AN ABSTRACT OF THE THESIS OF

<u>Haiping Zhou</u> for the degree of <u>Doctor of Philosophy</u> in <u>Civil</u> <u>Engineering</u> presented on <u>March 12, 1990</u>

Title:

Development of a Mechanistic Overlay Design Procedure for

Redacted for Privacy

Abstract	approved		
	.,	R. Garv Hicks	

This dissertation describes the development of a mechanistic overlay design procedure. The mechanistic analysis represents a new trend in both new pavement and overlay design. The greatest advantage of the mechanistic pavement analysis is that it considers the fundamental characteristics of materials to be used, is capable of considering changes in loading and tire pressure, and characterizes the response of the pavement to traffic loads in terms of strains and/or stresses. This type of analysis allows practicing engineers to more realistically address pavement structure, materials, and other influential variables such as environmental impacts so that the behavior of the pavement may be better understood.

One of the critical steps in using the mechanistic type pavement analysis is the determination of pavement layer properties (e.g, resilient modulus). In this study, methods commonly used for determining resilient modulus have been reviewed. Three existing mechanistic overlay design procedures were also reviewed. Based on the review, improved procedures for determining pavement layer moduli

and overlay design seem to be necessary.

Significant contributions of this study are the development and computerization of an improved backcalculation procedure (BOUSDEF) for determining pavement layer moduli and an improved mechanistic overlay design procedure (MECHOD).

Initial evaluations on both procedures were performed. For BOUSDEF, three approaches were used: 1) comparing with hypothesized theoretical moduli, 2) comparing with other developed backcalculation programs, and 3) comparing with laboratory tested modulus values. The evaluation showed BOUSDEF provided favorable comparisons. Therefore, the program can be effectively used as a tool to make initial evaluation of deflection testing data for determining pavement layer moduli. For MECHOD, actual pavement data from the states of Oregon and Alaska were used. All pavements evaluated are conventional structures consisting of an asphalt concrete surface, an aggregate base and/or a subbase, over subgrade. The evaluation showed that the improved method provided very similar results to those of standard procedures (ODOT, AASHTO, and The Asphalt Institute).

The BOUSDEF and MECHOD programs can be implemented together as a pavement evaluation and overlay design system. That is; 1) use BOUSDEF to backcalculate pavement layer moduli, and 2) use MECHOD to perform overlay design.

DEVELOPMENT OF A MECHANISTIC OVERLAY DESIGN PROCEDURE FOR FLEXIBLE PAVEMENTS

bу

Haiping Zhou

A Thesis

submitted to Oregon State University

in partial fulfillment of
the requirements for the
degree of
Doctor of Philosophy

Completed March 12, 1990

Commencement June 10, 1990

-								
A	n	-	*	^	11	-	А	
n	υ	v	ı	u	v	C	u	

Redacted for Privacy

Professor of Civil Engineering in Charge of Major

Redacted for Privacy

Head of Department of Civil Engineering

Redacted for Privacy

Dean of Graduate School

Date thesis is presented March 12, 1990

Typed by Haiping Zhou for Haiping Zhou

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my major professor, Dr. Gary Hicks, for his invaluable direction, guidance, and consultation during the course of this study. In particular, his knowledge and experience is greatly acknowledged.

My appreciation is also expressed to the members of my graduate committee, Professors Robert Layton, David Rogge, and Ken Funk, and to the graduate school representative, Professor David Thomas, for their assistance in developing my academic program.

I would also like to thank Professor Frank Schaumburg, head of Civil Engineering Department, for providing assistantship throughout the entire period of this research. Most importantly, the friendship, care, and encouragement given by Frank and his wife Judy, will never be forgotten.

Thanks also go to Jim Huddleston, pavement design engineer of Oregon State Highway Division, for his guidance and advice. His experience in the pavements area provided very helpful assistance to this research and is greatly acknowledged.

I also wish to thank the following people:

- 1) Ted Vinson, Professor of Civil Engineering Department, for providing pavement project data and valuable consultation.
- 2) Andy and Nancy Brickman, Gail Barnes, and Linda Rowe, faculty of Civil Engineering Department, for their help and assistance in various aspects, and most importantly, their friendship.
- 3) "Bud" Furber, Principal of the Pavement Services, Inc. of Portland, for providing pavement materials for the laboratory testing.
- 4) Billy Connor and David Esch, senior research engineers of the Alaska Department Transportation and Public Facilities, for providing pavement project data and part of the research funds.
- 5) Doug Hedlund and the field crew, of Oregon State Highway Division, for performing the deflection tests.

Finally, I thank my wife, son, and my parents for their support all these years.

TABLE OF CONTENTS

				<u>Page</u>	
1.0	INTRODUCTION				
	1.1	Problem St	tatement	1	
	1.2	Objective:	s	4	
	1.3	Scope		4	
2.0	BACKG	ROUND ON MI	ECHANISTIC ANALYSIS FOR FLEXIBLE PAVEMENTS	12	
	2.1	2.1.1 Ba	Strains and Deformations in Pavements asic Law lastic Half-Space System	12 13	
		2.1.3 La	Boussinesq Equations) ayered Systems omparison Between Layered Theory and	13 15	
			oussinesq Theory	28	
	2.2	Non-Linea	rity of Pavement Materials	43	
	2.3	Considera	tion of Overburden Stresses	45	
	2.4	Summary		46	
3.0	DETER	NOITANIM	F PAVEMENT MODULI USING NDT METHODS	48	
	3.1	Background	d	48	
	3.2	3.2.1 Ed 3.2.2 El	ting Approaches quivalent Thickness Methods lastic Layer Methods inite Element Method	53 53 57 78	
	3.3	Summary		85	
4.0	DEVEL	PMENT OF A	AN IMPROVED BACKCALCULATION PROGRAM	86	
	4.1	4.1.1 Pr 4.1.2 Pr 4.1.3 Ex	evelopment and Description rogram Flowchart rogram Output xample ensitivity to the User Input	87 87 90 91	
	4.2	4.2.1 Co 4.2.2 Co	n of the BOUSDEF Program omparison with Theoretical Values omparison with Other Developed Programs omparison with Laboratory Test Results	95 95 99	

				<u>Page</u>
	4.3	Summary		133
5.0		MINATION ORRELATION	OF RESILIENT MODULUS USING LABORATORY TESTS	134
	5.1	5.1.1	nt Modulus from Laboratory Tests Diametral Tests Triaxial Tests	134 135 139
	5.2	5.2.2	tions Subgrade Soil Untreated Granular Materials Asphalt Concrete	139 142 147 152
	5.3	Summary		154
6.0			F AN IMPROVED MECHANISTIC OVERLAY DESIGN FLEXIBLE PAVEMENTS	158
	6.1	6.1.1 6.1.2	of Current Mechanistic Overlay Design Methods ARE Method WSDOT Method Alaska Method Summary of Review	158 158 170 181 186
	6.2	Procedur 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10	Framework Condition Survey Nondestructive Testing Delineation of Analysis Section Material Characterization Consideration of Seasonal Effect Critical Pavement Strains Determination of Allowable Traffic Repetitions Determination of Pavement Damage	187 187 187 191 191 192 192 202 202 216 217
	6.3	Summary		219
7.0	EVALU	ATION OF	THE DEVELOPED PROCEDURE	221
	7.1	Overlay 7.1.1 7.1.2 7.1.3	Deflection Tests Determination of Pavement Moduli for Overlay Design	221 221 224 224
		7.1.4 7.1.5	Traffic Analysis Overlay Design	231 232

.

				<u>Page</u>
	7.2	7.2.1	Design Using Standard Procedures ODOT Procedure 1986 AASHTO Design Procedure The Asphalt Institute Design Procedure	237 237 240 253
	7.3	Compari	son of Design Results	256
	7.4	Summary		260
8.0	CONCL	USIONS A	ND RECOMMENDATIONS	261
	8.1	Conclus	ions	262
	8.2	Recomme	ndations for Implementation	264
	8.3	Recomme	ndation for Further Research	266
9.0	REFER	ENCES		268
APPE	NDICES	;		
	Appen	dix A.	BOUSDEF User's Guide	280
	Appen	dix B.	Deflection Test Results for Selected Projects	285
	Appen	dix C.	AMOD User's Guide	308
	Appen	dix D.	FWD Data Delineation Program User's Guide	310
	Appen	dix E.	MECHOD User's Guide	324
	Appen	dix F.	Backcalculation Results	330
	Appen	dix G.	Overlay Design Output from the MECHOD Program	344
	Appen	dix H.	Deflection Data Used in ODOT and TAI Procedures	350
	Appen	dix I.	Calculation of Structural Numbers Used in AASHTO Procedure	357

LIST OF FIGURES

<u>Figu</u>	<u>re</u>	<u>Page</u>
1.1	Study Approach	11
2.1	Definition of Coefficient of Elasticity and Poisson's Ratio for the Uniaxial Case	14
2.2	Conceptual Representation of Boussinesq's Half Space Loading Condition	16
2.3	Generalized Multi-Layered Elastic System	19
2.4	Conceptual Representation of the Method of Equivalent Thicknesses	21
2.5	Pavement Structures Used for Comparing Surface Deflections Using Layered Theory and Boussinesq Equations	31
2.6	Deflection Comparison for Three-Layer Conventional Flexible Pavements	34
2.7	Deflection Comparison for Four-Layer Conventional Flexible Pavements	38
2.8	Deflection Comparison for Pavements with a Cement Treated Base	40
2.9	Deflection Comparison for Portland Cement Concrete Pavements	42
2.10	Modulus-Bulk Stress Relationship for Coarse-Grained Materials	44
2.11	Modulus-Bulk Stress Relationship for Fine-Grained Materials	44
3.1	Conceptual Illustration of Backcalculation Approach	52
3.2	Four Layer Elastic Representation of a Pavement System	58
3.3	CHEVDEF/BISDEF Program Flowchart	61
3.4	Simplified Description of the Deflection Matching Procedure	62
3.5	Interpolation of Modulus Using Calculated and Measured Deflections in MODCOMP2 Program	68
3.6	Pavement Model Showing Line of 95% Deflection	70
3.7	Simplified Flowchart of FPEDDI	73
3.8	Subgrade Soil Material Models for ILLI-PAVE Analysis	83

<u>Figu</u>	<u>re</u>	<u>Page</u>
4.1	Flowchart of the BOUSDEF Program	88
4.2	Plot of the Example Output	94
4.3	Location of Selected Project Sites	104
4.4	Backcalculated Base and Subgrade Moduli for the Rufus-Quinton Project (Eastbound)	113
4.5	Backcalculated Base and Subgrade Moduli for the Rufus-Quinton Project (Westbound)	114
4.6	Backcalculated Base and Subgrade Moduli for the Centennial Blvd Project (Station 200 to 400, Eastbound)	115
4.7	Backcalculated Base and Subgrade Moduli for the Centennial Blvd Project (Station 4200 to 7000, Eastbound)	116
4.8	Backcalculated Base and Subgrade Moduli for the Centennial Blvd Project (Station 6900 to 2700, Westbound)	117
4.9	Backcalculated Base and Subgrade Moduli for the Centennial Blvd Project (Station 2500 to 100, Westbound)	118
4.10	H&V Diametral Testing System	120
4.11	H&V Triaxial Testing System	120
4.12	Moisture-Density Relationship for the Rufus-Quinton Project	122
4.13	Laboratory Tested Moduli for the Rufus-Quinton Project	124
4.14	Laboratory Tested Moduli for the Centennial Blvd Project	128
4.15	Comparison Between Laboratory Tested and Backcalculated AC Moduli for the Rufus-Quinton Project	129
4.16	Comparison Between Laboratory Tested and Backcalculated AC Moduli for the Centennial Blvd Project	130
4.17	Comparison Between Laboratory Tested and Backcalculated Base Moduli for the Rufus-Quinton Project	131
4.18	Comparison Between Laboratory Tested and Backcalculated Base Moduli for the Centennial Blvd Project	132
5.1	Diametral Resilient Modulus Device Yoke and Alignment Stand	136
5.2	Test Specimen with Diametral Yoke and Loading Ram	137

<u>Figu</u>	<u>re</u>	<u>Page</u>
5.3	Schematic of Asphalt Concrete Laboratory Resilient Modulus Test	138
5.4	Triaxial Cell Suitable for Repeated Load Testing of Soils	140
5.5	Schematic Diagram of Resilient Modulus Test	141
5.6	Relation Between Dynamic Modulus and CBR	143
5.7	Crude Empirical Relationships Between the Dynamic Modulus of Elasticity and Routine Tests	148
6.1	Flowchart for the Mechanistic Method	159
6.2	Photographs of Class 2 and Class 3 Cracking	165
6.3	Relationship of Resilient Modulus and Repeated Deviator Stress	166
6.4	Fatigue Curve for 18-kip Load Applications to Time of Class 2 Cracking	167
6.5	Sample Overlay Thickness Design Curves	171
6.6	Pavement Overlay Design Concept	172
6.7	General Stiffness-Temperature Relationship with 90 and 95% Prediction Intervals for Class B Asphalt Concrete In Washington State	176
6.8	Estimation of Pavement Temperature	178
6.9	Overlay Design Procedure by EVERPAVE	180
6.10	Flowchart for the Simplified Mechanistic Procedure	182
6.11	Flowchart for the Improved Overlay Design Approach	188
6.12	Comparison of MS-1 Prediction Equation to Modulus- Temperature Relationship Used in MS-11	193
6.13	Computed Relations Between Mixture Stiffness and Temperature	194
6.14	Seasonal Influence on Asphalt Concrete Layer Modulus	195
6.15	Temperature Influence on Poisson's Ratio	195
6.16	Influence of Degree of Saturation on Stiffness Characteristics of Untreated Granular Material	197

<u>Figu</u>	<u>re</u>	<u>Page</u>
6.17	Water Content - Dry Density - Resilient Modulus Relationship for Subgrade Soil	198
6.18	Concept of Seasonal Roadbed Soil Variation	199
6.19	Effect of Freeze-Thaw, Additional Loading, and Additional Curing on Resilient Response of a Natural Tama B Soil	200
6.20	Concept of Seasonal Variation on Traffic Distribution	201
6.21	Location of the Critical Strains	203
6.22	Fatigue Curves for Some California Mixes Using Different Failure Criteria	205
6.23	Fatigue Curves for Asphaltic Concrete	206
6.24	Fatigue Curves Developed by Nottingham	211
6.25	Critical Strain Locations for Overlay Design	215
6.26	MECHOD Program Flowchart	218
7.1	Location of Selected Project Sites	222
7.2	Asphalt Modulus Temperature Adjustment Factor	227
7.3	Temperature Correction Factors Used in ODOT Overlay Design Procedure	239
7.4	Tolerable Deflection Chart Used in ODOT Overlay Design Procedure	241
7.5	Percent Deflection Reduction Chart Used in ODOT Overlay Design Procedure	242
7.6	Relationship Serviceability-Capacity Condition Factor and Traffic	245
7.7	AASHTO Overlay Design Steps	246
7.8	Chart for Estimating Structural Layer Coefficient of Densegraded Asphalt Concrete Based on the Resilient Modulus	248
7.9	Variation in Granular Base Layer Coefficient (a_2) with Various Base Strength Parameters	249
7.10	Variation in Granular Base Layer Coefficient (a ₃) with Various Subbase Strength Parameters	250

<u>Figu</u>	<u>re</u>	<u>Page</u>
7.11	Design Chart for Flexible Pavements Based on Using Mean Values for Each Input	252
7.12	Remaining Life Factor	254
7.13	Temperature Correction Factors Used in The Asphalt Institute Procedure	257
7.14	Asphalt Concrete Overlay Thickness Required to Reduce Pavement Deflections from a Measured to a Design Deflection Value (Rebound Test)	258
A-1	BOUSDEF Menu Screen	281
A-2	BOUSDEF Data Input/Edit Screen	282
D-1	Concepts of Cumulative Difference Approach to Analysis Unit Delineation	311
D-2	Title Screen	316
D-3	Asking for File Name	316
D-4	Heading for TEST.DAT	317
D-5	Program Main Menu	317
D-6	Bar Chart Representation of Pavement Response	319
D-7	Options for Defining Delineation Units	320
D-8	Screen Display for Option 1	320
E-1	MECHOD Program Main Menu	325
E-2	MECHOD Screen Data Input/Edit	325
E-3	Screen for Data Analysis	328
E-4	Example Output Showing Overlay is Needed	328
E-5	Modulus of Overlay Material Can Be Considered	329
E-6	Example Output	329

LIST OF TABLES

labl	<u>e</u>	<u>Page</u>
1.1	Advantages and Disadvantages of Overlay Design Procedures	3
2.1	Boussinesq Equations for a Point Load	17
2.2	Boussinesq Equations for a Distribute Load	18
2.3	Summary of Flexible Pavement Models	26
2.4	Stresses, Strains, and Displacements Calculated by BISAR	29
2.5	Summary of Deflection Calculations	32
3.1	Typical Poisson's Ratio Values	49
3.2	Summary of Self-Iterative Procedures for Evaluation of Pavement Moduli from Deflection Basins	54
3.3	Material Characterization for ILLI-PAVE Program	82
4.1	Pavement and Deflection Data for the Example	92
4.2	Summary of Backcalculation Results for the Example	93
4.3	Data Used for Evaluating Sensitivity on Initial Modulus	96
4.4	Effect of Initial Moduli on Calculated Moduli Using BOUSDEF	97
4.5	Comparison Between Theoretical and Backcalculated Modulus Values	98
4.6	Pavement Data Used for Backcalculation	100
4.7	Deflection Data Used for Backcalculation	100
4.8	Summary of Backcalculation Results	101
4.9	Comparison of Computing Time and Backcalculated Results	102
4.10	Summary of Selected Project Sites	104
4.11	Backcalculated Modulus for the Rufus-Quinton Project (EB and WB)	107
4.12	Backcalculated Modulus for the Centennial Blvd Project	109
4.13	Summary of AC Resilient Modulus Test for Rufus-Quinton Project	121

	<u>Table</u>	<u>e</u>	<u>Page</u>
	4.14	Summary of AC Resilient Modulus Test for Centennial Blvd Project	121
	4.15	Moisture-Density Relationship for the Rufus-Quinton Project	122
	4.16	Density Results for the Rufus-Quinton Project	123
	4.17	Summary of Base Material Resilient Modulus Test for the Rufus-Quinton Project	123
,	4.18	Water Content and Density at Time of Testing for Centennial Blvd Project	126
	4.19	Summary of Base Material Resilient Modulus Test for Centennial Blvd Project	127
	5.1	Comparison of R, CBR, and Resilient Modulus Data	145
	5.2	Various Regression Equations for Subgrade Modulus	146
	5.3	Correlations Between MR, CBR, or R and Stress State	149
	5.4	Summary of Repeated Load Triaxial Compression Laboratory Test Data for Untreated Granular Materials	150
	5.5	Typical Values for \boldsymbol{k}_1 and \boldsymbol{k}_2 for Unbound Base and Subbase Materials	151
	5.6	Typical Values of Stress State	153
	5.7	Variables Affecting Materials Response	156
	6.1	Analytical Based Overlay Design Procedures	160
	6.2	Guidelines for Nondestructive Testing	161
	6.3	Classes of Cracking	164
	6.4	Coefficients for Seasonal Variations	175
	6.5	Summary of Some Fatigue Criteria	208
	6.6	Summary of Some Rutting Criteria	213
	7.1	Summary of Selected Projects	223
	7.2	Summary of Backcalculated Moduli	226
	7.3	Backcalculated AC Moduli Converted to 70°F	228

<u>Table</u>	<u>Page</u>
7.4 Representative Temperature Used for Evaluation	228
7.5 Modulus Values Corrected for Temperature for AC	229
7.6 Modulus Values Used in Overlay Design Analysis	230
7.7 Traffic Data for Overlay Design	233
7.8 Traffic Distribution for Each Season	234
7.9 Modulus Data for Overlay Materials	236
7.10 Overlay Design from MECHOD	236
7.11 Overlay Thickness Design Using ODOT Procedure	243
7.12 Overlay Thickness Design Using AASHTO Procedure	255
7.13 Overlay Thickness Design Using TAI Procedure	259
7.14 Comparison of Overlay Design Results	259
D-1 Tabular Solution Sequence - Cumulative Difference Approach	314
D-2 Example Output for User Defined Delineation Units	321
D-3 Example Output for Program Defined Delineation Units	321
D-4 Example Output for TEST.FWD File	323

DEVELOPMENT OF A MECHANISTIC OVERLAY DESIGN PROCEDURE FOR FLEXIBLE PAVEMENTS

1.0 INTRODUCTION

1.1 Problem Statement

As the nation's highways age and are subjected to ever increasing loads and volume of traffic, they will inevitably deteriorate and eventually require some type of treatment to be able to provide a safe and serviceable facility for the user (Finn, 1984). The types of treatment that are appropriate to maintain pavement serviceability can range from relatively simple maintenance to complete reconstruction. For pavements subjected to moderate and heavy traffic, asphalt overlays provide one of the most costeffective methods of improving existing pavements (The Asphalt Institute, 1983). Asphalt overlays can be used to strengthen existing pavements, to reduce maintenance costs and increase pavement life, to provide a smooth ride, and to reduce safety hazards by improving pavement surface skid resistance.

The design approach used to determine the thickness of the overlay can range from engineering judgement to a fully mechanistic analysis. Generally, the design procedures may be categorized into four types: 1) engineering judgement, 2) component analysis, 3) nondestructive testing with limiting deflection criteria, and 4) mechanistic analysis based on interpretation of nondestructive testing or laboratory data with appropriate failure criteria.

Current overlay design procedures generally fall in the first

three categories. The major limitations for each of the current design procedure are listed below:

- Engineering judgement no theoretical background,
 subjective, and vulnerable to personnel changes.
- 2) Component analysis primarily based on empirical relationships developed from the AASHO Road Test and is difficult to evaluate changes in loads and environmental impacts.
- 2) Limiting deflection methods maximum deflection does not reflect individual layer properties and is limited to materials and constructions for which correlations are established.

The mechanistic type of analysis represents a new trend for overlay design. The greatest advantage of the mechanistic type of pavement analysis is that it considers the fundamental characteristics of materials to be used, is capable of considering changes in loading and tire pressure, and characterizes the response of the pavement to traffic loads in terms of strains and /or stresses. This type of analysis allows practicing engineers to more realistically address pavement structure, material, and other influential factors such as environmental impacts so that the behavior of the pavement may be better understood. Some of the advantages and disadvantages of these four types of overlay design procedures are summarized in Table 1.1.

Table 1.1 Advantages and Disadvantages of Overlay Design Procedures
(Hicks, 1988)

Procedure	Advantages	Disadvantages
Engineering Judgment	Simple.	No theoretical basis.
		Subjective.
Component Analysis	Assesses individual layers as they exist in the pavement.	Limited amount of sampling and testing (to minimize cost).
	Related to existing conventional design procedures that have large amount of background information.	Conditions at the time of sampling may not represent general state of materials.
	backy, cand information.	Time required for sampling and testing.
		Oriented to distress mode for which associated design procedure was developed; e.g., CBR procedure associated with plastic deformation.
		Not applicable to new materials
Deflection Based	Areal coverage.	Does not measure materials properties.
	Measurements representative of in-situ conditions.	Limited to materials and constructions for which correlations are established.
	Relatively inexpensive. Relatively fast.	Related to one mode of distress; e.g., fatigue cracking.
		racigue cracking.
	Relatively high degree of reliability possible.	
Analytically Based	Appropriate distress modes can be considered individually; e.g., fatigue, rutting, low-temperature cracking.	Unfamiliar to most current designers.
(mechanistic)		Requires new and different equipment.
	Capable of considering:	Limited experience to date.
	 changed loading and tire pressure effects, new materials, environmental influences, aging effects, and influence of changed subsurface drainage conditions. 	May require the use of a computer.

1.2 Objectives

The major objectives of this study are to develop a fully mechanistic overlay design procedure for flexible pavements and a fully computerized procedure for routine design work. Specifically, the objectives are to:

- 1. develop an improved mechanistic overlay design procedure,
- develop an improved backcalculation procedure for determining existing pavement structural capacity,
- 3. evaluate the developed backcalculation procedure,
- evaluate the developed overlay design procedure on selected projects, and
- prepare recommendations for implementation of the procedures.

1.3 Scope

To accomplish the objectives, the following tasks were undertaken:

- review of stresses, strains, and deformations in pavement structures, including consideration of non-linearity of pavement materials and overburden stresses (Chapter 2),
- review of current methods for backcalculating layer moduli (Chapter 3),
- development and evaluation of an improved backcalculation procedure for determining pavement layer moduli (Chapter 4),
- Review of modulus determination using laboratory tests and correlations (Chapter 5),

- review of current mechanistic overlay design procedures and development of an improved mechanistic overlay design procedure, (Chapter 6),
- evaluation of the improved procedures on selected projects
 (Chapter 7), and
- 7. recommendations for implementation (Chapter 8).

Task 1: This task reviewed background information necessary for mechanistic analysis of pavement structures. In particular, stresses, strains, and deformations in pavements resulting from traffic loads were reviewed. Methods that are commonly used to calculate stresses, strains, and deformations were discussed.

Many researchers have shown that pavement materials, especially coarse-grained and fine-grained, are load dependent. That is, these materials behave differently under different stress conditions. For coarse-grained materials, which are usually used for base layers, the resilient modulus increases as the applied load or stress increases. For fine-grained materials, which are usually used for subgrade, the resilient modulus decreases as the stress magnitude increases. These non-linear properties of pavement materials should be carefully considered for the design condition. Static pressure or overburden stress of pavement materials were also reviewed.

<u>Task 2:</u> In using a mechanistic approach, one of the most important considerations is the determination of resilient modulus values for each pavement layer. This fundamental material property represents the structural capacity of the material and has a great impact on design thicknesses needed to carry the anticipated traffic applications. Two methods have been used for determining the modulus

values of a pavement material, laboratory tests and backcalculation. Laboratory tests are performed on materials sampled from field using specialized equipment. Backcalculation is conducted using a computer program to calculate modulus values for each layer from deflection basin data which can be measured using a non-destructive device. Several backcalculation programs have been developed and are widely used for determining modulus values. These existing procedures can be broadly categorized into three groups: 1) equivalent thicknesses methods, 2) elastic layer methods, and 3) finite element methods. Two programs in the category of method of equivalent thicknesses were reviewed. They are ELMOD and SEARCH. Several programs in the group of elastic layer method were also looked into. These programs are CHEVDEF/BISDEF, ELSDEF, MODCOMP2, MODULUS, PFEDDI, and ISSEM4. A single backcalculation procedure ILLI-CALC which uses finite element method was also reviewed.

It is difficult to conclude if one program is superior to the others. In general, the programs which use the method of equivalent thicknesses take much less computing time than both elastic layer theory and finite element methods.

Task 3: Preliminary use of three backcalculation programs, BISDEF, ELSDEF, and MODCOMP2, shows that both BISDEF and ELSDEF do not consider the non-linearity of the pavement materials. MODCOMP2 is capable of handling non-linearity of the pavement materials; however, this capability does not always operate properly. Very often, unknown errors occur during computation. And all three programs take a fair amount of computing time to solve a data set. This significantly impairs the use of the backcalculation method. Task 3, therefore, was

to develop an improved method for backcalculation. This improved backcalculation method uses much less computing time for backcalculation and also considers the non-linearity of the base and subgrade materials.

Initial evaluation on the developed backcalculation procedure was made. The evaluation was performed using three approaches: 1) comparing backcalculated moduli with preassumed theoretical moduli, 2) comparing with other backcalculation programs, and 3) comparing backcalculated moduli with laboratory test results. The evaluation shows that the moduli backcalculated using the BOUSDEF program compare very well with the preassumed theoretical values and are very compatible with the other programs used for comparison. The comparison with the laboratory test results on the two projects also compared favorably.

Task 4: This task reviewed several techniques for determining resilient modulus through laboratory tests and using developed correlations, which are widely used around the United States. These techniques include laboratory tests to determine resilient moduli of pavement materials and correlations to estimate the resilient modulus.

The advantage of the laboratory tests to determine resilient modulus is its ability to measure the strength of a particular material directly. The disadvantage is that the samples tested in the laboratory may represent a portion of pavement material rather than an average condition one would find in the field. Moreover, laboratory tests require sophisticated equipment and well trained personnel to perform the tests, and laboratory tests usually take a

significant amount of time.

The advantage of using developed correlations is their availability. However, one must be aware that the correlations were developed based on certain laboratory conditions. Therefore, these correlations are best suited to situations similar to those for which the correlations were developed. Caution should be exercised when using these correlations.

Task 5: In the past years, several overlay design procedures using the mechanistic approach have been developed such as the Alaska DOT&PF, Washington State DOT, and ARE methods. This task reviewed these three methods. The review indicated that one common ground for these developed procedures is that they all use multi-layered elastic theory to model a flexible pavement structure and to determine pavement life using various design criteria. This kind of approach is also being used by an on-going research activity, NCHRP project 1-26 (Thompson, 1989). It is expected that the next edition of the AASHTO Guide on flexible pavement design will also move in this direction.

A shortcoming in all three procedures is that of characterizing the seasonal effects on the pavement materials properties. In both the ARE and the Alaska methods, pavement properties at a representative temperature of 70°F are recommended for design purposes rather than those at different seasons. In the WSDOT method, seasonal variations are considered. However, for the base and subgrade materials, modulus ratios between the dry and wet materials are used rather than a direct consideration of the base and subgrade material properties for each season. Since the seasonal effects have great influence on pavement layer properties (and some other factors

such as traffic distribution), which in turn may result in varying pavement damage, therefore, an improved approach to address the seasonal effects seems to be necessary.

Based on the review, an improved mechanistic overlay design procedure was developed. The major improvement over the above three procedures is in the direct consideration of seasonal effects on pavement material properties and pavement damage due to traffic loadings within each season.

The improved procedure has been computerized and can be operated on IBM or compatible microcomputers. The resulted computer program MECHOD is easy to use and user friendly.

<u>Task 6:</u> This task evaluated the improved mechanistic overlay design procedure. The evaluation included the following steps:

- 1. Select projects for evaluation.
- 2. Perform deflection test using FWD.
- Determine pavement layer moduli for overlay design.
- 4. Perform overlay design using the improved procedure.
- Compare overlay design results from the improved procedure with those from standard procedures.

The initial evaluation of the improved mechanistic overlay design procedure was performed using actual pavement data from the states of Oregon and Alaska. All pavements evaluated are conventional pavements consisting of an asphalt concrete surface, an aggregate base and/or a subbase, and subgrade. The overlay design results from the improved procedure were compared with three standard procedures developed by ODOT, AASHTO, and The Asphalt Institute. The results showed that the improved method provided very compatible results to those of the

standard procedures.

Task 7: This task summarizes the work accomplished during this study and provides recommendations for implementation.

Specifically, these recommendations include the use of BOUSDEF, a backcalculation program, and MECHOD, an improved mechanistic overlay design program, both developed during the course of the study.

For additional research recommendations, verification of the backcalculated results and development of design criteria for local conditions are suggested. Further improvements to BOUSDEF and MECHOD programs are also discussed. The overall study approach for conducting this research is summarized in Figure 1.1.

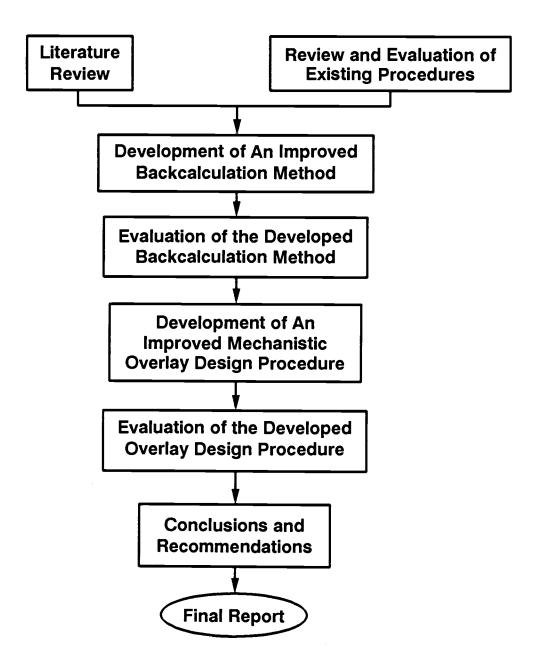


Figure 1.1 Study Approach

2.0 BACKGROUND ON MECHANISTIC ANALYSIS FOR FLEXIBLE PAVEMENTS

Pavement analysis, design and evaluation, as other engineering techniques, might be better accomplished if the engineer had the ability to analyze the pavement structure in terms of some fundamental concepts such as the stresses, strains, or deformations and the characteristics of the pavement material due to the application of traffic, environment, and the effects of aging. This chapter describes some of these basic concepts related to this research.

2.1 Stresses, Strains, and Deformations in Pavements

Pavements under traffic load application experience stresses, strains or deformations. The pavement response can be determined quantitatively using theoretical analysis. Analysis theories that have been developed or are being developed include elastic half-space system, layered elastic theory, finite element analysis, and viscoelastic analysis. The theory of elasticity is by far the most wide spread method. This research uses the theory of elasticity as a tool for the development of a mechanistic overlay design procedure.

Before developing an improved mechanistic overlay design procedure, a backcalculation program (based on elastic half-space system) is developed to determine pavement layer moduli, a key element in pavement analysis using a mechanistic approach. The following paragraphs describe first the solution techniques used to develop the backcalculation program.

2.1.1 Basic Law

The basic law used in the theory of elasticity is that developed by Hookes. Two material parameters are needed to use the theory: the coefficient of elasticity (Young's modulus, E) and Poisson's ratio (μ). The coefficient of elasticity is defined as the ratio of stress (σ) over strain (ϵ) and is a constant as stated by Hookes's law. Poisson's ratio is defined as the ratio of lateral and axial strains as shown in Figure 2.1. In the sample case, the Poisson's ratio is a constant. For the three dimensional case, generalized Hookes's law may be expressed as:

$$E * \epsilon_{X} = \sigma_{X} - \mu (\sigma_{y} + \sigma_{z})$$

$$E * \epsilon_{y} = \sigma_{y} - \mu (\sigma_{X} + \sigma_{z})$$

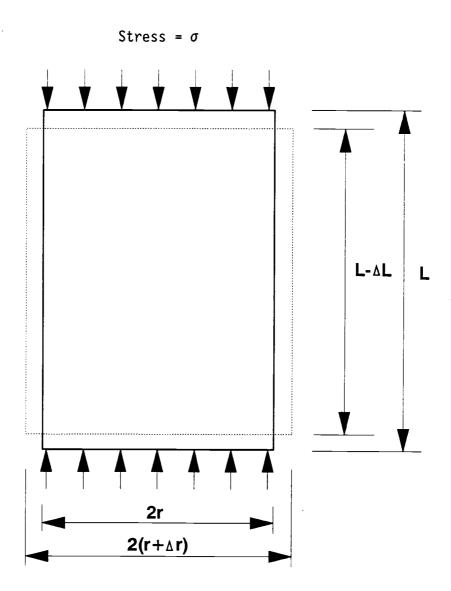
$$E * \epsilon_{z} = \sigma_{z} - \mu (\sigma_{X} + \sigma_{y})$$

$$(2-1)$$

where:

E = coefficient of elasticity

 μ = Poisson's ratio


 σ = stress in indexed axis

 ϵ = strains in indexed axis

For real pavement materials, neither the modulus (E) nor Poisson's ratio (μ) are constants but vary as functions of a number of different factors such as temperature, moisture content, and stress conditions. Therefore, care must be taken in applying elastic theory to pavement structures.

2.1.2 Elastic Half-Space System (Boussinesq Equations)

Boussinesq formulated a set of equation in 1885 for calculating

Strain:

 $\epsilon_1 = \Delta L / L$

Young's Modulus: $E = \sigma / \epsilon_L$

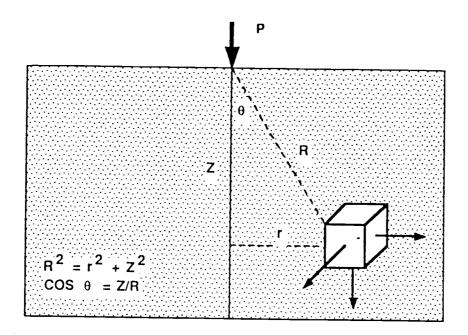
Poisson's Ratio: $\mu = \epsilon_{\gamma} / \epsilon_{L}$

Definition of Coefficient of Elasticity and Poisson's Ratio for the Uniaxial Case Figure 2.1

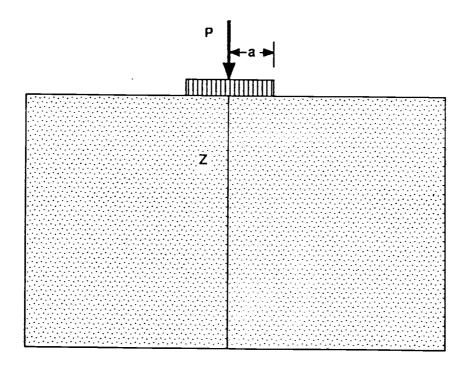
the stresses, strains, and deflections for a homogeneous, isotropic, linear elastic semi-infinite space. In the development of these equations, two loading conditions were considered: a point load and a distributed load, as described below.

2.1.2.1 Point Load

Figure 2.2a shows a point load condition together with the geometrical descriptions required for solution of the equations. Various equations for calculating normal stresses (σ) , normal strains (ϵ) , shear stresses (τ) , and displacements (δ) are given in Table 2.1.


2.1.2.2 Distributed Load

For a load uniformly distributed over a certain area as shown in Figure 2.2b, the stresses, strains, and displacement under the center line of the load can be found through numeric integration. The analytical solutions are given in Table 2.2.


For an off-axle location, solution for a uniformly distributed load can be obtained numerically. However, unless such a location is close to the point of contact of load, the point load equations can be used without serious error (Ullidtz ,1980).

2.1.3 Layered systems

Flexible pavements normally consist of several layers of material, therefore, it is natural to use the theory of layered systems for the analysis of a pavement structure. A generalized layer system is illustrated in Figure 2.3. In a multi-layer system, each layer is represented by layer thickness, modulus of elasticity, and Poisson's ratio. Under the action of loads, stress distribution is

a) Point Load

b) Distributed Load

Figure 2.2 Conceptual Representation of Boussinesq's Half Space Loading Condition

Table 2.1 Boussinesq's Equations for a Point Load (Ullidtz, 1987)

Normal Stresses

$$\sigma_{z} = \frac{3P}{2\pi R^2} * \cos^3 \theta \tag{2-2}$$

$$\sigma_{\rm r} = \frac{P}{2\pi R^2} * \left[3\cos\theta \sin^2\theta - \frac{1-2\mu}{1+\cos\theta} \right]$$
 (2-3)

$$\sigma_{t} = \frac{P}{2\pi R^{2}} * (1-2\mu) \left[-\cos\theta + \frac{1}{1+\cos\theta} \right]$$
 (2-4)

$$\sigma_1 = \frac{3P}{2\pi R^2} * \cos\theta \tag{2-5}$$

$$\sigma_{V} = \frac{1}{3} (\sigma_{1} + \sigma_{2} + \sigma_{3}) = \frac{P}{3\pi P^{2}} * (1+\mu)\cos\theta$$
 (2-6)

Shear Stresses

$$\tau_{\rm rz} = \frac{3P}{2\pi R^2} * \cos^2\theta \sin\theta \tag{2-7}$$

$$\tau_{rt} = \tau_{tz} = 0$$

Normal Strains

$$\epsilon_{z} = \frac{(1+\mu)P}{(2\pi R^{2}E)} * (3\cos^{3}\theta - 2\mu\cos\theta)$$
 (2-8)

$$\epsilon_{r} = \frac{(1+\mu)P}{(2\pi R^{2}E)} * \left[-3\cos^{3}\theta + (3-2\mu)\cos\theta - \frac{1-2\mu}{1+\cos\theta} \right]$$
 (2-9)

$$\epsilon_{t} = \frac{(1+\mu)P}{(2\pi R^{2}E)} * \left[-\cos\theta + \frac{1-2\mu}{1+\cos\theta} \right]$$
 (2-10)

$$\epsilon_{V} = \epsilon_{Z} + \epsilon_{r} + \epsilon_{t} = \frac{(1+\mu)P}{(\pi R^{2}E)} * (1-2\mu)\cos\theta$$
 (2-11)

<u>Displacements</u>

$$d_{z} = \frac{(1+\mu)P}{(2\pi RE)} * [2(1-\mu) + \cos^{2}\theta]$$
 (2-12)

$$d_{r} = \frac{(1+\mu)P}{(2\pi RE)} * \left[\cos\theta \sin\theta - \frac{(1-2\mu)\sin\theta}{1+\cos\theta} \right]$$
 (2-13)

$$d_t = 0$$

Table 2.2 Boussinesq Equations for Distributed Load (Ullidtz, 1987)

$$\sigma_{z} = \sigma_{0} * \left[1 - \frac{1}{\left[1 + (a/z)^{2} \right] \cdot 1.5} \right]$$
 (2-14)

$$\sigma_{r} = \sigma_{t} = \sigma_{o}^{*} \left[\frac{1+2\mu}{2} - \frac{1+\mu}{\left[1+(a/z)^{2}\right] \cdot 5} + \frac{0.5}{\left[1+(a/z)^{2}\right] \cdot 5} \right]$$
 (2-15)

$$\epsilon_{z} = \frac{(1+\mu)\sigma}{E} \circ \star \left[\frac{z/a}{\left[1+(z/a)^{2}\right]^{1.5}} - (1-2\mu)\star \left[\frac{z/a}{\left[1+(z/a)^{2}\right].5} - 1\right] \right]$$
 (2-16)

$$d_{z} = \frac{(1+\mu)\sigma}{E} o_{*} \left[\frac{1}{\left[1+(z/a)^{2}\right]^{1.5}} + (1-2\mu)^{*} \left[\left[1+(z/a)^{2}\right]^{.5} - (z/a) \right] \right] (2-17)$$

$$\epsilon_{r} = \epsilon_{t} = \frac{1}{E} \left[\frac{1-\mu}{2\mu} * (\sigma_{z} - E * \epsilon_{z}) - \mu * \sigma_{z} \right]$$
 (2-18)

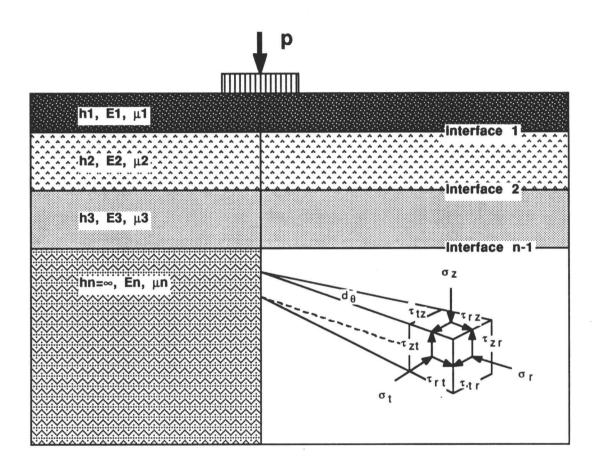


Figure 2.3 Generalized Multi-Layered Elastic System

also shown in Figure 2.3. Because of the complexity of pavement material properties, each pavement layer usually does not behave as a totally elastic body, therefore, certain basic assumptions are often made to idealize a pavement structure so that layered elastic theory can be applied.

2.1.3.1 Theoretical Assumptions

The following assumptions are generally used to idealize a pavement structure:

- Material properties in each layer are homogeneous (elastic properties are the same at all points in a given material).
- 2) Material properties in each layer are isotropic (elastic properties are the same in all directions at any point).
- 3) Each layer has a finite thickness except the lowest layer (presumable the subgrade) and all are infinite in the lateral dimensions.

2.1.3.2 Odemark's Method

Odemark's method (1949) is often referred as the method of equivalent thickness (MET). The MET assumes that any two layers with similar structure stiffness will distribute loading in the same way. Based on this assumption, the MET can be used to transform a system consisting of layers with different moduli into an equivalent system where all layers have the same modulus. A conceptual representation of the MET is shown in Figure 2.4. The transformation is proceeded by the following relationship,

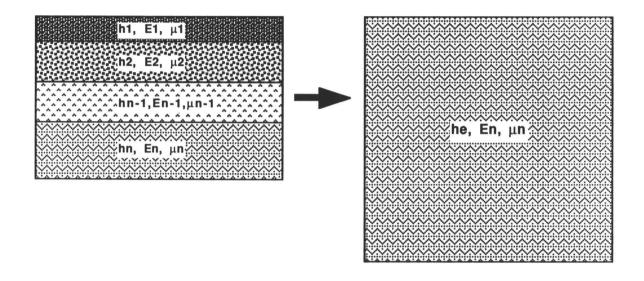


Figure 2.4 Conceptual Representation of the Method of Equivalent Thicknesses

$$D = \frac{Eh3}{12(1-\mu^2)}$$
 (2-19)

where:

D = stiffness,

h = layer thickness,

E = modulus of elasticity, and,

 μ = Poisson's ratio.

For a two layer system, the equivalent thickness of a layer with modulus (E₂) and Poisson's ratio (μ_2) relative to a layer of thickness (h₁), modulus (E₁) and Poisson's ratio (μ_1), may be expressed by equating the stiffness of both layers, that is, D₁ = D₂. Therefore,

$$\frac{E_1h_1^3}{12(1-\mu_1^2)} = \frac{E_2h_2^3}{12(1-\mu_2^2)}$$

or rearranging the equation:

$$h_2 = h_1 * \left(\frac{E_1}{E_2} * \frac{(1-\mu_2^2)}{(1-\mu_1^2)} \right)^{1/3}$$
 (2-20)

By expanding this concept for a multi-layer system as conceptually illustrated in Figure 2.4, a general form of the equation may be written:

$$h_{ei} = \sum_{i=1}^{n-1} h_i * \left(\frac{E_i}{E_n} * \frac{(1-\mu_n^2)}{(1-\mu_i^2)} \right)^{1/3}$$
 (2-21)

where:

 h_{ei} = equivalent thickness for i-th layer,

h; = thickness of i-th layer,

E; = modulus of i-th layer,

 $E_n = modulus of n-th layer,$

 μ_i = Poisson's ratio for i-th layer, and

 μ_n = Poisson's ratio for n-th layer.

2.1.3.3 <u>Correction Factors for the Use of Odemark's Method with</u> <u>Boussinesq Equations</u>

The use of the method of equivalent thicknesses allows the Boussinesq theory to be applied in a multi-layer system. Stresses, strains, and deformation at any point in an elastic half-space can be determined by using corresponding Boussinesq equations. In order to obtain good agreement between the stresses, strains, and deflections calculated by the Boussinesq approach and by exact elastic theory, Ullidtz and Peattie (1980) suggest that correction factors should be applied to the equivalent thicknesses. For the simple case of calculations on the axis of an uniformly distributed load, equation (2-21) is modified as follows:

$$h_{ei}' = f * \sum_{i=1}^{n-1} h_i * \left[\frac{E_i}{E_n} * \frac{(1-\mu_n^2)}{(1-\mu_i^2)} \right]^{1/3}$$
 (2-22)

where:

f = correction factor. For a two-layer system, f =
 0.9. For a multi-layer system (>2), f = 1.0 for
 the first layer, and f = 0.8 for the rest of
 layers.

Additional correction factors are required when using the point load equation for more general analysis, since the assumption that

the uniformly distributed load can be approximated by a point load produces inaccuracies near the surface of the pavement. These corrections are as follows (Ullidtz, 1979):

for
$$Z_i < a$$
:
$$Z = \frac{1.5 \text{ a}}{2(1-\mu_i^2) - (2(1-\mu_i^2) - 0.7) * (Z_i/2a)}$$
(2-23a)

and

for
$$Z_i \ge a$$
:

$$Z_{i}^{'} = Z_{i} + 0.6 * \frac{a^{2}}{Z_{i}}$$
 (2-23b)

where:

$$Z_i = h'_{ei}$$

a = load radius

It must be kept in mind that these correction factors only improve the agreement with layered elastic theory, and not necessarily the actual stresses or strains in real pavement structures.

2.1.3.4 <u>Limitations of Use of the MET</u>

There are a number of limitations with regard to the use of the method of equivalent thicknesses. One is that the moduli should decrease with depth, preferably by a factor of at least two between consecutive layers. Another is that the equivalent thickness of a layer, preferably, should be larger than the radius of the loaded area (Ullidtz, 1987).

2.1.3.5 Computer Solution to Layered Systems

Burmister (1943) provided analytical expressions for determining stresses and displacements in a two-layer system. Based on Burmister's method, Fox (1948) and Acum and Fox (1951) presented exact solutions for the boundary stresses in the center line of a circular uniformly distributed load acting on the surface of a three-layer system. Since then a large number of computer programs have been developed for calculating stresses, strains, and deflections of layered elastic systems, as listed in Table 2.3. The following briefly describes two such computer programs; ELSYM5 (Hicks, 1982) and BISAR (De Jong, 1973).

2.1.3.5.1 The ELSYM5 Program

The ELSYM5 (Elastic Layered SYsteM) program determines the various component stresses, strains, and displacements along with principal values in a three-dimensional ideal elastic layered system (Hicks, 1982). The layered system can be loaded with one or more identical uniform circular loads normal to the surface of the system.

Each layer of the system is described by its modulus of elasticity, Poisson's ratio and has a uniform thickness extending infinitely in the horizontal direction. The top of the surface is free of shear. The bottom elastic layer may be semi-infinite in thickness or may be given a finite thickness, in which case the program assumes the bottom layer is supported by a rigid base. With a rigid base, the interface between the bottom elastic layer and the base may have either a full friction interface or a non-friction interface. All elastic layer interfaces are continuous. Stresses, strains, and deformations at any location of the system may be calculated.

Table 2.3 Summary of Flexible Pavement Models

Program	Date	Number Layers	Inter- face	Loads ¹	Load- ing ²	Output	PC Vers	Stress Depend		Solution Technique
CHEV	1963	5	Rough	Vert	SWL	σ,ϵ	No	No	No	Linear Elas.
BISTRO	1968	5	Rough	Vert	MWL	σ, ϵ, δ	No	No	No	Linear Elas.
CHEV5L	1971	5	Rough	Vert	DUALS	σ, ϵ, δ	No	Yes	No	Linear Elas.
BISAR	1972	10	Any T	ng/Vert	MWL	σ, ϵ, δ	Yes	No	No	Linear Elas.
ELSYM5	1972 1986	5 5	SM/Rough SM/Rough	Vert Vert	MWL MWL	σ, ϵ, δ σ, ϵ, δ	No Yes	No No	No No	Linear Elas. Linear Elas.
MWELP	1972	15	Rough	Vert	MWL	σ, ϵ, δ	No	No	No	Linear Elas.
ELP-15	1973	15	Rough	Vert	SWL	σ, ϵ, δ	No	No	No	Linear Elas.
SDEL	1974	5	Rough	Vert	SWL	σ,ϵ,δ	Yes	No	No	Linear Elas.
CHEVIT	1976	Any	Rough	Vert	MWL	σ, ϵ, δ	No	Yes	No	Linear Elas.
ILLI-PAVE	1980	Any	Rough R	adial/ Vert	SWL	σ,ϵ,δ	Yes	Yes	Yes	Finite Elem.

 $^{^{1}}$ All solutions are for axysymmetrical conditions

² SWL=Single Wheel Loading; MWL=Multi-Wheel Loading

The program requires the following information for calculating the stresses, strains and displacements:

- 1. The number of layers;
- 2. Modulus and Poisson's ratio of each layer;
- 3. The thickness of each layer, except for the subgrade;
- 4. The interface friction description at the bottom layer if this layer has finite depth;
- 5. The number of loads, the vertical and tangential component of each load, and the position of the loads;
- The stress, strain and displacement components to be calculated;
- The number of places where calculations are required along with their position (Cartesian coordinates).

2.1.3.5.2 The BISAR Program

The BISAR (BItumen Structures Analysis in Roads) program (De Jong, 1973) is a general purpose program for computing stresses, strains, and displacements in elastic layered systems subjected to one or more vertical uniform circular loads applied at the surface of the system. In this program, all layers extend infinitely in the horizontal direction. The top surface of the system is free of shear as in ELSYM5. All interfaces between layers have an interface friction factor which can vary between zero (full continuity) and one (frictionless slip) between the layers.

Stresses, strains and displacements are calculated in a cylindrical coordinate system for each vertical load. For more than one load, the cylindrical components are transformed to a Cartesian coordinate system and the effect of the multiple load found by

summarizing the stresses, strains and displacements of each wheel. Further, the program calculates only those components that are requested as listed in Table 2.4. If all stresses and strains are calculated, the program calculates the principal stresses and strains and their accompanying directions. The principal directions denote the normals of the planes through the point considered, which are free of shear stress (strain). The highest and lowest of the three principal values give the maximum and minimum normal stresses (strains), and the difference between the principal values divided by two, gives the maximum shear stresses (strains).

The program requires the following information for calculating the stresses, strains and displacements:

- 1. The number of layers;
- Modulus and Poisson's ratio of each layer;
- 3. The thickness of each layer, except for the subgrade;
- 4. The interface friction at each interface;
- 5. The number of loads, the vertical and tangential component of each load, and the position of the loads;
- 6. The stress, strain and displacement components to be calculated;
- The number of places where calculations are required along with their position (Cartesian coordinates).

2.1.4 Comparison Between Layered Theory and Boussinesq Theory

Initial comparisons were made between the layered elastic theory and Boussinesq equations on the surface deflection calculation. This

Table 2.4 Stresses, Strains and Displacements Calculated by BISAR (Hicks, 1982)

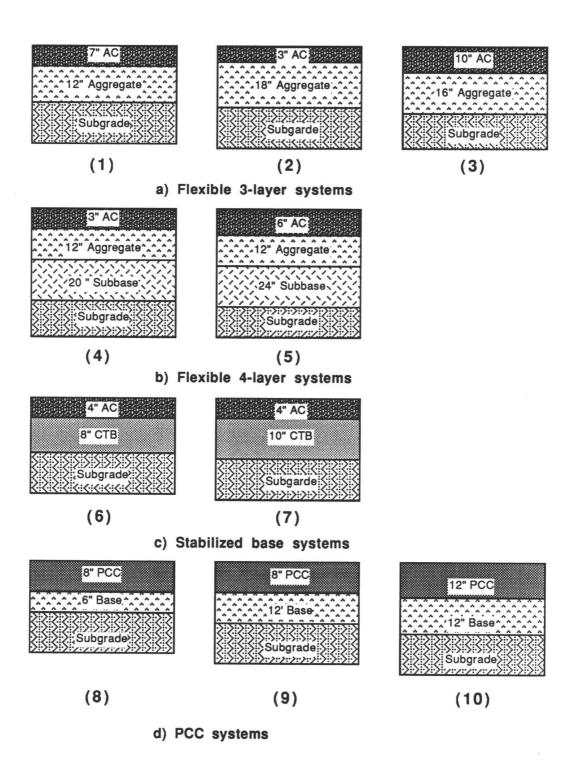
<u>Displacements</u>	UR	-	Radial displacement
	UT	-	Tangential displacement
	UZ	-	Vertical displacement
<u>Stresses</u>	SRR	-	Radial stress
	STT	-	Tangential stress
	SZZ	-	Vertical stress
	SRT	-	Radial/Tangential
	SRZ	-	Radial/Vertical
	STZ	-	Tangential/Vertical
<u>Strains</u>	ERR	-	Radial strain
	ETT	-	Tangential strain
	EZZ	-	Vertical strain
	ERT	-	Radial/Tangential
	ERZ	-	Radial/Vertical
	ETZ	-	Tangential/Vertical
<u>Total displacements</u>	UX UY	-	X-displacement Y-displacement
<u>Total stresses</u>	SXX SXY SXZ SYY SYZ	- - - -	XX component of total stress XY component of total stress XZ component of total stress YY component of total stress YZ component of total stress
<u>Total strains</u>	EXX EXY EXZ EYY EYZ	-	XX component of total strain XY component of total strain XZ component of total strain YY component of total strain YZ component of total strain

comparison illustrates that the Boussinesq equations can be used as a valid approach for calculating the deflections under the application of a load as compared to layered elastic theory.

The comparison was performed using three computer programs with several pavement structures. The three programs used are ELSYM5, BISAR, and DEFLECT, a program which uses Boussinesq equations to calculate pavement surface deflection. Figure 2.5 shows ten pavement structures used for comparison. Among these pavement structures, five are conventional pavement systems, with three 3-layer structures and two 4-layer structures. Two pavement systems have a cement treated base. Three are portland cement concrete (PCC) pavement structures. Resilient modulus for flexible pavements range from 100 ksi to 1,500 ksi to represent typical field conditions. For cement treated base layers and PCC, typical design values are also used.

A 9,000 lb load with radius of 6 inches, representing a typical 18-kip single axle load, is used in the calculation. For flexible pavements, six radial distances were selected for deflection calculation. These were located at 0", 8", 12", 24", 36", and 58". For PCC pavements, seven distances were selected, which were located at 0", 12", 24", 36", 48", 60", and 84". The selection of radial distances was aimed to obtain a deflection basin that would include pavement response from all pavement layers.

Table 2.5 summarizes the calculation results. Results from the BISAR program are basically identical to those from ELSYM5 for the ten pavement structures analyzed. The results are plotted in Figures 2.6 to 2.9. As can be seen from these figures, both layered theory and Boussinesq equations generate very similar results for the



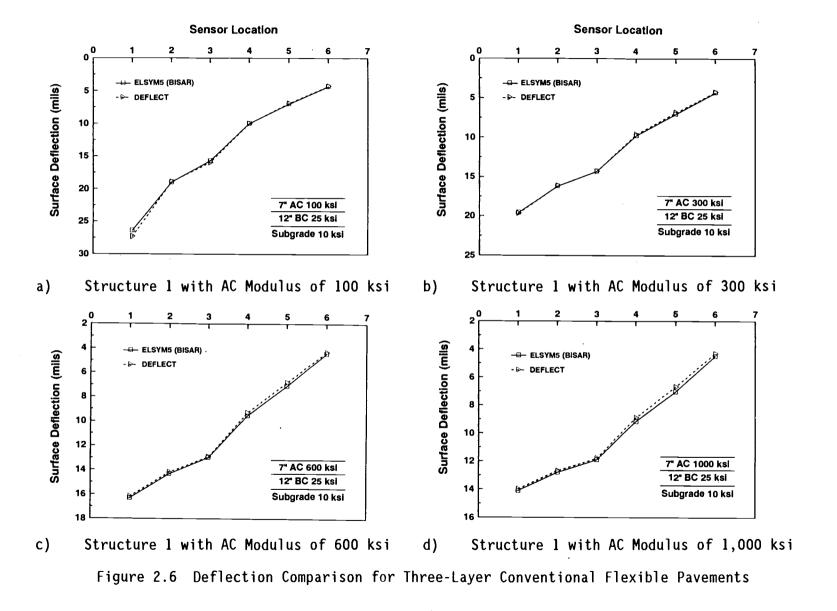

Figure 2.5 Pavement Structures Used for Comparing Surface
Deflections Using Layered Theory and Boussinesq
Equations

Table 2.5 Summary of Deflection Calculations

_	Results from ELSYM5 (BISAR)								Results			, ,,		
Eac							_	Deflections @ sensor locations (mils)						
(ksi)	1	2	3	4 	<u></u>	6	7	1	2	3	4	5	6	7
Structi	ure 1													
100	26.40	19.00	15.70	9.96	7.02	4.33		27.35	18.92	15.97	10.00	6.91	4.27	
300	19.60	16.20	14.30	9.82	7.06	4.37		19.71	16.17	14.32	9.67	6.88	4.30	
600	16.30	14.30	13.00	9.54	7.08	4.44		16.17	14.17	12.93	9.29	6.79	4.32	
1,000	14.10	12.80	11.90	9.17	7.03	4.51		13.98	12.69	11.80	8.90	6.68	4.32	
1,500	12.60	11.60	11.00	8.78	6.92	4.56		12.44	11.54	10.88	8.53	6.55	4.31	
Structi	ure 2													
100	38.20	23.20	16.80	9.71	6.86	4.29		41.13	23.04	17.66	10.10	6.86	4.23	
300	32.30	22.30	16.90	9.60	6.77	4.26		30.16	21.51	17.22	10.10	6.89	4.25	
600	28.50	21.30	16.80	9.65	6.73	4.24		27.05	20.52	16.74	10.03	6.89	4.26	
1,000	25.70	20.20	16.50	9.75	6.74	4.23		24.56	19.53	16.25	9.96	6.89	4.27	
1,500	23.60	19.20	16.10	9.84	6.78	4.23		22.57	18.59	15.75	9.88	6.88	4.28	
Structi	ıre 3													
200	17.00	13.60	12.10	8.89	6.74	4.41		17.20	13.60	12.36	8.99	6.67	4.31	
600	12.10	10.70	10.10	8.13	6.54	4.48		11.97	10.67	10.09	8.09	6.35	4.28	
1,000	10.40	9.46	9.03	7.60	6.31	4.48		10.21	9.40	9.02	7.55	6.11	4.24	
,500	9.26	8.51	8.20	7.12	6.05	4.45		9.01	8.46	8.19	7.06	5.87	4.19	
Structi	ire 4													
300	34.50	25.30	20.30	12.80	9.36	6.08		34.18	25.93	21.63	13.68	9.67	6.10	
600	31.10	24.30	20.00	12.80	9.30	6.05		31.05	24.67	20.87	13.49	9.62	6.10	
1,000	28.50	23.20	19.70	12.80	9.28	6.03		28.50	23.47	20.15	13.49	9.57	6.11	
1,500	26.50	22.20	19.20	12.80	9.30	6.03		26.42	22.38	19.48	13.12	9.52	6.11	

Table 2.5 Summary of Deflection Calculations (cont.)

-				LSYM5 (I		- 1			Results			(- 1	
	Deflect				•	•					location			_
(ksi)	1	2	3	4	5	6	7	1	2	3	4	5	6	7
Struct	ure 5													
100	28.90	20.60	16.90	10.90	8.01	5.29		29.31	21.16	17.95	11.56	8.29	5.31	
300	22.30	18.20	15.80	10.80	7.96	5.25		22.67	18.79	16.52	11.20	8.18	5.31	
600	19.00	16.40	14.70	10.60	7.99	5.27		19.17	16.85	15.22	10.83	8.06	5.30	
,000	16.80	15.00	13.70	10.40	7.99	5.31		16.87	15.32	14.11	10.47	7.92	5.28	
Struct	ure 6													
300	11.50	10.20	9.86	8.35	6.88	4.74		11.81	10.42	10.03	8.27	6.51	4.33	
600	10.30	9.36	9.09	7.84	6.59	4.71		10.91	9.94	9.57	8.00	6.40	4.32	
,000	9.53	8.71	8.49	7.42	6.34	4.65		10.29	9.51	9.16	7.76	6.29	4.30	
Struct	ure 7													
300	10.00	8.70	8.47	7.44	6.36	4.66		10.15	8.89	8.66	7.48	6.16	4.28	
600	9.09	8.08	7.87	7.01	6.08	4.58		9.43	8.56	8.31	7.24	6.03	4.26	
,000	8.50	7.60	7.36	6.64	5.83	4.48		8.93	8.24	8.01	7.03	5.92	4.23	
Struct	ure 8													
,000	9.04	8.30	7.30	6.26	5.31	4.49	3.24	9.30	8.66	7.45	6.13	5.01	4.14	3.0
Struct	ure 9													
,000	8.81	8.03	7.08	6.09	5.18	4.40	3.21	8.85	8.27	7.18	5.98	4.93	4.11	2.9
truct	ure 10													
,000	6.63	5.62	5.29	4.83	4.37	3.92	3.14	6.19	5.89	5.47	4.92	4.34	3.80	2.

ω A

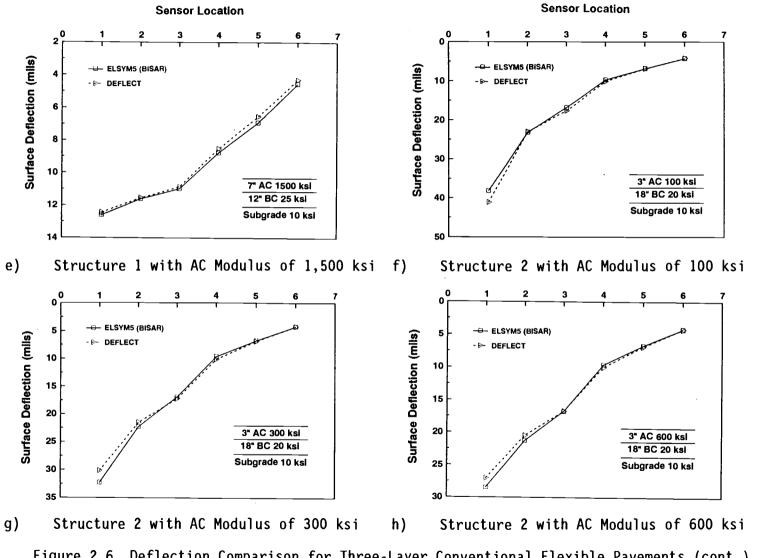


Figure 2.6 Deflection Comparison for Three-Layer Conventional Flexible Pavements (cont.)

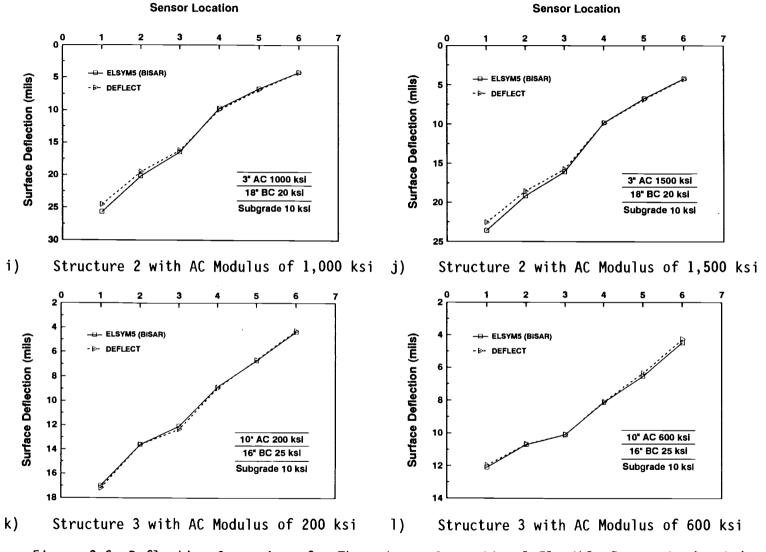
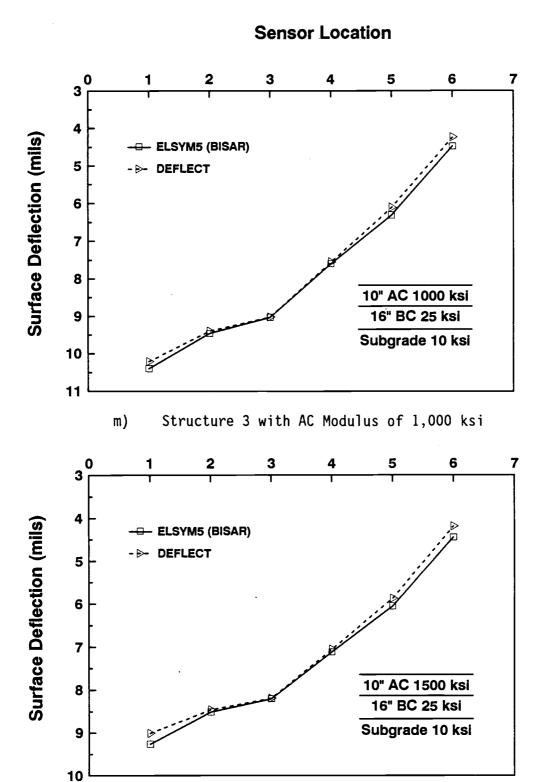



Figure 2.6 Deflection Comparison for Three-Layer Conventional Flexible Pavements (cont.)

n) Structure 3 with AC Modulus of 1,500 ksi

Figure 2.6 Deflection Comparison for Three-Layer Conventional Flexible Pavements (cont.)

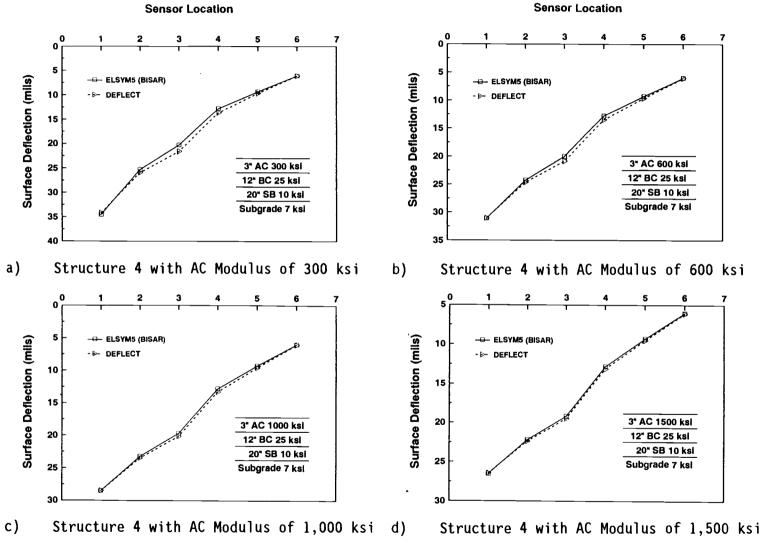
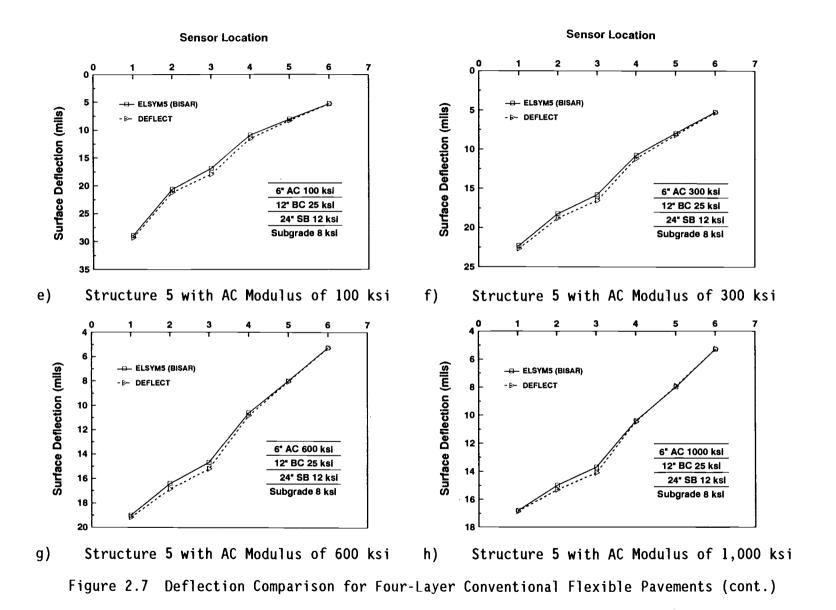



Figure 2.7 Deflection Comparison for Four-Layer Conventional Flexible Pavements

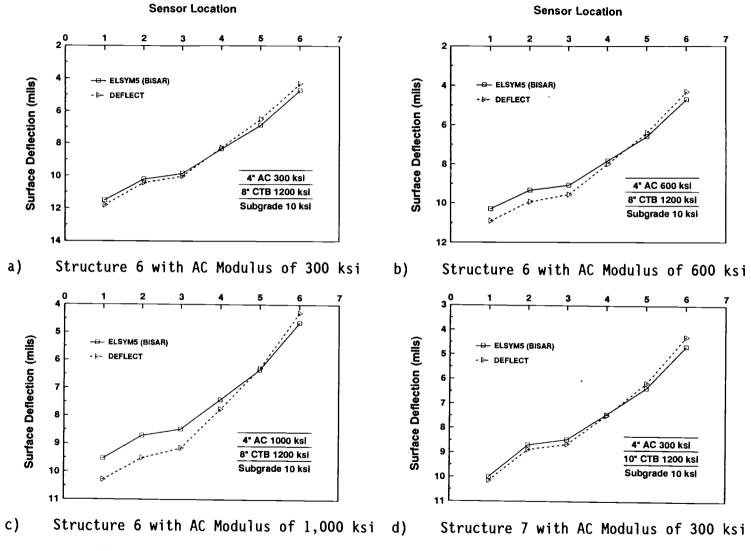
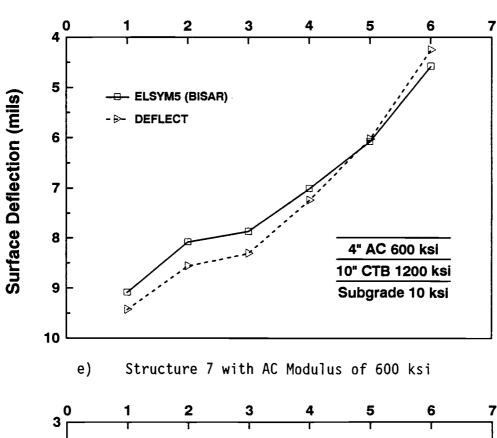



Figure 2.8 Deflection Comparison for Pavements with Cement Treated Base

Sensor Location

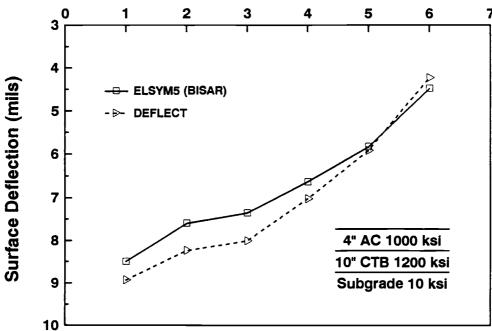


Figure 2.8 Deflection Comparison for Pavements with Cement Treated Base (cont.)

Structure 7 with AC Modulus of 1,000 ksi

f)

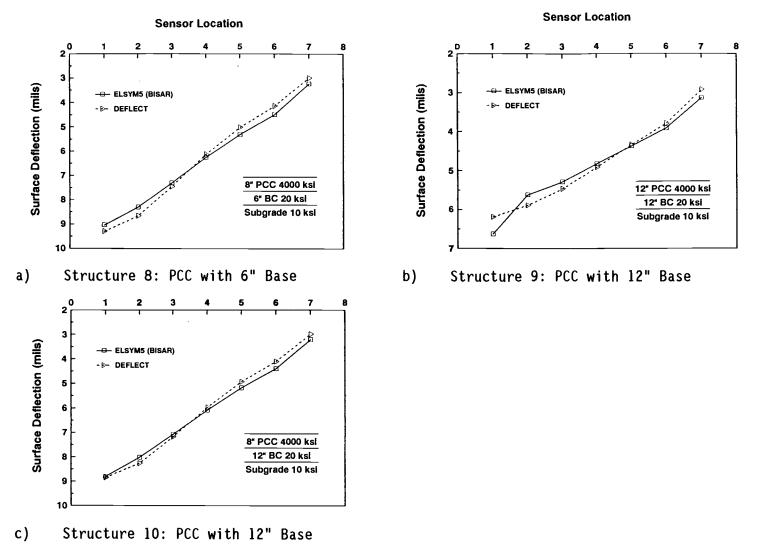


Figure 2.9 Deflection Comparison for Portland Cement Concrete Pavements

conventional and PCC pavements. However, for pavements containing a cement treated base, greater differences are also observed.

2.2 Non-linearity of Pavement Materials

The theory of elasticity provides an exact solution for an elastic body. It gives, at least, an approximation to the real behavior of pavement structures. This is because when a real pavement material is subjected to a load, the deformations are not only elastic but also plastic, viscous and/or visco-elastic. The stress-strain relationship, or stress-strain rate relationship, is usually not linear (Ullidtz, 1987). Many materials are anisotropic, often as a result of the stress condition, and none of the materials are homogeneous, many even consist of discrete particles.

Many researchers (Hicks, 1970; Dunlap, 1966; Seed et al, 1967; Thompson, 1969; and Biarez, 1962) have shown that the resilient properties of pavement materials, especially those coarse-grained and fine-grained, are stress dependent. The resilient modulus of the these materials vary according to stress states within the layers. Numerous researchers indicate that modulus of these materials can be approximated by the following relationships;

for coarse-grained materials (Figure 2.10):

$$M_{R} = k_{1} \theta^{k} 2 \qquad (2-24a)$$

for fine-grained materials (Figure 2.11):

$$M_{R} = k_{1} \sigma_{d}^{k} 2 \qquad (2-24b)$$

where:

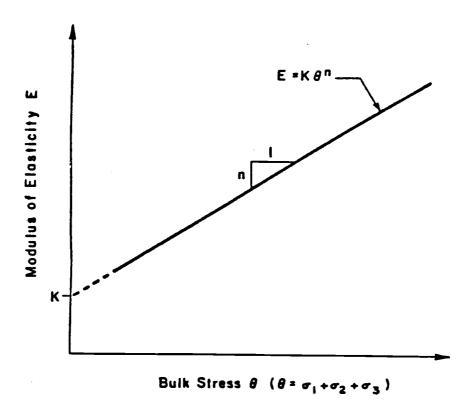


Figure 2.10 Modulus-Bulk Stress Relationship for Coarse-Grained Materials (Mahoney et al, 1983)

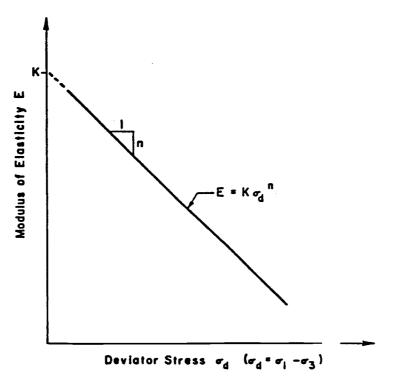


Figure 2.11 Modulus-Bulk Stress Relationship for Fine-Grained Materials (Mahoney et al, 1983)

 M_R = Resilient modulus (psi),

 θ = Bulk stresses (psi),

 σ_{d} = Deviator stress (psi), and

 k_1, k_2 = Regression coefficients depending on materials properties.

Most often, these coefficients are determined through laboratory tests.

2.3 Consideration of Overburden Stresses

Actual stresses in a pavement structure consist of two parts: load induced and overburden stresses. For vertical stresses, the overburden pressure is calculated by multiplying the layer thicknesses by their respective densities and summing these to the desired depth. The total vertical stress, $\sigma_{\rm vt}$, is the sum of the load induced stress, $\sigma_{\rm vl}$, plus overburden pressure:

$$\sigma_{vt} = \sigma_{vl} + \sum_{i=1}^{n} h_i \gamma_i$$
 (2-25)

where:

 h_i = thickness of i-th layer, and γ_i = density of i-th layer.

The total horizontal stress, $\sigma_{\rm ht}$, is a function of the load induced horizontal stress, $\sigma_{\rm hl}$, plus horizontal stress due to overburden pressure:

$$\sigma_{ht} = \sigma_{h1} + K_{0} \sum_{i=1}^{n} h_{i} \gamma_{i}$$
 (2-26)

where:

 K_0 = coefficient of at-rest earth pressure.

It should be noted that these expressions do not include a term for pore water pressure. This is because pore water pressure is a function of ground water table depth. The assumption is made that the ground water table is at depth below the top of the subgrade and therefore does not affect the results.

The coefficient of at-rest earth pressure, K_0 , is a function of the angle of friction, ϕ , for a given soil as determined by a triaxial compression test. For granular soils:

$$K_0 = 1 - \sin\phi \tag{2-27a}$$

and for fine grained soils (Brooker and Ireland, 1965):

$$K_0 = 0.95 - \sin\phi$$
 (2-27b)

Das (1984) reported an approximate range of ϕ from 25 to 38° for normally consolidated clays and from 26 to 46° for sands. Overall, this represents a range of K_0 from 0.28 to 0.56. For most geotechnical work, when triaxial compression test data are not available, a value of 0.5 is assumed for K_0 (Newcomb, 1986).

2.4 Summary

This chapter reviews some background on mechanistic analysis for flexible pavements, including the use of Boussinesq theory, the method of equivalent thicknesses, and layered elastic theory.

Nonlinearity of pavement materials, in particular the granular and fine material, and the stresses induced by the static load, are also briefly described.

Deflections calculated using Boussinesq equations together with

the method of equivalent thicknesses and layered theory are compared. The comparison shows that both Boussinesq equations and elastic layer theory produce similar deflection results for the conventional and PCC pavements. This would indicate that using Boussinesq equations to calculate the surface deflection is a valid approach for these two types of pavements. This comparison also provide theoretical support for the development of an improved backcalculation procedure as is described in Chapter Four. Greater difference in computing surface deflections is also observed for pavements with a cement treated base. This appears to be one of the limitations in using the method of equivalent thicknesses to calculate surface deflections for the pavement structure with a very stiff base layer.

Nonlinearity of coarse grained materials and stresses from overburden materials are also discussed. As is seen in Chapter 4, these discussions are used in an improved backcalculation procedure.

3.0 DETERMINATION OF PAVEMENT MODULI USING NDT METHODS

In mechanistic pavement analysis and evaluation procedures, as discussed in Chapter 2, there are three material parameters involved: modulus of elasticity, Poisson's ratio, and layer thickness. To perform the analysis, the modulus of elasticity must be known. For a pavement structure with multi-layers, the modulus value for each pavement layer must be determined. Two other material parameters must also be known; the Poisson's ratio may be assumed, typical values as given in Table 3.1 may be used and the thickness of each pavement layer may be obtained from construction records or coring pavement samples. Among the three material parameters, two can be easily obtained. However, determination of modulus values for pavement materials requires much more effort. Over the years, tremendous effort has been put in developing methods that are efficient and economical in determining modulus of pavement materials from destructive tests to nondestructive testing. This chapter reviews some of these developments, focusing on determination of pavement layer moduli using nondestructive testing methods.

3.1 Background

Highway and transportation agencies have an increasing responsibility for the maintenance, rehabilitation, and management of highways, particularly with regard to asphaltic concrete pavements. Efficient and economical methods are required for determining the structural properties of existing flexible pavements.

Pavement structural properties may be generally stated in terms

Table 3.1 Typical Poisson's Ratio Values (AASHTO, 1986)

Material	General	Remarks	Typical
Portland cement concrete	0.10-0.20		0.15
Asphalt concrete/ Asphalt treated bases	0.15-0.45	Highly dependent upon temperature; use low value (0.15) for cold temperatures (less than 30°F) and high value (0.45) for warm pavement (120°F plus)	0.35
Cement stabilized bases	0.15-0.30	Degree of cracking in stabilized layer tends to increase value towards 0.30 from sound (crack free) value of 0.15	0.20
Granular base/ subbase	0.30-0.40	Use lower value for crushed material and high value for unprocessed rounded gravel/sands	0.35
Subgrade	0.30-0.50	Value dependent upon type of subgrade soil. For cohesionless soil, use value near 0.30. A value of 0.50 is approached for very plastic clays (cohesive soils)	0.40

of resilient modulus which is a key element in mechanistic pavement analysis and evaluation procedures. For a multi-layer pavement structure, resilient modulus of each pavement layer may be determined by two possible methods: destructive testing and nondestructive testing. Destructive testing is generally done by obtaining cores from an existing pavement and testing them using laboratory equipment. Nondestructive tests, on the other hand, use deflection basin data generated from a non-destructive testing (NDT) device to quantify the response of a pavement structure due to a known load.

Among the different load responses, only surface deflections are easily measurable. Deflection is a basic response of the whole system to the applied load. It is frequently used as an indicator of the load carrying capacity of the pavement. Also, surface deflection measurements are rapid, relatively cheap, and nondestructive.

Nondestructive test results can be used directly with a minimum of analysis, in designing overlay thickness, or they can be used to "backcalculate" material properties using mechanical analyses.

Backcalculation is, to an extent, an inverted design process. If the cross section and properties of the paving materials and support system are known, it is possible to compute the pavement response (stresses, strains, and displacements) for a given loading condition. In the evaluation process, the response of the pavement is observed and the material properties are backcalculated.

Nondestructive testing of asphalt concrete pavements is one of the most useful and cost-effective methods that has been developed by engineers to assist in the management of pavements. With the increased responsibility that highway agencies have for effectively apportioning funds and efficiently designing major rehabilitation projects, the use of nondestructive testing methods has become, or in some cases, can become, an invaluable aid in determining the actual condition of pavement sections in a highway network (Lytton, 1986). The emphasis in the 1986 AASHTO Guide for Design of Pavement Structures (AASHTO, 1986) on the use of the resilient moduli of pavement materials in pavement design and on the use of nondestructive testing in overlay design also suggests that these methods will have increased usage in the future.

The analysis of nondestructive test data to determine pavement layer properties requires the use of mechanistic methods. The principal objective of the mechanistic analysis of nondestructive test data is to produce moduli of the pavement layers for in-service temperatures, and at various load levels. These mechanistic methods assume that the stresses, strains, and deformations in pavements can be modeled as multilayered linear or non-linear elastic structures, as shown in Figure 2.3, resting on linear or non-linear elastic foundations. This capability makes it possible to use a trial-anderror procedure to assume the layer properties, calculate the surface deflection, compare these with the measured deflections as illustrated in Figure 3.1, and repeat the procedure until the calculated and measured deflections are acceptably close. Several such backcalculation methods of analysis have been developed using different assumptions or algorithms concerning the layer material properties, all of which have a trial-and-error procedure as their basis.

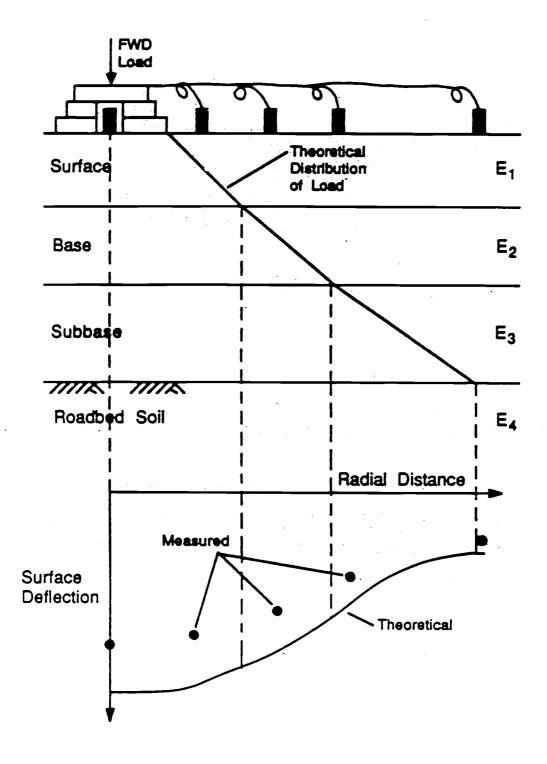


Figure 3.1 Conceptual Illustration of Backcalculation Approach (Mahoney, 1987)

3.2 Some Existing Approaches

There are a number of different analysis methods that can be used to determine the moduli of pavement layers using the deflection data measured with an NDT device. They fall broadly into three categories namely; 1) equivalent thickness methods, 2) layered elastic methods, and 3) finite element methods. Most of the procedures currently in use fall in one of the above categories. Table 3.2 shows some of the methods that can be used to determine the modulus automatically from NDT deflection data.

3.2.1 Equivalent Thickness Methods

This group of methods is based on Odemark's assumption as described in the previous sections. The advantage of the equivalent thickness method is that it greatly simplifies the layered structure so that rapid trial and error calculations of layer moduli can be obtained. The following describes two such programs; ELMOD and SEARCH.

3.2.1.1 <u>ELMOD</u>

The ELMOD program (Evaluation of Layer Moduli and Overlay Design) is a proprietary program of Dynatest Consulting, Inc (Dynatest, Undated). In this program, the method of equivalent thicknesses is used together with Boussinesq's equations (Ullidtz and Stubstad, 1986) to calculate the layer moduli of a pavement structure using load deflection data generated by a FWD. Once the deflection basin has been input, the ELMOD program automatically calculates the modulus for each layer and will also carry out an overlay design for given loading and climatic conditions.

Table 3.2 Summary of Self-Iterative Procedures for Evaluation of Layer Moduli from Deflection Basins for Flexible Pavements

					_
Procedure Title	Source	Pavement Model ¹	Layered Theory Program for Analysis	Number of Deflection Readings ²	Output Layer Modulus
BISDEF	Bush-WES	4-layers	BISAR	Up to 7	E ₁ to E ₄
CHEVDEF	Bush-WES	4-layers	CHEVRON	Up to 4	E_1 to E_4
ELMOD	Dynatest	4-layers	MET	Variable	E_1 to E_4
ELSDEF	Lytton, Roberts & Stoeffels, 1986	4-layers	ELSYM5	Variable	E ₁ to E ₄
EVERCALC	Mahoney, 1987	4-layers	CHEVRON	Variable	E_1 to E_4
FPEDDI	Uddin et al 1985	3 or 4- layers	ELSYM5	Variable	Up to E ₄
ISSEM4	Sharma & Stubstad, 1980	4-layers	ELSYM5	Variable	E ₁ to E ₄
MODCOMP2	Irwin, 1983	8-layers	CHEVRON	Variable	E ₁ to E ₈
MODULUS	Lytton, Roberts & Stoeffels, 1986	3-layers	BISAR, ELSYM5 or CRANLAY	Up to 3	E ₁ to E ₃
OAF	Majidzadeh & Ilves, 1981	3 or 4- layers	ELSYM5	Variable	Up to E ₄
SEARCH	Lytton, Roberts & Stoeffels, 1986	3-layers	MET	Up to 4	E ₁ to E ₃

Subgrade assumed in input.

Other input include thickness, Poisson's ratio, and/or initial, range of modulus.

Two empirical relationships are used in ELMOD, one for predicting cracking of bound layers and one for predicting permanent deformations, and they are of the exponential form:

$$N = KS^{a}$$
 (3-1)

where:

- N = the number of loads to cause a certain deterioration at a stress or strain level,
- S = stress or strain level at the critically loaded position
 in the layer, and

K, a = user-controlled input parameters.

Seasonal variation of the critical stresses and strains are also considered. As many as 12 "seasons" may be specified in the program, and the moduli of all layers (including the subgrade) may be varied with season. The damage caused in each season is calculated and summed using Miner's Hypothesis. If the remaining life of a pavement is insufficient, the program will determine the needed overlay thickness of a given material to satisfy the empirical equation above as specified for each layer in the structure. In addition, the program uses the following model to predict the future functional condition of the pavement (Ullidtz and Stubstad, 1986):

$$N = K * S^a * E^b * (P_I - P_T)^c$$
 (3-2)

where:

N = the number of load repetitions to cause the performance measure to change from P_T to P_T ,

 P_{I} = the initial level,

 P_T = the terminal level, and

S = critical stress or strain,

E = the modulus of the material, and

K,a,b,c = constants.

For bedrock or frozen layers close to the surface, the ELMOD program also contains a subprogram called ELROC which calculates the (equivalent) depth to any hard layer, along with the requisite E-values of the materials above this layer.

In summary, it may be said that ELMOD could be useful for the maintenance and rehabilitation of a road network because of its simplicity. For more complex structures, particularly where the non-linear elastic properties of granular materials are important, Dynatest recommends that other programs be used.

3.2.1.2 SEARCH

The SEARCH program was developed at the Texas Transportation
Institute by Lytton and Michalak (1979). This program uses a pattern
search technique to fit deflection basins with elliptic integral
function-shaped curves. These curves are solutions to the
differential equations used in elastic layered theory. The deflection
equation used in SEARCH is based on work that was done by two
Russians, Vlasov and Leont'ev (1966), who were interested in the
behavior of an elastic layer resting on a rigid incompressible layer.
In addition, a generalized form of Odemark's assumption is used.

The non-linearity of the response of pavement materials to a load is accounted for by letting the coefficients of vertical displacement distribution with depth and radius depend upon the geometry of the pavement. These coefficients were determined by non-linear regression analysis upon displacements that were measured at the Texas Transportation Institute's Pavement Test Facility. The

program searches for the elastic moduli that fits the measured deflection basin to the calculated deflection basin with the least average error. The outputs of the program include the calculated moduli, computed and measured deflections, force applied and the squared error of the fitted basin.

3.2.2 Elastic Layer Methods

In the elastic layer approach, the pavement is usually represented by elastic layers of known thicknesses, as shown in Figure 2.3. The subgrade is assumed to have an infinite depth. When a load of known intensity is applied over a known area, deflections are created at some distance from the center of the loaded area. It is normally assumed that the load is distributed through the pavement system by a truncated zone represented by the dashed line as shown in Figure 3.2. Based on this concept, the deflection d_4 at a distance r_4 from the center of the load can only be due to the elastic compression of layer 4 since layers 1, 2 and 3 are outside the influence zone created by the load as illustrated in Figure 3.2. Likewise, the deflection, d_3 , at distance r_3 is due to compression of layers 3 and 4; the deflection at distance r_2 is due to compression in layers 2, 3 and 4 and the deflection, d_1 is due to the compression of all layers. This general approach is used to backcalculate properties of pavement layers. Examples of some developed backcalculation programs using elastic layer theory are described in the following sections.

3.2.2.1 CHEVDEF/BISDEF

These two programs were developed by the U.S. Army Corps of

Surface Deflections d1 d2 d3 h1, μ1, E1 h2, μ2, E2 h3, μ3, E3 ω μ4, E4

Figure 3.2 Four Layer Elastic Representation of a Pavement System (Lytton and Smith, 1985)

Engineers, Waterways Experiment Station (Bush, 1980). They use a deflection basin from nondestructive testing (NDT) results to predict the elastic moduli of up to four pavement layers. This is accomplished by matching the calculated deflection basin to the measured deflection basin. The basic assumption of the method is that dynamic deflections correspond to those from the layered elastic theory. The CHEVDEF program uses the Chevron (Michelow, 1963) layered elastic program to compute the deflections, stresses and strains of the structure under investigation. While the BISDEF program uses the BISAR program to calculate the surface deflections. The procedures were verified using the Model 2008 Road Rater.

To test the applicability of the deflection basin to the layered elastic analysis, analyses were carried out on test sections using both the BISAR (SHELL, 1972) and CHEVIT (Chevron program with iteration) programs. It was found that there was good agreement between computed and measured deflections when a rigid layer 20 ft from the surface was assumed.

The inputs required for determining layer moduli include the elastic layer pavement characteristics as well as deflection basin data, as described below:

- 1. Poisson's ratio.
- 2. Thickness of each layer,
- 3. Range of allowable modulus,
- 4. Initial estimate of modulus,
- 5. Deflection at a number of sensor locations (ND),
- 6. Maximum acceptable error in deflections, and
- 7. Number of iterations.

The programs, by an iterative process, provide the best fit between measured deflection and computed deflection basins. This is done by determining the set of E's that will minimize the error sum between the computed deflection and measured deflections. A flowchart of the two programs is given in Figure 3.3.

The basic steps in the analysis are described in the following:

- 1. A set of initial modulus values (E $_i$) is assumed and the deflection (Δ) is computed corresponding to the measured deflection (RRD $_j$).
- 2. Each unknown modulus is varied, and a new set of deflections is computed for each variation.
- 3. Using the two computed deflections and the two values of each E, a relationship is determined for each deflection as a function of slope and intercept of the log Modulus versus Deflection curve. Figure 3.4 is an illustration for one deflection and one layer. An equation is developed that defines the slope and intercept for each deflection and each variable layer as follows:

$$\Delta_{j} = A_{ji} + S_{ji} (\log E_{i})$$
 (3-3)

where:

 Δ_{j} = surface deflection at position for E_{i} ,

 $E_i = modulus of layer i,$

A_{ii} = intercept,

 $S_{ii} = slope,$

j = 1 to number of deflections, and

i = 1 to number of variable layers.

4. For multiple deflections and layers, the solution is obtained

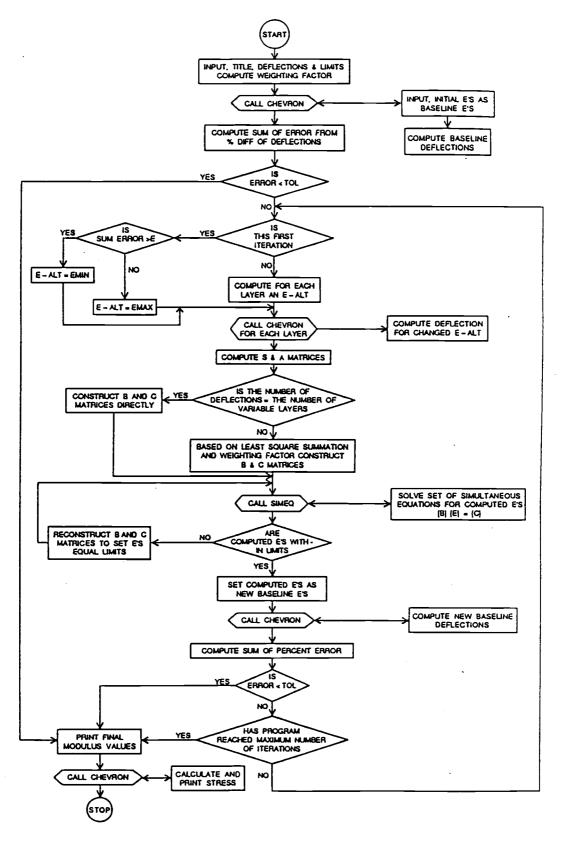


Figure 3.3 CHEVDEF/BISDEF Program Flowchart (Bush, 1980)

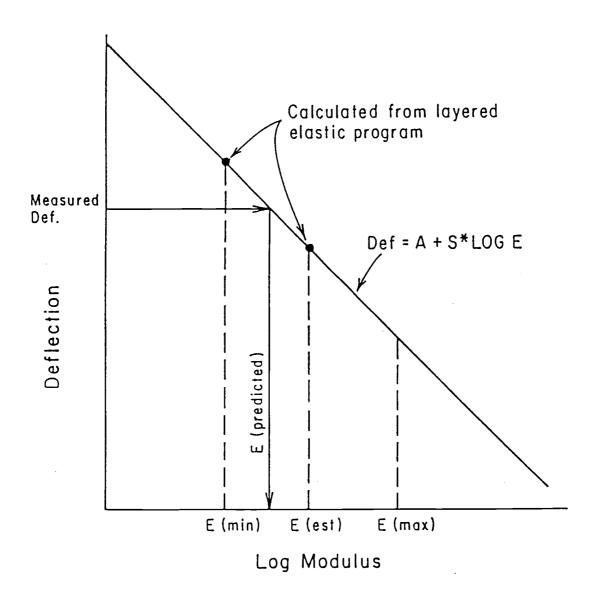


Figure 3.4 Simplified Description of the Deflection Matching Procedure (Bush, 1980)

by developing a set of equations similar to the above:

$$\Delta_{j} = \Delta_{j}^{\circ} + \sum_{i=1}^{NL} S_{ji} \left(\log E_{i} - \log E_{i}^{\circ} \right)$$
(3-4)

where:

 Δ_{j}° = computed deflection at position j for E_{j}° , and NL = number of variable layers.

5. Next the error between the calculated and measured value is determined:

$$RRD_{j} - \Delta_{j} = RRD_{j} - [\Delta_{j} + \sum_{i=1}^{S} S_{ji} (logE_{i} - logE_{i})]$$
 (3-5)

where:

 RRD_{j} = measured deflection value.

6. If the equations derived are put in a matrix form, then the following is obtained:

$$[B][E] = [D] \tag{3-6}$$

where:

D = the constant part of the equation, and

B = a function of S_{ij} and measured deflection RRD_{j} .

7. Solution of the above equations for minimum error cases yields the values of E's. Errors are minimized by weighing deflections so that the smaller deflections away from the applied load contribute equally to those near the load. Normally, three iterations within the program produce a set of modulus values that yield a deflection basin within an average of three percent difference of the measured

deflections. This accuracy appears to be well within the accuracy of most NDT deflection measuring sensors.

The modulus of any surface layer may be assigned or computed. If assigned, the resilient modulus value of the material at the time of testing may be used. The number of layers with unknown modulus values cannot exceed the number of measured deflections. Best results are obtained when not more than three layers are allowed to vary.

The limitations of this approach are mostly related to the use of the elastic layer theory. First, the elastic layer theory assumes a uniform pressure applied to the surface of the pavement. With some deflection test equipment, the load is applied through a rigid circular plate with the center deflection measured on top of that plate. Therefore, a difference does exist in the measured center deflection and the deflection computed from layer elastic procedures at the center of the load area. Use of the linear elastic layer theory also limits the approach in that it cannot directly characterize the non-linear behavior of granular and subgrade materials. The final limitation of this procedure and all deflection curve fitting procedures is that the modulus derived is not unique. It is generally sensitive to the initial assumed seed moduli. especially if these values are drastically different from actual moduli. For gravel roads, the program has difficulty matching the computed to measured deflections even after more than five iterations (Rwebangira, 1987).

A microcomputer version of the programs is available for use on personal computers. Running time for a three layer pavement system with four deflection readings takes about five minutes, on an IBM AT computer with a math-coprocessor. The running time will be substantially increased with more pavement layers and deflections used in backcalculation analysis.

3.2.2.2 **ELSDEF**

The ELSDEF program (Lytton et al., 1986) was modified from the program BISDEF. The modification was performed by Brent Rauhut Engineers and instead of using the BISAR subroutine in BISDEF, ELSYM5 was substituted. The Elastic Layered System computer program (ELSYM5) which was developed at the University of California at Berkeley is used to determine the various component stresses, strains and displacements along with principal values in a three-dimensional ideal elastic-layered system. ELSDEF has been compiled with the Microsoft Fortran Compiler to run on IBM-compatible microcomputers. Two versions are available, the standard version and an 8087 math coprocessor chip version. Running time for a three layer pavement system with four deflection readings takes about eight minutes, on an IBM AT computer with a math-coprocessor. The running time will be significantly increased with more pavement layers and deflections used in backcalculation analysis.

3.2.2.3 MODCOMP2

The MODCOMP2 (Irwin, 1983) program was developed at Cornell University. As with BISDEF and ELSDEF, the purpose of this program is to determine the moduli for pavement layers from surface deflection data. The program specifications include:

 The program is capable of accepting data from several typical non-destructive testing devices such as the Falling Weight Deflectometer, the Road Rater, and the Dynaflect.

- The program can take up to eight surface deflections for each load level, measured at various radial distances from the center of the load.
- 3. The combination of the layers may be linearly elastic or non-linearly stress-strain dependent. For the non-linear case the program presumes an exponential constitutive relationship of the form:

$$E = k1*S^{k2} \tag{3-7}$$

where:

E = modulus of elasticity,

S = stress-strain parameter,

 k_1 = a coefficient, and

 k_2 = an exponent.

- 4. The program is capable of accepting up to six load levels.
- 5. Given three or more different load levels the program is capable of deriving the \mathbf{k}_1 and \mathbf{k}_2 parameters when they are unknown.
- 6. The program can deal with up to eight layers in a pavement system, including the bottom layer which is assumed having an infinite depth. However, good results are obtained for pavement systems having four unknown variables.
- 7. To determine the moduli of deep layers, surface deflections must be measured at relatively large radial distances from the load. Generally the program will be able to determine the moduli for layers which lie at a depth that is no more than two thirds of the distance from the load to the outermost measured deflection.

8. The computed results of the program are sensitive to variations in the layer thickness. The layer thicknesses should be determined to a degree of precision of five percent or better.

MODCOMP2 utilizes the Chevron elastic layer computer program for determining the stresses, strains and deformations in the pavement system. Since there is no closed-form solution for determining layer moduli from surface deflection data, an iterative approach is used in the computations. The procedure is as follows:

- Input a set of "seed" moduli from which surface deflections are computed using the Chevron program.
- The computed deflections are compared to the measured deflections and the seed moduli adjusted as a function of the magnitude of the difference in deflections.
- 3. The modulus for the layer is interpolated to obtain one which agrees with the measured deflection (Figure 3.5).
- 4. This process is repeated for each layer until the agreement between the calculated and measured deflection is within the specified tolerance or until the specified number of iterations has been reached.

Where unknown nonlinear models are to be determined, the program evaluates a modulus for the layer for each of several load levels. The moduli and associated stresses in the layer are then passed to a subroutine which performs a regression analysis to determine the \mathbf{k}_1 and \mathbf{k}_2 parameters. A hypothesis test is performed to assure that the nonlinear model is significant. If the model is not found to be significant, the layer is treated as being linearly elastic for the

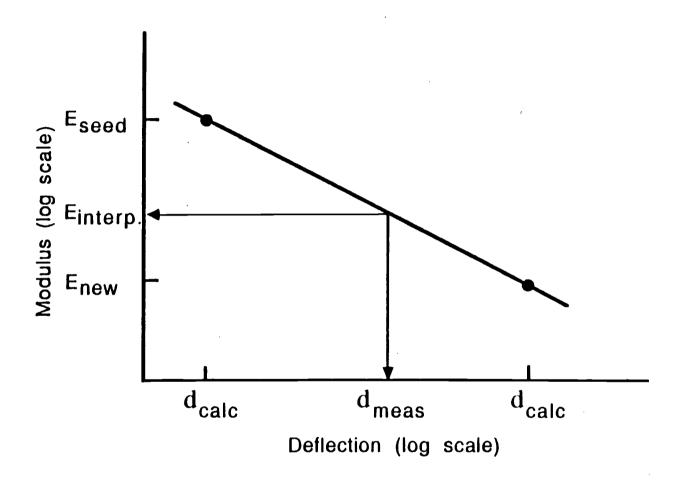


Figure 3.5 Interpolation of Modulus Using Calculated and Measured Deflections in MODCOMP2 Program (Irwin, 1983)

rest of the iteration. If the model is significant, it is used for the remainder of the calculations in the iteration. One of four nonlinear model types can be specified.

Figure 3.6 shows the depth beneath which 95% of the surface deflection occurs. The actual shape and position of this line is a function of the moduli and thicknesses of the pavement layers. Most of the registered surface deflection is attributable to compression that occurs in the layers that are below this line. While the actual location of the line is unknown for a particular problem, in MODCOMP2 its position is approximated by a 34° line. Deflections are assigned to given layers from the set of input data using this line. The deflection that falls closest to the intersection between the upper layer interface and 34° line will generally be used.

Sensitivity analyses with the MODCOMP2 program have found that an extremely small tolerance must be specified in order to get accurate results. In general, a deflection tolerance on the order of 0.5 percent is required. This is recommended to avoid compounding measurement uncertainties with calculation uncertainties. This means a large number of iterations is required to converge to a solution. The actual number varies depending on the number of variable layers and whether a linear or non-linear solution is required.

An initial run of this program was performed to backcalculate pavement layer moduli from FWD deflection basin data. Many difficulties were encountered. Unknown errors appeared for some deflection data for no apparent reason. The procedure for determining the nonlinearity of materials did not work properly, errors or no solutions often occurred.

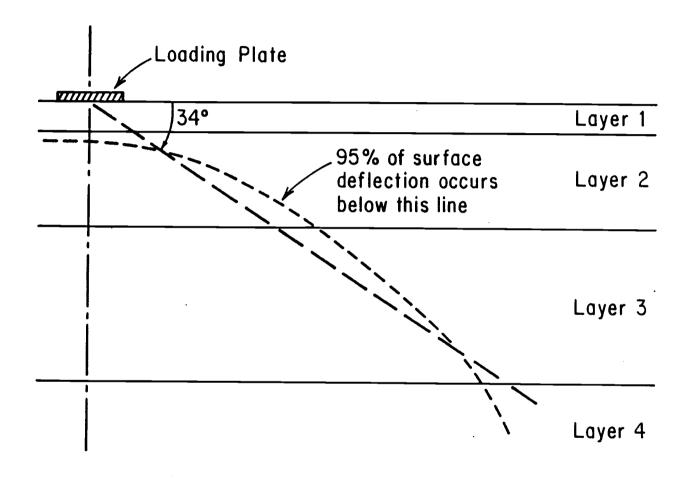


Figure 3.6 Pavement Model Showing Line of 95% Deflection (Irwin, 1983)

3.2.2.4 FPEDDI

FPEDDI (Uddin et al., 1985, Uddin, 1984) is a flexible pavement structural evaluation system using dynamic deflections. It evaluates NDT data to determine in situ pavement moduli and applies relevant corrections for the temperature dependency of the asphalt concrete layer and the nonlinear stress-dependent behavior of granular layers and subgrade. An option for determining the remaining life is also provided. The system utilizes the ELSYM5 computer program for calculating theoretical response of a pavement structure. FPEDDI is designed to handle a three or four layer flexible pavement. Currently, the program is capable of analyzing 50 deflection basins in one run.

The input data required for running the program include the following:

- 1. Number of total deflection basins for analyses.
- 2. Test site and date.
- 3. Station (test location) and name of NDT device.
- 4. Switch for NDT device, number of deflection sensors, peak force, peak stress of NDT device, and radius of loading.
- 5. Options for:
 - a) summary output of basin fitting subroutine,
 - b) remaining life analysis,
 - c) default procedure for creating a rigid layer at a finite depth of subgrade,
 - d) type of base material,
 - e) average unit weight of subgrade soil, and
 - f) surface condition of pavement.

- 6. Measured deflections in mils.
- 7. Number of layers including subgrade layer, pavement test temperature (°F), and design temperature (°F).
- 8. Information about each layer, starting from the top layer. Layer number, thickness, Poisson's ratio, initial seed modulus, maximum allowable modulus, and minimum permissible value of modulus.
- Maximum allowable number of iterations and five types of tolerances for use in the self-iterative basin fitting procedure.
- 10. Indicator for user specified design load configuration, design load per tire, tire pressure, and past traffic in cumulative 18-kip ESAL.

A simplified flow chart of FPEDDI is presented in Figure 3.7. The principal analysis models and methodology are briefly described herein.

The following assumptions are made in order to validate the application of layered elastic theory for use in determining in situ moduli. These are listed below:

- 1. The existing pavement is considered to be a layered elastic system. Therefore, the principle of superposition is valid for calculating response due to more than one load.
- 2. The peak to peak dynamic force of the Dynaflect is modeled as two pseudo-static loads of 500 lb, each uniformly distributed on circular areas (3 in²). The peak dynamic force of the FWD is assumed to equal the static load uniformly distributed on a circular area representing the FWD loading plate.

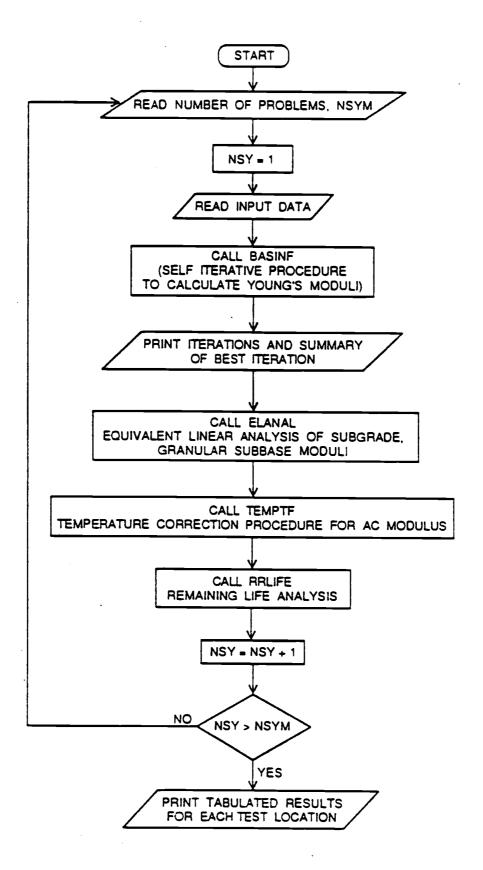


Figure 3.7 Simplified Flowchart of FPEDDI (Uddin, 1984)

- 3. Thickness of each layer is assumed to be known.
- 4. Subgrade is characterized by assigning an average value to its modulus of elasticity.

The methodology of determining the in situ moduli relies on generating theoretical deflection basins with ELSYM5 and changing the initial values of assumed moduli through a procedure of successive corrections until a best fit of the measured basin is obtained. A conceptual treatment of the procedure of successive corrections is presented in the following paragraph.

To start with, deflections are calculated from the initial input or default values of moduli. In the first cycle, the number of iterations is equal to the number of layers in the pavement. In each cycle, the first iteration is made to correct the subgrade modulus. ELSYM5 is then called to calculate theoretical deflections. Corrections are then applied to the modulus of the next upper layer and ELSYM5 is again called to calculate theoretical deflections. This procedure of successive corrections is continued until the moduli of all layers have been checked for corrections. Then, another cycle of iterations begins anew from the subgrade layer. The generalized form of the relationship used in the procedure of successive corrections is given as:

$$ENEW_{i} = E_{i} (1.0 - CORR_{i} * ERRP_{k} * 0.5)$$
 where:

ENEW_j = corrected value of Young's modulus of ith layer,

E = value of Young's modulus of ith layer in the
 previous iteration.

CORR; = correction factor for the ith layer, and

ERRP_k = discrepancy in measured deflection and predicted deflection as percent error.

The discrepancy in measured and theoretical deflections at the furthest sensor can be used to correct the subgrade modulus. The moduli of intermediate layers are related to discrepancies in the deflection of one or more of the intermediate sensors. Finally, the surface layer modulus can be corrected using the discrepancy at the first sensor and Equation (3-8). Only half of the discrepancy is removed in each iteration. A set of three factors is used in the self-iterative procedure; one is for the subgrade modulus, the second is for the intermediate layers, and the third is associated with the surface layer. Iterations are stopped when one of the following criteria is reached: 1) the maximum absolute discrepancy among calculated and measured deflections is equal to or less than the permissible tolerance, 2) any further correction in the modulus value causes the discrepancies in calculated and measured deflections to increase, and 3) the specified number of iterations is achieved.

3.2.2.5 MODULUS

The MODULUS program is an interpolation program that was written by Uzan (Lytton, Roberts & Stoeffels, 1985). It is based on data calculated using an elastic layered program such as BISAR and ELSYM5. Numerous elastic layered problems must be run for the specific layer thicknesses and loading radii for the pavement sections in question. Therefore, MODULUS is recommended for use when a large number of pavements with similar cross-sections are to be run or when an appropriate data base is already available. MODULUS is written in FORTRAN and compiled with the Microsoft FORTRAN compiler for use on

an IBM microcomputer. Two versions are available, one utilizing the presence of an 8087 math-coprocessor chip and the other without. A maximum of three pavement layers, including subgrade, and four sensor locations can be defined in the program.

3.2.2.6 <u>ISSEM4</u>

The ISSEM4 (In Situ Stress-dependent Elastic Moduli, 4 layers maximum) program was developed for use on data generated with the Dynatest FWD by Sharma and Stubstad (1979, 1980). The original concepts used in the program were first published by Ullidtz (1977).

The ISSEM4 program backcalculates resilient modulus values for a layered, non-linear elastic system from the surface deflections generated by a FWD (Dynatest, 1986). The process is iterative, and a set of seed moduli values is used to initiate each program run.

From the deflection basin, a deflection reading which reflects the contribution of the subgrade alone is picked. A minimum of seven deflection readings is advised to obtain a full deflection basin profile. Using the ELSYM5 subprogram, the subgrade modulus value is then obtained when the calculated deflection basin fits the measured deflection basin. This process is then repeated with another deflection reading that is farther away from the load, and another subgrade modulus value obtained. The two moduli are then combined to obtain a composite modulus which can be related to the major principal stress level at or near the surface of the subgrade. Similarly, two modulus values can be found for layer i and so on. The modulus and stress relationship is of the general form:

$$E_i = kl_i * S(1)_i * k^2 i$$
 (3-9)

where:

E; = modulus of the ith layer,

 $S(1)_{i}$ = principal stress at or near surface of layer i, and $k1_{i}$, $k2_{i}$ = constants for layer i.

The underlying layer moduli represented by the above equation are appropriately adjusted to reflect their actual moduli at the deflection position being processed. Finally, the above modulus relationships for each layer below the surface layer are used to calculate the corresponding centerline E-values, and the E-value under the load for the surface layer (E_1) is derived.

The above process describes the first iteration to arrive at a set of modulus versus stress levels relationships for layers 2 to the subgrade, and a set of centerline modulus values for all layers.

Next, the ISSEM4 program uses the matrix of E-values obtained from the first iteration loop to re-initiate the next iteration. The relationships and modulus values derived from the second iteration are then compared with those from the first iteration and if the percentage tolerance is less than the user-specified amount, a satisfactory solution has been obtained for the given deflection basin and structural cross section. If not, a new iteration loop is initiated until the percentage tolerance is met. The better the initial seeded modulus values, the quicker the convergence to a solution.

All values of stress used in the above equation are calculated based on the linear elastic theory. However, the non-linearity of a material will not significantly affect the major principal stress magnitudes in a layered, non-linear elastic system, although the

strains may be affected markedly (Dynatest, 1986).

As with all backcalculation programs, ISSEM4 is not perfect. In particular, there are a few points to look out for:

- 1. If the AC layer is less than 3 in. (75 mm), the modulus value for that layer may be quite unreliable.
- The thickness of layer 2 should be greater than layer 1, or the results may likewise be unreliable.
- 3. Each layer in the pavement should have a decreasing modulus from the top on downwards, unless E_1 is fixed, in which case E_1 may be less than E_2 .
- 4. If a four-layer system is to be analyzed, the results for layer 3 may be inaccurate unless it is constrained. ISSEM4 functions most reliably in two or three-layered systems.
- 5. A unique solution may not always be possible, due to the fact that the models used in the layered-elastic programs are merely an approximation of actual pavement layers conditions.

3.2.3 Finite Element Method

Linear elastic layer assumptions do not consider the stress dependent nature of the modulus of most pavement materials. It has been shown that the modulus of granular materials is a function of the bulk stress and also that the modulus of fine material is a function of the deviator stress. The advantage of using a finite element program is that non-linear stress-strain properties of each pavement layer may be used, and these properties can be changed with stress levels. However, the computing time required to reach a solution using a finite element program is much greater than that

using the linear elastic layer programs.

There are no known automated methods which use a finite element program to calculate layer moduli to match a measured deflection basin. Instead, the approach that is commonly followed is to select a typical pavement type and NDT loading device and make a series of computer runs to determine the surface deflections of that type of pavement as the layer thicknesses and material properties of the layer materials change. An experimental design is used to set the high, low and medium levels of the pavement properties that vary. The surface deflections are then related to thickness and material properties by linear regression analysis. A widely known method utilizing this approach is the set of equations developed by Hoffman and Thompson (1982), as described below.

3.2.3.1 ILLI-CALC

ILLI-CALC (Hoffman & Thompson, 1981, 1982) is a method developed at the University of Illinois and is used to evaluate nonlinear resilient moduli based on the interpretation of the measured surface deflection basin. The method is not a true backcalculation procedure in the sense of the methods mentioned earlier. Instead it utilizes regression equations and nomographs developed from selected pavement types and materials. The regression equations and nomographs are based on the results of the stress-dependent finite element model ILLI-PAVE. Solutions are possible for conventional flexible pavements composed of an asphalt concrete layer with a typical crushed stone base layer and a fine grained subgrade soil.

The method is based on a deflection basin measured with either the Road Rater or the Falling Weight Deflectometer. The Road Rater deflection values are converted to FWD values using the correlations developed during the Illinois study (Hoffman & Thompson, 1981). The deflection basin is characterized as follows;

- 1. D_0 = The maximum deflection at the center of the applied load.
- 2. D_1, D_2, D_3 = Deflections at 1, 2 and 3 ft. from the center of the load plate.
- 3. The deflection basin "area" is defined as follows: Area (in²) = 6 * (1 + $2D_1/D_0$ + $2D_2/D_0$ + D_3/D_0)
- 4. The deflection basin shape factors, F1 and F2, are defined as:

$$F1 = (D_0 - D_2)/D_1$$
 and $F2 = (D_1 - D_3)/D_2$

In the evaluation procedure, Road Rater center deflections (D_0) at 8 kips and 15 Hz are converted to equivalent FWD deflections by using the given correlations between the two devices.

The greatest advantage of this procedure is its ability to characterize the non-linear stress-strain relationships exhibited by most pavement materials. The ILLI-PAVE model is an axisymmetric solid of revolution based on the finite-element method. The model incorporates nonlinear stress-dependent material models and failure criteria for granular materials and fine grained soils. The principal stresses in the granular base and subgrade layers are modified at the end of each iteration so that they do not exceed the strength of the materials as defined by the Mohr-Coulomb theory of failure. Raad and Figueroa (1980) in their study showed that measured and ILLI-PAVE predicted load deformation responses yielded favorable results.

Material characterizations for the ILLI-PAVE model are shown in Table 3.3. The asphalt concrete (AC) material is assumed to be linear elastic with a modulus ranging from 100 to 1400 ksi. Two material models are used to characterize the granular base materials. The general model is of the form:

$$E_{r} = k\theta^{n} \tag{3-10}$$

where:

 E_r = resilient modulus (psi),

 θ = first stress invariant or bulk stress (psi), and

k,n = material constants determined in repetitive triaxial tests.

Four different fine-grained subgrade soil models were used. These models are given in Figure 3.8. The "breaking point" of the curves at a deviator stress of 6 psi corresponds to a resilient modulus denoted E_{ri} . For each of the subgrade chosen, E_{ri} is the main parameter characterizing the nonlinear subgrade soil.

By using the material properties and cross-sections summarized in Table 3.3, ILLI-PAVE deflection basin data were generated for a total of 144 combinations. Using multiple-regression techniques, deflection-basin predictive equations were developed as a function of the four ILLI-PAVE inputs (E_{ac} , E_{ri} , T_{ac} , T_{gr}) for conventional flexible pavements, where;

 E_{ac} = Modulus of asphalt concrete layer,

 E_{ri} = Breaking point of subgrade moduli (Figure 3.8),

 T_{ac} = Thickness of asphalt concrete layer, and

 T_{qr} = Thickness of granular layer.

The crushed stone material model is kept constant. The regression

Table 3.3 Material Characterization for ILLI-PAVE Program (Thompson, 1982)

a) Summary of Material Properties

	Asphalt Concrete		Crushed		Subgrade				
	40°F	70°F	100°F	Stone	Gravel	Stiff	Medium	Soft	V. Soft
Unit Weight (psf)	145.00	145.00	145.00	135.00	135.00	125.00	120.00	115.00	110.0
Lateral Pressure Coeff. at Rest	0.37	0.67	0.85	0.60	0.60	0.82	0.82	0.82	0.82
Poisson's Ratio	0.27	0.40	0.46	0.38	0.38	0.45	0.45	0.45	0.45
Unconfined Compress. Strength (psi)	-	-		-	-	32.80	22.85	12.90	6.21
Deviator Stress Upper limit (psi) Lower limit (psi)				-	-	32.80 2.00	22.85 2.00	12.90 2.00	6.21 2.00
o _{di} (psi)	-	-	-	-	-	6.20	6.20	6.20	6.20
E _{ri} (ksi)	•	-	-	-	-	12.34	7.68	3.02	1.00
E _{failure} (ksi)	-	-	-	4.00	4.00	7.605	4.716	1.827	1.00
E _{const. mod.} (ksi)	1400.00	500.00	100.00	•	•	-	-	-	-
E _{r-model} (psi)	-	-	•	900000.33	$65000^{\circ} \cdot 30$	-	-	-	-
Friction angle (°)	•	-	-	40.0	40.0	0.0	0.0	0.0	0.0
Cohesion (psi)	•	-	-	0.0	0.0	16.4	11.425	6.45	3.105

b) Layer Thickness (inches)

Asphalt Concrete Layer	Granular Base
0.0	4.0
1.5	6.0
3.0	9.0
	12.0

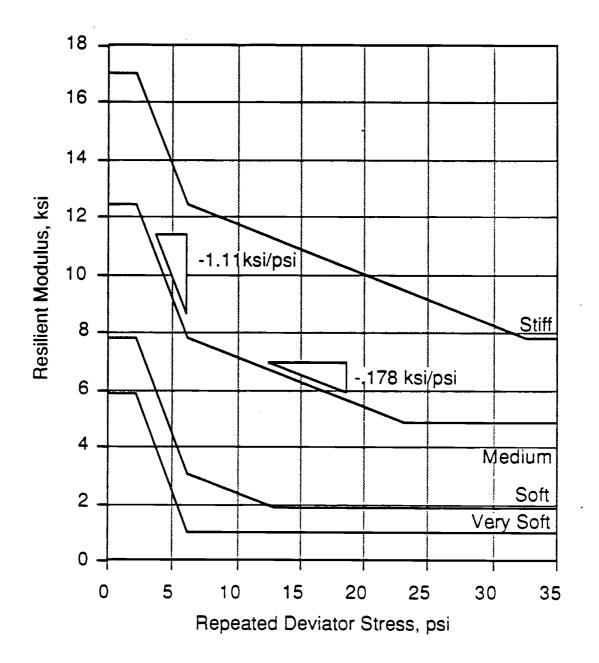


Figure 3.8 Subgrade Soil Material Models for ILLI-PAVE Analysis (Hoffman and Thompson, 1981)

equations show that it is possible to predict ILLI-PAVE deflection-basin parameters with reasonable accuracy. (R^2 ranges from 0.90 to 0.95)

The backcalculation procedure, given that \mathbf{T}_{gr} and \mathbf{T}_{ac} are known, is as follows:

- 1. Determine the mean RR (Road Rater) maximum deflection \mathbf{D}_0 .
- 2. Determine mean RR area (in²).
- 3. Determine mean RR shape factors F1 and F2.
- 4. Determine the predicted FWD values for steps 1-3.
- 5. Determine D_0 for ILLI-PAVE interpretation.
- 6. Using nomograph with T_{ac} and T_{gr} , determine E_{ri} and E_{ac} .
- 7. Check the ratio of measured and computed F1 and F2

The advantages of this method are:

- 1. The deflection-basin predictive models can be used in lieu of expensive and frequently unavailable computer runs.
- 2. The model used to generate the equations takes into account the non-linear behavior of base and subgrade material.

The limitations of this method are:

- The method lacks universality in that it requires the use of specific testing devices, one of which is owned by the Illinois DOT and the other (FWD) which is still to be used on a large scale in the United States.
- 2. The method assumes a subgrade material relationship which might not be typical of subgrade soils in other areas.
- 3. The method assumes one relationship for the unbound aggregate layer, which might not apply to all aggregate materials.
- 4. The model used is only capable of one loading configuration.

5. Because of its reliance on regression equations, this method cannot be transferred to another area without having to go through the development of new regression models.

3.3 <u>Summary</u>

This chapter reviews some of the existing backcalculation procedures for determining pavement layer moduli using NDT methods. The existing procedures can be broadly categorized into three classes: 1) equivalent thicknesses methods, 2) elastic layer methods, and 3) finite element method. Two programs in the category of method of equivalent thicknesses are reviewed. They are ELMOD and SEARCH. Several programs in the group of elastic layer method are also looked into. These programs are CHEVDEF/BISDEF, ELSDEF, MODCOMP2, MODULUS, PFEDDI, and ISSEM4. A backcalculation procedure ILLI-CALC which uses finite element method is also reviewed.

It is difficult to conclude which program is more superior than others. In general, the programs which use the method of equivalent thicknesses take less computing time than both elastic layer theory and finite element method.

A severe limitation in any deflection basin fitting method is the non-uniqueness of the backcalculated moduli. In general, the subgrade modulus can be uniquely related to the farthest sensor deflection readings. However, for a multi-layered pavement structure, more than one combination of moduli which match calculated deflection basin with the measured deflection basin with reasonable error tolerance could be obtained. In addition, a basin matching procedure is generally sensitive to the initial or seed moduli, especially if these values are drastically different from actual moduli.

4.0 DEVELOPMENT OF AN IMPROVED BACKCALCULATION PROGRAM

It has been seen in Chapter 3 that the nondestructive testing of asphalt concrete pavement has become one of the most useful and cost-effective methods for pavement structural evaluation and that the use of deflection measurements for the estimation of pavement layer moduli is rapidly gaining popularity and application.

For these reasons, considerable effort has been applied to develop computer programs that would allow engineers to determine pavement material characteristics from the use of the deflection testing data. Many such computer programs have been developed using different assumptions or algorithms as described in the previous chapter. After reviewing the available programs, one major drawback of each program is its computing efficiency. In the evaluation of a large quantity of deflection data, the requisite of too much computing time could seriously impact the use of these programs in routine design work.

This chapter presents an improved backcalculation program (BOUSDEF). The major advantage of this improved program is its computing speed, which allows engineers to make a quick and initial evaluation of the deflection testing data for the determination of pavement layer moduli. The BOUSDEF program uses the method of equivalent thicknesses and modified Boussinesq equations to compute the surface deflections. The validation of using Boussinesq equations together with the MET to calculate surface deflections is presented in Chapter 2.

4.1 Program Development and Description

4.1.1 Program Flowchart

The BOUSDEF program was developed for determining in-situ moduli of a pavement structure using deflection data through a backcalculation technique. Figure 4.1 shows a flow diagram of the program, while the user's guide can be found in Appendix A.

To start with, the program first reads input data sets which include: 1) NDT load force and load radius, 2) pavement layer thicknesses, 3) Poisson's ratio, 4) minimum, maximum, and initial modulus, 5) density of pavement materials, 6) deflection data (up to seven sensor readings), 7) percent of tolerance to stop the deflection matching process and 8) number of iterations. By calling a subroutine DEFLECTION, the initial modulus and layer thickness information are used to determine the equivalent thicknesses.

Deflections for the given NDT load and load radius are then calculated. The calculated deflections are compared to measured deflections. If the sum of the differences is greater than the tolerance specified by the user, the program will start an iteration by changing the moduli to compute a new set of deflections.

A simplified description of the deflection matching procedure is illustrated in Figure 3.4. This process repeats until the sum of the differences is less than the tolerance or the maximum number of iterations has been reached. This procedure is repeated for each load level until all deflection data are used.

The moduli determined from each set of deflection basin data are used to calculate normal stresses induced by load. Stresses under the deadload of the upper pavement materials are also determined. For the

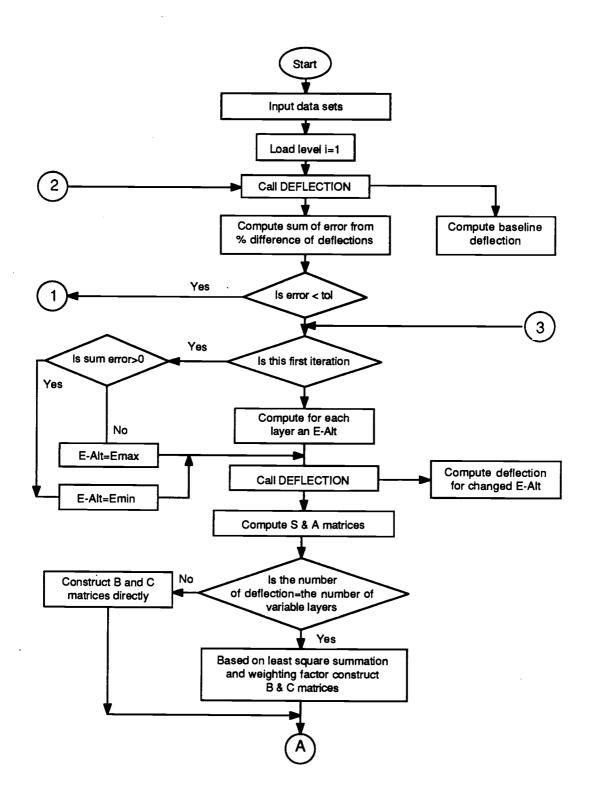


Figure 4.1 Flowchart of the BOUSDEF Program



Figure 4.1 Flowchart of the BOUSDEF Program (cont.)

base layer, bulk stresses in the middle of the layer are calculated. For the subgrade, deviator stresses on the top of subgrade are determined. These stress values and moduli are then regressed to find coefficients \mathbf{k}_1 and \mathbf{k}_2 for both base layer and subgrade.

It should be noted that the backcalculated modulus corresponds to an average condition in the pavement material while the bulk and deviator stresses are calculated under the load at the middle of the base layer and top of the subgrade rather than the entire body of the base and subgrade. Therefore, the nonlinear analysis is limited to the stress condition at a specific location rather than at different depth of base and subgrade. Also, the method of equivalent thicknesses/Boussinesq approach is least reliable in predicting horizontal stresses (Ullidtz, 1980).

4.1.2 Program Output

The program has the capability of determining the following:

- 1. Resilient modulus for each pavement layer.
- Bulk stresses and deviator stresses induced by both load and deadload of upper layer pavement materials.
- 3. Coefficients k_1 and k_2 for base and subgrade materials with a form of relationship shown below:

for coarse-grained materials,

$$M_{R} = k_{1} \theta^{K} 2 \tag{4-1a}$$

or for fine-grained materials

$$M_{R} = k_{1} \sigma_{d}^{k} 2 \tag{4-1b}$$

where:

 M_R = Resilient modulus (psi),

 θ = Bulk stresses (psi),

 σ_d = Deviator stress (psi), and

 k_1, k_2 = Regression coefficients of material properties.

4.1.3 Example

An example is provided to illustrate the use of the program. Table 4.1 summarizes the pavement and deflection test data for the example. The pavement is a conventional flexible structure with an eight-inch asphalt concrete surface, twelve-inch aggregate base and infinite depth of subgrade. Deflection testing was performed using a falling weight deflectometer (FWD) on one short section of a road. Various load levels were applied in order to obtain pavement responses under different stress conditions. At least two load levels of FWD should be used to define the modulus versus stress relationship. However, it is preferable to have several stress conditions so that a more representative relation can be better defined.

By using the BOUSDEF program, resilient modulus for each pavement layer is determined and presented in Table 4.2. Bulk stresses in the middle of the base layer and deviator stresses on the top of subgrade are calculated. Regression coefficients k_1 and k_2 for both base and subgrade are also determined. As can be seen in Table 4.2, both base and subgrade materials appear to have a non-linear property with k_2 = 0.58 for base and -0.13 for subgrade. The results are plotted in Figure 4.2.

4.1.4 <u>Sensitivity to the User Input</u>

The initial moduli specified by the user should have a minor effect on the final backcalculated moduli. This feature would minimize the variation in the final moduli because of the user's input and would result in a more reliable solution. An initial

Table 4.1 Pavement and Deflection Data for the Example

<u> </u>										
Pavement Data										
<u>Layer</u>	Thickness	Poisson's	;	Density						
	(inch)	<u>ratio</u>		(pcf)						
AC	8	0.35		144						
Agg. Base	12	0.40		120						
Subgrade	œ	0.40		100						
<u>Deflection Data</u> Distance to sensor (inch)										
Load	0	8 18	36	58						
(1bs)	Defle	ection Read	ings (mils)						
2789	6.07 4	.04 2.41	1.25	0.91						
3035	6.59 4	.02 2.41	1.37	0.94						
3055	6.55 3	3.89 2.28	1.50	0.94						
6521	12.92 8	3.26 6.47	3.19	1.82						
6644	13.18 8	3.81 7.23	3.53	1.82						
6562	13.82 9	.57 6.47	3.88	1.72						
6521	13.31 8	3.26 7.10	3.53	1.94						
6480	13.05 8	3.48 5.58	3.65	1.93						
6480	13.44 12	2.72 7.48	5.59	3.50						
11442	22.09 1	4.35 11.92	5.81	3.76						
11770	22.48 1	5.44 13.19	6.38	3.96						
11606	23.77 16	5.74 11.79	6.84	3.83						
11442	22.99 14	4.78 12.68	6.84	3.97						
11770	22.35 14	4.78 10.65	6.84	3.91						

Note: Load radius is 5.9 inches

Table 4.2 Summary of Backcalculation Results for the Example

Summary of Non-linear Characteristics of Lower Layers

For base layer: kl = 8069 k2 = 0.58 $(M_R = k_1 \theta^k 2)$ For subgrade: kl = 18687 k2 = -0.13 $(M_R = k_1 \sigma_d^k 2)$

Summary of Moduli and Stresses *

<u>Load (1b) E(1)</u>	<u>E(2)</u>	<u>E(3)</u>	BSTRS	<u>DSTRS</u>
2,789 106,432	26,911	16,377	7.29	5.59
3,035 83,362	38,107	16,870	8.99	5.76
3,055 74,978	49,985	16,606	9.88	5.59
6,480 104,087	48,343	14,961	16.81	7.75
6,480 399,359	17,074	9,462	7.74	5.96
6,521 117,982	39,666	15,393	15.41	8.01
6,521 99,314	54,258	13,863	17,67	7.44
6,562 142,581	24,546	15,015	12.58	8.40
6,644 158,740	29,287	14,770	13.00	7.96
11,442 117,180	53,092	14,045	27.83	10.55
11,442 100,939	69,773	12,518	31.35	9.65
11,606 136,673	35,135	13,533	23.61	11.16
11,770 156,599	41,680	13,376	24.18	10.46
11,770 105,657	69,787	13,774	31.79	10.18
Average 135,994	42,689	14,326		

^{*} Moduli and stresses are in psi.

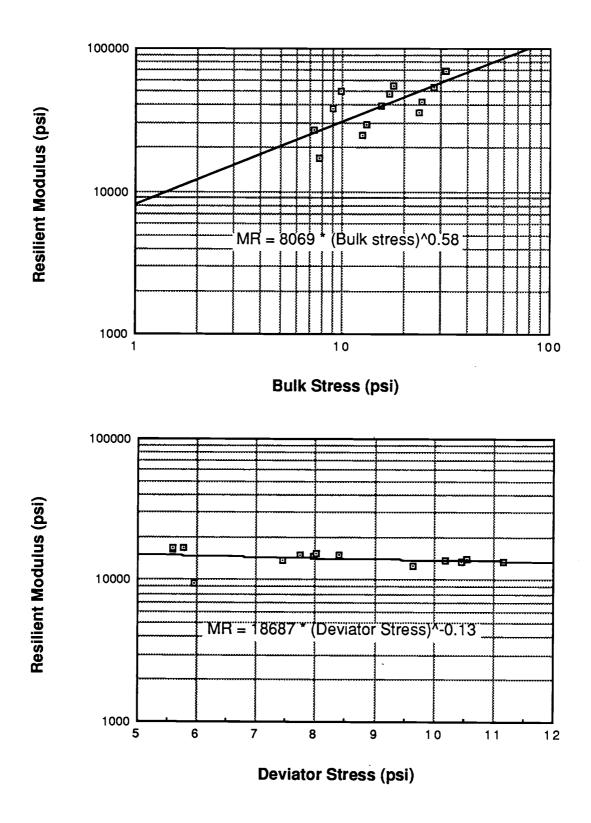


Figure 4.2 Plot of the Example Output

evaluation on the sensitivity to input modulus was performed using data in Table 4.3. The results are summarized in Table 4.4. As indicated, the program provides very similar results regardless of what initial modulus values would be.

4.2 Evaluation of the BOUSDEF Program

To evaluate the BOUSDEF program, three approaches were used: 1) comparing backcalculated moduli with preassumed theoretical values, 2) comparing backcalculated moduli with results from other developed programs, and 3) comparing backcalculated moduli with the laboratory test results. The following discusses the process.

4.2.1 Comparison With Theoretical Values

The BOUSDEF program was evaluated by comparing the backcalculated results with hypothesized theoretical values. This is done by assuming a set of pavement structures with different combination of layer thicknesses and different resilient modulus. Ten pavement structures, as described in Section 2.1.4, are used for the comparison.

Table 4.5 summarizes calculation results. The backcalculated moduli for all structures are very close to those of theoretical values. This would indicate the BOUSDEF program has the capability of backcalculating the layer moduli from known deflections and layer thicknesses and load data. However, it should be noted that the MET is not recommended for pavements with base layers that are very stiff compared to the surface (Ullidtz, 1987) as mentioned earlier. The pavements with CTB layers were included here to illustrate that BOUSDEF is capable of providing an initial evaluation for such pavements. Alternative means of backcalculation should also be carried out to improve this evaluation.

Table 4.3 Data Used for Evaluating Sensitivity on Initial Modulus

LAYER	THICKNESS	POISSON'S RATIO
1	11.0"	0.30
2	15.0"	0.35
3	œ	0.45

MEASURED DEFLECTIONS

DISTANCE FROM LOAD (IN)	0.0	18.0	36.0	60.0
DEFLECTION (MILS)	6.47	4.27	2.34	1.47

LOAD = 14696 pounds

LOADING RADIUS = 9.0 inches

DEVICE = WES Vibrator

(Lytton, 1986)

Table 4.4 Effect of Initial Moduli on Calculated Moduli Using BOUSDEF

S	Initial urface	Moduli Base	(psi) Subgrade	e Su	Calcu Irface	lated Base	Moduli (psi) Subgrade
<u>Varia</u>	tion of s	urface m	<u>ıodulus</u>				
200,0	00 50,	000	25,000	768,422	57,2	28	46,810
300,0	00 50,	000	25,000	768,455	57,2	48	46,803
400,0	00 50,	000	25,000	768,485	57,2	48	46,803
500,0		000	25,000	764,142			46,766
600,0		000	25,000	764,203			46,768
700,0	00 50,	000	25,000	764,250			46,769
800,0	00 50,	000	25,000	772,642			46,914
900,0	00 50,	000	25,000	769,176			46,835
1,000	,000 50,	000	25,000	764,989			46,791
<u>Varia</u>	<u>tion of b</u>	ase modu	<u>llus</u>		ŕ		•
500,0		000	10,000	728,648	56,0	86	46,783
500,0		000	10,000	739,009	54,8	08	46,863
500,0		000	10,000	738,916	54,8	43	46,837
500,0		000	10,000	738,827	54,8	60	46,830
500,0			10,000	738,859	54,8	45	46,842
500,0			10,000	738,985	54,8	13	46,861
500,0			10,000	728,289	56,1	31	46,770
500,0		000	10,000	735,888	54,9	97	47,021
500,0		000	10,000	740,119	54,5	60	47,021
500,0	00 100	,000	10,000	739,447	54,5	40	46,980
Varia	tion of s	ubgrade	modulus				
500,0			10,000	738,916	54,8	43	46,837
500,0			20,000	735,079	55,4		46,847
500,0			30,000	728,013	56,1		46,759
500,0			40,000	743,267	54,0		46,998
500,0			50,000	733,450	55,2		47,091
500,0			60,000	736,109	53,8		48,243
500,0			70,000	735,286	54,4		47,642
500,0			80,000	735,390	54,3		47,767
500,0			90,000	735,356	54,2		47,814
500,0			100,000	739,984	53,8		47,754

Table 4.5 Comparison Between Theoretical and Backcalculated Modulus Values *

Pavement Structure 1	2	Theore	etical Values 5	1 2	3	Backca icu lated	Va lues
Three Lever Co							
Three-Layer Co	nvent 10	<u>na i</u>					
7" AC 100.	0 300.0	600.0 1				602.7 1022.1 1	551.1
12" Agg. 25. Subgrade 10.		25.0	25.0 25.0			25.1 24.6	24.4
Subgrade 10.	0 10.0	10.0	10.0 10.0	10.0	10.1	9.9 9.9	9.9
3" AC 100.0			000.0 1500.0	100.7	310.1	594.3 1017.2 1	538.2
18" Agg. 20.0			20.0 20.0	20.0			19.8
Subgrade 10.0	10.0	10.0	10.0 10.0	10.0	9.9	9.9 9.9	9.9
		1000.0	1500.0	202.6	615.5	1017.5 1566.5	
	25.0	25.0	25.0	31.1	31.9	31.6 30.8	
Subgrade 10.0	10.0	10.0	10.0	10.0	9.9	10.1 9.9	
Four-Layer Conv	vention	<u>a l</u>					
3" AC 300.0	600.0	1000.0	1500.0	357.3	638.8	3 1024.9 1493.5	
12" Base 25.0	25.0	25.0	25.0		24.3	24.6 25.0	
20" Subbs 10.0		10.0	10.0	9.7		10.0 10.0	
Subgrade 7.0	7.0	7.0	7.0	7.2	7.0	7.0 7.0	
	300.0		1000.0	101.3	298.5	615.6 1027.3	
12" Base 25.0	25.0			24.9	25.1	24.0 23.9	
24" Subbs 12.0 Subgrade 8.0	12.0 8.0	12.0 8.0		12.0 8.0	12.0 8.0	12.1 12.1 8.0 8.0	
Cement Treated			0.0	0.0	0.0	0.0 0.0	
48 40 000 0							
4" AC 300.0 8" CTB 1200.0	600.0	1000.0 1200.0				1158.5	
Subgrade 10.0	10.0	1200.0		1216.1	1205.4	l 1107.7) 10.0	
J	20.0	20.0		10.0	10.0	10.0	
4" AC 300.0	600.0	1000.0		292.7		1081.8	
10" CTB 1200.0 Subgrade 10.0		1200.0				1081.8	
subgraue 10.0	10.0	10.0		10.0	10.0	10.0	
<u>PCC</u>							
8" PCC 4000.0				4172.8			
6" Base 20.0				21.2			
Subgrade 10.0				9.9			
8" PCC 4000.0				4028.6			
12" Base 20.0				19.8			
Subgrade 10.0				9.9			
12" PCC 4000.0				4015.5			
12" Base 20.0				20.0			
Subgrade 10.0				10.0			

^{*} Moduli are in ksi.

4.2.2 Comparison With Other Developed Programs

The BOUSDEF program was compared with four developed programs. The programs used are: BISDEF (Bush, 1985), CHEVDEF (Bush, 1980), ELSDEF (Lytton, 1986), and MODCOMP2 (Irwin, 1983). Pavement data and deflection test data used for the comparison are presented in Tables 4.6 and 4.7, respectively. The computed layer moduli for the various programs are presented in Table 4.8. Results from BOUSDEF seem to be very compatible with those from the other developed programs.

One major advantage of the BOUSDEF program over the other programs is its computation speed. In using a deflection data set presented in Table 4.3, the BOUSDEF program takes only three seconds to find the solution, using an IBM-AT microcomputer with a math-coprocessor. The same data would take significantly longer time using other programs, as can be seen in Table 4.9. This feature makes use of the program to evaluate a large amount of deflection data easy and possible.

BOUSDEF is a user-friendly program. The program has a built-in data file creating and editing routine. This significantly eases the data input and edit process and avoids possible calculation errors due to improper data entry.

4.2.3 Comparison With Laboratory Test Results

The BOUSDEF program was also evaluated by comparing the backcalculated results with the resilient modulus tested in the laboratory. This was accomplished by selecting actual projects in the state of Oregon. The general procedures followed are described below:

1. Select project sites for evaluation.

Table 4.6 Pavement Data Used for Backcalculation

Pavement L	ayer Material	Thickness (inch)	Poisson's Ratio
1	Asphalt Concrete	9.0	0.35
2	Aggregate Base	16.0	0.40
3	Soil Subgrade	80	0.40

Table 4.7 Deflection Data Used for Backcalculation

Test Site	FWD Load (1b)	Deflection @ Sensor Location 0" 8" 18" 30" 60"
1	11,729	22.99 16.74 12.81 9.81 4.57
2	11,647	27.39 21.68 14.96 11.06 5.33
3	11,442	20.54 17.28 12.30 9.69 4.90
4	11,073	24.16 20.33 14.08 10.83 5.77
5	11,688	16.28 13.70 8.88 6.95 3.92

Note: FWD Load Radius is 5.9 inches.

Table 4.8 Summary of Backcalculation Results *

Test Site	Program	AC Surface	Aggregate Base	Subgrade
1	BISDEF	194.0	25.1	11.5
	BOUSDEF	163.0	25.7	11.2
	CHEVDEF	175.8	24.7	12.1
	ELSDEF	200.0	23.6	11.7
	MODCOMP2	162.8	33.4	10.5
2	BISDEF	173.7	15.4	10.5
	BOUSDEF	157.7	15.2	9.9
	CHEVDEF	150.7	16.6	10.5
	ELSDEF	174.0	15.2	10.4
	MODCOMP2	131.5	27.1	9.3
3	BISDEF	288.3	20.1	11.2
	BOUSDEF	262.2	19.3	10.9
	CHEVDEF	257.8	23.3	11.3
	ELSDEF	286.9	20.0	11.3
	MODCOMP2	184.0	50.6	9.3
4	BISDEF	206.4	19.0	9.4
	BOUSDEF	196.5	17.0	9.2
	CHEVDEF	182.3	21.7	9.2
	ELSDEF	205.7	18.9	9.4
	MODCOMP2	431.8	1.0	N/S**
5	BISDEF	259.1	37.7	14.8
	BOUSDEF	266.0	30.5	14.8
	CHEVDEF	260.9	36.4	15.0
	ELSDEF	258.2	37.2	14.8
	MODCOMP2	165.8	89.7	12.9

^{*} Moduli are in ksi.

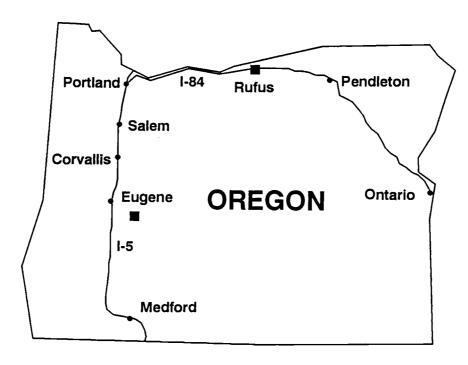
^{**} N/S = No Solution.

Table 4.9 Comparison on Computing Time and Backcalculated Results

PROGRAM	COMPUTE	COMPUTED LAYER MODULI (KSI)				
PROGRAM	LAYER 1	LAYER 2	LAYER 3	TIME (SECONDS)		
BISDEF*	685.7	55.4	48.8	285		
BOUSDEF	764.1	57.7	46.8	3		
CHEVDEF	527.8	28.6	29.9	327		
ELSDEF	632.1	84.7	34.2	485		
MODCOMP2	772.5	35.9	53.0	495		

^{*}Contains proprietary BISAR program

- 2. For selected sites, perform deflection test using FWD.
- Obtain samples from same road section where deflections were measured.
- 4. Backcalculate pavement layer moduli from deflection basin data using the BOUSDEF program.
- 5. Perform laboratory tests on samples.
- 6. Compare results from backcalculated and laboratory tests. The following paragraphs discuss this process in more detail.


4.2.3.1 Selection of Project Sites

Two project sites in the state of Oregon were selected for evaluating the BOUSDEF program. These two projects are typical conventional pavement structures consisting of an asphalt concrete surface layer over an aggregate base and subgrade. Figure 4.3 shows the location of the two projects. Table 4.10 summarizes the pavement parameters of the two projects.

4.2.3.2 Deflection Test

Deflection tests were performed on selected project sites using KUAB Falling Weight Deflectometer (FWD). For the Rufus-Quinton project, the deflection tests were conducted using the FWD owned by the Oregon State Highway Division. For the Centennial Boulevard project, the FWD tests were performed using equipment (KUAB FWD) owned by Pavement Services Inc. of Portland.

The KUAB FWD is trailer-mounted and towed by a 3/4-ton van. The impulse force is created by dropping a set of two weights from different heights. By varying the drop height, the load at the pavement surface was varied from approximately 3,000 to 15,000 lbs. A smooth load pulse similar to that created by a moving wheel load is

■ Selected Projects

Figure 4.3 Location of Selected Project Sites

Table 4.10 Summary of Selected Project Sites

Project Location	Pavement Structure	Layer Thickness *
Rufus-Quinton Section Columbia River Hwy No.2 MP110.8 - MP124.0	AC Aggregate	6.8" 18.0"
Centennial Boulevard Coburg - I-5 Eugene	AC Aggregate	4.0" 16.0

^{*} Average thickness

generated by using the two-mass system (Tholen, 1980; Tholen et al, 1985). Surface deflections were measured with seismic transducers that are lowered automatically with the loading plate. The sensor locations may be adjusted for the job requirement. For the Rufus-Quinton project, the sensors were set at 0", 8", 12", 24", 36", and 58". For the Centennial Boulevard project, the sensors were set at 0", 12", 24", 36", 60", and 99". There is no standard procedure for where the sensors should be located. However, it is important to have one sensor which is located far enough away from the load to obtain the pavement response from the subgrade.

The actual Rufus-Quinton project is thirteen-mile long. For the purpose of comparing the results between backcalculated results and the laboratory test, an one-mile long section was selected. The deflections were measured at 250-ft intervals. Three FWD load levels, ranging from approximately 3,000 to 12,000 lbs, were applied at each test spot. Deflections were recorded with a personal computer. Pavement temperatures at time of testing were also recorded. The detailed output may be found in Appendix B-1.

The Centennial Boulevard project is approximately 1.3 mile long. The deflections were measured at 200-ft intervals. Two load levels at each test location were applied ranging from 8,000 to 14,000 lbs. Recorded data included test locations, pavement temperature, load applied and deflections at each sensor location. The detailed output may be found in Appendix B-2.

4.2.3.3 Materials Sampling

Best efforts were made to acquire material samples from the project sites. Pavement materials sampled at both sites included

asphalt concrete cores and base aggregates. Subgrade soil were not obtained because of difficulties in obtaining undisturbed soil samples.

Eight four-inch diameter asphalt concrete cores and two bags of aggregates were obtained for the Rufus-Quinton project. The same amount of asphalt concrete cores and four bags of aggregates were received from the Centennial Boulevard project.

4.2.3.4 Backcalculation of Layer Moduli

The BOUSDEF program was used to backcalculate the moduli for each pavement layer from the deflection data. Raw data, without correcting for temperature, were used calculate the pavement moduli at time of testing. Table 4.11 summarizes the backcalculated results for the Rufus-Quinton project. Table 4.12 presents the results for the Centennial Boulevard project. Figures 4.4 and 4.5 illustrate the backcalculated results for Rufus-Quinton, both eastbound and westbound directions. Figures 4.6 to 4.9 present the backcalculation results for Centennial Boulevard project.

4.2.3.5 <u>Laboratory Tests on Samples</u>

Laboratory tests were performed on the actual pavement samples for modulus. For the AC cores, the diametral test (ASTM D-4123) was followed. For the aggregate base, the triaxial test (AASHTO T-274) was used. For the purpose of testing, the AC core samples were trimmed to a height of approximately 1.5 to 2.5 inches, depending on the thickness of the top lift.

The AC cores were tested at three temperatures: 42°F, 73°F, and 95°F, to determine the influence of the temperature on the modulus of the asphalt concrete. An H&V diametral testing system (H&V Materials

Table 4.11 Backcalculated MR for the Rufus-Quinton Project (EB)

Station	Load (1b)	AC (psi)	Base (psi)	Subgrade (psi)	Bulk stress	Deviator stress
	3,199 6,398 11,934 3,158 11,934 3,158 11,811 3,726 2,603 11,852 3,603 11,852 2,833 6,603 11,521 2,839 12,016 6,480 11,770 6,489 11,770 6,489 11,770 6,489 11,770 6,489 11,770 6,489 11,770 6,489 11,770 6,489 11,770 6,895 11,893 11,893 6,685 11,893 12,180 6,685 11,893 12,180 6,685 11,817 12,180 6,685 11,975 13,117 6,644 3,117 6,685 12,016 erage	302,658 1,257,591 1,268,846 509,816 173,076 610,269 492,083 259,183 267,678 324,543 353,341 709,493 176,235 266,598 161,216 363,088 243,075 386,336 287,092 267,245 244,209 332,561 153,986 326,903 526,235 253,026 329,310 346,906 254,005 376,159 319,198 193,967 571,760 620,775 230,240 497,033 809,831 572,716 620,775 230,240 473,480 924,348 570,617 380,178	87,337 14,555 30,659 34,371 48,314 33,422 26,058 35,664 20,038 10,351 12,658 20,729 36,564 17,354 27,748 13,665 11,365 11,665 11,365 11,665 11	14,847 23,882 22,929 24,822 19,659 33,890 30,547 25,635 31,654 24,949 29,877 31,552 25,635 15,768 31,867 39,568 31,867 39,568 31,867 29,930 24,739 29,930 24,739 29,930 24,916 23,789 21,7668 22,739 24,916 23,889 37,691 31,862 25,889 37,691 31,861 31,862 26,278	8.42 6.07 12.67 6.11 25.80 5.86 10.41 6.39 12.86 20.52 6.93 9.51 15.89 15.89 15.89 15.94 16.06 19.06 1	4.27 7.03 9.21 5.13 11.51 5.48 8.63 8.48 13.67 5.80 8.53 19.86 11.15 6.82 9.30 6.86 10.04 19.57 9.30 6.49 13.54 9.40 13.53 12.39 7.80 11.20 6.49 14.61 15.93 15.93 6.63 6.63 7.77 10.19 5.83 6.63 6.63 6.63 6.63 6.63 6.63 6.63 6
ST	υ ————	248,301 	20,108	6,585 —————		

Table 4.11 Backcalculated MR for the Rufus-Quinton Project (WB) (cont.)

Station	Load (1b)	AC (psi)	Base (psi)	Subgrade (psi)	Bulk stress	Deviator stress
1 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 7 7 7 7 8 8 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 12	3,240 6,521 12,057 3,158 6,685 11,975 3,199 6,480 12,385 3,076 6,808 12,057 12,303 6,849 12,303 6,844 12,221 3,199 6,767 12,303 6,767 12,098 3,076 6,844 12,221 3,199 6,767 12,344 3,158 6,768 12,139 6,767 12,344 3,158 6,768 12,139 6,768 12,139 6,768 12,139 6,768 12,139 6,768 12,139 12,	340,993 666,413 882,720 399,510 359,843 450,584 491,324 657,531 885,645 396,075 377,011 516,346 365,477 601,823 706,802 810,706,802 810,706,802 810,706,802 810,706,802 810,746 401,272 546,963 467,614 569,319 464,359 806,569 244,263 428,882 637,104 209,438 351,754 426,199 366,653 503,474 652,950 419,703 400,430 594,077 785,417 643,400 513,236 674,652 588,250 555,632 257,551 374,314	12,043 13,607 18,052 15,647 22,021 25,414 22,562 19,015 26,625 21,830 27,770 29,416 31,656 21,182 25,741 63,150 77,331 20,879 18,504 11,154 14,296 21,485 15,690 18,792 13,400 28,711 23,843 16,485 15,690 18,792 13,400 28,711 23,851 21,672 25,325 31,587 37,071 23,851 21,672 25,587 37,071 23,851 21,633	31,568 24,690 24,040 25,811 20,414 21,510 25,731 23,856 24,856 22,765 32,505 32,505 33,820 26,374 36,374 36,374 37,265 20,264 18,057 19,262 21,249 21,249 21,265 21,265 21,267 22,745 21,265 21,265 21,267 22,745 21,265 21,265 22,765 22,765 22,765 22,765 21,265 21	4.94 6.59 10.29 4.98 9.06 14.10 5.193 11.27 9.64 12.39 16.32 7.39 16.32 7.39 16.32 7.64 17.99 10.14 7.61 10.37 11.59 10.37 11.59 10.37 11.59 10.37 11.69 12.37 11.69 12.37 11.69 12.37 13.39 14.59 15.38 15.38 15.38 15.38 16.	6.51 7.68 9.94 5.83 7.49 10.12 5.49 7.72 9.38 7.77 11.29 8.17 12.98 5.70 10.88 11.29 10.68 11.50 10.50
Av ST	erage D	536,115 172,033	23,978 11,600	27,071 5,792		

Table 4.12 Backcalculated Modulus for Centennial Project EASTBOUND FROM LOCATION 200 TO 4000

	oad AC	Base	Subgrade	Bulk	Deviator	
(11	o) (psi) (psi)	(psi)	Stress	Stress	
200 8	,821 1,192	,686 35,389	10,619	13.2	2 6.3	
	,269 1,074			22.3		
		,337 33,174		17.3		
		,833 50,940		31.6		
		,242 33,644		16.7	7.2	
		,348 44,397		27.1		
		,632 37,849		16.4		
	,153 1,140	,917 30,466	10,620	19.5		
		,562 21,917	7 10,991	13.6		
		,469 29,774	10,578	22.9	9.8	
		,800 29,463	12,337	17.2	2 8.3	
		,530 38,190	11,842	27.6		
		,179 23,206		14.3		
		,636 28,086		22.7		
		,318 24,634		16.2		
		,199 32,533		27.9		
		,492 28,801		16.2		
		,923 36,522		27.4		
		,118 32,653		13.9		
		,243 44,998		25.3		
		,446 20,870		14.4		
		,890 25,928		22.9	10.0	
		,194 20,354 ,264 29,181	12,914	13.2	8.3	
				23.5		
		,228 25,826 ,552 33,947		14.1		
		,872 16,507		23.7 14.4		
		,096 19,922		22.4		
		,011 33,459		15.1		
		,411 49,657		26.9		
		,052 31,485		13.3		
		,432 42,288		22.3		
		,606 30,334	17,083	15.1		
,		,669 46,799		28.4		
		,593 26,030		14.1		
		,510 27,606		20.7		
		,722 47,255		17.4		
		,078 68,918	•	30.9		
•		,828 40,382		14.6		
		,647 60,128		27.6		
. AVER	AGE GOO	,259 34,454	15 004			
STD		,239 34,434 ,872 11,032				
		,0,2 11,032	0,501			

Table 4.12 Backcalculated Modulus for Centennial Project EASTBOUND FROM LOCATION 4200 TO 7000 (cont.)

Station	Load (1b)	AC (psi)	Base (psi)	Subgrade (psi)	Bulk Stress	Deviator Stress
4200	8,648	733,522	44,104	19,073	15.6	7.9
4200	14,124	604,680	67,282	19,012	28.2	10.1
4400	8,648	578,668	45,958	17,889	16.7	7.9
4400	14,096	524,224	64,597	17,972	28.8	10.2
4600	8,532	676,229	42,831	10,781	15.6	6.5
4600	13,951	680,957	56,206	10,770	26.1	8.2
4800	8,561	858,319	47,075	18,196	15.1	7.4
4800	14,009	479,265	77,869	18,668	30.3	9.9
5000	8,561	1,054,069	45,675	15,151	14.3	6.8
5000	14,038	1,102,778	60,950	15,907	23.7	8.8
5200	8,619	1,154,214	48,720	15,489	14.2	6.7
5200	14,096	872,094	74,352	15,633	26.5	8.6
5400	8,792	1,185,558	26,500	13,516	12.1	7.2
5400	13,980	995,197	36,552	12,831	21.1	9.2
5600	8,676	918,746	35,486	15,219	14.0	7.4
5600	14,096	777,984	49,862	14,379	24.7	9.4
5800	8,590	623,626	54,045	9,928	16.9	6.1
5800	14,038	758,515	64,979	10,062	26.4	7.6
6000	8,561	1,287,120	34,744	10,354	12.5	6.1
6000	14,009	1,256,945	42,694	10,303	20.7	7.8
6200	8,705	274,332	57,679	13,491	20.5	7.4
6200	14,124	420,490	61,997	13,297	29.9	9.4
6400	8,648	917,159	34,679	12,716	13.9	6.9
6400	14,096	868,758	48,870	11,850	23.9	8.5
6600	8,619	648,294	46,532	8,220	16.2	5.9
6600	14,009	528,858	56,056	8,724	27.7	7.8
7000	8,734	633,344	36,933	13,752	15.6	7.5
7000	14,124	547,457	50,960	12,784	27.1	9.4
	AVERAGE	784,336	50,507	13,785		
	STD	259,845	12,384	3,177		

Table 4.12 Backcalculated Modulus for Centennial Project WESTBOUND FROM LOCATION 6900 TO 2700 (cont.)

		<u> </u>				
Station	Load	AC	Base	Subgrade	Bulk	Deviator
	(1b)	(psi)	(psi)	(psi)	Stress	Stress
6000	9 705	E40 202	06 040	16 100	10.4	
6900 6900	8,705	549,293	86,849	16,120	19.4	6.6
6700	14,182	505,870	110,433	16,033	32.4	8.4
6700	8,705	311,068	82,928	13,055	21.3	6.6
6500	14,182	393,500	93,740	12,641	33.0	8.2
6500	8,648	604,949	32,495	16,002	15.2	8.1
6300	14,096	588,483	41,301	15,352	25.3	10.6
6300	8,676	567,289	33,848	23,922	15.6	9.5
6100	14,182	620,694	42,163	24,353	25.2	12.8
6100	8,676	361,100	34,291	20,897	17.4	9.6
5900	14,153	351,517	43,914	21,888	29.0	13.2
	8,648	720,605	28,884	16,867	14.1	8.3
5900 5700	14,096	703,185	34,819	15,889	23.1	10.9
5700 5700	8,590	484,190	48,198	14,289	17.4	7.3
5700 5500	14,096	338,452	67,074	14,020	31.7	9.6
5500	8,648	874,525	48,054	21,573	15.3	7.9
5500 5100	14,211	624,465	74,903	21,459	28.9	10.3
5100	8,676	774,804	57,989	16,033	16.5	6.9
5100	14,153	776,411	70,602	16,035	27.0	9.0
4900	8,648	706,615	47,964	16,225	16.1	7.3
4900	14,124	604,709	66,351	16,016	28.1	9.4
4700	8,619	795,417	61,138	15,027	16.5	6.6
4700	14,182	724,053	78,649	15,175	28.2	8.6
4500	8,619	902,274	25,244	12,929	12.7	7.4
4500	14,153	786,905	35,892	13,110	22.7	9.8
3700	8,619	530,502	44,536	20,145	16.8	8.4
3700	14,153	736,687	49,111	20,853	25.1	11.2
3500	8,619	1,263,788	22,439	26,557	11.1	9.4
3500	14,124	1,182,953	29,387	25,427	19.0	12.7
3300	8,561	920,650	18,988	15,307	11.6	8.3
3300	14,096	1,080,032	22,397	15,850	17.9	11.2
3100	8,532	1,277,277	16,303	17,317	10.0	8.4
3100	14,038	1,418,923	21,726	15,827	16.2	10.6
2900	8,561	1,202,374	22,991	10,836	11.3	6.8
2900	14,067	1,388,525	25,879	10,491	17.3	8.6
2700	8,590	983,678	25,082	14,033	12.3	7.5
2700	14,096	938,722	35,231	13,158	21.4	9.5
,	AVERAGE	766,513	46,716	16,964		
	STD	298,557	23,418	4,008		
	- · -					

Table 4.12 Backcalculated Modulus for Centennial Project WESTBOUND FROM LOCATION 2500 TO 100 (cont.)

Station	Load (1b)	AC (psi)	Base (psi)	Subgrade (psi)	Bulk Stress	Deviator Stress	
2500	8,561	696,691	30,281	17,457	14.3	8.3	
2500	14,038	508,317	47,227	16,663	26.9	10.8	
2100	8,532	485,466	34,521	11,670	16.1	7.3	
2100	14,009	512,793	40,242	10,969	25.9	9.4	
1900	8,676	1,070,951	27,632	13,658	12.5	7.3	
1900		1,192,106	32,396	12,922	19.6	9.3	
1700	8,561	640,110	37,988	10,675	15.4	6.7	
1700	14,067	337,358	59,504	10,487	30.9	8.8	
1500	8,619	525,731	39,137	14,395	16.4	7.6	
1500	14,038	295,918	64,070	13,622	32.1	9.8	
1300	8,648	201,822	38,022	13,687	19.9		
1300	14,067	201,950	51,226	12,949	33.1	10.7	
1100	8,590	618,645	28,924	15,765	14.6		
1100		625,296	36,771	14,750	24.1	10.6	
900	8,648	337,715	44,163	14,580	18.6	7.9	
900	14,096	353,862	54,817	13,782	30.2		
700	8,648	1,102,055	27,453	17,099	12.3		
700	14,182	840,150	41,470	15,911	23.2		
500	8,648	142,658	49,225	15,638	22.1	8.7	
500	14,096	226,980	65,390	14,904	33.9		
299	8,648	271,970	70,620	11,342	21.1	6.6	
299	14,067	306,764	85,021	10,933	33.6		
100	8,705	522,935	74,902	12,136	19.0	6.2	
100	14,153	871,873	69,792	12,004	26.2	7.9	
	AVERAGE	537,088	47,950	13,667			
	STD	293,206	16,195	2,061			

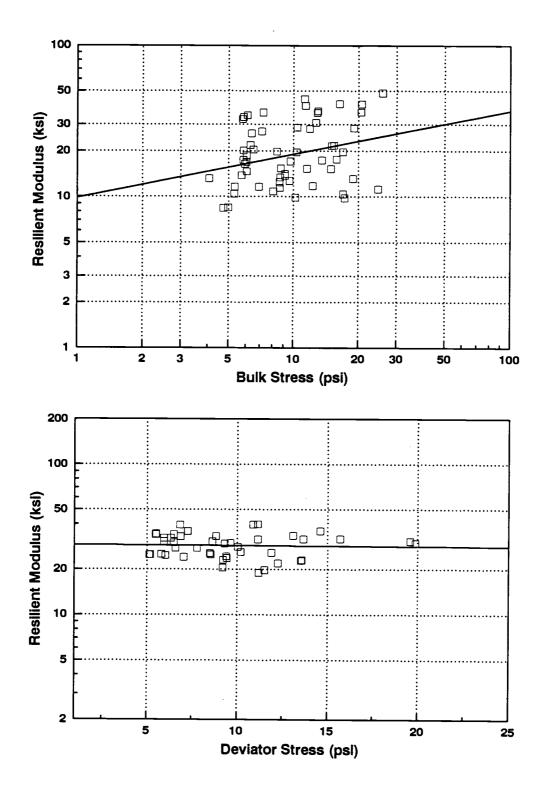


Figure 4.4 Backcalculated Base and Subgrade Moduli for the Rufus-Quinton Project (Eastbound)

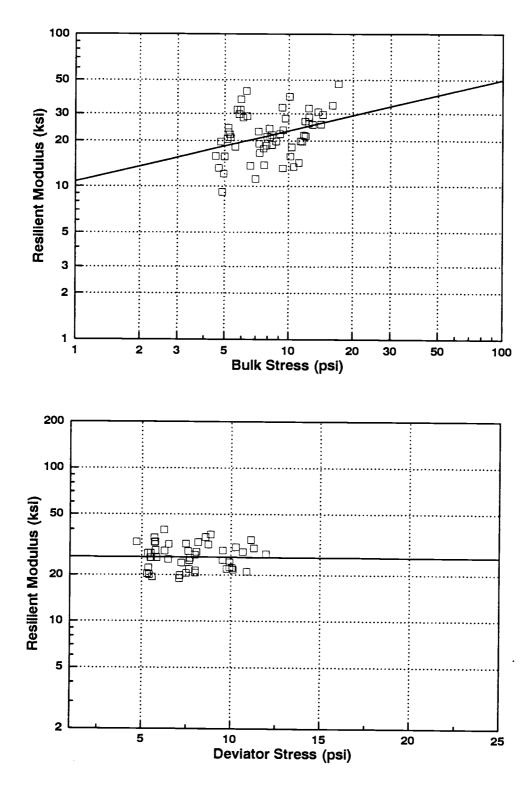


Figure 4.5 Backcalculated Base and Subgrade Moduli for the Rufus-Quinton Project (Westbound)

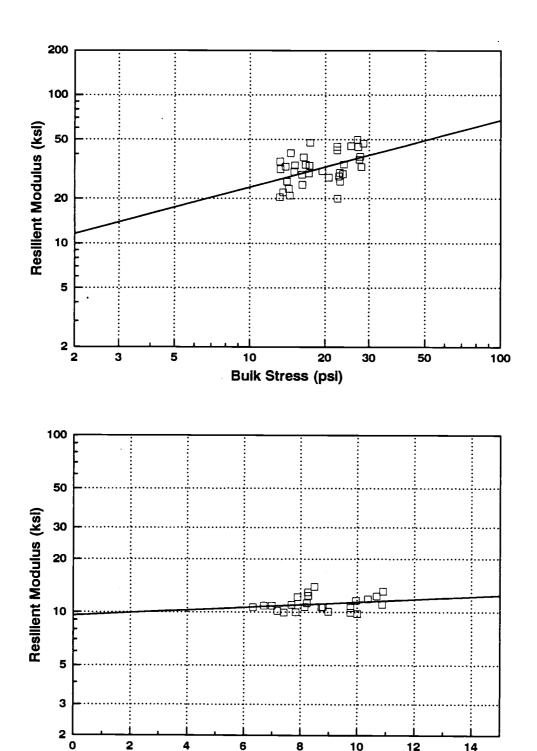


Figure 4.6 Backcalculated Base and Subgrade Moduli for the Centennial Blvd Project (Station 200 to 400, Eastbound)

Deviator Stress (psi)

12

14

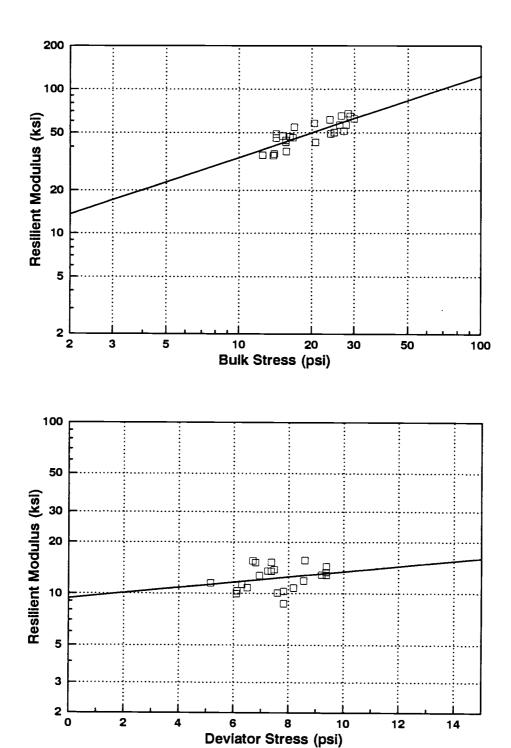


Figure 4.7 Backcalculated Base and Subgrade Moduli for the Centennial Blvd Project (Station 4200 to 7000, Eastbound)

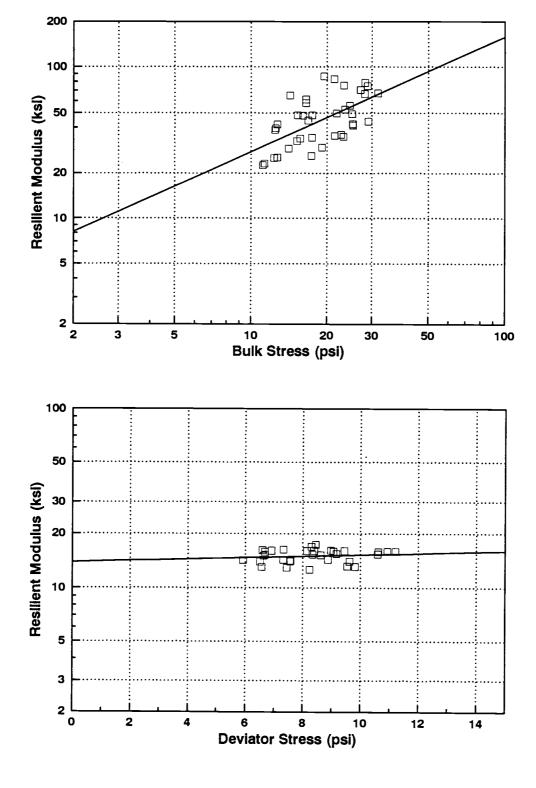


Figure 4.8 Backcalculated Base and Subgrade Moduli for the Centennial Blvd Project (Station 6900 to 2700, Westbound)

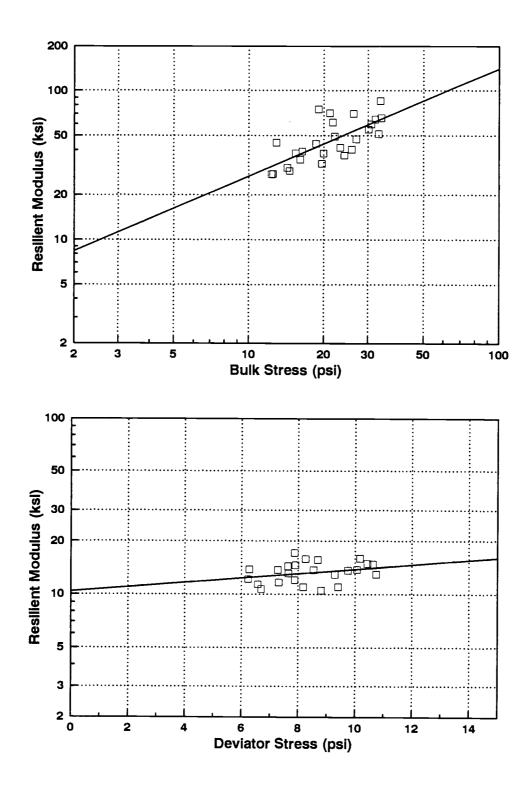


Figure 4.9 Backcalculated Base and Subgrade Moduli for the Centennial Blvd Project (Station 2500 to 100, Westbound)

Research and Development, Inc., 1989) was employed for the test. The H&V testing system can be used for both diametral and triaxial resilient modulus tests. For the diametral test, a temperature chamber was used for the control of the temperature. The set up of the system is illustrated in Figures 4.10 and 4.11. The data acquisition and modulus calculation were accomplished by a microcomputer.

Table 4.13 summarizes the test results for the Rufus-Quinton project, while results for the Centennial Boulevard project are presented in Table 4.14. Actual temperatures at time of testing were recorded.

The triaxial resilient modulus test on aggregate was performed by following AASHTO T-274. For the Rufus-Quinton project, the moisture-density relationship for the aggregate was determined by following the AASHTO T-99 method C. The results are summarized in Table 4.15, and plotted in Figure 4.12. The samples for the resilient modulus test were prepared according to the moisture-density relationship determined in the laboratory. Two samples were made. Both were prepared at optimum moisture content. The actual moisture content at time of testing was slightly less than the optimum. The actual moisture content and dry density were measured right after the triaxial test and are summarized in Table 4.16. Resilient modulus test results for both samples are presented in Table 4.17 and plotted in Figure 4.13. The test results from this project indicate an important fact that the resilient modulus values seem to be proportional to the sample density achieved in the process of sample preparation.

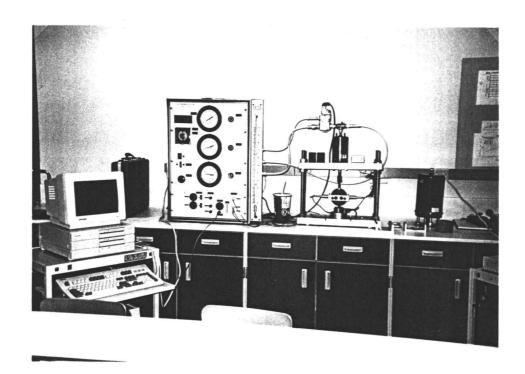


Figure 4.10 H&V Diametral Testing System

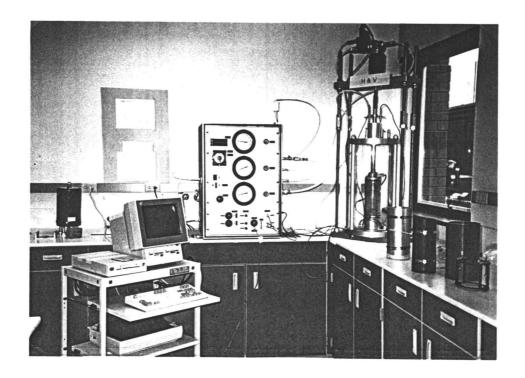


Figure 4.11 H&V Triaxial Testing System

Table 4.13 Summary of AC Resilient Modulus Test for Rufus-Quinton Project

Sample No.		Testing Temperature	
	42 °F	73 °F	95 °F
1	2,521,010	476,677	183,420
1 2 3 4 5 6 7	2,886,430	834,289	515,580
3	3,563,450	727,813	538,010
4	2,316,240	848,096	600,630
5	2,733,340	624,261	261,870
6	3,441,240	718,098	403,840
7	2,535,850	811,157	559,790
8	2,054,130	653,839	158,980
Average	2,756,461	711,779	402,765
Standard Dev.	491,013	117,289	166,666

Table 4.14 Summary of AC Resilient Modulus Test for Centennial Boulevard Project

Sample ID.	Testing Temperature					
	42 °F	73 °F	95 °F			
C2	2,874,350	1,634,000	792,140			
C4	2,673,370	1,295,980	469,040			
C5	2,897,700	1,724,670	841,080			
C6	2,262,320	1,372,710	515,250			
C7	2,723,470	1,383,540	696,050			
B1	2,369,490	1,482,210	602,180			
B3	2,793,980	1,678,240	714,690			
B4	2,794,100	1,754,010	752,380			
Average	2,673,598	1,540,670	672,851			
Standard Dev.	218,990	167,032	123,752			

Table 4.15 Moisture-Density Relationship for the Rufus-Quinton Project

later Content (%)	Wet Density (pcf)	Dry Density (pcf)
3.8	131.48	126.67
4.5	136.11	130.24
5.2	143.69	136.59
6.2	144.60	136.16

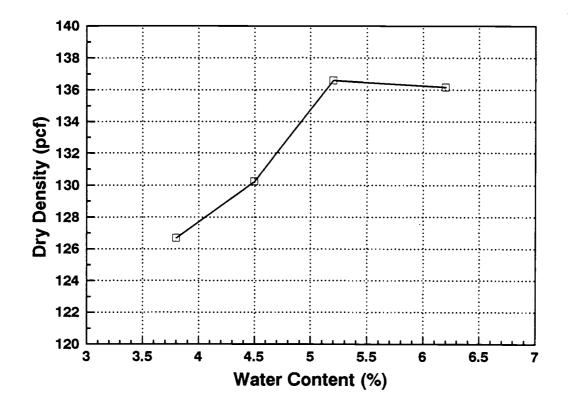


Figure 4.12 Moisture-Density Relationship for the Rufus-Quinton Project

Table 4.16	Density	Results	for	the	Rufus-Quinton	Pro.iect
------------	---------	---------	-----	-----	---------------	----------

Sample ID	Optimum	Maximum Dry	Actual	Actual Dry	Relative to Max
	Moisture (%)	Density (pcf)	Moisture (%)	Density (pcf)	Density (%)
Α	5.2	136.59	5.09	136.33	99.8
В	5.2	136.59	5.00	131.29	96.1

Table 4.17 Summary of Base Material Resilient Modulus Test for the Rufus Project

No.	Confining	Sam	ple A	Sam	ple B
	Stresses	Bulk S	Modulus	Bulk S	Modulus
	(psi)	(psi)	(ksi)	(psi)	(ksi)
1	20	61.7	23.6	61.2	18.0
2 3 4 5 6 7 8 9	20	62.5	28.4	62.1	18.4
3	20	64.7	32.8	65.3	19.7
4	20	69.6	37.9	70.3	20.5
5	20	74.7	40.7	74.4	21.5
6	20	80.0	42.9	79.6	22.4
7	15	46.8	26.2	46.5	16.2
8	15	47.3	29.5	47.3	16.4
	15	49.6	31.0	50.1	17.3
10	15	54.3	33.0	54.9	17.9
11	15	59.6	36.5	59.4	19.1
12	15	64.3	39.4	64.4	20.5
13	10	31.6	27.3	31.4	14.2
14	10	32.1	27.1	32.4	14.5
15	10	34.5	27.6	34.8	15.3
16	10	39.6	30.2	39.7	16.0
17	10	44.4	33.5	44.3	17.2
18	5	16.6	23.6	16.0	12.5
19	5	17.2	23.6	17.0	12.6
20	5	20.0	24.5	19.4	13.4
21	5	24.2	27.3	24.6	14.3
22	5	29.3	30.6	29.2	15.7
23	1	4.6	21.0	4.1	11.2
24	1	5.5	21.2	4.8	11.4
25	1	7.7	22.2	7.8	12.4
26	1	9.7	23.8	9.8	12.7
27	1	12.7	26.2	12.4	13.2

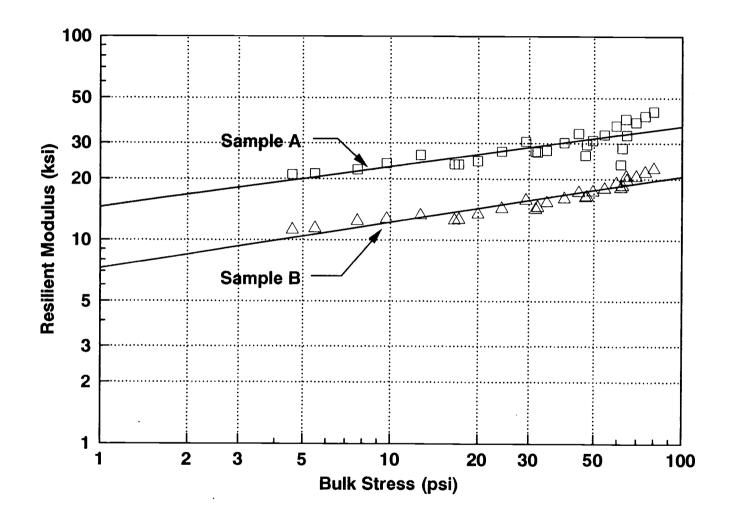


Figure 4.13 Laboratory Tested Moduli for the Rufus-Quinton Project

For the Centennial Boulevard project, the samples were prepared at the field moisture condition. The aggregate materials were delivered to the laboratory directly from the field, and samples were made immediately. Four samples were made and similar compaction efforts were applied to each sample. A potential problem with this type of preparation is that the samples may not be compacted to the maximum density or to the predetermined density. Table 4.18 presents the moisture content and density results that were measured immediately after the modulus testing, while the resilient modulus test results are summarized in Table 4.19 and plotted in Figure 4.14. The test results from this project seem to indicate that for similar materials, the relationship between the modulus and stress would be similar if the density variations are not substantial.

4.2.3.6 Comparing Backcalculated and Lab Tested Results

Figures 4.15 and 4.16 provide a comparison of the asphalt concrete layer material between the backcalculated and lab tested results, for both Rufus-Quinton and Centennial Blvd projects. The comparison on the two selected projects shows that for asphalt concrete, the backcalculated moduli are generally lower than the lab tested and also seem to be less susceptible to temperature variation. In the same temperature range, the difference can be expected to be 20 to 30 percent. For the aggregate base material, the backcalculated modulus slope (k2) is slightly higher than lab tested, as can be seen in Figures 4.17 and 4.18, for both projects respectively. However, in the range of bulk stress from 7 psi to 20 psi where actual pavement stresses generally fall, a favorable comparison can be found.

Table 4.18 Water Content and Density at Time of Testing for Centennial Project

Sample ID Density	Water Content	Wet Density	Dry
	(%)	(pcf)	(pcf)
A	5.33	131.61	124.95
В	4.79	132.01	125.98
С	7.72	131.23	121.82
D	6.68	132.81	124.28
D	6.68	132.81	

Table 4.19 Summary of Base Material Resilient Modulus Test for Centennial Blvd Project

No.	Confin. Stress	Sample A Bulk S	Modulus	Sample B Bulk S	Modulus	Sample C Bulk S	Modulus	Sample D Bulk S	Modulus
1	20		41.1	61.4	45.8	61.5	40.1	61.3	47.3
2 3 4 5 6 7	20		40.9	62.4	45.8	62.8	39.1	62.6	46.7
3	20		40.9	65.4	46.7	65.9	38.2	65.5	46.5
4	20	70.1	41.5	70.0		70.1	39.1	70.3	47.4
5	20	74.5	42.5	74.5	49.2	74.8	40.6	74.5	48.3
6	20	79.4	43.6	79.4	49.7	79.9	41.9	79.8	49.2
7	15	46.0	36.6	46.2	42.6	46.3	36.7	46.3	42.1
8 9	15	47.3	36.3	47.2	42.5	47.4	36.2	47.2	41.6
9	15	49.9	36.3	49.8	42.3	50.8	35.1	50.1	41.8
10	15	54.9	37.6	54.8	43.4	55.2	36.4	54.8	42.8
11	15	59.3	39.1	59.4	44.8	59.7	37.8	59.1	44.3
12	15	64.2	40.8	64.2	46.1	64.4	39.5	64.5	45.5
13	10	31.3	33.5	31.3	38.8	31.3	34.1	31.1	38.6
14	10	32.6	33.3	32.6	37.9	32.8	32.9	32.1	38.1
15	10	34.4		35.1	38.0	35.3	32.5	34.9	38.0
16	10	39.2		40.0	39.3	39.9	33.6	39.5	39.2
17	10	43.7	36.2	44.4	41.0	44.4	35.4	44.2	41.0
18	10	16.3	29.9	16.0	34.7	16.2	31.5	16.4	34.5
19	5	17.4	29.5	17.0	34.1	17.6	30.3	17.1	34.3
20	5	20.0	30.0	19.6	33.9	20.2	29.8	20.3	34.6
21	5	25.1	32.1	24.4	35.5	24.4	31.2	24.8	36.2
22	5	29.4	34.3	28.8	37.5	29.1	33.6	29.0	37.7
23	1	4.2	28.3	4.3	31.2	4.1	28.7	4.2	31.0
24	1	4.9	27.6	5.1	31.0	4.9	28.7	5.1	31.1
25	1	8.0	27.9	7.5	30.8	8.1	27.9	8.0	31.3
26	1	9.9	28.7	9.4	31.5	9.6	28.5	9.5	31.9
27	1	13.3	30.2	12.6	32.9	12.5	29.9	12.9	33.5

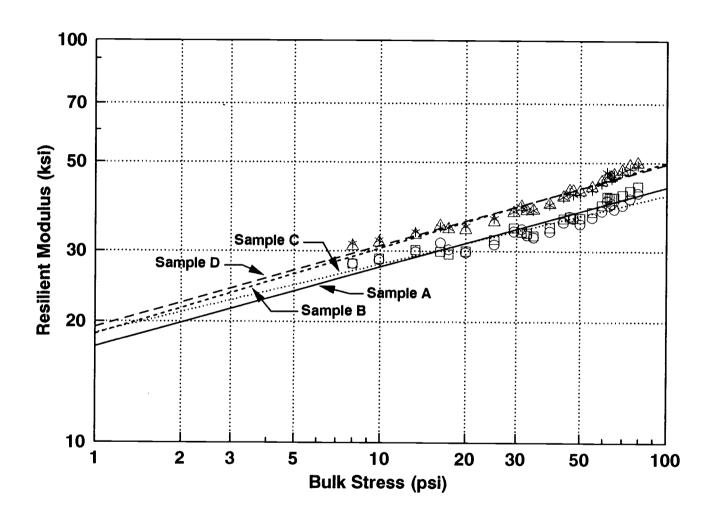


Figure 4.14 Laboratory Tested Moduli for the Centennial Blvd Project

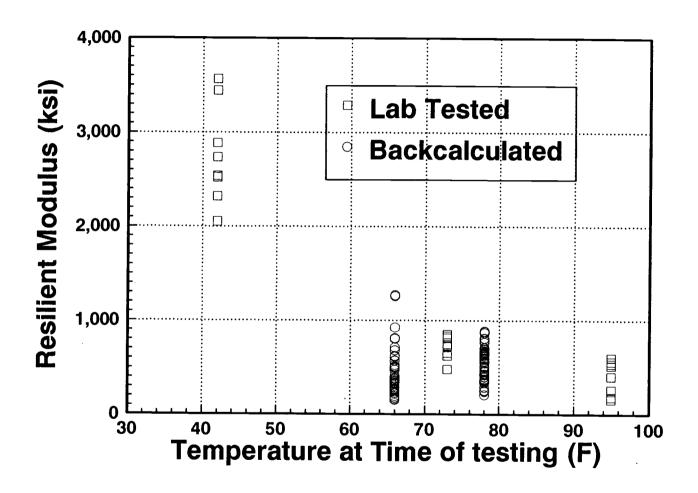


Figure 4.15 Comparison Between Laboratory Tested and Backcalculated AC Moduli for the Rufus-Quinton Project

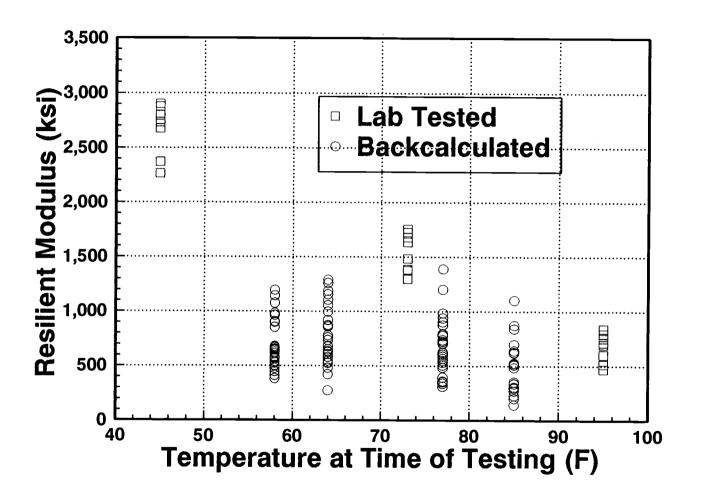


Figure 4.16 Comparison Between Laboratory Tested and Backcalculated AC Moduli for the Centennial Blvd Project

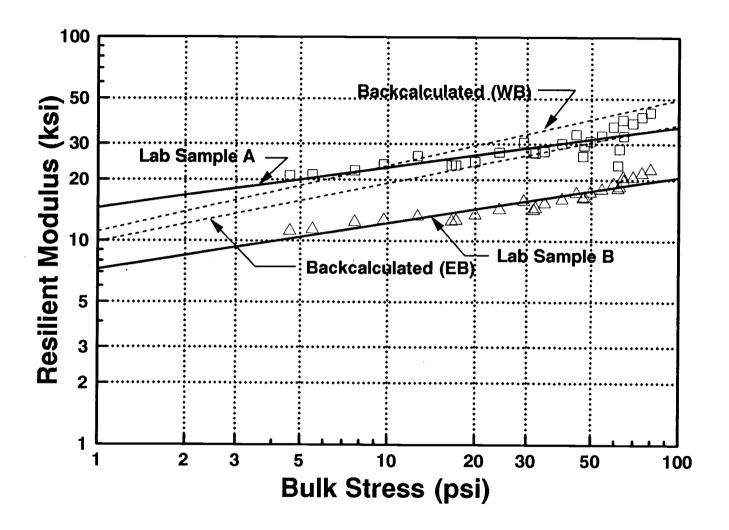


Figure 4.17 Comparison Between Laboratory Tested and Backcalculated Base Moduli for the Rufus-Quinton Project

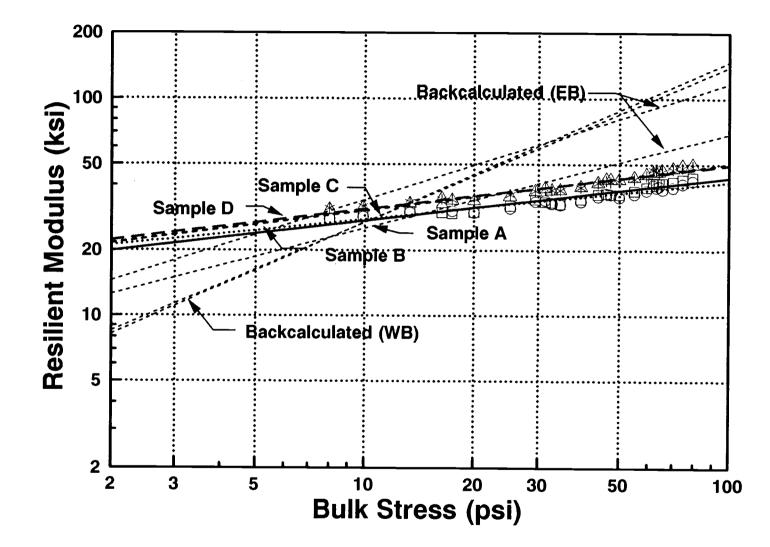


Figure 4.18 Comparison Between Laboratory Tested and Backcalculated Base Moduli for the Centennial Blvd Project

4.3 Summary

This chapter described the development of a new and improved backcalculation procedure for determining pavement layer moduli. Initial evaluation on the developed procedure was made. The evaluation was performed using in three approaches: 1) comparing backcalculated moduli with preassumed theoretical moduli, 2) comparing with other backcalculation programs, and 3) comparing backcalculated moduli with laboratory test results. The evaluation shows that the moduli backcalculated using the BOUSDEF program compare very well with the preassumed theoretical values and are very compatible with some developed programs used for comparison. The comparison with the laboratory test results on the two projects also compared favorably.

5.0 DETERMINATION OF RESILIENT MODULUS USING LABORATORY TESTS AND CORRELATIONS

One of the key elements in using a mechanistic type pavement analysis is to determine the modulus of all pavement materials.

Generally, three approaches have been employed:

- Backcalculate resilient modulus from deflection test data.
- Determine resilient modulus by laboratory test on cores and soil samples.
- Estimate resilient modulus using correlations developed by research investigators.

The backcalculation techniques have been described in great detail in Chapters 3 and 4. Theoretically, pavement layer moduli determined using this method represent the in-situ pavement material properties at time of testing. However, the backcalculation procedures, at the present time, are not fully capable of determining layer moduli for all circumstances. Further, the reliability of the backcalculated results still needs to be examined; therefore, the backcalculation techniques are recommended for only initial evaluation of pavement materials properties. This chapter describes briefly the second and third approaches.

5.1 Resilient Moduli from Laboratory Tests

The resilient modulus of pavement materials may also be determined through laboratory tests on undisturbed or disturbed samples. At present, there are at least two type of standard

laboratory procedures for determining modulus of pavement materials. Typically, the diametral test (ASTM D4123) is used to determine the resilient modulus for asphalt concrete samples. For untreated granular materials, the triaxial test (AASHTO T-274) may be used.

5.1.1 <u>Diametral Tests</u>

The mechanism of this test procedure is illustrated in Figures 5.1 and 5.2. To determine the modulus of an asphalt concrete sample, the specimen is placed in the diametral yoke (Figure 5.1). The yoke, with specimen, is then placed in the load frame on a load platen with bottom loading strip attached to the cell (Figure 5.2). A load, which can be either impulse or haversine, is applied vertically to the specimen having a diameter of 4 inches and a height of 1 to 3 inches. The lateral displacement during repeated load is measured by a pair of linear variable differential transducer (LVDT) gauge heads which are mounted on the diametral yoke as shown in Figure 5.3. The resilient modulus of the specimen is calculated with the following relationship:

$$MR = \frac{0.62 * P}{t * H}$$
 (5-1)

where:

MR = resilient modulus, psi,

P = repeated load, lbs,

t = sample thickness, inches, and

H = total recoverable horizontal displacement, inches.

The resilient modulus of the asphalt concrete specimen over a range

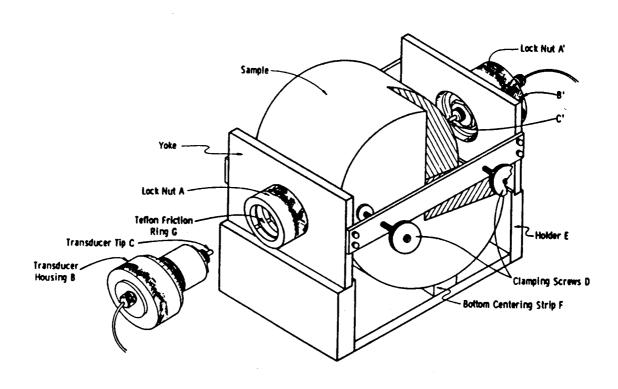


Figure 5.1 Diametral Resilient Modulus Device Yoke and Alignment Stand

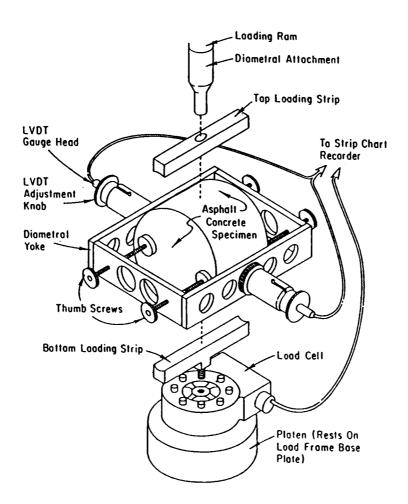


Figure 5.2 Test Specimen with Diametral Yoke and Loading Ram

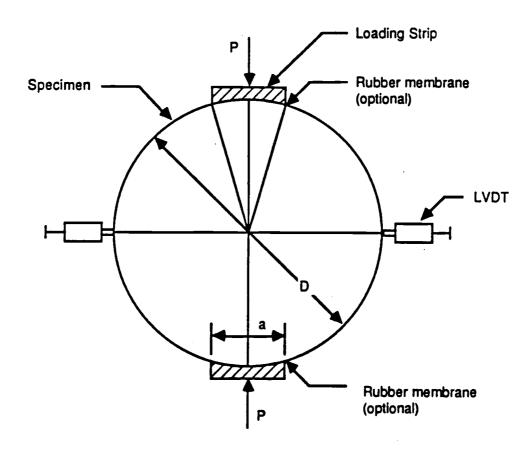


Figure 5.3 Schematic of Asphalt Concrete Laboratory Resilient Modulus Test (ASTM, 1984)

of temperatures may also be evaluated by testing the sample in a temperature chamber.

5.1.2 Triaxial Tests

The triaxial test as illustrated in Figure 5.4 is usually used to determine the resilient modulus of granular and fine materials. A schematic diagram of this resilient modulus test and definitions are illustrated in Figure 5.5. In this test, a vertical load is applied. Rather than measuring the horizontal displacement of the test sample, the vertical deformation is measured. Varying deviator and confining stresses can be applied to determine the resilient modulus at different stress conditions. The resilient modulus is calculated by dividing the vertical strain by the deviator stress applied with the following relationship:

$$MR = \frac{\sigma_{\rm d}}{\epsilon_{\rm v}} \tag{5-2}$$

where:

MR = resilient modulus, (psi)

 σ_d = repeated axial stress, (psi)

 ϵ_{v} = recoverable axial strain, (in/in)

5.2 Correlations

In cases where either backcalculation or laboratory test results are not available, other developed correlations may also be used to estimate the modulus. There are several developed correlations or

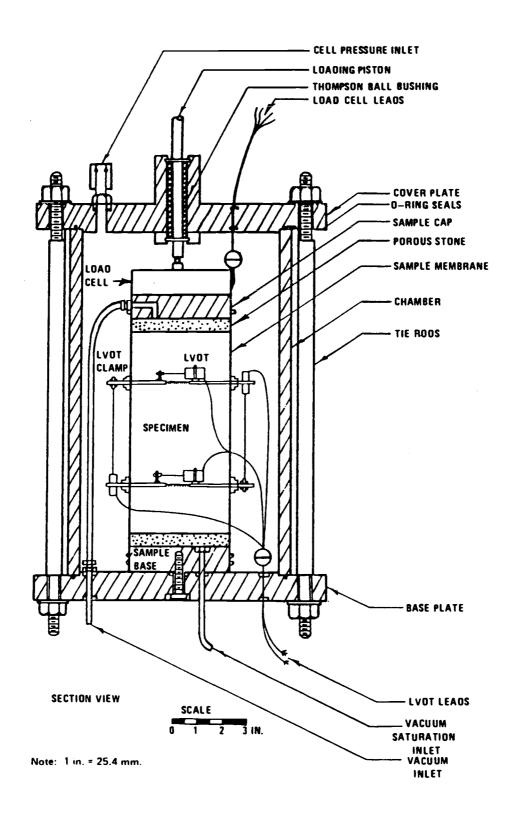


Figure 5.4 Triaxial Cell Suitable for Repeated Load Testing of Soils

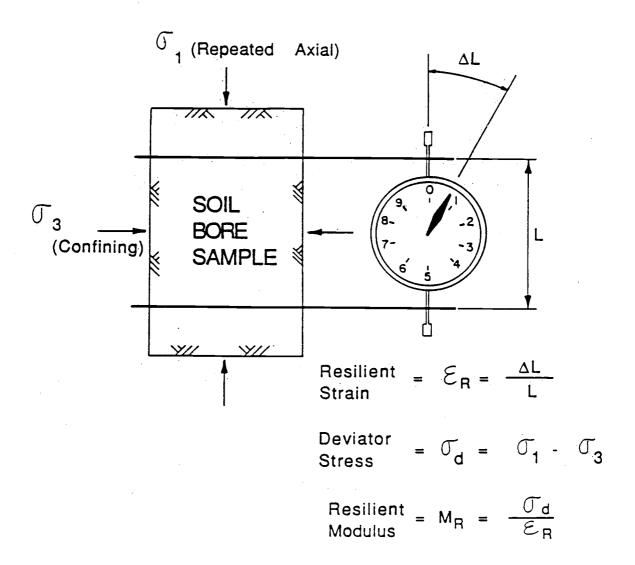


Figure 5.5 Schematic Diagram of Resilient Modulus Test

methods which can be used for estimating the resilient modulus of the pavement materials. The following describe a few of these relationships.

5.2.1 Subgrade Soil

5.2.1.1 Resilient Modulus versus CBR

The first relationship between resilient modulus and CBR was that developed by Shell (Heukelom and Klomp, 1962) and used in their design procedure. This correlation can be used to estimate subgrade resilient modulus from a known CBR value. Figure 5.6 illustrates the data used to develop the correlation. Field modulus values were obtained using vibratory loading. The developed equation is as follows:

$$MR = 1500 CBR$$
 (5-3)

where:

CBR = California Bearing Ratio.

It should be noted that the coefficient (1500) can vary from 750 to 3000 as shown in Figure 5.6. Available data indicate the equation provides better results (at least within the correlation limits) at values of CBR less than about 10, i.e. the correlation appears to give more reasonable results for fine-grained soil and fine sands rather than granular materials (The Asphalt Institute, 1982).

5.2.1.2 Resilient Modulus versus R Value

The relationship between resilient modulus and R-value was originally derived from data collected on the San Diego County experiment base project (Kallas and Shook, 1977). This relationship

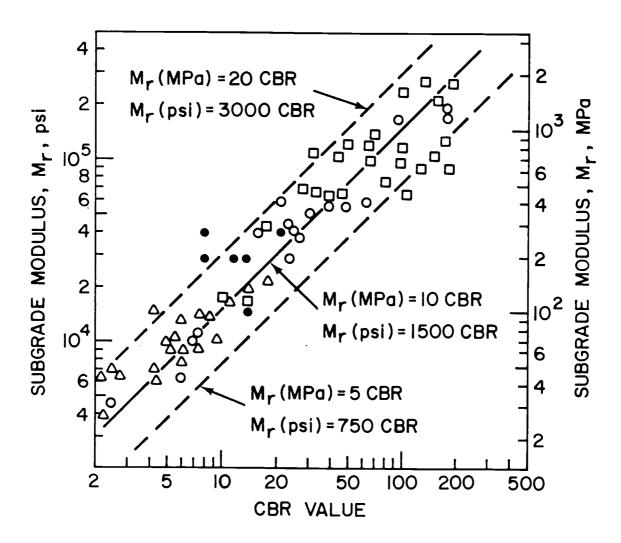


Figure 5.6 Relation Between Dynamic Modulus and CBR (Heukelom and Klomp, 1962)

is expressed as follows:

$$MR(psi) = A + B * R$$
 (5-4)

where:

A = 772 to 1155,

B = 369 to 555, and

R = stabilimeter R-value.

In general, the following correlation may be used (AASHTO, 1986):

$$MR(psi) = 1000 + 555 R$$
 (5-5)

Table 5.1 illustrates a comparison of R-value, CBR, and resilient modulus data and shows a probable range for different type of soils.

The MS-1 (TAI, 1981) indicates that CBR and R-value correlations are considered applicable to materials classified as CL, CH, ML, SC, SM, and SP (Unified Soil Classification, ASTM D2487) or for materials that are estimated to have a resilient modulus of 30,000 psi or less (TAI, 1981)

5.2.1.3 Resilient Modulus versus Deflection

The subgrade modulus may also be estimated from deflection test data. Several regression equations have been developed for the estimation of subgrade modulus. Table 5.2 shows a few of such equations. It should be noted that the deflection measured at distance r should be far enough to reflect the subgrade response. A procedure described by Hicks et al (1988) may be used to determine the last sensor location.

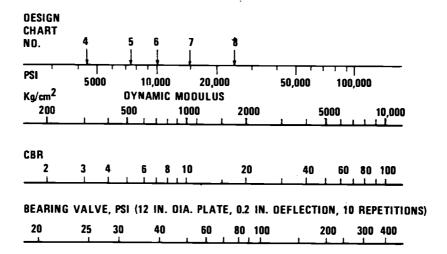
Table 5.1 Comparison of R, CBR, and Resilient Modulus Data (The Asphalt Institute, 1982)

Soil Description	R-v	value Test	CI	BR Test	Triaxial Test ^a	
Description	R	Estimated M _r , psi	CBR	Estimated M _r , psi	Estimated M _r , psi	
Sand	60	34,500	31	46,500	16,900	
Silt	59	33,900	20	30,000	11,200	
Sandy loam	21	12,800	25	37,500	11,600	
Silt-clay loam	21	12,800	25	37,500	17,600	
Silty-clay	18	11,000	7.6	11,400	8,200	
Heavy clay	<5	<3,900	5.2	7,800	1,600	

Deviator stress = 6.0 psi, confining stress = 2.0 psi, optimum
moisture and density

Table 5.2 Various Regression Equations for Subgrade Modulus

Investigator	Equation	Desci	Description		
AASHTO (AASHTO, 1986)	$E_{sg} = PS_f/(d_r r)$	P = S _f =	Load (lbs) Subgrade modulus prediction factor, which is a function of the Poisson ration and has value of:		
		d _r =	0.30 0.297 0.35 0.293 0.40 0.287 0.45 0.279 0.50 0.269 Deflection at distance		
	•	r =	r Distance to sensor		
Ullidtz (Ullidtz, 1982)	$E_{sg} = \frac{(1-\mu_i^2) P a^2}{d_r r}$	μ _i = P = a = r = d _r =	Distance to sensor		
Washington (Newcomb, 1986)	$E_{sg} = 7.61(P/D_3)$	P =	Load (1bs)		
	$E_{sg} = 5.77(P/D_4)$	D _X =	Deflection at x feet from center of NDT load, (mils)		


5.2.1.4 Resilient Modulus versus Soil Classification

Soil classification infirmation may also be used to estimate the resilient modulus value. Crude empirical relationships between the modulus and soil classifications, as shown in Figure 5.7, may also be used as a reference.

5.2.2 Untreated Granular Materials

Untreated materials are most often used for base and subbase layers. The strength of the granular base or subbase is related to the stress state which will occur under operating conditions. The stiffness characteristics of the granular materials are dependent on the stress state, which is a function of pavement thickness, load, and the resilient modulus of each layer. Table 5.3 shows correlations between modulus and CBR or R-value under different stress conditions for untreated granular materials that are used for base and subbase. Another expression which is more commonly used to describe the relationship between stress state and modulus is represented by the equation $M_R = k_1 \theta^k 2$. Numerous studies have been conducted and typical values developed. Table 5.4 lists the ranges in k_1 and k_2 obtained by different investigators for a number of different aggregates representative of untreated base and subbase materials.

The 1986 AASHTO Guide (AASHTO, 1986) also provides some typical values for k_1 and k_2 for unbound base and subbase materials. Table 5.5 shows a range of values based on moisture condition. Therefore, the base modulus is a function of not only moisture but also the stress state, and values for the stress state within the base course vary with the subgrade modulus and thickness of the surface layer.

GENERAL SOIL RATING AS SUBGRADE, SUB-BASE OR BASE

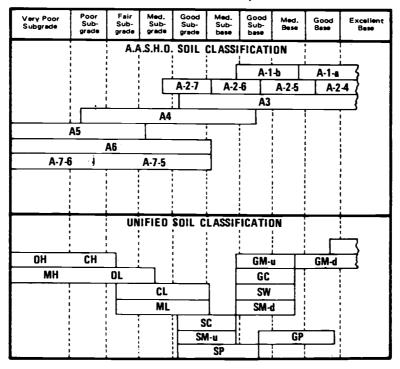


Figure 5.7 Crude Empirical Relationships Between the Dynamic Modulus of Elasticity and Routine Tests (Hicks, et al, 1980)

Table 5.3 Correlations Between MR, CBR or R and Stress State

(AASHTO, 1986)

Stress State, θ	MR (psi)	MR (psi)
100	740 * CBR	1000 + 780 * R
30	440 * CBR	1000 + 450 * R
20	340 * CBR	1000 + 350 * R
10	250 * CBR	1000 + 250 * R

Table 5.4 Summary of Repeated Load Triaxial Compression Laboratory Test Data for Untreated Granular Materials (The Asphalt Institute, 1982)

Material(s)	k ₁	k ₂
Partially crushed gravel; crushed rock	1,600-5,000	0.57-0.73
Untreated base - San Diego Test Road	2,100-5,400	0.61
Gravel, crushed stone	1,800-8,000	0.32-0.70
Crushed stone	4,000-9,000	0.46-0.64
Well graded crushed	8,000	0.67
In service base and subbase materials	2,900-7,750	0.46-0.65
Crushed aggregate (Saturated) Crushed aggregate (Optimum water content)	1,300-2,000 2,000-2,600	0.69-0.78 0.70-0.73
	Partially crushed gravel; crushed rock Untreated base - San Diego Test Road Gravel, crushed stone Crushed stone Well graded crushed In service base and subbase materials Crushed aggregate (Saturated) Crushed aggregate	Partially crushed gravel; 1,600-5,000 crushed rock Untreated base - San 2,100-5,400 Diego Test Road Gravel, crushed stone 1,800-8,000 Crushed stone 4,000-9,000 Well graded crushed 8,000 In service base and 2,900-7,750 subbase materials Crushed aggregate 1,300-2,000 (Saturated) 2,000-2,600

MR = $k_1 \theta^k 2$, where MR and θ are in psi.

Table 5.5 Typical values for k_1 and k_2 for Unbound Base and Subbase Material (AASHTO, 1986)

(a)	Base
-----	------

	k ₁ *	k ₂ *
Dry	6,000 - 10,000	0.5 - 0.7
Damp	4,000 - 6,000	0.5 - 0.7
Wet	2,000 - 4,000	0.5 - 0.7

^{*} Range in $\mathbf{k_1}$ and $\mathbf{k_2}$ is a function of the material quality.

Typical values for use in design are given in Table 5.6.

5.2.3 Asphalt Concrete

The Asphalt Institute (1982) developed a relationship that can be used to determine resilient modulus of asphalt concrete. The relation has the following form:

Log |E| = 5.553833 + 0.028829
$$\left[\frac{P_{200}}{f^{0.17033}}\right]$$
 - 0.03476 (V_V) (5-6)
+0.070377 ($\eta_{70°F}$, 10⁶)+0.000005 $\left[t_p^{(1.3+0.49825\log f)}P_{ac}^{0.5}\right]$
-0.00189 $\left[\frac{t_p^{(1.3+0.49825\log f)}P_{ac}^{0.5}}{f^{1.1}}\right]$ + 0.931757 $\left[\frac{1}{f^{0.02774}}\right]$

where:

|E| = dynamic modulus of asphalt concrete, psi

 P_{200} = percent aggregate passing No. 200 sieve

f = frequency, Hz

 V_{v} = percent air voids

 $\eta_{70^{\circ}F,10}^{6}$ = absolute viscosity at 70°F, poises x 10^{6}

 P_{ac} = asphalt content, percent by weight of mix

 t_{p} = temperature, °F (1.8°C + 32)

If sufficient viscosity data are not available to estimate $\eta_{70^{\circ}\text{F},10^{6}}$, then the following relationship may be used:

$$\eta_{70^{\circ}F,10}^{6} = 29508.2 \text{ pen}_{77^{\circ}F}^{-2.1939}$$
 (5-7)

The value of p_{ac} may be estimated as follows:

$$p_{ac} = 0.483 V_{be}$$
 (5-8)

where:

Table 5.6 Typical Values of Stress State (AASHTO, 1986)

Roadbed Soil Resilient Modulus (psi)					
3,000	7,500	15,000			
20	25	30			
10	15	20			
5	· 10	15			
5	5	5			
	3,000 20 10 5	3,000 7,500 20 25 10 15 5 10			

 V_{be} = Effective volume of asphalt, percent, defined as the total asphalt content minus the quantity of asphalt lost by absorption into the aggregate particles.

or

$$p_{ac} = 0.434 V_b$$
 (5-9)

where:

 V_b = total volume of asphalt, percent.

This equation has been computerized for use on microcomputers. The resulting program (AMOD) and its user's guide may be found in Appendix C.

5.3 Summary

This chapter describes several techniques that are widely used around the United States to determine modulus of pavement layers.

These techniques include laboratory tests and correlations to determine/estimate the resilient modulus of pavement materials.

The advantage of the laboratory tests to determine resilient modulus is that it is a direct measurement of the strength of a particular material. The disadvantage is that the samples tested in the laboratory may represent only a portion of pavement material rather than an average condition that would find in the field. For example, for a badly cracked asphalt concrete surface, the cores tested in the laboratory may not truly reflect the field situation. Moreover, the laboratory tests require sophisticated equipment as well as trained personnel to perform the tests, and the laboratory tests usually take a significant amount of time. Lastly, there are several test related variables which affect test results. These

variables are summarized in Table 5.7.

The advantage of using developed correlations is their availability. However, one must be aware that correlations were developed based on certain laboratory conditions. Therefore, these correlations are best suitable to situations that are similar to where the correlations were developed. Caution should be exercised when using these correlations.

In any case, material characterization is an extremely important and difficult issue. There are many variables that would affect material response both in the laboratory and in field tests. These variables, as summarized and presented in Table 5.7, must be fully realized when determining the resilient modulus values.

Table 5.7 Variables Affecting Materials Response (Hicks et al, 1980)

I. LOADING VARIABLES A. Stress history (nature of prior loading) 1. Non-repetitive loading (such as preconsolidation) 2. Repetitive loading a. Nature (1) Simple (2) Compound b. Number of repetitive applications B. Initial stress state (magnitude and direction of normal and shear stresses) C. Incremental loading 1. Mode of loading a. Controlled stress (or load) b. Controlled strain (or deformation) c. Intermediate modes 2. Intensity (magnitude and direction of incremental normal and shear stresses) 3. Stress path (relation among stresses - both normal and shear - as test progresses) 4. Time path a. Static (1) Constant rate of stress (or load) (2) Constant rate of strain (or deformation) (3) Creep (4) Relaxation b. Dynamic Impact Resonance Other (a) Sinusoidal (rate of loading is variable)

(b) Pulsating (duration, frequency, and shape of load curve are variables)

Table 5.7 Variables Affecting Materials Response (cont.)

- 5. Type of behavior observed
 - a. Strength (limiting stresses and strains)
 - b. Deformability
- 6. Homogeneity of stresses7. Drainage (drained or undrained)
- II. MIXTURE VARIABLES
 - A. Mineral particles
 - 1. Maximum and minimum size
 - 2. Gradation
 - 3. Shape
 - 4. Surface texture
 - 5. Angularity
 - 6. Mineralogy
 - 7. Adsorbed ions
 - 8. Quantity
 - B. Binder
 - 1. Type
 - 2. Hardness
 - 3. Quantity
 - C. Water
 - 1. Quantity
 - D. Voids
 - 1. Quantity
 - 2. Size
 - 3. Shape

- E. Construction Process
 - 1. Density
 - 2. Structure
 - 3. Degree of anisotrophy
 - 4. Temperature
- F. Homogeneity
- III. ENVIRONMENTAL VARIABLES
 - A. Temperature
 - B. Moisture
 - C. Alteration of Material **Properties**
 - 1. Thixotropy
 - 2. Aging
 - 3. Curing
 - 4. Densification

6.0 DEVELOPMENT OF AN IMPROVED MECHANISTIC OVERLAY DESIGN PROCEDURE FOR FLEXIBLE PAVEMENTS

One of the major objectives of this study is to develop an improved mechanistic overlay design procedure for routine design work. To achieve this objective, this chapter first reviews some mechanistic design procedures developed in the past and then presents an improved overlay design procedure.

6.1 Review of Current Mechanistic Overlay Design Methods

Several mechanistic overlay design have been developed in the past few years. These methods generally follow a framework presented by Finn and Monismith (1984) as shown in Figure 6.1. Table 6.1 summarizes some of these developments, while the following sections review three of the procedures developed by: 1) ARE (Austin Research Engineers, Inc., 1975), 2) WSDOT (Mahoney, et al., 1988), and 3) ADOT&PF (Yapp, et al., 1988).

6.1.1 ARE Method

This method was developed for the Federal Highway Administration by Austin Research Engineers (ARE). The following describes some of the major steps involved in this overlay design procedure.

6.1.1.1 Nondestructive Testing

Nondestructive testing can be performed using any type of deflection equipment that provides satisfactory deflection results. The frequency of deflection measurement is dependent on the terrain, as shown in Table 6.2. Condition surveys are conducted at the same

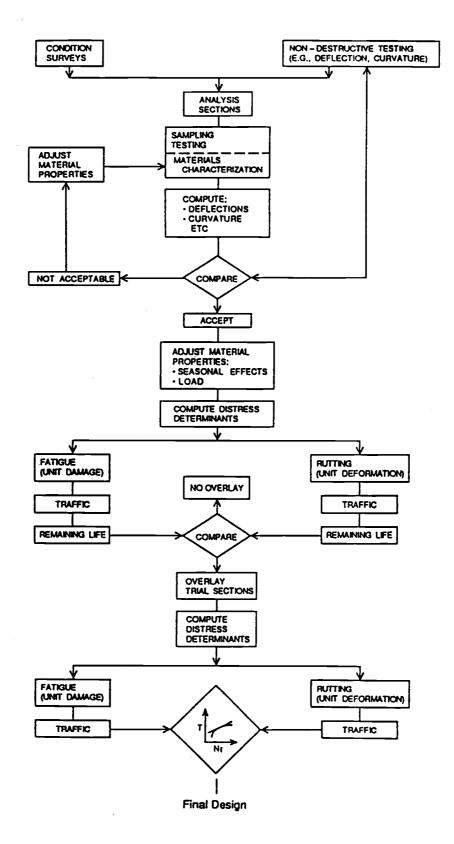


Figure 6.1 Flowchart for the Mechanistic Method (Finn & Monismith, 1984)

Table 6.1 Analytically Based Overlay Design Procedures (Hicks and Zhou, 1988)

Nondestructive		Stiffness Determinations			Distress Mechanisms		Provision for		
Procedure	Pavement Evaluation	In-Situ Measurement	Lab Testing	Analysis Procedure	Fatigue	Rutting	Existing Pavement	Overlay Thickness Determination	
Shell Research	Falling weight deflectometer	Yes	No	BISAR computer program	Yes	Yes	Yes	Overlay thickness selected to (a) limit fatigue and (b) limit rutting for anticipated traffic; thickness also selected assuming existing pavement is cracked	
FHWA-ARE	Dynaflect; Benkelman beam	No	Yes	ELSYM computer program	Yes	Yes	Yes	Overlay thickness selected to (a) limit fatigue and (b) limit rutting for anticipated traffic; asphalt concrete assigned different stiffness values depending on conditions	
FHWA-RII	Dynaflect and others	Yes	Opt.	ELSYM computer program	Yes	No	Yes	Overlay thickness selected to limit fatigue for anticipated traffic; asphalt concrete assigned different stiffness values depending on conditions.	
Kentucky	Road Rater	Yes	No	Graphic solution ^b	Yes	No	Yes	Overlay thickness selected as difference between pavement thickness required to accommodate all traffic (both applied and anticipated) and effective thickness of existing pavement as determined by nondestructive evaluation of existing pavement.	
Alaska	Falling weight deflectometer	Yes	Opt.	ELSYM computer program	Yes	Yes	Yes	Overlay thickness selected to (a) limit fatigue and (b) limit rutting for anticipated traffic; thickness also selected considering seasonal effect as well as traffic for each season.	
Washing- ton DOT	Falling weight deflectometer	Yes	Opt.	CHEVRON computer program	Yes	Yes	Yes	Overlay thickness selected to (a) limit fatigue and (b) limit rutting for anticipated traffic; thickness also selected based on sum of damage ratio.	

 $_{\rm b}^{\rm a}$ All procedures require a condition survey, represent the pavement as a multilayer elastic solid, and provide an estimate of remaining life. $_{\rm b}^{\rm a}$ Based on Chevron computer solution for multilayer elastic solid.

Table 6.2 Guidelines for Nondestructive Testing (Finn and Monismith, 1984)

Type of Location	Spacing	
Rolling terrain	100 ft	
Numerous cut-to-fill transitions	100 ft	
Level with uniform grading	250 ft	

time that the deflection measurements are made. Cracking and rutting are recorded and measured. Other general information, such as soil type, drainage conditions, and cut/fill transitions, are also noted.

Deflection profiles are generated for the entire length of the project to assist in establishing the analysis sections. Statistical procedures are used to compare adjacent sections to ensure that the sections are different. The design deflection for each section is determined from:

$$\delta_{d} = \bar{\delta} + Z * S \tag{6-1}$$

where:

 δ_d = design deflection

 $\bar{\delta}$ = average deflection

Z = deviation from mean to selected significance level on a normal distribution curve.

S = standard deviation

6.1.1.2 Material Characterization

The pavement structure is represented as a multi-layer elastic system. Each layer's properties are defined by modulus (stiffness) and Poisson's ratio. For the asphalt-bound layer(s), modulus values should be defined over a range in temperatures at a time of loading corresponding to moving traffic. For design purposes, the stiffness at a temperature of 70°F is recommended for use. Poisson's ratio is assumed to be 0.3 for the asphalt concrete, 0.4 for the base and subbase, and 0.45 for subgrade. For a cracked asphalt concrete layer, it is assigned a modulus of 70,000 psi if the cracking is defined as class 2; or a value equal to the base modulus (or 20,000 psi),

whichever is greater, if the cracking is defined as class 3. Table 6.3 presents the definitions for both classes of cracking. Figure 6.2 illustrates the pattern of the cracking of the two classes.

Treated base course materials can be tested in the same way as the asphalt concrete. Unbound base course materials should be tested at representative conditions of water content and dry density in repeated loading by following AASHTO test procedures. Subgrade materials should be tested over a range in deviator stresses to permit defining a relationship of the form:

$$M_{R} = A \sigma_{d}^{b}$$
 (6-2)

where:

 M_p = resilient modulus, psi

 $\sigma_{\rm d}$ = applied deviator stress, psi, and

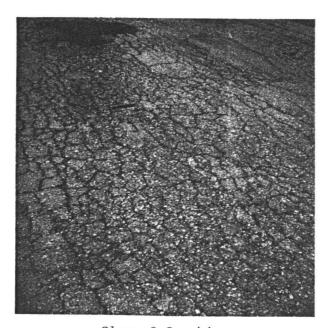
A, b = laboratory determined coefficients.

To select an appropriate subgrade modulus for analysis, it is necessary to use the design deflection selected for the particular analysis section and with an iterative procedure, select a modulus value from equation (6-2) that provides the same value for the computed as measured deflection. As seen in Figure 6.3, some adjustments in the laboratory data may be required to achieve compatibility.

6.1.1.3 <u>Distress Determinants</u>

Two major structural distresses are considered in this method; fatigue and rutting. Fatigue cracking in the asphalt-bound layer is controlled by limiting tensile strain on the underside of the asphalt concrete layer using the following relationship, which is also plotted in Figure 6.4:

Table 6.3 Classes of Cracking (ARE, 1975)


Class Cracking	Definition	AC Modulus
Uncracked	No cracks	Overlay MR
2	Cracking that has progressed to the pavement where cracks have connected together to form a grid-type pattern. (mildly cracked, failed in fatigue)	70,000 psi
3	When the asphalt concrete segments have become loose. (severely cracked, failed in fatigue)	20,000 psi

Note:

Variation of the modulus with temperature is not applied to the class 2 and class 3 cracked surface.

Class 2 Cracking

Class 3 Cracking

Figure 6.2 Photographs of Class 2 and Class 3 Cracking (ARE, 1975)

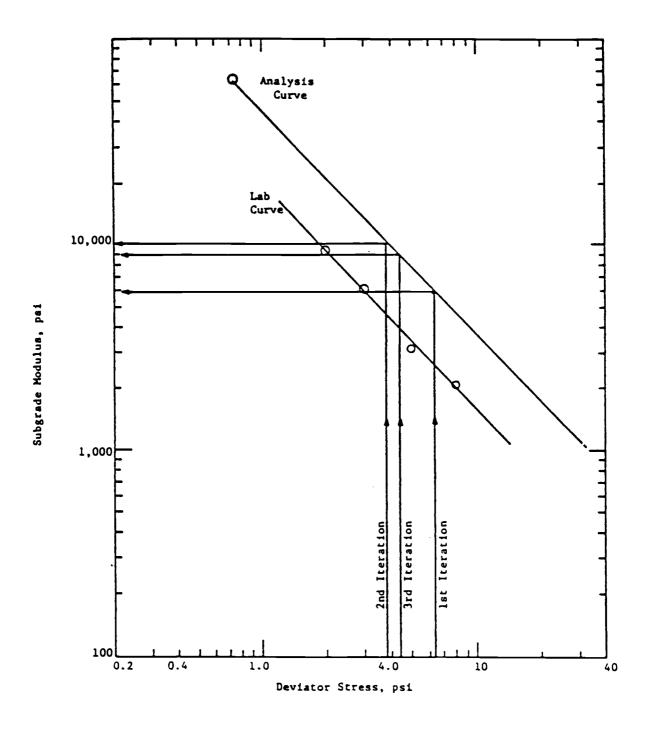


Figure 6.3 Relationship of Resilient Modulus and Repeated Deviator Stress (ARE, 1975)

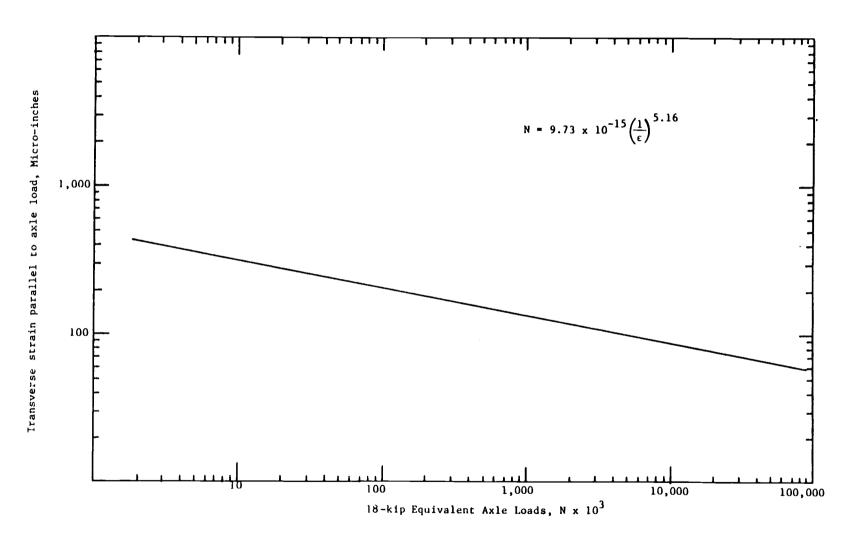


Figure 6.4 Fatigue Curve for 18-kip Load Applications to Time of Class 2 Cracking (ARE, 1975)

$$N_{18} = 9.73 * 10^{-15} * \epsilon_{t}^{-5.16}$$
 (6-3)

where:

 N_{18} = allowable number of 18-kip single-axle load applications and,

 $\epsilon_{\rm t}$ = horizontal tensile strain on the underside of asphalt-bound layer being analyzed.

Rutting is controlled by a regression equation of the general form:

$$\log N_{18} = 7.5145 + 0.96831 R + 0.01173 (\epsilon_{1z}/\sigma_{1z})$$

$$+ 0.04322\sigma_{2z} - 0.01687\sigma_{2x}$$

$$+ 0.05608\sigma_{3z} + 0.10803\epsilon_{4z}$$

$$+ 0.18032\sigma_{5z} + 0.10226\epsilon_{5z} + \log(365/d_{T})$$
(6-4)

where:

 N_{18} = the allowable 18-kip equivalent load applications

R = allowable rut depth, in.

 ϵ_{1z} = vertical strain at bottom of the top layer x10⁴, in/in

 σ_{1z} = vertical stress at bottom of the top layer, psi

 σ_{2z} = vertical stress (psi) at the bottom of the second layer, psi

 σ_{2x} = horizontal stress, parallel to the axle load, at the bottom of the second layer, psi

 σ_{3z} = vertical stress at the bottom of the third layer, psi

 ϵ_{4z} = vertical strain at the bottom of the fourth layer, $\times 10^4$, in/in

- σ_{5z} = vertical stress at the top of the fifth (subgrade) layer, psi
- ϵ_{5z} = vertical strain at the top of fifth (subgrade) layer $\times 10^4$, in/in
- d_T = number of days per year when average daily
 temperature is equal to greater than 64°F (should be
 a five year average)

The sign convention used is positive for tension and negative for compression. In a pavement system, vertical stresses and strains are compressive.

When using the equation, a five layer pavement analysis must be used where the first layer is the proposed overlay, the second layer is the existing surface layer, the third and fourth layers are the granular base and subbase, and the fifth layer is the subgrade. If either the base or subbase layer is not present, then the granular layer which is present is divided into two layers of equal thickness.

An 18-kip single axle is used in the analysis of the stresses and strains. The stresses and strains are analyzed both under and between the dual tires. The maximum value of the stress or strain is then used in the equation. Depending upon the geometry of the pavement, the maximum value can occur either under a tire or between the tires. Also an allowable rut depth must be selected.

6.1.1.4 Remaining Life Estimation and Overlay Design

Remaining life can be determined for an uncracked pavement. This requires an estimation of the amount of traffic, in terms of 18-kip single axle loads applied to date, and the tensile strain(s) on the underside of the asphalt-bound layer.

Mixed traffic is converted to repetitions of the 18-kip single axle using AASHTO equivalency factors. Tensile strains can be computed using ELSYM computer program with the knowledge of modulus values and Poisson's ratios for the various layers. The total number of load repetitions (N_{18}) can be estimated using equation (6-3). The remaining life is then calculated using the cumulative damage hypothesis, i.e.,

$$\frac{n_r}{N_1} = 1 - \frac{n_D}{N_1} \tag{6-5}$$

where:

 N_1 = allowable number of applications of 18-kip EAL's according to fatigue criteria, and

 $\rm n_D$ = number of 18-kip EAL's applications to date. If the value for $\rm n_r$ is less than the additional traffic to be carried, an overlay will be needed. Example overlay thickness design curves using this method are shown in Figure 6.5.

The above procedures have been combined into two computer programs termed DEFANL and OVLANL.

6.1.2 WSDOT Method

This mechanistic-based overlay design procedure was developed by the University of Washington (Mahoney, 1988) for the state of Washington (WSDOT). The concept for this method is illustrated in Figure 6.6.

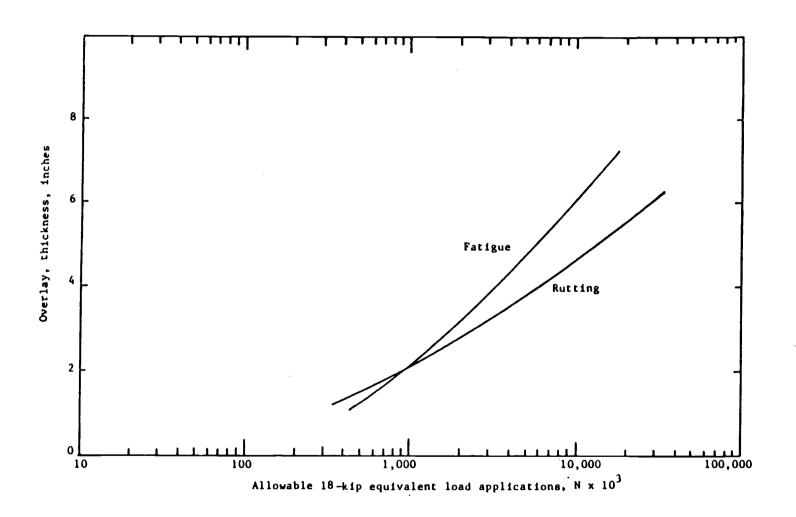


Figure 6.5 Sample Overlay Thickness Design Curves (ARE, 1975)

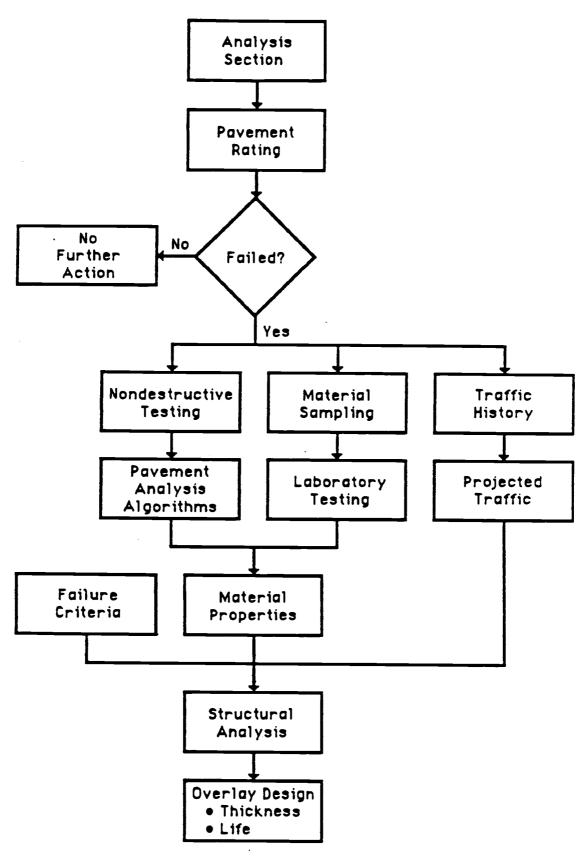


Figure 6.6 Pavement Overlay Design Concept (Mahoney, 1987)

6.1.2.1 Analysis Section and Pavement Rating

There is no description in the report how the pavement analysis section and pavement rating were carried out. However, it is believed that the pavement rating is conducted based on field condition survey information to classify the pavement serviceability. If the pavement rating for the analysis section is below acceptable level, further overlay design steps are recommended.

6.1.2.2 <u>Nondestructive Testing and Pavement Analysis</u> Algorithms

Nondestructive testing is performed through deflection measurements using falling weight deflectometer (FWD). The deflection were measured every 50 ft within each test site, with four load levels at each test stop and two drops at each load level. The load levels were approximately 6000, 9000, 12000, and 15000 lbs. There is no indication whether this is a standard practice. Evaluation of layer moduli is accomplished through backcalculation of pavement surface deflection basins. EVERCALC (Mahoney, 1987), a pavement analysis algorithm based on CHEVRON N-LAYER program and developed at the University of Washington, is used for backcalculating the layer moduli.

6.1.2.3 Material Sampling and Laboratory Testing

Material sampling and laboratory testing were used primarily to verify the backcalculation results. Material sampling also provide layer thickness information to be used in backcalculation. Extensive laboratory testings were performed on asphalt concrete, base course, and subgrade materials. These tests include resilient modulus tests,

bulk and maximum specific gravity tests, asphalt extraction tests, asphalt recovery, aggregate gradation, Lottman conditioning tests, and asphalt penetration, and viscosity tests. Laboratory tests which are direct measures of the resilient modulus are diametral test (ASTM D4123) for asphalt bound material, and triaxial test (AASHTO T-274) for unbound materials.

6.1.2.4 Traffic History and Projected Traffic

Traffic volume is expressed in terms of 18-kip equivalent single axle loads (ESAL). AASHTO's load equivalent factor is used for mixed traffic. Traffic load information is accumulated in the format of the Federal Administration's W-4 loadometer tables, which include the number of axles observed with a series of category.

Design traffic volume is determined from average daily traffic (ADT), truck percentage, and the ESAL per truck for each road section. Both historical and projected traffic are used in the overlay design method.

6.1.2.5 Material Properties

Seasonal adjustments for the asphalt-bound materials are obtained using the relationship between the modulus and temperature. Seasonal variations for unbound material are determined using the ratios as given in Table 6.4. These ratios were developed using the backcalculated moduli from three years of FWD test data and climatic data (Mahoney, 1987).

For AC bound material, the relationship between the modulus and temperature for WSDOT class B AC, as shown in Figure 6.7, was used to determine the AC material properties. This relationship is expressed as follows:

Table 6.4 Coefficients for Seasonal Variations (Mahoney, 1987)

Region	Base		Subgrade	
	Wet/Thaw	Dry/Other	Wet/Thaw	Dry/Other
Eastern Washington	0.65	1.00	0.95	1.00
Western Washington	0.80	1.00	0.90	1.00

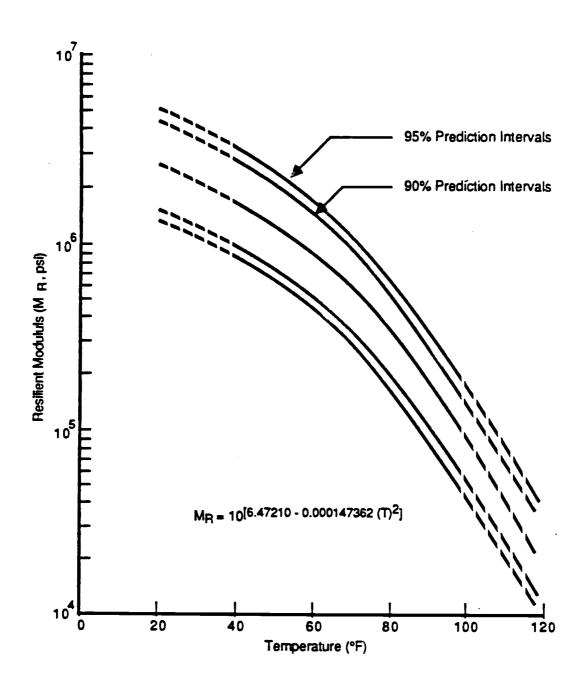


Figure 6.7 General Stiffness-Temperature Relationship with 90 and 95% Prediction Intervals for Class B Asphalt Concrete In Washington State (Bu-Bushait, 1985)

$$\log E_{ac} = 6.4721 - 0.000147362 (T_p)2$$
 (6-6)

where:

 E_{ac} = resilient modulus of AC (psi), and

 T_{D} = pavement temperature (°F).

The pavement temperature is estimated from Figure 6.8, knowing pavement surface temperature, the previous five-day mean air temperature, and pavement thickness.

For unbound materials, the following relationships are used:

$$E_{hs} = k_1 \theta^{k} 2$$
 for coarse-grained materials (6-7)

$$M_R = k_3 \sigma_d^{k_4}$$
 for fine-grained materials (6-8)

where:

 M_{p} = Resilient modulus of fine-grained soil (psi),

 θ = Bulk stresses (psi),

 σ_d = Deviator stress (psi), and

 k_1, k_2, k_3, k_4 = Regression coefficients.

6.1.2.6 Failure Criteria

The two pavement failure criteria used are fatigue cracking and subgrade rutting. Monismith's laboratory model (Monismith and Epps, 1969) is used for fatigue, as shown below:

$$\log N_{\rm f} = 14.82 - 3.291 \log(\epsilon_{\rm t}) - 0.854 \log(E_{\rm ac}/1000)$$
 (6-9) where:

 N_{f} = loads to failure,

 $\epsilon_{\rm t}$ = initial tensile strain (10⁻⁶ in/in), and,

 E_{ac} = modulus of asphalt-bound material (psi).

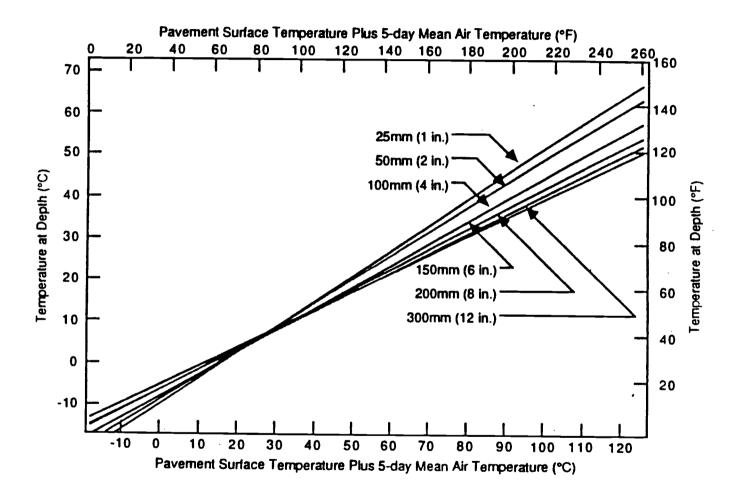


Figure 6.8 Estimation of Pavement Temperature (Southgate, 1975)

The laboratory model is adjusted to field conditions by multiplying a shift factor. For the state of Washington, a factor of 3 to 5 is used.

The Chevron equation (Santucci, 1977) was used to design for rutting. It is as follows:

$$N_r = 1.077 * 10^{18} * (\epsilon_v)^{-4.4843}$$
 (6-10) where:

- N_r = number of loads needed to cause approximately a 0.75-inch deep rut,
- $\epsilon_{\rm V}$ = vertical compressive strain at the top of the subgrade (10⁻⁶ in/in).

6.1.2.7 Structural Analysis

Structural analysis is based on a multilayered linear elastic model. The CHEVRON N-LAYER, which was developed by the Chevron Research Company (Michelow, 1963), is used for pavement structural analysis.

6.1.2.8 Overlay Design

Overlay design is conducted using a computer program EVERPAVE (Mahoney, 1987) which is based on multilayered elastic analysis and the design criteria for fatigue and rutting failure. A flowchart of this program is shown in Figure 6.9. The input data include design traffic volume, seasonal variations of material properties, temperature, the shift factor for fatigue failure, the minimum overlay thickness, thickness increment, and unbound material properties, which include coefficients k_1 , k_2 , k_3 , and k_4 , as indicated in equations (6-7) and (6-8).

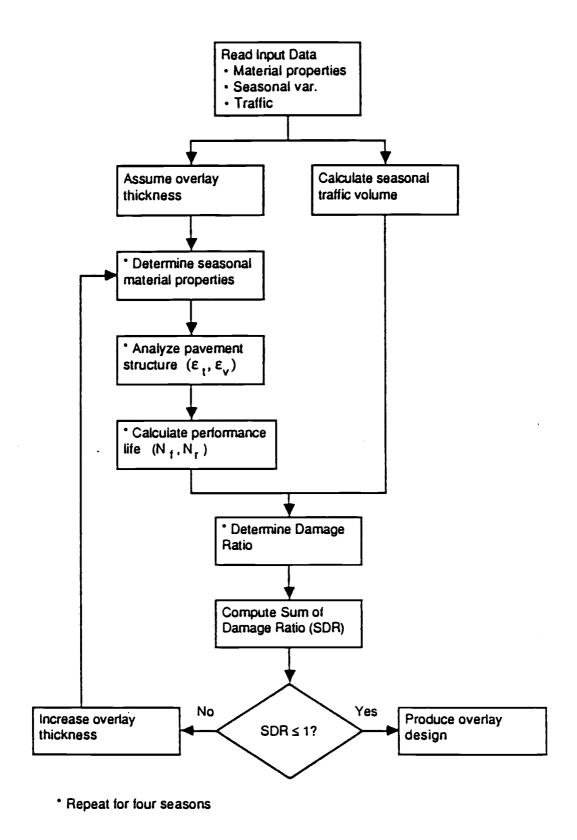


Figure 6.9 Overlay Design Procedure by EVERPAVE (Mahoney, 1988)

6.1.3 Alaska Method

This mechanistic overlay design procedure was developed by Oregon State University for the State of Alaska (Yapp et al, 1987). The original procedure include two approaches; one is a simplified mechanistic procedure and another is a fully mechanistic approach.

6.1.3.1 Simplified Procedure

The proposed simplified approach was developed by Fernando (1986) at Pennsylvania State University. A flowchart of this simplified mechanistic procedure is illustrated in Figure 6.10.

In using this procedure, once the critical analysis section has been determined, which is done by conducting condition survey and deflection test, design of the overlay can begin. The past and future traffic, together with the AC modulus, are needed to compute the tolerable pavement strains using appropriate fatigue and permanent deformation criteria. Remaining life of the existing pavement can then be determined. For overlay design, an overlay thickness is first assumed and tensile strain at the bottom of the existing asphalt layer and the compressive strain at the top of subgrade are calculated. The calculated overlay strains are then compared with the tolerable strains, which are determined based on a fatigue relationship developed by ARE (ARE, 1985) and a subgrade strain criterion developed by Luhr et al (1983). Iterative procedures are used to determine the final overlay thickness. Since the method was developed based on a regression analysis for conditions in Pennsylvania, it may not be valid for use in the state of Alaska.

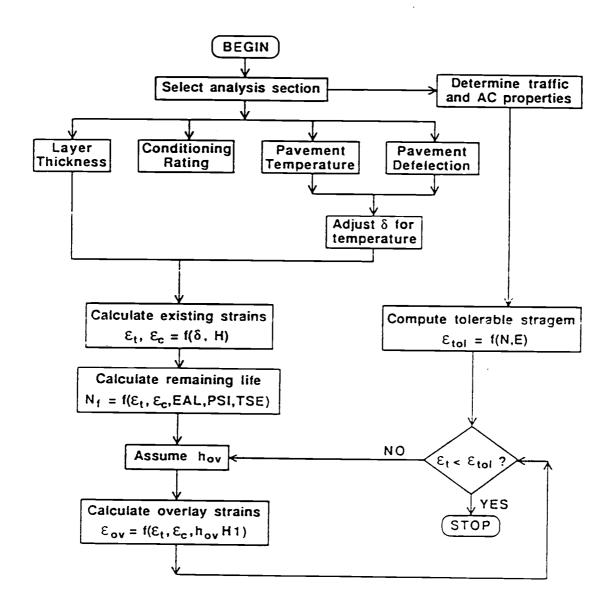


Figure 6.10 Flowchart for the Simplified mechanistic Procedure (Yapp, 1987)

6.1.3.2 Mechanistic Procedure

The proposed mechanistic overlay design procedure follows the flowchart developed by Finn (1984), as shown in Figure 6.1. The following discusses some of the main points.

6.1.3.2.1 <u>Nondestructive Testing and Material</u> <u>Characterization</u>

In the procedure, nondestructive pavement tests, condition survey, and traffic data are required as inputs. In addition, some knowledge of the stiffness properties and distress characteristics of various materials comprising the pavement structure are needed. Stiffness characteristics of the various pavement components can either be determined by test on undisturbed or disturbed specimens of the pavement materials, or backcalculated from NDT measurements.

Nondestructive testing is performed using the Dynatest FWD. For determining pavement properties from NDT test data, the programs ELSDEF, developed by Brent Rauhnt Engineers (Lytton, et al., 1986), and ELMOD, developed by Dynatest (Ullidtz, 1987), are used.

6.1.3.2.2 <u>Distress Determinants</u>

In this procedure, the ELSYM5 program is recommended to determine the critical strains in the pavement. The tensile strain at the bottom of the asphalt concrete layer is used to control fatigue while the compressive strain on the top of the subgrade is used to control rutting. Currently, the equations developed by the Asphalt Institute (The Asphalt Institute, 1982) are adopted as fatigue criteria. These equations are:

a) For fatigue:

N = 18.4 * C * 0.004325 *
$$\epsilon_{t}^{-3.291}$$
 * $\epsilon_{ac}^{-0.854}$ (6-11)

where:

N = number of 18-kip equivalent single axle loads,

 ϵ_{+} = horizontal tensile strain on underside of AC layer,

 E_{ac} = modulus of AC layer, psi, and

C = a function of voids and volume of asphalt in the mix design, and can be determined by following:

$$C = 10^{M}$$

where:

M =
$$4.84 * [V_b/(V_v+V_b) - 0.69]$$

 V_b = volume of asphalt, %, and
 V_v = volume of air voids, %.

b) For permanent deformation:

$$N = 1.36 * 10^{-9} * \epsilon_{v}^{-4.48}$$
 (6-12)

where:

 $\epsilon_{\rm V}$ = vertical compressive strain on the top of the subgrade. For determining the tolerable strains, the equations (6-11) and (6-12) can be rearranged and $\epsilon_{\rm t}$ and $\epsilon_{\rm v}$ solved. In this procedure, these two strains are used in determining the required overlay thickness.

6.1.3.2.3 Remaining Life and Overlay Design

Cumulative historic traffic data are necessary to determine the remaining life of the existing pavement. The percentage of remaining life is determined using Miner's Hypothesis:

$$\frac{N_r}{N_D} = \frac{1 - N_A}{N_D} \tag{6-13}$$

or

$$R_f = 1 - N_A / N_D$$

where:

- $N_r/N_D = R_f = percentage of remaining life,$
- N_r = additional number of applications of EALs that can be applied to the existing pavement,
- N_{Δ} = number of applications of EALs to date,
- N_D = allowable number of applications of EALs according to fatigue relations.

If a negative R_f value occurs, it indicates that the life of the pavement has been used up and an overlay or reconstruction may be required.

The required overlay thickness for carrying anticipated traffic volume is a function of the remaining life, the reliability level desired, and design EALs. The reliability of a pavement design-performance process is defined as the probability that a pavement section designed using the process will perform satisfactorily over the traffic and environmental conditions for the design period (AASHTO,1986). The selection of reliability is based on functional class. In general, a higher reliability level would lead to a thicker overlay.

With a knowledge of the allowable traffic applications and pavement design life, the tolerable pavement strains can be determined using equations (6-11) and (6-12). If the calculated strains are greater than the tolerable ones, the overlay thickness needs to be increased. The determination of an overlay thickness involves re-iteration. The following procedures are followed:

- Assumed an overlay thickness.
- 2) Use the ELSYM5 program to compute the pavement strains.
- 3) Determine tolerable strains for projected traffic.

- 4) Compare pavement strains with the tolerable strains.
- 5) If the pavement strains are greater than the tolerable strains, increase the overlay thickness and go to step 2. The above procedure is repeated until the pavement strains are less than the tolerable ones, and the final overlay thickness is then recommended.

6.1.4 <u>Summary of Review</u>

Review of the three mechanistic design procedures indicates that one common ground for these developed procedures is that they all use multi-layered elastic theory to model a flexible pavement structure and to determine pavement life using various design criteria. This kind of approach is also being used by an on-going research activity, NCHRP project 1-26 (Thompson, 1989). It is expected that the next edition of the AASHTO Guide on Flexible Pavement Design will move in this direction.

One weak aspect in all three procedures is characterizing the seasonal effects on the pavement materials properties. In both the ARE and the Alaska methods, pavement properties at a representative temperature of 70°F is recommended for design purposes rather than those at different seasons. In the WSDOT method, seasonal variations are considered. However, for the base and subgrade materials, modulus ratios between the dry and wet materials are used rather than a direct consideration of the base and subgrade material properties for each season.

Since the seasonal effects have great influence on pavement layer properties (and some other factors such as traffic

distribution), this results in varying pavement damage during the year. Therefore, an improved approach to address the seasonal effects seems to be necessary.

6.2 <u>Development of an Improved Mechanistic Overlay Design Procedure</u>

6.2.1 Framework

Figure 6.10 illustrates, in a flowchart format, an improved mechanistic overlay design procedure for flexible pavements. This improved procedure is based on the concept similar to that of Alaska method. The following sections describe some of the major points in more detail.

6.2.2 <u>Condition Survey</u>

The first step in the overlay design is to perform a condition survey. The purpose of the condition survey is to obtain information regarding the existing pavement condition. Condition surveys usually involve a fair amount of detail. They generally include not only the type of distress that has occurred, but also its severity, its extent, and the location (Haas and Hudson, 1982). Typically, for flexible pavements, the pavement condition survey includes rutting, alligator cracking, longitudinal cracking, transverse cracking, block cracking, bleeding, ravelling, potholes, patches, and punchouts. The condition survey results may provide very important information in estimating qualitatively the structural capacity of the existing pavements.

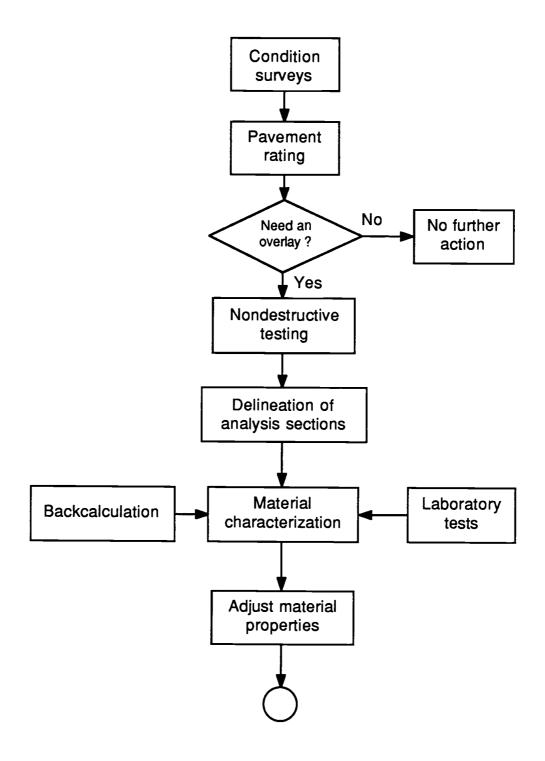


Figure 6.11 Flowchart for the Improved Overlay Design Approach

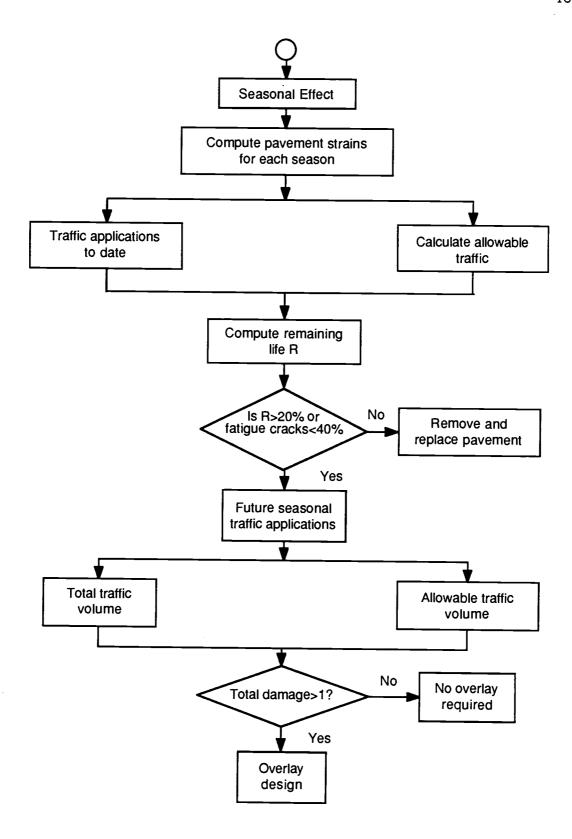


Figure 6.11 Flowchart for the Improved Overlay Design Approach (cont.)

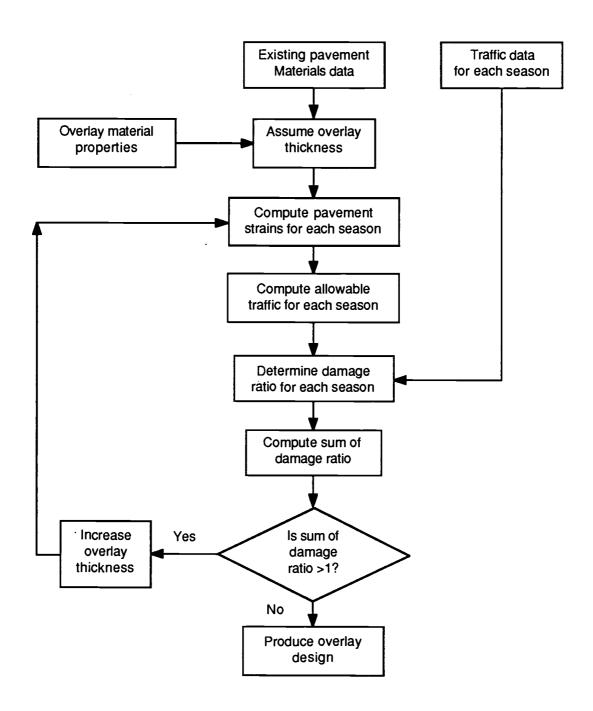


Figure 6.11 Flowchart for the Improved Overlay Design Approach (cont.)

6.2.3 Nondestructive Testing

The second step is to perform nondestructive testing. The nondestructive testing should be conducted using a falling weight deflectometer (FWD) since this device has the highest utility (Lytton, 1986) and may provide test results which are closer to a standard axle loading. Frequency of the measurements should be based on designers' requirement. Typically, the deflections should be measured at a space of 200 to 250 ft. In some cases, an interval of 50 ft may be specified.

6.2.4 Delineation of Analysis Section

With the use of the FWD, a large quantity of deflection data can be obtained. These data generally include description of the milepoint, test location, pavement temperature at time of testing, FWD load plate radius, load levels, sensor spaces, and deflection readings at corresponding sensor locations. In many cases, use of all the deflection test data to backcalculate material properties for a specific project is impractical, because it may require too much time for analyzing the data.

A better approach is to use statistical analysis to define delineation units so that pavement sections having similar response may be characterized by representative values. The cumulative differences technique, as recommended by AASHTO (1986), can be used for this purpose. The concept of the cumulative differences technique and a computer program which uses this technique for delineating analysis sections are presented in Appendix D.

6.2.5 Material Characterization

Materials characterization can be achieved through backcalculation using NDT deflection test data. The BOUSDEF program described in Chapter 4 is recommended for initial evaluation of the deflection data to determine moduli for each pavement layer. Laboratory tests should be performed on a limited scale and primarily used for verification purposes. The backcalculated and/or laboratory tested modulus should be carefully evaluated using engineering judgement or experience for the type of materials.

6.2.6 Consideration of Seasonal Effect

The major seasonal effects on pavement structures are temperature variation and moisture changes in the pavement layers. The strength and deformation properties of bituminous materials and bituminous mixtures are substantially influenced by temperature. The effect of temperatures on the dynamic modulus is illustrated in Figure 6.12. The stiffness of bituminous mixtures is also dependent on both temperature and time of loading as shown in Figure 6.13. In general, the seasonal effects on the resilient modulus of bituminous materials can be illustrated in Figure 6.14. As the temperature increases, the modulus value decreases. The higher the temperature, the lower the modulus would be. Therefore, the resilient modulus of the bituminous materials in summer is much lower than in winter.

Poisson's ratio of the asphalt concrete can also be affected by the temperature variation as illustrated in Figure 6.15. For mechanistic pavement analysis, typical values of Poisson's ratio in Table 3.1 may be used.

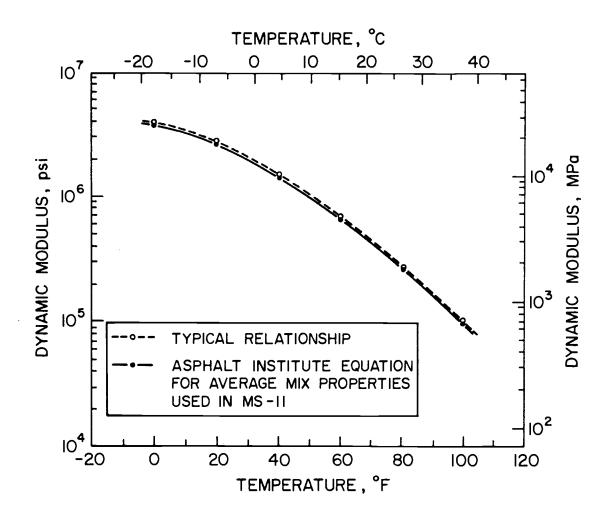


Figure 6.12 Comparison of MS-1 Prediction Equation to Modulus-Temperature Relationship Used in MS-11 (TAI, 1982)

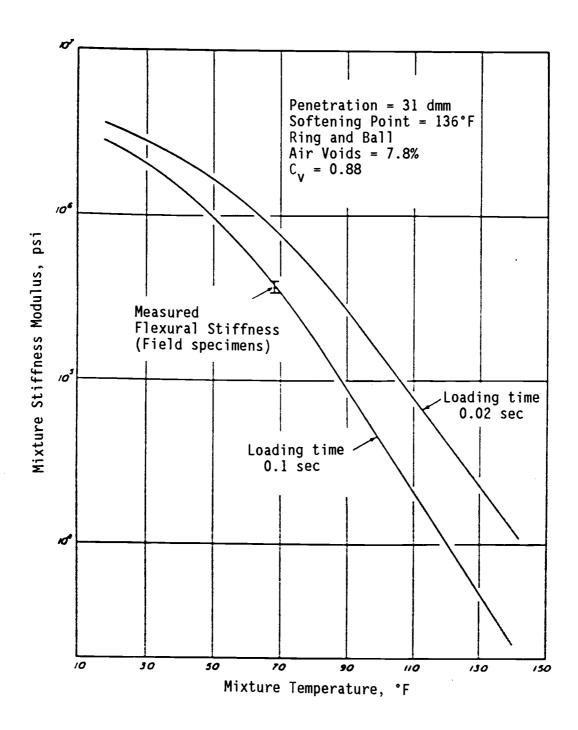


Figure 6.13 Computed Relations Between Mixture Stiffness and Temperature (Monismith, 1973)

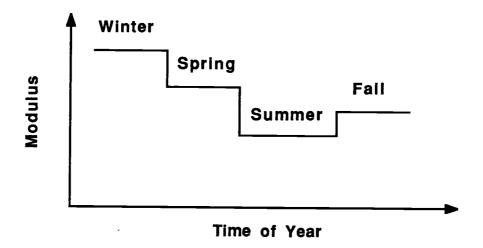


Figure 6.14 Seasonal Influence on Asphalt Concrete Layer Modulus (Hicks et al, 1988)

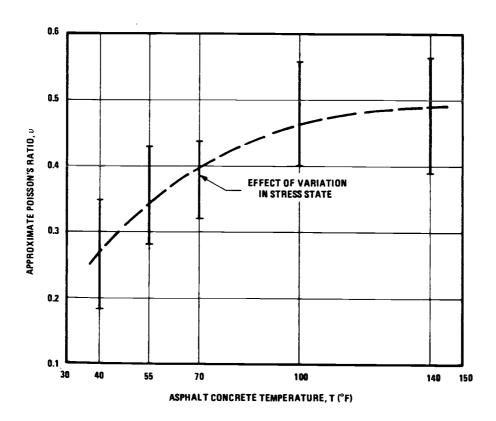


Figure 6.15 Temperature Influence on Poisson's Ratio (Barksdale and Hicks, 1973)

Water content is the major climatic factor influencing the strength and deformation properties of granular materials. As the degree of saturation increases, the resilient modulus decreases, as illustrated in Figure 6.16.

Moisture content also has a pronounced effect on the strength and deformation properties of subgrade materials. A general trend can be found in Figure 6.17. As the water content increases, the dry density of the subgrade soil would decrease. Consequently, the resilient modulus is also reduced.

It is expected that moisture content would vary during the year, and this would result in a variation of the subgrade modulus, as conceptually illustrated in Figure 6.18. In areas where freezing and thawing are expected, variation of the resilient modulus could be vary dramatic, as can be seen in Figure 6.19.

The above discussion addresses the importance of considering seasonal effects in pavement design and the various factors that have considerable impacts on pavement material properties. In the improved procedure, pavement material properties for each season are directly considered in terms of the pavement layer moduli, which as discussed above, are directly influenced by temperature and moisture content.

Traffic distribution may also vary with the season as illustrated in Figure 6.20. The varying traffic distribution may result in varying pavement damage within each season. Traffic applications (in terms of 18-kip EAL's) for each season are taken into consideration in the improved approach. This allows a better estimation of pavement damage occurred in each season of the year.

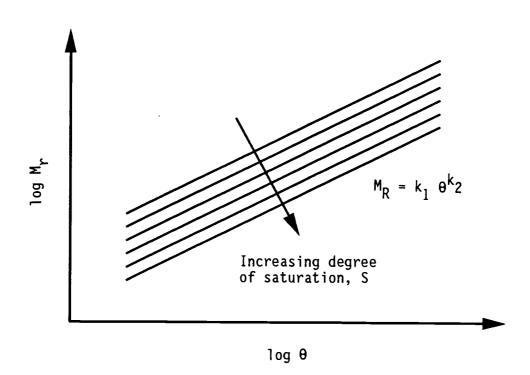


Figure 6.16 Influence of Degree of Saturation on Stiffness Characteristics of Untreated Granular Material (Monismith, 1989)

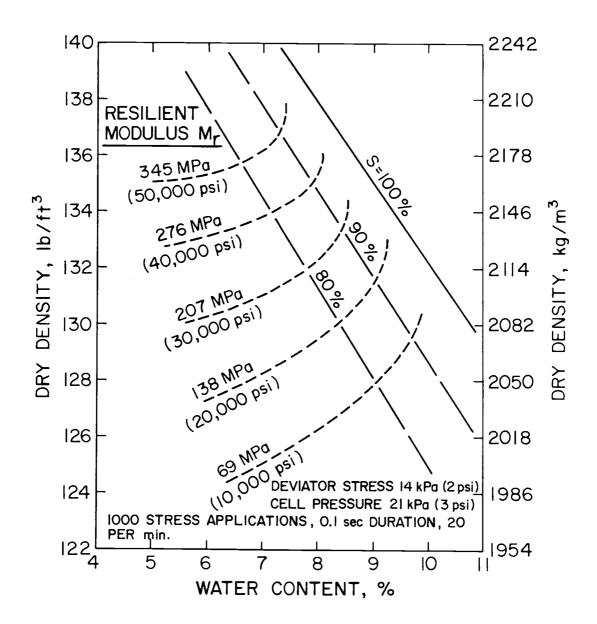


Figure 6.17 Water Content - Dry Density - Resilient Modulus Relationship for Subgrade Soil (Monismith, 1973)

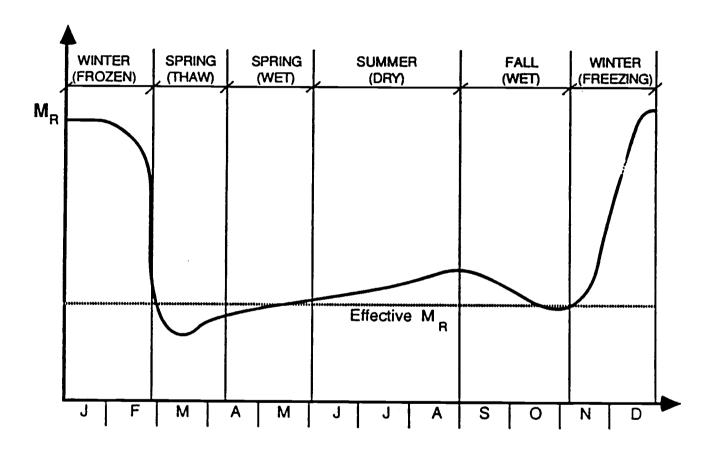


Figure 6.18 Concept of Seasonal Roadbed Soil Variation

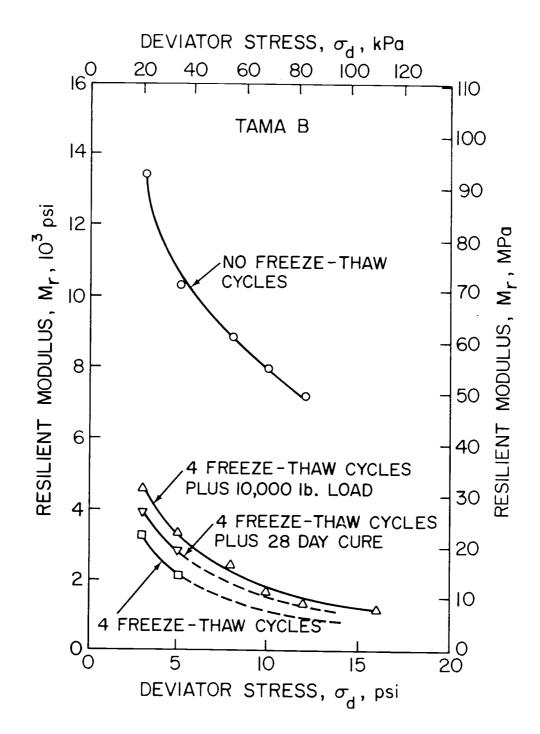


Figure 6.19 Effect of Freeze-Thaw, Additional Loading, and Additional Curing on Resilient Response of a Natural Tama B Soil (Monismith, 1989)

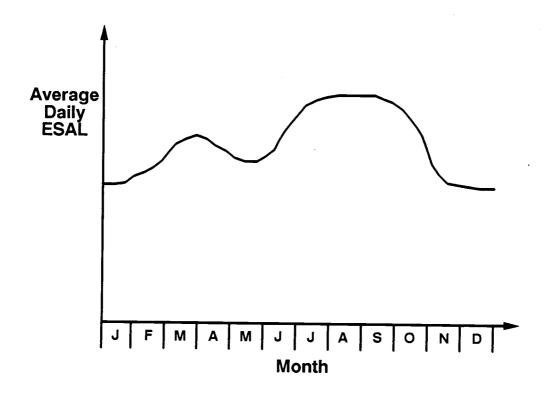


Figure 6.20 Concept of Seasonal Variation on Traffic Distribution

6.2.7 Critical Pavement Strains

Under traffic load, the pavement structure experiences stresses, strains, and deformations. For flexible pavements, it is generally accepted that two pavement strains are critical and used for design purposes (Figure 6.21): 1) the horizontal tensile strain on the underside of asphalt-bound layer, and 2) the vertical compressive strain on the top of the subgrade.

These two critical strains are considered to be associated with the major causes of pavement fatigue and rutting. If the horizontal tensile strain $(\epsilon_{\rm t})$ is excessive, fatigue cracking of the asphalt-bound layer will result. If the vertical compressive strain $(\epsilon_{\rm v})$ is excessive, rutting or permanent deformation will result at the surface of the pavement structure from overloading the subgrade. In the development of this improved procedure, a linear elastic layer computer program (ELSYM5) is modified and used as a subroutine for the determination of the critical strains. Rutting in the asphalt layer and/or in the base layer is not considered at present. Future improvement of the developed procedure will take this into consideration.

6.2.8 <u>Determination of Allowable Traffic Repetition</u>

6.2.8.1 Fatique Evaluation

The most prevalent mode of distress in flexible pavements in the U.S. was reported to be fatigue cracking resulting from repeated traffic loads (Highway Research Board, 1973) and it is still believed to be the case. The fatigue properties of the pavements may be determined from 1) laboratory tests conducted directly on the asphalt

Figure 6.21 Location of the Critical Strains

concrete mixture under consideration, or 2) analysis of pavements in service compared with observed cracking. A very large amount of information has been published on such fatigue properties for various materials, test conditions, and test methods. The data are usually presented as plots of initial tensile strain, $\epsilon_{\rm t}$, versus log of number of load repetitions to failure, N_f.

Finn et al (Finn, 1973) summarized, in Figure 6.22, a set of fatigue curves for some California mixes. For cold climate conditions, Bergan and Pulles (1973) developed a group of curves by varying temperatures rather than the varying moduli, as shown in Figure 6.23. In general, the pavement fatigue performance can be expressed as a function of tensile strain and/or resilient modulus of the asphalt concrete as follows:

$$N_{f} = A \left(\frac{1}{\epsilon_{t}}\right)^{b} \left(\frac{1}{\epsilon_{ac}}\right)^{c}$$
 (6-14)

where:

 N_{f} = number of load applications to failure,

 ϵ_{t} = tensile strain on the underside of asphalt bound layer,

 E_{ac} = modulus of asphalt bound material, and

A,b,c = constants for specific asphalt mix.

If the resilient modulus is ignored, the relationship expressed in equation (6-14) may be rewritten as:

$$N_{f} = A \left(\frac{1}{\epsilon_{t}} \right)^{b} \tag{6-15}$$

In the above equations, A, b, and/or c for a pavement design

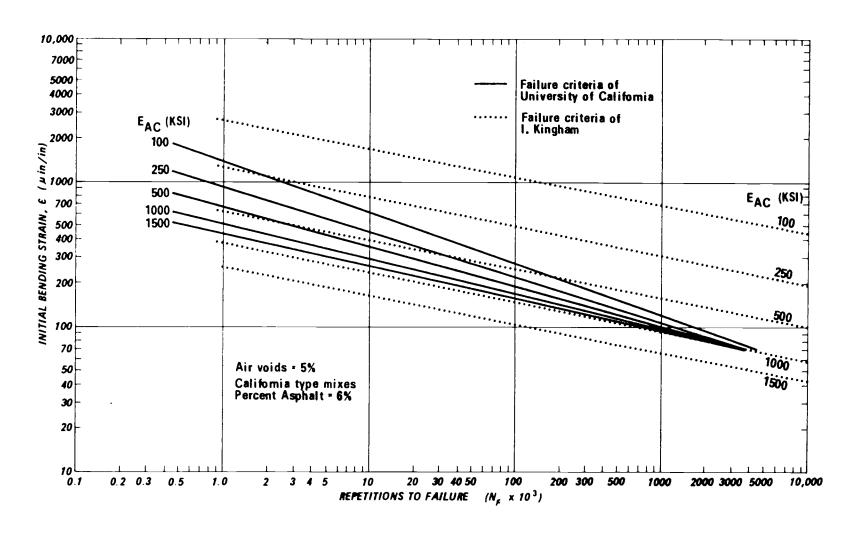


Figure 6.22 Fatigue Curves for Some California Mixes Using Different Failure Criteria (Finn et al, 1973)

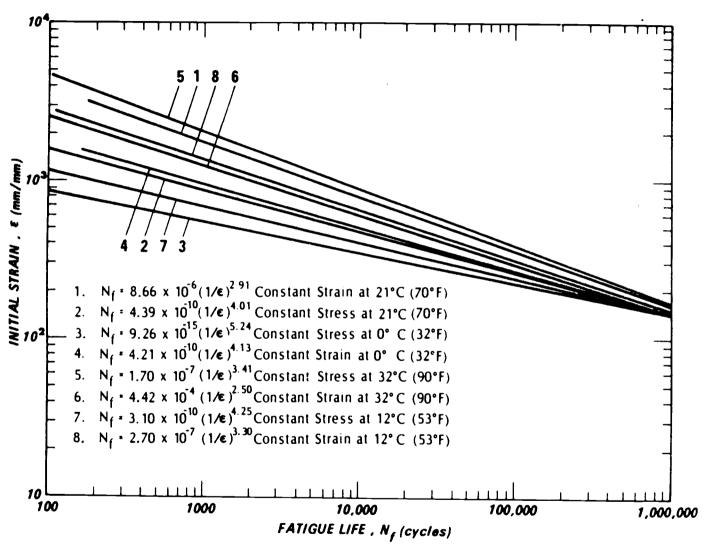


Figure 6.23 Fatigue Curves for Asphaltic Concrete (Bergan and Pulles, 1973)

procedure are usually established based on laboratory fatigue tests and "field calibration" studies or "derived" by relating "structural model response data" to observed pavement performance. Quite a few of such asphalt concrete fatigue relations have been developed (Table 6.5), and the following describes some of the more important.

6.2.8.1.1 The Asphalt Institute

The fatigue equation used in the Asphalt Institute MS-1 thickness design manual (The Asphalt Institute, 1981) is based on previous work done by Finn et al in NCHRP Project 1-10B (Finn, 1986), and modified to reflect the effect of air void content and asphalt content based on laboratory determined fatigue data developed by Pell and Cooper (Pell, 1975), and Epps (Epps, 1968). The fatigue relationship is expressed by the following equation:

N = 18.4 * C * 0.004325 *
$$\epsilon_{\rm t}^{-3.291}$$
 * $\epsilon_{\rm ac}^{-0.854}$ (6-16) where:

N = number of 18-kip equivalent single axle loads,

 ϵ_{t} = horizontal tensile strain on underside of AC layer,

 E_{ac} = modulus of AC layer, psi, and

C = a function of voids and volume of asphalt in the mix design, and can be determined by the following:

$$C = 10^{M}$$

where:

 $M = 4.84 * [V_h/(V_v+V_h) - 0.69]$

 V_{h} = volume of asphalt, %, and

 V_v = volume of air voids, %.

Table 6.5 Summary of Some Fatigue Criteria

Investigator	Fatigue Criteria	Reference
Asphalt Concre	<u>te</u>	
AASHO Road test	Log N _f (10%) = 15.947 - 3.291 Log(ϵ /10 ⁻⁶) - 0.854 Log(E/10 ³)	Finn,1986
AASHO Road test	Log N _f (45%) = 16.086 - 3.291 Log(ϵ /10 ⁻⁶) - 0.854 Log(E/10 ³)	Finn,1986
FHWA-ARE	$N_f = 9.73 * 10^{-15} (\epsilon)^{-5.16}$	ARE, 1975
FHWA-RII	$N_f = 7.56 * 10^{-12} (\epsilon)^{-4.68}$	Majidzadeh and Ilves, 1980
Shell	$N = 4.91 \times 10^{-13} (0.86 V_b + 1.08)^{0.5} (\epsilon)^5$ $\times (E_{mix})^{-1.8}$	Shell,1978
Illinois	$N = 5 * 10^{-6} (\epsilon)^{-3.0}$	Thompson, 1987
TRRL	$N = 4.17*10^{-10} (\epsilon)^{-4.16}$	Powell, 1984
	$N = 1.66*10^{-10} (\epsilon)^{-4.32}$	
Emulsified Asph	<u>nalt Mixes</u>	
Santucci	$N_f = 13.31 - 3.7058 \log(\epsilon/10^{-6})$ - 0.6384 \log(E/10 ³)	Santucci, 1977
<u>Soil Cement</u>		
Mitchell	$N_{f} = 30.91 - 13.874 \text{ Log}(\epsilon/10^{-6})$	Mitchell, 1974
Ullidtz	$N_f = 3.4*10^{-21} V_b^{5.62} \epsilon^{-5.62}$	Ullidtz, 1977

6.2.8.1.2 <u>PDMAP - NCHRP Project 1-10B</u>

The models used in the PDMAP program developed in NCHRP project 1-10B (Finn, 1986) are:

a) For 10% cracking

$$Log N = 15.947 - 3.291 Log(\epsilon) - 0.854 Log(E)$$
 (6-17)

b) For 45% cracking

$$Log N = 16.086 - 3.291 Log(\epsilon) - 0.854 Log(E)$$
 (6-18)

where:

 ϵ = AC tensile strain, microstrain, and

 $E = AC \mod ulus, ksi.$

6.2.8.1.3 <u>Illinois DOT and University of Illinois</u>

The model used in the Illinois Department of Transportation thickness design procedure (Thompson, 1986) is a deflection-based fatigue algorithm for full-depth asphalt concrete pavements. For a typical Illinois DOT Class I AC, a dense-graded mixture, the fatigue equation is as follows:

$$N = 5*10^{-6} (1/\epsilon)^{3.0} \tag{6-19}$$

The equation was developed based on consideration of mixture composition factors, split strength characteristics, and field calibration studies (Thompson, 1986).

6.2.8.1.4 SHELL Pavement Design Manual

The model used in the SHELL pavement design manual (SHELL, 1978) is expressed by the following relationship:

$$N = 4.91*10^{-13}(0.86V_b + 1.08)^{5.0}(1/\epsilon)^{5.0}(1/S_{mix})^{1.8}$$
 (6-20) where:

 V_h = volume of asphalt in the mix, in percent,

 ϵ = maximum tensile asphalt concrete strain, in/in; and

 S_{mix} = dynamic modulus of the asphalt mix, in ksi.

6.2.8.1.5 Nottingham

The fatigue model developed at the University of Nottingham has the following form:

Log N = 15.8 Log(
$$\epsilon_t$$
) - 40.7 - (5.13 Log(ϵ_t) - 14.39) * Log(V_B)
- (8.83 Log(ϵ_t) - 24.2)*Log(SP_i) (6-21)

where:

 ϵ_{+} = tensile strain in asphalt concrete,

 V_R = volume of bitumen, and

 $SP_i = softening point of bitumen.$

A plot of this equation may be found in Figure 6.24.

6.2.8.1.6 Transport and Road Research Laboratory (TRRL)

The AC fatigue cracking model developed by the TRRL was based on an analysis of the field performance of several experimental flexible pavements (Powell, 1984). For 85% probability of survival and an equivalent temperature at 68°F, the fatigue equation is as follows:

a) For dense bitumen Macadam roadbase

$$N = (4.17*10^{-10}) (1/\epsilon)^{4.16}$$
 (6-22)

b) For rolled asphalt road base

$$N = (1.66*10^{-10}) (1/\epsilon)^{4.32}$$
 (6-23)

6.2.8.1.7 <u>Denmark</u>

The fatigue model developed by Ullidtz (1977) has the following form:

$$N = (3.4*10^{21}) (V_b)^{5.62} (1/\epsilon)^{5.62}$$
 (6-24)

where:

 $\mathbf{V}_{\mathbf{b}}$ = percentage of bitumen by volume.

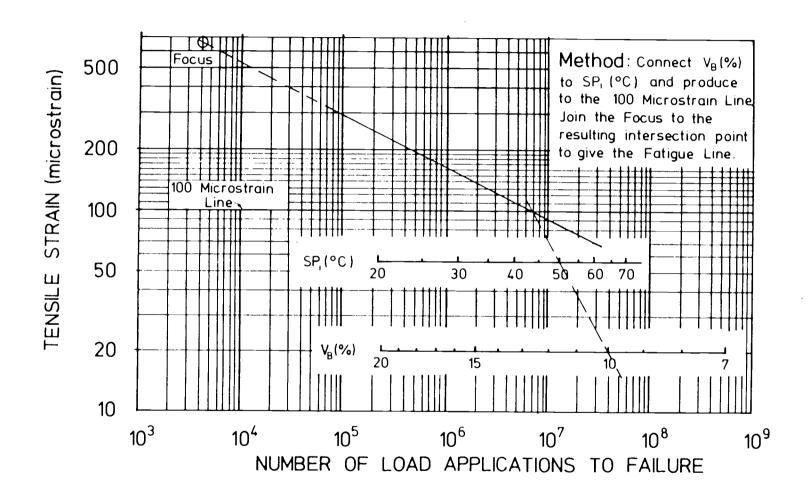


Figure 6.24 Fatigue Curves Developed by Nottingham (Brown, 1980)

6.2.8.1.8 BELGIAN Road Research Center

The fatigue model used in Belgium is expressed by the following equation:

$$N = (4.92 \times 10^{-14}) (1/\epsilon)^{4.76}$$
 (6-25)

6.2.8.2 Rutting Evaluation

Another major distress mode is the rutting or permanent deformation. Excessive rutting in highway pavements can accelerate other forms of structural deterioration and can create a safety hazard. With increasing magnitudes and repetitions of loads, the problem may become more severe.

One approach to preventing excessive rutting is to limit the vertical compressive strain on the subgrade. The compressive strain can be calculated by elastic layer theory. The allowable subgrade strain criteria are generally represented by a form which is similar to that of asphalt concrete:

$$N_{f} = c \left(\frac{1}{\epsilon_{v}}\right)^{d} \tag{6-26}$$

where:

 $\epsilon_{_{
m V}}$ = vertical compressive strain on the top of subgrade,

c,d = parameters.

Table 6.6 presents some criteria developed by different agencies.

It does not appear feasible at this time to accurately predict AC rutting depth development, which may be contributed by a variate of factors such as construction variability, asphalt source, and gradation variability. A procedure which classifies the rutting

Table 6.6 Summary of Some Rutting Criteria

Rutting Criteria	Rut Depth	Reference
$N = 1.365 * 10^{-9} \epsilon_{V}^{-4.477}$	0.5	TAI, 1982
$N = 1.3379 * 10^{-9} \epsilon_{V}^{-4.4843}$		Santucci, 1977
$N = 6.1466 * 10^{-7} \epsilon_{V}^{-4.0}$		Shell, 1978
N = 1.9448 * $10^{-7} \epsilon_{V}^{-4.0}$ N = 1.0498 * $10^{-7} \epsilon_{V}^{-4.0}$		
$N = 1.1262 * 10^{-6} \epsilon_{V}^{-3.5714}$	0.8	Brown, 1984
$N = 4.5256 * 10^{-8} \epsilon_{V}^{-3.7037}$	0.4	Brown, 1984
$N = 6.178 \times 10^{-8} \epsilon_{V}^{-3.9527}$	0.4	Powell, 1984
$N = 3.05 * 10^{-9} \epsilon_{v}^{-4.3478}$		Verstraeten, 1982
	$N = 1.365 * 10^{-9} \epsilon_{V}^{-4.477}$ $N = 1.3379 * 10^{-9} \epsilon_{V}^{-4.4843}$ $N = 6.1466 * 10^{-7} \epsilon_{V}^{-4.0}$ $N = 1.9448 * 10^{-7} \epsilon_{V}^{-4.0}$ $N = 1.0498 * 10^{-7} \epsilon_{V}^{-4.0}$ $N = 1.1262 * 10^{-6} \epsilon_{V}^{-3.5714}$ $N = 4.5256 * 10^{-8} \epsilon_{V}^{-3.7037}$ $N = 6.178 * 10^{-8} \epsilon_{V}^{-3.9527}$	Depth $N = 1.365 * 10^{-9} \epsilon_{V}^{-4.477} \qquad 0.5$ $N = 1.3379 * 10^{-9} \epsilon_{V}^{-4.4843}$ $N = 6.1466 * 10^{-7} \epsilon_{V}^{-4.0}$ $N = 1.9448 * 10^{-7} \epsilon_{V}^{-4.0}$ $N = 1.0498 * 10^{-7} \epsilon_{V}^{-4.0}$ $N = 1.1262 * 10^{-6} \epsilon_{V}^{-3.5714} \qquad 0.8$ $N = 4.5256 * 10^{-8} \epsilon_{V}^{-3.7037} \qquad 0.4$ $N = 6.178 * 10^{-8} \epsilon_{V}^{-3.9527} \qquad 0.4$

^{*} For "Hot Rolled Asphalt" base. Increased strains are permitted for AC mixture that display "better resistance" to permanent deformation

^{**} For 85% reliability design level

resistance of AC mixtures appears to be better suited for a pavement design process.

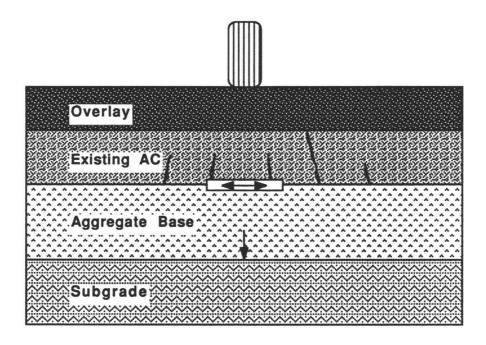
6.2.8.3 Criteria Used in the Improved Procedure

6.2.8.3.1 Fatigue Criterion

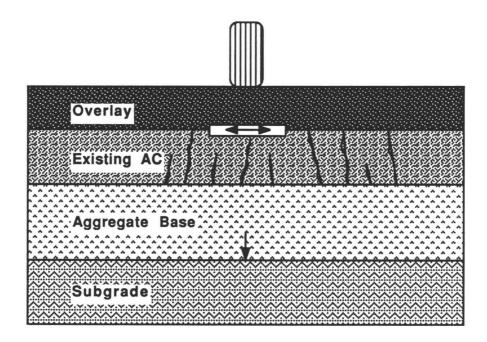
In the improved procedure, Finn's fatigue model (1986) is used. This model is expressed by the following relationship:

$$\log N = 16.086 - 3.291 \log (\epsilon_t) - 0.854 \log (E_{ac})$$
 (6-27) where:

N = load applications to failure,


 $\epsilon_{\rm t}$ = tensile strain on the underside of asphalt-bound layer, in μ -strain, and

 $E_{\rm ac}$ = stiffness modulus of asphalt-bound material, in ksi. This particular relationship was obtained from laboratory fatigue data (Monismith et al., 1972) which had been adjusted to provide an indication of approximately 45 percent fatigue cracking (based on total pavement area) in selected sections of the AASHTO Road Test.


For the evaluation of fatigue performance, the critical tensile strain considered in the improved method is that occurring on the bottom either of the existing pavement surface layer or the overlay. Two cases are considered, as shown in Figure 6.25. For existing surface with resilient modulus greater than 70,000 psi, tensile strain in the existing surface is used to estimate the fatigue life. For existing surface with modulus less than 70,000 psi, tensile strain in the overlay is used.

6.2.8.3.2 Rutting Criterion

Rutting or permanent deformation is controlled by limiting the

a) Modulus of Existing Surface >70,000 psi

b) Modulus of Existing Surface <=70,000 psi

Figure 6.25 Critical Strain Locations for Overlay Design

vertical compressive strain at the top of the subgrade. A relationship developed by the Asphalt Institute (1982) is used in the improved procedure. The relationship is expressed as follows:

$$N = 1.36 * 10^{-9} (\epsilon_{v})^{-4.48}$$
 (6-28)

where:

N = number of load applications, and

 $\epsilon_{_{
m V}}$ = vertical compressive strain on the top of the subgrade. Figure 6.25 also shows the location of the critical strain for rutting analysis.

6.2.9 <u>Determination of Pavement Damage</u>

For every load application, there is some pavement damage. Pavements fail when the total damage accumulates to a point that the pavement serviceability is unsatisfactory. Miner's rule, a cumulative damage theory, is commonly used to assess the damage caused by mixed traffic loads. In the improved method, Miner's rule is also used and it has the following form:

$$\sum_{i=1}^{\gamma} \frac{n_i}{N_i} \le 1 \tag{6-29}$$

where:

i = season i in analysis,

n_i = actual number of cycles of load applied to the pavement
 with season i,

 N_{i} = allowable number of cycles to failure, based on failure criteria for season i, and

 γ = up to 4 seasons can be considered for analysis.

6.2.10 Overlay Thickness Design

The overlay design steps, as described above, have been computerized. The resulted computer program MECHOD (Zhou et al, 1989), stands for MECHanistic Overlay Design, can now be used for routine design work. Figure 6.26 shows a flowchart of this program, while the User's guide may be found in Appendix E.

To begin with, the MECHOD program first reads input data related to pavement structure, traffic, material characteristics. Seasonal effects are considered in traffic distribution and resilient modulus variation for four seasons. However, the pavement damage that occurs in a particular season of the year may also be evaluated. A layered elastic program (ELSYM5) is then called to calculate critical pavement strains as shown in Figure 6.21. The allowable traffic for each season is then calculated and pavement damage evaluated.

The pavement condition rating is not being used in this program because the relationship between the pavement condition rating and the pavement structural characteristics is unclear. However, the importance of a condition survey prior to overlay design should not be underestimated. For the existing pavement, if the damage is greater than 80% or its remaining life less than 20% (either fatigue or rutting), an overlay is required. If the existing pavement still has more than 20% of remaining life, the program will further consider projected future traffic to determine if the existing pavement is able to carry those future load applications. The total pavement damage is determined at this stage. If this total pavement damage is greater than unity, it indicates that the existing pavement is not capable of carrying the projected traffic. In such a case, the

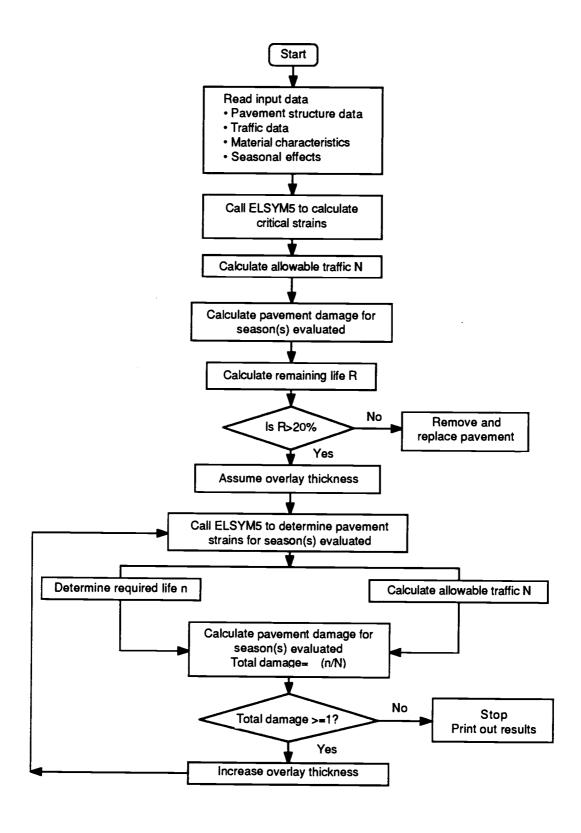


Figure 6.26 MECHOD Program Flowchart

program will also perform an overlay design.

In the process of overlay design, the program first asks for the resilient modulus of the overlay material for the seasons being considered, and uses an initial overlay thickness of 1 inch as a starting value. As shown in Figure 6.26, ELSYM5 is used to calculate critical pavement strains for the season(s) considered. Equations (6-27) and (6-28) are then used to determine the allowable traffic application for the season(s) considered. Total pavement damage is determined for overlaid pavement by using Miner's rule. Both fatigue and rutting are checked. If either has a total pavement damage greater than unity, it is used as the controlling factor.

Determination of overlay thickness is an iterative process. An increment of half-inch overlay thickness is used in the program for the next iteration. The above process is repeated automatically until the total pavement damage is less than unity. This overlay thickness is then recommended.

6.3 Summary

This chapter first reviewed three developed mechanistic overlay design procedures. These procedures included the 1) ARE procedure for the Federal Highway Administration, 2) University of Washington procedure for the state of Washington, and 3) Oregon State University procedure for the state of Alaska. Based on the review, an improved mechanistic overlay design procedure was presented. The major improvement over the three developed procedures is in the direct consideration of seasonal effects on pavement material properties and pavement damage due to traffic loadings within each season.

The improved procedure has been computerized and can be operated on IBM or compatible microcomputers. The resulting computer program MECHOD is easy to use and is user friendly. An initial evaluation was performed on several actual pavements from the states of Oregon and Alaska, as will be described in greater detail in the next chapter.

7.0 EVALUATION OF THE DEVELOPED PROCEDURE

Evaluation of the developed overlay design procedure (MECHOD) was accomplished by selecting actual projects in the states of Oregon and Alaska. The general procedures followed are described below:

- 1. Select projects for evaluation.
- 2. Perform condition survey and deflection tests using FWD.
- 3. Determine pavement layer moduli for overlay design.
- 4. Perform overlay design using the developed procedure.
- Compare overlay design results with standard procedures.The following describes the evaluation process in more detail.

7.1 Overlay Design Using MECHOD

7.1.1 Selection of Project Sites

Two projects in Oregon and two in the state of Alaska were selected for the evaluation of the developed procedure. These projects are typical conventional pavement structures consisting of an asphalt concrete, an aggregate base, and subgrade. One project (Nelchina) in the state of Alaska contains an aggregate subbase. Figure 7.1 shows the location of these projects. Two projects, the Rufus-Quinton project and the Centennial Boulevard project that were selected for the purpose of evaluating the BOUSDEF program, were again used as candidates for the evaluation of the MECHOD program. Pavement parameters for these projects are summarized in Table 7.1.

Condition survey information are also presented in Table 7.1.

The condition survey on the Nelchina project indicates that the existing pavement is totally alligator cracked in 3 to 6" blocks from

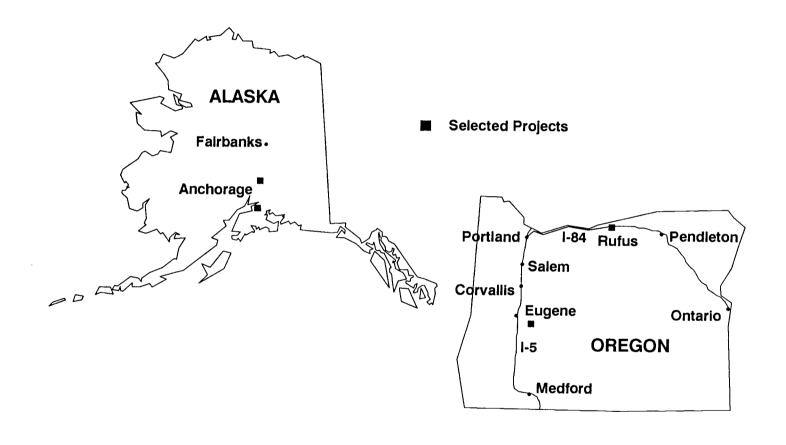


Figure 7.1 Location of Selected Project Sites

Table 7.1 Summary of Selected Projects

Project Name	Layer Thickness	Condition survey
Rufus-Quinton (OR)	6.8" AC 18.0" Aggregate Base	Fair to poor Moderate rutting, extensive cracking, and apparent delamination
Centennial Blvd (OR)	4.0" AC 16.0" Aggregate Base	Fair to poor Light to moderate alligator cracking, moderate transverse cracking
Nelchina (AK)	1.5" AC 4.5" Crushed Gravel Base 6.0" Gravel Subbase 18.0" Selected "Clean" Gravel	Fair to poor Heavy alligator cracking and rutting between stations 62 and 81. Other areas are in relatively good to excellent condition.
Tudor (AK)	2.5 - 5.0" AC (avg. 3.2") 10.5-15.0" Aggregate Base (avg. 12.0" Aggregate Base)	Fair to Good Moderate to severe rutting

station 62 to 81, while from stations 0 to 61 and stations 82 to 127 the pavements is in relatively good to excellent condition.

Therefore, the following analysis focuses on pavement section from station 62 to 81.

Pavement thicknesses for each layer listed in Table 7.1 are average values. It is expected the thickness varies in the field. From the data received, the asphalt concrete thicknesses for the Rufus-Quinton Project vary from 5 to 9 inches. For the Nelchina project, the AC thickness is expected to vary by ± 0.5 inch. For the Tudor project, the AC thicknesses are in the range 2.5 to 5 inches.

7.1.2 <u>Deflection</u> Tests

Deflection tests for the two Oregon projects are described in Section 4.3.3.2. For the Alaska projects, the Dynatest FWD was used for the deflection measurements. Detailed deflection data may be found in Appendix B. For the Nelchina project, deflection tests were performed on a hundred-foot intervals from station 62 to 81. One NDT load, approximately 9,000 lbs, was dropped at each test spot. Deflection tests at the same sites were conducted both in May (Spring) and August (Summer) of 1989. For the Tudor project, deflections were measured for each station. Four NDT loads, ranging from 6,000 to 14,000 lbs, were used to measure deflections at varying load levels. The deflection measurements were also performed for both spring and summer of 1989.

7.1.3 <u>Determination of Pavement Moduli for Overlay Design</u>
BOUSDEF was used to backcalculate pavement moduli using the FWD

deflection data at the time of testing. Table 7.2 summarizes the backcalculation results for the projects evaluated. Detailed backcalculation results may be found in Appendix F.

The backcalculated moduli represent the material properties corresponding to the temperature at the time of NDT testing. These modulus values may be converted to a standard design temperature of 70°F , using a relationship shown in Figure 7.2. For instance, in the AASHTO design procedure, the backcalculated moduli are used to determine the "effective" in situ structural layer coefficient (a_i) , the determined moduli must be corrected to a common 70°F temperature so that the corrected a_i correlation value can be obtained. The converted moduli for each project are presented in Table 7.3.

In order to consider seasonal effects on the pavement materials, a representative temperature for each season can be selected based on local weather data. This representative temperature can be an average temperature for each season, as used in this study. Table 7.4 presents the temperature values used for characterizing the material properties within each season.

Knowing the temperature for each season, the resilient modulus for each season can be determined by adjusting the asphalt concrete modulus to the corresponding temperature, using Figure 7.2. Modulus values corrected for temperature for the asphalt concrete are presented in Table 7.5.

Based on the backcalculated resilient moduli and temperature information, modulus values used for overlay design analysis can be determined, as shown in Table 7.6. It should be noted that engineering judgement is necessary to determine what moduli should be

Table 7.2 Summary of Backcalculated Moduli

Project Name		AC	Base	Subbase	Subgrade	Temperature at time of NDT
		(ksi)	(ksi)	(ksi)	(ksi)	testing (°F)
Rufus-Quir	nton	479,843 ^a 221,124 ^b	25,536 16,531	- -	26,670 6,218	72 6
Centennial	Blvd	677,940 287,039	43,945 17,825	-	15,319 4,791	71 12
Nelchina ^c	(spr)	1,200,000 ^d	35,425 8,401	14,439 4,145	11,831 1,969	44 0
	(sum)	1,000,000 ^d	63,982 20,984	46,088 20,216	12,167 2,675	50 0
Tudor	(spr)	1,751,905 591,186	17,505 7,574	-	51,419 18,279	45 0
	(sum)	1,200,162 571,821	28,850 12,059	- -	44,856 16,267	56 0

^a Average modulus

b Standard Deviation

From station 62 to station 82.

Fixed AC values, due to difficulties in obtaining reasonable results from backcalculation. These fixed values were estimated based on the temperature at the time of NDT testing from Figure 6.12. It should be noted these values might be dramatically different from the actual condition, since the existing pavement is severely cracked.

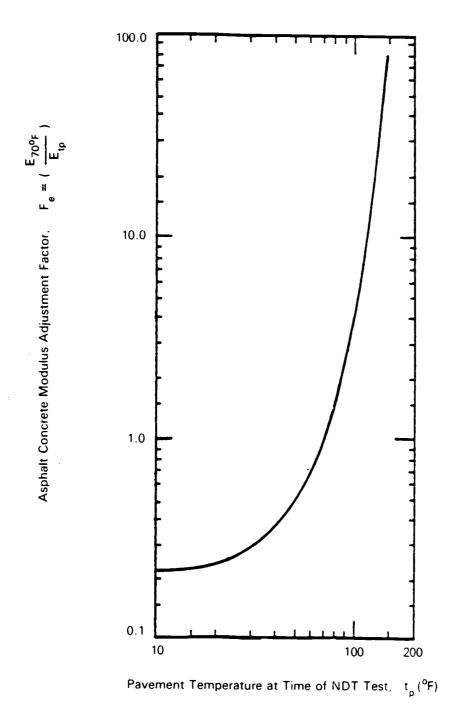


Figure 7.2 Asphalt Modulus Temperature Adjustment Factor (AASHTO, 1966)

Table 7.3 B	Backcalculated	AC Moduli	Converted	to	70°F
-------------	----------------	-----------	-----------	----	------

Project Name	NDT Test Season	Conversion Factor	AC Modulus (psi)	Average MR (psi)
Rufus-Quinton	Summer	1.10	436,221	436,221
Centennial Blvd	Spring	1.05	645,657	645,657
Nelchina	Spring Summer	0.44 0.52	528,000 520,000	524,000
Tudor	Spring Summer	0.45 0.64	788,357 768,104	778,231

Table 7.4 Representative Temperature Used for Evaluation

Spring	Summer	Fall	Winter
°F	°F	°F	°F
49	70	48	37
(0.50) ^a	(1.00)	(0.48)	(0.34)
50	64	49	42
(0.52)	(0.83)	(0.50)	(0.41)
39	50	N/C	20
(0.35)	(0.52)	N/C	(0.24)
39	50	N/C	20
(0.35)	(0.52)	N/C	(0.24)
	F 49 (0.50) 50 (0.52) 39 (0.35)	°F °F 49 70 (0.50) ^a (1.00) 50 64 (0.52) (0.83) 39 50 (0.35) (0.52) 39 50	°F °F °F 49 70 48 (0.50)° (1.00) (0.48) 50 64 49 (0.52) (0.83) (0.50) 39 50 N/C (0.35) (0.52) N/C 39 50 N/C

^a Conversion Factor relative to $70^{\circ}F$ (From Figure 7.2). N/C= Not Considered.

Table 7.5 Modulus Values (psi) Corrected for Temperature for AC

Project Name	Spring	Summer	Seasons Fall	Winter
Rufus-Quinton	872,000	436,000	908,000	1,283,000
Centennial Blvd	1,246,000	777,000	1,291,000	1,574,000
Nelchina	1,497,000	1,007,000	N/C	2,183,000
Tudor Road	2,223,000 ^a	1,496,000 ^a	N/C	3,242,000ª

N/C= Not considered.

These numbers are unreasonable, engineering judgement needs to be made. The adjusted modulus values may be seen in Table 7.6.

Table 7.6 Modulus Values Used in Overlay Design Analysis

Project Name	Layer Name	Spring	Summer	Seasons Fall	Winter
Rufus-Quinton	AC	872,000	436,000	909,000	1,283,000
	Base	20,000 ^a	25,600 ^a	27,000 ^a	20,000 ^a
	Subg	15,000 ^a	20,500 ^a	21,000 ^a	15,000 ^a
Centennial Blvd	AC	1,242,000	778,000	1,291,000	1,575,000
	Base	43,900	50,000°	45,000 ^a	40,000°
	Subg	15,300	20,000°	21,000 ^a	16,000°
Nelchina	AC Base/s Subg	70,000 ^b sub 25,000 ^c 11,800 ^c	70,000 ^b 55,000 ^c 12,200 ^c	- - -	70,000 ^b 60,000 ^a 30,000 ^a
Tudor	AC	1,500,000 ^d	1,000,000 ^d	-	2,000,000 ^d
	Base	35,000 ^a	60,000 ^a	-	80,000 ^a
	Subg	20,000 ^a	25,000 ^a	-	60,000 ^a

Adjusted modulus based on backcalculated results and experience. Engineering judgement was made in determining these values.

This value is assigned because the existing pavement surface is totally cracked.

Average backcalculated modulus for base and subbase.

d Adjusted modulus based on engineering judgement

used in the design analysis. In the case of the Rufus-Quinton and Centennial Blvd projects, the backcalculated values play an important role of reference. The final modulus values determined were primarily based on the backcalculated results. For the Nelchina project, the selection of the design resilient moduli was also based on the backcalculated results. Considering the effect of the badly cracked surface, the modulus, used in the overlay design analysis (for the existing asphalt concrete layer) is assigned a value of 70,000 psi. This is done to consider that the severely cracked surface layer would perform as a granular material layer.

Engineering judgement was made in selecting the moduli for the Tudor project. The backcalculated AC moduli seemed to be in the right range; however, the backcalculated results for the base and subgrade provided unreasonable numbers. In many cases, the subgrade modulus values are much higher than the base modulus values. It is generally expected that the modulus for the base would be higher than that for the subgrade (except in the spring season when base layer material thawed while the subgrade is still frozen).

7.1.4 Traffic Analysis

Traffic repetitions are expressed in terms of 18 kip equivalent axial loads (EAL's). Mixed traffic can be converted to repetitions of the 18 kip EAL using the AASHTO equivalency factors.

It is ideal if the historical traffic data are available. This data helps the designer evaluate the remaining life of an existing pavement prior to an overlay. However, the historic traffic data are usually difficult to obtain which makes the analysis of remaining

pavement life extremely difficult. In this study, only one project (Nelchina) had an estimate of the historic traffic applications. Future traffic application data are also needed for overlay design. In the following evaluation, all traffic applications before the year 1989 are considered as historical traffic repetitions.

Traffic data for the Rufus-Quinton project was furnished by the Oregon State Highway Division (OSHD) traffic section. The data came from a 16-hour manual count taken in 1988. For the Centennial Boulevard project, the traffic data were provided by the city of Eugene. Traffic data for the Alaska projects were developed by the Alaska Department of Transportation and Public Facilities (ADOT&PF).

Table 7.7 summarizes both historical traffic data (if they are available) and projected 20-year traffic applications. The traffic distribution for each season is presented in Table 7.8, and as can be seen it varies with the season. For the projects evaluated, a large percentage of the traffic applications are in the summer season. A fifty percent reliability factor, meaning no modification on traffic applications, was used for the overlay design. The same reliability level was also used in the analysis using the AASHTO design procedure, as is seen in a later section.

7.1.5 Overlay Design

After establishing the necessary inputs for overlay design, the MECHOD program was used to determine the thickness of overlay. The inputs required to run MECHOD included design load, load radius, moduli and Poisson ratios for each pavement layer and season, historical and projected traffic applications for each season,

Table 7.7 Traffic Data for Overlay Design (ESAL's)

Project Name	Historical Traffic	Future Traffic
Rufus-Quinton	N/A	27,104,357 ^a
Centennial Blvd	N/A	4 ,60 4 ,526 ^b
Nelchina	501,840°	1,056,000 ^d
Tudor	N/A	1,812,000 ^e

Estimated using a five percent growth rate for the first fifteen years and a three percent growth rate for the last five years.

Estimated using a five percent truck and a three percent growth rate for twenty years design.

c Calculated as 1,230 EAL/month/way * 12 month/yr * 17 yr * 2 ways

d Calculated as 2,200 EAL/month/way * 12 month/yr * 20 yr * 2 ways

Provided by Alaska DOT&PF.

Table 7.8 Traffic Distribution for Each Season (ESAL's)

Spring	Summer ——————	Fall	Winter
4,526,428	11,275,413	4,526,428	6,776,089
16.7 ^b	41.6	16.7	25.0
1,151,132	1,533,307	768,956	1,151,132
25.0	33.3	16.7	25.0
87,648	528,000	-	440,352
(41,653) ^c	(250,920) 6	-	(209,267) 5
8.3	50.0	-	41.7
154,020	947,676	-	710,304
8.5	6 52.3	-	5 39.2
	4,526,428 2 ^a 16.7 ^b 1,151,132 3 25.0 87,648 (41,653) ^c 1 8.3	4,526,428 11,275,413 2 ^a 5 16.7 ^b 41.6 1,151,132 1,533,307 3 4 25.0 33.3 87,648 528,000 (41,653) ^c (250,920) 1 6 8.3 50.0	4,526,428 11,275,413 4,526,428 2 ^a 5 2 16.7 ^b 41.6 16.7 1,151,132 1,533,307 768,956 3 4 2 25.0 33.3 16.7 87,648 528,000 - (41,653) ^c (250,920) - 1 6 - 8.3 50.0 - 154,020 947,676 - 1 6 -

Length of the season in month.

Percent distribution of the total traffic for the season.

Historical traffic for the season.

reliability factor, and standard deviation. Since a fifty percent reliability level was selected for the analysis, this factor had no effect on the overlay design.

The MECHOD program first uses the given data to evaluate the existing pavement. If an overlay is needed, based on total pavement damage, the program would ask for the modulus of overlay material. Table 7.9 presents modulus data for the overlay material. The moduli in the Table 7.9 were estimated using the AMOD program.

Several assumptions were made in using the AMOD program. For the Oregon projects, these include an 8% voids for the asphalt concrete overlay mix, an AC-20 grading of asphalt, a 6% of asphalt content by weight of total mix, a 5% fine passing the No. 200 sieve, and a vehicle travel speed of 35 mph. With the above assumptions, the modulus value at temperature of 70°F was computed to be 1,200,000 psi. This value seems to be high for the Oregon projects. Therefore, a modulus value of 450,000 psi, which is typically used in Oregon for new asphalt material, was selected. By using the representative temperature data shown in Table 7.4, the modulus value of overlay material for each season was determined and presented in Table 7.9. For the Alaska projects, the overlay material modulus was estimated using data from Kodiak Airport runway design (Vinson et al, 1989).

The overlay thickness design is an iterative process. For practical purposes, an initial overlay thickness of one-inch is used in the MECHOD program, with a half-inch increment for each iteration. The process is repeated until the total pavement damage is less than unity. The design results for the four projects are summarized in Table 7.10, while detailed output each project may be found in

Table 7.9 Modulus Data (psi) for Overlay Material $^{\rm a}$

Seasons				
Spring 	Summer ————	Fall ————	Winter	
•••				
900,000	450,000	937,500	1,324,000	
865,400	542,200	900,000	1,097,600	
1,360,000	915,400	N/C	1,983,000	
1,360,000	915,400	N/C	1,983,000	
	1,360,000	900,000 450,000 865,400 542,200 1,360,000 915,400	Spring Summer Fall 900,000 450,000 937,500 865,400 542,200 900,000 1,360,000 915,400 N/C	

Poisson's ratio is assumed to equal 0.35 for all seasons. N/C = Not Considered

Table 7.10 Overlay Design from MECHOD

Project Name	Overlay Thickness (in)	Total Pavement Damage (%) Surface Subgrade	
Rufus-Quinton	4.0	96.5	2.2
Centennial Blvd	2.0	98.3	11.3
Nelchina	3.0	85.7	0.6
Tudor	1.0	45.4	9.3

Appendix G. Total pavement damage is also presented in the table. This value indicates that after 20 years of service, the design overlay would use up certain percentage of its design life. For all the projects evaluated, the results seem to indicate that fatigue damage in the asphalt concrete layer is a major concern in these projects, while the rutting in the subgrade is not significant. The rutting problems, as indicated in Table 7.2, very likely occurred in the asphalt concrete and/or base layers. At present, the MECHOD program is not capable of determining rutting for these circumstances.

7.2 Overlay Design Using Standard Procedures

Three standard overlay design procedures were used for the purposes of evaluating the developed procedure. These procedures are currently used in both Oregon and Alaska States. These procedures are the Oregon DOT, 1986 AASHTO, and ADOT&PF methods. The following briefly describe these procedures.

7.2.1 <u>ODOT Design Procedure</u>

The present procedure used to determine overlay requirements in Oregon is based on deflection measurements of the existing pavement. The design procedure is essentially that of the California Division of Highways, with modifications for Oregon's Traffic and Crushed Base Equivalencies. The procedure suggests that tolerable deflection is a function of traffic and pavement thickness, and that additional overlay thickness will reduce measured deflection. The deflections are measured using either a Falling Weight Deflectometer (FWD) or the

Dynaflect test equipment. Deflections are typically measured every 250 ft. within a section. However, different spacings may be specified if requested by the designer. The measured deflections are normalized to an equivalent deflection for a 9,000 pound load at 70°F. For deflections measured using the FWD, the equivalent deflections are determined by interpolating between the deflections measured at loads above and below 9,000 pounds. Once the equivalent deflections have been determined, they must be adjusted to account for the in-place pavement temperature. This adjustment is a function of both the pavement temperature at the time the deflections were measured and the thickness of the existing pavement. Knowing these two factors, Figure 7.3 is used to determine the appropriate temperature correction factor. The equivalent deflections are multiplied by the temperature correction factor to establish the final normalized deflection. For pavements over six inches thick, no temperature correction is required.

The normalized deflection is determined for each location where deflections were measured. Statistical analysis is performed to delineate analysis unit. For each unit, the 80th percentile deflection is calculated and used as design value to determine the overlay requirement. The 80th percentile deflection is computed using the following equation:

$$D_{80} = X + 0.84 S$$
 (7-1)

where:

 D_{80} = design deflection value (80th percentile deflection), X = mean deflection, and,

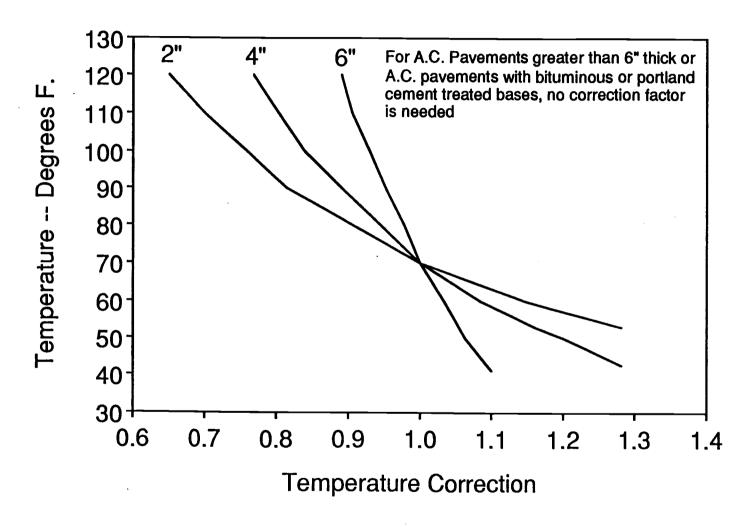


Figure 7.3 Temperature Correction Factors Used in ODOT Overlay Design Procedure (Oregon State Highway Division (OSHD), 1951)

S = standard deviation of the deflections.

The 80th percentile deflection, for a particular project length, is then compared with a tolerable deflection (determined from Figure 7.4), which is a function of future equivalent axle load repetition and the thickness of the in-place pavement which has remaining fatigue life. An iterative procedure is then used to find the overlay thickness. For pavements which are substantially or wholly failed in fatigue, the tolerable deflection is based on the proposed overlay thickness only. If the 80th percentile deflection is less than the tolerable deflection, then an overlay is not needed. If the 80th percentile deflection is greater than the tolerable deflection, then the percent reduction in deflection is calculated as follows:

% reduction =
$$100 * (D_{80} - D_t)/D_{80}$$
 (7-2)

where

 D_{+} = tolerable deflection.

The value of % reduction is used in Figure 7.5 to determine the Crushed Base Equivalence factor, which means one inch thick of asphalt concrete is equivalent to a certain thickness of gravel. The equivalent factor ranges from 1.52 to 2.5. A factor of 2.0 is used by Oregon DOT.

Deflection data used in the overlay design can be found in Appendix H. The final overlay design results are summarized in Table 7.11.

7.2.2 1986 AASHTO Design Procedure

The 1986 AASHTO overlay design procedure (AASHTO, 1986) is based

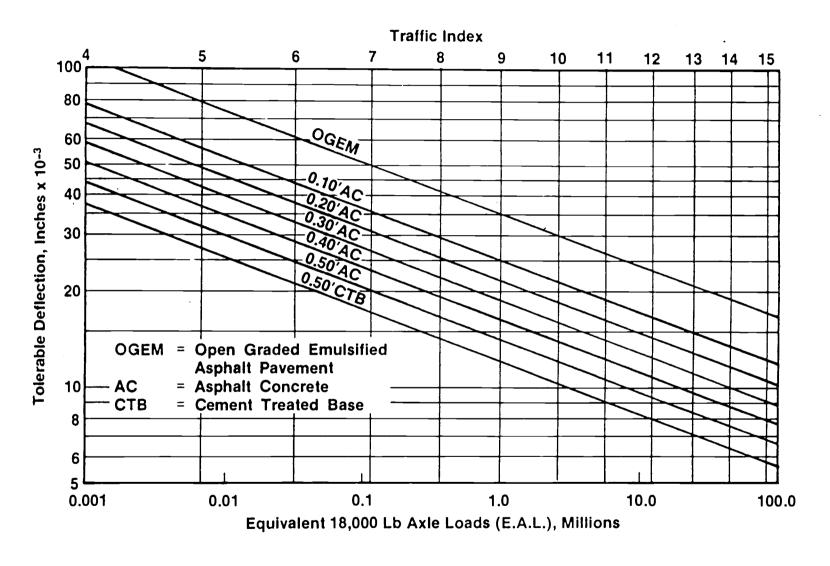
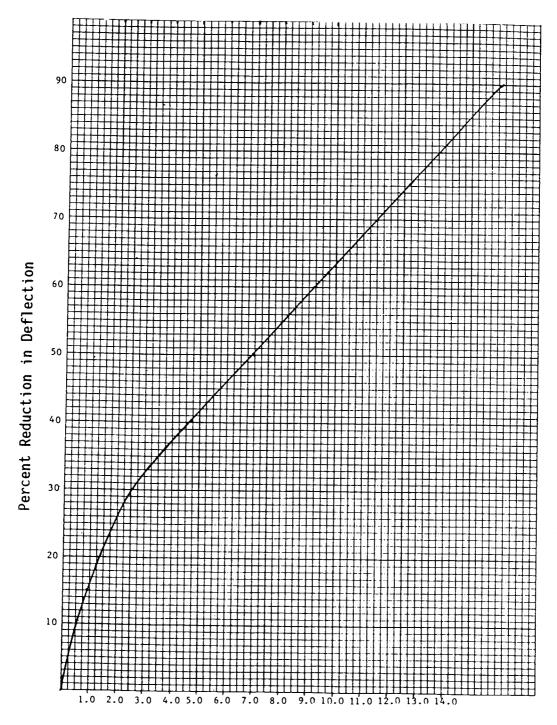



Figure 7.4 Tolerable Deflection Chart Used in ODOT Overlay Design Procedure (OSHD, 1951)

Increase in Crushed Base Equivalent (inches)

Figure 7.5 Percent Deflection Reduction Chart Used in ODOT Overlay Design Procedure (OSHD, 1951)

Table 7.11 Overlay Thickness Design Using ODOT Procedure

TC ^a	D ₈₀ ^b	${\sf D_t}^{\sf c}$	Deflection Reduction	Overlay Thickness	
	(mils)		% ——————————	(inch)	
13.33	14.12	8.0	43.3	2.8	
10.79	22.14	14.0	36.8	2.0	
9.06	42.82	24.0	44.0	2.8	
9.66	16.53	17.0	0.0	0.0	
	13.33 10.79 9.06	(mil: 13.33 14.12 10.79 22.14 9.06 42.82	(mils) 13.33 14.12 8.0 10.79 22.14 14.0 9.06 42.82 24.0	(mils) Reduction % 13.33 14.12 8.0 43.3 10.79 22.14 14.0 36.8 9.06 42.82 24.0 44.0	

^a Traffic Coefficient = 9 * (18-kip traffic/ 10^{-6}) $^{0.119}$

^b 80th percentile deflection

^c Tolerable deflection

on the serviceability versus traffic and structural capacity versus traffic relationships developed at the AASHO Road Test. Determination of an overlay is accomplished by using a deficiency approach. Figure 7.6 illustrates the basic concepts used in the developing the procedure, while Figure 7.7 lists seven steps that are generally involved in overlay design analysis. Of these steps, materials characterization and effective structural capacity analysis require the most effort. Two nondestructive test methods are presented in the Guide and can be used to analyze the existing pavement structure. They include 1) determination of pavement layer moduli (NDT Method 1) or 2) determination of the total structural capacity (NDT Method 2). Both methods rely upon the use of deflection data generated from a nondestructive testing device.

7.2.2.1 NDT Method 1

NDT Method 1 is a technique used to determine the structural capacity of an existing pavement. This technique uses measured deflection basin data from an NDT device to backcalculate the in-situ layer elastic moduli and is applicable to both flexible and rigid pavements. The fundamental premise of this solution is that a unique set of layer moduli exist such that the theoretically predicted deflection basin is equivalent to the measured deflection basin. To implement this technique, a computer program that backcalculates the elastic modulus for each pavement layer is necessary. The obtained moduli are related to layer coefficients using various charts given in the Guide. The structural number is then determined using the equation:

$$SN = \Sigma a_i h_i \tag{7-3}$$

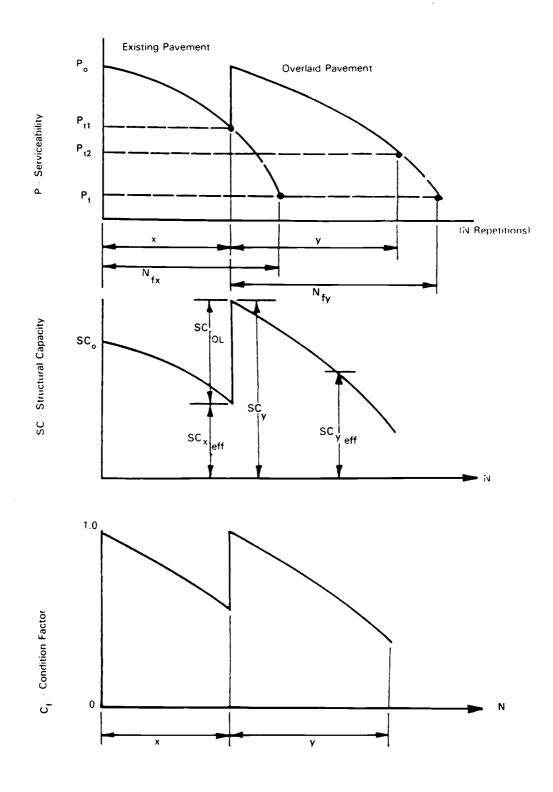
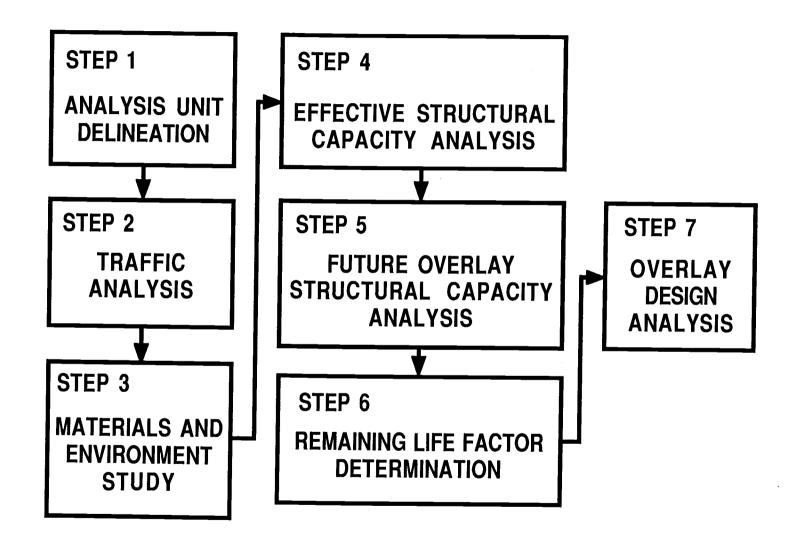



Figure 7.6 Relationship Serviceability-Capacity Condition Factor and Traffic (AASHTO, 1986)

where:

 a_i = layer coefficient for each layer, and,

 h_i = thickness of each layer above subgrade.

Figures 7.8 to 7.10 show the layer coefficients versus resilient modulus for asphalt concrete, granular base, and granular subbase, since they will be used in later analysis.

7.2.2.2 <u>NDT Method 2</u>

NDT Method 2 is based upon the maximum measured deflection from the dynamic NDT equipment and, as such, does not require a computerized model to backcalculate layer moduli (E_i). With NDT Method 2, the maximum measured deflection is used to determine S_{Nxeff} from Burmister's two-layer deflection theory. The relationship between deflection and structural number is given by the following equations:

$$d_{0} = \left[\frac{2P(.0043*h_{t})^{3}}{3.1416 a_{c}SN^{3}}\right] \left[1 + F_{b}\left[\frac{SN^{3}(1 - \mu_{sg}^{2})}{E_{sg}(.0043*h_{t})^{3}} - 1\right]\right]$$
(7-4)

where:

 d_n = deflection value,

P = NDT device load (lbs),

 h_t = total layer thickness (above subgrade),

 μ_{sg} = subgrade Poisson's ratio,

 E_{sq} = subgrade modulus,

 $SN = SN_{xeff}$, the effective structural number, and,

 F_b = Boussinesq one layer deflection factor and is given by

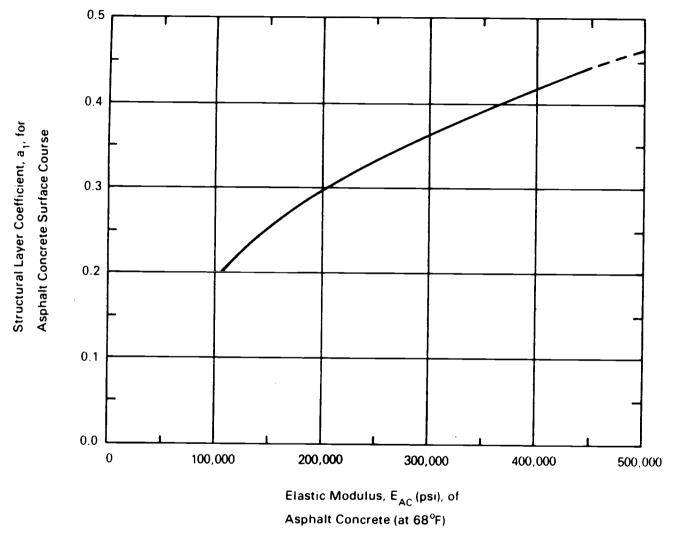
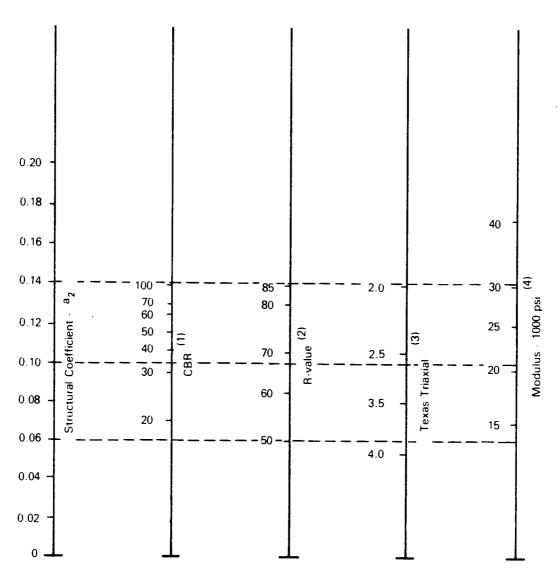
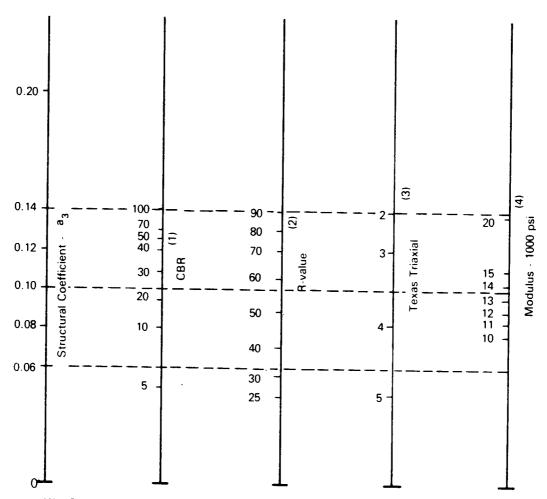




Figure 7.8 Chart for Estimating Structural Layer Coefficient of Dense-graded Asphalt Concrete Based on the Resilient Modulus (AASHTO, 1986)

- (1) Scale derived by averaging correlations obtained from Illinois.
- (2) Scale derived by averaging correlations obtained from California, New Mexico and Wyoming.
- (3) Scale derived by averaging correlations obtained from Texas.
- (4) Scale derived on NCHRP project

Figure 7.9 Variation in Granular Base Layer Coefficient (a₂) with Various Base Strength Parameters (AASHTO, 1986)

- (1) Scale derived from correlations from Illinois.
- (2) Scale derived from correlations obtained from The Asphalt Institute, California, New Mexico and Wyoming.
- (3) Scale derived from correlations obtained from Texas.
- (4) Scale derived on NCHRP project

Figure 7.10 Variation in Granular Base Layer Coefficient (a_3) with Various Subbase Strength Parameters (AASHTO, 1986)

$$F_{b} = \left\{ \left[1 + \left[\frac{h_{e}}{a_{c}} \right]^{2} \right]^{.5} - \frac{h_{e}}{a_{c}} \right\} \left\{ 1 + \frac{(h_{e}/a_{c})}{2(1-\mu_{sg}) \left[1 + \left[\frac{h_{e}}{a_{c}} \right]^{2} \right]^{.5}} \right\}$$
(7-5)

and

$$\frac{h_e}{a_c} = \frac{209.3*SN}{a_c} \left[\frac{(1 - \mu_{sg}^2)}{E_{sg}} \right]^{1/3}$$
 (7-6)

where:

 $\mathbf{h}_{\mathbf{e}}$ = equivalent transformed thickness, and,

a_c = radius of load plate.

The SN_{xeff} value for a particular pavement structure can be determined by a trial-and-error process. This is done by assuming an SN_{xeff} and computing the deflection d_o . If the calculated d_o does not agree with the maximum measured deflection (temperature adjusted), a new SN_{xeff} is assigned. The process is repeated until the calculated deflection matches the maximum measured deflection. A computer program has been developed to solve these equations (Zhou, 1987).

For this study, the NDT method 1 was used, because the resilient modulus for each pavement layer could be determined using backcalculation procedures. Therefore, the structural number (SN_{xeff}) was easily calculated.

With the knowledge of reliability and overall standard deviation (a function of traffic, project location), design serviceability loss, resilient modulus of the subgrade, and projected traffic applications, the structural number for the future traffic loadings (SN_y) was determined using Figure 7.11.

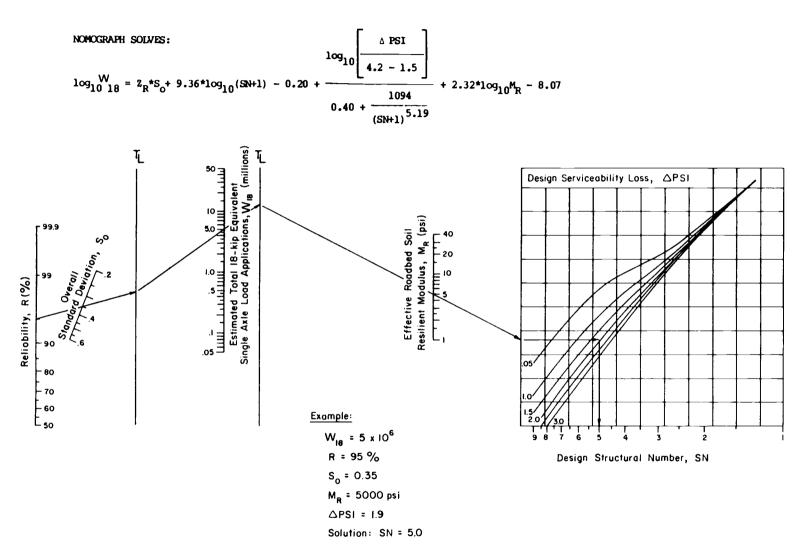


Figure 7.11 Design Chart for Flexible Pavements Based on Using Mean Values for Each Input (AASHTO, 1986)

The remaining life factor (F_{RL}) is a function of remaining life of the existing pavement (R_{LX}) and the remaining life of the overlaid pavement (R_{LY}). The R_{LX} may be determined using one of five approaches: NDT approach, traffic approach, time approach, serviceability approach, or visual condition survey approach. In this study, the NDT approach was used. The R_{LY} can be determined using Figure 7.11 and projected traffic applications. The F_{RL} can then be estimated using Figure 7.12.

The following equation is used to determine structural capacity required by an overlay:

$$SN_{OL} = SN_y - F_{RL} * SN_{xeff}$$
 (7-8) where:

 $\rm SN_{OL}$ = structural number required by an overlay, and

 $\mathrm{SN}_\mathrm{y},~\mathrm{F}_\mathrm{RL},~\mathrm{and}~\mathrm{SN}_\mathrm{exff}$ are defined in text.

Table 7.12 summarizes the overlay design results for the four projects using the AASHTO NDT Method 1. Calculations of the structural numbers (SN_{OL} and SN_{xeff}) may be found in Appendix I. The layer coefficient for the overlay material was assumed to be 0.42, a value typically used in Oregon.

7.2.3 The Asphalt Institute Design Procedure

The Asphalt Institute design procedure was used (prior to 1987) by the Alaska Department of Transportation and Public Facilities (ADOT&PF) as the official approach for flexible overlay design. This approach is a deflection-based method. In Alaska, pavement deflections are measured using FWD equipment. The recorded pavement deflections are used to determine a Representative Rebound Deflection

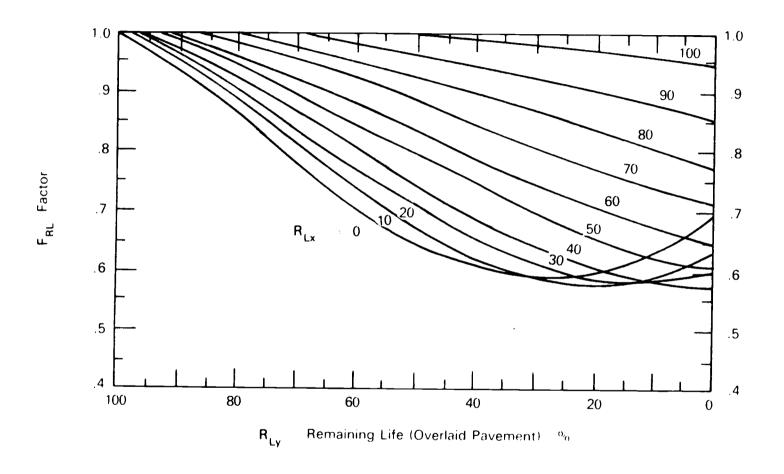


Figure 7.12 Remaining Life Factor (AASHTO, 1986)

Table 7.12 Overlay Thickness Design Using AASHTO Procedure

Project Name	SN _{xeff}	SN _y	SN _{OL}	Overlay Thickness
Rufus-Quinton	4.20	3.69	1.11	2.6
Centennial Blvd	3.24	2.75	0.78	1.9
Nelchina	2.19	2.57	1.21	2.9
Tudor	2.96	2.11	0.00	0.0

(RRD) for the design section. This value is the mean of the measured deflections which have been multiplied by a temperature adjustment factor for reference to 70°F and if necessary, a critical period adjustment factor, plus two standard deviations. The RRD is calculated using the following equation:

$$RRD = (X + 2S)*f*c$$
 (7-9)

where:

X = mean deflection adjusted for temperature,

S = Standard deviation,

f = temperature adjustment factor (Figure 7.13), and

c = critical period adjustment factor.

With the knowledge of the RRD and projected traffic applications, Figure 7.14 is used to determine required overlay thickness. Table 7.13 summarizes the overlay designs for the four projects. Detailed deflection data used in this procedure may be found in Appendix H.

7.3 <u>Comparison of Design Results</u>

The results of overlay design from four procedures are summarized and presented in Table 7.14. It appears that the results from MECHOD, ODOT, and AASHTO procedures are very compatible. Overlay thicknesses from The Asphalt Institute Method seem to be consistently less than the other procedures. Although there is no conclusion as to which method provides the best solution, the results from MECHOD for the four projects evaluated are compared favorably with those standard procedures. This indicates that the improved procedure has the capability of determining the overlay design thickness, which compares reasonably well to those using the standard procedures. The

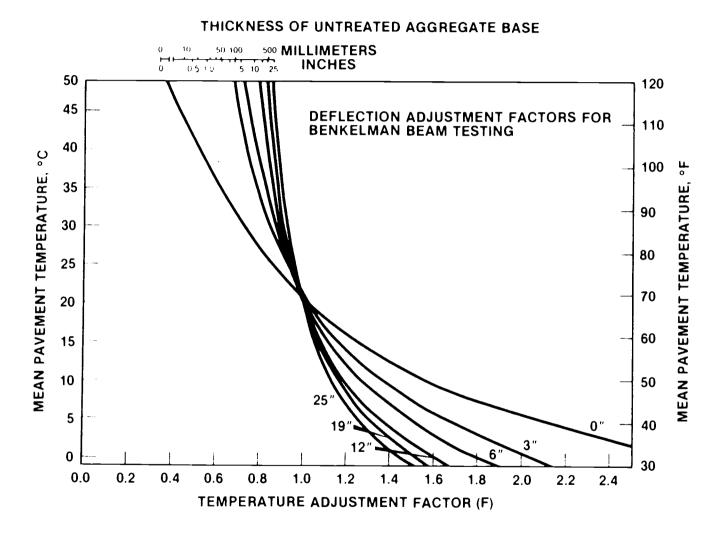


Figure 7.13 Temperature Correction Factors Used in The Asphalt Institute Procedure (TAI, 1983)

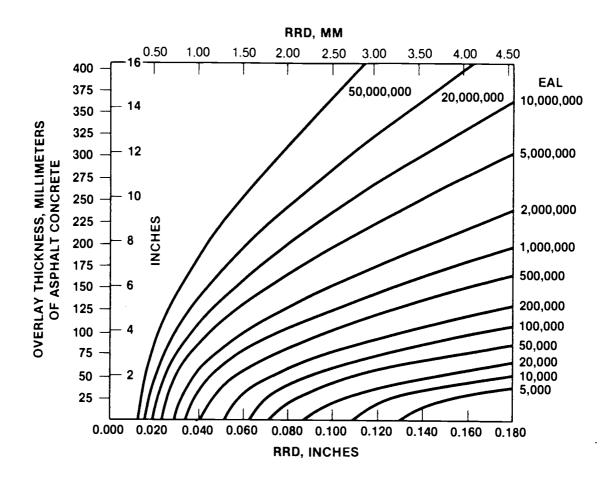


Figure 7.14 Asphalt Concrete Overlay Thickness Required to Reduce Pavement Deflections from a Measured to a Design Deflection Value (Rebound Test) (TAI, 1983)

Table 7.13 Overlay Thickness Design Using TAI Procedure

Project Name	X	S	f 	RRD	Overlay ———
Rufus-Quinton	12.06	2.46	0.98	16.63	1.5
Centennial Blvd	18.67	4.12	0.99	26.65	1.0
Nelchina	27.79	5.89	1.30	51.44	2.5
Tudor	11.11	3.14	1.30	22.62	0.0

Table 7.14 Comparison of Overlay Design Results

Project Name	0ve	rlay Thickn	ess (in)	
	MECHOD	ODOT	AASHT0	TAI
Rufus-Quinton	4.0	2.8	2.6	1.5
Centennial Blvd	2.0	2.0	1.9	1.0
Nelchina	3.0	2.8	2.9	2.5
Tudor	1.0	0.0	0.0	0.0

results also indicate that the failure criteria used in MECHOD are appropriate for the projects evaluated.

7.4 Summary

This chapter accomplished an initial evaluation of the improved mechanistic overlay design procedure using actual pavement data from the states of Oregon and Alaska. All pavements evaluated are conventional pavements consisting of an AC surface, an aggregate base and/or a subbase, and subgrade. The overlay design results from the improved procedure are compared with three standard procedures developed by ODOT, AASHTO, and The Asphalt Institute. The results show that the improved method provides results very close to those of the standard procedures.

However, the advantages or benefits of using mechanistic type of analysis is not just limited to the conventional overlay thickness design. As indicated in Chapter 1, the mechanistic approach allows the designer to consider the fundamental properties of pavement materials used, to consider changes in loading and tire pressure, to consider the environmental impact on material properties as well as to consider pavement structural performance in terms of stresses and strains. These characteristics of mechanistic approach provide the designer with better means to address pavement structural design more realistically and rationally. The standard overlay design procedures are not able to address these issues fully.

8.0 CONCLUSIONS AND RECOMMENDATIONS

As stated at the beginning of this dissertation, the major objectives of the research are to develop a mechanistic overlay design procedure for flexible pavements and to computerize the procedure for routine design work. These objectives have been successfully accomplished. The work completed in this study includes the following:

- 1. A through review of some fundamental concepts and techniques used in this research (Chapter 2).
- An extensive review of backcalculation methods for determining pavement layer moduli using NDT methods (Chapter 3).
- Development of an improved backcalculation program (Chapter 4).
- 4. Determination of pavement moduli using laboratory tests and developed correlations (Chapter 5).
- 5. Review of existing mechanistic overlay design methods and development of an improved mechanistic overlay design procedure (Chapter 6).
- 6. Evaluation of the improved mechanistic overlay design procedure (Chapter 7).

Two microcomputer programs have been developed as a result of this study, 1) BOUSDEF, a backcalculation program for determining pavement layer moduli, and 2) MECHOD, a computerized mechanistic overlay design procedure. Copies of these are available from the author for a nominal charge.

Based on the research performed, the following conclusions, recommendations for implementation, and recommendations for further study appear warranted.

8.1 Conclusions

Specific conclusions resulting from this study include:

- 1. The multi-layered elastic theory has been successfully used to model a flexible pavement structure for many years, and it will still be used as a primary model for the flexible pavements. An on-going research effort (NCHRP project 1-26), suggests that this pavement model will be used in the future editions of the AASHTO Pavement Design Guide.
- 2. The use of method of equivalent thicknesses (MET) simplifies a multi-layer pavement system. A representative modulus is used to convert the multi-layer system into a half-space system so that Boussinesq theory can be applied to calculate stresses, strains, and deformations for the pavement structure under the action of loads. Initial comparisons on ten pavement structures indicate that both the multi-layer elastic and Boussinesq theories provide very similar results in conventional and PCC pavements. This comparison provides a solid indication that Boussinesq theory can be used for calculating pavement stresses, strains, and deformations.
- From the above conclusion, an improved backcalculation program (BOUSDEF) has been developed. It includes the use of the method

of equivalent thicknesses and Boussinesq theory. Significant improvements of this backcalculation procedure over other backcalculation methods include the consideration of nonlinearity of pavement materials and consideration of overburden pressure on stress calculation, particularly the computing speed. Evaluation of the program was performed using three approaches: 1) comparing with hypothesized theoretical moduli, 2) comparing with other developed backcalculation programs, and 3) comparing with laboratory tested modulus values. The evaluation shows that the moduli backcalculated using the BOUSDEF program compare very well with the theoretical moduli and also are very comparable to results from other developed programs. The backcalculated results on selected projects also compare favorably with the laboratory test results. The BOUSDEF program is very fast when compared to other backcalculation programs. Therefore, the program can be effectively used as a tool to make initial evaluation of deflection testing data for determining pavement layer moduli.

4. An improved mechanistic overlay design procedure has been developed. The developed procedure uses a linear elastic program (ELSYM5) as its subroutine to calculate pavement stresses and strains, and fatigue criteria developed by the Asphalt Institute to evaluate pavement life. Significant improvement of this design procedure is in the consideration of seasonal effects which have substantial influence on pavement structural performance. This improvement allows practicing engineers to

analyze, design, and evaluate a pavement structure more realistically and closer to the actual environmental condition. Design results from this procedure were compared with the results from standard methods: Oregon DOT's, AASHTO's, and the Asphalt Institute's. A favorable comparison was observed.

8.2 Recommendations for Implementation

Much of the work accomplished appears ready for implementation. This includes:

- 1. For deflection tests, at least four deflection sensors should be used to measure the pavement deflection, and at least one sensor should be located far enough away to obtain the response purely from the subgrade. A procedure, as described by Hicks, et al (1988), can be used for determining the location of the last sensor. The use of four sensors is to ensure that the deflection response from all pavement layers is obtained and a better deflection basin is defined.
- 2. Deflection tests should be carefully performed. Deflections should be measured as accurately as possible. Specifically, the deflections should be measured to the 100th of a mil (±0.00001"). Also, pavement thickness should be measured as accurately as possible, specifically, to the 10th of an inch. Since these two factors are crucial in the backcalculation analysis. The output cannot be good if the input is not good.
- 3. Although in the initial evaluation stage, the BOUSDEF program

provided favorable results as compared to those of theoretical values, other developed programs, and laboratory tests, caution should still be exercised. At present time, the BOUSDEF program is recommended to make initial evaluation of the NDT test data. Other developed programs (e.g., BISDEF and ELSDEF) are suggested for verification.

- 4. Laboratory tests on resilient modulus of pavement materials should be performed, particularly the subgrade soils. The number of samples to be tested may be determined based on project size. The tests are used primarily for verification purposes.

 Correlations described in Chapter 5 may also be used as a reference in case neither backcalculation nor laboratory test results are available.
- 5. The BOUSDEF and MECHOD programs can be used together as a pavement evaluation and overlay design system. The use of these two programs provides engineers with a better means to evaluate existing pavements and to perform overlay designs. The procedures to use the programs are as follows:
 - a. Once the deflection data are obtained, one may use the BOUSDEF program to backcalculate pavement layer moduli.
 - b. Traffic data and design load, and the backcalculated moduli (after engineering judgement or modification), can be used as inputs to the MECHOD program to perform overlay design.

6. The MECHOD program can be used for several purposes. By selecting the number of season(s), pavement damage incurred in a particular period of the year may be determined. By considering overlay material properties, evaluation of the use of different paving materials becomes possible. By equating the materials properties for the overlay and existing pavement, the program may also be used for new pavement structural design.

8.3 Recommendations for Further Research

Based on the studies to date, it appears additional study is needed in the following areas:

1. Further verification of the backcalculation with laboratory test results should be conducted, and on a relatively large scale. The purpose of this verification is to gain experience or confidence in using the backcalculation technique to determine pavement layer moduli. The verification can be conducted by selecting more pavement projects and following the procedures used in this study. On the same project, both deflection and laboratory tests should be performed for each season, if possible. This is done to evaluate the seasonal effects on pavement material properties determined through both backcalculation and laboratory tests. It is not expected that the backcalculated results will perfectly match the laboratory results, however, a correlation between the two might be developed.

- 2. The selection of design criteria seems to be a major issue in mechanistic pavement design. It is encouraged that agencies develop their own fatigue criteria for the materials they use. The criteria may be developed in the laboratory where an accelerated field simulation can be conducted. However, the laboratory results must be calibrated to the field condition so that a more reasonable prediction of pavement performance can be obtained. In recent years, Accelerated Loading Facility (ALF) is used to evaluate in-service pavement performance. The ALF test is expected to be very useful for developing design criteria, which can be used in a mechanistic design procedure.
- 3. For BOUSDEF, the nonlinear analysis of granular base should consider the average base stress rather than stress at a specific location. An algorithm needs to be developed to resolve this issue. Also, it would be ideal if the program would be able to determine the rock depth based on NDT deflection test data, since the pressure of a rock layer has considerable influence on the backcalculated results. The determination of the rock depth may improve the backcalculated results.
- 4. For MECHOD, the program at present time accepts only one design load (e.g. use one 9,000 lb wheel load to represent two 4,500 lb dual wheel loads). It is recommended that the program be improved to accept at least two loads so that dual wheel loads can be analyzed.

9.0 REFERENCES

AASHTO, "Guide for the Design of Pavement Structures," Washington D.C., 1986.

AASHTO, "Methods of Sampling and Testing," 1984.

AASHTO, "Standard Recommended Practice for Pavement Deflection Measurements," AASHTO Designation T-256-77, Standard Specifications for Transportation Materials and Methods for Sampling and Testing, Part II, AASHTO, 1982.

Acum, W.E.A., and L. Fox, "Computation of Load Stresses in a Three-Layer Elastic System," Geotechnique, Vol. 2, 1951, pp.293-300.

Albright, S., "Evaluation of Crushed Aggregate Specifications Used by the Alaska Department of Transportation and Public Facilities," MS. Thesis, Department of Civil Engineering, Oregon State University, Corvallis, Oregon, 1986.

Ali N and N.P. Khosla, "Determination of Layer Moduli Using a Falling Weight Deflectometor," Transportation Research board, Transportation Research Record 1117, Washington D.C., 1987, pp.1-10.

Allen, J.J., "The Effects of Non-Constant Lateral Pressures on the Resilient Response of Granular Materials," Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1973.

American Society for Testing and Minerals, "Annual Book of ASTM Standards, Section 4," Volume 04.03, Philadelphia, Pennsylvania, 1984.

Austin Research Engineers, Inc., "Asphalt Concrete Overlays of Flexible Pavements," Volume 1 - Development of New Design Criteria, FHWA Report No. FHWA-RD-75-75, August, 1975.

Barksdale, R.D. and R.G. Hicks, "Material Characterization and Layered Theory for Use in Fatigue Analysis," Highway Research Board, Special Report No. 140, 1973, pp.20-48.

Bazin, P., and J. Saunier, "Deformability, Fatigue and Healing Properties of Asphalt Mixes," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, University of Michigan, 1967.

Bergan, A.T. and B.C. Pulles, "Fatigue Design Procedures for Cold Climate," <u>Proceedings</u>, Canada Tech. Asphalt Association, 1973.

Biarez, J., "Construction a l'Etude des Properietes Mecaniques des Sols et des Meteriau Pulverulents," D.Sci. Thesis, University of Grenoble, 1962.

- Bonnaure, F., A. Gravois, and J. Udron, "A New Method for Predicting the Fatigue Behavior of Asphalt Paving Mixtures," <u>Proceedings</u>, The Association of Asphalt Paving Technologists, Vol. 49, 1980.
- Boussinesq, V.J., "Application des Potentials a l'étude de l'equilibre, et du mouvement des solides elastiques avec des notes etendues sur divers points de physique mathematique et d'analyse," Paris, 1885. (Gauthies-Villars)
- Boyce, J.R., S.F. Brown, and P.S. Pell, "The Resilient Behavior of a Granular Materials Under Repeated Loading," <u>Proceedings</u>, Australian Road Research Board, 1976.
- Brooker, E.W. and Ireland, H.O., "Earth Pressure at Rest Related to Stress History," <u>Canadian Geotechnical Journal</u>, Vol. 2, No.1, 1965, pp.1-15.
- Brown, S.F., "An Introduction to the Analytical Design of Bituminous Pavements," University of Nottingham, 1980.
- Brown, S.F. and J.M. Brunton, "Improvements to Pavement Subgrade Strain Criterion," <u>Journal of Transportation Engineering</u>, ASCE, Volume 110, No.6, 1984.
- Brown, S.F., Pell, P.S., and Stock A.F., "The Application of Simplified, Fundamental Design Procedures for Flexible Pavements," Proceedings, Fourth International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, August 1977, pp. 3-38.
- Brunton, J.M., S.F. Brown, and P.S. Pell, "Developments to the Nottingham Analytical Design Method for Asphalt Pavements," Proceedings, Sixth International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, Michigan, 1987.
- Bu-bushait, A.A., "Development of a Flexible Pavement Fatigue Model for Washington State," Ph.D. Dissertation, Department of Civil Engineering, University of Washington, Seattle, 1985.
- Burmister, D.M., "The Theory of Stresses and Displacements in Layered Systems and Applications to the Design of Airport Runways," Proceedings, Highway Research Board, Vol. 23, 1943, pl26.
- Bush, A.J., "Computer Program BIS-DEF," U.S. Army Engineer Waterways Experiment Station, November 1985.
- Bush, A.J., "Nondestructive Testing for Light Aircraft Pavements, Phase II: Development of the Nondestructive Evaluation Methodology," U.S. Army Engineer Waterways Experiment Station, Prepared for U.S. Department of Transportation, November 1980.

- Claessen, A.I.M. and Ditmarsch, R., "Pavement Evaluation and Overlay Design," <u>Proceedings</u>, Fourth International Conference on Structural Design of Asphalt Pavements, Ann Arbor, Michigan, 1977.
- Das, B.M., "Principles of Foundation Engineering," Brooks/Cole Engineering Division, Wadsworth, Inc., Monterey, California, 1984.
- Davis, T.G. and Mamlouk, M.S., "Theoretical Response of Multilayer Pavement Systems to Dynamic Non-Destructive Testing," Presented at the Annual Transportation Research Board Meeting, Washington D.C., January 1985.
- De Jong, D.L., Peutz, MGF, and A.R. Korswagen, "Computer Program BISAR, Layered System Under Normal and Tangential Surface Loads," Koninklijke/Shell Loboratory, Amsterdam, External Report, AMSR. 0006.73, 1973.
- Deacon, J.A., "Fatigue Life Prediction," In Structural Design of Asphalt Concrete Pavements to Pavement Fatigue Cracking, Special Report No. 140, Highway Research Board, 1973.
- Dorman, G.M. and C.T. Metcalf, "Design Curves for Flexible Pavements Based on Layered System Theory," Highway Research Record 71, Highway Research Board, 1965.
- Duncan, J.M. and C.Y. Chang, "Non-Linear Analysis of Stress and Strain in Soils," Journal, Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM5, September 1970, pp.1629-1653.
- Dunlap, W.A., "Deformation Characteristics of Granular Materials Subjected to Rapid Repetitive Loading," Research Report 27-4, Texas Transportation Institute, 1966.
- Dynatest Consulting, Inc., "Description of and Users Guide for the Dynatest ISSEM4 Computer Program," June, 1986.
- Epps, J., "Influence of Mixture Variables on the Flexural Fatigue and Tensile Properties of Asphalt Concrete," Ph.D. Dissertation, University of California, Berkeley, 1968.
- Fernando, E., D. Luhr, and D. Anderson, "Development of A Simplified Mechanistic Pavement Evaluation for Flexible PAvements," Prepared for presentation at the 65th Annual Meeting of Transportation Research Board, January, 1986.
- Finn, F.N, K. Nair, and J. Hilliard, "Minimizing Premature Cracking of Asphalt Concrete Pavements", Final Report, NCHRP Project 9-4, 1973.
- Finn, F.N. and C.L. Monismith, "Asphalt Overlay Design Procedures," NCHRP Synthesis of Highway Practice 116, Transportation Research Board, National Research Council, Washington, DC. December 1984.

- Finn, F.N., C. Saraf, R. Kulkarni, K. Nair, W. Smith, and A. Abdullah, "The Use of Distress Prediction Subsystems for the Design of Pavement Structures," Vol. 1, <u>Proceedings</u>, Fourth International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, August 1977, pp.3-38.
- Finn, F.N., C. Saraf, R. Kulkarni, K. Nair, W. Smith, and A. Abdullah, "Development of Pavement Structural Subsystems," NCHRP Report 291, Transportation Research Board, Washington D.C., December, 1986.
- Fox, L., "Computation of Traffic Stresses in a Simple Road Structure," Department of Scientific and Industrial Research, Road Research Technical Paper 9, 1948.
- Freeme, C.R., and C.P. Marais, "Thin Bituminous Surface: Their Fatigue Behavior and Prediction," Highway Research Board, Special Report No. 140, 1973, pp.158-179.
- Germann, F.P., and R.L. Lytton, "Methodology for Predicting the Deflection Cracking Life of Asphalt Concrete Overlays," Research Report No. 207-5, Texas Transportation Institute, March, 1979, 147pp.
- Guozheng, Y., "The Radius of Curvature and the Fatigue Design of Bituminous Pavements," <u>Proceedings</u>, Bearing Capacity of Roads and Airfields, The Norwegian Institute of Technology, Trondheim, Norway, 1982.
- H&V Materials and Development Inc., "Resilient Modulus Repeated Load Test System," <u>Proceedings</u>, The Workshop on Resilient Modulus Testing, Oregon State University, Corvallis, March, 1989.
- Haas, R. and W.R. Hudson, "Pavement Management Systems," Robert E. Krieger Publishing Company, Malabar, Florida, 1982.
- Heukelom, W. and A.J.G. Klomp, "Dynamic Testing As a Means of Controlling Pavements During and After Construction," <u>Proceedings</u>, The First International Conference on Structural Design of Asphalt Pavements, University of Michigan, 1962.
- Hicks, R.G., "Factors Influencing the Resilient Properties of Granular Materials," Ph.D. Dissertation, University of California, Berkeley, 1970.
- Hicks, R.G., "Use of Layered Theory in the Design and Evaluation of Pavement Systems," Report No. FHWA-AK-RD-83-8, July, 1982.
- Hicks, R.G. and C.H. Oglesby, "Highway Engineering," Fourth Edition, John Wiley & Sons, 1982.

- Hicks, R.G. and F.N. Finn, "Analysis of Results from the Dynamic Measurements Program on the San Diego Test Road," <u>Proceedings</u>, The Association of Asphalt Paving Technologists, Vol. 39, 1970, pp.153-185.
- Hicks, R.G. and H. Zhou, "Use of Improved Design Procedures for Asphalt Concrete Overlays," <u>Proceedings</u>, 1988 CALTRANS R&D Program Conference, Sacramento, California, September 13-14, 1988.
- Hicks, R.G., H. Zhou, and B. Connor, "Development of An Improved Overlay Design Procedure for the State of Alaska," Volume III Field Manual, Report No. FHWA-AK-RD-88-06B, January, 1989.
- Hicks, R.G., R.L. Terrel, J. Mahoney, and F.N. Finn, "Pavement Design, Evaluation, and Management Short Course," Oregon State University, March, 1980.
- Highway Research Board, "Structural Design of Asphalt Concrete Pavements to Prevent Fatigue Cracking," Highway Research Board, Special Report 140, 1973.
- Hoffman, M.S. and M.R. Thompson, "Backcalculating Nonlinear Resilient Moduli from Deflection Data," Transportation Research Record 852, Transportation Research Board, 1982.
- Hoffman, M.S., and M.R. Thompson, "Mechanistic Interpretation of Nondestructive Pavement Testing Deflections," Illinois Department of Transportation, Department of Civil Engineering, University of Illinois, 1981.
- Husain, S. and K.P. George, "In-Situ Pavement Moduli from Dynaflect Deflection," Transportation Research Record 1043, Transportation Research Board, 1985, pp.102-110.
- Irwin, L.H., "User's Guide to MODCOMP2," Report No. 83-8, Cornell University Local Roads Program, Cornell University, Ithaca, New York, November 1983.
- Kalcheff, I.V. and R.G. Hicks, "A Test Procedure for Determining the Resilient Properties of Granular Materials," <u>Journal of Testing and Evaluation</u>, ASTM, Vol. I, No.6, 1973.
- Kallas, B.F., "Elastic and Fatigue Behavior of Emulsified Asphalt Paving Mixes," Research Report No. 79-1, The Asphalt Institute, November, 1979.
- Kallas, B.F. and J.F. Shook, "San Diego County Experimental Base Project," Final Report, The Asphalt Institute, Research Report, 77-1 (RR-77-1), November, 1977.

- Kingham, R.I., "Failure Criteria Developed from AASHO Road Test Data," In Structural Design of Asphalt Concrete Pavements to Pavement Fatigue Cracking, Special Report No. 140, Highway Research Board, 1973.
- Kingham R.I. and B.F. Kallas, "Laboratory Fatigue and Its Relationship to Pavement Performance," <u>Proceedings</u>, Third International Conference on the Structural Design of Asphalt Pavements, University of Michigan, 1972.
- Kirk, J.M., "Results of Fatigue Tests on Different Types of Bituminous Mixtures," <u>Proceedings</u>, Second International Conference on the Structural Design of Asphalt Pavements, University of Michigan, 1967.
- Koole, R.C., "Overlay Design Based on Falling Weight Deflectometer Measurements," Transportation Research Record No. 700, Transportation Research Board, Washington, D.C., 1979, pp.59-72.
- Luhr, D.R., B.F. McCullough, and A. Pelzner, "Simplified Rational Pavement Design Procedure for Low-Volume Roads," Transportation Research Record 898, 1983, pp.202-206.
- Lytton, R.D. and R.E. Smith, "Use of Nondestructive Testing in the Design of Overlays for Flexible Pavements," Transportation Research Record 1007, Transportation Research Board, Washington D.C., 1985, pp.11-20.
- Lytton, R.L. and C.H. Michalak, "Flexible Pavement Deflection Equation Using Elastic Moduli and Field Measurements," Texas Transportation Institute, Research Report 207-7F, 1979.
- Lytton, R.L., F.L. Roberts, and S. Stoffels, "Determination of Asphaltic Concrete Pavement Structural Properties by Nondestructive Testing," Final Report, Prepared for NCHRP, TRB, and NRC, Texas Transportation Institute, April, 1986.
- Mahoney, J.P., L.A. Lary, J. Sharma, and N. Jackson, "Investigation of Seasonal Load Restrictions in Washington State," Transportation Research Record 1043, Transportation Research Board, Washington D.C., 1985, pp.58-67.
- Mahoney, J.P., R.G. Hicks, and N.C. Jackson, "Pavement Design and Rehabilitation," Short Course Notes, Western Direct Federal Division, FHWA, December, 1987.
- Mahoney, J.P., S.W. Lee, N.C. Jackson, and D.E. Newcomb, "Mechanistic-Based Overlay Design Procedure for Washington State Flexible Pavements," Draft Final Report, Research Project GC8286, Task 29, Washington State Transportation Center (TRAC), University of Washington, July 1988.

Majidzadeh, K and G. Ilves, "Flexible Pavement Overlay Design Procedures," Volume 1 and 2, FHWA-RD-81-032 and 81-033, FHWA, Washington D.C., August 1981.

Majidzadeh, K., and D.V. Ramsamooj, "Mechanistic Approach to the Solution of Cracking in Pavements," Special Report No. 140, Transportation Research Board, Washington, D.C., 1973.

Mamlouk, et al, "Rational Characterization of Pavement Structures Using Deflection Analysis," Vol. I - Research Results and Findings, Final Report, FHWA-AZ-88-254.I, December, 1988.

Mamlouk, M.S., "Use of Dynamic Analysis in Predicting Field Multilayer Pavement Moduli," Transportation Research Record 1043, Transportation Research Board, Washington D.C., January 1985, pp.113-119.

Marchionna, A., et al, "Pavement Elastic Characteristics Measured by Means of Tests Conducted with the Falling Weight Deflectometer," Transportation Record 1007, Transportation Research Board, Washington, D.C., 1985, pp.46-53.

Michelow, J., "Analysis of Stresses and Displacements in an N-Layered Elastic System Under a Load Uniformly Distributed on a Circular Area," California Research Corporation, Richmond, California, 1963.

Miner, M.A., "Cumulative Damage in Fatigue," <u>Journal of Applied Mechanics</u>, September, 1945.

Mitchell, J.M., P. Dzwilewski, and C.L. Monismith, "Behavior of Stabilized Soils Under Repeated Loadings - Report 6 - A Summary Report with a Suggested Structural Pavement Design Procedure," U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., October, 1974.

Molenaar, A.A.A. and Van Gurp, C.A.P.M., "Structural Performance Model and Overlay Design Method for Asphalt Concrete Pavements," Structural Performance of Pavement Systems, Transportation Research Record 888, Transportation Research Board, 1982, pp.31-37.

Monismith, C.L, "Pavement Design: The Fatigue Subsystem," Highway Research Board, Special Report No. 140, 1973, pp.1-19.

Monismith, C.L., "Fatigue Characteristics of Asphalt Paving Mixtures and Their Use in Pavement Design," Paper prepared for Symposium, "Fatigue of Asphalt Concrete Pavement," University of New Mexico, Albuquerque, New Mexico, January 7, 1981

Monismith, C.L., "Resilient Modulus Testing: Interpretation of Laboratory Results for Design Purposes," <u>Proceedings</u>, Workshop on Resilient Modulus Testing, Oregon State University, Corvallis, March, 1989.

- Monismith, C.L., and J.A. Deacon, "Fatigue of Asphalt Paving Mixtures," ASCE <u>Transportation Engineering Journal</u>, Vol. 95:2, 1969, pp.317-346.
- Monismith, C.L. and J.A. Epps, "Asphalt Mixture Behavior in Repeated Flexure," Transportation and Traffic Engineering, University of California, Berkeley, California, 1969.
- Monismith, C.L., J.A. Epps, D.A. Kasianchuk, and D.B. McLean, "Asphalt Mixture Behavior in Repeated Flexure," Report No. TE 70-5, University of California, Berkeley, Jan., 1972.
- Newcomb, D., et al., "Washington State Pavement Design Overview," University of Washington, 1986.
- Newcomb, D.E., "Development and Evaluation of a Regression Method to Interpret Dynamic Pavement Deflections," PhD Dissertation, University of Washington, 1986.
- Odemark, N, "Undersokning av elasticitetegenskaperna hos olika jordarter samt teori for berakning av belagningar enligt elasticitetsteorin," statens Vaginstitut, meddelande 77, 1949 (in Swedish).
- Oregon State Highway Division (OSHD), "Flexible Pavement Design Procedure," 1951.
- Pell, P.S., and K.E. Cooper, "The Effect of Testing and Mix Variables on the Fatigue Performance of Bituminous Materials," <u>Proceedings</u>, The Association of Asphalt Paving Technologists, Vol. 44, 1975, pp.1-37.
- Pell, P.S., Discussion of Paper by Lister and Powell in <u>Proceedings</u>, The Association of Asphalt Paving Technologists, Vol. 44, 1975.
- Powell, W.D., et al, "The Structural Design of Bituminous Pavements," TRRL Laboratory Report 1132, Transport and Road Research Laboratory, U.K., 1984.
- Raad, L. and J.L. Figueroa, "Load Response of Transportation Support Systems," <u>Transportation Engineering Journal</u> of ASCE, Vol. 106, No. TE1, January, 1980, pp.171-178.
- Rauhut, J.B and W.K. Thomas, "Characterizing Fatigue Life for Asphalt Concrete Pavements," Transportation Research Record 888, 1981, pp.47-56.
- Rwebangira, T, R.G. Hicks, and M. Truebe, "Sensitivity Analysis of Selected Backcalculation Procedures," Transportation Research Record 1117, Transportation Research Board, Washington D.C., 1987, pp.25-37.
- Salam, Y.M., "Characterization of Deformation and Fracture of Asphalt Concrete," Ph.D. Dissertation, University of California, Berkeley, 1971.

Santucci, L.E., "Thickness Design Procedure for Asphalt and Emulsified Asphalt Mixture," <u>Proceedings</u>, Vol. 1, Fourth International Conference on the Structural Design of Asphalt Pavement, University of Michigan, Ann Arbor, Michigan, 1977, pp.424-456.

Schmidt, R.J., "A Practical Method for Measuring the Resilient Modulus of Asphalt Treated Mixes," Highway Research Record No. 404, Highway Research Board, 1972.

Scriner, F.H., C.H. Michalak, and W.M. Moore, "Calculation of the Elastic Moduli of a Two-layer Pavement System from Measured Surface Deflections," Highway Research Record No. 431, Transportation Research Board, 1973.

Seed, H.B., F.G. Mitry, C.L. Monismith and C.K. Chan, "Predication of Flexible Pavement Deflections from Laboratory Repeated Load Tests," National Cooperative Highway Research Program, Report 35, HRB, 1967.

Sharma, J and R.N. Stubstad, "Evaluation of Pavements in Florida by Using the Falling Weight Deflectometer," Transportation Research Record 755, Transportation Research Board, Washington D.C., 1980, pp.42-48.

Shell International Petroleum Co., "Shell Pavement Design Manual," London, England, 1978.

Smith, R.E., R.P. Palmieri, M.I. Darter, and R.L. Lytton, "Pavement Overlay Design Procedures and Assumptions," Volume I: Analysis of Existing Procedures, FHWA-RD-85-006, August, 1986.

Southgate, H.F., "An Evaluation of Temperature Distribution Within Asphalt Pavements and Its Relationship to Pavement Design," HPR-1, Part II; KYHPR-64-20, Kentucky Department of Highway Research Report, Division of Research, Lexington, 1964.

Southgate, H.F. and R.G. Deen, "Temperature Distributions in Asphalt Concrete Pavements," Transportation Research Record 549, TRB, Washington D.C. 1975, pp.39-46.

Stubstad, R and J. Sharma, "Deriving Mechanistic Properties of Pavements from Surface Deflections," <u>Proceedings</u>, International Conference on Computer Applications in Civil Engineering, Roorkee, India, 1979.

Tam, W.S., "Pavement Evaluation and Overlay Design," Ph.D. Dissertation, University of Nottingham, October, 1987.

The Asphalt Institute, "Asphalt Overlays for Highway and Street Rehabilitation," Manual Series No. 17 (MS-17), June 1983 Edition.

The Asphalt Institute, "Research and Development of the Asphalt Institute's Thickness Design Manual (MS-1)," 9th Edition, Research Report 82-2, August, 1982.

The Asphalt Institute, "Soils Manual for the Design of Asphalt Pavement Structures," Manual Series No. 10, Second Edition, 1978.

The Asphalt Institute, "Thickness Design - Asphalt Pavements for Highways and Streets," Manual Series No.1 (MS-1), September, 1981.

Tholen, O, "Falling Weight Deflectometer, A Device for Bearing Capacity Measurements: Properties and Performance," Department of Highway Engineering, Royal Institute of Technology, Stockholm, Sweden, 1980.

Tholen, O, J. Sharma, and R. Terrel, "Comparison of Falling Weight Deflectometer with Other Deflection Testing Devices," Transportation Research Record 1007, Transportation Research Board, Washington D.C., 1985, pp.20-26.

Thompson, M.R., "ILLI-PAVE Based Full-Depth Asphalt Concrete Pavement Design Procedure," <u>Proceedings</u>, Sixth International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, Michigan, 1987.

Thompson, M.R., and K. Cation, "A Proposed Full-Depth Asphalt Concrete Thickness Design Procedure," Civil Engineering Studies. Transportation Engineering Series No. 45, University of Illinois at Urbana-Champaign, 1986.

Thompson, M.R., et al, "Calibrated Mechanistic Structural Analysis Procedures for Pavements," Preliminary Draft; Final Report, NCHRP Project 1-26, Transportation Research Board, National Research Council, University of Illinois at Urbana-Champaign, March, 1989.

Thompson, O.O., "Evaluation of Flexible Pavement Behavior with Emphasis on the Behavior of Granular Layers," Ph.D. Dissertation, University of Illinois, 1969.

Uddin, W, "A Structural Evaluation Methodology for Pavements Based on Dynamic Deflections," Ph.D. Thesis, University of Texas at Austin, December, 1984.

Uddin, W., A.H. Meyer, W.R. Hudson, and K.H. Stokoe, "Project Level Structural Evaluation of Pavements Based on Dynamic Deflections," Transportation Research Record 1007, Transportation Research Board, Washington D.C., 1985, pp.37-45.

Ullidtz, P and K. Peattie, "Programmable Calculations in the Assessment of Overlays and Maintenance Strategies," <u>Proceedings</u>, Fifth International Conference on the Structural Design of Asphalt Pavements, Vol. 1, 1982.

Ullidtz, P., "A Fundamental Method for Prediction of Roughness, Rutting and Cracking of Pavements," Proceedings, The Association of Asphalt Paving Technologists, Vol. 48, 1979, pp.557-586.

Ullidtz, P. and R.N. Stubstad, "Analytical Empirical Pavement Evaluation Using the Falling Weight Deflectometer," Transportation Research Record 1022, Transportation Research Board, Washington D.C., 1985, pp.36-44.

Ullidtz, Per, "Overlay and Stage by Stage Design," <u>Proceedings</u>, Fourth International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, Michigan, 1977, pp.722-735.

Ullidtz, Per and K.R. Peattie, "Pavement Analysis by Programmable Calculators," <u>Transportation Engineering Journal</u>, ASCE, September, 1980, pp.581-597.

Ullidtz, Per., "A Fundamental Method for Prediction of Roughness, Rutting and Cracking of Pavements," The Association of Asphalt Paving Technologists, Vol. 48, 1979, pp.557-586.

Ullidtz, Per., "Pavement Analysis", ELSEVIER, 1987.

University of Washington, "EVERCALC User's Guide," Washington State Transportation Center, Seattle, Washington, April 1987.

University of Washington, "EVERPAVE User's Guide," Washington State Transportation Center, Seattle, 1987.

Van Dijk, W., "Practical Fatigue Characterization of Bituminous Mixes," <u>Proceedings</u>, The Association of Asphalt Paving Technologists, Vol. 44, 1975, pp.38-74.

Verstraeten, J., V. Veverka, and L. Francken, "Rational and Practical Designs of Asphalt Pavements to Avoid Cracking and Rutting," Proceedings, Fifth International Conference on the Structural Design of Asphalt Pavements, Vol. 1, 1982.

Vinson, T.S., H. Zhou, R. Alexander, and R.G. Hicks, "Backcalculation of Layer Moduli and Runway Overlay Design: U.S. Coast Guard Air Station, Kodiak, Alaska," <u>Proceedings</u>, The CRREL Colloquium on Performance Monitoring Systems for Roads and Airfields, March, 1989.

Vlasov, V.Z and N.N. Leont'ev, "Beams, Plates and Shells on Elastic Foundation," (Translated from Russian), Israel Program for Scientific Translations, Jerusalem, 1966.

Weiss, R.A., "Pavement Evaluation and Overlay Design: A Method That Combines Layer Elastic Theory and Vibratory Nondestructive Testing," Transportation Research Record No. 700, Transportation Research Board, Washington D.C., 1979, pp.20-34.

- Yang, Nai C, "Design of Functional Pavements," McGraw-Hill, Inc., 1972
- Yapp, M. and R.G. Hicks, "Development of An Improved Overlay Design Procedure for the State of Alaska," Volume II: Final Report, Report No. FHWA-AK-RD-88-06, October, 1987.
- Yoder, E.J. and M.W. Witczak, "Principles of Pavement Design," Second Edition, John Wiley & Sons, 1975.
- Zhou, H., R.G. Hicks, and B. Connor, "Development of An Improved Overlay Design Procedure for the State of Alaska," Volume IV Computer Programs, Transportation Research Report 88-25, September 1988.
- Zhou, H., R.G. Hicks, and B. Connor, "MECHOD: A mechanistic Overlay Design Program for Flexible Pavements," Presented at the Third International Conference on Microcomputers In Transportation, San Francisco, California, June 21-23, 1989.
- Zhou, H., R.G. Hicks, and C.A. Bell, "BOUSDEF: A Backcalculation Program for Determining Moduli of a Pavement Structure," Presented at the 69th Annual Meeting of Transportation Research Board, Washington D.C. Jan., 1990.

APPENDICES

APPENDIX A BOUSDEF USER'S GUIDE

A-1 <u>Introduction</u>

BOUSDEF was developed at Oregon State University to determine in-situ pavement layer moduli using deflection data through backcalculation technique. The program is based on the method of equivalent thicknesses and Boussinesq theory. The backcalculated moduli may be used for evaluating the existing pavement and/or mechanistic overlay design.

BOUSDEF can be operated on any IBM or compatible microcomputers with a DOS version 3.1 or higher. BOUSDEF is an integrated program which includes creating, editing, and analyzing a data file functions. A menu screen of the program is shown in Figure A-1. Three selections can be made and each of them is discussed in the following.

A-2 Create Data File

This option allows the user to create a data file for later analysis. By pressing key C (Create) or 2 in the main menu, the program will ask for a file name and display a data input screen as shown in Figure A-2. The data input screen provides a friendly environment for data entry. The user may use cursor keys to move the cursor to any fields and enter required data. If the [F1] key is pressed, the program will display a brief explanation of what information is required for the field. After entering all necessary information, the user may press function key [F8] to run the data right away. The analysis results will be displayed and the program will return to the data input screen for possible edit. Function key [F10] allows the user to save a data file under same filename or under a new filename. If the data is not going be saved, press Esc key.

The following information are needed to create a file:

- Number of layer (required) total pavement layers, including subgrade.
- Number of layer for modulus (required).

This program allows user to backcalculate pavement layer moduli from deflection basin data. The program was developed for use with Falling Weight Deflectometer (FWD) data. However, other NDT data may also be used with some modification of the data.

- [1]. Edit a Data File
- [2]. Create a Data File
- [3]. Analyze a Data File

Enter your selection

- Press Esc to Exit -

Figure A-1 BOUSDEF Menu Screen

Number	of Lay	ers: 0		File Nam	e: EXAMPLE		
Layer	Layer	Thickness	Poisson	Minimum	Maximum	Initial	Density
No.	for M	(inch.)	Ratio	Modulus	Modulus	Modulus	(pcf)
1.	1	0.00	0.00	0	0	0	0.0
2.	1	0.00	0.00	0	0	0	0.0
3.	1	0.00	0.00	0	0	0	0.0
4.	0	0.00	0.00	0	0	0	0.0
5.	0	0.00	0.00	0	0	0	0.0
Load P	late Ra		1				
Load P Number	late Ra of Sen Locati	dius: 0.00 sors: 0 ons: 0.0	0.0			.0 0.0 a Sensor Lo	0.0
Load P Number Sensor	late Ra of Sen Locati Load	dius: 0.00 sors: 0 ons: 0.0	0.0 ction Read	ings at Co	rrespondin	g Sensor Lo	cations
Load P Number Sensor Test 1	late Ra of Sen Locati Load :	dius: 0.00 sors: 0 ons: 0.0 (lb) Defle	0.0 ction Read 0.00	ings at Com	rrespondin	g Sensor Lo 00 0.00	cations 0.00
Load P Number	late Ra of Sen Locati Load :	dius: 0.00 sors: 0 ons: 0.0 (lb) Defle 0 0.00	0.0 ction Read 0.00 0.00	ings at Cor 0.00 (rrespondin 0.00 0.0 0.00 0.0	g Sensor Lo	cations 0.00 0.00
Load P Number Sensor Test 1 Test 2	late Ra of Sen Locati Load :	dius: 0.00 sors: 0 ons: 0.0 (1b) Defle 0 0.00 0 0.00	0.0 ction Read 0.00 0.00 0.00	ings at Cor 0.00 (0.00 (0.00 (rrespondin 0.00 0.0 0.00 0.0	g Sensor Lo 00 0.00 00 0.00 00 0.00	cations 0.00 0.00
Load P Number Sensor Test 1 Test 2 Test 3 Test 4	late Ra of Sen Locati Load :	dius: 0.00 sors: 0.00 ons: 0.00 (1b) Defle 0 0.00 0 0.00 0 0.00	0.0 ction Read 0.00 0.00 0.00	ings at Cor 0.00 (0.00 (0.00 (rresponding 0.00 0.0 0.00 0.0 0.00 0.0	g Sensor Lo 00 0.00 00 0.00 00 0.00	0.00 0.00 0.00 0.00

Figure A-2 BOUSDEF Data Input/Edit Screen

- 3. Tolerance (required) deflection error tolerance to stop program execution. Usually set at 5-10 percent.
- 4. Number of iterations (required) usually set at three iterations.
- 5. Layer for modulus (required) 1 for calculating modulus for the layer. In this case, minimum, maximum, and initial modulus must be provided. O for not calculating modulus for the layer. In this case, minimum and maximum moduli are not required. Initial modulus must be given and is treated as fixed value for the layer.
- 6. Layer thickness (required, except subgrade) in inches.
- Poisson's ratio (required) for asphalt concrete,
 Poisson's ratio = 0.35.
- 8. Minimum and maximum modulus (required if modulus for the layer needs to be calculated) in psi. These values are used to set up the range of possible modulus.
- 9. Initial modulus (required) if layer for modulus is set at 0, this value will be used as a fixed modulus for the layer.
- 10. Number of sensors (required) maximum 7.
- 11. Sensor spacings (required) in inches. Starts from load center line.
- 12. Test (required) Four tests can be entered. Load in pounds, deflection in mils. Maximum 7 deflections allowed.

The input data are saved in a text file in ASCII form and can be accessed and edited be the program or by other word processor software.

A-3 Edit Data File

This option allows the user to edit a data file that has been created previously. By pressing key E (Edit) or 1 in the menu screen (Figure A-1) and providing a file name to be edited, the same screen used to create the data file will be displayed. The information saved in the existing data file will be shown in corresponding fields. The user may use cursor keys to move to each filed and edit. After

editing all necessary information, the user may press function key [F8] to run the data right away. The analysis results will be displayed and the program will return to the data edit screen for further edit. Function key [F10] allows the user to save a data file under same filename or under a new filename. If the edited data is not going be saved, press Esc key.

A-4 Analyze Data File

This option allows the user to analyze a data file created previously. By pressing key A (Analyze) or 3 and giving the file name to be analyzed, the calculation will begin.

A-5 Output

The output will be displayed on the screen. The output include pavement modulus for each layer, bulk stress (BSTRS) and deviator stress (DSTRS), NDT load, and material coefficient \mathbf{k}_1 and \mathbf{k}_2 .

APPENDIX B

DEFLECTION TEST RESULTS FOR SELECTED PROJECTS

This appendix presents detailed deflection data used in this study.

These data include:

- B-1 Rufus Quinton Project
- B-2 Centennial Boulevard Project
- B-3 Nelchina Project
- B-4 Tudor Project

The deflection data on the Rufus-Quinton project were provided by Oregon Department of Transportation (ODOT). The Centennial Project data were provided by Pavement Services, Inc. of Portland. Alaska Department of Transportation and Public Facilities (ADOT&PF) furnished deflection data test data for both Nelchina and Tudor projects.

Appendix B-1 Rufus - Quinton Project

```
DISK FILE: RUFUS1.DAT
SITE DATA:
Date
                               08-01-89
Time
                               07:42
Dist. No.
                               4
County Name
                               GILLIAM
Roadway No.
Lane desig.
Dist. from Rt. edge
                               OWT
Begin Mile Post
                               115.00
    Offset
                               EB RTLN
End Mile Post
                               116.00
    Offset.
                               250' INT
Surface Type
                              AC
Operator
                              DOUG H.
SENSOR LOCATIONS:
Sensor#
             Location
                 0B
   1
   2
                 88
   3
                12B
   4
                24B
   5
                36B
   6
                58F
Drop#
         Ht. Par.
                   Measure ? Save ?
                                          Plot ?
                                                    Print ?
   1
             1
                        N
                                  N
                                            N
                                                        N
   2
             1
                                            N
                                                        Υ
   3
             2
                        Υ
                                  Υ
                                            N
             3
                                            N
                                                        Υ
PEAK VALUE SCALE FACTORS :
                        DEF-1
                                  DEF-2
    TEMP
              LOAD
                                            DEF-3
                                                     DEF-4
                                                               DEF-5
                                                                         DEF-6
         8396.8500
                         .516
                                   .464
                                             .511
                                                      .219
                                                                 .217
                                                                           .297
TIME SERIES SCALE FACTOR (LOAD) :
                                         1.000
TEST LOC
            HT
                   TEMP
                           LOAD
                                    DEF-1
                                             DEF-2
                                                     DEF-3
                                                              DEF-4
                                                                       DEF-5
                                                                                DEF-6
  1 115.000 1
                           3199.
                                     4.38
                                              3.65
                                                      2.79
                                                               2.30
                                                                         . 57
                                                                                  .24
     115.000
               2
                           6398.
                                     7.81
                                              7.49
                                                      5.78
                                                               3.45
                                                                        1.31
                                                                                   .54
     115.000
                  ****
               3
                          11934.
                                    12.61
                                             11.43
                                                      9.08
                                                               5.97
                                                                        2.32
                                                                                 1.08
     115.051
                           3158.
                                     4.06
                                                               1.59
                                              3.56
                                                      2.27
                                                                         . 53
                                                                                  .24
     115.051
               2
                  ****
                           6685.
                                     9.17
                                              8.24
                                                      5.57
                                                               3.40
                                                                        1.66
                                                                                  .90
                  ****
     115.051
               3
                          11811.
                                    19.38
                                             13.86
                                                     10.32
                                                               6.99
                                                                        3.55
                                                                                 1.86
     115.101
                  ****
               1
                           3199.
                                     3.44
                                             3.09
                                                      1.86
                                                               1.24
                                                                         . 48
                                                                                  .36
                                                                        1.58
     115.101
                           6726.
                                     7.50
                                              6.74
                                                      4.85
                                                               2.96
                                                                                 1.08
                  ****
     115.101
               3
                                    11.25
                          11852.
                                             11.43
                                                      8.36
                                                               5.26
                                                                        3.15
                                                                                 2.16
                  ****
     115.150
                           2953.
                                     4.58
                                                                         . 39
                                             3.37
                                                      2.27
                                                               1.24
                                                                                  .24
                  ****
     115.150
               2
                           6603.
                                     9.69
                                             7.31
                                                      5.16
                                                               3.14
                                                                        1.10
                                                                                  . 48
     115.150
               3
                          11852.
                                    15.21
                                             11.05
                                                      8.15
                                                               4.55
                                                                        2.28
                                                                                 1.08
                  ****
     115.200
               1
                           3158.
                                     4.90
                                              4.22
                                                      2.89
                                                               1.72
                                                                         .66
                                                                                  . 42
                  ****
     115.200
               2
                           6603.
                                    10.73
                                             9.37
                                                      6.81
                                                               3.76
                                                                        1.71
                                                                                 1.20
                  ****
                                   16.67
     115.200
               3
                          11811.
                                            14.05
                                                     11.04
                                                               6.37
                                                                        3.33
                                                                                 2.40
                  ****
     115.250
                           2830.
                                     6.77
                                              5.06
                                                      3.40
                                                               1.37
                                                                         .35
                                                                                  .18
                  ****
     115.250
                           6521.
                                   13.02
                                             9.65
                                                      6.91
                                                               3.05
                                                                         .96
                                                                                  .42
 6
     115.250
               3
                          12057.
                                    18.02
                                             13.86
                                                     10.01
                                                               4.51
                                                                        1.66
                                                                                  .78
                  ****
     115.300
               1
                           2830.
                                     5.94
                                             4.12
                                                      2.79
                                                               1.46
                                                                        . 26
                                                                                  .24
                  ****
     115.300
               2
                           6439.
                                    10.31
                                             8.34
                                                      5.67
                                                               2.56
                                                                         .88
                                                                                  . 60
                  ****
     115.300
                          11893.
                                   15.42
                                            12.18
                                                      8.77
                                                               5.57
                                                                        1.75
                                                                                 1.02
     115.351
               1
                           3117.
                                    6.04
                                             4.87
                                                      2.99
                                                                        .35
                                                               1.24
                                                                                . .18
     115.351
                  ****
                           6439.
                                             9.46
                                   11.77
                                                      6.71
                                                               4.78
                                                                        1.01
                                                                                  . 42
     115.351
                                                                        1.71
               3
                          12016.
                                   17.19
                                            13.96
                                                     10.21
                                                               5.17
                                                                                 1.08
                  ****
     115.400
              1
                           3076.
                                    4.90
                                                      2.27
                                             3.93
                                                               1.15
                                                                         .35
                                                                                  .18
                  ****
    115.400
              2
                           6480.
                                    9.79
                                             7.78
                                                      4.95
                                                               2.61
                                                                        1.23
                                                                                  . 60
```

9	115.400	3	****	11852.	13.33	11.90	7.84	3.94	1.97	1.02
10	115.451	1	****	3076.	5.94	4.97	2.68	1.41	.48	.18
10	115.451	2	****	6480.	11.88	9.93	6.60	3.23	1.40	.60
10	115.451	3	****	11770.	17.61	15.27	10.52	6.41	2.94	1.26
11	115.500	1	****	2871.	6.67	5.43	3.71	1.64	. 53	.36
11	115.500	2	****	6439.	14.27	11.62	8.56	4.38	1.62	.66
11	115.500	3	****	11893.	21.88	18.17	13.93	7.38	3.24	1.26
12	115.551	1	****	3076.	5.73	4.31	2.89	1.41	. 48	.24
12	115.551	2	****	6398.	12.40	9.84	7.22	3.58	1.62	.66
12	115.551	3	****	11975.	19.79	15.93	12.48	6.85	3.42	1.38
13	115.600	1	****	3035.	6.35	5.06	3.61	1.99	.70	.06
13	115.600	2	****	6357.	13.13	10.49	7.94	3.94	1.75	.60
13	115.600	3	****	11852.	18.96	15.27	10.83	6.63	3.15	.72
14	115.651	1	****	2871.	7.19	5.62	3.92	2.30	.96	.66
14	115.651	2	****	6357.	13.75	11.34	8.46	4.91	2.37	1.20
14	115.651	3	****	11893.	19.90	16.58	12.90	7.65	4.07	2.22
15	115.700	1	****	2912.	4.38	3.09	1.86	. 84	.00	.12
15	115.700	2	****	6439.	8.86	6.46	4.13	1.86	. 57	. 60
15	115.700	3	****	12016.	13.33	9.56	6.60	3.14	1.27	.96
16	115.751	1	****	3117.	5.00	3.65	2.06	1.24	.31	.36
16	115.751	2	****	6644.	9.69	7.31	4.95	2.34	1.01	. 66
16	115.751	3	****	12139.	14.79	11.71	8.36	4.20	2.23	1.44
17	115.802	1	****	3035.	5.00	4.31	2.27	.88	.35	.30
17	115.802	2	****	6398.	9.90	7.96	5.06	2.12	1.14	.84
17	115.802	3	****	12180.	15.11	12.46	8.77	4.29	2.54	1.80
18	115.851	1	****	3076.	2.71	2.81	1.86	1.33	. 44	. 66
18	115.851	2	****	6685.	7.81	6.56	4.54	2.96	1.66	1.26
18	115.851	3	****	11975.	12.50	10.77	8.36	5.39	3.29	2.46
19	115.904	1	****	3117.	3.44	3.00	1.86	1.19	.31	.36
19	115.904	2	****	6644.	8.23	6.93	4.64	2.56	1.05	.84
19	115.904	3	****	12221.	11.46	11.15	8.25	4.69	2.41	1.62
20	115.958	1	****	3117.	5.00	3.75	2.48	1.28	.35	.12
20	115.958	2	****	6726.	10.52	8.34	5.78	2.92	1.27	.60
20	115.958	3	****	12221.	16.36	12.93	9.90	5.22	2.54	1.32
21	116.000	1	****	3035.	4.58	3.93	2.89	1.64	.70	.48
21	116.000	2	****	6685.	10.11	8.99	6.91	5.22	2.06	1.44
21	116.000	3	****	12016.	16.15	14.15	11.45	10.08	4.07	2.34
TEST	LOC. HT	CO	MMENTS	====>		-				,

1 115.0000 3 PAVEMENT TEMPERATURE IS 66 DEGREES.

21 116.0000 3 END TEST SECTION.

DISK FILE: RUFUS2.DAT

SITE DATA:

08-01-89 Date Time 09:08 Dist. No. County Name GILLIAM Roadway No. 2 Lane desig.
Dist. from Rt. edge
Begin Mile Post 2 OWT 116.00 Offset WB. RTLN End Mile Post 115.00 250' INT Offset Surface Type AC Operator DOUG H.

SENSOR LOCATIONS:

STHOOK FOR	WITONS:
Sensor#	Location
1	0B
2	8B
3	12B
4	24B
5	36B
6	58F

Drop# Ht. Par 1 1 2 1 3 2 4 3	. Measure ? S. N Y Y Y	ave? P N Y Y Y	Plot ? N N N N	Print ? N Y Y Y			
PEAK VALUE SCALI TEMP LO, 45. 8396.8 TIME SERIES SCA	AD DEF-1 500 .516	DEF-2 .464 D): 1	DEF-3 .511	DEF-4 .219	DEF-5 .217	DEF-6 . 297	
TEST LOC HT 1 116.000 1 1 116.000 2 1 116.000 3 2 115.950 1 2 115.950 2 2 115.950 3 3 115.920 1 3 115.920 1 3 115.920 3 4 115.850 1 4 115.850 2 4 115.850 3 5 115.800 1 5 115.800 1 5 115.750 1 6 115.750 1 6 115.750 2 6 115.750 3 7 115.715 3 8 115.650 1 17 115.715 2 7 115.715 3 8 115.650 2 8 115.650 2 9 115.600 3 10 115.550 1 11 115.500 2 11 115.500 3 12 115.400 1 13 115.400 1 13 115.400 1 13 115.400 1 13 115.400 1 13 115.400 1 13 115.500 2 11 115.500 3 12 115.500 3 15 115.300 3 16 115.250 1 17 115.500 1 18 115.300 2 19 115.200 3 19 115.200 1 19 115.200 3 10 115.150 2 115.150 3 115.150 1 115.100 1 115.100 1 115.100 1 115.100 1 115.100 1	***** 12303 ***** 12303 ***** 6644 ***** 12221 ***** 6767 ***** 6808 ***** 12180 ***** 12344 ***** 6726 ***** 12262 ***** 12262 ***** 12344 ***** 12344 ***** 12344 ***** 12344 ***** 12344 ***** 12344 ***** 12344 ***** 12344 ***** 12344 ***** 12345 ***** 12365 ***** 12345 ***** 12345 ***** 12346 ***** 12346 ***** 12347 ***** 12346 ****** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ****** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ***** 12346 ****** 12346 ****** 12346 ****** 12346 ****** 12346 ****** 12346 ****** 12346 ****** 12346 ****** 12346 ****** 12346 ****** 12346 ***** 12346 ****** 1234	. 4.27 . 9.58 . 15.11 . 17.40 . 4.38 . 8.75 . 13.65 . 4.79 . 10.42 . 16.25 . 3.96 . 8.23 . 12.92 . 9.58 . 4.17 . 8.65 . 13.33 . 5.94 . 12.40 . 19.90 . 10.63 . 19.90 . 10.63 . 10.63 . 10.77 . 3.02 . 6.677 . 11.25 . 3.96 . 10.94 . 12.81 . 13.33 . 11.77 . 5.52 . 10.94 . 11.25 . 3.96 . 12.81 . 13.33 . 11.77 . 5.52 . 10.31 . 3.65 . 6.98 . 11.46 . 3.13 . 12.61 . 3.85 . 3.85 . 3.85 . 3.85 . 12.81 . 3.85 . 3	DEF-2 4.12 8.81 13.58 4.50 8.81 14.24 3.75 7.78 11.80 4.22 13.49 7.03 10.59 2.15 7.965 7.31 11.05 14.50 9.65 12.53 3.19 6.84 13.12 8.81	DEF-3 2.99 6.50 10.83 3.10 6.91 11.04 2.68 5.88 9.70 6.29 10.52 2.06 5.16 8.46 .93 3.51 6.60 2.17 5.26 8.36 3.71 8.36 13.52 3.10 7.33 12.07 1.44 3.61 6.40 2.17 4.02 6.29 3.40 7.63 12.28 2.99 6.50 10.11 2.17 5.06 7.94 2.48 4.54 7.33 2.99 6.50 10.11 1.96 4.64 8.05 1.34 3.40 5.98 1.86 5.06 8.36 5.98	DEF-4 1.72 3.94 6.81 1.64 3.63 6.15 1.81 1.28 4.77 4.69 2.48 1.28 4.69 2.48 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.99 4.70 1.90 4.70 1.90 4.70 1.90 4.70 1.90 4.70 1.90 4.70 1.90 4.70 1.90 4.70 1.90 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.7	DEF-5 .70 2.15 3.90 .74 2.02 3.68 .70 1.88 3.57 1.97 3.81 .39 1.23 2.44 1.23 2.58 1.10 2.02 2.79 2.23 4.16 1.01 2.28 4.03 .92 1.58 4.03 .92 1.58 4.03 1.75 3.20 1.76 1.76 1.75 1.66	DEF-6

22	115.100	3	****	11852.	14.48	12.37	9.59	5.70	2.94	2.04
23	115.050	1	****	3117.	4.06	3.84	2.48	1.59	.66	.42
23	115.050	2	****	6726.	9.27	8.24	5.78	3.45	1.53	.90
23	115.050	3	****	12139.	14.79	12.93	9.70	5.75	2.98	1.74
24	115.000	1	****	3117.	4.69	3.65	2.27	1.41	.35	.30
24	115.000	2	****	6685.	9.90	7.78	5.67	3.01	1.23	.78
24	115.000	3	****	12180.	14.17	12.18	9.80	5.35	2.72	1.74
TEST	LOC. HT	CC	MMENTS	====>						
1	116.000	0	3 PAVEM	IENT TEMPI	ERATURE :	IS 78 DEG	REES.			
24	115.000	0	3 END T	EST SECT	ION.					

B-2 Centennial Boulevard Project

```
DISK FILE: CENT3.DAT
SITE DATA:
Date
                              04-03-89
Time
                              09:57
Dist. No.
County Name
Roadway No.
Lane desig.
                              Ε
Dist. from Rt. edge
Begin Mile Post
                              BRIDGE
    Offset
End Mile Post
    Offset
Surface Type
Operator
                              DB
SENSOR LOCATIONS:
Sensor#
             Location
                0F
   1
   2
                12B
   3
                24B
   4
                36B
   5
                60F
   6
                99B
Drop#
        Ht. Par. Measure ? Save ?
                                         Plot ?
                                                    Print ?
   1
             3
                        N
                                 N
                                           N
                                                       N
   2
             2
                       Υ
                                 Y
                                           N
                                           N
PEAK VALUE SCALE FACTORS :
    TEMP
             LOAD
                       DEF-1
                                 DEF-2
                                           DEF-3
                                                     DEF-4
                                                               DEF-5
                                                                         DEF-6
          5902.0000
                                  . 512
                        . 521
                                            . 509
                                                      . 251
                                                                . 280
                                                                          . 280
TIME SERIES SCALE FACTOR (LOAD) : 5902.000
TEST
     LOC
             HT
                  TEMP
                          LOAD
                                   DEF-1
                                           DEF-2
                                                     DEF-3
                                                              DEF-4
                                                                      DEF-5
                                                                               DEF-6
       200. 2
                   54.
 1
                         8821.
                                  16.09
                                           12.09
                                                     8.53
                                                              6.18
                                                                      2.88
                                                                               7.07
       200.
             3
                        14269.
  1
                   54.
                                  24.72
                                           18.61
                                                    13.57
                                                             9.88
                                                                      4.92
                                                                              12.21
  2
       400.
             2
                   53.
                         8821.
                                  19.35
                                           12.61
                                                              5.88
                                                     7.60
                                                                      3.17
                                                                               5.94
       400.
                   52.
                        14297.
                                  28.40
                                           18.81
                                                    12.33
                                                             9.63
                                                                      5.77
                                                                              10.06
  3
       600.
             2
                   55.
                         8763.
                                  20.30
                                           13.85
                                                    9.25
                                                             6.59
                                                                      2.43
                                                                               7.63
  3
       600.
             3
                   55.
                        14269.
                                  29.98
                                           21.29
                                                    14.90
                                                            10.69
                                                                      4.52
                                                                              13.62
  4
       800.
             2
                   62.
                         8705.
                                  18.72
                                           13.13
                                                    8.43
                                                             6.03
                                                                      2.71
                                                                              7.46
       800.
             3
                   61.
                        14153.
                                  27.24
                                           20.26
                                                    13.57
                                                             9.98
                                                                      4.81
                                                                              12.38
  5
      1000.
             2
                   59.
                         8849.
                                  21.35
                                           14.58
                                                     9.15
                                                             6.13
                                                                      2.83
                                                                               7.18
  5
      1000.
             3
                   58.
                        14240.
                                  31.66
                                           22.12
                                                    14.49
                                                            10.29
                                                                      4.35
                                                                              12.72
 6
             2
      1200.
                   59.
                         8763.
                                  20.41
                                           12.71
                                                     8.02
                                                             5.42
                                                                      2.20
                                                                               5.88
  6
      1200.
             3
                   57.
                        14240.
                                  29.77
                                           19.64
                                                    13.05
                                                             9.17
                                                                      3.90
                                                                              12.04
 7
             2
      1400.
                   57.
                         8792.
                                  19.25
                                           12.30
                                                    7.60
                                                             4.76
                                                                      1.64
                                                                               6.16
 7
      1400.
             3
                   56.
                        14211.
                                  29.24
                                           19.33
                                                   12.64
                                                                      3.90
                                                             8.11
                                                                              12.49
 8
      1600.
             2
                   60.
                         8734.
                                  22.72
                                           14.37
                                                    8.63
                                                             6.08
                                                                      2.71
                                                                              7.80
 8
      1600.
             3
                   59.
                        14182.
                                  33.98
                                           21.81
                                                    14.18
                                                             9.78
                                                                              14.25
                                                                      4.81
 9
      1800.
             2
                   54.
                         8734.
                                  21.77
                                           14.58
                                                    9.87
                                                             6.54
                                                                      2.71
                                                                               8.31
 9
      1800.
             3
                   54.
                        14153.
                                                            10.74
                                  32.92
                                           22.33
                                                   15.31
                                                                      4.92
                                                                              15.77
10
      2000.
             2
                   58.
                         8763.
                                  17.15
                                           12.30
                                                    8.63
                                                             5.93
                                                                      2.32
                                                                               7.18
10
      2000.
             3
                   57.
                        14211.
                                  26.82
                                                   13.87
                                           19.23
                                                             9.83
                                                                      4.24
                                                                              12.78
      2200.
             2
11
                   62.
                         8676.
                                  23.88
                                           15.82
                                                    9.87
                                                             6.64
                                                                      2.26
                                                                              7.46
```

11

12

12

13

2200.

2400.

2400.

2600.

3

2

3

2

60.

59.

59.

64.

14067.

8763.

14182.

8734.

35.24

20.09

30.19

14.41

24.19

13.23

20.05

8.48

15.83

8.22

13.15

4.73

10.95

5.12

8.67

2.79

4.30

2.66

4.81

1.07

14.30

7.18

13.68

3.22

13 14 14 15 15 16 16 17 17 18 18 19 20 20	2600. 2800. 2800. 3000. 3200. 3200. 3400. 3600. 3600. 3800. 4000.	2 3 2 3 2 3 2 3 2 3 2 3 2	64. 55. 56. 56. 53. 52. 60. 61. 62. 60.	14269. 8705. 14124. 8676. 14211. 8648. 14067. 8648. 13923. 8705. 14182. 8676. 14240. 8705. 14211.	20.83 21.67 30.82 13.15 19.25 10.73 15.67 13.88 20.83 12.83 18.72 11.15 16.94	12.30 12.09 17.78 7.86 11.78 6.41 9.41 9.82 14.68 8.17 12.82 7.96 11.89 7.03 10.54	6.89 6.27 9.56 4.52 7.50 3.39 5.34 5.96 9.45 4.11 6.68 4.93 7.71 4.21 6.47	4.36 3.70 5.83 2.84 4.81 2.03 3.29 3.85 6.54 2.64 4.21 3.40 5.63 2.69 4.56	1.92 1.13 2.37 1.24 2.20 .62 1.47 1.53 2.60 1.19 1.92 2.04 3.45 1.36 2.71	6.50 4.13 8.59 3.11 5.94 2.32 4.24 3.96 7.07 3.11 6.56 3.90 7.52 3.28 5.77
DISK	FILE:	CENT4	1.DAT							
SITE	DATA:									
Roady	. No. ty Name way No. desig.				-03-89 :03					
Dist. Begin (End N	from Mile Offset Mile Po	Rt. e Post	edge	E						
	Offset ace Typ ator	е		DB				,		
SENSO Senso 1 2 3 4 5 6	OR LOCA	Loca 1 2 3 6	0: 0F 2B 24B 66B 60F 9B							·
Drop#	Ht.	Par.	Meas	sure ? Sa	ve ? P	lot ?	Print ?			
1 2 3		3 2 3		N Y Y	N Y Y	N N N	N Y Y			
	VALUE : EMP 590	SCALE LOA 02.00	.D	DEF-1	DEF-2 .512	DEF-3 .509	DEF-4 . 251	DEF-5 . 280	DEF-6 . 280	
TIME	SERIES	SCAL	E FACT	OR (LOAD) : 5902	.000		,		
TEST 1 1 2 2 3 3 4 4 5 5 6	LOC 4200. 4200. 4400. 4400. 4600. 4800. 5000. 5200.	2 3 2 3 2 3 2 3 2 3 2 3	68. 63. 63. 58. 58.	8561. 14009. 8561.	17.99 13.15 19.14 16.20 24.30 11.89 17.67 12.52 18.09	DEF-2 8.17 11.99 8.48 12.61 11.68 17.88 8.06 11.68 8.99 13.13 8.68		DEF-4 3.60 5.83 3.75 6.03 6.03 9.73 3.65 5.73 4.36 6.69 4.26	3.39 2.04 3.34 3.11 5.26 2.04 3.39 2.09	DEF-6 4.52 8.31 4.24 8.14 5.99 11.08 2.94 5.03 5.03 8.71 5.20

6 7 8 8 9 10 10 11 11 12 12 13 13 14 14 15 15	5200. 5400. 5400. 5600. 5600. 5800. 6000. 6200. 6400. 6400. 6600. 6801. 7000. 7000.	323232323232323	57. 67. 68. 55. 59. 60. 59. 68. 71. 70. 75. 76. 74.	14096. 8792. 13980. 8676. 14096. 8590. 14038. 8561. 14009. 8705. 14124. 8648. 14096. 8619. 14009. 8763. 14240. 8734. 14124.	17.88 15.78 24.09 14.20 21.77 16.09 24.09 15.67 24.30 15.46 23.14 15.46 23.15 10.62 16.62 15.88 24.30	12.92 11.27 17.26 9.82 15.20 11.78 18.09 11.89 18.61 10.03 15.82 11.06 16.85 13.96 21.09 8.79 13.75 10.75 16.85	9.15 7.50 11.92 6.37 10.58 8.63 13.57 8.53 13.77 6.99 11.10 7.30 12.02 10.38 16.13 6.89 11.20 6.89 11.51	6.84 4.92 8.16 4.36 7.35 6.39 10.24 6.13 9.98 4.86 8.06 5.22 8.67 7.75 12.31 5.37 8.72 4.92 8.46	3.62 1.70 3.22 2.09 3.73 3.34 5.71 2.88 4.86 2.26 4.18 2.43 4.47 3.96 6.56 2.83 4.58 2.20 4.13	8.54 6.50 11.76 5.99 11.59 7.07 12.21 5.88 10.68 6.11 11.65 6.84 12.61 7.80 12.78 5.26 8.54 6.39 12.32
	FILE:	CENT5.	DAT							
Date Time Dist. Count Roadw Lane Dist.										
End M	Offset Nile Pos Offset Nice Type	st		DB	50					
SENSO Senso 1 2 3 4 5	OR LOCA	Locat	ion F B B B F							
Drop#	Ht.	Par.	Meas	ure ? Sa	ve? F	olot ?	Print ?			
1 2 3		3 2 3		N Y Y	N Y Y	N N N	N Y Y			
	VALUE S EMP 59	SCALE LOAD 02.000		RS : DEF-1 .521	DEF-2 .512	DEF-3 .509	DEF-4 .251	DEF-5 . 280	DEF-(. 28	-
TIME	SERIES	SCALE	FACT	OR (LOAD) : 5902	2.000				
TEST 1 2 2 3 3 4 4 5	LOC 6900. 6900. 6700. 6700. 6500. 6300. 6300. 6100.	HT 2 3 2 3 2 3 2 3 2 3 2	TEMP 74. 75. 77. 76. 74. 72. 78. 77.	LOAD 8705. 14182. 8705. 14182. 8648. 14096. 8676. 14182. 8676.	DEF-1 11.04 16.72 13.67 20.62 15.57 23.77 13.25 19.35	DEF-2 7.75 11.99 9.30 14.68 10.03 15.71 7.75 11.68 8.48	DEF-3 5.45 8.74 6.78 10.89 6.17 10.07 4.32 6.68 4.93	DEF-4 4.16 6.74 5.02 8.21 4.16 7.09 2.79 4.56 3.14	DEF-5 2.26 3.79 2.77 4.81 1.75 3.17 1.13 1.92 1.19	DEF-6 4.52 8.03 5.26 8.71 5.09 10.46 2.94 6.50 4.07

5 6 6	6100. 5900. 5900.	3 2 3	76. 72. 71.	14153. 8648. 14096.	21.98 15.36 24.09	12.61 9.92 15.92	7.19 6.06 10.07	5.17 3.90 6.79	2.43 1.87 3.28	7.58 4.86 9.89
7 7	5700. 5700.	2	73. 73.	8590. 14096.	14.62 22.51	9.72 15.09	6.47 10.58	4.61 7.65	2.49 4.18	5.26
8	5500.	2	75. 75.	8619.	12.31	8.99	5.96	4.05	1.92	9.67 5.03
8	5500.	3	74.	14182.	19.04	13.85	9.45	6.79	3.34	10.40
9	5300.	2	76.	8648.	11.04	7.24	4.52	3.09	1.41	3.96
9	5300.	3	76.	14211.	16.41	10.75	7.19	5.07	2.49	7.29
10	5100.	2	75.	8676.	12.10	8.37	5.86	4.05	1.70	4.97
10	5100.	3	75.	14153.	18.41	13.02	9.15	6.69	3.00	9.38
11	4900.	2	78.	8648.	13.04	8.79	5.86	4.05	2.09	4.81
11	4900.	3	77.	14124.	19.57	13.44	9.25	6.74	3.62	8.31
12 12	4700.	2	77.	8619.	12.10	8.58	5.96	4.36	2.15	5.09
13	4700. 4500.	2	76. 72.	14182. 8619.	18.41 17.04	13.23	9.45	7.09	3.79	9.10
13	4500.	3	72. 72.	14153.	25.46	11.99 17.78	7.50 11.72	5.17 8.26	2.88	6.67
14	4300.	2	69.	8648.	12.52	9.51	6.06	4.26	4.81 2.15	11.31 4.86
14	4300.	3	69.	14182.	18.93	14.16	9.66	6.94	3.73	8.88
15	4100.	2	85.	8648.	13.04	10.13	6.68	4.51	2.15	5.37
15	4100.	3	84.	14153.	19.57	14.99	10.28	7.45	3.84	10.57
16	3900.	2	86.	8590.	10.83	8.68	6.06	4.31	2.26	4.58
16	3900.	3	85.	14124.	16.72	13.02	9.56	7.04	3.96	8.59
17	3700.	2	83.	8619.	12.83	7.86	5.04	3.19	1.64	3.17
17	3700.	3	82.	14153.	18.83	12.09	7.81	5.12	2.94	6.39
18	3500.	2	90.	8619.	12.20	7.86	4.32	2.53	1.02	2.26
18	3500.	3	89.	14124.	18.72	12.20	6.78	4.36	1.87	5.99
19	3300.	2	90.	8561.	17.25	11.47	7.09	4.21	1.64	4.18
19	3300.	3	89.	14096.	25.56	17.47	10.89	6.79	3.05	8.31
20 20	3100. 3100.	2	90.	8532.	15.78	10.96	6.37	3.90	1.13	4.35
21	2900.	2	88. 85.	14038. 8561.	24.51 17.67	17.37	10.79	6.64	2.49	10.01
21	2900.	3	85.	14067.	27.45	13.02 20.57	8.94 14.59	5.93	2.83	6.95
22	2700.	2	85.	8590.	16.09	11.06	7.30	9.93 4.56	4.75 1.87	12.83 5.43
22	2700.	3	84.	14096.	24.61	17.37	11.92	8.01	3.45	11.25
		-	٠,٠	2.500.	01	17.07	11.52	0.01	5.45	11.23

DISK FILE: CENT6.DAT

SITE DATA:

Date Time Dist. No. 04-03-89 12:34 County Name
Roadway No.
Lane desig.
Dist. from Rt. edge
Begin Mile Post
Offset 2500 End Mile Post Offset Surface Type Operator DB

SENSOR LOC	ATIONS:
Sensor#	Location
1	0F
2	128
· 3	24B
4	36B
5	60F
6	99B

Drop#	Ht. Par.	Measure ?	Save ?	Plot ?	Print ?
1	3	N	N	N	N
2	2	Y	Y	N	Y

3 Υ 3 Υ N Υ PEAK VALUE SCALE FACTORS : DEF-2 DEF-3 DEF-4 DEF-5 TEMP LOAD DEF-6 DEF-1 5902.0000 . 521 . 512 .509 .251 . 280 .280 TIME SERIES SCALE FACTOR (LOAD): 5902.000 **TEST** LOC ΗT TEMP LOAD DEF-1 DEF-2 DEF-3 DEF-4 DEF-5 DEF-6 2500. 2 88. 8561. 14.83 9.51 5.75 1 3.75 1.92 4.81 2500. 3 86. 14038. 22.30 14.37 9.35 6.44 3.34 8.93 2 11.89 9.92 2299. 2 88. 8561. 4.56 6.27 2.26 5.20 10.06 2 2299. 3 88. 13923. 18.09 15.30 10.17 7.70 3.90 11.99 2100. 2 92. 17.99 8532. 8.22 5.42 2.20 6.56 3 2100. 3 91. 14009. 28.19 19.43 13.57 9.43 3.90 12.72 4 2 89. 11.06 1900. 8676. 15.67 7.30 4.81 2.09 5.82 4 1900. 3 88. 14182. 24.30 17.78 11.92 8.36 11.02 3.67 1700. 2 85. 8561. 17.15 12.09 8.53 5.93 2.66 6.67 5 1700. 84. 14067. 27.03 18.92 13.77 10.03 4.86 12.49 6 1500. 2 81. 8619. 15.57 10.23 6.58 4.61 2.09 5.37 6 1500. 3 81. 14038. 23.56 15.61 10.89 7.85 3.73 9.72 7 1300. 2 83. 8648. 18.41 11.16 7.09 4.86 5.37 1.98 7 10.85 1300. 3 82. 14067. 28.09 17.47 11.61 8.41 3.56 8 2 81. 1100. 8590. 16.20 10.34 6.47 4.10 1.47 4.58 8 1100. 3 80. 14067. 24.93 16.44 10.89 7.15 3.00 9.38 900. 2 10.03 8648. 15.99 76. 6.68 4.46 2.15 4.92 9 900. 3 76. 14096. 24.40 16.02 11.10 7.70 3.56 10.06 10 700. 2 87. 8648. 14.10 9.61 6.06 5.03 3.85 1.87 10 700. 3 84. 14182. 21.98 14.99 9.97 6.74 3.39 10.29 500. 2 90. 11 8648. 16.83 9.61 6.27 4.16 2.49 4.47 500. 3 14096. 11 89. 25.03 14.78 10.28 7.09 4.24 8.20 12 299. 2 92. 8648. 15.46 10.65 7.91 5.68 2.83 6.56 12 299. 3 14067. 91. 24.19 16.85 12.85 9.48 4.92 11.82 13 100. 2 92. 8705. 13.46 9.61 7.19 5.17 2.26 5.14 13 100. 89. 14153. 20.83 15.40 11.82 8.36 4.18 9.16

B-3 Nelchina Project

NELCHINA SPRING DATA

NELCHINA SUMMUR DATA

	MELONIAN SOUNDE DATA
R32 18 225 890511nelchina29F8* 70001800-002 .3111 8 150 0 211 300 601 899 11991501 100 C: .FWD nelchina 89 #2000+0.0 000+0.0 00 S127 1 4.5 100 0 00224 S128 1 4.5 100 0 00226 0' 100'0' 100'0 127 18 15 3.5 5 2 15 2 8 Ld 084 1 87.8 D1 621 1 1.049 D2 622 1 1.004 D3 623 1 1.040 D4 624 1 1.033 D5 625 1 1.085 D6 626 1 1.053 D7 627 1 1.049 D0 628 1 1.018 D0 638 1 1.037 D* ****** 1	R32 18 281 890802neltwo 29F8* 70001800-002 .3111 8 150 0 211 300 601 899 11991501
David L. Swaim	David L. Swaim
1110101012 11111111*	1110101012
***************************************	11111111*
***************************************	•••••

**********	***************************************
SO.x 1 4.5 000 0 000000	SO.0 10 100 0 000000
608 324 257 181 99 47 25 1	562 273 202 144 79 44 29 23
S2 1 4.5 000 0 000000	S2 10 100 0 000000
597 345 263 191 106 51 29 5	570 399 247 164 83 46 33 25
\$4 1 4.5 100 0 000000	S4 10 100 0 000000
604 278 220 157 89 46 27 1	571 206 154 108 60 35 24 15
S6 1 4.5 100 0 000000	S6 10 100 0 000000
601 355 276 201 117 59 32 1	569 442 330 230 130 79 60 48
	S8 10 100 0 000000
610 277 173 95 51 29 21 1 \$10	579 323 200 115 59 37 27 19
100 0 00000	\$10 10 100 0 000000
C12 1 4 5 100 0 000000	585 256 157 84 44 29 22 12
512	S12 10 100 0 000000
C14 1 4 5 400 0 000000	576 301 170 82 38 23 18 14
583 370 205 107 55 30 20 1	\$14
C1C 1 4 F 100 0 000000	578 296 182 97 46 27 19 13 S16 10 100 0 000000
582 341 213 119 58 31 20 1	F77 000 404 00 40 00
C19 1 4 5 100 0 000000	5// 292 181 90 42 25 19 14 S18 10 100 0 000000
577 308 186 97 49 27 17 1	574 321 176 94 45 27 20 15
S20 1 4.5 100 0 000000	S20 10 100 0 000000
583 311 207 110 57 30 20 2	575 240 149 78 36 21 14 12
S22 1 4.5 100 0 000000	S22 10 100 0 000000
583 362 219 122 58 31 19 1	584 263 140 73 34 18 13 9
	S24 10 100 0 000000
584 350 191 107 54 29 17 1	574 243 142 76 37 23 17 11
\$26	S26 10 100 0 000000
587 360 232 134 71 38 21 1	564 293 173 89 44 27 20 15
	\$28 10 100 0 000000
C20 1 4 F 100 0 000000	563 255 156 89 45 27 19 11
	S30 10 100 0 000000
020 1 1 5 100 0 00000	569 285 155 85 40 21 13 14
580 298 206 128 68 38 24 1	S32 10 100 0 000000
634	576 284 154 73 36 21 14 10
582 322 207 123 64 34 21 2	534 10 100 0 000000
302 322 207 123 04 34 21 2	577 283 134 71 36 21 14 11

S36 1 4.5 100 0 577 281 212 108 60 34	000000 21 1	S36 10 100 0 000000 577 201 137 81 43 26 19 15	
S38 1 4.5 100 0	000000	S38 10 100 0 000000	
579 312 215 130 71 37 S40 1 4.5 100 0	22 2 000000	574 235 118 59 28 16 12 8 S40 10 100 0 000000	
580 318 201 110 57 35	20 5	581 231 142 76 36 20 15 9	
S42 1 4.5 100 0 571 351 213 120 60 33	000000 21 3	542 10 100 0 000000 571 241 129 63 30 20 14 11	
S44 1 4.5 100 0	000000	S44 10 100 0 000000	
571 395 253 136 69 40 S46 1 4.5 100 0	27 1 000000	574 327 206 115 60 35 24 19 S46 10 100 0 000000	
577 364 209 114 62 37	23 2	570 307 166 98 50 30 23 17	
S48 1 4.5 100 0 571 327 201 104 54 29	000000 18 1	548 10 100 0 000000 572 269 157 90 25 18 16 10	
\$50 1 4.5 100 0	000000	\$50 1 10 100 0 000000	
570 418 276 161 87 48 S51 1 4.5 100 0	27 1 000000	556 271 163 89 46 29 22 16 S51 1 10 100 0 000000	
567 517 358 209 112 58	32 1	513 368 216 111 50 28 21 17	
S52 1 4.5 100 0 570 494 289 166 87 43	000000 24 1	552 1 10 100 0 000000 579 292 162 90 46 30 23 19	
S53 1 4.5 100 0	000000	\$53 1 10 100 0 000000	
568 407 250 150 84 52 S54 1 4.5 100 0	35 1 000000	583 281 164 95 52 33 24 19 S54 1 10 100 0 000000	
570 455 304 188 108 63	38 3	580 293 159 93 52 33 24 18	
S55 1 4.5 100 0 562 642 467 289 148 76	000000 41 2	\$55 1 10 100 0 000000 565 318 193 118 66 41 28 21	
S56 1 4.5 100 0	000000	S56 1 10 100 0 000000	
568 487 315 192 104 54 S57 1 4.5 100 0	31 1 000000	567 377 243 140 72 44 33 25 S57 1 10 100 0 000000	
572 409 274 159 88 53	36 1	575 279 178 101 53 33 26 21	
S58 1 4.5 100 0 568 338 218 125 71 42	000000 28 3	\$58	
S59 1 4.5 100 0	000000	S59 1 10 100 0 000000	
561 338 203 108 57 34 S60 1 4.5 100 0	23 1 000000	584 263 154 79 39 26 20 14 \$60	
567 314 187 111 56 30	18 1	560 1 10 100 0 000000 568 212 134 72 37 25 21 17	
S61 1 4.5 100 0 560 467 348 210 102 52	000000 27 1	S61 1 10 100 0 000000 564 352 227 145 82 50 37 30	
S62 1 4.5 100 0	000000	S62 1 10 100 0 000000	
554 506 368 224 122 63 S63 1 4.5 100 0	37 2 000000	560 450 302 183 106 72 54 41 \$63	
550 624 436 279 147 66	35 1	S63 1 10 100 0 000000 572 288 190 130 84 58 41 27	
S64 1 4.5 100 0 561 488 331 201 107 53	000000 31 1	S64 1 10 100 0 000000 561 359 223 159 97 63 44 34	
S65 1 4.5 100 0	000000	561 359 223 159 97 63 44 34 S65 1 10 100 0 000000	
550 703 423 260 136 60 S66 1 4.5 100 0	24 2 000000	564 326 176 122 80 53 37 31	
550 782 477 260 120 43	14 1	566 1 10 100 0 000000 551 393 239 158 98 64 44 34	
S67 1 4.5 100 0 546 680 484 258 133 59	000000 23 2	\$67 1 10 100 0 000000 552 385 335 132 77 50 36 36	
S68 1 4.5 100 0	000000	562 385 226 132 77 50 36 26 S68 1 10 100 0 000000	
549 636 412 240 120 54 S69 1 4.5 100 0	26 1 000000	556 358 181 105 59 39 26 22	
554 572 362 209 117 58	31 1	\$69	
\$70	000000 17 1	\$70	
S71 1 4.5 100 0	000000	561 257 180 119 71 43 31 22 S71 1 10 100 0 000000	
561 692 433 269 150 68 S72 1 4.5 100 0	27 1 000000	558 358 217 130 80 52 37 29	
572 1 4.5 100 0 552 801 509 301 164 78	36 2	572 1 10 100 0 000000 552 397 242 142 86 53 39 29	
\$73	000000 35 3	S73 1 10 100 0 000000	
S74 1 4.5 100 0	000000	557 433 262 161 93 55 37 27 \$74 1 10 100 0 000000	
551 843 541 327 166 71 S75 1 4.5 100 0	27 1	547 486 314 201 118 69 46 34	
575 1 4.5 100 0 5411009 714 439 214 87	000000 27 1	575 1 10 100 0 000000 541 485 307 191 108 65 43 33	
S76 1 4.5 100 0	000000	S76 1 10 100 0 000000	
54913711143 701 430 206 S77 1 4.5 100 0	108 2 000000	543 511 330 194 113 68 45 33 577 1 10 100 0 000000	
531 959 693 339 165 71	27 1	543 456 293 185 113 68 46 35	
S78 1 4.5 100 0	000000	578 1 10 100 0 000000	

543 918	3 536	294	156	71	34 1	546	367	271	181	111 6	8 47 31
S79 557 707	1		100	0 64	000000 31 1	S79	406	1	10	100 100 6	
S80	1	4.5	100	0	000000	S80	400	1	103	100 0	
558 633 S81	3 433 1		149 100		33 1 000000	550 \$81	376	242	142	83 4 100	
564 459	294	177	100	48	26 1	545	495	316	211	129 7	
S82 576 373	1 3 243	4.5		0 39	000000 21 3	S82	225	1 234	10	100 74 4	
S83	1	4.5	100	0	000000	S83		1	10	100	
546 273 S84	3 211 1	136 4.5	76 100	38 0	20 5 000000	522 \$84	492	367 1	245	129 7- 100	
557 592	384	202	91	38	19 3	522	507	366	241	129 7	3 51 39
S85 532 765	1 5 509	4.5 348			000000 59 3	S85	586	1 300	10 254	100 142 8:	
S86	1	4.5	100	0	000000	S86	500	1	10	100	0 000000
559 569 S87	1	4.5			81 1	562 S87	517	321	205	108 7-	
548 544			103	58	38 4	552	472	329	204	111 7	1 48 36
S88 546 368	1 265	4.5 159	100 76	0 39	000000 22 1	S88 562	368	1 239	10 159	100 (87 3)	
S89	1	4.5	100		000000	\$89		1	10	100	000000
571 308 S90	1	4.5	61 100	33 0	19 3 000000	590 S90	284	167 1	89 10	45 21 100 (
574 317	_		57	29	18 3	593	256	151	85	43 2	5 19 9
S91 567 345	1 243	4.5 151	100 87	0 51	000000 35 1	591 588	320	1 173	100	100 (53 3)	
S92	1	4.5	100		000000	S92		1	10	100	000000
573 286 S93	193	4.5	57 100	33 0	22 1 000000	591 S93	236	172	104	57 38 100 (
573 304 S94			75 100	42	26 1	581	304	210	133	70 4	1 28 21
577 287	1 209	4.5 136	100 79	0 29	000000 15 1	594 584	325	203	110	100 (51 29	
S98 563 555	1	4.5	100	0 54	000000 29 1	S98	440	1	10	100 (000000
S99	1	4.5	100	0	29 1 000000	570 S99	440	334 1	10	152 88 100 (
558 467 S100	360 1	225 4.5	127 100	66 0	38. 1 000000	582	484	352	237	142 87	
570 496				59	31 1	570	536	381	249	100 (135 76	
S101 570 578	1	4.5	100	0 54	000000 26 1	S101	COE	1	10	100 (
S102	1	4.5	100	0	000000	578 S102	025	1	10	153 90 100 0	
566 478 S103	320 1	207 4.5	125 100	72 0	45 1 000000	568 \$103	492	366	250	157 103	
562 537	397	256		59	28 3	565	649	437	287	100 (165 98	
S104 562 523	1 378	4.5	100	0 41	000000 17 1	S104 580	EE2	1	10	100 (
S105	1	4.5	100	0	000000	S105	333	1	10	115 63 100 0	
547 500 S106	363 1	245	142	79 n	52 1 000000	558 S106	557	423	307		
553 621	432	262	123	51	22 5	567	376	285	217	100 0 138 82	
S107 566 434	1 282	4.5 166	100 90	0 46	000000 27 1	S107	515		10	100 0 127 69	
S108	1	4.5	100	0	000000	\$108		1	10	100 0	
571 290 S109	184 1	102	54 100	33 0	22 1 000000	569 S109	395		150 10	84 50 100 0	
558 354	223	125	65	33	20 1	584	340	150	82	51 34	
S110 536 428	1 314	4.5 196	100 114	0 66	000000 42 2	S110 557	299		10 112	100 0 68 46	
S111	1	4.5	100	0	000000	S111		1	10	100 0	000000
556 357 S112	308 1		192 1 100		91 2	567 S112			238 10	169 112	
553 592	461	313	189 1	07	65 3	567	494	344	230	133 80	54 37
S113 555 444	1 293	4.5 179	100 99	0 48	000000 26 1	S113 564	406		10 157	100 0 92 58	
	1	4.5	100	0	000000	S114		1	10	100 0	000000
S115	1	4.5	100	49 0	27 1 000000	567 S115	468		207 10	112 65 100 0	
552 269 S116		110	72 100	44	28 2	566	267	186	130	83 54	41 39
547 529	1 371	4.5 238		0 66	000000 39 1	S116 561	453		10 216	100 0 132 79	

S117		1	4.5	100	0	000000		S117		1	10	100	0	0000	00
547	426	302	197	117	69	45 1		562	465	230	155	97	65	44	26
S118		1	4.5	100	0	000000		S118		1	10	100	0	0000	00
562	388	169	116	95	64	44 1		597	284	182	175	19510	020	53	41
S121		1	4.5	100	0	000000	4	S121		1	10	100	0	0000	00
538	377	283	198	105	49	27 1		577	464	364	249	129	63	42	35
S122		1	4.5	100	0	000000		S122		1	10	100	0	0000	00
551	457	339	227	136	73	40 1		559	380	236	156	98	61	42	34
S123		1	4.5	100	0	000000		S123			10	100	0	0000	00
558	180	138	101	60	33	23 1		571	291	201	133	73	49	38	31
S124		1	4.5	100	0	000000		S124			10	100	0	0000	00
559	409	296	193	97	43	21 1		567	358	267	178	107	72	53	38
S125		1	4.5	100	0	000000		S125			10	100	0	0000	00
559	366		186	95	46	24 2		560	346	281	209	129	81	59	47
S126		1	4.5	100	0	000000		S126			10	100	0	0000	00
565	187	149	111	70	38	25 1		566	247	179	122	68	42	33	27
S127		1	4.5	100	0	000000		S127			10	100	0	0000	00
564	189	141	97	55	29	21 1		568	312	211	132	73	46	35	23
EOF								EOF							

Tudor Spring Data

Tudor Summer Data

R32 18 579 800101tudor4 29F8* 70001800-003 .3111 8 150 0 200 300 450 650 900 1200 100 B: .FWD 00000 SH0000 000+0.0 000+0.0 00 S110 1 13 000 0 00575 S111 1 13 000 0 00580 0' 100'0' 100'1 110 18 15 3.5 6 2 15 2 8 Ld 085 1 87.5 D1 631 1 .9918 D2 632 1 1.011 D3 633 1 1.055 D4 634 1 1.056 D5 635 1 1.033 D6 636 1 1.045 D7 637 1 1.078 D0 638 1 1.037 D0 628 1 1.018 D******* 1	R32 18 579 800101tudor7 29F8* 70001800-003 .3111 8 150 0 200 300 450 650 900 1200
D* ***** 1 1 chip 11110010 1234 * 11111223******* S1.0 1 11 000 0 000010	cnip 111100101234*
11111223********	11111223*******
	•••••
S1.0 1 11 000 0 000010	\$1.0
403 212 161 148 97 66 37 20	382 223 181 146 91 60 33 20
564 272 215 189 126 87 49 27 557 268 211 187 126 86 48 26	544 294 237 191 120 81 46 29 550 294 237 191 121 82 46 29
888 407 296 284 189 130 73 40	851 422 335 269 174 118 69 45
\$2.0	\$2.0
561 198 144 120 74 48 27 17	545 262 194 148 84 54 29 19
554 194 142 118 71 48 27 17 887 290 212 175 108 71 42 26	552 262 195 150 86 54 30 19 852 367 272 209 119 76 44 29
S3 1 11 000 0 000012	S3 1 13 000 0 000012
404 187 136 115 70 42 23 14 555 235 176 145 88 55 29 17	382 171 123 93 50 30 17 12
551 228 174 143 88 55 29 18	545 222 160 119 65 42 24 16 548 221 160 119 67 41 24 16
884 347 257 213 130 83 45 27 S4 1 11 000 0 000016	842 314 225 170 96 61 37 27
S4	381 189 146 110 62 38 22 15
549 244 197 148 91 53 36 23 553 244 201 148 202 53 24 23	551 241 185 139 79 51 30 20
553 244 201 148 92 53 34 23 868 342 263 204 124 76 50 31	554 239 185 139 79 52 32 22 846 327 251 188 109 71 43 30
393 210 161 137 88 55 24 10 545 258 197 169 108 69 32 12	370 186 131 102 58 37 21 14 537 242 171 132 77 50 29 19
546 255 199 168 108 69 32 12	540 239 169 131 78 50 29 19
868 375 278 241 151 96 44 14 S6 1 11 000 0 000018	827 338 237 183 108 71 44 30 S6 1 13 000 0 000015
399 187 160 110 67 39 21 12	371 174 112 81 43 27 16 12
550 234 173 140 83 53 27 16 547 233 169 139 83 53 28 16	540 226 148 109 61 40 26 19 541 223 147 107 60 39 25 18
877 340 251 200 120 76 41 24	834 319 207 153 89 60 39 29
\$7	S7 1 13 000 0 000016 381 142 100 76 50 32 19 13
549 173 130 119 80 60 34 20	546 188 132 104 67 46 29 20
549 170 129 118 80 61 34 20 875 271 211 186 128 92 54 30	548 186 132 104 67 46 30 22 845 276 193 154 99 71 48 34
S8 1 11 000 0 000021	S8 1 13 000 0 000017

397 11 541 14 545 14 875 21 S9 394 18 545 23 544 22 867 33 S10 389 21 542 27 539 27 863 40 S11	5 107 5 108 4 163 1 5 142 1 184 9 173 8 248 1 18 177 4 205 0 204	97 142 11 119 148 149 217 11 135 173	62 93 000 72 90 90 130 000 84 108	43 48 55 81 0 54 69 70	21 27 28 42 000 27 38 38 56	10 14 14 22 022 11 14 14 20 023 14 22 22 32 024	550 551 845 S9 374 546 550 840 S10 379 546	119 156 156 221 139 181 181 255 201 258 256 362	116 164 1 100 130 130 183 1 153 198 198	93 132 13 76 100 100 142 13 119 157	44 59 58 84 000 42 59 59 87 000 74 99 99 147	29 40 60 28 38 59 49 69 104 0	16 11 25 17 26 17 39 26 000018 16 11 23 16 23 17 37 27 000019 30 23 45 33 45 33 70 52
397 19 545 24 544 24 873 36 \$12 399 17 542 21	4 170 5 188 3 193 7 284 1 0 129	126 160 158 234 11 112	80 99 99	50 65 65 96	26 34 34 51 000 25 32	14 20 19 28	375 546 548 838 S12 369	178 235 233 333 173 226	139 181 180 256 1 128	105 141 140 199 13 100	63 83 84	40 57 57 85 0 43 62	000020 23 16 34 22 34 23 53 38 000021 26 20 40 30
542 20 873 31 \$13 400 13 542 16 542 16 866 25 \$14	3 239 1 4 103 9 127 6 124	203 11 88 110 109	000 55 69 68	59 86 0 34 44 44 67	32 47 000 19 24 25 38 000	11 14 15 22	834 S13 371 545 552	223 317 130 177 176 258	235 1 99 133 133	188 13 76 105 107	89 129 000 48 65 65 98 000	62 93 0 30 45 45 68 0	41 30 63 47 000022 16 14 28 22 29 22 44 33 000023
399 8 558 10 545 10 866 15 \$15 388 28 538 329	1 76 6 75 2 74 5 126 1 2 206 9 245	54 71 70 102 11 159 194	36 48 46 70 000 54 68	24 34 33 48 0 31 37	14 19 19 29 000 15	9 10 10 18 029 10	378 550 548 846 S15 358 530	91 122 121 174 238 305	69 89 125 1 145 190	51 73 71 98 13 98 131	34 43 44 63 000 43 60	22 29 29 44 0 25 36	10 9 21 11 18 11 27 18 000023 15 11 23 17
531 32 841 46 516 396 236 545 27 541 27 845 384 517	\$ 328 1 0 168 9 200 7 198	266 11 139 168 166	68 93 000 81 98 97 129 000	38 52 0 48 58 58 76 0	20 25 000 22 27 27 37 000	12 15 15 20	823 \$16 374 547 543	300 421 179 230 227 319	261 1 130 170 167	183 13 97 124 122	61 88 000 53 69 68 94	36 54 0 30 40 39 58	23 17 36 27 000024 15 11 21 15 22 15 33 24 000025
381 93 512 119	5 143 4 136 3 201 1 3 67 9 86	128 127 181 11 59 76	000 36 46	45 60 60 85 0 23 29	27 36 34 49 000 11 15	16 20 20 29 031 6 9	372 540 542 836 \$18 377 545	102 136	112 151 151 218 1 72 96	88 121 121 177 13 55 73	56 78 79 116 000 29 40	37 56 57 85 0 18 25	23 16 34 24 36 25 54 38 000026 9 5 14 10
512 118 834 183 \$19 385 173 519 210 519 209 841 308 \$20	1 133 1 125 1 155 1 158	117 11 102 126 123	61 75 76 112	28 46 0 38 46 45 70	14 0000 20 24 24 38 0000	11 14 14 22	844 \$19 371 538 543	135 196 149 192 191 274	136 1 102 133 132	13 74 99 99	58 000 41 55 56 80	25 36 0 25 35 35 52	14 10 20 14 000027 14 10 20 14 20 14 31 23 000028
388 189 513 224 511 221 821 326 \$21 372 147 510 183	129 162 160 5 229 1 109 136	116 139 138 199 11 88 110	70 83 82 120 000 51 65	43 53 53 77 0 31 40	23 27 27 40 0000 16 21	13 15 14 22 35 10 13	384 542 548 840 \$21 366 539	152 196	101 128 128 182 1 101 132	73 96 96 137 13 77	42 55 56 82 000 39 54	27 37 38 58 0 25 35	16 12 25 18 26 19 40 30 000029 15 11 20 16
511 182 823 275 S22 338 195	202	161 11	96 000	40 61 0 68	21 32 0000 32	36	833 S22	194 276 216	186 1	13			21 16 33 25 000030 33 24

	250	234	173	117	83	47 31	532 274 209 166 106 73	46 32
506	261	236	175	119	84	49 32	538 274 209 166 106 74	46 32
822	407	3/13	270	183	120	77 52		71 51
	407							
S23		1	11	000	0	000037	S23 1 13 000 0	000031
	175	164		75	50			
					50			29 18
496	238	207	158	103	67	37 20	545 276 217 173 107 71	42 26
498	236	209	120	103	68	39 20	545 272 214 172 106 71	42 26
817	375	315	249	164	108	61 32	835 391 304 242 153 105	63 40
	3/3							
S24		1	11	000	0	000038	S24 1 13 000 0	000032
222	160	146	104	68	44	22 12		
								23 15
480	217	181	145	93	60	32 17	533 230 177 138 84 56	32 22
400	214	170	145	93	61	33 18		32 22
823	329	263	218	143	93	51 28	827 322 247 195 121 84	50 33
	JEJ							
S25		1	11	000	0	000039	S25 1 13 000 0	000032
31/	135	122	87	54	33	15 5	370 186 143 111 68 43	25 16
467	180	167	118	76	45	23 12	548 245 189 148 92 61	36 25
470	100	104	110	75	46			
		164			40	24 13	541 237 185 146 91 61	36 25
819	280	231	179	112	69	36 19	833 340 261 206 131 90	55 39
S26		1	11	000	0	000040	S26 1 13 000 0	000033
320	183	161	115	69	42	21 11	371 226 174 137 80 52	30 20
477	246	195	155	96	57	28 13	536 294 226 179 107 71	44 28
		189		95	58	29 14		44 29
820	381	299	236	144	76	43 20	826 418 320 252 155 105	67 45
S27		1	11	000		000041		000034
319	145	122	100	64	41	22 12	371 175 135 108 71 51	33 26
4/1	198	169	135	89	58	30 15	538 236 184 148 97 73	50 34
475	195	167	135	89	58	30 16	531 230 180 145 97 71	49 36
808	318	253	215	138	90	46 24	823 354 271 219 148 111	76 58
S28		1	11	000	0	000044	S28 1 13 000 0	000035
312	166	132	92	54	31	15 9	375 179 120 89 54 35	21 12
467	216	170	121	74	43	21 11		
472	214	173	121	74	43	21 12	535 224 156 119 72 50	31 23
	324	243		100	63	31 17	829 319 219 168 105 73	48 36
S29		1	13	000	0	000046	S29 1 13 000 0	000036
	210							
310	210	154	122	63	34	16 10	374 203 144 104 57 39	27 22
467	285	202	159	84	46	22 14	538 268 190 141 79 57	40 30
4/4	284	198	158	86	46	22 14	530 261 187 137 79 56	39 30
797	437	293	235	127	69	32 20	816 387 275 205 120 89	64 50
	73,							
S30		1	13	000	0	000047	S30 1 13 000 0	000037
222	102	135	1 0 0	63	36	20 11		
								23 15
470	235	181	142	84	52	28 16	536 253 190 143 81 55	33 23
		179		83	51	28 16	532 251 189 143 81 56	36 25
801	358	258	217	130	81	45 29	819 355 265 203 117 83	53 38
					_			
S31		1	13	000	0	000048	S31 1 13 000 0	000038
308	169	123	103	63	27		373 189 134 99 55 36	000000
						20 12		
464	228	1/1			37	20 12		23 16
476			146	90	56	20 12 31 16		
	229	168		90	56	31 16	525 241 174 130 75 50	23 16 32 24
		168	147	90 91	56 56	31 16 31 17	525 241 174 130 75 50 534 240 175 131 77 52	23 16 32 24 33 24
		168 257	147	90 91	56	31 16	525 241 174 130 75 50 534 240 175 131 77 52	23 16 32 24
802		257	147 223	90 91 139	56 56 87	31 16 31 17 50 29	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81	23 16 32 24 33 24 52 37
802 S32	351	257 1	147 223 13	90 91 139 000	56 56 87 0	31 16 31 17 50 29 000049	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0	23 16 32 24 33 24 52 37 000038
802 S32	351	257	147 223 13	90 91 139	56 56 87	31 16 31 17 50 29	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0	23 16 32 24 33 24 52 37
802 \$32 320	351 284	257 1 203	147 223 13 169	90 91 139 000 94	56 56 87 0 56	31 16 31 17 50 29 000049 29 14	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52	23 16 32 24 33 24 52 37 000038 32 20
802 \$32 320 464	351 284 374	257 1 203 286	147 223 13 169 225	90 91 139 000 94 127	56 56 87 0 56 76	31 16 31 17 50 29 000049 29 14 37 20	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 532 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70	23 16 32 24 33 24 52 37 000038 32 20 45 29
802 \$32 320 464 471	351 284 374 374	257 1 203 286 284	147 223 13 169 225 226	90 91 139 000 94 127 128	56 87 0 56 76 79	31 16 31 17 50 29 000049 29 14	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 532 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70	23 16 32 24 33 24 52 37 000038 32 20
802 \$32 320 464 471	351 284 374 374	257 1 203 286 284	147 223 13 169 225 226	90 91 139 000 94 127 128	56 87 0 56 76 79	31 16 31 17 50 29 000049 29 14 37 20 39 23	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30
802 \$32 320 464 471 814	351 284 374 374	257 1 203 286 284 440	147 223 13 169 225 226 362	90 91 139 000 94 127 128 208	56 56 87 0 56 76 79	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47
802 \$32 320 464 471	351 284 374 374	257 1 203 286 284	147 223 13 169 225 226	90 91 139 000 94 127 128	56 56 87 0 56 76 79	31 16 31 17 50 29 000049 29 14 37 20 39 23	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30
802 \$32 320 464 471 814 \$33	351 284 374 374 607	257 1 203 286 284 440 1	147 223 13 169 225 226 362 13	90 91 139 000 94 127 128 208 000	56 56 87 0 56 76 79 126 0	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039
802 \$32 320 464 471 814 \$33 319	351 284 374 374 607 209	257 1 203 286 284 440 1 151	147 223 13 169 225 226 362 13 134	90 91 139 000 94 127 128 208 000 82	56 56 87 0 56 76 79 126 0 54	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19
802 \$32 320 464 471 814 \$33 319	351 284 374 374 607 209	257 1 203 286 284 440 1	147 223 13 169 225 226 362 13 134	90 91 139 000 94 127 128 208 000 82	56 56 87 0 56 76 79 126 0	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19
802 \$32 320 464 471 814 \$33 319 473	351 284 374 374 607 209 279	257 1 203 286 284 440 1 151 220	147 223 13 169 225 226 362 13 134 180	90 91 139 000 94 127 128 208 000 82 113	56 56 87 0 56 76 79 126 0 54	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28
802 \$32 320 464 471 814 \$33 319 473 471	351 284 374 374 607 209 279 273	257 1 203 286 284 440 1 151 220 212	147 223 13 169 225 226 362 13 134 180 177	90 91 139 000 94 127 128 208 000 82 113 112	56 87 0 56 76 79 126 0 54 73	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28
802 \$32 320 464 471 814 \$33 319 473 471	351 284 374 374 607 209 279 273	257 1 203 286 284 440 1 151 220 212	147 223 13 169 225 226 362 13 134 180 177	90 91 139 000 94 127 128 208 000 82 113 112	56 87 0 56 76 79 126 0 54 73	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28
802 \$32 320 464 471 814 \$33 319 473 471 812	351 284 374 374 607 209 279 273	257 1 203 286 284 440 1 151 220 212 334	147 223 13 169 225 226 362 13 134 180 177 276	90 91 139 000 94 127 128 208 000 82 113 112 177	56 87 0 56 76 79 126 0 54 73 73	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34	351 284 374 374 607 209 279 273 430	257 1 203 286 284 440 1 151 220 212 334 1	147 223 13 169 225 226 362 13 134 180 177 276 13	90 91 139 000 94 127 128 208 000 82 113 112 177 000	56 87 0 56 76 79 126 0 54 73 73	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34	351 284 374 374 607 209 279 273 430	257 1 203 286 284 440 1 151 220 212 334 1	147 223 13 169 225 226 362 13 134 180 177 276 13	90 91 139 000 94 127 128 208 000 82 113 112 177 000	56 87 0 56 76 79 126 0 54 73 73	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 834 1 13 000 0	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34 322	351 284 374 374 607 209 279 273 430 203	257 1 203 286 284 440 1 151 220 212 334 1 177	147 223 13 169 225 226 362 13 134 180 177 276 13 139	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91	56 56 87 0 56 79 126 0 54 73 73 116 0 59	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34 322 474	351 284 374 607 209 279 273 430 203 268	257 1 203 286 284 440 1 151 220 212 334 1 177 237	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124	56 87 0 56 76 79 126 0 54 73 73	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34 322 474	351 284 374 607 209 279 273 430 203 268	257 1 203 286 284 440 1 151 220 212 334 1 177 237	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124	56 56 87 0 56 79 126 0 54 73 73 116 0 59	31 16 31 17 50 29 0000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 3 000 0 378 206 161 122 76 49 545 272 210 165 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 67	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 0000040 29 23 44 27
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34 322 474 478	351 284 374 607 209 279 273 430 203 268 268	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124	56 56 87 0 56 76 79 126 0 54 73 73 116 0 59 81 81	31 16 31 17 50 29 0000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 833 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 67 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28</td>	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34 322 474 478	351 284 374 607 209 279 273 430 203 268 268	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124	56 56 87 0 56 76 79 126 0 54 73 73 116 0 59 81 81	31 16 31 17 50 29 0000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 833 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 67 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 0000040 29 23 44 27</td>	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 0000040 29 23 44 27
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34 322 474 478 814	351 284 374 607 209 279 273 430 203 268 268	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239 361	147 223 13 169 225 226 362 13 134 180 177 276 13 188 188 290	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124 196	56 56 87 0 56 76 79 126 0 54 73 73 116 0 59 81 81	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26 76 41	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 68 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43</td>	23 16 32 24 33 24 52 37 000038 32 20 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34 322 474 478 814 \$35	351 284 374 374 607 209 279 273 430 203 268 268 415	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239 361 1	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188 290 13	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124 196 000	56 56 87 0 56 79 126 0 54 73 116 0 59 81 81 130 0	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26 76 41 000053	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 68 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041</td>	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34 322 474 478 814 \$35	351 284 374 374 607 209 279 273 430 203 268 268 415	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239 361	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188 290 13	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124 196	56 56 87 0 56 76 79 126 0 54 73 73 116 0 59 81 81	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26 76 41	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 68 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041</td>	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041
802 \$32 320 464 471 814 \$33 319 473 471 812 \$34 474 478 814 \$35 335	351 284 374 374 607 209 279 273 430 203 268 268 415	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239 361 1 161	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188 290 13 109	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124 196 000 65	56 56 87 0 56 76 79 126 0 54 73 73 116 0 59 81 81 130 0 39	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26 76 41 000053 22 12	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 68 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041 28 19</td>	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041 28 19
802 \$32 320 464 471 813 319 473 471 812 \$34 322 474 478 814 \$35 335 476	351 284 374 374 607 209 279 273 430 203 268 268 415	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239 361 1 161 194	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188 290 13	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 196 000 65 88	56 56 87 0 56 76 79 126 0 54 73 73 116 0 59 81 81 130 0 39 54	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26 47 26 47 26 47 26 47 26 47 26 41 000053 22 12 31 19	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 833 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 68 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 3000041 28 19 39 27</td>	23 16 32 24 33 24 52 37 000038 32 20 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 3000041 28 19 39 27
802 \$32 320 464 471 813 319 473 471 812 \$34 322 474 478 814 \$35 335 476	351 284 374 374 607 209 279 273 430 203 268 268 415	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239 361 1 161	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188 290 13	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124 196 000 65	56 56 87 0 56 76 79 126 0 54 73 73 116 0 59 81 81 130 0 39	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26 76 41 000053 22 12	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 833 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 68 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 3000041 28 19 39 27</td>	23 16 32 24 33 24 52 37 000038 32 20 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 3000041 28 19 39 27
802 \$32 320 464 471 813 319 473 471 812 \$34 322 474 478 814 \$35 335 476 471	351 284 374 374 607 209 279 273 430 203 268 268 415 187 244 239	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239 361 1 161 194 188	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188 290 13 109 146 143	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 126 196 000 65 88 87	56 56 87 0 56 76 79 126 0 54 73 116 0 59 81 81 130 0 39 54	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 833 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 68 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 3000041 28 19 39 27 40 28</td>	23 16 32 24 33 24 52 37 000038 32 20 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 3000041 28 19 39 27 40 28
802 \$32 320 464 471 813 319 473 471 812 \$34 322 474 478 814 \$35 335 476 471 811	351 284 374 374 607 209 279 273 430 203 268 268 415 187 244 239	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239 361 1 161 194 188 293	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188 290 13 109 146 143 226	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124 126 000 65 88 87 139	56 56 87 0 56 79 126 0 54 73 73 116 0 59 81 130 0 39 54 55 89	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26 47 26 47 26 47 26 47 26 47 26 41 000053 22 12 31 19 31 18 52 30	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 68 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 3000041 28 19 39 27</td>	23 16 32 24 33 24 52 37 000038 32 20 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 3000041 28 19 39 27
802 \$32 320 464 471 813 319 473 471 812 \$34 322 474 478 814 \$35 335 476 471 811	351 284 374 374 607 209 279 273 430 203 268 268 415 187 244 239	257 1 203 286 284 440 1 151 220 212 334 1 177 237 239 361 1 161 194 188 293	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188 290 13 109 146 143 226	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124 126 000 65 88 87 139	56 56 87 0 56 79 126 0 54 73 73 116 0 59 81 130 0 39 54 55 89	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26 47 26 47 26 47 26 47 26 47 26 41 000053 22 12 31 19 31 18 52 30	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 S33 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 68 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041 28 28 19 39 27 40 28 60 42</td>	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041 28 28 19 39 27 40 28 60 42
802 \$32 320 464 471 813 319 473 471 812 \$34 322 474 478 814 \$35 347 471 815 335 471 815 335 335 471 815 816 817 817 818 818 818 818 818 818	351 284 374 374 607 209 279 273 430 203 268 415 187 244 239 376	257 1 203 286 284 440 1 151 220 212 334 1 177 237 237 361 1 161 194 188 293 1	147 223 13 169 225 226 362 13 134 180 177 276 13 139 188 188 290 146 143 226	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124 196 000 65 88 87 139 000	56 56 87 0 56 76 79 126 0 54 73 73 116 0 59 81 81 130 0 39 54 55 89 0	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 833 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 834 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 67 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041 28 19 39 27 40 28 60 42 000042</td>	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041 28 19 39 27 40 28 60 42 000042
802 \$32 320 464 471 814 \$33 471 812 \$34 322 474 478 814 \$35 335 476 471 811 \$36 318	351 284 374 374 607 209 273 430 203 268 268 415 187 244 239 376 217	257 1 203 286 284 440 1 151 220 212 334 1 177 239 361 1 161 188 293 1 197	147 223 13 169 225 226 362 13 139 188 188 290 13 10 146 143 226 13 126	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124 196 000 65 88 87 139 000 77	56 56 87 0 56 76 79 126 0 54 73 73 116 0 59 81 81 130 0 39 54 55 89 0 48	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 833 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 67 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 29 45 39 70 47 000039 26 19 41 28 42 28 62 43 000041 28 19 39 27 45 28 66 42 28 60 42 28</td>	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 39 70 47 000039 26 19 41 28 42 28 62 43 000041 28 19 39 27 45 28 66 42 28 60 42 28
802 \$32 320 464 471 814 \$33 471 812 \$34 322 474 478 814 \$35 335 476 471 811 \$36 318	351 284 374 374 607 209 273 430 203 268 268 415 187 244 239 376 217	257 1 203 286 284 440 1 151 220 212 334 1 177 237 237 361 1 161 194 188 293 1	147 223 13 169 225 226 362 13 139 188 188 290 13 10 146 143 226 13 126	90 91 139 000 94 127 128 208 000 82 113 112 177 000 91 124 124 196 000 65 88 87 139 000 77	56 56 87 0 56 76 79 126 0 54 73 73 116 0 59 81 81 130 0 39 54 55 89 0	31 16 31 17 50 29 000049 29 14 37 20 39 23 62 28 000050 30 19 42 28 43 28 69 42 000052 33 19 47 26 47 26	525 241 174 130 75 50 534 240 175 131 77 52 814 338 249 191 112 81 S32 1 13 000 0 388 221 163 123 74 52 537 285 213 164 100 70 536 281 213 162 100 70 827 409 309 239 152 108 833 1 13 000 0 378 206 161 122 76 49 545 272 210 165 100 67 543 267 208 164 100 67 824 375 290 229 144 98 S34 1 13 000 0 388 173 137 108 69 48 553 226 186 150 94 67 </td <td>23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041 28 19 39 27 40 28 60 42 000042</td>	23 16 32 24 33 24 52 37 000038 32 20 45 29 45 30 70 47 000039 26 19 41 28 42 28 62 43 000040 29 23 44 27 45 28 68 43 000041 28 19 39 27 40 28 60 42 000042

470 258 225 176 117 76 46 30 540 294 226 181 118 83 52 34 808 398 327 271 180 120 75 47 832 416 318 255 169 120 77 53 S49 1 13 000 0 0000054 310 202 159 129 82 58 38 28 374 280 220 177 116 84 56 41 465 283 239 180 119 88 57 44 538 357 286 232 155 114 78 57 465 277 232 179 118 88 57 43 540 354 284 231 155 114 78 57 800 457 352 295 200 145 100 73 829 495 396 322 220 163 114 84	468 373 298 260 180 127 86 807 582 451 401 281 201 140 S42	14
\$48 1 13 000 0 000107 \$48 1 13 0 0 000053 313 192 155 133 84 55 32 19 375 232 177 140 90 63 38 26 472 260 229 178 118 76 46 29 551 302 233 186 121 85 54 37 470 258 225 176 117 76 46 30 540 294 226 181 118 83 52 34 808 398 327 271 180 120 75 47 832 416 318 255 169 120 77 53 849 1 13 000 0 000108 349 1 13 0 0 0000054 310 202 159 129 82 58 38 28 374 280 220 177 116 84 56<	464 267 212 179 116 76 48 467 264 207 177 114 77 47	30 541 329 258 207 136 94 60 40 30 542 326 256 206 135 95 60 41
472 260 229 178 118 76 46 29 551 302 233 186 121 85 54 37 470 258 225 176 117 76 46 30 540 294 226 181 118 83 52 34 808 398 327 271 180 120 75 47 832 416 318 255 169 120 77 53 S49 1 13 00 0 0000054 310 202 157 116 84 56 41 465 283 239 180 119 88 57 44 538 357 286 232 155 114 78 57 465 277 232 179 118 88 57 43 540 354 284 231 155 114 78 57 800 457 352 295 200 145 100 73 829	\$48	07 S48 1 13 0 0 000053 19 375 232 177 140 90 63 38 26
S49 1 13 000 0 000108 \$49 1 13 0 0 000054 310 202 159 129 82 58 38 28 374 280 220 177 116 84 56 41 465 283 239 180 119 88 57 44 538 357 286 232 155 114 78 57 465 277 232 179 118 88 57 43 540 354 284 231 155 114 78 57 800 457 352 295 200 145 100 73 829 495 396 322 220 163 114 84 850 1 13 00 0 000054 316 186 126 119 72 49 31 19 373 223 170 134 83 59 37 25 467 264 202 <td< td=""><td>470 258 225 176 117 76 46</td><td>29 551 302 233 186 121 85 54 37 30 540 294 226 181 118 83 52 34</td></td<>	470 258 225 176 117 76 46	29 551 302 233 186 121 85 54 37 30 540 294 226 181 118 83 52 34
465 277 232 179 118 88 57 43 540 354 284 231 155 114 78 57 800 457 352 295 200 145 100 73 829 495 396 322 220 163 114 84 850 1 13 00 0 0000054 316 186 126 119 72 49 31 19 373 223 170 134 83 59 37 25 467 264 202 169 108 73 47 30 531 296 232 185 119 84 52 36	\$49	08
316 186 126 119 72 49 31 19 373 223 170 134 83 59 37 25 467 264 202 169 108 73 47 30 531 296 232 185 119 84 52 36	465 277 232 179 118 88 57 4 800 457 352 295 200 145 100	540 354 284 231 155 114 78 57 829 495 396 322 220 163 114 84
	316 186 126 119 72 49 31 3 467 264 202 169 108 73 47	373 223 170 134 83 59 37 25 380 531 296 232 185 119 84 52 36

468 268 219 190 132 92 60 40 538 280 231 193 125 91 60 41 808 444 359 316 222 156 103 69 831 401 333 276 186 136 89 63 552 1 13 00 00 0000152 \$\$2 11 13 00 00 0000152 \$\$2 11 13 00 00 0000153 191 96 128 130 78 52 27 16 372 231 174 140 89 60 37 26 474 267 209 174 111 72 39 24 513 292 224 183 118 81 52 36 474 267 209 174 111 72 39 24 513 292 224 183 118 81 52 36 474 267 209 174 111 72 39 24 513 292 224 183 118 84 53 37 813 415 328 269 171 113 63 38 81 94 183 286 264 173 124 80 57 57 533 1 13 000 0 000014 \$\$31 13 0 0 0 000057 284 80 287 227 193 121 79 44 26 54 232 280 225 144 98 61 40 478 283 229 192 121 79 44 26 542 332 280 225 144 98 61 40 478 283 229 192 121 79 44 26 542 332 280 225 144 98 61 40 478 283 229 192 121 79 45 27 546 330 277 225 145 99 62 41 82 44 266 144 27 22 48 26 44 376 299 191 123 70 41 833 475 399 322 211 148 93 64 554 13 10 10 97 54 37 23 17 382 182 120 84 50 33 22 18 473 227 171 134 81 55 37 27 544 228 157 116 68 50 34 25 447 226 172 133 80 55 37 27 544 228 157 116 68 50 34 25 447 226 172 133 80 55 37 27 544 228 157 116 68 50 34 25 447 226 172 133 80 55 37 27 544 228 157 116 68 50 34 25 447 226 172 133 80 55 37 27 544 228 157 116 68 50 34 25 447 226 178 191 10 60 0 25 22 23 376 221 151 16 86 50 34 25 447 224 186 148 86 14 32 25 25 27 3199 149 83 60 42 31 472 244 186 148 89 61 41 32 25 25 27 3199 149 83 60 42 31 472 244 186 148 89 61 41 32 25 25 27 3199 149 83 60 42 31 472 244 186 148 89 61 41 32 25 25 27 3199 149 83 60 42 31 472 244 186 148 89 61 41 32 25 25 39 27 22 16 130 89 46 32 22 16 473 289 191 10 60 000016 \$\$55 11 30 00 000016 \$\$55 11 30 00 000016 \$\$55 11 30 00 000059 315 191 10 60 000016 \$\$55 11 30 00 000059 313 189 130 60 60 25 22 23 376 221 180 180 60 42 31 472 244 186 148 89 61 41 32 25 58 58 41 31 30 00 000059 313 189 130 60 60 60 60 60 60 60 60 60 60 60 60 60	806 433 321 284 186 128 83 52 S51 1 13 000 0 000110 310 188 135 132 90 65 40 27	814 418 335 269 178 128 82 56 \$51
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	468 268 219 190 132 92 60 40 467 264 219 188 131 91 60 40	538 280 231 193 125 91 60 41 542 279 229 192 125 91 60 41 831 401 333 276 186 136 89 63
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	319 196 128 130 78 52 27 16	\$52
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	813 415 328 269 171 113 63 38	535 296 228 186 118 84 53 37 819 418 326 264 173 124 80 57 S53 1 13 0 0 000057
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	320 208 163 139 86 56 30 18 480 287 227 193 121 79 44 26	378 254 209 169 106 71 44 29 542 332 280 225 144 98 61 40 546 330 279 225 145 99 62 41
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	820 444 376 299 191 123 70 41 S54 1 13 000 0 000115	833 475 399 322 211 148 93 64 \$54
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	473 227 171 134 81 55 37 27 474 226 172 133 80 55 37 27	544 228 157 116 68 49 34 25 541 227 157 116 68 50 34 25 822 317 223 167 103 75 52 40
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	S55 1 13 000 0 000116 313 189 119 110 60 40 25 22	S55 1 13 0 0 000059 376 221 156 111 61 41 27 22 525 273 199 149 83 60 42 31
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	472 244 186 148 89 61 41 32 809 365 296 226 145 104 73 52	539 274 203 151 86 61 43 32 829 380 284 215 130 95 67 50 \$56 1 13 0 0 000059
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	316 199 136 108 59 37 22 16 473 268 191 147 83 54 33 23	370 216 130 89 46 32 22 16 535 272 173 120 67 45 31 24 523 265 168 118 64 44 31 23
298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 804 302 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 00 0 0000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 129 94 51 35	S57 1 13 000 0 000118	823 373 244 173 100 71 49 37 S57 1 13 0 0 000100 378 191 139 105 65 46 31 23
298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 804 302 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 00 0 0000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 129 94 51 35	474 247 204 164 108 76 49 33	537 252 188 146 93 68 46 32 531 248 185 143 91 67 46 32 827 366 275 217 142 105 73 52
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	312 212 141 145 95 77 48 37 472 307 252 212 148 108 72 51	S58 1 13 0 0 000101 351 237 186 151 96 69 44 30 533 329 264 216 143 104 66 45
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	796 518 392 359 250 187 125 87 S59 1 13 000 0 000120	536 326 263 216 143 104 66 45 827 463 378 312 211 158 101 71 \$59
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	466 242 179 150 94 61 37 24 461 238 189 148 93 59 36 24	379 173 120 90 52 35 22 16 542 223 162 121 73 50 32 24 542 221 161 122 73 50 33 24
298 150 111 90 53 32 17 11 374 42 23 15 298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 862 1 13 000 0 000124 862 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	S60 1 13 000 0 000121 301 179 129 127 79 55 31 16	834 323 236 181 109 79 53 39 \$60
298 150 111 90 53 32 17 11 374 188 131 101 58 39 26 20 455 207 158 126 76 46 26 17 538 242 175 138 75 56 38 29 443 203 155 123 75 46 27 17 521 234 170 131 76 54 38 29 804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 562 1 13 000 0 000124 562 1 13 0 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 566 30 235 176 108 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 563 1 13 000 0 000125 563 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 129 94 51 35 26 20 444 168 116 91 51 33 20 15 559 192 129 94 51 35 26 20 29 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 240 171 124 69 45 29 23 459 226 179 131 73 42 24 15	452 247 205 173 116 77 43 23 780 421 341 291 196 133 75 40	527 280 221 179 117 87 59 42 532 278 220 180 115 89 56 40 813 417 336 275 184 138 93 68
804 332 251 198 121 77 46 32 819 342 250 197 113 85 59 45 \$62 1 13 000 0 000124 \$62 1 13 0 0 000008 290 228 160 111 60 36 21 15 404 245 186 136 83 58 40 31 451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0	298 150 111 90 53 32 17 11 455 207 158 126 76 46 26 17	374 188 131 101 58 39 26 20 538 242 175 138 75 56 38 29
451 310 232 154 88 53 32 23 567 300 235 176 108 79 55 41 449 304 214 153 87 54 32 23 556 294 231 172 107 79 55 40 789 481 335 239 142 91 57 41 852 408 323 246 158 119 85 66 863 1 13 000 0 000125 863 1 13 0 0 0 000008 291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 129 94 51 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 000 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 242 172 127 70 45 29 23 459 226 179 131 73 42 24 15 557 240 171 124 69 45 29 23	804 332 251 198 121 77 46 32 S62 1 13 000 0 000124	819 342 250 197 113 85 59 45 S62 1 13 0 0 000008
291 123 89 63 33 24 13 10 382 150 97 70 35 25 18 14 448 168 113 90 50 33 20 15 559 192 128 94 50 35 26 20 444 168 116 91 51 33 20 15 559 192 129 94 51 35 26 20 795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 864 1 13 00 0 000126 864 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 242 172 127 </td <td>449 304 214 153 87 54 32 23</td> <td>567 300 235 176 108 79 55 41 556 294 231 172 107 79 55 40</td>	449 304 214 153 87 54 32 23	567 300 235 176 108 79 55 41 556 294 231 172 107 79 55 40
795 260 186 143 83 55 36 26 854 262 182 133 78 55 40 31 S64 1 13 000 0 000126 S64 1 13 0 0 000009 299 171 124 96 52 31 16 11 387 188 132 95 52 31 21 17 456 228 180 131 74 42 23 15 557 242 172 127 70 45 29 23 459 226 179 131 73 42 24 15 557 240 171 124 69 45 29 23	291 123 89 63 33 24 13 10 448 168 113 90 50 33 20 15	382 150 97 70 35 25 18 14 559 192 128 94 50 35 26 20
456 228 180 131 74 42 23 15 557 242 172 127 70 45 29 23 459 226 179 131 73 42 24 15 557 240 171 124 69 45 29 23	795 260 186 143 83 55 36 26 S64 1 13 000 0 000126	854 262 182 133 78 55 40 31 \$64 1 13 0 0 000009
	456 228 180 131 74 42 23 15	557 242 172 127 70 45 29 23

555 1 13 000 0 0007	
\$65 1 13 000 0 000127 299 303 228 164 91 59 36 26	\$65 1 13 0 0 000010 377 355 247 177 106 76 52 40
456 387 293 216 127 82 54 39	377 355 247 177 106 76 52 40 547 448 320 235 146 106 75 58
455 384 294 215 127 83 54 39	545 441 316 232 145 105 75 58
788 568 425 325 200 134 94 71	833 605 442 330 211 160 116 91
\$66 1 13 000 0 000128	S66 1 13 0 0 000011
305 156 120 101 59 40 24 17	389 201 158 120 75 52 34 27
460 211 172 136 84 55 34 25 458 208 166 135 82 54 33 24	559 261 204 159 100 71 49 38 560 259 203 158 100 71 49 38
799 335 263 217 138 93 62 46	560 259 203 158 100 71 49 38 854 366 288 228 150 109 78 61
S67 1 13 000 0 000129	S67 1 13 0 0 000011
298 186 159 113 71 45 27 18	385 284 213 168 102 71 47 36
457 268 207 169 103 69 44 28	554 366 281 224 140 100 68 51
456 264 214 165 103 69 44 29 792 437 352 271 173 116 72 50	558 364 281 224 142 101 69 51
\$68 1 13 000 0 000130	845 512 399 320 209 155 110 82 S68 1 13 0 0 000012
299 166 86 101 54 39 24 15	389 241 176 137 83 59 40 30
456 233 220 131 88 54 38 30	559 309 233 181 114 82 54 41
459 230 198 133 84 55 38 28	553 304 231 181 114 83 56 43
795 373 339 215 145 95 69 53	842 430 332 261 171 125 88 68
S69 1 13 000 0 000131 294 166 121 121 84 65 41 25	\$69 1 13 0 0 000013 373 217 178 153 111 82 52 34
449 234 178 169 122 91 60 37	373 217 178 153 111 82 52 34 539 285 236 202 148 111 72 51
452 232 183 166 121 90 60 37	539 281 233 199 147 111 72 51
780 377 311 270 200 148 100 66	833 410 337 290 214 163 111 79
\$70	S70 1 13 0 0 000014
301 268 190 179 112 81 46 32 456 391 314 263 170 117 70 46	384 270 209 167 108 77 49 36
458 385 309 261 169 116 70 46	552 364 287 233 153 112 77 55 551 361 285 233 154 113 79 56
791 670 543 449 299 200 126 80	839 544 430 352 237 177 122 86
\$71 1 13 000 0 000133	S71 1 13 0 0 000015
298 211 139 135 89 67 45 30	382 260 196 154 98 69 47 36
456 317 246 209 140 98 67 46 457 311 250 207 139 95 65 45	546 352 272 216 139 101 69 53 552 349 271 216 140 102 70 54
789 562 432 372 256 179 122 84	552 349 271 216 140 102 70 54 842 530 413 328 219 160 112 86
S72 1 13 000 0 000134	\$72 1 13 0 0 000015
300 231 169 150 97 66 44 31	379 243 186 149 94 69 48 39
455 333 266 222 149 101 69 50 463 332 263 223 151 103 70 50	546 327 258 207 134 99 71 54
789 579 459 390 268 186 129 91	548 326 258 207 136 101 73 55 841 489 394 315 212 160 115 89
S73 1 13 000 0 000135	\$73 1 13 0 0 000016
295 249 162 178 117 88 57 38	368 340 274 227 150 109 74 54
451 351 281 252 177 127 89 64	538 452 367 304 208 154 105 74
453 345 285 249 177 126 89 64 791 563 441 407 294 218 158 112	541 451 366 305 209 156 107 78
574 1 13 000 0 000136	831 629 521 435 305 232 162 118 \$74
289 302 254 205 136 92 61 42	365 416 334 274 181 128 83 57
443 438 381 302 206 138 92 63	533 551 451 373 252 183 120 85
444 431 372 294 203 136 92 63	536 545 449 372 253 185 122 87
778 744 618 511 353 242 166 113 \$75	824 781 639 532 366 272 182 132 S75 1 13 0 0 000018
291 252 177 112 53 33 21 19	368 303 194 131 71 49 32 24
454 326 235 151 76 44 30 24	537 379 248 172 94 65 44 32
450 322 235 150 78 46 32 26	537 372 246 172 95 66 47 33
790 483 334 226 122 74 52 41 S76 1 13 000 0 000138	826 518 347 244 142 100 68 52 \$76 1 13 0 0 000019
284 218 176 142 89 58 33 18	\$76
440 301 246 199 130 85 52 28	550 378 305 250 159 113 69 42
442 297 237 197 128 85 49 28	539 373 300 245 157 109 68 42
782 448 349 302 201 135 83 47 \$77	832 491 402 330 220 156 96 60
292 218 162 137 83 51 27 16	\$77
456 302 233 193 120 73 41 25	548 371 296 237 145 94 53 34
458 299 235 191 120 74 42 26	552 366 294 238 145 95 57 38
811 478 363 304 192 121 70 45	838 497 403 322 203 134 80 55
\$78	\$78
448 284 221 180 122 85 60 42	374 237 182 140 99 74 53 42 544 317 255 211 144 114 83 61
455 282 223 180 122 86 61 44	544 315 256 212 146 116 86 65
791 481 376 316 221 160 113 82	833 480 392 327 232 184 136 102
S79 1 13 000 0 000141	\$79 1 13 0 0 000022

	151			48	39	25	24	374	169	123	92	60 4	3 3	31 26
448	212	157	128	81	54	41	29	551	224	169	131	87 6	6 5	50 40
449	209	154	127	79	53	40	29	550	222	169	131	87 6	6 5	50 40
794	348	270	218	147	99	76	57	850	334	260	209	144 11	3 8	37 67
S80		1	13	000	0	000	143	S80		1	13	0	0 (000023
296	149	112	69	38	22	16	11	379	171	109	72	40 2		19 15
457	195	153	98	57	34	24	16	549	206	141	97	55 4	1 2	28 18
453	193	162	97	57	33	24	16	550	204	140	96	55 4		28 18
797	280	219	150	91	58	41	28	851	276	195	139	84 6		14 32
S81		1	13	000	0	000	144	S81		1	13	0		000024
292	162	71	82	43	27	18	12	382	182	122	88	50 3		24 17
448	211	151	114	68	41	27	19	551	227	159	118	69 5		36 27
448	210	144	114	67	42	28	19	552	225	159	118	70 5		36 26
793	313	209	178	109	73	51	34	847	307	221	168	106 7		55 41
S82		1	13	000	0	000	145	S82		1	13	0		000025
288	184	118	90	46	32	20	15	390	227	149	104	59 4		26 19
451	248	182	129	74	46	29	20	549	278	193	140	81 5	7 3	39 28
454	246	175	128	74	46	29	20	549	275	192	140	81 5	7 3	38 28
797	370	267	203	122	81	52	38	847	371	271	203	124 8	9 6	31 45
S83		1	13	000	0	000	146	S83		1	13	0	0 0	00025
289	184	119	96	50	35	19	15	378	224	158	112	65 4	4 2	29 22
450	252	182	136	78	52	30	22	549	284	209	155	92 6	6 4	15 34
	250			78	51	31	20	547	279	206	153	90 6	4 4	15 32
802	389	254	21.6	130	87	54	36	850	389	291	222	138 10	1 7	0 52
S84		1	13	000	0	000	147	S84		1	13	0	0 0	000026
274	167	99	87	42	36	19	16	383	214	145	102	62 4	1 2	7 17
440	242	171	129	75	48	31	20	546	269	191	140	86 6	0 3	39 27
	242			77	49	32	22	544	265	189	139	86 5	9 3	8 27
793	382	271	211	129	83	54	37	846	374	271	205	129 9	2 6	1 42
S85		1	13	000	0	000	148	S85		1	13	0	0 0	00027
	197			51	33	23	15	392	216	151	109	69 5	1 3	2 24
	273			83	53	31	22	549	268	197	148	94 7	0 5	0 37
	272			84	54	33	24	546	263	193	143	92 6	B 4	7 33
	422	294	230		90	59	38	855	380	284	218	147 113	37	7 57
S86		1	13	000	0	000	149	S86		1	13	0	0 0	00028
	184		90	42	32	18	17	378	210	139	96	54 3	В 2	7 22
	245			68	41	28	22	543	258	179	129	74 5	4 4	0 31
	241			67	41	28	22	557	258	182	131	76 5	6 4	0 31
	363		195		72	52	40	853	346	254	189	117 80	6 6	3 50
S87		1	13	000	0	000		S87		1	13	0 (_	00028
		91	74	36	24	15	12	397	208	133	89	48 3		.8 14
	226			56	35	20	15	556	252	172	119	65 4		0 22
	223			56	34	21	15	557	248	171	119	65 4	_	0 22
	332			90	60	38	26	852	321	234	168	98 68		6 33
S88	100	1	13	000	0	000		588		1	13	0 (-	00029
	188			43	33	15	14	385	229	155	10/	54 37		9 12
	257			72	41	23	16	55/	2/5	193	138	72 44	_	5 19
	253			72	41	22 43	15	544	268	188	134	70 42		5 18
			211 13		72	_	30	63/	353	254	186	100 6	-	
	242				0 32	0001 15	11	S89	291	30c	13	0 (00030
	333			86	50	27	18	393 E41	3E3	200	175	68 38		
	330			86	48	25	19		352 354			86 51 88 51		0 22 0 22
	504			129	74	41	31		479					
S90	J U 4	1	13		0	000		S90	4/3					5 34
	104		66	41	25	13	8		145	1 07	13 74			00031
	152		96	59	37	19	10		180		96	43 26 56 36		3 8
	150		94		36		10		177			55 37		
	254			97	61	31	16		265			81 52		
S91		1	13		Õ	0001		S91	LUJ	1	137	0 (00032
	98				45		12		137			67 49		
	146				60	37	20		188			95 71		
	143				62	37	20		188			96 72		
				136 1			41					143 107		
S92		1	13		0	0001		S92		1	13	0 0		00033
271	73	49	53		21	10	6	389	103	72	55	34 21	-	8 8
434		89	66		28		10	553		96	74	45 30		
432	104	85	68		28		11	556			74	45 30		
	176				51	29			193			68 46		
S93			13		0	0001		S93			13	0 0	_	00034
276	74		49		26	10	9		111			39 26		
								-	-	-			-	

438 108 77 73 49 33 439 108 82 74 50 34 789 187 141 127 84 57 S94 1 13 000 0 274 87 63 69 42 57	17 12 19 13 34 24 000200 19 15	563 142 105 85 51 34 23 18 565 140 105 85 51 35 23 17 856 206 155 122 76 51 31 25 \$94
434 127 113 89 62 42 435 125 108 88 62 43 771 201 159 140 99 71 S95 1 13 000 0 275 127 94 81 48 33	27 19 28 19 47 32 000201 17 8	546 174 130 110 72 54 37 25 521 168 125 103 69 51 32 23 813 243 180 148 101 74 49 36 S95 1 13 0 0 000037 382 170 140 100 64 42 24 15
433 183 162 113 75 49 436 181 153 112 72 48 775 299 253 178 118 76 S96 1 13 000 0 275 88 58 71 42 31	28 16 27 15 45 26 000202 19 11	546 218 180 132 82 55 31 19 549 216 179 131 83 56 31 19 835 305 250 184 116 77 46 29 \$96 1 13 0 0 000037 381 149 108 89 58 40 23 16
439 129 107 95 65 44 441 128 109 94 65 44 785 207 162 151 105 73 S97 1 13 000 0 274 77 50 52 36 25	28 17 28 17 47 28 000203 14 10	546 187 141 116 76 54 32 20 547 184 140 114 76 54 32 22 822 257 193 157 107 76 47 31 S97 1 13 0 0 000038 384 144 108 87 58 39 22 14
444 121 113 84 57 36 440 118 104 82 56 36 785 201 158 137 95 63 S98 1 13 000 0 274 85 57 61 39 28	22 14 22 14 40 24 000204 15 9	557 181 143 117 74 52 31 19 554 179 140 114 73 50 30 18 828 250 194 158 103 71 42 26 S98 1 13 0 0 000039 360 115 90 73 48 32 18 11
439 129 120 91 64 40 437 126 123 88 62 39 786 213 180 148 103 68 S99 1 13 000 0 273 181 123 78 40 28	17 12 19 13 34 24 000200 19 15 27 19 28 19 47 32 000201 17 8 28 16 27 15 45 26 000202 19 11 28 17 28 17 47 28 000203 14 10 22 14 22 14 40 24 000204 15 9 24 15 23 13 42 24 000205 18 13 32 23 33 25 61 43 000208 24 18 37 28 38 28 72 53 0000208 24 18 37 28 38 28 72 53 0000209 18 14 27 20 29 23 51 39 0000210 15 12 23 18 23 18 23 18 23 18 23 18 23 18	549 159 126 103 67 46 27 16 535 156 122 99 65 44 27 16 834 224 179 147 97 67 40 25 S99 1 13 0 0 000040 363 226 148 96 52 38 28 22
439 250 181 119 67 45 437 248 173 118 68 46 781 395 283 199 121 84 \$100 1 13 000 0 273 158 91 83 43 34 431 221 159 124 74 51	32 23 33 25 61 43 000208 24 18 37 28	535 286 195 134 74 55 41 29 527 281 193 133 74 56 42 30 822 387 278 197 116 90 67 50 \$100 1 13 0 0 000041 380 183 120 85 54 41 31 27 523 220 156 116 73 58 46 38
433 220 150 124 73 52 772 355 250 214 134 98 S101 1 13 000 0 275 141 82 74 37 30 440 196 137 103 60 39	38 28 72 53 000209 18 14 27 20	523 220 156 116 73 58 46 38 521 215 154 113 71 55 44 36 833 313 234 179 120 95 74 60 S101 1 13 0 0 000042 390 191 126 88 51 36 27 20 556 238 162 117 69 52 41 34
441 195 130 104 60 42 779 311 219 172 103 74 S102 1 13 000 0 277 164 109 68 32 24 438 218 144 98 50 34	29 23 51 39 000210 15 12 23 18	558 235 163 117 69 51 40 33 825 324 225 165 101 77 60 47 \$102 1 13 0 0 000043 383 179 109 72 41 34 26 22 552 219 144 98 60 49 40 33
437 216 141 96 50 33 781 328 215 154 86 60 \$103 1 13 000 0 274 194 125 98 48 38 433 269 197 141 79 52	23 18 43 33 000211 23 17 34 26	532 212 139 94 56 46 37 31 841 300 202 142 92 75 61 51 \$103
433 265 192 139 78 53 781 419 293 233 136 94 S104 1 13 000 0 271 234 140 91 38 23 433 309 188 129 59 37	36 27 65 46 000211 17 14 28 23	550 234 167 119 74 56 41 31 844 328 239 176 112 86 63 47 \$104 1 13 0 0 000045 375 227 157 103 53 37 28 23 551 286 208 140 75 53 41 32
432 302 184 127 57 36 776 465 287 198 98 66 \$105 1 13 000 0 275 206 112 93 50 35 434 295 197 141 79 54	26 20 49 40 000212 23 17 39 29	530 277 200 137 73 53 40 32 841 390 288 200 114 83 62 50 \$105 1 13 0 0 000045 393 329 220 154 84 60 41 29 553 407 285 204 117 84 57 42
437 288 191 139 78 54 782 481 329 247 147 102 \$106 1 13 000 0 280 152 88 77 44 33 445 211 148 113 72 52	39 29 74 55 000213 24 16 39 27	546 398 281 202 116 85 60 42 846 542 392 288 173 129 91 67 \$106 1 13 0 0 000046 392 218 144 104 61 45 33 26 549 270 190 140 87 65 48 37
444 210 151 112 72 52 789 337 244 194 131 96 S107 1 13 000 0 288 153 125 62 33 20 440 198 191 84 50 28	40 28 73 51 000214 16 13 21 18	553 268 190 140 87 65 48 37 844 368 270 207 134 103 76 57 S107 1 13 0 0 000047 393 189 115 76 43 33 26 23 543 226 148 101 59 44 36 29

197	161	89	50	31	23	19	542	223	147	99	58	44	34	28
301	268	140	88	55	42	34	826	302	206	148	90	69	53	43
	1	13	000	0	000	216	S108	i	1	13	(0	000	048
246	177	131	70	43	27	18	362	319	233	181	113	80	51	36
334	248	179	102	64	41	28	553	420	314	249	161	122	84	56
328	246	176	102	63	41	28	551	417	314	249	163	123	86	58
540	388	295	175	114	75	52	820	562	428	340	227	173	120	83
	1	13	000	0	000	217	S1 0 9		1	13	(0	000	049
253	196	168	103	67	38	20	350	268	213	173	112	83	55	38
338	276	227	148	94	53	29	517	348	282	232	156	118	82	53
323	264	220	145	94	54	31	518	343	278	229	155	117	78	55
532	440	359	241	156	91	53	826	501	415	345	241	186	130	88
	1	13	000	0	000	218	\$110		1	13	(0	000	050
206	129	126	74	55	39	31	380	306	236	185	117	84	53	41
299	209	181	113	81	57	45							78	. –
293	207	177	110	80	57	45								
503	363	.310	200	145	107	82								92
							EOF				_,,			-
	301 246 334 328 540 253 338 323 532 206 299 293	301 268 1 246 177 334 248 328 246 540 388 1 253 196 338 276 323 264 532 440 1 206 129 299 209 293 207	301 268 140 1 13 246 177 131 334 248 179 328 246 176 540 388 295 1 13 253 196 168 338 276 227 323 264 220 532 440 359 1 13 206 129 126 299 209 181 293 207 177	1 13 000 246 177 131 70 334 248 179 102 328 246 176 102 540 388 295 175 1 13 000 253 196 168 103 338 276 227 148 323 264 220 145 532 440 359 241 1 13 000 206 129 126 74 299 209 181 113 293 207 177 110	301 268 140 88 55 1 13 000 0 246 177 131 70 43 334 248 179 102 64 328 246 176 102 63 540 388 295 175 114 1 13 000 0 253 196 168 103 67 338 276 227 148 94 323 264 220 145 94 532 440 359 241 156 1 13 000 0 206 129 126 74 55 299 209 181 113 81 293 207 177 110 80	301 268 140 88 55 42 1 13 000 0 000 246 177 131 70 43 27 334 248 179 102 64 41 328 246 176 102 63 41 540 388 295 175 114 75 1 13 000 0 000 253 196 168 103 67 38 338 276 227 148 94 53 323 264 220 145 94 54 532 440 359 241 156 91 1 13 000 0 000 206 129 126 74 55 39 299 209 181 113 81 57 293 207 177 110 80 57	301 268 140 88 55 42 34 1 13 000 0 000216 246 177 131 70 43 27 18 334 248 179 102 64 41 28 328 246 176 102 63 41 28 540 388 295 175 114 75 52 1 13 000 0 000217 253 196 168 103 67 38 20 338 276 227 148 94 53 29 338 264 220 145 94 53 29 338 264 220 145 94 53 29 352 440 359 241 156 91 53 1 13 000 0 000218 206 129 126 74 55 39 31 299 209 181 113 81 57 45	301 268 140 88 55 42 34 826 1 13 000 0 000216 S108 246 177 131 70 43 27 18 362 334 248 179 102 64 41 28 553 328 246 176 102 63 41 28 551 540 388 295 175 114 75 52 820 1 13 000 0 000217 S109 253 196 168 103 67 38 20 350 338 276 227 148 94 53 29 517 323 264 220 145 94 54 31 518 532 440 359 241 156 91 53 826 1 13 000 0 000218 S110 206 129 126 74 55 39 31 380 299 209 181 113 81 57 45 521 293 207 177 110 80 57 45 545 503 363 310 200 145 107 82	301 268 140 88 55 42 34 826 302 1 13 000 0 000216 S108 246 177 131 70 43 27 18 362 319 334 248 179 102 64 41 28 553 420 328 246 176 102 63 41 28 551 417 540 388 295 175 114 75 52 820 562 1 13 000 0 000217 S109 253 196 168 103 67 38 20 350 268 338 276 227 148 94 53 29 517 348 323 264 220 145 94 54 31 518 343 532 440 359 241 156 91 53 826 501 1 13 000 0 000218 S110 206 129 126 74 55 39 31 380 306 299 209 181 113 81 57 45 521 376 293 207 177 110 80 57 45 545 383 503 363 310 200 145 107 82	301 268 140 88 55 42 34 826 302 206 1 13 000 0 000216 S108 1 246 177 131 70 43 27 18 362 319 233 334 248 179 102 64 41 28 553 420 314 328 246 176 102 63 41 28 551 417 314 540 388 295 175 114 75 52 820 562 428 1 13 000 0 000217 S109 1 253 196 168 103 67 38 20 350 268 213 338 276 227 148 94 53 29 517 348 282 323 264 220 145 94 54 31 518 343 278 532 440 359 241 156 91 53 826 501 415 1 13 000 0 000218 S110 1 206 129 126 74 55 39 31 380 306 236 299 209 181 113 81 57 45 52 376 297 293 207 177 110 80 57 45 545 383 305 503 363 310 200 145 107 82	301 268 140 88 55 42 34 826 302 206 148 1 13 000 0 000216 \$108 1 13 246 177 131 70 43 27 18 362 319 233 181 334 248 179 102 64 41 28 553 420 314 249 328 246 176 102 63 41 28 551 417 314 249 540 388 295 175 114 75 52 820 562 428 340 1 13 000 0 000217 \$109 1 13 253 196 168 103 67 38 20 350 268 213 173 338 276 227 148 94 53 29 517 348 282 232 532 440 359 241 156 91	301 268 140 88 55 42 34 826 302 206 148 90 1 13 000 0 000216 S108 1 13 0 246 177 131 70 43 27 18 362 319 233 181 113 334 248 179 102 64 41 28 553 420 314 249 161 328 246 176 102 63 41 28 551 417 314 249 163 540 388 295 175 114 75 52 820 562 428 340 227 1 13 000 0 000217 S109 1 13 0 253 196 168 103 67 38 20 350 268 213 173 112 338 276 227 148 94 53 29 517 348 282 232 156 323 264 220 145 94 54 31 518 343 278 229 155 532 440 359 241 156 91 53 826 501 415 345 241 1 13 000 0 000218 S110 1 13 0 206 129 126 74 55 39 31 380 306 236 185 117 299 209 181 113 81 57 45 521 376 297 235 153 293 207 177 110 80 57 45 545 383 305 244 159 503 363 310 200 145 107 82 833 545 441 350 238	301 268 140 88 55 42 34 826 302 206 148 90 69 1 13 000 0 000216 S108 1 13 0 0 246 177 131 70 43 27 18 362 319 233 181 113 80 334 248 179 102 64 41 28 553 420 314 249 161 122 328 246 176 102 63 41 28 551 417 314 249 163 123 540 388 295 175 114 75 52 820 562 428 340 227 173 1 13 000 0 000217 S109 1 13 0 0 253 196 168 103 67 38 20 350 268 213 173 112 83 338 276 227 148 94 53 29 517 348 282 232 156 118 323 264 220 145 94 54 31 518 343 278 229 155 117 532 440 359 241 156 91 53 826 501 415 345 241 186 1 13 000 0 000218 S110 1 13 0 0 206 129 126 74 55 39 31 380 306 236 185 117 84 299 209 181 113 81 57 45 521 376 297 235 153 111 293 207 177 110 80 57 45 545 383 305 244 159 117 503 363 310 200 145 107 82 833 545 441 350 238 175	301 268 140 88 55 42 34 826 302 206 148 90 69 53 1 13 000 0 000216 S108 1 13 0 0 0 00 246 177 131 70 43 27 18 362 319 233 181 113 80 51 334 248 179 102 64 41 28 553 420 314 249 161 122 84 328 246 176 102 63 41 28 551 417 314 249 163 123 86 540 388 295 175 114 75 52 820 562 428 340 227 173 120 1 13 000 0 000217 S109 1 13 0 0 0 000 253 196 168 103 67 38 20 350 268 213 173 112 83 55 338 276 227 148 94 53 29 517 348 282 232 156 118 82 323 264 220 145 94 54 31 518 343 278 229 155 117 78 532 440 359 241 156 91 53 826 501 141 345 241 186 130 1 13 000 0 000218 S110 1 13 0 0 0 000 266 129 126 74 55 39 31 380 306 236 185 117 84 53 299 209 181 113 81 57 45 521 376 297 235 153 111 78 293 207 177 110 80 57 45 545 383 305 244 159 117 82 503 363 310 200 145 107 82 833 545 441 350 238 175 120

APPENDIX C AMOD USER'S GUIDE

C-1 <u>Introduction</u>

AMOD is a computer program developed by Alaska DOT&PF. AMOD computes the modulus of asphalt concrete mix for the given properties of the asphalt and aggregate using a relationship developed by the Asphalt Institute. The computed modulus can be used for the following purpose:

- provide reference information for estimating asphalt concrete layer modulus,
- 2. provide input to mechanistic pavement design.

C-2 Program Input

The program inputs include the following:

- 1. void ratio (%),
- 2. asphalt penetration,
- percent of asphalt by weight,
- 4. percent aggregate passing the 200 sieve,
- 5. temperature at time of test (F), and
- 6. frequency of loading (Hz).

The program includes a set of default data. These are:

- 1. void ratio = 3%,
- 2. asphalt penetration = 200,
- 3. asphalt content = 6%,
- 4. percent aggregate passing the 200 sieve = 5%,
- 5. temperature at time of test (F) = 50%, and
- 6. frequency of loading (Hz) = 40 Hz.

C-3 Program Output

The output of this program is modulus of an asphalt concrete mix. For the above default data, the modulus is calculated to 1,371,823 (psi). By changing any of these parameters, a corresponding modulus will be calculated and displayed on the computer screen.

C-4 Program Execution

To execute the program, type AMOD and press ENTER key; the following screen will then be displayed.

PRESS APPROPRIATE NUMBER TO CHANGE DEFAULT VARIABLES

1.	VOID RATIO	=	3
2.	PENETRATION	=	200
З.	ABSOLUTE VISCOSITY @ 70 DEG F.	=	. 2640662
4.	% ASPHALT BY WT. OF TOTAL MIX	=	6
5.	PERCENT PASSING THE 200 SIEVE	=	5
6.	TEMPERATURE AT TIME OF TEST (F)	=	50
7.	FREQUENCY OF LOADING IN HZ.	=	40
8.	END		

THE MODULUS FOR THE ASPHALTIC CONCRETE MIX IS: 1,371,823 (PSI)

By pressing an appropriate number to change default variables (for example, press 1 to change void ratio), the corresponding modulus for the asphalt concrete mix will be calculated and displayed.

APPENDIX D FWD DATA DELINEATION PROGRAM USER'S GUIDE

This appendix describes a statistical procedure (cumulative difference) for delineating pavement response measurements. A computer program, which was developed by using the cumulative difference, is also described.

D-1 Approach Fundamentals

The cumulative difference approach (AASHTO, 1986) is a relatively straightforward and powerful analytical method for delineating statistically homogenous units from pavement response measurements along a highway system. The methodology is fundamentally easy, however, the manual implementation for large data bases becomes very time consuming and cumbersome.

The cumulative difference approach can be used for a wide variety of measured pavement response variables such as deflection, serviceability, skid resistance, pavement distress-severity index, etc.

Figure D-1 illustrates the overall approach concept using the initial assumptions of a continuous and constant responses value (r_i) within various intervals (0 to x_1 ; x_1 to x_2 ; x_2 to x_3) along a project length. Form this figure, it is obvious that three unique units having different response magnitudes $(r_1, r_2, \text{ and } r_3)$ exist along the project. Figure D-1(a) illustrates such a response-distance result. The solid line in Figure D-1(b) indicates the results of actual response curves. Because the functions are continuous and constant within a unit, the cumulative area, at and x, is simply the integral or

$$A_{x} = \int_{0}^{x_{1}} r_{1} dx + \int_{x_{1}}^{x} r_{2} dx$$
 (D-1)

with each integral being continuous within the respective intervals:

$$(0 \le x \le x_1)$$
 and $(x_1 \le x \le x_2)$

In Figure D-1(b), the dashed line represents the cumulative area

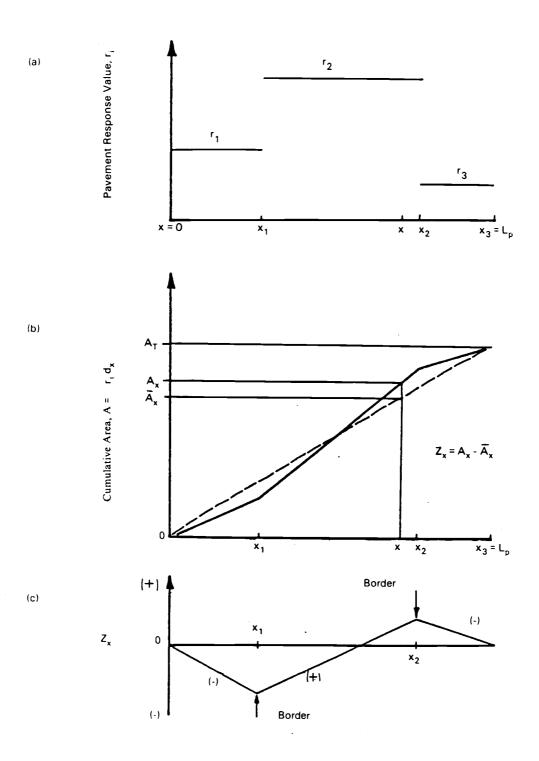


Figure D-1 Concepts of Cumulative Difference Approach to Analysis Unit Delineation (AASHTO, 1986)

caused by the overall average project response. It should be recognized that the slope (derivatives) of the cumulative area curves are simply the response value for each unit $(r_1, r_2, and r_3)$ while the slope of the dashed line is the overall average response value of the entire project length considered. At the distance, x, the cumulative area of the average project response is:

$$\bar{A}_{X} = \int_{0}^{X} r dx \tag{D-2}$$

with

$$\bar{r} = \frac{\int_{0}^{x_{1}} r_{1} dx + \int_{x_{1}}^{x_{2}} r_{2} dx + \int_{x_{2}}^{x_{3}} r_{3} dx}{L_{p}}$$

$$= \frac{A_{T}}{L_{p}}$$
(D-3)

Knowing both \bar{A}_X and A_X , the cumulative difference variable Z_X can be determined from:

$$Z_{X} = A_{X} - \bar{A}_{X} \tag{D-4}$$

As noted in Figure D-1(b), Z_X is the difference in cumulative areas, at given x, between the actual and project average lines. If the Z_X value is, in turn, plotted against distance, x, Figure D-1(c) results. An examination of this plot illustrates that the location of unit boundaries always coincides with the location (along x) where the slope of the Z_X function change algebraic signs (i.e., from negative to positive or vice versa). This fundamental concept is the basis used to analytically determine the boundary location for the analysis units.

D-2 Application to Discontinuous Variables

The schematic figures shown in Figure D-1 are obviously highly idealized. In practice, measurements are normally discontinuous (point measurements), frequently obtained at unequal intervals and

never constant, even within a unit. In order to apply the foregoing principles into a solution methodology capable of dealing with these conditions, a numerical difference approach must be used. The form of the $Z_{\mathbf{x}}$ function is:

$$Z_{x} = \sum_{i=1}^{n} a_{i} - \frac{\sum_{j=1}^{n} a_{j}}{L_{p}} \sum_{i=1}^{n} x_{i}$$
 (D-5)

$$a_i = \frac{(r_{i-1} + r_i) * x_i}{2} = \tilde{r}_i * x_i$$
 (D-6)

(note: let $r_0 = r_1$ for first interval)

where:

n = the nth pavement response measurement,

nt = total number of pavement response measurements taken
in project,

r_i = pavement response value of the ith measurement,

 r_{i-1} = average of the pavement response values between the (i-1) and ith tests, and

 L_{p} = total project length.

If equal pavement testing intervals are used, then:

$$Z_{x} = \sum_{i=1}^{n} a_{i} - \frac{n}{n_{t}} \sum_{i=1}^{n} a_{i}$$
 (D-7)

D-3 Tabulation Solution Sequence

Table D-1 is a table illustrating how the solution sequence progresses and the necessary computational steps required for an unequal interval analysis.

D-4 Program Description

FWD is a program developed for analyzing deflection data collected from Falling Weight Deflectometer (FWD). The purpose of analyzing the deflection data is to define delineation units so that pavement sections have similar response may be characterized by

Table D-1 Tabular Solution Sequence - Cumulative Difference Approach (AASHTO, 1986)

Col. (1) Station (Distance)	Col. (2) Pavement Response Value (r _i)	Col. (3) Interval Number (n)	Col. (4) Interval Distance (Δx _i)	Col. (5) Cumulative Interval Distance (ΣΔx _i)	Col. (6) Average Interval Response (r _i)	Col. (7) Actual Interval Area (a _i)	Col. (8) Cumulative Area Sa _i	Col. (9) Z _x Value Z _x = Col. (8) - F*Col.(5)
0		1	Δ×1	Δ×1	$\bar{r}_1 = r_1$	$a_1 = \overline{r}_1 \Delta x_1$	a ₁	Z _{x1} = a ₁ - F*Δx ₁
1	$\mathbf{r_1}$							
		2	Δ× _{.2}	$(\Delta \times_1 + \Delta \times_2)$	$\overline{r}_2 = \frac{(r_1 + r_2)}{2}$	• a ₂ = r̄ ₂ Δx ₂	a ₁ +a ₂	$Z_{x2} = (a_1 + a_2) - F^*(\Delta x_1 + \Delta x_2)$
2	^r 2	3	Δ× ₃	$(\Delta \times_1 + \Delta \times_2 + \Delta \times_3)$	$\bar{r}_3 = \frac{(r_2 + r_3)}{2}$	a ₃ = Γ ₃ Δ× ₃	a1+a2+a3	
3	r ₃							
		Nt	Δ× _{nt}	$(\Delta x_1^+\Delta x_{nt}^-)$	$\bar{r}_{nt} = \frac{(r_{n-1} + r_n)}{2}$	$a_{nt} = \overline{r}_{nt} \Delta x_{nt}$	a 1* a nt	$z_{xnt} = (a_1 + + a_{nt}) - F^*(L_p)$
Lp	r							
							$A_{t} = \sum_{i=1}^{N_{t}} a_{i}$	
							$F^* = \frac{A_t}{L_p}$	
							note F* = r	

representative values. Specifically, the FWD program has the following functions:

- 1. Convert deflection data collected at different load level to that of 9000-lb load.
- 2. Delineate analysis unit based on area function.
- 3. Delineate analysis unit based on maximum deflection.
- 4. Delineate analysis unit based on subgrade modulus.
- 5. Display normalized deflection basin area, or maximum deflection, or subgrade modulus at each test location in a bar chart form.

The FWD program can be used to analyze deflection data for any length of a project. This allows delineation to be performed in a single analysis.

D-5 Program Execution

To execute the program, type FWD and press Enter key. A screen as shown in Figure D-2 will be displayed. By pressing any key, the program will prompt for a file to be analyzed as shown in Figure D-3. The following shows an example file named TEST.DAT is being analyzed.

Figure D-4 illustrates a title screen for the file TEST.DAT, showing information related to test date, location, milepost, surface type, and operator. Pavement thickness data need to be input manually. The program will ask for this information for each test section (not each test spot, e.g. a test section contains 21 test spots). Deflection data are corrected for temperature effect for those asphalt pavements with less than 6-inch thick of surface using method recommended by ODOT and converted to a 9,000-lb load level.

Figure D-5 shows the program main menu which includes five options: delineation on area function; delineation on maximum deflection; delineation on subgrade modulus; operating system; and quit.

1) <u>Delineation on area function:</u> This method considers the entire deflection basin area as an indicator of the pavement response.

FWD DEFLECTION DATA DELINEATION PROGRAM

Developed for
Oregon State Highway Division
Oregon Department of Transportation
Oregon State University

Version 1.0

Oct. 1988

Press any key to continue

Figure D-2 Title Screen

FWD DEFLECTION DATA DELINEATION PROGRAM

Developed for Oregon State Highway Division Oregon Department of Transportation Oregon State University

File name:

Press ◀▃ or Esc to Exit

Figure D-3 Asking for File Name

```
Test Date: 10-17-88 Dist. No: 04
County: KLAMATH Roadway No: 4
Lane Desig: 2 Dist from Edge: OWT
Begin MP: 204.00 Offset: S.B.
End MP: 207.00 Offset:
Surface: AC Operator: DOUG H.

File name: TEST.DAT
Pavement Thickness:
```

Figure D-4 Heading for TEST.DAT

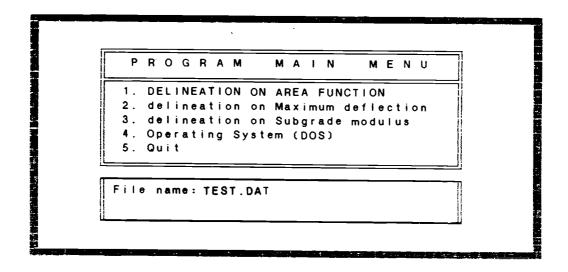


Figure D-5 Program Main Menu

- 2) <u>Delineation on maximum deflection:</u> This method considers the maximum deflection as an indicator of the pavement response.
- 3) <u>Delineation on subgrade modulus:</u> This method considers the subgrade modulus as an indicator of the pavement response. All three delineation methods are based on the cumulative difference technique described above.
 - 4) Operating System: This option allows a user to leave the program temporarily and work on something else while still keep the program in computer memory. To return to the program, type EXIT under DOS prompt.
 - 5) Quit: This option terminates the program execution.

To select a delineation method, the user may use cursor keys to highlight a option and press Enter key to activate it or type in a number corresponding to an option to invoke it. For the above example, option 1 (delineation on area function) is selected and a bar chart showing the pavement response variation is displayed as presented in Figure D-6. This bar chart may be printed by using PrintScreen Key on keyboard. This bar chart representation allows the user to look at the pavement response variations along the roadway and also allows to define an analysis unit by user itself. As shown in Figure D-7, two options are provided to select the method for defining the units. Figure D-8 shows a display for option 1 (user defines units). There are a total of 61 tests in the TEST.DAT file, and 6 units have been defined by the user. Based on user defined units, the average deflections at sensor locations 1 to 6, 80th deflection value, standard deviation for the maximum deflection, subgrade modulus at sensor 4, 5, and 6, and average subgrade modulus at those three location are printed as shown in Table D-2.

Table D-3 shows delineation units defined by the program by selecting option 2 as shown in Figure D-7. The delineation method is based the cumulative difference approach as described previously.

There is one file created during the analysis. This file is named as filename with an extension of FWD. For example, to analyze a file named TEST.DAT, a new file will be created as TEST.FWD. This

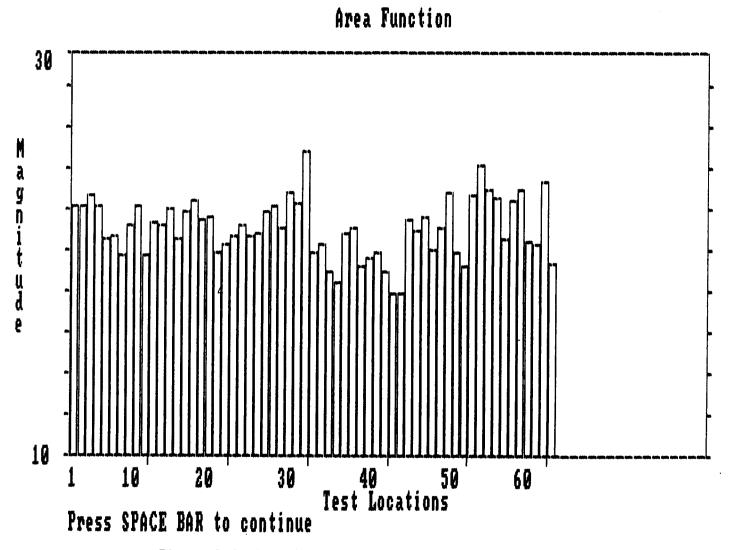


Figure D-6 Bar Chart Representation of Pavement Response

```
Select delineation methods

1. User define delineation units
2. Program define delineation units

Selection
```

Figure D-7 Options for Defining Delineation Units

Figure D-8 Screen Display for Option 1

Table D-2 Example Output for User Defined Delineation Units

Test	No.		Avera	ge Defi	ection	ns (@ 9	90001Ь:	1	STD	Subgr	ade Mo	dulus	(ksi)
From	To	Def-1	Def-2	Def-3	Def-4	Def-5	Def-6	80th	Def-1	S - 4	S - 5	S - 6	Avg
1	10	23.5	17.5	15.5	13.9	10.5	8.7	26.1	3.0	10.1	10.0	8.1	9.4
1 1	20	28.6	20.9	19.0	16.7	12.8	10.1	33.9	6.3	8.4	8.2	6.9	7.8
2 1	30	31.8	24.2	22.5	19.2	14.1	11.5	37.5	6.8	7.3	7 4	6.1	6 9
							11.8			7.0	8.1		7.0
							11.2			7.3	9.0	6.2	7.5
							9.2			9.6	9.8	7.6	9.0

Total of 6 delineation units

Table D-3 Example Output for Program Defined Delineation Units

Test	No.		Avera	ge Def	lection	ns (@ :	90001Ь:)	STD	Subgr	ade Mo	dulus	(ksi)
From	То	Def-1	Def-2	Def-3	Def-4	Def-5	Def-6	80th	Def-1	S - 4	S - 5	S-6	Avg
1	18	24.8	18.5	16.4	14.6	11.2	9.1	28.0	3.8	9.5	9.3	7.6	8.8
19	28	34.3	25.5	23.6	20.1	14.6	11.7	39.3	5.9	6.9	7.2	6.0	6.7
29	30	25.0	19.6	18.6	16.4	13.1	10.8	29.9	5.8	8.5	8.0	6.5	7.7
3 1	42	36.0	25.2	23.6	19.5	12.0	11.1	40.7	5.6	7.2	8.7	6.3	7.4
43	43	23.3	16.8	16.3	15.2	8.2	11.0	23.3	0.0	9.2	12.7	6.4	9.4
4 4	47	34.5	25.4	24.1	20.8	12.7	12.8	42.0	8.9	6.7	8.2	5.4	6.8
48	48	22.6	17.4	17.1	15.1	10.3	10.0	22.6	0.0	9.2	10.2	7.0	8.8
49	5 1	36.0	25.6	23.8	19.9	14.3	11.3	46.4	12.4	7.0	7.3	6.2	6.8
52	58	23.8	17.9	16.8	14.8	11.0	9.5	28.6	5.6	9.4	9.5	7.4	8.8
59	59	33.2	24.8	21.9	18.3	13.1	10.2	33.2	0.0	7.6	8.0	6.9	7.5
60	61	19.7	14.5	12.9	11.6	8.5	7.5	21.9	2.6	12.0	12.4	9.3	11.2
Avera	g e	28.4	21.0	19.6	16.9	11.7	10.4	32.3	4.6	8.5	9.2	6.8	8.2

There are total of 11 delineation units

file contains information such as test number, test location (mileage), and deflection values converted to 9,000-lb load at each sensor location. Table D-4 shows a typical output.

D-6 <u>Usage of the Output</u>

Tables D-2 and D-3 shows typical program output. The information contained in these tables may be used in several purposes. The average deflection values may be used for backcalculation analysis. The 80th deflection may used for overlay design using the ODOT procedure. The subgrade modulus may be used in backcalculation as a fixed value or as a reference for checking the backcalculated result.

D-7 Recommendation for Implementation

To obtain a best result from using the program, it is recommended that the user:

- 1. Obtain pavement surface thickness data before using the program, since the program will need these data for correcting the deflection values.
- 2. Combine necessary files into one single file (same project). For example, deflections collected at shoulder may be combined to a file, while deflections collected at out wheel track may be saved to another file.
- 3. Print out the graph. This graph may help the user to define manually the delineation units.
- 4. Print out the file with an extension FWD. This file includes test number, test location, and deflections that are converted to 9,000-lb load.

Table D-4 Example Output for TEST.FWD File

Test #	Location		Deflect	ion Values			
Sensor	Location:	0 8	12 18	24 36			
1,	204.050,	25.89,	19.96,	18.31, 16	. 42,	11.89,	9.66
2,	204.100,	20.52,	15.23,		82,	9.62,	8.51
3,	204.151,	24.50,	18.55,		.64,	12.36,	10.20
4,	204.152,	26.54,	19.87,		.51,	13.06,	10.33
5,	204.200,	27.70,	20.40,		.40,	11.67,	9.08
6,	204.251,	23.37,	17.26,	14.98, 13	.19,	979,	8.32
7,	204.300,	20.65,	15.07,		.87,	8 14,	6.35
8,	204.351,	18.82,	14.65,	12.14, 10	.96,	7.92,	6.88
9,	204.400,	21.33,	16.66,	14.64, 13	. 19,	9.84,	8.76
10,	204.451,	25.88,	17.77,	15.49, 13	.69,	10.62,	8.47
11,	204.500,	32.10,	25.90,	21.43, 18	.36,	14.14,	10.78
12,	204.550,	24.95,	17.77,	16.13, 14	. 52,	11.59,	9.26
13,	204.600,	17.73,	12.78,	11.88, 10	.86,	8.88,	7.05
14,	204.650,	29.13,	20.97,	18.56, 16	. 38,	12.29,	9.77
15,	204.700,	27.10,	19.43,	17.86, 16	.46,	13.40,	10.79
16,	204.751,	24.23,	18.57,	16.98, 15	.25,	11.55,	9.82
17,	204.800,	26.54,	19.89,	17.93, 16	.09,	11.81,	9.67
18,	204.850,	28.71,	21.42,	20.07, 16	.97,	13.32,	10.52
19,	204.900,	40.87,	28.02,	26.32, 22	.37,	16.63,	12.66
20,	204.951,	34.66,	24.34,	22.81, 19	.51,	14.25,	10.82
21,	205.000,	34.66,	25.45,	24.54, 19	.75,	14.35,	10.38
22,	205.051,	33.29,	25.45,	21.85, 19	.29,	14.39,	12.05
23,	205.100,	36.19,	26.58,		.83,	14.92,	12.21
24,	205.150,	34.69,	25.28,	23.41, 20	.41,	14.51,	11.80
25,	205.200,	38.81,	29.78,		.53,	17.72,	13.13
26,	205.250,	21.44,	16.74,	15.78, 14	.05,	8.65,	8.54
27,	205.304,	40.68,	31.08,		.79,	16.73,	13.48
28,	205.350,	28.11,	22.52,		.76,	13.87,	11.70
29,	205.400,	29.16,	22.13,	20.85, 17	.78,	14.35,	11.41
30,	205.450,	20.94,	17.05,		.92,	11.76,	10.20
31,	205.500,	41.02,	28.26,		.65,	17.30,	12.26
32,	205.550,	33.15,	23.18,	21.94, 18	.48,	13.18,	11.42
33,	205.600,	32.24,	21.59,		.30,	10.21,	10.50
34,	205.653,	48.24,	33.01,		.35,	14.54,	12.83
35,	205.702,	34.76,	25.88,		.60,	13.09,	12.22
36,	205.751,	35.61,	25.94,		.81,	14.66,	13.36
37,	205.800,	36.54,	24.89,		.72,	11.92,	11.77
38,	205.859,	43.04,	30.06,		.39,	15.75,	12.58
39,	205.900,	31.76,	22.50,		.17,	10.19,	11.60
40,	205.950,	30.34,	21.49,	19.86, 16	.15,	8.69,	9.50

APPENDIX E MECHOD USER'S GUIDE

E-1 Introduction

The MECHOD program is a computerized procedure for MECHanistic Overlay Design. The MECHOD program consists of two parts: one is for determining pavement damage and the other named MECHSUB is for calculating pavement strains. MECHSUB is a modified ELSYM5 program. The main program MECHOD uses the strains determined using MECHSUB program to calculate failure repetitions and total pavement damage. For existing pavements with remaining life less than 80 %, an overlay is requested and the modulus for the overlay is needed as an input. The MECHOD program then calculates automatically the pavement strains and determines the pavement damage after overlay. This procedure is repeated until an overlay thickness that provides pavement with damage less than unity is determined.

Seasonal variations in traffic and pavement materials properties are also considered in this program. This is done by breaking traffic applications and pavement layer properties into four seasons and considering the pavement damage separately for each season. The total pavement damage is then the sum of damage within each season.

The MECHOD program was developed considering the use of an FWD loading condition; therefore, only one load is required. Figure E-1 shows the program main menu. Four selections can be made and each of them is discussed in the following.

E-2 Create Data File

This selection allows the user to create a data file for later analysis. By pressing key C (Create) or 2 in the main menu, the program will ask for a file name and display a data input screen as shown in Figure E-2. The data input screen provides an easy data entry environment. The user may use cursor keys to move the cursor to any field and enter required data. After entering all necessary information, the user may press function key [F10] to save the data, or [F8] key to analyze the data right away, or [Esc] key to exit without saving the data. The following information is needed.

P	ROGRAM	MAIN	MENU
1. 2. 3. 4.	Create Analyz	DATA F a data e a data ing syst	file

Figure E-1 MECHOD Program Main Menu

Load I Load F	Oata: Force (lbs)	: 0	Load	Radius (i	n.):	0.00		File EXAMP	in Use LE		
	Layer Properties: Number of Layers: 0										
Season(s) for Analysis											
41 -	Thickness		Y)	Summer (N)	Fall (N)	Winter (N)		
No.	(inch.)			Modulus	Pois	Modulus	Pois	Modulus	Pois		
1.	0.0			0		0		0			
2.	0.0				0.00	0	0.00	0	0.00		
3.	0.0	500000	0.40	0	0.00	0	0.00	0	0.00		
4.	0.0	0	0.00	0	0.00	0	0.00	0	0.00		
5.	0.0	0	0.00	0	0.00	0	0.00	Ō			
Traffic Data: Hist. Repetitions: 0 0 0 Future Repetitions: 0 0 0											
Reliab Standa	Reliability Level (%): 50 (Optional, default @ 50 %) Standard Deviation: 0.45 (Optional, default @ 0.45)										

[F10] = Save & Exit [F8] = Run [Esc] = Fxit (No save)

Figure E-2 MECHOD Screen Data Input/Edit

- 1. Load force (required) in 1bs.
- 2. Load radius (required) in inches.
- 3. Number of layer (required) total pavement layers, including subgrade.
- 4. Seasons for analysis (required) can be one season or all seasons. Y stands for yes and N for no.
- 5. Layer thickness (required, except subgrade) in inches.
- 6. Modulus and Poisson's ratio (required) for seasons that will be analyzed, the modulus and Poisson's ratio are required.
- 7. Traffic data (required) both historical and future traffic repetitions. If the historical data is not given, the program may also be used for new pavement design.
- 8. Reliability level (optional) percent, default is set at 50%.
- 9. Standard deviation (optional) for flexible pavement, it ranges from 0.4 to 0.5.

E-3 Edit Data File

This option allows the user to edit a data file that has been created previously. By pressing key E (Edit) or 1 in the main menu and giving a file name to be edited, the same screen (Figure E-2) used for creating a data file will be displayed. The information saved in the existing data file will be shown in corresponding fields. The user may use cursor keys to move to any field and edit the existing information. Again, follow the bottom menu for next step.

E-4 Analyze Data File

This option allows the user to analyze a data file that has been created previously. By pressing key A (Analyze) or 3 and giving the file name to be analyzed, a message "Computing ..." will be shown on

screen (Figure E-3). Analysis results will be displayed. An example is shown in Figure E-4. If an overlay is needed, the program will assume an one-inch overlay and ask the user for modulus of overlay materials for the season(s) being analyzed (Figure E-5). This allows different paving materials to be considered for overlay designs.

The overlay design procedure is a repeated process with an increment of 0.5 inch. This procedure is carried out by the program automatically until the total pavement damage is less than unity and the recommended overlay thickness will then be displayed. The output will be saved in a file with an extension OUT. For example, if a file has name TEST.DAT, the output will be saved to TEST.OUT. An example output is shown in Figure E-6.

E-5 Operating System (DOS)

This option allows the user to leave the MECHOD program temporarily and work in the DOS environment. To return to the MECHOD program, type EXIT in DOS and press ENTER key.

PROGRAM MAIN MENU

- 1. Edit a data file
- 2. Create a data file
- 3. ANALYZE A DATA FILE
- 4. Operating system (DOS)

File name: example

Computing

Figure E-3 Screen for Data Analysis

Reliability = 50 Standard Dev. = 0.45 Layer Thickness (inches): 5.0 42.0

Seasons	Surface Modulus (ksi)	Star		Repet	ffic itions Future		Repetitions Subgrade		mage tio% Subg
Spring	40 0	324	-603	500000	1000000	4.00E+05	3.61E+05	375	415
m-4-3 3				_		_	_		

Total damage = 375.4 % for surface, 415.3 % for subgrade

OVERLAY OR RECONSTRUCTION. THE REMAINING LIFE OF SURFACE IS LESS THAN 20 % OVERLAY OR RECONSTRUCTION. THE REMAINING LIFE OF SUBGRADE IS LESS THAN 20 %

Figure E-4 Example Output Showing Overlay Is Needed

Modulus of Overlay Material for season(s) being analyzed is required and should be input in the following (in psi).

For Spring < 400000 > ? 600000

Figure E-5 Modulus of Overlay Material Can Be Considered

Reliability = 50 Standard Dev. = 0.45 Layer Thickness (inches): 5.0 12.0

Seasons	Surface Modulus (ksi)	Star	rins		ffic itions Future		depetitions Subgrade		nage io% Subg		
Spring	400	324	-603	500000	1000000	4.00E+05	3.61E+05	375	415		
Total da	mage =	375.4	% for s	surface,	415.3 %	for subgr	ade				
OVERLAY OVERLAY	OVERLAY OR RECONSTRUCTION. THE REMAINING LIFE OF SUBGRADE IS LESS THAN 20 % OVERLAY OR RECONSTRUCTION. THE REMAINING LIFE OF SUBGRADE IS LESS THAN 20 %										
Overlay	thickness	s = 1.	0 in.								
Spring	400	261	-468	500000	1000000	8.14E+05	1.12E+06	184	133		
Total da	mage =	184.3	% for s	surface,	133.4 %	for subgra	de				
Overlay	thickness	3 = 1.	5 in.								
Spring	400	237	-421	500000	1000000	1.12E+06	1.81E+06	134	83		
Total da	unage =	134.1	% for s	ourface,	83.0 %	for subgra	de				
Overlay	thickness	s = 2.	0 in.								
Spring	400	216	-381	500000	1000000	1.52E+06	2.82E+06	99	53		
Total da	mage =	98.8	% for s	surface,	53.1 %	for subgra	ıde				
Recommer	dation: ι	use 2.	0 in. c	overlay.							

Figure E-6 Example Output

APPENDIX F

BACKCALCULATION RESULTS

This appendix presents detailed output from backcalculation analysis for the following projects:

- F-1 Rufus Quinton Project
- F-2 Centennial Boulevard Project
- F-3 Nelchina Project
- F-4 Tudor Road Project

F-1 Rufus - Quinton Project (Eastbound)

Station	Load	AC	Base	Subgrade	Bu 1k	Deviator
	(1b)	(psi)	(psi)	(psi)	stress	stress
1	3,199	302,658	87,337	14,847	8.42	4.27
1	6,398	1,257,591	14,555	23,882	6.07	7.03
1	11,934	1,268,846	30,659	22,929	12.67	9.21
2	3,158	509,816	34,371	24,822	6.11	5.13
2	11,811	173,076	48,314	19,659	25.80	11.51
3	3,199	610,269	33,422	33,890	5.86	5.48
3	6,726	492,083	28,512	30,505	10.41	8.63
4	2,953	259,183	26,058	30,547	6.39	5.93
4	6,603	267,678	35,667	25,531	12.86	8.48
4	11,852	324,543	36,048	31,620	20.52	13.67
5	3,158	353,341	20,003	25,054	5.86	5.80
5	6,603	709,493	11,538	24,949	6.92	8.53
5	11,811	176,235	10,351	29,877	16.93	19.86
6	6,521	266,598	12,658	31,552	9.58	11.15
7	2,830	161,216	20,294	24,605	6.51	6.02
7	11,893	363,088	40,729	25,635	20.65	11.89
8	6,439	243,075	36,564	15,768	12.97	7.09
8	12,016	386,336	17,561	31,867	15.83	15.70
9	3,076	287,092	17,354	39,274	5.85	6.82
9	6,480	267,245	27,931	29,528	11.89	9.30
10	3,076	244,209	13,748	32,867	5.75	6.86
10	6,480	332,561	13,664	28,046	9.13	10.04
10	11,770	153,986	13,075	30,703	18.88	19.57
11	6,439	326,903	11,389	20,418	8.64	9.20
11	11,893	526,235	11,665	22,739	12.26	13.54
12	3,076	253,026	16,343	29,930	5.94	6.48
12	6,398	329,310	14,050	24,271	9.14	9.40
12	11,975	346,906	19,621	22,916	16.93	13.58
13	3,035	254,005	18,565	18,566	6.06	5.53
13	6,357	376,159	10,805	23,589	8.06	9.43
13	11,852	329,116	28,234	21,706	19.06	12.27
14	2,871	195,491	16,824	15,610	6.05	5.39
14	6,357	319,128	16,976	15,848	9.70	7.80
14	11,893	503,199	21,622	18,842	15.40	11.20
16	3,117	193,967	26,817	33,926	7.12	6.49
16	12,139	571,760	21,556	35,889	15.01	14.61
17	12,180	620,775	17,300	37,613	13.56	15.31
18	3,076	230,240	35,813	32,091	7.23	5.93
18	6,685	497,033	39,748	27,553	11.35	7.77
18	11,975	809,831	40,781	25,952	16.32	10.19
19	3,117	572,716	32,391	34,328	5.80	5.50
19	6,644	680,060	19,775	33,094	8.37	8.83
20	3,117	269,346	21,742	32,117	6.31	6.33
20 21	6,726 3,035	473,480 924,348	15,311	29,783	8.73	9.63
21	6,685		13,054	24,918	4.06	5.18
21	12,016	570,617 380,178	44,089 126,956	13,831 11,562	11.24	5.90
۲1	12,010	300,178	120,930	11,302	27.26	6.57
Δv	erage	424,767	27,060	26,278		
ST	-	248,301	20,108	6,585		
٠,	-	240,001	20,100	0,303		

F-1 Rufus - Quinton Project (Westbound)

Station	load	AC	Base	Subanada	D., 11.	Davidakan
31411011	Load (1b)	(psi)	(psi)	Subgrade (psi)	Bulk stress	Deviator
	(15)	(ps 1)	(ps1)	(ps1)	311633	stress
1	3,240	340,993	12,043	31,568	4.94	6.51
1	6,521	666,413	13,607	24,690	6.59	7.68
1	12,057	882,720	18,052	24,040	10.29	9.94
2	3,158	399,510	15,647	25,811	4.98	5.83
2	6,685	359,843	22,021	20,414	9.06	7.49
2	11,975	450,584	25,414	21,510	14.10	10.12
3	3,199	491,324	22,562	25,731	5.19	5.49
3	6,480	657,531	19,015	23,906	7.23	7.23
3	12,385	885,645	26,625	24,856	11.92	9.54
4	3,076	396,075	21,830	22,061	5.27	5.38
4	6,808	377,011	27,770	19,762	9.64	7.14
4	12,262	516,346	29,416	21,705	14.42	9.76
5	3,199	365,477	31,656	32,607	5.91	5.72
5	6,808	601,823	21,182	32,505	7.90	8.17
5	12,057	706,802	25,741	33,820	12.39	11.13
6	6,767	810,309	63,150	28,590	9.73	6.29
6	12,303	869,746	77,331	26,934	16.46	7.98
7	3,199	401,272	20,879	39,374	5.32	6.25
7	6,849	546,094	18,504	36,591	7.85	8.87
7	12,303	691,963	21,264	39,325	11.94	12.53
8	6,644	467,614	11,154	20,492	6.97	8.00
8	12,221	569,319	14,296	20,966	11.12	10.88
9	3,199	464,359	20,343	20,264	5.14	5.31
9	6,767	617,598	16,485	18,818	7.29	7.09
9	12,098	806,569	15,690	22,057	10.14	10.06
12	3,076	244,263	18,082	19,262	5.59	5.59
12	6,726	428,882	13,792	21,249	7.64	8.00
12	12,262	637,104	13,400	27,265	10.52	11.97
13	3,117	209,438	28,711	19,979	6.37	5.42
13	6,808	351,754	23,308	21,679	9.38	7.65
13	12,344	426,199	33,843	22,354	15.99	9.94
14	3,199	366,653	29,561	32,745	5.83	5.77
14	6,767	503,474	21,672	35,231	8.32	8.58
14	12,344	652,950	25,325	40,620	12.89	12.43
19	3,158	419,703	31,587	34,765	5.70	5.70
21	3,158	400,430	37,071	27,611	5.95	5.34
21	6,685	594,077	23,851	28,384	8.09	7.61
21	12,139	785,417	28,260	30,241	12.41	10.28
22	3,158	643,400	15,778	25,774	4.52	5.52
22	6,726	513,236	20,965	25,605	8.16	7.72
22	11,852	674,652	21,580	28,103	11.73	10.68
23	3,117	588,250	19,544	27,662	4.78	5.51
23	6,726	555,988	17,631	28,134	7.61	8.08
23	12,139	690,632	19,644	29,886	11.52	11.28
24	3,117	257,551	28,055	28,818	6.09	5.78
24	6,685	374,314	19,633	31,491	8.69	8.75
_						
	erage	536,115	23,978	27,071		
SI	U	172,033	11,600	5,792		

F-2 Centennial Boulevard Project (Eastbound from location 200 to 4000)

(1b) (psi) (psi) (psi) Stress Stress 200 8,821 1,192,686 35,389 10,619 13.2 6.3 200 14,269 1,074,783 44,632 10,656 22.3 8.1 400 8,821 383,337 33,174 12,131 17.3 7.9 400 14,229 280,833 50,940 11,598 31.6 9.9 600 8,763 446,242 33,644 10,133 16.7 7.2 600 14,269 498,348 44,397 10,037 27.1 9.0 800 8,705 524,632 37,849 10,832 16.4 7.0 800 14,153 1,140,917 30,466 10,620 19.5 8.7 1000 8,849 677,552 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 666,228 25,928 9,760 22.9 10.0 2400 8,763 666,228 25,826 23,487 14.1 9.9 2600 14,182 564,264 29,181 12,294 23.5 10.7 2600 14,264 656,243 49,998 10,683 25.3 8.8 2200 8,676 641,011 33,459 23,180 15.1 9.3 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,648 982,052 31,485 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,573 13.3 10.0 3200 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,573 13.3 10.0 3200 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,212 564,264 29,181 2,994 13.2 8.3 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3800 14,240 413,078 68,918 19,793 30.9 10.8 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 14,211 609,647 60,128 24,621 14.6 8.6	o		4.5	_			
200 8,821 1,192,686 35,389 10,619 13.2 6.3 200 14,269 1,074,783 44,632 10,656 22.3 8.1 400 8,821 383,337 33,174 12,131 17.3 7.9 400 14,297 280,833 50,940 11,598 31.6 9.9 600 8,763 446,242 33,644 10,133 16.7 7.2 600 14,269 498,348 44,397 10,037 27.1 9.0 800 8,705 524,632 37,849 10,832 16.4 7.0 800 14,153 1,140,917 30,466 10,620 19.5 8.7 1000 8,849 677,552 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2600 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,289 648,552 33,947 25,003 23.7 13.8 2400 14,289 648,552 33,947 25,003 23.7 13.8 2500 8,666 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,666 641,011 33,459 23,180 15.1 9.3 3400 13,923 382,669 46,799 16,351 28.	Station	Load	AC ()	Base	Subgrade	Bu 1k	Deviator
200 14,269 1,074,783 44,632 10,656 22.3 8.1 400 8,821 383,337 33,174 12,131 17.3 7.9 400 14,297 280,833 50,940 11,598 31.6 9.9 600 8,763 446,242 33,644 10,133 16.7 7.2 600 14,269 498,348 44,397 10,037 27.1 9.0 800 14,153 1,140,917 30,466 10,620 19.5 8.7 1000 8,849 677,562 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898.118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2600 14,269 648,552 33,947 25,003 23.7 13.8 2600 14,269 648,552 31,485 32,579 13.3 10.0 3200 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,261 566,593 26,030 25,630 14.1 10.2 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 14,211 568,411 49,657 22,162 26.9 12.0 3600 14,264 458,066 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,264 458,066 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 6400 14,211 609,647 60,128 24,355 27.6 11.7		(lb)	(psi)	(psi)	(psi)	Stress	Stress
200 14,269 1,074,783 44,632 10,656 22.3 8.1 400 8,821 383,337 33,174 12,131 17.3 7.9 400 14,297 280,833 50,940 11,598 31.6 9.9 600 8,763 446,242 33,644 10,133 16.7 7.2 600 14,269 498,348 44,397 10,037 27.1 9.0 800 14,153 1,140,917 30,466 10,620 19.5 8.7 1000 8,849 677,562 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898.118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2600 14,269 648,552 33,947 25,003 23.7 13.8 2600 14,269 648,552 31,485 32,579 13.3 10.0 3200 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,261 566,593 26,030 25,630 14.1 10.2 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 14,211 568,411 49,657 22,162 26.9 12.0 3600 14,264 458,066 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,264 458,066 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 6400 14,211 609,647 60,128 24,355 27.6 11.7	200	8.821	1 192 686	35 389	10 619	13 2	6 3
400 8,821 383,337 33,174 12,131 17.3 7.9 400 14,297 280,833 50,940 11,598 31.6 9.9 600 8,763 446,242 33,644 10,133 16.7 7.2 600 14,269 498,348 44,397 10,037 27.1 9.0 800 8,705 524,632 37,849 10,832 16.4 7.0 800 14,153 1,140,917 30,466 10,620 19.5 8.7 1000 8,849 677,562 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,666 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,128 851,510 27,600 25,665 20.7 13.9 3800 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3800 14,211 568,411 49,657 22,162 26.9 12.0 3800 8,666 641,011 33,459 23,180 15.1 9.3 3800 14,212 458,096 19,922 18,146 22.4 14.5 3800 8,666 641,011 33,459 23,180 15.1 9.3 3800 14,212 458,096 19,922 18,146 22.4 14.5 3800 8,676 676,096 476,432 42,288 32,492 22.3 13.4 3400 8,668 583,606 30,334 17,083 15.1 8.5 3800 14,224 458,096 19,922 18,146 22.4 14.5 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128							
400 14,297 280,833 50,940 11,598 31.6 9.9 600 8,763 446,242 33,644 10,133 16.7 7.2 600 14,269 498,348 44,397 10,037 27.1 9.0 800 8,705 524,632 37,849 10,832 16.4 7.0 800 14,153 1,140,917 30,466 10,620 19.5 8.7 1000 8,849 677,562 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 666,228 25,826 23,487 14.1 9.9 2600 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7							
600 8,763 446,242 33,644 10,133 16.7 7.2 600 14,269 498,348 44,397 10,037 27.1 9.0 800 8,705 524,632 37,849 10,832 16.4 7.0 800 14,153 1,140,917 30,466 10,620 19.5 8.7 1000 8,849 677,562 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27,9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,513 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 8,705 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,705 964,828 40,382 24,621 14.6 8.6 4000 14,210 609,647 60,128 24,355 27.6 11.7							
600 14,269 498,348 44,397 10,037 27.1 9.0 800 8,705 524,632 37,849 10,832 16.4 7.0 800 14,153 1,140,917 30,466 10,620 19.5 8.7 1000 8,849 677,562 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,763		=					
800 8,705 524,632 37,849 10,832 16.4 7.0 800 14,153 1,140,917 30,466 10,620 19.5 8.7 1000 8,849 677,562 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000				•			
800 14,153 1,140,917 30,466 10,620 19.5 8.7 1000 8,849 677,562 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000	800	8,705	524,632				
1000 8,849 677,562 21,917 10,991 13.6 7.7 1000 14,240 647,469 29,774 10,578 22.9 9.8 1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200	800	14,153	1,140,917	30,466			
1200 8,763 339,800 29,463 12,337 17.2 8.3 1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 22,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7	1000	8,849	677,562	21,917	10,991		
1200 14,240 395,530 38,190 11,842 27.6 10.4 1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7	1000	14,240	647,469		10,578		9.8
1400 8,792 576,179 23,206 13,901 14.3 8.5 1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600	1200	8,763	339,800	29,463	12,337	17.2	8.3
1400 14,211 625,636 28,086 13,105 22.7 10.9 1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7	1200	14,240	395,530	38,190	11,842	27.6	10.4
1600 8,734 364,318 24,634 11,208 16.2 8.2 1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 <	1400	8,792	576,179	23,206	13,901	14.3	8.5
1600 14,182 315,199 32,533 11,030 27.9 10.9 1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000	1400	14,211	625,636	28,086	13,105	22.7	10.9
1800 8,734 429,492 28,801 9,912 16.2 7.4 1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 <	1600	8,734	364,318	24,634	11,208	16.2	8.2
1800 14,153 380,923 36,522 9,931 27.4 9.8 2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7	1600	14,182	315,199	32,533	11,030	27.9	10.9
2000 8,763 898,118 32,653 10,838 13.9 6.7 2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7	1800	8,734	429,492	28,801	9,912	16.2	7.4
2000 14,211 656,243 44,998 10,683 25.3 8.8 2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7	1800	14,153	380,923	36,522	9,931	27.4	9.8
2200 8,676 476,446 20,870 9,959 14.4 7.8 2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7	2000	8,763		32,653	10,838	13.9	6.7
2200 14,067 537,890 25,928 9,760 22.9 10.0 2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7	2000	14,211		44,998		25.3	8.8
2400 8,763 676,194 20,354 12,914 13.2 8.3 2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7			476,446		9,959	14.4	7.8
2400 14,182 564,264 29,181 12,294 23.5 10.7 2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7			537,890	25,928	9,760	22.9	10.0
2600 8,734 666,228 25,826 23,487 14.1 9.9 2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7		-		20,354	12,914	13.2	8.3
2600 14,269 648,552 33,947 25,003 23.7 13.8 2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7				29,181	12,294	23.5	10.7
2800 8,705 383,872 16,507 17,944 14.4 10.8 2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7							
2800 14,124 458,096 19,922 18,146 22.4 14.5 3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7							
3000 8,676 641,011 33,459 23,180 15.1 9.3 3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7							
3000 14,211 568,411 49,657 22,162 26.9 12.0 3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7							
3200 8,648 982,052 31,485 32,579 13.3 10.0 3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7							
3200 14,067 964,432 42,288 32,492 22.3 13.4 3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7							
3400 8,648 583,606 30,334 17,083 15.1 8.5 3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7		=					
3400 13,923 382,669 46,799 16,351 28.4 11.1 3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7							
3600 8,705 666,593 26,030 25,630 14.1 10.2 3600 14.182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7							
3600 14,182 851,510 27,606 25,665 20.7 13.9 3800 8,676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7 AVERAGE 608,259 34,454 15,904							
3800 8.676 502,722 47,255 19,749 17.4 8.3 3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7 AVERAGE 608,259 34,454 15,904							
3800 14,240 413,078 68,918 19,793 30.9 10.8 4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7 AVERAGE 608,259 34,454 15,904							
4000 8,705 904,828 40,382 24,621 14.6 8.6 4000 14,211 609,647 60,128 24,355 27.6 11.7 AVERAGE 608,259 34,454 15,904							
4000 14,211 609,647 60,128 24,355 27.6 11.7 AVERAGE 608,259 34,454 15,904							
AVERAGE 608,259 34,454 15,904							
	.500	,	000,047	00,120	27,000	27.0	11.7
	Д	VERAGE	608.259	34,454	15.904		
310 223,0/2 11,032 0,301		TD	229,872	11,032	6,581		

F-2 Centennial Boulevard Project (Eastbound from location 4200 to 7000)

Station	Load	AC	Base	Subgrade	Bu 1k	Deviator
	(1b)	(psi)	(psi)	(psi)	Stress	Stress
				., .		
4200	8,648	733,522	44,104	19,073	15.6	7.9
4200	14,124	604,680	67,282	19,012	28.2	10.1
4400	8,648	578,668	45,958	17,889	16.7	7.9
4400	14,096	524,224	64,597	17,972	28.8	10.2
4600	8,532	676,229	42,831	10,781	15.6	6.5
4600	13,951	680,957	56,206	10,770	26.1	8.2
4800	8,561	858,319	47,075	18,196	15.1	7.4
4800	14,009	479,265	77,869	18,668	30.3	9.9
5000	8,561	1,054,069	45,675	15,151	14.3	6.8
5000	14,038	1,102,778	60,950	15,907	23.7	8.8
5200	8,619	1,154,214	48,720	15,489	14.2	6.7
5200	14,096	872,094	74,352	15,633	26.5	8.6
5400	8,792	1,185,558	26,500	13,516	12.1	7.2
5400	13,980	995,197	36,552	12,831	21.1	9.2
5600	8,676	918,746	35,486	15,219	14.0	7.4
5600	14,096	777,984	49,862	14,379	24.7	9.4
5800	8,590	623,626	54,045	9,928	16.9	6.1
5800	14,038	758,515	64,979	10,062	26.4	7.6
6000	8,561	1,287,120	34,744	10,354	12.5	6.1
6000	14,009	1,256,945	42,694	10,303	20.7	7.8
6200	8,705	274,332	57,679	13,491	20.5	7.4
6200	14,124	420,490	61,997	13,297	29.9	9.4
6400	8,648	917,159	34,679	12,716	13.9	6.9
6400	14,096	868,758	48,870	11,850	23.9	8.5
6600	8,619	648,294	46,532	8,220	16.2	5.9
6600	14,009	528,858	56,056	8,724	27.7	7.8
7000	8,734	633,344	36,933	13,752	15.6	7.5
7000	14,124	547,457	50,960	12,784	27.1	9.4
	AVERAGE	784,336	50,507	13,785		
	STD	259,845	12,384	3,177		

F-2 Centennial Boulevard Project (Westbound from location 6900 to 2700)

C++++	Lond	A.C.	Page	Culturanda	D., 11,	Da :
Station	Load	AC (mod)	Base	Subgrade		Deviator
	(1b)	(psi)	(psi)	(psi)	Stress	Stress
6900	8,705	549,293	86,849	16,120	19.4	6.6
6900	14,182	505,870	110,433	16.033	32.4	8.4
6700	8,705	311,068	82,928	13.055	21.3	
6700	14,182	393,500	93,740	12,641	33.0	
6500	8,648	604,949	32,495	16,002	15.2	
6500	14,096	588,483	41,301	15,352	25.3	
6300	8,676	567,289	33,848	23,922	15.6	
6300	14,182	620,694	42,163	24,353	25.2	12.8
6100	8,676	361,100	34,291	20,897	17.4	9.6
6100	14,153	351,517	43,914	21,888	29.0	13.2
5900	8,648	720,605	28,884	16,867	14.1	8.3
5900	14,096	703,185	34,819	15,889	23.1	10.9
5700	8,590	484,190	48,198	14,289	17.4	7.3
5700	14,096	338,452	67,074	14,020	31.7	9.6
5500	8,648	874,525	48,054	21,573	15.3	7.9
5500	14,211	624,465	74,903	21,459	28.9	10.3
5100	8,676	774,804	57,989	16,033	16.5	6.9
5100	14,153	776,411	70,602	16,035	27.0	9.0
4900	8,648	706,615	47,964	16,225	16.1	7.3
4900	14,124	604,709	66,351	16,016	28.1	9.4
4700	8,619	795,417	61,138	15,027	16.5	6.6
4700	14,182	724,053	78,649	15,175	28.2	8.6
4500	8,619	902,274	25,244	12,929	12.7	7.4
4500	14,153	786,905	35,892	13,110	22.7	9.8
3700	8,619	530,502	44,536	20,145	16.8	8.4
3700	14,153	736,687	49,111	20,853	25.1	11.2
3500	8,619	1,263,788	22,439	26,557	11.1	9.4
3500	14,124	1,182,953	29,387	25,427	19.0	12.7
3300	8,561	920,650	18,988	15,307	11.6	8.3
3300	14,096	1,080,032	22,397	15,850	17.9	11.2
3100	8,532	1,277,277	16,303	17,317	10.0	8.4
3100	14,038	1,418,923	21,726	15,827	16.2	10.6
2900	8,561	1,202,374	22,991	10,836	11.3	6.8
2900	14,067	1,388,525	25,879	10,491	17.3	8.6
2700	8,590	983,678	25,082	14,033	12.3	7.5
2700	14,096	938,722	35,231	13,158	21.4	9.5
	AVERAGE	700 512	46 710	16 004		
		766,513	46,716	16,964		
	STD	298,557	23,418	4,008		

F-2 Centennial Boulevard Project (Westbound from location 2500 to 100)

Station	Load	AC	Base	Subgrade	Bu 1k	Deviator
	(lb)	(psi)	(psi)	(psi)	Stress	Stress
2500	8,561	696,691	30,281	17,457	14.3	8.3
2500	14,038	508,317	47,227	16,663	26.9	10.8
2100	8,532	485,466	34,521	11,670	16.1	7.3
2100	14,009	512,793	40,242	10,969	25.9	9.4
1900	8,676	1,070,951	27,632	13,658	12.5	7.3
1900	14,182	1,192,106	32,396	12,922	19.6	9.3
1700	8,561	640,110	37,988	10,675	15.4	6.7
1700	14,067	337,358	59,504	10,487	30.9	8.8
1500	8,619	525,731	39,137	14,395	16.4	7.6
1500	14,038	295,918	64,070	13,622	32.1	9.8
1300	8,648	201,822	38,022	13,687	19.9	8.5
1300	14,067	201,950	51,226	12,949	33.1	10.7
1100	8,590	618,645	28,924	15,765	14.6	8.3
1100	14,067	625,296	36,771	14,750	24.1	10.6
900	8,648	337,715	44,163	14,580	18.6	7.9
900	14,096	353,862	54,817	13,782	30.2	10.1
700	8,648	1,102,055	27,453	17,099	12.3	7.9
700	14,182	840,150	41,470	15,911	23.2	10.2
500	8,648	142,658	49,225	15,638	22.1	8.7
500	14,096	226,980	65,390	14,904	33.9	10.4
299	8,648	271,970	70,620	11,342	21.1	6.6
299	14,067	306,764	85,021	10,933	33.6	8.2
100	8,705	522,935	74,902	12,136	19.0	6.2
100	14,153	871,873	69,792	12,004	26.2	7.9
	AVERAGE	537,088	47,950	13,667		
	STD	293,206	16,195	2,061		

F-3 Nelchina Project

(Spring)

Station	Load	AC MR	Base MR	Subbs MR	Subgra	de Averag	e
8	9,699	1,200,000	90,477	54,622	27,841	Base	67,355
10	9,492	1,200,000	69,206	48,598	26,060	Subbase	37,030
12	9,476	1,200,000	56,414	43,701		Subgrade	
14	9,270	1,200,000	51,100	54,185	24,716	_	
16	9,254	1,200,000	69,246	36,032	25,111		
18	9,174	1,200,000	69,633	48,772	28,461		
20	9,270	1,200,000	86,932	26,905	32,904		
22	9,270	1,200,000	62,007	36,358	25,064		
24	9,286	1,200,000	57,088	53,025	25,556		
26	9,333	1,200,000	59,863	46,651	14,825		
28	9,222	1,200,000	64,998	53,655	29,286		
30	9,158	1,200,000	83,972	46,612	37,407		
32	9,222	1,200,000	112,928	22,173	26,130		
34	9,254	1,200,000	87,553	25,857	28,010		
36	9,174	1,200,000	112,259	23,243	31,221		
38	9,206	1,200,000	103,689	22,173	25,360		
40	9,222	1,200,000	72,201	46,324	22,510		
42	9,079	1,200,000	62,941	39,103	22,786		
44	9,079	1,200,000	55,439	34,195	19,168		
46	9,174	1,200,000	54,026	55,616	19,959		
48	9,079	1,200,000	65,104	44,797	25,722		
50	9,063	1,200,000	58,499	28,141	15,348		
51	9,015	1,200,000	48,894	18,656	12,964		
52	9,063	1,200,000	40,966	30,029	16,252		
53	9,031	1,200,000	54,068	40,556	13,847		
54	9,063	1,200,000	56,348	26,816	11,617		
55	8,936	1,200,000	42,671	11,225	10,491		
56	9,031	1,200,000	49,824	23,139	13,312		
57	9, 0 95	1,200,000	59,849	31,616	14,139		
58	9,031	1,200,000	70,092	42,525	17,444		
59	8,920	1,200,000	59,369	50,114	21,818		
60	9,015	1,200,000	73,265	42,123	24,611		
61	8,904	1,200,000	61,782	14,446	14,716		
62	8,809	1,200,000	55,382	15,403	11,981	Base	35,425
63	8,745	1,200,000	43,817	10,692	11,562	Subbase	14,439
64	8,920	1,200,000	54,479	16,777	15,152	Subgrade	11,831
65	8,745	1,200,000	28,565	16,216	11,037		
66	8,745	1,200,000	23,633	12,344	15,864		8,401
67	8,681	1,200,000	32,259	11,999	12,495		4,145
68	8,729	1,200,000	33,851	14,794	13,161		1,969
69	8,809	1,200,000	36,678	22,196	11,714		
70	8,586	1,200,000	21,417	7,826	11,942		
71	8,920	1,200,000	31,852	16,008	9,923		
72	8,777	1,200,000	25,081	14,238	8,660		

```
73
         8,904 1,200,000
                             30,647
                                      10,846
                                                9,293
         8,761 1,200,000
    74
                             24,969
                                      10,595
                                                9,885
    79
         8,856 1,200,000
                             29,255
                                      14,766
                                               11,127
    80
         8,872 1,200,000
                             42,219
                                      11,875
                                               11,065
    81
         8,968 1,200,000
                             52,698
                                      24,441
                                               14,432
    82
         9,158 1,200,000
                             74,213
                                      22,604
                                               22,359 Base
                                                                67,288
    83
         8,681 1,200,000
                            122,536
                                      30,442
                                               16,323 Subbase 22,757
    84
         8,856 1,200,000
                             34,604
                                      15,626
                                               19,404 Subgrade 15,762
    85
         8,459 1,200,000
                             31,527
                                      11,820
                                                6,381
    86
         8,888 1,200,000
                             46,323
                                      23,300
                                                6,119
    87
         8,713 1,200,000
                             35,989
                                      26,454
                                               12,008
    88
         8,681 1,200,000
                             67,508
                                      25,010
                                               16,626
    89
         9,079 1,200,000
                             88,825
                                      26,766
                                               29,010
    90
         9,127 1,200,000
                             68,044
                                      45,318
                                               25,353
    91
         9,015 1,200,000
                            72,271
                                      46,141
                                               11,177
    92
         9,111 1,200,000
                            103,066
                                      24,787
                                               31,933
    93
         9,111 1,200,000
                            116,148
                                      21,914
                                               21,351
    98
         8,952 1,200,000
                            42,413
                                      17,518
                                               13,628
    99
         8,872 1,200,000
                            70,519
                                      14,051
                                               11,841
   100
         9,063 1,200,000
                            60,855
                                      14,755
                                               13,448
   101
         9,063 1,200,000
                            48,202
                                      11,732
                                               14,995
   102
         8,999 1,200,000
                            55,360
                                      25,704
                                                9,642
   103
         8,936 1,200,000
                            59,370
                                       9,989
                                               14,989
   104
         8,936 1,200,000
                            55,157
                                       9,981
                                               20,877
   105
         8,697 1,200,000
                            62,051
                                      15,747
                                                9,025
         8,793 1,200,000
   106
                            41,403
                                       9,823
                                               16,477
   107
         8,999 1,200,000
                            55,715
                                      25,868
                                               15,612
         9,079 1,200,000
   108
                            80,372
                                      49,585
                                               23,297
         8,872 1,200,000
   109
                            64,261
                                      33,597
                                               21,669
   110
         8,522 1,200,000
                            66,321
                                      20,585
                                               10,598
   112
         8,793 1,200,000
                            59,382
                                      11,254
                                                6,841
   115
         8,777 1,200,000
                            98,082
                                      54,434
                                               15,452
         8,697 1,200,000
   116
                            52,118
                                               11,025
                                      14,892
   117
         8,697 1,200,000
                            67,733
                                     23,360
                                               10,045
   122
         8,761 1,200,000
                            73,164
                                      16,148
                                                9,858
         8,888 1,200,000
   124
                            73,245
                                      16,973
                                               16,328
   125
         8,888 1,200,000
                           106,439
                                     12,044
                                               20,702
AVERAGE 8,982 1,200,000
                            61,021
                                     26,929
                                               17,549
STD
           225
                        0
                            22,687
                                     14,191
                                                7,109
```

(Summer)

2	9,063	1,000,000	66,692	28,045	16,396	Base	80,469
6	9,047	1,000,000	83,500	17,706	9,647	Subbase	56,117
8	9,206	1,000,000	74,866	44,610	21,670	Subgrade	29,991
10	9,302	1,000,000	91,169	66,077	28,567		
12	9,158	1,000,000	64,502	61,209	35,326		
14	9,190	1,000,000	79,336	44,289	30,985		
16	9,174	1,000,000	75,913	48,008	33,680		
18	9,127	1,000,000	61,591	58,348	28,982		
20	9,143	1,000,000	99,593	53,249	39,988		
22	9,286	1,000,000	77,788	68,052	43,553		
24	9,127	1,000,000	91,263	66,744	35,484		
26	8,968	1,000,000	70,326	56,823	29,152		
28	8,952	1,000,000	94,668	52,638	29,260		
30	9,047	1,000,000	72,884	56,068	36,056		
32	9,158	1,000,000	65,364	75,796	37,230		
36	9,174	1,000,000	150,640	55,138	31,303		
38	9,127	1,000,000	78,718	95,621	48,974		
40	9,238	1,000,000	107,945	53,657	42,078		
42	9,079	1,000,000	77,562	92,412	41,533		
44	9,127	1,000,000	74,140	40,680	22,401		
46	9,063	1,000,000	67,605	61,756	24,998		
48	9,095	1,000,000	85,747	35,016	65,758		
50	8,840	1,000,000	80,433	58,654	26,539		
51	8,157	1,000,000	49,560	35,094	25,671		
52	9,206	1,000,000	70,484	70,472	26,333		
53	9,270	1,000,000	81,202	66,837	23,304		
54	9,222	1,000,000	70,634	78,799	22,623		
55	8,984	1,000,000	75,056	49,868	17,888		
56	9,015	1,000,000	63,899	34,282	17,579		
57	9,143	1,000,000	91,109	48,203	24,314		
58	9,111	1,000,000	70,404	56,370	22,181		
59	9,286	1,000,000	81,283	70,371	32,434		
60	9,031	1,000,000	113,806	70,769	33,230		
61	8,968	1,000,000	76,277	36,312	14,583		
62	8,904	1,000,000	54,472	32,283	10,091	Base	63,982
63	9,095	1,000,000	102,870	58,233	11,781	Subbase	46,088
64	8,920	1,000,000	75,264	44,453	10,647	Subgrade	12,167
65	8,968	1,000,000	64,743	87,635	11,971		
66	8,761	1,000,000	59,229	46,776	10,290		20,994
67	8,936	1,000,000	53,718	53,268	14,202		20,216
68	8,840	1,000,000	48,071	84,302	17,825		2,675
69	8,840	1,000,000	53,324	93,451	17,445		
70	8,920	1,000,000	129,296	41,040	16,814		
71	8,872	1,000,000	61,289	55,248	13,238		
72	8,777	1,000,000	53,930	45,740	12,831		
73	8,856	1,000,000	51,5 0 9	37,241	12,522		
74	8,697	1,000,000	50,507	26,455	9,796		
75	8,602	1,000,000	46,647	28,111	10,489		
76	8,634	1,000,000	42,675	28,223	9,990		

```
77
          8,634 1,000,000
                              52,039
                                        31,525
                                                  9,689
    78
          8,681
                 1,000,000
                              91,713
                                        25,228
                                                  10,159
    79
          8,697
                 1,000,000
                              58,755
                                        38,749
                                                  10,506
    80
          8,745
                 1,000,000
                              63,549
                                        35,882
                                                  14,569
    81
                 1,000,000
          8,666
                              49,937
                                        27,920
                                                  8,476
    82
          8,777
                 1,000,000
                              80,085
                                        33,632
                                                  15,742 Base
                                                                  75,951
    83
          8,300
                 1,000,000
                              62,972
                                        13,126
                                                 10,035 Subbase
                                                                  31,061
    84
                 1,000,000
          8,300
                              56,711
                                        14,443
                                                  9,806 Subgrade 13,369
    85
          8,411
                 1,000,000
                              40,874
                                        18,970
                                                  7,656
    86
          8,936
                 1,000,000
                              43,869
                                        29,532
                                                 10,056
    87
          8,777
                 1,000,000
                              56,159
                                        23,126
                                                 10,393
    89
          9,381
                 1,000,000
                              79,070
                                        59,525
                                                 30,189
    90
          9,429
                 1,000,000
                              93,884
                                        62,501
                                                 31,636
    91
          9,349
                 1,000,000
                              66,228
                                        62,038
                                                 25,035
    92
          9,397
                 1,000,000
                             142,564
                                        45,900
                                                 22,055
    93
          9,238
                 1,000,000
                             104,324
                                        31,793
                                                 19,835
    94
          9,286
                1,000,000
                              73,523
                                        38,605
                                                 28,568
          9,063
                 1,000,000
    98
                              97,435
                                        15,352
                                                  8,428
    99
          9,254
                 1,000,000
                              69,816
                                        20,653
                                                  8,460
   100
          9,063
                 1,000,000
                              56,970
                                        15,979
                                                 10,097
   101
          9,190
                 1,000,000
                              45,373
                                        15,853
                                                  8,490
   102
          9,031
                1,000,000
                              69,463
                                        21,501
                                                  6,761
   103
          8,984
                 1,000,000
                              40,380
                                                  7,209
                                        17,812
   104
         9,222
                1,000,000
                              49,092
                                        16,728
                                                 12,792
   105
         8,872 1,000,000
                              69,182
                                        13,178
                                                  6,373
   106
         9,015
                1,000,000
                             122,605
                                        19,625
                                                  8,572
   107
         8,999
                1,000,000
                              59,812
                                        15,100
                                                 11,334
   108
         9,047
                 1,000,000
                              62,145
                                        35,040
                                                 14,743
         8,856
                1,000,000
   110
                              77,261
                                                 15,232
                                        64,403
   112
         9,015
                1,000,000
                              60,892
                                       21,036
                                                  9,027
   113
         8,968
                1,000,000
                              57,590
                                       41,832
                                                 12,079
   114
         9,015 1,000,000
                              61,337
                                       21,120
                                                 11,580
   115
         8,999
                1,000,000
                             129,238
                                       46,707
                                                 12,704
   116
         8,920
                1,000,000
                              69,473
                                       22,969
                                                  8,832
   117
         8,936 1,000,000
                              36,842
                                       82,673
                                                  9,579
   121
         9,174
                1,000,000
                              90,303
                                        9,523
                                                 15,756
   122
         8,888
                1,000,000
                              65,507
                                       44,251
                                                 10,905
   123
         9,079
                1,000,000
                             107,804
                                       39,194
                                                 15,659
   124
         9,015
                1,000,000
                              97,435
                                       28,708
                                                 10,149
   125
         8,904
                1,000,000
                             146,257
                                       17,790
                                                  9,067
   127
         9,031
                1,000,000
                              91,758
                                       37,995
                                                 16,466
AVERAGE
         8,992
                1,000,000
                              74,819
                                       43,866
                                                 19,381
STD
           238
                         0
                              23,803
                                       21,119
                                                 11,435
```

F-4 Tudor Road Project

		Spring (TUDOR4)				Summer (T	UDOR7)	
STATION	LOAD	E1	E2	E3	STATION	LOAD	E1	E2	E3
2	8,809	2,522,758	25,914	69,821	2	8,777	1,483,581	18,283	62,272
3 4	8,761 8,793	1,627,281 1,802,737	16,591 21,365	69,186 53,422	3 4	8,713 8,809	822,610 1,384,514	23,977 23,791	76,780 57,356
6	8,697	1,485,981		71 012	5	8,586	932,227	23,897	60,314
7	8,729	1,465,961	17,608 18,885	71,213 64,758	6 7	8,602 8,713	430,447 446,591	32,590 39,512	68,167 59,121
8 9	8,666 8,650	1,265,272	24,362	88,533	8	8,761	636,704	39,332	72,664
10	8,570	1,905,893 1,394,032	12,374 13,408	88,809 53,943	9 10	8,745 8,713	936,550 802,435	35,129 27,164	74,918 39,389
12	0 610	2 257 705	15 010		11	8,713	800,108	23,056	53,973
13	8,618 8,618	2,357,785 1,678,070	15,916 22,906	67,794 80,988	12 13	8,586 8,777	769,889 834,381	37,622 38,911	41,823 61,102
16	8,602	1,437,052	12,180	77,800	16	8,634	983,233	21,164	80,775
17 18	8,697 8,141	1,187,702 2,449,590	11,161 19,715	69,539 68,919	17 18	8,618 8,745	667,208 658,243	25,094 70,153	49,993 28,188
19	8,252	2,506,592	13,038	78,964	19	8,634	1,478,342	24,300	83,335
20 · 21	8,125 8,125	1,732,664 2,549,027	10,403 15,457	77,357 85,380	20 21	8,713 8,586	699,197 1,038,107	37,517	67,749
22	8,045	1,807,402	11,171	36,362	22	8,554	1,038,107	27,573 19,615	77,308 37,506
23	7,918	1,959,808	8,278	56,016	23 24	8,666	1,623,364	16,142	39,698
					25	8,507 8,602	1,793,133 572,325	18,258 16.327	53,261 49,889
26	7,680	2,764,867	7,409	76,514	26	8,522	1,865,138	14,807	40,680
28	7,505	1,449,724	10,594	82,566	27 28	8,443 8,507	1,255,065 749,118	36,887 29,615	34,738 52,845
29 30	7,537 7,457	1,091,509	8,999	71,703	29	8,427	577,615	28,125	43,459
	7,437	1,854,921	10,668	61,970	30 31	8,459 8,491	1,093,926 1,232,821	21,263 24,043	47,783 50,715
33 35	7,489 7,489	2,716,261	10,895	38,138	33	8,634	2,284,115	16,921	42,966
36	7,469	1,617,430 1,544,495	11,240 10,318	55,032 40,658	35 36	8,745 8,363	1,052,558 1,060,087	18,911 26,306	43,713 33,655
37	7,330	1,068,741	8,028	47,326		3,555	1,000,00,	20,000	55,055
38 39	7,537 7,505	1,661,123 1,605,133	17,013 20,135	64,646 60,620	39	8,395	400,962	67,906	35,565
40	7,489	1,687,449	23,511	34,042	40	8,348	1,001,495	30,987	36,265
41 42	7,441 7,553	2,409,085 2,657,302	11,976 8,244	18,490 53,629	41 42	8,507 8,650	2,427,190 2,292,126	15,138	19,087
43	7,409	1,808,887	21,091	28,534	43	8,745	1,058,242	18,815 42,985	45,435 32,530
45 46	7,457 7,473	1,890,126 1,489,547	10,158 11,772	34,054 33,356	44 45	8,475 8,650	1,632,499 1,423,907	42,600	37,781
47	7,425	2,049,189	11,448	34,961	47	8,618	1,423,907	23,370 16,126	26,978 29,499
48 49	7,473 7,394	2,005,324 1,545,986	8,642 20,542	36,261 25,917	48 49	8,586 8,586	1,208,240	17,396	34,309
	,,004	1,343,300	20,542	23,317	50	8,491	1,263,911 2,672,311	22,332 18,752	22,283 32,343
52	7,537	2,510,644	8,688	44,481	51 52	8,618	2,441,484	19,147	30,183
53	7,600	2,250,639	8,002	40,759	52 53	8,507 8,681	1,611,574 2,071,876	18,999 11,089	32,388 30,596
54 55	7,537 7,505	1,430,387 1,196,969	24,028 23,146	41,114	54	8,602	652,180	36,092	51,032
56	7,505	1,125,882	17,316	36,235 44,038	55	8,570	812,480	25,184	40,988
57 58	7,537 7,473	2,643,775	16,693	32,346	57	8,443	1,053,473	33,550	37,554
30	7,473	2,921,515	17,909	21,401	58 59	8,522 8,618	2,766,370 2,255,674	16,034 30,188	26,701 51,877
61	7 044	0.005.054	12 042	F0 350	60	8,459	1,679,145	24,010	30,261
61 62	7,044 7,139	2,685,954 944,906	13,843 13,344	56,750 42,865	61 62	8,284 8,840	1,040,752 1,330,767	31,667 27,295	44,123 33,061
63	7,060	1,461,267	26,235	67,467	63	8,888	692,090	40,016	70,821
64 65	7,298 7,235	1,575,921 685,008	11,720 11,552	66,785 26,972	64 65	8,856 8,666	931,207 298,004	24,605 21,556	59,301
					66	8,904	2,024,227	30,748	23,432 36,255
67 68	7,250 7,298	1,887,403 2,022,767	13,865 22,641	35,010 37,842	67 68	8,872 8,793	1,114,934 1,365,438	20,803	25,913
					70	8,761	2,284,900	28,150 23,617	31,066 22,762
71	7,266	2,095,090	15,263	23,311	71	8,777	1,123,460	25,379	24,946

72	7,362	2,211,743	14,847	21,535	72	8,713	1,078,698	31,617	24,399
					73	8,602	2,308,693	18,636	16,261
74	7,060	1,825,387	8,384	16,427	74	8,522	1,512,029	11,036	14,258
75	7,155	1,290,507	13,386	44,097	75				
77	7,282	2,602,516				8,538	719,268	19,581	37,256
			9,129	39,681	77	8,777	2,320,696	11,070	33,040
78	7,235	2,360,181	24,855	24,301	78	8,650	1,706,427	44,185	20,862
79	7,139	2,541,853	34,492	37,214	79	8,745	561,242	70,967	36,157
80	7,203	2,790,473	22,027	64,968	80	8,745	1,213,308	39,649	65,558
81	7,123	2,557,446	24,894	51,407	81	8,777	1,300,460	40,932	50,015
82	7,219	2,250,358	19,165	49,662	82	8,729	1,301,419	28,725	45,618
83	7,187	1,577,923	19,399						45,010
				46,356	83	8,697	1,226,260	28,047	40,058
84	7,076	2,013,220	20,719	44,438	84	8,650	1,650,895	28,037	44,846
85	7,155	1,633,844	17,145	42,417	85	8,681	1,066,652	37,085	37,790
86	7,123	1,907,352	19,783	50,927	86	8,856	869,683	36,340	45,360
87	7,107	1,823,650	19,502	66,589	87	8,856	1,369,885	29,012	59,302
88	7,091	2,385,923	12,738	64,685	88	8,650	1,967,969	18,576	67,588
89	7,123	1,453,364	9,651	55,153	89	8,809	1,328,289		
•	,,120	1,430,004	5,051	33,133				12,991	57,769
0.2		1 554 700	00 050	04 000	91	8,713	915,164	36,619	35,948
93	6,980	1,554,789	23,859	81,886	93	8,984	739,475	42,926	79,981
94	6,917	1,614,053	27,362	53,781	94	8,284	724,144	41,649	51,375
95	6,932	745,912	13,094	63,566	95	8,729	716,071	15,743	64,296
96	7,012	1,886,152	17,296	62,599	96	8,697	860,502	28,018	55,683
97	6,996	1,526,651	19,546	76,068	97	8,809			
٥,	0,550	1,320,031	15,540	70,000			973,691	21,397	66,962
00	C 040	000 740	05 511		98	8,507	1,382,052	26,577	70,101
99	6,948	928,742	25,511	42,842	99	8,379	513,774	30,720	42,964
100	6,885	727,055	37,580	36,932	100	8,284	371,029	56,885	41,364
101	7,012	1,281,148	39,651	47,049	101	8,872	813,162	46,196	47,634
102	6,948	1,352,291	26,481	59,627	103	8,745	354,199	51,655	44,177
104	6,869	499,520	16,639	53,095	104	8,427	873,424	28,898	
105	6,948	623,102	23,732						44,225
				36,168	105	8,681	893,421	21,595	29,988
106	7,060	639,732	43,769	37,865	106	8,793	590,042	41,952	38,166
107	6,948	1,313,258	24,670	62,887					
108	6,980	1,607,984	13,172	34,879	108	8,761	1,105,127	24,935	21,122
110	6,917	490,209	32,783	24,102				,	
AVERAG	SE 7,520	1,751,905	17,505	51,419	AVERAGE	8,642	1,200,162	28,850	44,856
	,	-,,	,	,	111 - 11110-	0,042	1,200,102	20,030	44,030
								NG DAVENENT	
STATIO	N THOODA	TUDADZ	TUDODA	TUDODZ	AVEDACE	THICKNES	EXISTI	NG PAVEMENT	
STATIO		TUDOR7	TUDOR4			THICKNES	EXISTI S SPRING	SUMMER	WINTER
	0.45	0.64	MODULUS C	ONVERTED		THICKNES INCH)	EXISTI		
2 1	0.45 1,135,241	0.64 949,492	MODULUS C 2-6	ONVERTED 2-6	TO 70F (_	EXISTI S SPRING	SUMMER	WINTER
	0.45 1,135,241 732,276	0.64	MODULUS C	ONVERTED		_	EXISTI S SPRING 0.35	SUMMER 0.52	WINTER 0.24
2 1	0.45 1,135,241 732,276	0.64 949,492	MODULUS C 2-6	ONVERTED 2-6	TO 70F (INCH)	EXISTI S SPRING 0.35	SUMMER	WINTER 0.24
2 1 3 4	0.45 1,135,241	0.64 949,492 526,470 886,089	MODULUS C 2-6	ONVERTED 2-6	TO 70F (INCH)	EXISTI S SPRING 0.35	SUMMER 0.52	WINTER 0.24
2 1 3 4 5	0.45 1,135,241 732,276 811,232	0.64 949,492 526,470 886,089 596,625	MODULUS C 2-6	ONVERTED 2-6	TO 70F (INCH)	EXISTI S SPRING 0.35	SUMMER 0.52	WINTER 0.24
2 1 3 4 5 6	0.45 1,135,241 732,276 811,232 668,691	0.64 949,492 526,470 886,089 596,625 275,486	MODULUS 0 2-6 836,860	ONVERTED 2-6 646,833	TO 70F (INCH)	EXISTI S SPRING 0.35	SUMMER 0.52	WINTER 0.24
2 1 3 4 5 6 7	0.45 1,135,241 732,276 811,232 668,691 615,091	0.64 949,492 526,470 886,089 596,625 275,486 285,818	MODULUS 0 2-6 836,860 7-8	2-6 646,833 7-8	TO 70F (INCH) 3.69	EXISTI S SPRING 0.35 2,119,561	SUMMER 0.52 1,426,628	WINTER 0.24 3,091,026
2 1 3 4 5 6 7 8	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491	MODULUS 0 2-6 836,860 7-8 615,091	2-6 646,833 7-8 285,818	TO 70F (3.69 5.88	EXISTI S SPRING 0.35	SUMMER 0.52	WINTER 0.24
2 1 3 4 5 6 7 8	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392	MODULUS 0 2-6 836,860 7-8	7-8 285,818 9-12	TO 70F (INCH) 3.69	EXISTI S SPRING 0.35 2,119,561	SUMMER 0.52 1,426,628	WINTER 0.24 3,091,026
2 1 3 4 5 6 7 8	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491	MODULUS 0 2-6 836,860 7-8 615,091	2-6 646,833 7-8 285,818	TO 70F (3.69 5.88	EXISTI S SPRING 0.35 2,119,561 1,287,013	SUMMER 0.52 1,426,628 866,259	WINTER 0.24 3,091,026 1,876,894
2 1 3 4 5 6 7 8	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392	7-8 615,091 9-12	7-8 285,818 9-12	T0 70F (741,846 450,455	3.69 5.88	EXISTI S SPRING 0.35 2,119,561 1,287,013	SUMMER 0.52 1,426,628	WINTER 0.24 3,091,026 1,876,894
2 1 3 4 5 6 7 8 9 10	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069	7-8 615,091 9-12	7-8 285,818 9-12	T0 70F (741,846 450,455	3.69 5.88	EXISTI S SPRING 0.35 2,119,561 1,287,013	SUMMER 0.52 1,426,628 866,259	WINTER 0.24 3,091,026 1,876,894
2 1 3 4 5 6 7 8 9 10 11 12 1	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729	7-8 615,091 9-12 848,657	7-8 285,818 9-12 529,437	T0 70F (741,846 450,455 689,047	3.69 5.88 4.16	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705	SUMMER 0.52 1,426,628 866,259 1,325,090	WINTER 0.24 3,091,026 1,876,894 2,871,028
2 1 3 4 5 6 7 8 9 10 11 12 1	0.45 1.135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004	7-8 615,091 9-12 848,657	7-8 285,818 9-12 529,437	T0 70F (741,846 450,455 689,047 644,568	3.69 5.88 4.16 5.13	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16	0.45 1.135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269	7-8 615,091 9-12 848,657 755,132 646,673	7-8 285,818 9-12 529,437	T0 70F (741,846 450,455 689,047 644,568 637,971	5.88 4.16 5.13 3.44	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16	0.45 1.135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013	7-8 615,091 9-12 848,657	7-8 285,818 9-12 529,437	T0 70F (741,846 450,455 689,047 644,568	3.69 5.88 4.16 5.13	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276	7-8 615,091 9-12 848,657 755,132 646,673	7-8 285,818 9-12 529,437 534,004 629,269 424,144	T0 70F (741,846 450,455 689,047 644,568 637,971	5.88 4.16 5.13 3.44	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013	7-8 615,091 9-12 848,657 755,132 646,673	7-8 285,818 9-12 529,437	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268	5.88 4.16 5.13 3.44 5.75	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139	7-8 615,091 9-12 848,657 755,132 646,673 818,391	7-8 285,818 9-12 529,437 534,004 629,269 424,144	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268	5.88 4.16 5.13 3.44	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,127,966 779,699	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139	7-8 615,091 9-12 848,657 755,132 646,673 818,391	7-8 285,818 9-12 529,437 534,004 629,269 424,144	T0 70F (741,846 450,455 689,047 644,568 637,971	5.88 4.16 5.13 3.44 5.75	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,102,316 .,127,966 779,699 .,147,062	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388	7-8 615,091 9-12 848,657 755,132 646,673 818,391	7-8 285,818 9-12 529,437 534,004 629,269 424,144	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268	5.88 4.16 5.13 3.44 5.75	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .147,062 813,331	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430	7-8 615,091 9-12 848,657 755,132 646,673 818,391	7-8 285,818 9-12 529,437 534,004 629,269 424,144	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268	5.88 4.16 5.13 3.44 5.75	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,102,316 .,127,966 779,699 .,147,062	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953	7-8 615,091 9-12 848,657 755,132 646,673 818,391	7-8 285,818 9-12 529,437 534,004 629,269 424,144	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268	5.88 4.16 5.13 3.44 5.75	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .147,062 813,331	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605	7-8 615,091 9-12 848,657 755,132 646,673 818,391	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25	0.45 1.135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .,147,062 813,331 881,914	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605 366,288	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268	5.88 4.16 5.13 3.44 5.75	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .147,062 813,331	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 664,388 1,038,953 1,147,605 366,288 1,193,688	7-8 615,091 9-12 848,657 755,132 646,673 818,391	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1	0.45 1.135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .,147,062 813,331 881,914	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605 366,288	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164 366,288	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S PRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1	0.45 1.135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .,147,062 813,331 881,914	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 664,388 1,038,953 1,147,605 366,288 1,193,688	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S SPRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1 27 28	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .,147,062 813,331 881,914 .,244,190 652,376	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605 366,288 1,193,688 803,242 479,436	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164 366,288	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S PRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1 27 28 29	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .102,316 .,127,966 779,699 .147,062 813,331 881,914 .244,190 652,376 491,179	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605 366,288 1,193,688 803,242 479,436 369,674	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164 366,288	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S PRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1 27 28 29 30	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .,147,062 813,331 881,914 .,244,190 652,376	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605 366,288 1,193,688 803,242 479,436 369,674 700,113	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164 366,288	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S PRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1 27 28 29 30 31	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .,147,062 813,331 881,914 .,244,190 652,376 491,179 834,714	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605 366,288 1,193,688 803,242 4790,113 789,005	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164 366,288	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S PRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1 27 28 29 30 31 33 1	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .,147,062 813,331 881,914 .,244,190 652,376 491,179 834,714 .,222,317	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605 366,288 1,193,688 803,242 479,436 369,674 700,113 789,005 1,461,834	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164 366,288	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S PRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1 27 28 29 30 31 33 1 35	0.45 1.135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 061,003 755,132 646,673 534,466 .102,316 .127,966 779,699 .147,062 813,331 881,914 244,190 652,376 491,179 834,714 222,317 727,844	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605 366,288 1,193,688 803,242 479,436 369,674 700,113 789,005 1,461,834 673,637	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164 366,288	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S PRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1 27 28 29 30 31 33 1	0.45 1,135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 .,061,003 755,132 646,673 534,466 .,102,316 .,127,966 779,699 .,147,062 813,331 881,914 .,244,190 652,376 491,179 834,714 .,222,317	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605 366,288 1,193,688 803,242 479,436 369,674 700,113 789,005 1,461,834	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164 366,288	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S PRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850
2 1 3 4 5 6 7 8 9 10 11 12 1 13 16 17 18 1 19 1 20 21 1 22 23 24 25 26 1 27 28 29 30 31 33 1 35	0.45 1.135,241 732,276 811,232 668,691 615,091 569,372 857,652 627,314 061,003 755,132 646,673 534,466 .102,316 .127,966 779,699 .147,062 813,331 881,914 244,190 652,376 491,179 834,714 222,317 727,844	0.64 949,492 526,470 886,089 596,625 275,486 285,818 407,491 599,392 513,558 512,069 492,729 534,004 629,269 427,013 421,276 946,139 447,486 664,388 653,430 1,038,953 1,147,605 366,288 1,193,688 803,242 479,436 369,674 700,113 789,005 1,461,834 673,637	7-8 615,091 9-12 848,657 755,132 646,673 818,391 19-24 949,994	7-8 285,818 9-12 529,437 534,004 629,269 424,144 19-24 816,334	T0 70F (741,846 450,455 689,047 644,568 637,971 621,268 883,164 366,288	5.88 4.16 5.13 3.44 5.75 3.73	EXISTI S PRING 0.35 2,119,561 1,287,013 1,968,705 1,841,622 1,822,775 1,775,050 2,523,326	SUMMER 0.52 1,426,628 866,259 1,325,090 1,239,553 1,226,868 1,194,745 1,698,392	WINTER 0.24 3,091,026 1,876,894 2,871,028 2,685,699 2,658,214 2,588,615 3,679,850

```
38
       747,505
       722,310
                    256,616
 39
 40
       759,352
                    640,957
 41 1,084,088
                  1,553,402
 42
     1,195,786
                  1,466,961
 43
       813,999
                    677,275
 45
       850,557
                  1,044,799
 46
       670,296
                    911,300
 47
       922,135
                    878,315
 48
       902,396
                    773,274
 49
       695,694
                    808,903
 50
                  1,710,279
 51
                  1,562,550
                               51-76
                                        51-76
 52
     1.129.790
                 1,031,407
                             819,144 893,883 856,514
                                                            3.1 2,447,182 1,647,142 3,568,807
 53
     1,012,788
                  1,326,001
 54
       643,674
                    417,395
 55
       538,636
                    519,987
 56
       506,647
 57
     1,189,699
                    674,223
 58
     1,314,682
                 1,770,477
 59
                  1,443,631
                 1,074,653
 60
 61
     1,208,679
                    666,081
 62
                    851,691
       425,208
 63
       657,570
                    442,938
 64
       709,164
                    595,972
 65
       308,254
                    190,723
 66
                 1,295,505
 67
       849,331
                    713,558
 68
       910,245
                    873,880
 70
                  1,462,336
 71
       942,791
                    719,014
 72
       995,284
                    690,367
 73
                  1,477,564
 74
       821,424
                   967,699
 75
       580,728
                    460,332
 77
    1,171,132
                 1,485,245
                               77-90
                                        77-90
 78
    1,062,081
                 1,092,113
                            965,704 880,403 923,053
                                                            2.52 2,637,295 1,775,102 3,846,055
 79 1,143,834
                   359,195
 80
                   776,517
    1,255,713
 81
    1,150,851
                   832,294
 82
    1,012,661
                   832,908
 83
       710,065
                   784,806
 84
       905,949
                 1,056,573
 85
       735,230
                   682,657
 86
       858,308
                    556,597
 87
       820,643
                   876,726
 88
     1,073,665
                 1,259,500
 89
       654,014
                   850,105
 91
                   585,705
                             91-100
                                      91-100
 93
       699,655
                   473,264 577,501 511,709 544,605
                                                            4.84 1,556,014 1,047,317 2,269,187
 94
       726,324
                   463,452
 95
       335,660
                   458,285
 96
       848,768
                   550.721
 97
       686,993
                   623,162
 98
                   884,513
 99
       417,934
                   328,815
100
       327,175
                   237,459
       576,517
101
                   520,424
                             101-110 101-110
102
       608,531
                   226,687
                            439,157 493,800 466,479
                                                            2.29 1,332,796
                                                                                897,074 1,943,661
104
       224,784
                   558,991
105
       280,396
                   571,789
                                                                 OVERLAY MODULUS @ 55F
                                                                                           850,000
106
       287,879
                   377,627
                                                                 MODULUS AT 70 F
                                                                                           476,000
107
       590,966
                                                                    SPRING
                                                                                SUMMER
                                                                                           WINTER
108
       723,593
                   707,281
                                                                  1,360,000
                                                                               915,385 1,983,333
110
       220.594
AVERAGE
          788,357
                       768,104
```

APPENDIX G

OVERLAY DESIGN OUTPUT FROM THE MECHOD PROGRAM

This appendix presents overlay design output from the MECHOD program for the following projects:

- G-1 Rufus Quinton Project
- G-2 Centennial Boulevard Project
- G-3 Nelchina Project
- G-4 Tudor Road Project

G-1 Rufus - Quinton Project

Filename: RUFUS
Reliability = 50 Standard Dev. = 0.40
Layer Thickness (inches): 6.8 18.0

Seasons	Surface Modulus (ksi)	Calcu Stra AC.	lated ins Subg	Repe	affic titions Future	Failure F Surface	Repetitions Subgrade		mage tio% Subg
Spring	872	130	-180	0	4526428	4.15E+06	8.13E+07	109	6
Summer	436	191	-184	0	11275413	2.11E+06	7.36E+07	533	15
Fall	909	115	-143	0	4526428	5.99E+06	2.28E+08	76	2
Winter	1283	98	-154	0	6776089	7.64E+06	1.63E+08	89	4
Total da	mage =	806.9	% for	surface,	27.0	% for subgr	ade		
OVERLAY	OR RECONS	TRUCTI	ON. T	HE REMAIN	ING LIFE	OF SURFACE	IS LESS THA	N 20 9	4
Over lay	thickness	= 1.	0 in.						
Spring	872	108	-151	0	4526428	7.63E+06	1.79E+08	59	3
Summer	436	162	-160	0	11275413	3.63E+06	1.38E+08	310	8
Fall	909	96	-122	0	4526428	1.09E+07	4.64E+08	42	1
Winter	1283	80	-127	0	6776089	1.45E+07	3.88E+08	47	2
Total da	mage =	458.0	% for	surface,	13.4 %	for subgra	de		
Over lay	thickness	= 1.	5 in.						
Spring	872	99	-139	0	4526428	1.03E+07	2.59E+08	44	2
Summer	436	149	-150	0	11275413	4.79E+06	1.84E+08	236	6
Fall	909	88	-112	0	4526428	1.44E+07	6.81E+08	31	1
Winter	1283	73	-116	0	6776089	1.96E+07	5.82E+08	35	1
Total da	mage =	345.5	% for	surface,	9.7 %	for subgra	de		
Overlay	thickness	= 2.	0 in.						
Spring	872	90	-128	0	4526428	1.37E+07	3.74E+08	33	1
Summer	436	138	-140	0	11275413	6.16E+06	2.51E+08	183	5
Fall	909	81	-104	0	4526428	1.90E+07	9.49E+08	24	0
Winter	1283	67	-107	0	6776089	2.62E+07	8.35E+08	26	1
Total da	mage =	265.8	% for	surface,	7.0 %	for subgra	de		
Overlay	thickness	= 2.	5 in.						
Spring	872	83	-118	0	4526428	1.80E+07	5.39E+08	25	1
Summer	436	127	-132	0	11275413	8.10E+06	3.26E+08	139	3
Fall	909	75	-97	0	4526428	2.48E+07	1.31E+09	18	0
Winter	1283	62	-98	0	6776089	3.48E+07	1.24E+09	19	1
Total dar	mage =	202.1	% for	surface,	5.2 %	for subgra	de		

Over lay	thicknes	ss = 3.	0 in.						
Spring	872	77	-110	0	4526428	2.34E+07	7.38E+08	19	1
Summer	436	118	-124	0	11275413	1.03E+07	4.32E+08	109	3
Fall	909	69	-90	0	4526428	3.22E+07	1.82E+09	14	0
Winter	1283	57	-90	0	6776089	4.58E+07	1.79E+09	15	0
Total da	mage =	157.5	% for	surface,	3.9 %	for subgra	de		
Overlay	thicknes	ss = 3.	5 in.						
Spring	872	71	-102	0	4526428	3.04E+07	1.04E+09	15	0
Summer	436	110	-116	0	11275413	1.30E+07	5.82E+08	87	2
Fall	909	64	-84	0	4526428	4.14E+07	2.50E+09	11	0
Winter	1283	52	-84	0	6776089	5.97E+07	2.54E+09	11	0
Total da	mage =	124.0	% for	surface,	2.8 %	for subgra	de		
Over lay	thicknes	ss = 4.	0 in.						
Spring	872	66	-95	0	4526428	3.92E+07	1.43E+09	12	0
Summer	436	102	-110	0	11275413	1.67E+07	7.38E+08	68	2
Fall	909	59	-78	0	4526428	5.30E+07	3.40E+09	9	0
Winter	1283	48	-78	0	6776089	7.76E+07	3.54E+09	9	0
Total da	mage =	96.5	% for	surface,	2.2 %	for subgra	de		

Recommendation: use 4.0 in. overlay.

G-2 Centennial Boulevard Project

Filename: CENTIN
Reliability = 50 Standard Dev. = 0.45
Layer Thickness (inches): 4.0 16.0

Seasons	Surface Modulus (ksi)	Calcui Strai AC.		Repet	ffic itions Future	Failure R Surface	epetitions Subgrade		nage io% Subg
Spring	1247	145	-279	0	1151132	2.13E+06	1.14E+07	54	10
Summer	777	186	-309	0	1533307	1.41E+06	7.22E+06	109	21
Fall	1291	142	-276	0	768956	2.22E+06	1.20E+07	35	6
Winter	1575	127	-263	0	1151132	2.70E+06	1.49E+07	43	8
Total da	mage =	240.2 %	for	surface,	45.5 %	for subgr	ade		
OVERLAY	OR RECONS	TRUCTIO	ON. TH	E REMAINI	NG LIFE O	F SURFACE	IS LESS THA	N 20 %	,
Cverlay	thickness	= 1.0) in.						
Spring	1247	121	-236	0	1151132	3.87E+06	2.41E+07	30	5
Summer	777	161	-272	0	1533307	2.26E+06	1.28E+07	68	12
Fall	1291	119	-233	0	768956	3.97E+06	2.56E+07	19	3
Winter	1575	104	-216	0	1151132	5.22E+06	3.59E+07	22	3
Total da	mage =	139.0 %	for	surface,	23.0 %	for subgra	de		
Over lay	thickness	= 1.5	in.						
Spring	1247	111	-216	0	1151132	5.14E+06	3.59E+07	22	3
Summer	777	149	-253	0	1533307	2.92E+06	1.77E+07	53	9
Fall	1291	108	-214	0	768956	5.46E+06	3.74E+07	14	2
Winter	1575	94	-196	0	1151132	7.28E+06	5.55E+07	16	2
Total da	mage =	104.8 %	for	surface,	16.0 %	for subgra	de		
Overlay	thickness	= 2.0	in.						
Spring	1247	101	-198	, 0	1151132	7.01E+06	5.30E+07	16	2
Summer	777	137	-236	0	1533307	3.85E+06	2.41E+07	40	6
Fall	1291	99	-196	0	768956	7.32E+06	5.55E+07	11	1
Winter	1575	85	-179	0	1151132	1.00E+07	8.33E+07	11	1
Total da	mage =	78.3 %	for	surface,	11.3 %	for subgra	de		

Recommendation: use 2.0 in. overlay.

G-3 Nelchina Project

Filename: NELCHINA
Reliability = 50 Standard Dev. = 0.45
Layer Thickness (inches): 1.5 1.5 28.5

Seasons	Surface Modulus	Stra		Repet	ffic itions		lepetitions Subgrade	Rat	age
	(ksi) ———	AC.	Subg.	Past 	Future —————	_		AC	Subg
Spring	1360	243	-235	41653	87648	3.62E+05	2.46E+07	36	1
Summer	915	152	-162	250920	528000	2.38E+06	1.30E+08	33	1
Winter	1983	140	-100	209267	440352	1.61E+06	1.15E+ 0 9	40	0
Total da	mage =	108.8	% for s	surface,	1.2 %	for subgr	ade		
OVERLAY	OR RECONS	TRUCT	ON. THE	REMAINI	NG LIFE O	F SURFACE	IS LESS THA	N 20 %	;
Over lay	thickness	= 1.	0 in.						
Spring	1360	218	-206	41653	87648	5.18E+05	4.44E+07	25	0
Summer	915	177	-148	250920	528000	1.44E+06	1.95E+08	54	0
Winter	1983	130	-90	209267	440352	2.06E+06	1.86E+09	32	0
Total da	mage =	110.6	% for s	surface,	0.7 %	for subgra	de		
Over lay	thickness	= 1.	5 in.						
Spring	1360	194	-192	41653	87648	7.60E+05	6.09E+07	17	0
Summer	915	169	-141	250920	528000	1.68E+06	2.43E+08	46	0
Winter	1983	117	-84	209267	440352	2.91E+06	2.44E+09	22	0
Total da	mage =	85.7	% for s	urface,	0.6 %	for subgra	de		
0									

Recommendation: use 1.5 in. overlay.

G-4 Tudor Project

Filename: TUDOR
Reliability = 50 Standard Dev. = 0.45
Layer Thickness (inches): 3.2 12.0

Seasons	Surface Modulus (ksi)	Calcu Stra AC.	lated ins Subg.		ffic itions Future		epetitions Subgrade		age io% Subg
Spring	1500	174	-383	0	154020	1.00E+06	2.76E+06	15	6
Summer	1000	162	-335	0	947676	1.79E+06	5.03E+06	53	19
Winter	2000	99	-162	0	710304	4.99E+06	1.30E+08	14	1
Total da	mage =	82.6	% for s	urface,	25.0 %	for subgr	ade		
OVERLAY	OR RECONS	TRUCTI	ON. THE	REMAINI	NG LIFE O	F SURFACE	IS LESS THA	N 20 %	3
Over lay	thickness	= 1.	0 in.						
Spring	1500	137	-294	0	154020	2.20E+06	9.02E+06	7	2
Summer	1000	138	-272	0	947676	3.03E+06	1.28E+07	31	7
Winter	2000	80	-127	0	710304	9.97E+06	3.88E+08	7	0
Total da	mage =	45.4	% for s	urface,	9.3 %	for subgra	de		
Recommen	dation: u	se 1.	0 in. o	verlay.	•				

APPENDIX H

DEFLECTION DATA USED IN ODOT AND TAI PROCEDURES

This appendix presents deflection data used in Oregon Department Of Transportation and The Asphalt Institute overlay design procedures. The data include deflections for the following projects:

- H-1 Rufus Quinton Project
- H-2 Centennial Boulevard Project
- H-3 Nelchina Project
- H-4 Tudor Road Project

H-1 Rufus - Quinton Project

ספת זורר	T. DIIEIIC	- OUTNT	ON (DEELE	PULL	CONVERTED	TO 9000	IR IEV	EI)
	STATION		DEF-2			DEF-5	DEF-6	DEF-7
1	15.000	10.07				4.63	1.78	0.79
2	15.051	13.78	13.78	10.78			2.51	1.33
3		9.16		8.82				1.56
4	15.150	12.21		9.02		3.78		0.75
5	15.200	13.46	13.46	11.52		4.96	2.46	1.75
6		15.26	15.26	11.54		3.70	1.27	0.58
7	15.300	12.71		10.14		3.97		0.80
8	15.351	14.26		11.53			1.33	0.72
9	15.400	11.45	11.45	9.71		3.23	1.58	0.80
10	15.451	14.61		12.47		4.74	2.13	0.91
11	15.500	17.84	17.84	14.70		5.79	2.38	0.94
	15.551	15.85	15.85	12.68		5.11	2.46	1.00
	15.600	15.93		12.79				0.66
	15.651	16.69						1.69
	15.700	10.03		7.88		2.45		0.77
	15.751	11.88	11.88	9.20		3.14	0.89 1.53	0.77
17		12.24	12.24	9.99		3.14	1.55	1.27
18		9.86	9.86	8.40				1.79
		9.59		8.71	6.17			1.79
20	15.958	12.94		10.24				0.90
21	16.000	12.73		11.23		3.87 7.33	1.80 2.93	1.83
22						7.33		1.62
23		12.06	12.06	10.95	8.72	5.23 5.27	2.93	
23 24		13.89		11.19				
	15.920	10.84		9.50				1.56
	15.850	12.76	12.76	10.58		5.16	2.71	1.84
		10.19		8.52		3.74	1.65	0.63
27 28		7.16	7.16	6.12	4.76 6.48	3.47	1.77	1.18
	15.715	10.50		8.93			1.46	0.24
29	15.650	15.69						1.62
	15.600	13.20		11.89	9.32	5.88	3.01	1.92
31		8.54	8.54	6.93	4.75	2.64	1.19	0.45
	15.500	7.93	7.93	7.01		2.28	0.65	0.31
33		14.52		12.59			2.63	1.17
34	15.400	13.09						1.09
	15.350	10.19		8.27		3.38		0.47
	15.300	9.70	9.70	7.65		2.70	1.09	0.22
37	15.250	12.28	12.28	10.30	7.92	3.67	1.66	0.94
		8.86		8.25	6.07		2.05	1.29
			8.59			2.59		
	15.100	10.03		8.76	6.46	4.00	2.04	1.40
41	15.100	11.64	11.64	9.82	7.58	4.47	2.23	1.47
	15.050	11.59	11.59	10.21	7.43	4.42	2.14	1.25
43	15.000	11.70	11.70	9.63	7.41	4.00	1.86	1.18
	0007							
	ODOT	12.00	10.00	10.05	7 44	4 00	2 22	1 10
,	AVERAGE	12.06	12.06	10.05	7.44	4.29	2.00	1.10
	STD	2.46	2.46	1.99	1.60	1.12	0.63	0.47
,	BO%TILE	14.12	14.12	11.72	8.78	5.23	2.53	1.50
	TAI	16 07	16 07	14 00	10.04	C E3	2 00	0.05
	RRD	16.97	16.97	14.03	10.64	6.53	3.26	2.05
	RRD(T)	16.63	16.63	13.75	10.43	6.40	3.19	2.01

H-2 Centennial Boulevard Project

PROJECT: Centennial BLVD (DEFLECTIONS CONVERTED TO 9000 LB LEVEL)

(EASTBO			(52, 2,					,
	STATION	DEF-1	DEF-2	DEF-3	DEF-4	DEF-5	DEF-6	DEF-7
1	200		16.37			6.30		7.24
2	400		19.65	12.81	7.75	6.00	3.25	6.07
3	600	23.12		14.17	9.49	6.77	2.52	
4	800	21.40	19.18	13.52	8.71	6.24	2.82	7.73
5	1000	24.14	21.64	14.79	9.30	6.25	2.87	7.34
6	1200	23.23	20.82	13.01	8.24	5.58	2.27	6.15
7	1400	21.91	19.63	12 57	7 79	4.89	1.73	
8	1600	25.96	23.27 22.32 17.57	14.73	8.90	6.26	2.81	8.11
9	1800	24.90	22.32	14.96	10.14	6.75	2.82	8.68
10	2000	19.61	17.57	12.60	8.86	6.10	2.40	7.42
11	2200	27.41	24.56	16.32	10.23	6.90	2.38	7.87
12	2400	22.91	20.53	13.53		5.28	2.75	7.46
13	2600	16.42	14.72	8.66 12.40	4.83	2.87	1.11	3.38
14	2800	24.73	22.17	12.40	6.45	3.82	1.20	4.37
15	3000	15.07	13.51	8.09	4.69	2.96	1.30	3.28
16	3200	12.33	11.05	6.60 10.14	3.52	2.11	0.68	2.44
17	3400	18.06	16.19	10.14	6.19	4.03	1.60	4.17
18	3600	15.90	14.25	8.42	4.25	2.72		
19	3800	14.70	13.17	8.19 7.22	5.09	3.53 2.79	2.12	4.11
20	4000	12.79				2.79	1.43	
21	4200	14.25	12.77	8.42	5.12	3.74	2.13	
22	4400	15.10	13.54	8.75	5.54	3.90	2.12	4.49
23	4600		16.90			6.35		6.43
24	4800		12.36		5.37	3.82	2.15	3.11
25	5000	14.47	12.97	9.32	6.22	4.55	2.22	5.32
26	5200		12.40			4.44	2.15	
27	5400	17.98		11.51	7.68	5. 0 5	1.76	6.71
28	5600	16.35	14.65			4.54		
29	5800		16.69			6.68		
30	6000	18.26	16.37 15.88	12.43	8.95	6.44	3.04 2.36	6.27
31	6200							
32	6400	17.81		11.43		5.44		
33	6600	21.40	19.18	14.46 9.00	10.79	8.07	4.14	8.15
34	6801	12.14				5.51	2.91	5.40
35	7000	18.18	16.30	11.05	7.12	5.09	2.30	6.68
	ODOT	10.07	10.74	11 05	7.00			
P	VERAGE	18.6/	16.74	11.25	7.28	5.05	2.32	5.91
_	STD	4.12	3.70		1.88	1.43	0.74	1.71
8	0%TILE	22.14	19.84	13.35	8.85	6.26	2.94	7.35
	TAI	20.00	04 13	10.00	11 02	7.00	2 70	0.24
	RRD		24.13					
	RRD(T)	20.05	23.88	16.10	10.92	7.84	3.75	9.25

H-3 Nelchina Project

000 100	T. NELCH!	T &					
	T: NELCHI	INA B) DEF-1	DEF-2	DEF-3	DEF-4	DEF-5	DEF-6
0	9,667	12.76	10.12	7.13	3.90	1.85	0.98
2	9,492	13.58	10.35	7.52	4.17	2.01	1.14
4	9,604	10.94	8.66	6.18	3.50	1.81	1.06
6 8	9,556 9,699	13.98 10.91	10.87 6.81	7.91 3.74	4.61 2.01	2.32 1.14	1.26 0.83
10	9,492	12.72	7.95	4.06	2.09	1.14	0.87
12	9,476	14.84	8.94	4.72	2.32	1.38	0.83
14	9,270	14.57	8.07	4.21	2.17	1.18	0.79
16 18	9,254 9,174	13.43 12.13	8.39 7.32	4.69 3.82	2.28 1.93	1.22 1.06	0.79 0.67
20	9.270	12.13	8.15	4.33	2.24	1.18	0.79
22	9,270	14.25	8.62	4.80	2.28	1.22	0.75
24	9,286	13.78	7.52	4.21	2.13	1.14	0.67
26 28	9,333 9,222	14.17 12.40	9.13 7.13	5.28 3.74	2.80 1.89	1.50 1.02	0.83 0.67
30	9.158	10.67	6.57	3.46	1.57	0.87	0.63
32	9,222	11.73	8.11	5.04	2.68	1.50	0.94
34	9,254	12.68	8.15	4.84	2.52	1.34	0.83
36 38	9,174 9,206	11.06 12.28	8.35 8.46	4.25 5.12	2.36 2.80	1.34 1.46	0.83 0.87
40	9,222	12.52	7.91	4.33	2.24	1.38	0.79
42	9,079	13.82	8.39	4.72	2.36	1.30	0.83
44	9,079	15.55	9.96	5.35	2.72	1.57	1.06
46 48	9,174 9,079	14.33 12.87	8.23 7.91	4.49 4.09	2.44 2.13	1.46 1.14	0.91 0.71
50	9,063	16.46	10.87	6.34	3.43	1.89	1.06
51	9,015	20.35	14.09	8.23	4.41	2.28	1.26
52	9,063 9.031	19.45	11.38	6.54	3.43	1.69	0.94
53 54	9,063	16.02 17.91	9.84 11.97	5.91 7.40	3.31 4.25	2.05 2.48	1.38 1.50
55	8,936	25.28	18.39	11.38	5.83	2.99	1.61
56	9,031	19.17	12.40	7.56	4.09	2.13	1.22
57 58	9,095 9,031	16.10 13.31	10.79 8.58	6.26 4.92	3.46	2.09	1.42
59	8,920	13.31	7.99	4.92	2.80 2.24	1.65 1.34	1.10 0.91
60	9,015	12.36	7.36	4.37	2.20	1.18	0.71
61	8,904	18.39	13.70	8.27	4.02	2.05	1.06
62 63	8,809 8,745	19.92 24.57	14.49 17.17	8.82 10.98	4.80 5.79	2.48 2.60	1.46 1.38
64	8,920	19.21	13.03	7.91	4.21	2.00	1.22
65	8,745	27.68	16.65	10.24	5.35	2.36	0.94
66	8,745	30.79	18.78	10.24	4.72	1.69	0.55
67 68	8,681 8,729	26.77 25.04	19.06 16.22	10.16 9.45	5.24 4.72	2.32 2.13	0.91 1.02
69	8,809	22.52	14.25	8.23	4.61	2.28	1.22
70	8,586	36.42	24.88	13.43	6.85	2.40	0.67
71 72	8,920 8,777			10.59		2.68	1.06
73	8,904	31.54 30.59	20.04 20.35	11.85 12.83	6.46 6.69	3.07 3.11	1.42 1.38
74	8,761	33.19	21.30	12.87	6.54	2.80	1.06
76	8,729	14.61	5.63	27.60	16.93	8.11	4.25
77 78	8,443 8,634	37.76 36.14	27.28 21.10	13.35 11.57	6.50 6.14	2.80 2.80	1.06
79	8,856	27.83	18.82	10.16	5.35	2.52	1.34 1.22
80	8,872	24.92	17.05	10.87	5.87	2.64	1.30
81	8,968	18.07	11.57	6.97	3.94	1.89	1.02
82 83	9,158 8,681	14.69 10.75	9.57 8.31	5.75 5.35	3.03 2.99	1.54 1.50	0.83 0.79
84	8,856	23.31	15.12	7.95	3.58	1.50	0.75
85	8,459	30.12	20.04	13.70	7.87	4.06	2.32
86 87	8,888 8 713	22.40	16.30	10.24	6.38	4.41	3.19
87 88	8,713 8,681	21.42 14.49	13.58 10.43	7.52 6.26	4.06 2.99	2.28 1.54	1.50 0.87
89	9,079	12.13	7.91	4.53	2.40	1.30	0.75
90	9,127	12.48	8.66	3.78	2.24	1.14	0.71
91	9,015	13.58	9.57	5.94	3.43	2.01	1.38

92	9,111	11.26	7.60	4.37	2.24	1.30	0.87
93	9,111	11.97	8.70	5.51	2.95	1.65	1.02
94	9.174	11.30	8.23	5.35	3.11	1.14	0.59
98	8,952	21.85	14.72	8.43	4.41	2.13	1.14
99	8,872	18.39	14.17	8.86	5.00	2.60	1.50
100	9,063	19.53	13.86	8.90	4.69	2.32	1.22
101	9.063	22.76	15.79	9.80	4.96	2.13	1.02
102	8,999	18.82	12.60	8.15	4.92	2.83	1.77
102	8,936	21.14	15.63	10.08	5.08	2.32	1.10
103	8.936	20.59	14.88	8.90	4.21	1.61	0.67
105	8,697	19.69	14.29	9.65	5.59	3.11	2.05
105	8.793	24.45	17.01	10.31	4.84	2.01	0.87
107	8,999	17.09	11.10	6.54	3.54	1.81	1.06
107		17.09	7.24	4.02			
	9,079				2.13	1.30	0.87
109	8,872	13.94	8.78	4.92	2.56	1.30	0.79
110	8,522	16.85	12.36	7.72	4.49	2.60	1.65
111	8,840	14.06	12.13	10.20	7.56	5.04	3.58
112	8,793	23.31	18.15	12.32	7.44	4.21	2.56
113	8,825	17.48	11.54	7.05	3.90	1.89	1.02
114	8,872	17.05	11.73	7.28	3.94	1.93	1.06
115	8,777	10.59	7.13	4.33	2.83	1.73	1.10
116	8,697	20.83	14.61	9.37	5.12	2.60	1.54
117	8,697	16.77	11.89	7.76	4.61	2.72	1.77
118	8,936	15.28	6.65	4.57	3.74	2.52	1.73
121	8,554	14.84	11.14	7.80	4.13	1.93	1.06
122	8,761	17.99	13.35	8.94	5.35	2.87	1.57
123	8,872	7.09	5.43	3.98	2.36	1.30	0.91
124	8,888	16.10	11.65	7.60	3.82	1.69	0.83
125	8,888	14.41	10.83	7.32	3.74	1.81	0.94
126	8,984	7.36	5.87	4.37	2.76	1.50	0.98
127	8,968	7.44	5.55	3.82	2.17	1.14	0.83
ODOT							
AVERAGE	8,987	17.77	11.92	7.43	4.03	2.06	1.16
STD	255	6.65	4.55	3.41	2.00	0.98	0.58
80%TILE		23.36	15.74	10.30	5.71	2.88	1.65
			20	20.00			2.30
TAI							
RRD		31.07	21.02	14.25	8.03	4.02	2.32
RRD(T)		40.39	27.32	18.53	10.43	5.23	3.02

H-4 Tudor Road Project

						.	
PROJECT:		ROAD (DEI		CONVERT			VEL) DEF-7
STATION 1	DEF-1 10.70	8.40	DEF-3 7.46	5.03	DEF-5 3.44	DEF-6 1.92	1.04
2	7.78	5.69	4.73	2.85	1.92	1.08	0.68
3	9.19	7.00	5.75	3.53	2.22	1.17	0.73
4	9.77	8.01	5.92	3.67	2.13	1.37	0.92
5	10.33	8.02	6.79	4.36	2.79	1.29	0.47
6 7	9.41 6.90	6.84 5.25	5.61 4.79	3.35 3.25	2.14 2.46	1.13 1.38	0.65 0.81
8	5.88	4.39	3.93	2.52	1.74	0.97	0.57
9	9.31	7.01	6.05	3.65			0.57
10	11.07	8.35	7.04	4.42		1.56	0.90
11	9.90	7.84	6.42	4.03	2.64	1.38	0.77
12 13	8.49 6.79	6.49 5.06	5.62 4.44	3.58 2.78	2.40 1.80	1.30 1.02	0.73 0.61
14	4.16	3.04	2.84	1.87	1.34	0.78	0.41
15	13.38	9.70	7.96	2.79	1.56	0.81	0.49
16	11.26	7.99	6.74	3.92	2.34	1.09	0.61
17 18	7.46 5.08	5.53 3.93	5.15 3.20	3.52 1.99	2.43 1.22	1.38 0.62	0.81 0.38
19	8.80	6.60	5.20	3.20	1.91	1.02	0.60
20	9.43	6.78	5.86	3.49	2.26	1.15	0.61
21	7.82	5.75	4.68	2.78	1.72	0.91	0.55
22	11.37		7.60	5.17	3.65	2.14	1.41
23 24	10.46 9.51	9.12 7.57	6.92 6.40	4.57 4.13	3.01 2.70	1.72 1.47	0.89 0.80
25	8.10	7.13	5.29	3.32	2.04	1.06	0.57
26	10.97	8.51	6.92	4.22	2.45	1.28	0.61
27	9.00	7.50	6.17	4.03	2.62	1.35	0.71
28	9.66	7.59	5.41	3.29	1.91	0.94	0.53
29 30	12.90 10.55	8.87 7.96	7.08 6.40	3.85 3.81	2.07 2.35	0.98 1.30	0.62 0.78
31	10.35	7.58	6.62	4.10	2.54	1.43	0.80
32	17.26	12.88	10.38	5.91	3.62	1.79	0.96
33	12.47	9.69	8.06	5.12		1.98	1.25
34 35	12.07 10.92	10.67 8.56	8.45 6.54	5.62 4.00	3.70 2.54	2.15 1.45	1.17 0.84
36	12.99	10.83	7.84	4.93	3.11	1.45	1.19
37	18.15	12.17	8.67	4.83	2.78	1.45	0.80
38	9.53	7.40	5.11	2.98	1.67	1.10	0.70
39	8.92	6.64	5.10	2.95	1.89	1.14	0.90
40 41	11.12 17.07	8.63 13.47	7.11 11.85	4.26 8.24	2.96 5.84	1.98 4.00	1.52 2.65
42	10.96	9.28	7.22	4.57	2.85	1.64	0.94
43	11.52	9.24	7.67	5.22	3.63	2.55	1.88
44	8.55	7.02	5.17	3.15	1.91	1.15	0.77
45 46	12.80 12.22	10.78 9.70	8.61	5.77 5.43	3.65	2.34	1.53
47	12.20	9.45	8.22 8.16	5.29	3.76 3.58	2.32 2.21	1.52 1.45
48	11.73	10.00	7.99	5.31	3.48	2.13	1.37
49	13.04	10.56	8.43	5.62	4.14	2.75	2.05
50	12.23	8.88	7.98	5.16	3.52	2.29	1.46
51 52	12.45 12.03	10.22 9.65	8.86 7.87	6.20 5.01	4.32 3.27	2.85 1.85	1.90 1.09
53	12.77	10.51	8.64	5.47	3.56	2.02	1.20
54	10.38	7.86	6.12	3.75	2.60	1.76	1.30
55	10.94	8.53	6.69	4.12	2.87	1.96	1.48
56 57	11.97 11.34	8.45 9.29	6.62 7.55	3.87 5.00	2.55 3.56	1.59 2.33	1.14 1.57
58	14.39	11.57	9.97	6.98	5.11	3.45	2.43
59	11.40	8.75	7.03	4.43	2.87	1.77	1.16
60	12.10	9.93	8.43	5.67	3.80	2.13	1.14
61	9.72	7.39	5.85	3.57	2.23	1.32	0.87
62 63	14.37 7.87	10.07 5.53	7.19 4.29	4.17 2.45	2.63 1.60	1.60 1.01	1.15 0.74
64	10.44	8.18	6.00	3.38	1.99	1.14	0.75
65	17.53	13.29	9.91	5.96	3.94	2.65	1.96
66	9.77	7.75	6.33	3.93	2.61	1.66	1.22

67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 99 100 101 102 103 104 105 106 107 108 109 100 100 100 100 100 100 100 100 100	12.62 10.85 11.12 18.80 15.49 16.14 16.45 21.47 14.84 13.86 13.93 13.69 10.09 8.72 9.66 11.28 11.62 11.62 11.62 11.62 11.62 11.62 11.62 11.62 11.62 11.62 11.62 11.62 11.63 11.63 11.63 11.63 11.65 11.69 15.37 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.4	10.21 9.57 8.95 15.16 12.20 12.79 13.27 18.19 10.77 7.61 7.12 6.55 8.07 7.74 8.10 9.13 8.07 7.10 8.57 11.07 5.61 5.70 4.07 5.61 5.70 4.07 5.61 5.70 4.07 5.61 5.70 4.07 5.61 5.70 4.07 5.61 5.70 4.07 5.61 5.71 6.64 9.08 8.82 9.55 7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.25 7.24	7.87 6.27 7.96 12.68 10.29 10.86 11.88 14.69 6.27 8.88 6.21 4.51 5.35 6.32 6.80 5.85 4.60 5.85 4.60 5.37 3.67 4.51 4.51 4.51 4.51 4.51 4.51 4.51 4.51	4.96 4.07 5.84 8.31 6.98 7.40 8.51 10.15 3.66 6.09 4.02 2.68 3.20 3.53 3.74 4.02 2.46 3.98 4.02 2.46 3.53 3.74 4.02 2.46 3.53 3.74 4.02 2.46 3.53 3.74 4.02 2.46 3.74 3.74 4.02 2.46 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.74	3.33 2.67 4.34 5.64 5.09 6.17 6.88 2.06 1.62 2.07 2.24 2.61 2.03 1.62 2.24 2.61 2.31 1.67 2.31 1.67 2.31 1.67 2.31 1.67 2.31 1.67 2.31 1.67 2.31 1.67 2.31 1.67 2.31 1.67 2.31 1.67 2.31 1.67 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	2.09 1.89 2.91 3.47 3.30 3.49 1.53 2.42 1.99 3.08 2.05 1.16 1.41 1.56 1.65 1.65 1.65 1.15 0.92 2.01 1.33 1.37 1.13 1.13 1.20 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37	1.41 1.42 1.86 2.24 2.28 2.48 3.15 3.20 1.25 1.37 1.25 2.23 1.51 0.78 0.95 1.00 1.08 1.13 1.11 0.74 0.79 0.91 0.48 1.13 0.55 0.67 0.95 0.67 1.25 0.95 1.00 0.95 1.00 0.95 1.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0
110 110 ODOT AVERAGE	14.63	13.31 10.45 8.55	8.93 6.82	5.66	4.11	2.98	2.32
STD 80%	3.14 13.75	2.48 10.63	2.06 8.55	4.27 1.47 5.51	2.82 1.07 3.72	1.75 0.77 2.39	1.15 0.56 1.62
RRD RRD(T)	17.40 22.62	13.50 17.55	10.94 14.22	7.22 9.39	4.96 6.45	3.28 4.27	2.27 2.96

APPENDIX I CALCULATION OF STRUCTURAL NUMBERS USED IN AASHTO PROCEDURE

For original design (SN_{original})

Project Name	AC	Layer	Base	Layer	Subbase	Layer	SN
	Thickness	Coeff.	Thickness	Coeff.	Thickness	Coeff.	
	(inch)		(inch)		(inch)		
Rufus-Quinton	6.8	0.42	18.0	0.14	-	-	5.38
Centennial Blv	d 4.0	0.42	16.0	0.14	-	-	3.92
Nelchina	1.5	0.42	10.5	0.14	18.0	0.10	3.90
Tudor	3.2	0.42	12.0	0.14	-	-	3.02

For existing pavements after many years of service (SN_{xeff})

Project Name	AC Thickness (inch)	Layer Coeff.	Base Thickness (inch)	Layer Coeff.	Subbase Thickness (inch)	Layer Coeff.	SN								
											_				
								Rufus-Quinton	6.8	0.30	18.0	0.12	-	-	4.20
Centennial Blvd	d 4.0	0.25	16.0	0.14	-	-	3.24								
Nelchina	1.5	0.14	10.5	0.12	18.0	0.04	2.19								
Tudor	3.2	0.40	12.0	0.14	-	-	2.96								