usage of stator slot space. On the other
hand, however, due to the connection constraints, circulating currents

result because of inherent winding unbalances [16].

1.2 Cage Rotor Structures

In order to support the two airgap rotating fields of different pole
numbers produced by the stator windings, a special rotor structure is
required. In his original work, Hunt developed a wound rotor structure.
Due to the work by Creedy and Broadway [5,3], the rotor has become
mechanically simple enough to be die-cast. For the experimental
prototype, there are four nests, Nj, Ny, N3, Ny , made up of the cage bars,
also denoted as the Z loop. Within each nest there are five short-circuited
loops, Y, X, W, V, U. This structure satisfies the requirement that the
minimum number of cage bars must be equal to the mean of the two

stator pole numbers.

1.3 Operational Principles of the BDFM
Since the BDFM is essentially composed of two induction motors in
cascade connection, its characteristics should resemble those of

conventional induction motors. However, the presence of two stator fields
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rotating at two different speeds and their corresponding rotor fields make
the machine analysis more complicated than either induction or
synchronous machines in both steady state and dynamic conditions.

In doubly-fed operation, the two stator rotating fields are caused by the
two independent sets of excitation voltages applied to the two stator
winding systems. Ideally, these systems should be independent of one
another because they compose different pole numbers. However, in
practice they are slightly coupled through unbalances and harmonics in
addition to their fundamental interaction via the rotor circuits.
Nevertheless, throughout the thesis, it is assumed that the direct coupling
between the two stator systems is negligible. As a result of this assumption,
the original 9 coil group stator windings can be regarded as being two
independent 3-¢ windings namely ABC for the 6-pole and abc for the 2-
pole. The two independent three phase windings are obtained as follows:

When energized from the 6-pole or ABC side, the machine presents a
short circuit from the 2-pole or abc side as shown in Fig. 1-2(a). It can be
seen that the equivalent A, B and C phases are composed of coil groups 1-4-
7, 2-5-8 and 3-6-9, respectively. On the other hand, when the 2-pole or abc
side is subject to an applied voltage, no current should be seen flowing out
from the 6-pole or ABC side to the power supply. When the 6-pole or ABC
side is short circuited, the equivalent a, b and c phases are formed. The a-
phase is composed of coil groups 1-2-3, b-phase, coil groups 4-5-6 and c-
phase coil groups 7-8-9. The results are also shown in Fig. 1-2(a). The two
three phase systems are further illustrated in Figs. 1-2(b) and 1-2(c). It is
emphasized that the cage rotor is left unchanged from its original physical

configuration.
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Fig. 1-2(a) Coil groups and equivalent 6- and 2-pole phases

As stated previously, the 6-pole A-phase consists of coil groups 1-4-7 each
of which is, in turn, composed of four single coils positioned in proper
stator slots and connected in series. Fig. 1-3 shows the 6-pole A-phase
spatial MMF distribution as a result of the superposition of single coil and
coil group MMF distribution. It can be seen that the 6-pole A-phase MMF
is distributed spatially with a 36, variation, where 6, is the rotor angle in
mechanical degrees.

The 2-pole a-phase MMF is shown in Fig. 1-4 which results from
currents flowing in the equivalent 2-pole a-phase winding. Since the
winding is formed by coil groups 1-2-3 that have positive mutual coupling
between them, the resultant MMF magnitude is much higher than that of

the 6-pole A-phase. Within 0° to 360°, the MMF has one cycle of variation.



Fig. 1-2(b) Coil groups and equivalent 6- and 2-pole phases
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B and C-phase MMF distributions for the 6-pole stator system ( or b and
¢ phase MMF's for the 2-pole stator system ) are shifted by 120" spatially
with respect to that of the A-phase ( or a-phase ).

When balanced three phase sinusoidal currents are flowing in the two
3-¢ windings, two rotating fields are established. Depending upon the
sequences of the two sets of input voltages, the two rotating fields can be
either in the same direction or in the opposite direction. In either scheme,
the total air gap MMF is the sum of the two. Unless otherwise stated, the
two fields are considered to be rotating in the opposite direction.

In response to the two stator fields of different rotating speeds, the rotor
must be capable of producing two rotating fields to support the stator fields.
The electromagnetic field analysis results show [16] that the requirements
can be met with the cage structure proposed by Broadway. The two rotating
fields produced by the rotor are due to the induced currents in the short-
circuited rotor loops. The currents can be thought of as being composed of
two components, each of which results from one stator rotating field. In
steady state operational conditions, they may have different or the same

frequency, from which the concept of modes of operation is established.

1.4 Modes of Operation of the BDFM
Both theoretical and experimental results have shown that the BDFM
exhibits two distinct modes of operation: the induction mode (I.M.) and
the synchronous mode (S.M.). In the former mode,the machine is fed
from one set of stator windings and the other set may be connected in one
of the following ways:
(1) open circuited;

(2) short circuited;
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(3) connected to a passive network to dispatch slip power and
perform speed control;
(4) connected to a power electronic converter to extract slip

power.

Except the first case where the machine behaves essentially like a 6-pole
induction motor, there are induced three phase currents in the unexcited
windings which act upon the system to produce unusual effects. In the
early stage of development of the system, speed control of self-cascaded
induction motors was by means of the third method of winding
connections since sources with variable frequency and voltage were not
readily available at the time of Hunt and Creedy. Today, with the state-of-
the-art power electronic converters, although this mode of operation is not
a major means of achieving speed control, it is found to be an intermediate
mode of operation through which a more preferable mode can be achieved.
Similar to the induction motor torque speed characteristics, the shaft speed
in this mode of operation is dependent on the load conditions.

The induction mode of operation ( also referred to as asynchronous
mode ) may also take place when the BDFM is doubly-fed. The
fundamental difference between the singly-fed induction mode and
doubly-fed induction mode is that in the former the rotor currents have
only one frequency while in the latter two frequencies co-exist. In the case
where the two fields are in the opposite direction of rotation, this mode of
operation was found to cause power losses, pulsating torques and
fluctuating speeds. Thus, this mode of operation, under any normal

circumstances, should be avoided.
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The synchronous mode of operation is established when the
frequencies of the rotor currents induced by the two counter-rotating fields
of the two stator systems become identical. In the synchronous mode of
operation, the two sets of stator windings are fed from isolated sources of
different frequencies. Like conventional synchronous machines, the
BDFM requires certain synchronization procedures [1]. Once synchronous
operation is established, the shaft speed of the machine is independent of
the load conditions unless a severe disturbance occurs. Compared with the
induction mode of operation, synchronous mode is highly preferred since
precise open loop speed control can easily be obtained. Table I summarizes
the different modes of operation for the experimental BDFM, which has 6-

pole and 2-pole stator winding sets and a Broadway rotor (cage rotor).

Table I Operation modes of the BDFM in steady state conditions

6-pole stator 2-pole stator cage rotor
LM. Excited withfy,  Not excited One freq f,
LM. Excited withfy,  Excited with f, Two freq. f, £,y

S.M. Excited withf,  Excited with f, One freq. f4=f,,

Modes of operation of the BDFM, under certain conditions, can be
changed from one form to another through a transition period as can be
observed in the laboratory. From a simulation point of view, this cannot
be realized using steady state models on which most previous work has
been based. Indeed, development of a dynamic model will make it
possible to study the machine behavior in a more general way instead of

looking into the modes of operation of the machine separately.
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2. DYNAMIC MODELING OF BRUSHLESS DOUBLY-FED
MACHINES IN MACHINE VARIABLES

The voltage equations to be developéd in this Chapter are modified
equations of the BDFM described in [11,12] in order that they can be
transformed into a two-axis model. In order to derive the voltage
equations for the Brushless Doubly-Fed machines, the following
assumptions are made.

(1) The magnetic and electric circuits are linear. Saturation is
neglected.

(2) Spatial harmonics, other than the third harmonic of the 2-pole
system which corresponds to the 6-pole system fundamental, are
negligible.

(3) Direct coupling between the 6-pole and the 2-pole systems is
negligible.

It is noticed that assumptions similar to (1) and (2) are usually made
when analysis of electric machinery is carried out in the two-axis reference
frame. The third assumption which has been made in the previous

Chapter is repeated again for completeness.

2.1 Voltage Equations of the Brushless Doubly-Fed Machines

Figs 2-1 and 2-2 show the idealized BDFM under consideration. It is
noticed that in Figs 2-1 and 2-2 the 6- and the 2-pole stator systems have
been separated and the distributed winding configurations of the original
winding structure replaced by sinusoidally distributed, windings with the
6-pole A-phase winding taken as a reference axis.

Unlike the stator winding structures, of which three magnetic axes are
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displaced 120° apart in space, the rotor winding is composed of short
circuited loops and four magnetic axes are 90° apart spatially. The rotor
displacement angle 6, is defined as the angle between the reference axis A
and the axis of nest 1, N1.6. Note that in Fig. 2-1, the axis of nest 2, N2.6, is
lagging N1.6 by 90°spatially while in Fig. 2-2 N2.2 is leading N1.2 by 90°.
This is due to the fact that 6, is expressed in mechanical degrees and for 6-
pole system 90° mechanical degrees corresponds to 270° electrical degrees.
Based on the two figures, the voltage equations in machine variables

can be expressed as

Vg Zy 0 Zg 196

0 Z Z *
Val|=| , T2 Tl (2-1)
V. Y4 sér Z s2r Zr ir

In the above matrix equations, the subscripts s6, s2 denote variables and
parameters associated with 6-pole (ABC) and 2-pole (abc) stator circuits and
subscript r denotes variables and parameters associated with the cage rotor
circuits. Vg,V represent 6- and 2-pole phase voltage vectors while v,
stands for the rotor loop voltage vector. Since all the rotor loops are short
circuited, Vv, =0. Three current vectors, i, i, and i, describe the 6 and 2-
pole phase currents and the rotor loop currents, respectively. Notice that
the mutual impedance matrices between the two independent stator
systems are zero. This results from the third assumption made at the
beginning of this Chapter. The parameter matrices Zy, Z,,, Zg4,, Zy, and Z,

are described in detail below.

2.1.1 6-pole and 2-pole Stator Impedance Matrices

The 6 and the 2-pole stator impedance matrices, denoted as Z, Z,,, are

constant 3 by 3 matrices defined by
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re+LaAp MABP Macp
Zs=| MBAp rs+tLap Mpcp (2-2)
Mcap Mcep re+lap

and
r+L,p Mabp Macp
Zo=| Mpap TotL,p Mpp (2-3)
Map Mpp I2 +L,p

where r. and r, are the phase resistance of the 6-pole or the 2-pole system
winding. La = Lam + Ligand L, = Ly + L represent the phase self
inductances and Lamand L,y are the phase magnetizing inductances of the
6- and 2-pole systems, respectively. Ljs, Li2 stand for the phase leakage
inductances. M's represent the mutual inductances between ABC or abc
phases.

Since the 9 coil groups form two balanced three phase systems, the
mutual inductances in each of the matrices are all equal. It is noted that
the impedance matrices of either 6 or 2-pole stator system in (2-2) or (2-3)
are similar to that of a conventional induction motor. Moreover,

sinusoidal distribution of stator windings of the two systems suggests that

MaB=-0.5Lam, Map=-0.5Lam (2-4)

2.1.2 Mutual Impedance Matrices between Stator Phases and Nested
Rotor Loops

Zser and Zgyr designate the mutual impedance matrices between the

two sets of 3-¢ stator windings and the nested rotor loops. Since there are

in total 24 rotor loops, Zser and Zgor are 3 by 24 matrices, the entries of

which are dependent on the rotor position with respect to the stator

reference axis. Zgsr and Zgy, can be partitioned further as :
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Zgr = pl Legrz Lsery Lsgrx Lssrw Lserv Lssru | (2-5)

for the 6-pole system and rotor nested loop mutual impedance matrix and

Z = P[ Loz Leory Loorx Learw Learv Loy ] (2-6)

for the 2-pole system and rotor nested loop mutual impedance matrix

where in (2-5) and (2-6), Ls¢ri and Ly, i=Z,Y,X,W,V,U represent the mutual
inductance matrices between stator phases and the similar rotor loops in
different nests. Since the BDFM rotor has four nests, Lssyi and Loy are 3 by

4 matrices. The complete expansions of Lgg and Ly are typically

cos30r sin30r -c0s30y -sin36r
Logri=Mgg; | c0s(36r-1207)  sin(36,-120) -c0s(36,-120°)  -sin(36,-120°)
c0s(36r+120°) sin(36r+120°) -cos(30;+120%) -sin(36,+120°)

= Msggri [ f(36p) ] (2-6)

for 6-pole stator phase and rotor loop mutual inductances and

-c0s[6-40°] sin[6,-40°] cos[6p~40°] -sin[6,-40°]
Lasori=Mg2ri | -cos[(6r-40°)-120°] sin[(8r-40°)-120°] cos[(8r-40")-120°] -sin[(6-40%)-120°]
-cos[(8r-40°)+120°] sin[(6r~40")+120°] cos(6r-40")+120°] -sin[(8;-40")+120°]

= Mgy [g(ep)] (2-7)
for 2-pole stator phase and rotor loop mutual inductances.

In (2-6) and (2-7), Mg,; and Mgy, i=Z,Y,X,W,V,U are the magnitudes of the
sinusoidal mutual inductance functions, which result from the Fourier
analysis of the nonsinusoidal variations of the stator phase rotor loop

mutual inductances.

. . t t
The mutual inductance matrices Z i, and Z ), are the transpose of Z;

and Z,, , respectively.
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2.1.3 Rotor Circuit Impedance Matrix

Because its function is absolutely unique in electric machine operating
principles, the BDFM rotor has configurations that are not readily
analyzable by conventional means. It can be shown [11], however, that it is
appropriate to represent the cage rotor in terms of a series of coupled mesh
loop circuits as can be shown in Fig. 2-3 and Fig. 2-4, in which only three
out of six loops in each nest are shown.

It is seen from Fig. 2-4 that each rotor loop has a resistance and self
inductance and there exists mutual inductance between loops in the same
nest. In addition, there is also mutual inductance between adjacent nests.
Since the rotor loops are all short circuited at the common endrings, there
is also common endring resistance. Taking all the rotor loops into account,
we can express the rotor impedance matrix as a 24 by 24 matrix, which is
described in detailed in [11,12]. In order to develop the two-axis model in
Chapter 4, the rotor impedance matrix needs to be rearranged from its
original structure. Denoting the rotor impedance matrix as Z, which can

be concisely expressed by the following expression
Z, ={Z;) (2-8)

where i and j are rotor loop indentifiers, i.e. i, j= Z,Y,X,W,V,U.
It should be noted that in (2-8) each element of Z,, Z;;, is also a 4 by 4

symmetrical impedance matrix, each of which is defined as follows:

(1) for i=j#z, i, j=YX,W,V,U

Li+tLip  Mip  -Mip  -Myp
Mip  ri+lyp -Mzgp  -Mjp
“Myp  -Myp T +Lip -Myp
“Mip  -Mjp -Mypp T +Lp

Zii = (2'9)
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where r;; and L;; designate loop resistance and self inductance, respectively.
M;; represents the mutual inductance between the similar loops in different

nests, as is illustrated in Fig. 2-4.
Eqn. (2-9) describes five diagonal elements ( five loops ) in Z, .
(2) for i=j=2

Tzz+Llazp “I'zz-(L'22+Mz2)p -Mzzp 'z~ (L'zz+Mz)p
Ty (L'zztMz))p  Toptlpp T'zp-(L'zz4+Mg)p -Mzp

-Mzp 'z (L'zz+M zz)p rzz+1¢zp 'r'zz'(L'zz+Mzz)p
-I'z-(L'zz+Mz,)p -Mzp I’y (L'zz4Mz)p  Tzztlop

Z,= (2-10)
where r,;+L,p is the "Z" loop impedance and -(r'z;+L',,p) is defined as the
common bar impedance.

This matrix describes the impedance of the outermost loop or cage, i.e.
the "Z" loop matrix. It is noted that besides the loop resistance and self
inductance, the Z loop contains common bars which have been taken into

account.

(3) for i#j, 1, j=Z,Y,X,W,V,U

r+Mzp  -M'yjp  -Mp  -Mjp
_ 'M’ijp rij+Mijp -M'ijp -M'ijp
T -Myp  -Myp rytMip -Myp
-Mip  -Mip  -Myp r+M;p

(2-11)

where r;; is the "mutual” resistance in one nest and M;; expresses the
mutual inductance between loops in the same nests. M'j; represents the
mutual inductance between loops in different nests.

There are fifteen possible combinations of i, j. Thus, this matrix
presents 15 submatrices, i.e. the upper diagonal elements of Z;. Notice also

that Zy=Z;; for i#j, which expresses another 15 submatrices, i.e. the lower

diagonal elements of Zr
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3. PARAMETER COMPUTATIONS OF THE BDFM
IN MACHINE VARIABLES

Parameter computations for the BDFM voltage equations are presented
in this Chapter. It can be shown that parameter computation of the BDFM
plays an essential role in the dynamic modeling process since no
information concerning parameter identification for the BDFM has been
found in the literature. Commonly used parameter identification
techniques for both synchronous and induction machines can not, in
general, be applied to the BDFM parameter identification process. A
mistake that can be easily made in parameter identification procedure is to
attempt to use a model, which is valid for only one particular operational
mode, to identify machine parameters. This model, under machine testing
process, may be completely invalid, which often results in meaningless
results. Research is now underway to use modern system identification
techniques to accomplish the task.

An alternative for obtaining machine parameters is to employ
computational methods from which parameters of the machine are
calculated based on machine geometry. An apparent advantage of this
approach is that it relates the true machine parameters, such as winding
resistance, self and mutual inductances and mutual inductances between
stator and rotor windings, with the machine performance in both dynamic
and steady state operational conditions.

As mentioned in the Introduction, by consideration of the interaction
between basic stator winding and nested rotor loops, a detailed machine

design model has been developed. The machine parameters have all been
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computed and assembled into four impedance matrices, namely the stator

impedance Z',, the stator-rotor mutual impedance matrix Z'y;, the rotor-
stator impedance matrix Z',; and finally the rotor impedance matrix Z';,
[11,12]. Since the BDFM equation in machine variables described in this
thesis is a modified version of that given in [11,12], the parameter matrices
must also be modified accordingly.

It is the purpose of this Chapter to develop additional computational
techniques for evaluation of machine parameters for the modified BDFM
equation, which is more suitable for the development of the two-axis
model.

It is assumed that the four parameter matrices from the detailed model
Z.,Z,2,,and Z', parameter matrices are given and it will be shown
that all the parameters in the BDFM Eqn. (2-1) can be calculated according
to the given information and later developed into the d-q model

parameters ( see Chapter 4 ).

3.1 Parameter Computation of the 6-pole Stator Windings

Previous work has been done to calculate the machine parameters at
the coil group level [11]. The equivalent 6- and 2-pole phase quantities can
be identified if the coil group impedance matrix is known. Fig. 3-1 shows
the equivalent 6- pole three phase ( ABC ) windings in term of the 9 coil
groups. When each of the 6-pole phases is energized independently, we
can write a series of equations to calculate the parameters. Since the 6-pole
system is completely balanced, only two quantities, the self impedance of
one phase and the mutual impedance between two phases, are needed to

be computed.
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Fig. 3-1 Equivalent 6-pole phases in terms of 9 coil groups

Suppose that 6-pole A-phase is subject to an applied voltage v,,, we have

from Fig. 3-1

VaN Mp rgtlgp Mp i (3-1)

gd
Mp Mp rg+lgp

VaN [rg’ngP Mp  Mp }ligl}
ig7

VaN

where (rg+Lgp) is the impedance of one coil group. M=M4=M;7=My;y is the
mutual inductance between coil groups 1, 4 and 7. Adding the three

equations together and also noting that iy = igy+ig4+ig7, we get

VAN'_'% [rg+(Lg+2M)p] ip = [rg + (Lig + Lam Jpl ia=Z, 1y (3-2)

Thus, the equivalent per phase impedance is obtained. Comparing (3-1)

and (3-2), we also get

. . . 1.
lgl = 184 = lg7 = 5 lA (3'3)



32

Equation (3-3) suggests that i, is distributed evenly in coil groups 1, 4 and 7.
The mutual inductance between the 6-pole phases is next computed.

The induced voltage in the B-phase due to the applied voltage Vv, is

Vpn = Myp p(ig1)+M42 p(ig4)+M72P(ig7) (3-4)

Using (3-3), we have

Vi =3 (Miz+MgrM7)P(ip) = Mappia) (3-5)
since M,g=M,c=Mpc and the mutual inductances are reciprocal, the 6-pole
inductance matrix can been formed from the two calculated values. This
matrix together with coil resistance is assembled into the 6-pole impedance

matrix denoted by Z as has been given in (2-2).

3.2 Parameter Computation of the 2-pole Stator Windings
Fig. 3-2 shows the equivalent abc phases in terms of 9 coil groups.
Suppose that 2-pole a-phase is energized alone. The following two

equations can be written

“Van rg+Lgp Mpp  Myzp %gl
Van|=| MyP TgtlgP Mpp |ligp (3-6)
M3;p  Mgpp rgtlep |[igs

“Van
and ia =- ( igl+ig2+ig3 ) (3'7)

Since M, = M,3, but M3 5/My,, Eqn. (3-6) can not be solved explicitly.
Therefore, an assumption as to how the current is distributed in the
windings has to be made. From the partial symmetry of the three

windings, it is known that igy=ig3. In the 2-pole impedance matrix

8

computations, it is assumed that the currents in the 1, 2 and 3 coil groups

are distributed in the following way
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. . 2 .
lo1 =13 =-7 15 (3-8)
. 3.

and 1g2="71, (3-9)

Knowing these conditions, we can express v,, in terms of i, only,

1 2 3 2 .
Van= 3 {Tg+[Lg+5 (May +M31)p+5 (Mip+Mppp+5 (Mpz+Mp)plt i, (3-10)
since My, = My;= My3 = M3, and M3=M3;, (3-10) can also be written as

1 10 4 .
Van=3 [rg+(Lg+7 Myp+7Mp3)pl 1,

=[r,+ (Lp+L,pli,=2, 1, (3-11)

Other ratios of the current distribution may also be assumed, but they do
not affect the value of the impedance, Z, , significantly.

Fig. 3-2 Equivalent 2-pole phases in terms of 9 coil groups



The mutual inductance between abc phases can be computed by first
considering applying a voltage to a-phase and then calculating the induced

voltages on the b-phase. The following equations are derived

“Vbn Mygp Mpyp Magp gy
“Vobn [=| Mis Masp Mssp ||1g (3-12)
“Vin Migp MpP Mgp |]1g3
and
ia = -( ig1+ig2+ig3 ) (3'13)

Combining the three equations in (3-12) leads to

1 . . .
“Von= 3 [(M14+M;5+M;)p(ig1)+(Mpg+Mas+Mpe)p(ign)+(Mzg+Mas+Mzg )p(igs)]

(3-14)
Similarly, the induced voltage v, due to the applied v, is
“Ven Mp7p Mpgp Mygp fgl
“Ven|=| Myp Mgp Myp ||1g (3-15)
Mz7p Mgagp Mzgp || lg3

“Ven

or

1
Ven= 3 [(M17+M1g+M19)p(igy)+(Ma7+Mag+Mo)pligy)+(Maz+Mag+Mag)plis)]
(3-16)

V.o ay also be expressed if the b-phase is subject to an applied voltage vy,

1 . : :
“Ven=3 [(M47+M48+M49)p(1g4)+(M57+M58+M59)p(1g5)+(M67+M68+M69)p(156)]
(3-17)
With any of the above equations, the mutual inductance among abc phases

could be obtained, provided that the phase current can be expressed in term

of coil group currents. Again, we assume that
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. . 2.
g1 =1lg3=-71 (3-18)
. 3.
and igp=-71, (3-19)
. . 2,
or lgg=1gg=-71lp (3-20)
. 3.
and lgs=-71p (3-21)

for (3-17), the mutual expression is

1
Mp=M, = Mp = 21 [Z(Ml7+M18+M19)+3(M27+M28+M29)+2(M37+M38+M39)] (3-22)

Similar to the formulation of the 6-pole stator impedance matrix Zg, Zs is

established as is given in (3-3).

3.3 Mutual Inductances between Two Stator Windings and Rotor Loops

Computation of rotor angle dependent mutual inductances between 6-
and 2-pole stator system and nested rotor loops starts with consideration of
single stator coil and nested rotor loop mutual inductances which are
available from previous work [11]. The mutual inductances are computed
numerically using a modified subroutine program developed for the
detailed dynamic model.

Fig. 3-3 shows a plot of the mutual inductances between single coil 1
and 6 rotor loops in nest 1 as a function of rotor angle 6, in mechanical
degrees. Obviously, mutual inductances between coil group 1, Mcg(6y),
which is composed of four single coils positioned at 0°, 10°, 180° and 190°,
respectively, and the 6 rotor loops can be calculated by utilizing the internal
connection matrix C; [11,12]. Since the four single coils are connected in
series, Mcg(0y) is simply the sum of the four mutual inductances at every

rotor angle 0° < 6 < 360°. The results are shown in Fig. 3-4. Other coil
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group rotor loop mutual inductances may also be computed by repeating

the above procedure using C; .
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The mutual inductances between equivalent 6- and 2-pole phases and
nested rotor loops are calculated next. For the 6-pole rotor loop system,
equivalent A, B, C phases are formed by coil groupsv1-4-7, 2-5-8 and 3-6-9,
respectively. In order to derive the expression for the equivalent mutual
inductances between ABC phases and rotor loops in the four nests,

consider Fig. 3-5

.
Vrii

Fig. 3-5 Mutuals between A-phase and rotor "ith" loop in nest 1

With all the rotor loops open-circuited, the induced voltages in the
rotor "ith" loop, i=Z,Y,X,W,V,U, in nest 1 due to the applied voltage v,y

alone are

Vi = p[Ml-i(Gr)igll + p[M4_i(9r)ig4 ]+p[M7.i(9r)i37] (3-23)

where M1.i(8r), M4.i(8r), M7.i(6;) are the rotor angle dependent mutual
inductances between coil groups 1, 4 and 7 and rotor "ith" loop in nest 1,

respectively.

Since ig1 = lga = ig7= 31a (3-24)
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(3-23) leads to Vai = pl % [My(8)+M,;(Br)+My;(6p)] 1, }

=p[M,.(36r) 14] - (3-25)

Thus, the equivalent 6-pole A-phase rotor "ith" loop mutual inductance,
M4-i(36;), is found to be equal to the mean of My (6r), My;(6r), M7;(6r). Fig.
3-6 is a plot of the mutual inductance M, _;(36;) as a function of rotor angle
O, . It is seen that the nonsinusoidal function has a 30; variation. Mutual
inductances between A-phase and rotor loops in nests 2, 3 and 4 are
obtained by simply shifting 90°, 180° and 270° with respect to My ;(36y),
respectively. B-phase and C-phase rotor loop mutual inductances can

easily be computed using the technique developed above.
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Fig. 3-6 6-pole A-phase rotor loop (in nest 1) mutual inductances

Computation of the equivalent 2-pole nested rotor loop mutual
inductances is considered next. Fig. 3-7 shows the 2-pole equivalent a-

phase and the rotor "ith" loop in nest 1.
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Fig. 3-7 Mutuals between 2-pole a-phase and rotor "ith"loop in nest 1

Unlike the previous case where M4.i(36;) can be derived readily from
the rotor side equations, stator side equations must be considered. Assume
that van is applied to the 2-pole a-phase and all the rotor loops except the
"ith" one in nest 1 is shorted. The following equations may be written

“Van rg+Lgp Mppp M13P igl Mi-l(er) 0 0 irli
“Van|=| M2P rg+LgP Mxp %gz +p 0 Mi-z(er) 0 1

“Van] | Mzip  Mgpp rg+lgp [ligs 0 0 M50 )L
(3-26)
Combining the three equations in (3-26) yields
1 .
“Van = Vseq +Pp { 5 [Mi-l (9;)+Mi_2(6r)+Mi_3(9r)] 1rli}
= Vseq + p [Ml_a(er) irli] (3"27)

where vgeq is the equivalent stator voltage due to the first term on the right
hand side of (3-26), and M;_,(6;) is thus the equivalent mutual inductance
between the rotor "ith" loop in nest 1 and 2-pole a-phase. Since the

mutual inductances are reciprocal, it follows that M, ,(6y) = M,.i(6;), for
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i=Z,YX,W,v,u. Fig. 3-8 shows a plot of M, ;(6r) vs 8;. Clearly, this
nonsinusoidal function has one cycle between 0° and 360°and is shifted by

40° degrees with respect to M (36;). Other mutual inductances are derived

in the similar way which will not be repeated.
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Fig. 3-8 2-pole a-phase rotor loop (in nest 1) mutual inductances

After the mutual inductances are all numerically computed, Fourier
analysis is carried out to obtain the frequency spectrum of these
nonsinusoidal functions. Figs 3-9 and 3-10 show the analysis results. It is
clear from Figs 3-9 and 3-10 that M,_;(36r) is composed of the 3rd and the
9th harmonics while M, ;(8;) contains the 1st, 5th, 7th and 11th harmonics.
Only the fundamental and the third harmonic components are extracted
and other high order harmonics are neglected according to the
assumptions made. From the graphs, the contribution of each rotor loop to

the 6 and 2-pole stator phase mutual inductances can be seen clearly.
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3.4 Computation of Machine Parameters for an Experimental BDFM
The coil group inductance parameter matrix of the detailed model is

shown below. Define

L'gs = {ay;) (3-28)

where a; =L, fori=jand a;=M;jfori # j, represent stator coil group self-

inductance and mutual inductance between coil groups, respectively.

then
0.6640 0.3824 0.0762 -0.2294 -0.5354 -0.5354 -0.2294 0.0762 0.3824
0.3824 0.6640 0.3824 0.0762 -0.2294 -0.5354 -0.5354 -0.2294 0.0762
0.0762 0.3824 0.6640 0.3824 0.0762 -0.2294 -0.5354 -0.5354 -0.2294
-0.2294 (0.0762 0.3824 0.6640 0.3824 0.0762 -0.2294 -0.5354 -0.5354
L'ss= -0.5354 -0.2294 0.0762 0.3824 0.6640 0.3824 0.0762 0.2294 -0.5354

-0.5354 -0.5354 -0.2294 0.0762 0.3824 0.6640 0.3824 0.0762 -0.2294
-0.2294 -0.5354 -0.5354 -0.2294 0.0762 0.3824 0.6640 0.3824 0.0762
0.0762 -0.2294 -0.5354 -0.5354 -0.2294 0.0762 0.3824 0.6640 0.3824
0.3824 0.0762 -0.2294 -0.5354 -0.5354 -0.2294 0.0762 0.3824 0.6640

- .

In addition, the coil group resistance is given as r; = 2.42 Q. By using

the formulas derived in this Chapter, the BDFM equation parameters are

computed as follows.
(1) 6-pole stator impedance matrix
From (3-2), it follows that
re=3 Iy =0.807Q, Ly= 5 (Lg+2M) = 5 [0.664 +2(-0.229)] = 0.0684 H
(3-29)

The mutual inductance between 6-pole phases is determined using (3-5)

1
Mpp = Mpc = Mca =3 ( M+ Mg +Mp))

=1 (0.38240.0762-0.5354 ) = -0.0255 H (3-30)

With rg, Ly and Mg, Zg of (2-2) is formed numerically as
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0.807+0.0684p -0.0255p -0.0255p
Z= { -0.0255p 0.807+0.0684p -0.0255p (3-31)
-0.0255p -0.0255p  0.807+0.0684p
(2) 2-pole stator impedance matrix
The 2-pole phase resistance r, is
Iy=Ts=3 1, = 0807 Q (3-32)
The self inductance is computed using (3-11)
1 10 4 1 10 4
Ly=3(Lg+ 5 Mpp+5My3) =3 (0.664+70.382+-0.0764 ) = 04179 H  (3-33)

The mutual inductance between 2-pole phases are all equal and calculated

according to (3-22).

1 .
Myp=Mp. =M, = 21 [2(M17+M18+M19)+3(M27+M28+M29)+2(M37+M38+M39)]

= 21_1 [2(-0.2294+0.0762+0.3824)+3(-0.5354-0.2294+0.0762)+

2(-0.5354-0.5354-0.2294)] = -0.2004 H (3-34)

With ry, L, and M,;, , Z,; of (2-3) is formed numerically as

0.807+0.4179p -0.2004p -0.2004p
Z,= -0.2004p 0.807+0.4179p -0.2004p (3-35)
-0.2004p -0.2004p 0.807+0.4179p

(3) The magnitudes of the rotor angle dependent mutual inductances

between stator phases and rotor loops

These parameters, given in Table II, result from Fourier analysis of the
nonsinusoidally varying mutual inductances between 6- and 2-pole phase

and rotor loops as illustrated in Fig. 3-9 and Fig. 3-10.



Table I Magnitudes of mutual inductances between
6- and 2-pole stator phases and rotor loops

Rotor 6-pole to rotor  2-pole to rotor
Loops mutuals (H) mutuals (H)

Z 0.000248 0.00200

Y 0.000329 0.00169

X 0.000350 0.00135

w 0.000308 0.00099

\Y 0.000210 0.00060

U 0.000075 0.00020

(4) Rotor circuit parameters

As stated previously, in order to derive the two-axis model the stator
equations of the BDFM have been modified from coil group representation
to equivalent phase representation. However, the rotor equations remain
unchanged. The rotor circuit parameters are therefore obtained directly
from the detailed model parameters. These parameters are listed below.
(i) Loop resistances, self inductances and mutual inductances between

similar loops in different nests.
The parameters are given in Table IIT below.

Table Il Loop resistances, self inductances and mutual
inductances between similar loops in different nests

Resistances (uQ)  Self inductances (uH) Mutuals (uH)
(including 5% leakage)

Iy, =212.0 L,, =188 My = 5978
Iyy = 188.0 L,y =163 Myy = 4.002
Iy = 164.0 Lyy =13.4 My = 2421
Ty = 140.0 Ly =10.1 Myyy = 1.235
rvv =116 0 LVV =6.38 MVV = 0 444
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(ii) Common endring resistances (uLQ)

gy =Tyw =TIyx =Iyy =Iyz =6.0
I'yw =Tyx =Iyy =Iyz =180
I'wx = I'wy = I'wz =30.0
Iy =Txz =42.0
ryzy =540

(iii) Mutual inductances between loops in the same nest (uWH)

Mgy =20  Myy=19 Myy= 1.8 Myy = 1.7 Myz = 1.63
Myw =57  Myx=54 Myy = 5.1 Myz = 4.8

Mpyx =914  Myy=86 Myz = 8.15

Myy=121 My =114

Myg = 14.6

(iv) Mutual inductances between different loops of different nests (WH)

Myy =0.148 Myy=0247 Myy=0345 Myy= 0444 My, = 0.543
Myw = 0741 Myyx=1.037 Myy=1334 Myy=1630
Mwx =1729 Myy=2223 My =2717

Myy=3.112  Myy =3.804

My = 4.891

By far, the BDFM dynamic model expressed in machine variables and
the associated machine parameters have been derived. Eqn. (2-1) is a set of
30th order, nonlinear, ordinary differential equations which must be
solved simultaneously along with two more mechanical equations in
order to investigate the machine dynamics. However, in terms of stability
analysis and control strategy development, (2-1) must be reduced to a

manageable form, which is the subject of the rest of the thesis.



4. TWO-AXIS MODEL DEVELOPMENT AND MODEL
PARAMETER COMPUTATIONS

The theory employed to derive the two-axis (d-q) model is the well
known two reaction theory that calls for a change of variables of the
original system equations by which the time-varying mutual inductances
in the voltages equations can be eliminated.

It has been shown [22] that, for three-phase symmetrical induction
machines, in order to eliminate the time-varying terms in the differential
equations the reference frame can be fixed on the stator, rotor or be
synchronously rotating. For synchronous machines, however, due to the
saliency of their magnetic circuits, the reference frame must be fixed on the
rotor.

The analysis of the BDFM in the dq domain also faces the choice of
correctly selecting a reference frame in which the time-varying mutual
terms due to the relative motion between the stator circuits and the rotor
circuits can be eliminated. Owing to the special structure of the BDFM, it is
known that there can be two synchronous speeds (two synchronously
rotating reference frames) co-existing in the machine. They are due
respectively to the 6-pole system excitation and 2-pole system excitation.
Since the sequence of the two sets of input voltages is different , they are
rotating in opposite directions with respect to one another. Moreover,
since the two stator systems comprise two different pole numbers, the
choice of selecting a reference frame is therefore very limited. In fact, it can
be shown that it is not possible to select either stationary or synchronously

rotating reference frames in the dq analysis. However, in the rotor
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reference frame, since two pairs of stator fictitious windings (d and q) along
with another pair of fictitious rotor windings are rotating at the speed of the
rotor, no relative motion exists between these windings, thus the time-
varying mutual inductances can be eliminated.

This Chapter discusses the use of dq analysis techniques to model the
BDFM and its parameters in the rotor reference frame. Following the
introduction, a preview of the dq modeling for the BDFM is given in 4.1
and in 4.2 the transformation matrices employed to develop the two-axis
model are derived based on a generalized orthogonal transformation
matrix. The development of the two-axis model is presented in section
4.3, followed by the equivalent circuits and the derivation of the torque
equation in the dq domain in sections 4.4 and 4.5. Finally, the two-axis

model parameters of an experimental machine are computed in 4.6.

4.1 Preview of the dq Modeling of the BDFM

As presented in the early Chapters, the process of developing the two-
axis model started with a common winding structure. By assuming that
the direct coupling between the two stator windings is negligible, the
original stator common winding structure has been separated into two
independent 3-¢ winding systems with different pole numbers. Then,
Park's transformations can be applied to transform them into two
independent orthogonal sets, namely d and q plus a zero sequence if
unbalanced excitation is considered.

More discussions are needed for the rotor transformation. From the
basic rotor structure, it is known that there are 4 nests each of 6 loops for a
total of 24 rotor loops, which might suggest that 24 rotor states could be

needed to represent the rotor. However, due to the special structure of the
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Fig. 4-1 The BDFM rotor loops represented in d-q domain

rotor, it is understood that the currents in one nest should all be in phase
and 90° out of phase with respect to those in the adjacent nest in this 4 nest
BDFM rotor structure. In addition, since currents in one nest are 180° out
of phase with those in every other nest, the 24 rotor currents are highly
linearly related. The minimum order of states can be shown to be two for
this 6- and 2-pole machine.

To define the proper rotor states, we consider again Fig. 2-4 in Chapter 2.
From this representation, each of the loop subsystems could be
individually resolved into effective equivalent d-axis and g-axis coils as can

be shown in Fig. 4-1 in which the two axes are uncoupled. For the
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experimental machine, there are twelve loops on each axis (only three are
illustrated) and can be summed into a mathematical equivalent system as
illustrated in Fig. 4-2. This process is equivalent to adding the twelve loop
currents together, that is, we can define
igr = kK Qini- i) and i =k (Y ini- Y i)
i i i i

where k is a non-negative constant and the sum operates on all loops in
one nest, i.e. i=Z,Y,X,W,V,U.

The two transformed stator systems are also shown in Fig. 4-2. It turns
out that both the stator and the rotor transformations can be incorporated
into one transformation matrix, details of which will be presented in the

following sections.

d6é

d2

dr

Fig. 4-2 The 6- and 2-pole BDFM in the dq domain
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4.2 Transformation Matrices
The generalized transformation matrix [20] used to derive the dq model

is given in (4-1).

B cosE(-) cosB(O-\y) cosP-(6-2\|I) cosg[e-(n-l)\y] ]

C, = 2 sm}ze smE(G -y) smE(6 -2y) ... s1n2[9-(n-1)\|/] (4-1)
n

NENE AT AT

where P is the pole number, n denotes the number of stator windings or

rotor loops and y represents the angle between adjacent stator windings or

rotor loops.

Notice that C; is, in general, a rectangular matrix. However, it is easy to

show that the orthogonal property of (4-1) is still fulfilled, that is

+ At ty1_ At
Cg = Cg (Cg Cg ) = Cg (4-2)

where C; and C; denote pseudo-inverse and transpose of C, respectively.

It will be shown in the later Sections that orthogonality of (4-1) plays an
essential role in the d-q model derivation, particularly in the rotor variable
transformation process.

Both the stator and rotor transformations are obtained by properly

assigning the parameters, n, P and y in (4-1) as explained in detail below.

(1) 6-pole stator transformation matrix Cg

Let P=6, n=3, y=40° and 8=0; ( rotor reference frame ). (4-1) becomes
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cos30, cos(36,-120°) cos(36,+120°)
sin36, sin(36,-120°) sm(39,+120)

(2) 2-pole stator transformation matrix C,
LetP=2,n=3,y=120"and 6 = (6; - 40"), we get
cos[6,40°] cos[(6,- 40°) -120°] cos[(6,40") +120°]
sin[0,- 40°] sin[(6,- 40°) -120°] sin[(8,- 40°) +120°) @)

IV TN T

(4-3) and (4-4) are easily recognized as the modified Park's transformations

applied to the BDFM system of equations.
(3) 6-pole rotor transformation matrix C¢

Transformation matrix C,¢ is defined as 2 by 24 matrix which can be
partitioned as

t
Ce=[Cyz Cor Cex Cow Gev Geu ! (4-5)

Notice that the zero sequence disappears because of the special structure of
the cage rotor. It is also noted that since the 24 rotor loops are grouped into
4 nests and the winding axis of all the loops in the same nest coincide in
the same direction, C;, i = ZYXW,V,U are all identical.

Assign P = 6,n =24 and y =90, then each of the submatrices of C, can

be expressed as

cos30 cos3(8-90°) cos3(6-180°) cos3(6-270°)
Crei= \/ '212; [ ) ( ) ] (4-6)

sin30 sin3(6-90°) sin3(6-180") sin3(8-270")

in the rotor reference frame, which implies that 6 =0, C; becomes
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SN

(4) 2-pole rotor transformation matrix C,,
The rotor transformation C,, is obtained by setting P = 2, y = 90°and n =

24. Like the previous case C,,;, i=Z,YXW,V,U, are all equal

t
Co=[Caz Coy Gx Cow Cov Gou | (4-8)

Each of the submatrices is

(4-9)

[z [ cosO cos(9-90°) cos(6-180°) cos(6—270°)]
Ci= N2 sin® sin(6-90°) sin(6-180°) sin(8-270°)

in the rotor reference frame, (4-9) becomes

ca-AE[107] -

The Transformation matrices developed will be used to derive the d-q

model in the following sections.

4.3 Two-Axis Model Development

From (2-1) of Chapter 2, it is known that

0 ZsZ ZsZr i

4-11
Z's: Z' z 2 et
sbr s2r r 1

Vo | =

A3 I:Zs6 0 Zs6r:| iy

V.

r

In order to derive the d-q model equations in a more rigorous manner,
it is assumed that the rotor loop voltages and currents can be decomposed
into

Vr =V + Vr2 (4-12)

ir = ir6 + ir2 (4-13)
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where v, ,v,, and iy, i, can be thought of as being the voltage or the
current components induced from the 6-pole and the 2-pole stator systems,

respectively.

Equation (4-11) thus becomes

Vse Zy 0 Zyr Zg i
Vo 0 Zy Zgr Zy isz
vie || Z% 0 Z 0 || e @19
Vr2 0 Z tsZr 0 Z: 12
or more concisely,
v=Zi=(+pLl)i=ri+pi (4-15)
where
r=diag(ry 1, 1, 1,) (4-16)
Ls 0 Lsgr Leor iss
) 0 Lo Lor Lor || i
7\. =L1= Lts6r 0 Lr 0 ir6 (4'17)
0 L'y 0 L, i
qdo variables are related with machine variables by
quo =Cr Ormachine (4-18)

t gt at 4t 7t t t t t t
where Qmachine = [ 0'ss 0's2 s P21 and Eoqo = [&'qa06 §'qdo2 &'qdrs & qar2 ]
denote machine and d-q domain variables such as voltages, currents,
flux linkages that are associated with proper stator or rotor circuits. Cy is

the overall transformation defined such that

C; = diag(Cys Cyy Cs Crz) (4-19)

Applying C; to (4-15) and observing that

t t

Ch=C(C,Ch) = C; =diag(Cly C, G C) (4-20)

leads to
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Vgdo = CrT Crigdo + Cp(Cr Mgdo + P Agdo 4-21)

Expanding (4-21), we can obtain the following dq model equation expressed
in the rotor reference frame, in which each element in the equation is

understood as a matrix of proper order.

L0 0 0 ) Madog
v o
ool H KL SRR el IR [
Vaars || 0 0GerGe O iqars +{h(m’)+pI}Lde @22)
t .
Vqdr2 0 0 0 Cor,C,, 1gdr2 )\_q dr2
where I is an identity matrix and
Cep(Cyq) 0 00
t
h(®,) = Crp(Cy) = 0 Gop(Gy) 00 (4-23)
0 0 00
0 0 00
In the d-q domain, (4-17) becomes
lqdo = quo iqdo = (CT L C'tr ) iqdo (4-24)

or more precisely,

lrlqdos_l CylseCos 0 CletiC CuglssiC oy igdos

t t t 3
Agdo2 - 0 CaloCo ColsarCr ColsaCy 1qdo2 (4-25)
A-qdr6 C,ﬁLtsérCtsé 0 Cr6LrCtr6 0 qurG
)‘qurZ 0 Crthsertsz 0 CrZLrCtrZ 1qdr2

Computation of each of the submatrices in (4-22), (4-23) and (4-25) is now

in order. Denote C,= Cyp(Cs) and Cp= C,,p(Csy) , then in (4-23),
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sin30y sin(30,-120°) sin(36,+120°)

NENTOAT

010
= 30, [-1 0 0] (4-26)
000

-sin(36,-120°) cos(36,-120°) 0

—sin(39r+120°) COS(391-+120°) 0

lrcos39r 0s(36,-120°) cos(3(-)r+120°) _l
t .2
Ca=Cs6p(C56)=§ O |:

-sin36; cos36, 0 }

sinay sin(op-120°) sin(or+120°)

FE R

010
= (Dr ['l 0 0} (4'27)

000

-sin(ar-120°) cos(a,-—120°) 0

~sin(or+120°) cos(ar+120%) 0

I— cosoy cos(o-120") cos(a,-+120°)-|
t 2
Co = Cop(Cyo) =3 O |:

-sinoy coso,. O :|

where o, = (8, - 40")

To compute other submatrices in (4-22) and (4-25), we substitute (4-24)
back into (4-21) and combine the first and the third terms so that two
impedance matrices, defined as Z'qdo and Z"gqdo in the dq domain, are

formed. In doing this, (4-21) becomes

Vado = Z'qdo igdo + Z"qdo igdo = Zqdo iqdo (4-28)
In (4-28)
CyeZsCos 0 CZos:Crs CosZoerCrr |
' 0 CoZoCo CaaZenCrs CerZnCor
Zoto™ CreZ 56:Co 0 CZCe 0 e
0 GZaCh 0 GZGy

with Zg =1+ Lyp, Z,=1, + Lop, Z, =1, +L,p and
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t t t
CaCe6lssCss 0 CaColserCre  CaColserCrr
t t t
0 GCLlCor GColnCrs CoCooLlenrCho (4-30)
0 0 0 0 J
0 0 0 0

In (4-29), C Z C;6 and Cg Z, C:z are 3 by 3 diagonal matrices which are

expressed as

[1¢+(Lig+Lem-M)P 0
qu% = 0 r6+(L16+L6m-M)p
i 0 0
also
i I+ (L12+L2m-M')p 0
quoZ = 8 r 2+(L12+(1;2m'M')p

Assuming sinusoidal distribution of stator windings yields

Lgn=-2M, Ly =-2M

(4-31)

4-32)

(4-33)

where Ljg = L+ 2M , Lj; =L, + 2M' are defined as the leakage inductances

of the 6 and the 2-pole systems, respectively.

Other submatrices in (4-29) are computed as follows

t t
Cs6Zs6Cr6 = 2, Cs6Zsri Croi
i

= (X Myri ) Cos [ 361)] Crz
i

10
-/ zM%ﬁ>p[gg}
1

t t
CZpCrp =Y, CopZpi C o
i

(4-34)
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= (X Man) Co 860 Czz
i
- -10
= (\/ 5 > M) P [ 8 3 } (4-35)
i
Cs Zs6rC:2 = Z Cs6Zssr C'tr2i
1
= (3 Mygri) Csp [ (36r)] Cz
i
10
= ( \] _; > Myi) P [0 -1 } (4-36)
" 00
CooZ i, Cro = z CosZeor Crsi
1
= (¥ Man) Co[ 80 Cez
i
-10
=(\3 ZMan)p [ 0 '1} @-37)
" 00
on the rotor side, define Z 416 = Tgqr6 + Lqarsp and Zgar2 =rgqrp + Lgar2p then
Zgars = CeZ,Crs = 2. Y CiZ; Cl (4-38)
] i
Zgar= Gy Z,Cpy = 2 Y CiZy Cly (4-39)
] i

where i, j = Z,YX,W,V,U

It is easy to show that

qur6 = qurZ = qur (4-40)
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(4-38) and (4-39) suggest that calculation of Zg4, could be done in terms of
each of the submatrices of Z_, { Zij }. The resultant transformed matrix is
obtained by summing up each individual transformed submatrices as

explained as follows

(1) for i=j, i=Z,Y,X,W,V,U

- -
C1 2 +(Ls; +M;)p) 0
Z CaiZiiCri= | 1 (4-41)
i 0 Z[rii +(Ly; +My)p]
- 1 -
(2) for i¥j, i, j=2,Y,X,W,V,U
. 1 z Z [rij +(Mij +M'ij)p] 0
2.2 CuZiChi==| J i
- L 6
] 1 0 Z Z [I'i" +(Mii +M'ij)p]
. joi -
(4-42)
Tgr+LoP 0
Let Zoar =[ art o rd,+Ldrp] (4-43)
1
then Tqr =Tar =T = ¢ [ zl’ I; +§ ; rj; ] (4-44)
qu’ = Ldl‘ = Ldr = % [ z (Li+Mii) + 2 z (Mij'f'M'ij) ] (4'45)
i 5T

(4-44) and (4-45) give two explicit expressions for evaluation of rotor d-q
model parameters given the actual parameters based on the machine

geometry.
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Finally, C, Zts(,, Cts6 and C,, ZZZ, Ctsz in (4-29) are the transpose of
Cog Zog, C:G and Cy, Z,, C:z , respectively.

Computation of submatrices in (4-30) is considered next. It is easy to

verify the following

0 (L16+L6m-M) 0
CaCy6 LyeCy = 30 | ~(LigtLom™™) 0 0 (4-46)
0 0 0
0 (L12+L2m'M') 0
CoCyLoCly= | -(LptlomM) 0 0 (4-47)
0 0 0
-0 M
CaCy6 LygrCrg = 30 '1(‘)46 8 } (4-48)
-0 M
CaCo Log:Cpp = 300 | M 0 } (4-49)
L 0 O
0 M
CoCip L Cp = 0r "32 8 } (4-50)
0 -Mp
CoCep LpeCrg = 0 1‘32 g } (4-51)

where in (4-48) through (4-51)
1
Mg =\ / > 2 M (4-52)
i
also M = '\/—; > Mo (4-53)
i
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(4-54) shows the complete form of the d-q model derived by assembling all
the submatrices into one matrix equation.

In the above model development process, (4-29) together with (4-30) are
derived by introducing rotor auxiliary variables. The final form of the
equation is obtained by eliminating the two extra states in the rotor circuit.
In order to do this, constraints of the rotor states must be derived. From

vV, =V, +V,,, it follows that

t t
V=V + VD = Cr6 Vqdré + Crz qurz =0 (4-55)

(4-55) expresses 24 equations. The expanded form of (4-55) is

-1 0 -1 0 B g ]
01 0 -1 0
-10 -10
v v 0
o [ q’6] 01 [ q‘2]= )
Vr Vdré Vdr2 . (4-56)

which suggests that only the following two equations are linearly inde-

pendent
Varé + Vqr2 = Vgr =0 4-57)

Similarly, two linearly independent conditions for currents can also be

derived from i=1iy+ip,
iqn6 + iql'2 = iqr (4'59)

and idr6 - iqrz = idr (4‘60)

Using these conditions, we are able to combine the four rotor side

equations of (4-54) into two independent equations by adding the first and



q6
Vde
Voo
q2
Vaz
Vo2
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Vdr
qr2
Vdr2
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3L, rg+Lyp O
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o

o 0 0 0  Mgp 3M@, Mgp
0 0 0 -3Mg, Mgp -3Mgo,
rgtlgp O 0 0 0 0 0
0 1mtlop Low 0 -Myp Myw, -Myp
0 Looy ntlop 0 Mo, Mp Mo,
0 0 0 rtlpp O 0 0
0 o0 0 0 r+lp 0O 0
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0
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igr

(4-54)

19



62

the third equations and subtracting the second from the fourth equation.

Eqgn. (4-61) gives the final form of the d-q model.

vq6 r6+L56P 3[‘560')1‘ 0 0 0 0 M6P 3M6(‘0r
Vdsé -31_.56(,01. r6+Ls6p 0 0 0 0 '3M6('or M6P
Vo 0 0 retLgp O 0 0 o 0
vl =| 0 0 0 r+lyp Lo, 0 -Mp Myo,
Va2 0 0 0 'LSZmr r2"'1-‘521:) 0 MZO)r sz
Vo2 0 0 0 0 0 I'2+L12p 0 0
Var M¢p 0 0 -M,p 0 0 r+Lp O
Vdr 0 Mgp O 0 Mp 0 0 r+Lp

142
152
Yqr
14r

(4-61)

4.4 An Alternative Form of the Two-axis Model and Equivalent Circuits

An alternative expression of the two-axis model can easily be obtained

by combining the speed voltage terms of (4-61). It follows that

Vg6 = (Tg + LsgP) ige + 300rAge + Mgpig,
Vae = (16 + LsgP) ige - 300Age + Mepig;
Vos = (16 + LigP) iog

Vg2 = (ry + Lyop) iq2 + 0Ag - sziqr
vy = (rz + Lyp) igz - Ay + Mopiy,
Vop = (12 + Lpp) inp

Vgr = Mgpige- Mgpigy + (ry + L;p) iy,
Var= Mgpige + Mgpiga + (r; + Lyp) ig;

where g6 = Lesiqe + Mg i

Ade = Legiae + Mg igr

(4-62)
(4-63)
(4-64)
(4-65)
(4-66)
(4-67)
(4-68)
(4-69)

(4-70)

(4-71)
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qu = Lsziqz - M2 iqr (4-72)
Mgz =Lgigy + My ig; (4-73)

The above two-axis model suggests the equivalent circuits as shown in

Fig. 4-3.
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+ - / 6\
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o
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[ ]
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(o -0
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rp WrAgz Ly Mﬁj’o /
J— L PP M2

Fig. 4-3 Two-axis model equivalent circuits of the BDFM



4.5 The Torque Equation in the dq Domain
The torque equation in the d-q domain may also readily be derived

from energy considerations.

d .
From Te = (C'yigaos) [ 20, (Ze) 1€ igar (4-74)
r
C, 0 igdos
where ct=| % ]; i =[.q };
s L 0 CsZ 1qdos lqdoZ
7 _FZS&. Zs6r:| Ct_[ctlﬁ 0 ] . : iqdr6
L Zoyr Zepe I Lo Ctr2  Tade iqdrz

it follows that
el 1C i s i [ 1Ci
Te =lqa0s Cs L 55 (Zosr) | Cirglaars +Iqaea Ca | 397 (Zsar) | Crglgare +
r r

. d . . d .
lqdo() Cts6 [ a? ( Zs6r) ] Ctrz lqer + lqd02 Ctsz [ a? ( ZsZr) ] Ctrz lqdr2 (4-75)
T r
Simplifying (4-75) results in

. 9 L 0
T, = ( 2 Mg6ri ) { lgdos Ctsé [ 5_6_1.{ (39,) ] Ctxﬁz ladre + 1ydo2 Ctsz [ a_erg (er) ]
1

. . 0 . .
Ctr62 lqdr6 + 1qd06 Ctsé [ 'a'a’ f (391.) ] CtrZZ lqdrz + lqdoz Ctsz
r
d
[ £ g(er) ] Ctrzz iqdr?. } (4-76)
T

where the matrix functions [f (36, )] and [g(0,)] are given in (2-6) and (2-7)
in Chapter 2.
The four terms in (4-76), denoted as Tege, Te2s, Teg2 and Tepn , can be

verified to be of the following
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Tess = 3Mg (igq iare - iag igrs) 4-77)
Tepe= Mo (g iars + iap igrs) (4-78)
Tes2 = 3Mg (-igq iar2 - ige igra) (4-79)
Tegr= My (igy igrn + igigra) (4-80)

Using rotor current constraints (4-59) and (4-60 ), it is easy to verify that the

torque equation is of the form
Te = Te6 + Tez = 3M6(iq6 idr - id6 iqr )+ Mz(iqz idr + id2 iqr ) (4-81)

where T, ,T,s and T,; stand for the total, 6-pole and 2-pole torques,
respectively. Mgy and M, , defined in (4-52) and (4-53), are the resulting
mutual inductances between the 6-pole and the 2-pole systems and the

rotor circuit in the d-q domain, respectively.

4.6 Two-Axis Model Parameters for an Experimental BDFM

Two-axis model parameters can be easily identified based on the work
presented in Chapter 3 and the rules of the transformation process. In the
two-axis model derivation process, the necessary formulas for computation
of these parameters have already been developed. A list of these
expressions is provided based on which the two-axis model parameters

are computed.

(1) 6- and 2-pole stator system parameters

rq6+Lq6p 0 0
Zogos=| 0 Taetlap O (4-82)
0 0 retLlogp
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I'gt+ (Ll6+L Am'M)p 0 0
= 0 r6+(Ll6+LAm-M)p 0 (4‘83)
0 0 rg+Ligp

Fromr, =0.807 Q,L, = Lig + Loy =0.0684 Hand M = -0.0255 H, it

follows that

0.807+0.0939p 0 0
Zq do6 = |: 0 0.807+0.0939p 0 ] (4-84)
0 0 0.807+0.0174p
also
Iq2+Lgop 0 0
quoz = 0 rd2+Ld2p 0 (4’85)
0 0 roo+Loop
r2+(L12+L2m-M')p 0 0
= 0 rg+(Lip+Lypy-M)p O (4-86)
0 0 ry+Lpp

From 1, = 0.807 Q , L, = L + Ly, = 0.4179 H and M' = -0.2004 H, we

also have
0.807+0.6183p 0 0
Zq dop = [ 0 0.807+0.6183p 0 :l (4-87)
0 0 0.807+0.0171p

where in (4-84) and (4-87), Lig= Lo +2M, Ly =L, +2M'

(2) 6- and 2-pole stator phase and rotor mutual inductances

Using the data in Table II in Chapter 3 yields

Mg = / 5 3 My =0.001075 H (4-88)
i
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also Mo =\ /—; Y Mgy = 0.00483 H (4-89)
i

(3) Rotor parameters

IqtLgep O
_| qr ar
From Zygr —[ 0 r, +Ldrp} (4-90)
1
where Tgr =Tgr =Tr= 6[ E ; + E Z r; ] (4-91)
i joi

1
Lo =Lg =L, = gl 2 (Li+Mj) + Z 2 MMy ] (4-92)
1 }] 1

the rotor circuit parameters can be computed using the data given

in Section 3.4 in Chapter 3 as

Tgr =Tar =Tp =327.5uQ

and Ly =Lgr=L; =417 uH
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5. MODEL VERIFICATION - DYNAMIC SIMULATION RESULTS

Following the development of the d-q model, a computer program was
written to simulate the dynamics of an experimental machine. The model
equations were implemented on an HP 9000/360 workstation and inte-
grated numerically using a 4th order Runge-Kutta algorithm. Simulation
was carried out for the singly-fed and the doubly-fed modes of operation on
a transient basis. Comparison of the results predicted by the d-q model and
available test data was made. Some of the simulation results and test data

are presented and discussed in the following sections.

5.1 The Two-Axis Model in the State Variable Form
Eqgn. (5-1) is the concise form of the two-axis model Eqn. (4-61) with
Zero sequences omitted.

Vad = Zgd igg (5-1)

By separating the coefficients of the equation into two groups comprising

those that contain the operator p and those that do not, we obtain

qu = zqd iqd = [ R(C")r) + qu P ] iqd = R(mr) iqd + qu p(iqd) (5'2)

and hence
Pliga)=-L7 (g R(®) igg + L7 g Vg (5-3)

where in Eqn. (5-3) the state vector iy and the control (input) vector vgy

are defined as
t
Vqd = [Vq6 Vde Vq2 Vd2 Vgr Varl

iga=lige a6 g iz igr igr]

respectively.



-
Lg¢ O 0
0 L 0
Lag={ 0 0 |
0 0 0
Mg 0 M,
0 Mg 0
1 93 3LS60)1‘ 0 0
BLgw, 1, O 0
R(w,) = 0 0 r, Lo,
0 0 -Low 1
0 0 0 0
0 0 0 0

The mechanical equations are given by

p,) = o

Jp(w,) = Te- Ty - koo,

with

where k4 is the damping coefficient and J is the inertia.

Te =3Mq ( iq6 iar - 146 iqr) + M, ( iq2 lar + a2 iqr )
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0
Mg
0 (5-4)
M,
-0
L,
Mg,
0
Mz(l)r (5’5)
0
0
r!'
(5-6)
(5-7)
(5-8)

Eqn. (5-3), together with Eqns (5-6), (5-7) and (5-8) describe fully the dynamic

behavior of the BDFM system. Without loss of generality, the initial condi-

tion for the states, iqd , can be assumed to be zero.

5.2 Input Voltages to the BDFM

In addition to the assumptions made in Chapter 2, it is further assumed

in the simulation that the 6-pole and the converter output voltage (the 2-

pole system input voltage ) are balanced three phase sinusoidal voltage

sources and harmonics are neglected.
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In the d-q domain, the input voltages are obtained from the two stator

transformations Cg, C,,. In particular, with three-phase balanced excitation,

Va6 = '\[g— Vi cos(wgt-36,+0) (5-9)
Vg =- '\/g_ Vi sin(wgt-30,+0g) (5-10)
Vg2 = \/-%_ V, cos(m,t+8,-40°+¢,) (5-11)
Vgo = '\/_%_ V, sin(w,t+6,-40°+¢,) (5-12)
and Vor =Vgr =0 (5-13)

where ¢ and o, represent the frequencies of the 60Hz power supply and
the power converter, respectively. 8, is the rotor angle with respect to the
6-pole stator reference axis in mechanical degrees. ¢g4, ¢, are the initial
angles and V¢, V, are the peak phase voltages of the two independent
voltage sources.

Equations (5-9) through (5-13) give a general form of inputs and should
be modified to reflect a particular type of operation. For example, for the

singly-fed induction mode with short-circuited 2-pole winding,
qu =V4qo = 0 (5'14)

In doubly-fed steady state operations, since 0, = w;t the d-q input voltages

will have rotor slip frequencies defined by:

0 - 30 = 510 (5-15)
and W)+ = % (5-16)

where s, and s, are the 6 and the 2-pole rotor slips, respectively.
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Particularly, in synchronous operation when the two rotor frequencies are
the same, it follows that

g - 30, = ) + O, (5-17)

or @ = m"—;mz— (5-18)
Thus the rotor mechanical radian frequency under the synchronous mode
of operation is completely determined by the frequency of the converter

output.

5.3 Dynamic Simulations of the BDFM

5.3.1 Singly-Fed Induction Mode of Operation

To be consistent with the laboratory testing procedure, in the computer
simulation, the 6-pole stator set, ABC, is connected directly to the 60Hz
power supply and the 2-pole terminals, abc, are short circuited.
Consequently, vg5=v4,=0.

The predicted stator and rotor q axis currents during free acceleration
are plotted in Fig. 5-1. Similar to a conventional 6-pole induction motor
run up, substantially high but decaying currents can be seen before the
machine enters steady state operation in which both the 2-pole and the
rotor currents go close to zero and the 6-pole current approaches a constant
value. Figs 5-2(a) and 5-2(c) show the predicted 6-pole and 2-pole line
currents i, and i, during the start-up period. It is seen that the currents
decay as the speed of the machine increases but pick up again due to the
increasing interactions between the two systems around 900 r/min. The
frequency of the 2-pole winding current is seen to decrease to dc close to 900

r/min, increasing again above 900 r/min before the current magnitude



6-pole igs(A)

2-pole ig(A)

80
70 —
60 —
50
40 —
30 —
20
10

_,o_l

—40 -1

-s50 o

40

30 —

20

10 —

—30 —f

W s

(AR

t(s)

Fig. 5-1 Run-up g-axis currents and rotor speed
(a) 6-pole i
(b) 2-pole iy,
(c) rotor ig

(d) rotor speed @,

72

Fig. 5-1 (continued)



73

Fig. 5-1 (continued)
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approaches zero at 1200 r/min. From the basic assumption that direct

coupling between the two stator systems is negligible, it is understood that

the 2-pole current i, is due solely to the coupling between the 2-pole system

and the rotor circuit.

The measured transient 6-pole and 2-pole line

currents are shown in Figs 5-2(b) and 5-2(d). Compared with Figs 5-2(a), 5-

2(c) it is seen that there exists good correlation between these currents. It is
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Fig. 5-2 Predicted and measured 6- and 2-pole line currents

(a) Predicted 6-pole line current (b) Measured 6-pole line current

(c) Predicted 2-pole line current (d) Measured 2-pole line current

Fig. 5-2 (continued)
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Fig. 5-2 (continued)
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noted that while correctly predicting the fundamental nature of the
machine currents, the reduced order model neglects the high order effects
which are present in the measured current waveforms.

Fig. 5-1(d) is a plot of speed vs time during free acceleration. The curve
resembles very closely that of an induction motor until 900 r/min when
the rate of change of speed suddenly decreases. This hesitation of speed

change reflects the effects of the short circuited 2-pole winding which acts
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upon the system to develop a significant net torque reduction in the region
of 900 r/min.

The starting torque-speed characteristic is also of great interest.
Simulation results are shown in Fig. 5-3. As would be expected, the BDFM
follows the torque-speed characteristic of an 8-pole induction motor
(which is the sum of the pole numbers of the two systems) when the speed
is less than 900 r/min. Beyond about 1000 r/min, the machine acts
roughly like a 6-pole induction motor, resulting in a double-hump torque-
speed characteristic (see [15]). Note that the total electrical torque,T,,
produced by the machine is composed of two components, T, and Ty
Te is produced by the 6-pole system while T, is due to the 2-pole system.
The interaction between the two torques and the two systems can be
clearly seen.

It was also found in laboratory and computer simulation that when the
starting load torque is relatively large the speed could be stabilized around
900 r/min, depending upon the loading conditions, instead of accelerating
through to the full speed (about 1200 r/min).

Free acceleration and steady state operation of the BDFM provides
insight into machine characteristics when compared with an induction
motor. In order to achieve desired open loop precise speed control for

ASD or VSG systems, synchronous operation is essential.

5.3.2 Synchronization and the Synchronous Mode of Operation

Synchronous operation can occur only when a synchronization process
has been successfully carried out. There are several methods to pull the
machine into synchronism [1]. Computer simulation was carried out to

study synchronization of the machine using dc and ac 2-pole excitation.
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Fig. 5-4 gives the typical simulation results using dc synchronization.
Initially, the machine is running steadily in the singly-fed induction mode
with 4 Nm load torque. Synchronization begins when a set of dc voltages
is applied to the initially short circuited 2-pole stator windings and slowly

ramped up to

Vv
> (5-19)

Van =V, Vpn=Ven =-
where V represents a voltage level that is appropriate for successful
synchronization.

This set of voltages is the limit case of a set of balanced, negative
sequence three phase voltages applied to the 2-pole stator system when
the frequency is approaching zero. It is seen from Fig. 5-5(a) that the
machine experiences a transient period before the speed settles down at 900
r/min. The oscillation depends largely on the mechanical characteristics
of the machine and the connected system. Fig. 5-5(b) shows the change of
waveforms of the 2-pole a-phase current during the transition. In the
single-fed induction mode of operation with load, i, is the induced current
due to the coupling between the 2-pole system and the rotor. When the
motor enters synchronous operation with dc applied on the 2-pole side, i,
is an electrically forced dc current.

Synchronization can also be achieved if a set of low frequency, negative
sequence ac voltages is applied to the 2-pole system terminals. In doing
that, the 2-pole frequency is slowly ramped up, as is the 2-pole voltage.
The voltage is applied in such a way that a constant volts/hertz ratio is
maintained. Proper excitation is essential since a low ratio would not
produce enough torque to bring the machine into synchronism while a

large ratio can generate too much disturbance and eventually take the
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machine into stall. Once the machine is running synchronously, the
applied voltage on the 2-pole side can be reduced to a substantially lower
level without losing synchronism. This is of practical importance in
certain applications since reducing the excitation voltage means reducing
the rating requirements of the power converter and hence its cost.

In steady state synchronous operation, the shaft speed can be

determined by the following expression

fe- £
P6+P2

shaft speed (r/min) = 60 (5-20)

where f and f, denote the 6-pole utility power supply frequency and the 2-
pole supply frequency from the power electronic converter, respectively.
P¢ and P, are the pole-pair numbers for the two systems.

Fig. 5-5 shows the synchronous and fault tolerant behavior of the BDFM
system. The following three situations are considered in the simulation:

(a) Machine response to a sudden reduction of 2-pole excitation

voltage.

(b) Machine response to a ramp and a step change of load torque.

(c) Machine response to a sudden loss of 2-pole excitation.

Initially, the motor is running synchronously at 870 r/min ( f,=2Hz )
with load torque equal to zero. At t=3.5 seconds the 2-pole excitation
voltage V, is step changed to 0.5V,. This sudden change of excitation
voltage results in lower 6 and 2-pole currents while the machine is still in
synchronous operation.

At t=5.0 seconds, load torque is ramped up from zero to 20 Nm. Similar
to conventional synchronous machines, the BDFM is seen to maintain

synchronous operation at the speed of 870 r/min.
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The machine response to a sudden change of load torque is illustrated
at t=6.5 seconds when the load torque is rapidly reduced from 20 Nm to 10
Nm. It is seen that after the electromagnetic and electromechanical
transients decay, synchronous operation is still retained.

Synchronism can be lost if a severe disturbance occurs. Fig. 5-5 also
shows the machine dynamics for a sudden loss of 2-pole excitation at
t=8.5 seconds when a short circuit is applied to the 2-pole terminals. An
advantage of the BDFM drive system is that a loss of synchronism does not
lead to a catastrophic situation and the machine can remain connected. As
a result, the drive system still operates in the singly-fed induction mode

and can be re-synchronized by application of appropriate 2-pole voltage and

frequency.
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6. STEADY STATE ANALYSIS OF THE BDFM

So far the two-axis model of the BDFM has been used to predict the
dynamic performance of the machine. The model may also be employed
for steady state analysis. In many situations, it is desirable to analyze the
machine in steady state conditions only. Hence, development of steady
state models for this purpose is important.

In previous studies [3,6,7,8], steady state models were derived based on
the two machine equivalence assumption and cascade connection of two
induction motors were often used to analyze the machine performance.
The advantage of this approach is that the machine parameters may be
easily obtained using standard testing techniques. Although this approach
is valid for performance evaluation of the system, the parameters used for
the investigation do not necessarily represent those of a true BDFM. The
results obtained may not be valid for machine and drive system design.

In this Chapter, steady state equivalent circuits are developed rigorously
from the d-q representation. Since the parameters of the dq model relate
directly to the true machine parameters, the direct relation between the
machine performance and machine parameters is also established. It can
be shown that these models improve on traditionally used equivalents by
providing all possible modes of operation and relating the machine steady
state performance with machine parameters. Although the circuits are
derived in the dq domain, they can be transformed back to machine
variables easily if necessary. Since the BDFM exhibits several modes of
operation, more than one steady state equivalent circuit needs to be

derived.



The development of the steady state models makes it possible to
investigate steady state performance of the BDFM. However, it will be
shown that certain operational modes of the machine require a special

solution technique, which is also developed in this Chapter.

6.1 Steady State Models in the dq Domain
6. 1.1 The Synchronous Mode of Operation
The stator d-q variables are related with physical variables through the

transformations Ci and C;;. In steady state operations, where 8,=w.t, Eqns

(5-9) through (5-12) thus become

Ves= 3 Ve cosl(e-3ap)] 6-1)
Vd6 =-'\’§- Vi sin [(wg - 30)t] (6-2)
Vo2 = \/3 V, cosl(e,+a)t-Bl (6-3)
Vap = \/g V, sin((@t@)t-Bl (6-4)

with ¢¢ =0 and P being the angle between the reference voltage Vgeand vy, .

In phasor representations, (6-1) through (6-4) can be written as

. » . - - _‘B - . .

Vs =Vas , Vas= Vg, Vg2 = Vqa €', Voo =- jVo (6-5)
also Id6 = qu6 ’, Id2 =- quz , Idr = qur (6-6)
where V¢ = g Vgand Vg = % V, are the rms voltages of the qd variables.

In the d-q domain, all the d-q quantities have the same slip frequency
s1wg = (Wg-3w,)=(w, +0,). Thus, replacing the differentiation operator p with
jlwg-3w,) or j(w,+m,) and expanding the first equation of the two axis

model representation (4-61), we obtain
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\"q6= [r6+j(m6'3mr)l-‘s6] Iq6+3L56(or id6 +3Mgw; Iy + j((o6'3mr) Ms Iqr

using (6-6) yields
Vo= (T + ) Xe6) Iog + j X Loy 6-7)

For the 2-pole side, expanding the third equation of (4-61) yields

qu = [ 1y +j(w, + )L 1 Igp + Lo Iga - jlooy + ;) My I + Moo, I,

—[r2+( )]stl qu (—)]me Iqr (6-8)
. . 107) . Wg - 3(’)1'
Define the total slip s =s;s,=— , with s; = ands, =——
g g W + O,

being the 6-pole to rotor and 2-pole to rotor slips, respectively.

hence, ) ) i
qu =(ry +sjXg) Iq2 -5 j Xm2 Iqr (6-9)
\.792 T2 . L :

or S =(? +]X52)Iq2-)xm21qr, fors #0 (6-10)

For the rotor side, the fifth equation of (4-61) is expanded.

Var = j(0g - 30)Mg iq6 - j(wg - 30 )M, iq2+ [r, + j(wg - 30)L,] iq,

Simplifying the above expression yields

Var _

5= Xme 1q6 i Xo qu + ( T*i%) Iq, 6-11)
where in equations (6-7) through (6-11), Xy = 0¢Lgg, Xop = WgLgo, Xing = W Mg,
Xm =0gMyand X, = oL, .

An equivalent circuit based on Eqns (6-7), (6-10) and (6-11) is given in

Fig. 6-1(a). For dc excitation on the 2-pole terminals, which implies that

s=0, Eqn. (6-9) becomes ) )
qu =TI qu_ (6-12)
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Fig. 6-1 Steady state equivalent circuits for synchronous operation
(a) ac excitation on the 2-pole system

(b) dc excitation on the 2-pole system
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The equivalent circuit for this operating condition is shown in Fig. 6-1(b)
from which it is seen that the 2-pole stator system becomes purely resistive.

6.1.2 Singly-Fed Induction Mode of Operation with 2-pole System
Short-Circuited

A steady state equivalent circuit for the singly-fed induction mode of

operation with 2-pole system short circuited may also be derived using

similar techniques to those shown above. It is easy to verify the following

equations:
\.’q6= ( Iy + ] XSG) iq6 +j Xm6 iqr (6-13)
0=(rp+ 5 Xep) Tgp-5) X I (6-14)
r . .
or 0= (5 +jX) Igp - j Xma Igps for s £0 (6-15)
Var o i o x L T
2 = X Lo - Xma Lo + (57 +1 %) I (6-16)

It can be shown that in singly-fed induction mode of operation with
2-pole side short circuited, the relation (wg- 30,) = (0, + ®,) still holds.
However, it must be understood that o, is the induced frequency. From the
above expression, it follows that

g - 40,
0y

s= %6- = (6-17)

From equations (6-13), (6-14) and (6-16), an equivalent circuit can be
obtained by short circuiting the 2-pole input terminals in Fig. 6-1(a) for 2-
pole ac excitation. A special case is when the machine is running at 900
r/min. Since s=0 and iqz = 0, (6-14) vanishes, which means that at this

speed there are no effects from the short circuited 2-pole winding on the
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system. The equivalent circuit in this case is the same as that of a
conventional induction motor.

The equivalent circuit expressed in terms of d axis variables can also be
readily obtained. For the synchronous mode of operation, upon substi-

tuting (6-5) and (6-6) into equations (6-7),(6-9) and (6-11), we obtain

Vae= (16 +j Xs6) Iy + J Xme idr (6-18)
de =(r; +sjX;3) Iyp +5 J Xm2 Lar (6-19)
Voo 1 - :

S =(S +)st)1d2+]XmZId2, fors #0 (6-20)
Var oy v oy i T oy

sy = 1 Xmelae +J Xma2Lap + (5~ +j X0 ) Tar (6-21)

These equations can be shown to be equally valid for describing the steady
state behavior of the BDFM under the synchronous mode of operation.
Since d and q variables are linearly dependent in steady state operation,
only one set of equations need be used.

It is important to note the advantage of deriving steady state equivalent
circuits for the singly-fed induction mode and the doubly-fed synchronous
mode of operation from the d-q domain in which all the quantities ha{Ie
the same rotor slip frequency which depends on the speed of the machine.
Research is now underway to apply these steady state models expressed in

both dq and machine variables for machine and control designs.

6.2 Steady State Models in Machine Variables
Steady State models or equivalent circuits expressed in actual machine
variables, which are useful for correlating test data and deriving machine

parameters from tests, may be obtained from dq domain models or
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equivalent circuits. It is noticed that in Eqns (6-7), (6-10) and (6-11) the
frequency of the phasors is

O = W - 30, = 0 + O, (6-22)

It is thus appropriate to write (6-7), (6-10) and (6-13) in the following form

Vq6 Te+ jxs6 0 jxm6 Iq6
\./ . n . . ’V -I iw...t
2SOt o0 T Xe Kmz [T It (623)

T
I_ 0 _I |_ Xme - Xm2 é"'jer Iqr

In order to derive steady state equations in machine variables, frequency

J(@g-wpg)t

conversion is needed. Multiplying the above equation by e and

also noting that

\./q6 = \, ’;' \.,A ’ \./qz = \’ —g \.Ia (6"24)
, 3 . 3
Iq6 = \l _2 IA ’ IqZ = \l —2 Ia (6'25 )

after the frequency conversion, we have
Va Ig+jXse 0 JXme

Ix
. . [ -‘
0 S +Xs2 Xm2 I (6-26)

a

Vaf _
s - [ J
. . I . -
I_ 0 _l L ]Xm6 ']XmZ S_1 + ]Xr_l Lar

T 2 . 3 " : " :
where I, = '\’ 3 Iqr is the "equivalent rotor a-phase” current resulting
from a linear combination of physical rotor loop currents.

It is understood that in Eqn. (6-26) all the phasor quantities have the
frequency of 60Hz and (6-26) represents a per phase equivalent circuit for

the synchronous mode of operation of the BDFM. With proper
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modifications, (6-26) is also valid for singly-fed induction mode of

operation, i.e. Va = 0 for 2-pole terminals short circuited, and ia = 0 for

2-pole terminals open circuited.

6.3 The Torque Equation in Steady State Operational Conditions

Egn. (4-81) in Chapter 4 is the torque equation expressed in the dq
domain in which all the currents are instantaneous quantities. In steady
state operational conditions, these currents can be obtained by solving the
steady state equations developed above and represented by the following

set of sinusoidal functions

ige = V2 Lgg cos[ (@ - 3a; ) t - O ] (6-27)
ig6 = - V2 Lye sinl (% - 300, ) t - g ] (6-28)
ig2 = V2 Igp cosl (wp + 00 ) t- 0o ] (6-29)
igp = V2 Lgp sinl (@ + 0, ) t- ¢y ] (6-30)
igr = V2 Igr cosl (@ - 300, ) t - g ] (6-31)
igr = - V2 I sin[ (g - 30 ) t- ¢gr ] (6-32)

with Igg =146, Igp =142 and I, = I4, are the rms values of the currents and
®gs» 9q2, $qr are the phase angles of the currents with respect to the
reference voltage v .

Upon substitution of equations (6-27) through (6-32) into (4-81), the

following torque equation is derived

Te = T86 + Tez = 6M6 Iq6 Iqr sm( ¢qr - ¢q6 ) + 2M2 qu Iqr sm( (I)qr - ¢q2 ) (6'33)
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Eqn. (6-33) is valid for both synchronous mode and induction mode
(with 2-pole side short circuited) of operation. For induction mode with 2-
pole open circuited the second term vanishes, T, simply has a form of that
a conventional 6-pole induction motor. Torque expression (6-33) and
BDFM voltage equations will be used to obtain the steady state solutions in

the later sections.

6.4 Steady State Model Solutions

6.4.1 The Synchronous Mode of Operation

The solutions to the steady state equations, depending on voltage or
current control, motoring or generating , may be different. This thesis
discusses mainly the motoring operation of the system and as an example a
solution method for the voltage control scheme is given, which can be
modified easily to account for a current control scheme.

In motoring operation of the system, the load torque is usually given
and it can be shown that although the 6 and 2-pole input voltages are
given, the angle, B, between the reference voltage Vqs and qu is an
unknown function of both the load torque and the 2-pole excitation
voltage (or current). The solution of the steady state equations
characterized by (6-23) thus requires that they be solved simultaneously
with the torque equation (6-33). Before these equations are solved, complex

equations must be changed into real algebraic equations.
Denote Ve = Vaer + Va6 = Vger + 10 (6-34)
qu = Vqu + ]Vq21 = qu COSB - jqu sinB (6—35)

I=1 +iL (6-36)



92

where subscripts r and i represent real and imaginary parts of the phasor
quantities, respectively.

By substitution of the above relationships into the steady state equations
(6-7), (6-10) and (6-11) and separating the real parts from the imaginary

parts, the following set of nonlinear simultaneous equations are obtained

Te Iq6r - Xs6 Iq6i - Xmsé Iqri - Vq6r =0 (6-37)
Tg Lg6i + Xs6 Iggr + Ximg Igrr =0 (6-38)
2 1
s Lgzr- Xolg + XpoTgri- S Vo cosp=0 (6-39)
2 1 .
s lozn + Xs2lgor - Xmmp Ign + o Vo sinB =0 (6-40)
r,
- Xmé Iq61 + Xm2 I<:12r + qrr -X; an (6-41)
r

Xmé Iq6r - Xm2 Iq2i + s_l; Iqri + X Iqrr =0 (6-42)

6M; Iog I, sin(tg” E9—-tg )+2M2 Iz I, sin(tg” ij— 5 —‘*—)-TL(co,) 0

(6-43)
with Igg =4 [ Lo+ s Lop=~ | Lpr + Lo and Iy = A [ Ly + oy
Eqns (6-37) through (6-43) can be represented by
F(Y)=0 (6-44)

where Y = Ip¢r Logi Ioor Ippi Iger Igni [3]t is the unknown vector and

F=[£,(Y) £0Y) £500) £,0Y) £50Y) £0Y) £,0Y) 1! is the function vector

containing the seven scalar functions of (6-37) through (6-43).



93

Solution techniques for (6-44) are readily available and it was found that
Newton-Raphson's algorithm is adequate in founding the solution. Let i

be the iteration index,

Y(i) - Y(i-l) - AY(i-l) (6-45)
i 7) B e
then Y[ ] ¥ =127 (6-46)

ofmn

The entries of the Jacobian matrix, [ %—FY_] = {V
mn

}, m, n=1,2,..7. are

computed as follows:

It is noticed that four out of seven equations in (6-37) through (6-43) are
linear so that the Jacobian matrix entries for these equations are just the
circuit parameters themselves. Other entries of the Jacobian matrix are

given below without providing intermediate results

ofy . ofy 1

5E =3 Vg2 sinB, 3[3- =3 Vg cosp

of, . Lo ¥
— = ., T = s T =M, T > ,
Olger T Al T Blgor T Algy; an
2% o

- 6M6 Iq6i + 2M2I = ’6M6 Iq6r - 2M2 Iq2.r

2i s
anrr 4 anrl

©  which have to be

The initial values for the solution vector Y
reasonably close to the true solution, need to be given in order to start the
algorithm. To ensure good convergence to an acceptable solution, the
initial estimated values can be obtained by an appropriate initial guess for
B(°) , followed by solutions for the other unknowns using (6-23). So long as

B(°) is chosen to be close to the true solution, other initial values are also
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close to the solution. It was found that that for 230V 6-pole supply voltage

and moderate level of 2-pole excitation voltage, it is appropriate to assign

B =20°, for 0.5 < T, < 10 (Nm)
B =60°, for 10 < Ty < 20 (Nm)
B(O) =90°, for 20 < T, < 30 (Nm)

Depending on different 2-pole excitation voltage, the B values may be
adjusted so that fast convergence can be obtained.

Fig. 6-2 shows typical computational results of B angle for different
values of constant load torque operation of the BDFM drive system. A
constant V/Hz ratio of 5 is maintained over the entire speed range. Rapid
changes of B at low 2-pole frequencies or high speeds, which contribute to

the changes of circuit impedances due to slips (both s; and s), can be

observed. Atlow speeds, B can be seen remain fairly constant.

6.4.2 Singly-Fed Induction Mode of Operation

The synchronous mode of operation of the BDFM is a highly preferred
operational mode for ASD and VSG applications of the system. However,
as pointed out in Chapters 1 and 5, with the present state converter controls
it can not be realized unless a successful synchronization process has been
carried out from the induction mode. Two possible singly-fed induction
modes of operation exists with 2-pole terminals open and short circuited.
The former case is well known while the latter needs more discussion.

Solving for the steady state equations is a straightforward process. What
is of interest is the torque speed characteristics in this mode of operation. A
closed form solution to T, , which can be obtained by first solving (6-13)-

(6-16) for currents then substituting them into (6-33), is tedious and
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complicated thus will not be given. Numerical computation results are
presented and discussed below.

A typical torque speed characteristic is given in Fig. 6-3. It is clearly seen
that for a given load torque/speed characteristic, such as a constant load,
there might exist two possible stable operating points. There also exists a
region between two stable regions in which the motor can not operate
stablely. Conventional induction motors do not possess this feature.
Experimental and computer simulation results reveal, however, that it is
usually easier for the motor to be synchronized if the motor is running

around 900 r/min in the induction mode before synchronization begins.
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7. STABILITY ANALYSIS OF THE BDFM

The primary purpose of developing a two-axis model is to analyze the
dynamic behavior of the machine and to develop control strategies for
specific applications of the BDFM system. In Chapter 2, the dynamic
performance of the machine in synchronous mode of operation was
investigated at a fixed 2-pole frequency. It was shown that for 230V 6-pole
input voltage and 2Hz 2-pole excitation, although the response of the
machine to sudden changes of inputs was oscillatory, stable operation
could be maintained after transitions. It was found in the laboratory,
however, that stability problems may arise when a wide range of speed
control is required. It is hence important to investigate the stability of the
machine on a wide speed range basis.

A search of appropriate literature indicates that the stability problems of
this type of machine have been investigated using a two wound rotor
induction machine model in cascade connection. This was necessary
because of a lack of a truly representative model and its parameters for the
single-frame self-cascaded machine. Previous studies have shown that
over much of the potentially useful operating region the machine is either
inherently unstable or its dynamic response is seriously underdamped. It
is concluded from the studies that by appropriate design, certain areas of
instability may be reduced or removed and the response improved, but that
it is not possible, by design changes alone, to remove all such unstable
areas. These results, however, do not seem to be in agreement with the test
results found in the laboratory. Tests showed that for the 6 and 2-pole
BDFM with a common stator winding and a "Broadway rotor”, there

existed an unstable region between roughly 630 r/min to 525 r/min (corres-
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ponding to 18Hz to 25Hz for the 2-pole input frequency), which was not
predicted correctly by [9,10]. For a newly designed BDFM with truly
balanced stator windings [13,15] and a "Broadway rotor", open loop stability
occurs over the entire speed range under proper 2-pole excitation.

In order to carry out stability and control studies in more depth in
conjunction with machine and drive system design, a two-axis model
derived in Chapter 4 is used to investigate the stability of the system in the
synchronous mode of operation.

The stability characteristics of ASDs using either induction machines or
synchronous machines have long been known [19,20]. Stability analyses of
electric machines and drive systems commonly utilize Lyapunov's indirect
method, in which the original nonlinear differential equations are
linearized around an equilibrium point, at which the stability
characteristics of the point are evaluated. The result is then applied to the
original nonlinear system.

In order to use Lyapunov's indirect method, reference frames must be
selected carefully so that the linearized machine or drive equations are as
simple as possible. For example, the stability of an induction machine and
its drive system is usually investigated in the synchronous reference frame
in which all the steady state quantities (equilibrium points) are constants.
This will, in turn, result in a linear time-invariant system after
linearization has been carried out. For the synchronous machine and its
drive system, since the rotor reference frame coincides with the
synchronous reference frame in steady-state operations, the resulting
linearized-machine and drive equations are also time-invariant.
Unfortunately, this is not true for a BDFM system for which the two-axis

model must be expressed exclusively in the rotor reference frame. In
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steady state operation, all dq quantities are found to vary sinusoidally at a
slip frequency, with the result that the linearized machine equations are
time-varying. Consequently, commonly used eigenvalue analysis techni-
ques cannot be applied to perform stability studies.

A closer examination of the linearized system of equations of the BDFM
reveals that although the system matrix is time-varying, it is periodic.
Thus, the generalized theory of Floquet can be utilized to transform the
linear time-varying system of equations into an equivalent set of equations
with a constant system matrix. Since the two systems are equivalent in the
sense of Lyapunov, eigenvalue analysis can be performed on the Floquet
transformed system to predict the stability characteristics of the original

nonlinear system at a given equilibrium point.

7.1 Linerized Two-axis Model Equations
Linearized two-axis model equations are obtained using Taylor series
expansion at a given equilibrium point. The results of the linearized

equations are incorporated into one matrix equation as shown in (7-1).

Av Ai
0 |=[R@®+Lpl| a6, (7-1)
ATL A(Dr
t
where Av = [AVqG Avd6 Aqu Ade 0 0]

Ai=[Aig Aigg Algy Algy Aig, Alg, ]

In doubly-fed operation, the two sets of applied three-phase voltages
with opposite sequence, namely v, , vz, vc from the 6-pole system and
Vas Vp, Ve from the 2-pole system can be transformed into two sets of

orthogonal dq voltages plus the zero sequences through two
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transformation matrices C,and Cy, . In particular, with balanced excita-

tion,
Vas = V2 Vg cos(ogt -36; + dg) (7-2)
Vae = V2 Ve sin(wgt -36, + ¢g) (7-3)
Vg2 = V2 Vgp cos(wyt +6, - B) (7-4)
Var = V2 Vg4 sin(w,t +6, - B) (7-5)

with Vg = Vy¢ and Vg = V4, being the RMS phase voltages of the two sets
of dq voltages. P is the phase angle between the reference voltage vy, and
Vg2 in steady state operation.

Since the input voltages are functions of rotor angle 6., it follows from

(7-2) to (7-5) that

V- v ov..
= i g A
Avi’.— v AVy + % Aw; + 26 A6,
AL . .
=Av'y + A6, i=q,d andj=6,2 (7-6)

09,
Eqn. (7-6) represents 4 equations and suggests that small increments of dq

voltages are caused not only by the system inputs, V, ®, but also by the
rotor angle 6,. Moving the second term of (7-6) to the right hand side of
Eqgn. (7-1), and incorporating the four terms with the R'(t) matrix, we obtain
the linearized BDFM equation as shown in (7-7), where a subscript o stands

for an equilibrium point under steady state operating conditions.
In the state variable form, (7-7) becomes

X = A()X + BU (7-8)

where X =[Aigg Aig Algy Aigy Aig, Alg, A8, A, 1"



.-

Tgtlyp Sly®p O 0 Mgp
'3]-‘56(01'0 r6+Ls6p 0 0 -3M60)m
0 0 rnplop Lot  -Mp
0 0 Loty rptlop My,
Mgp 0 Mp 0 r+L,p
0 M¢gp 0 Myp 0
0 0 0 0 0

3Mgidro ’3M6iqro Maigro MZiqro Mai25-3Mgideo M2iq20+3M6iq6o

31\460),0 -3Vq6psin[(u)6-3(om)t+¢6] 3(Ls6id6o+M6idro)
M6p -3Vd6PCOS[((06-30)m)t+¢6] '3(L86iq6o+M6iqm)
My, Vq2p5in[((‘)2+ mm) t’Bo] (Lszid20+M2id ro)

MP  -VgopCos[(p+@p)t-B, ] (-Leaigoo+Maigro)
0 0 0
r+L.p 0 0
0 p -1
0 Jp

ar

Ai
Aige
Aigy
Aigy
Ai

Aidr
A6
Aw,

(7-7)
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t
U= [Av'q6 AV'd(, AV'qz AV'dZ 000 ATL]

AB)=-L"R(®), B=L"

The L matrix contains the inductive parameters of the derivative terms of
(7-7) while R(t) is composed of the rest of the entries of (7-7).

Eqn. (7-8) describes fully the small signal characteristics of the BDFM
system at a given operating condition. It is an 8th order set of linear time-
varying differential equations with periodic coefficients, i.e.

A(t+T) = A(t) (7-9)

where T is the period of the sinusoidal quantities in matrix R(t).

7.2 Determination of Equilibrium Points

The equilibrium points used to linearize Eqn. (4-61) are obtained by
solving the set of steady state equations which are developed in Chapter 6.
In the synchronous mode steady state operation with ac excitation on the 2-
pole terminals, the equilibrium points are found to vary sinusoidally with
frequencies equal to the sum of, or the difference between, the supply

frequencies f,, f¢ and rotor frequency.

frs = f2 + fr = f6 -3 fr (7'10)

Solution techniques for solving the steady state equations of the BDFM in
motoring mode of operation have been presented in Chapter 6 and the

results of the computation can be utilized directly in stability analysis.

7.3 . The Generalized Theory of Floquet and Computer Implementation

According to the generalized theory of Floquet [24,25], if

X = A(OX +BU  with A(t+T) = A() (7-11)
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then there exists a linear transformation matrix P(t) defined by

Pi) = My () (7-12)

such that Eqn. (16) can be transformed into

§< =AX+PHBU (7-13)

and it is equivalent, in the sense of Lyapunov, to (7-11). In addition,
Y(t+T) = w(D) Q = y(® e’ (7-14)

is true for all 0 < t < oo, where w(t) is a fundamental matrix of (7-11) and A
is the corresponding equivalent constant system matrix.
In the above transformation, the new set of state variables, X , and the

transformed set of state variables, X, are related by
X =P@®) X (7-15)

The significance of the Floquet theory lies in the fact that it relates a
linear time-varying system with a periodic system matrix A(t) with another
equivalent linear system with a constant system matrix A in terms of
stability. Since A is constant, eigenvalue analysis can be performed to
investigate the stability characteristics of the original system. In practice,
the fundamental matrix y(t) of (7-11) cannot, in general, be determined
analytically, nor can the equivalent system. However, the problem can be
solved numerically, which is explained as follows.

From (7-14), it follows that

T

Q=v'@®yt+T) = et (7-16)
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this operation is possible since (t) spans dimension of n, thus y~ (1) exists

forall0<t<oe . Lett =T, thus

Q=vy " (T) y2T) (7-17)

Computation of w(t) can be performed in the following way;
Define YO =Ty ) wp® yz® ... ¥, O] i=1,..n (7-18)
where y,; (1) , W;»(t) , y;3(t) and y; (1) represent each column of y(t).

Thus, vy, (t) can be obtained by numerically integrating the homogeneous

part of Eqn. (7-16) for a set of given initial conditions. As long as n sets of
initial conditions are selected to be linearly independent, the resultant n
columns of wy(t) are also linearly independent. Consequently, wy(t) is
qualified for being a fundamental matrix. It can be shown that other
fundamental matrices are linear combinations of w(t). The n sets of initial

conditions can simply be taken as

OO OO

E0) = —ithrow,i=1,2,...n (7-19)

oSO ~LO"
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After the Q matrix is found from (7-22), stability analysis can be performed.
For the system characterized by Eqn. (7-18), there exists a similarity
transformation matrix K such that

A=KAK (7-20)

where A is a diagonal matrix whose elements are the eigenvalues of A.
Matrix K is composed of eigenvectors of A.

The solution of the homogeneous part of Eqn. (7-12) is

X () = K MK X(0) = X X(0) (7-21)

therefore,
X(T) =K ™ K X(0) = e A7 X(0) = Q X(0) (7-22)
and e =K' QK=diag(c,, 65,03, ...,0,) (71-23)

where 6,, 0,,03,...,0, are the eigenvalues of the Q matrix.
The above expression indicates that matrix K can also be used to
diagonalize the Q matrix, in other words, eigenvectors of A and

eigenvectors of Q are the same.

Define A =diag (A, Ay, Ay, ., AL ) (7-24)
from ™" = diag ( MT M7 Mol hT

=diag(o6;, 05,03,....,0,) (7-25)
we obtain Ml = g, i=1,2,...n (7-26)

Eqn. (7-26) suggests a conformal mapping from one complex plane to

another. If all the eigenvalues of A are on the left half of W plane, all the
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eigenvalues of Q will fall into a unit circle on the Z plane, where A;€ W

and o0;€ Z,i =1, 2, ..., n After all the eigenvalues of Q have been
computed, eigenvalues of the A matrix can be obtained. From (7-26), it

follows that

M:%[lnloilﬂtg-l(oi)] i=1,2,...n (7-27)

Computation of the A matrix, if required, is performed using Eqn. (7-20)

A =K'AK (7-28)
where the similarity transformation matrix K is composed of eigenvectors
of the Q matrix (or the A matrix).

The flow chart shown in Fig. 7-1 summarizes the computational

algorithm for digital implementation of the theory of Floquet .

7. 4 Computation Results

Case studies are given in this section to show the effectiveness of the
method. It is assumed that the drive system is running synchronously
with or without load torque. The shaft speed of the drive in this mode of

operation is determined by the following expression

fg-f
shaft speed(r/min) = 60 Pz " f,z (7-29)

hence, when f, is changed from 1Hz to 60Hz, the shaft speed varies from
885 r/min to standstill. The rotor slip frequency, defined by (6-22), will, in
turn, alter from 15.75Hz to 60Hz. This change of rotor slip frequency can be
shown to cause substantial increase in the rotor resistance due to skin
effect. In the computation process, this has been taken into consideration.

The change of rotor resistance with rotor slip frequency is modeled as a



107

Initialization
£ =1Hz, bmax=60Hz

1

Solve for steady state egs.

no
convergence?

yes

Given n sets of initial conditions,
solve for (7-11), store y(t) at T, 2T
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Y
@ From A =KAK’}
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Fig. 7-1 Computer implementation of the theory of Floquet
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linear function. The slope of the straight line is determined such that at
60Hz the rotor resistance is 2 to 3 times higher than that at dc at which the
value of the rotor resistance is computed.

Stability characteristics of the BDFM system at any operating point are
evaluated by examination of the eigenvalues of the A matrix. In doing
that, the power converter frequency, f, , is varied from 1Hz to 60Hz and the
computed real parts of the dominant eigenvalues of the A matrix are
plotted as functions of the converter output frequency. The 2-pole voltage
and frequency is increased in such a way that a constant V/Hz ratio is
maintained. In addition, the load torque is kept constant.

Over most of the operating range, the eigenvalues comprise four
complex conjugate pairs, each of which corresponds to a particular system
(namely the 6-pole stator, 2-pole stator, the rotor and the mechanical
systems). No repeated eigenvalues are expected from practical consi-
derations. Fig. 2(a) and (b) show the typical computational results for no
load conditions in which the real parts of the two critical eigenvalues are
plotted. The third and the fourth ones are not shown since they are always
large and negative. Similar eigenvalue characteristics have been obtained
for different V/Hz ratios and loads. It should be pointed out that at high
V/Hz ratios and loading conditions, eigenvalue analysis predicts that one
eigenvalue approaches zero and becomes slightly positive at high 2-pole
frequency (or low rotor speed). Tests show, however, that no unstable
region exists at low speeds. The discrepancy is due to the difference
between the calculated parameters and the actual parameters which change
with operating conditions. Also, iron loss and other possible losses were

not considered in the calculation.
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Fig. 7-2 Real parts of dominate eigenvalues vs 2-pole excitation frequency f,

Fig. 7-3(a) shows the experimental data of 2-pole excitation currents vs f;
for stable operation of the system for no load and 50% rated load torque.
The corresponding V/Hz ratio vs f, is plotted in Fig. 7-3(b). As would be
expected, the required 2-pole excitation current must be adjusted in order to

maintain synchronous operation when load torque is increased. These
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adjustments result in a decrease in the stable region. Compared with Fig.

7-2, it is seen that the eigenvalue analysis on the transformed linearized

system gives good results in predicting stable operation of the BDFM. For

frequencies greater than 5 Hz, a constant V/Hz control will ensure stability,

and at low 2-pole frequencies, a dc offset needs to be incorporated to over-
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Fig. 7-3 Experimental stability envelopes
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come a resistive dominated low frequency impedance in order to push the
eigenvalues into the left half of the complex plane and thus to provide
open-loop stability. It is seen that these considerations are equivalent to
scalar control of conventional induction motor drives. Thus, existing
controllers can easily be adapted to interface with BDFM drives.

It should be noted that the eigenvalue analysis presented above
considers only whether stable operation can be maintained for a given
V/Hz ratio, or 2-pole excitation current. From a steady state operation
point of view, efficiency, power factor and other aspects must also be taken
into account. The converter control algorithms should be such that while
maintaining stable operation of the drive system, at least one of the steady
state performance parameters should be maximized. It was found in the
laboratory and computer simulation that 2-pole excitation (voltage or
current) has profound effects on power factor of the system. Fig. 7-4(a) and
(b) show experimentally how 2-pole excitation voltage affects the 6-pole
current and power factor of the drive for f,=1Hz under no-load conditions.
Similar plots can be drawn for other 2-pole frequencies and various loading
conditions. It can be seen from Fig. 7-4 that control of power factor can be
made by adjusting the 2-pole excitation voltage or current. Increasing
excitation can result in a leading power factor operation. However, there
exists a practical maximum beyond which the phase angle is seen to
decrease. From the consideration of economic operation under a power
factor control constraint, it is appropriate to keep the excitation voltage (or
current) within a certain range. This is desirable since reducing the 2-pole
voltage means reducing the converter KVA requirement and thus the cost

of the system. In addition, the machine tends to be overexcited with high
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2-pole current so that torques produced by the two systems (6 and 2-pole)
can strongly oppose each other. In this way, the efficiency of the overall

system becomes low.
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8. SUMMARY, CONCLUSION AND FUTURE WORK

8.1 Summary and Conclusion

The primary objective of this research work was to develop a rigorous
two-axis model and its parameters for dynamic simulation, stability and
control studies. In summary, the following have been accomplished.

Starting from a detailed machine design model, which represents a 6-
and 2-pole BDFM with a common stator winding and a castable rotor, we
have developed a two-axis model. Methods for calculating the model
parameters in both machine and dq domains are also developed.

Dynamic simulation for different modes of operation has been
performed and correlated with available test data. Simulations include
machine run-up, synchfonization dynamics, synchronous behavior as
well as fault tolerant behavior of the machine.

The constraints of specific operating conditions make necessary the
rigorous development of steady state models from the d-q representation
which have been utilized for steady state performance analysis of the
machine. The models, although derived from simplified assumptions,
strive to capture the essence of the operating characteristics of the machine
while maintaining simple computational requirements and are found to
be valuable for machine design and other analysis purposes as well.

A new method for analyzing the stability of the BDFM is developed
by introduction of the theory of Floquet. This was found necessary
because of the time-varying nature of the linearized two-axis model
equations. Using the theory of Floquet allows the eigenvalue analysis

technique to be applied to the stability studies of the BDFM.
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It is concluded from the studies that the proposed two-axis model is a

valid representation of the BDFM and possesses the following advantages

(1) The resistive and inductive parameters can be determined from
the machine geometries and the rules of the transformations;

(2) No approximations, such as assumed equivalences to two inter-
connected machines, reduce the validity of the predictions obtained
from the model;

(3) When compared with more detailed models, the reduced order of
the two-axis model allows its application to general stability and
control studies;

(4) The model is complete valid for all conceivable operating condi-
tions including
(a) Singly-fed induction mode dynamics
(b) Singly-fed induction mode steady-state characteristics
() Doubly-fed synchronous dynamics
(d) Doubly-fed synchronous steady-state characteristics
(e) Doubly-fed asynchronous dynamics
(f) Doubly-fed asynchronous steady-state characteristics
over complete ranges of speed and frequency (including dc excita-

tion) and for all connection sequences.

Dynamic performance simulation illustrates the following charac-
teristics of a BDFM in adjustable speed drives and variable speed genera-

tion systems

(1) Dynamic synchronization from induction mode;

(2) Synchronous operation without a speed feedback signal;
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(3) Maintenance of synchronism for both positive and negative
step changes of load torque;
(4) Continued operation after converter failure (reverting to induction

mode).

These features can be realized while maintaining robust and
inexpensive construction similar to induction motors whist utilizing a
power converter whose rating is only a fraction of machine rating.

Stability study presented in this thesis shows that Lyapunov's indirect
method can be applied to analyze the stability characteristics of the BDFM
since a linear transformation matrix P(t) always exists such that the
linearized time-varying system of equations of the BDFM can be
transformed into an equivalent system of equations with a constant system
matrix using the generalized theory of Floquet. Both theoretical and
experimental results show that stable speed control of a BDFM system can
be obtained by control algorithms similar to those for a conventional
induction machine. Constant converter current or constant V/Hz ratio
with an initial low frequency off-set results in open loop stability over the
entire speed range. Within these stable ranges, the converter control
algorithms can be developed in such a way as to produce desirable

operational conditions for efficiency and power factor.

8.2 Recommended Future Work
The results reported in this thesis reflect the evolution of the two-axis
model, model verification against experimental data and initial utilization

of the model for stability studies as well as the exploration on converter
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control algorithms for stable steady state operation of the system. It is

recommended that future work include the following

(1)
2)

(3)

(4)

(5)

(6)

More accurate d-q modeling of the BDFM to account for saturation;
More detailed investigation of the machine dynamics inclu-
ding the super-synchronous operation of the BDFM system;
Detailed studies of the steady state performance of the machine
using the steady state models and the solution techniques deve-
loped in this thesis. The investigation should take iron losses
and possibly saturation into account in order to obtain high
accuracy of prediction;

Establishment of control strategies for both dynamic and steady state
operation of the BDFM;

Investigation of system controller design and implementation to
improve both dynamic and steady state performances;
Development of a generalized two-axis model to account for

different pole number combinations of the BDFM.

The above activities can be accomplished using the existing simulation

programs already developed for the purpose of this research. It should be

emphasized that recent development of a simulation program with

graphics capabilities will certainly help enhance investigation into the

above areas that need to be addressed in the future.
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NOMENCLATURE

VARIABLES:

Vgir lgi
Van/VenrVeN
ia 1p ic

Vs6 » is6
Van/VbnsVen
g Bps I
Vs2., is2

Vi, i
VrérVrZI
i, ir

E.-qél ad6/ goé
Eq2 Ga2r 802
E.-qr ,Ear

Coil group voltage aﬁd current, i=1,2,...,9
6- pole stator phase voltages

6-pole stator phase currents

6-pole stator phase voltage or current vectors
2-pole stator phase voltages

2 pole stator phase currents

2-pole stator phase voltage current vectors

Rotor loop voltage or current vector

6-pole or 2-pole rotor loop voltages or currents

6-pole qdo variables such as voltages, currents, flux linkages
2-pole qdo variables

Rotor qd variables

Rotor angle displacement in mechanical degrees

Rotor speed in mechanical rad/second

6-pole electromagnetic torque

2-pole electromagnetic torque

Total torque T, = Teg + Ty and load torque

2-pole source frequency

Rotor current frequencies due to 6- or 2-pole stator fields
6-pole rotor slip frequency

2-pole excitation source frequency

Small increment of a variable



Vaaps Vazp
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2-pole peak phase voltage, a function of f,
dq 2-pole peak phase voltage,

. . d
Differentiation operator p = 3¢

6-pole to rotor slip
2-pole to rotor slip
Total slip s=s;s,

Phase angle between V¢ and Vg5

TRANSFORMATION MATRICES:

G

Ce

L L

Coil group connection matrix

Generalized orthogonal transformation matrix
Overall transformation matrix

6-pole stator transformation matrix

2-pole stator transformation matrix

Stator transformation matrix, C, = diag( Cy , C,r )
6-pole rotor transformation matrix

2-pole rotor transformation matrix

Rotor transformation matrix, C, = diag( C, C,z.)
Submatrices of C¢, i=Z,Y,X,W,V,U

Submatrices of C,,, i=Z,Y,X,W,V,U

PARAMETER MATRICES (IN BOLD):

ZS

Stator impedance matrix Z,=diag(Zy, , Z., )

Z=1,+Lgp 6-pole stator impedance matrix

Z,=1,+L,p 2-pole stator impedance matrix

Z

sébr

ZsZr

6-pole stator to rotor loop mutual impedance matrix

2-pole stator to rotor loop mutual impedance matrix



Z=r+Lp
ij

I"56ri

LsZri
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24x24 rotor loop impedance matrix

Submatrices of Z,

6-pole stator to rotor "ith" loop mutual inductance
matrix, i=Z,Y,X,W,V,U

2-pole stator to rotor "ith" loop mutual inductance

matrix, i=Z,Y,X,W,V,U

SCALAR PARAMETERS ( NOT IN BOLD):

Te

6-pole stator phase resistance

2-pole stator phase resistance

Rotor resistance in the dq domain

6-pole per phase inductance

2-pole per phase inductance

6-pole dq domain magnetizing inductance
2-pole dq domain magnetizing inductance
Rotor dq domain magnetizing inductance
6-pole phase leakage inductance

2-pole phase leakage inductance

Rotor phase leakage inductance

dq domain phase inductance, Lg= Lgp, + Lig
dq domain phase inductance, L= Ly, + Ljp
Rotor inductance L, = L, + L,

6-pole mutual inductance among ABC phases
2-pole mutual inductance among abc phases
dq domain 6-pole stator to rotor mutual inductance

dq domain 2-pole stator to rotor mutual inductance



Mséri

M_4(6,)

s2ri

M, (36,)
M, (6;)
M,; (6,)
rg+lep

mn

Tij» Ty

Vasp - Vasp
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Peak value of the fundamental componenf of the 6-pole
phase and rotor "ith" loop mutual inductance

Coil group rotor loop mutual inductance

Peak value of the fundamental component of the 6-pole
phase and rotor "ith" loop mutual inductance

Mutual inductance between 6-pole A-phase and rotor loop i,
i=Z,Y,X,W,V,U

Mutual inductance between 2-pole a-phase and rotor loop i,
i=Z,Y,X,W,V,U

Mutual inductance between coil group j and rotor loop i,
j=1,2,..9, i=Z,Y,X,W,V,U

Coil group impedance

Mutual inductance between coil groups m and n, m, n=1,2,. . 9
Rotor loop or common end ring resistances, i, j = Z,Y,X,W,V,U
Rotor loop self inductance , i = Z,Y,X,W,V,U

Mutual inductance between similar rotor loops in other
nests, i, j = Z,Y,X,W,V,U

Mutual inductance between rotor loops in the same nests,
i,j=ZYXWV,U

Mutual inductance between different rotor loops of
different nests, i, j = Z,Y,X,W,V,U

6-pole source frequency

Pole pair numbers of the 6 and 2-pole stator systems

initial angle of 6-pole reference voltage Vg

6-pole peak phase voltage

dq domain 6-pole peak phase voltage
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