
AN ABSTRACT OF THE THESIS OF

Jin Jiang for the degree of Master of Science in Electrical and

Computer Engineering presented on March 2. 1990.

Title: The Architecture and Design 9f a Neural Network Classifier.

Abstract approveRedacted for Privacy
t.1 01111 NIUITay

The objective of this thesis is to present the architecture and

design of a neural network-based pattern classifier. The classifier

detects textual characters which have been translated, rotated, and

corrupted by noise. This form of pattern classifier differs

significantly from traditional pattern classifiers. The neural network

architecture used in implementing this classifier incorporates

massive parallelism, distributed memory, fault tolerance, and is

capable of learning. Traditional classifiers rarely incorporate all

these features.

The classifier's neural network topology, interconnect
structure, learning algorithms, test methodology, and test results

are presented in the thesis.

THE ARCHITECTURE AND DESIGN OF A NEURAL
NETWORK CLASSIFIER

BY

Jin Jiang

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirement for the

degree of
Master of Science

Completed March 2, 1990
Commencement June 1990

APPROVED:

Redacted for Privacy
ociate Professor 1ff Eleeal and Computer Engineering, in

charge of major

Redacted for Privacy
\

Head of Department of Electrical and Computer Engineering

Redacted for Privacy

Dean of GraduSchool

Date thesis is presented March 2. 1990

ACKNOWLEDGEMENTS

I would like to express my thanks to a number of people for

their help in the completion of this thesis. First I would like to give

my thanks to my major advisor, Dr. John Murray, who gave me help

and guidance during my entire program. I would also like to express

my thanks to Professor James Herzog, Professor Paul Cull, for their

fruitful suggestions.

Most of all, I wish to give my deeply thanks to my parents,

whose constant support and encouragement make this work possible.

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 Overview 1

1.2 Historical Perspective 2

1.3 Objectives 5

2. NEURAL NETWORK ARCHITECTURE 6

2.1 What is Neural Computing 6

2.1.1 Neural Networks and Human Physiology 6
2.1.2 Neural Network Operation 10

2.1.2.1 A Set of Processing Elements 12

2.1.2.2 The State of Activation 13

2.1.2.3 Processing Element Outputs 14

2.1.2.4 Pattern of Connectivity and Propagation Rules 15

2.1.2.5 Activation Rule 17

2.1.2.6 Modifying the Weights as a Function
of Experience 18

2.2 A Comparison of Neural and Traditional Computing
Techniques 19

2.2.1 Traditional Computing versus Massive Parallelism 19

2.2.2 Learning by Example 20

2.2.3 Distributed Associative Memory 20

2.2.4 Fault Tolerance 22

2.3 Adaption and Learning 23

2.3.1 Associative Learning 25

2.3.2 Regularity Discovery 28

3. DESIGN AND IMPLEMENTAYION 29

3.1 System Overview 33

3.2 Design Environment 36

3.3 Neural Networks and Traditional Classifiers 36

3.4 A Framework for System Design 41

3.5 The Design of a Hamming Network Classifier 45

3.5.1 Network Topology 45

3.5.2 Network Learning Algorithm 46

3.5.3 Network Information Capacity
and Fault Tolerance

3.6 The Design of a Back-Propagation Network
Classifier

3.6.1 Network Topology
3.6.2 Network Learning Algorithm
3.6.2.1 Overview of the Back-Propagation

Algorithm
3.6.2.2 The Global Error Function
3.6.2.3 Back-Propagation of Local Error
3.6.2.4 Minimizing the Global Error by

Modifying Weights
3.6.2.5 Summary of the Back-propagation

Learning Algorithm
3.6.2.6 Back-Propagation Momentum term
3.7 Simulation Results

4. CONCLUSIONS
4.1 Concluding Marks
4.2 Future Considerations

BIBLIOGRAPHY

APPENDICES
APPENDIX A

APPENDIX B1

APPENDIX B2

APPENDIX B3

APPENDIX C

TRAINING FILE FOR THE HAMMING
NETWORK
TEST RESULTS FOR THE HAMMING

NETWORK
TEST RESULTS FOR THE HAMMING
NETWORK
TEST RESULTS FOR THE HAMMING

NETWORK
TEST RESULTS FOR THE BACK
PROPAGATION NETWORK

51

52
52
55

57
59
60

61

61
63
64
67
67
68
69

71

79

80

81

82

TABLE OF FIGURES

Figures Page

2.1 Neuron- Building Blocks for Brain 7

2.2 Neural Network Architecture 9

2.3 Processing Elements of Neural Network 11

2.4 Neural Network Structure and Associated

Connection Matrix 16

2.5 Pattern Association and Auto Association 27

3.1 Standard Output Patterns 31

3.2 Noisy and Rotated Input Patterns 34

3.3 Structure of Pattern Recognition System 35

3.4 Input Data Grid 37

3.5 Comparison of Traditional and Neural Network Classifiers 38

3.6 Forty-Eight Exemplars of the Hamming Network 42

3.7 Structure of the Character Recognition System 43

3.8 Hamming Network 47

3.9 Multi-Layer Back-Propagation Network 53

3.10 Connections Between Back-Propagation and Hamming

Network 56

3.11 Structure of Processing Element 58

3.12 Learning Curve for the Back-Propagation Network 66

THE ARCHITECTURE AND DESIGN OF A NEURAL NETWORK

CLASSIFIER

1 INTRODUCTION

1.1 Overview

Artificial neural networks have been studied for many years in

the hope of achieving enhanced performance in the general areas of

pattern recognition, estimation, robotic control, and fault-tolerant

computing. Neural networks have great potential in speech and

image recognition applications, signal processing, industrial

inspection, and economic modeling [1]. A number of neural

networks have been developed that found applications in above

areas.

Neural networks are composed of many nonlinear

computational elements operating in parallel and arranged in

patterns reminiscent of biological neural nets. The computational

elements or nodes are connected to each other via

interconnections whose "strengths" or "weights" are typically

adapted during use. The modification of these weights causes

learning to occur in the network, and modifies the network in

such a way as to accomplish the particular task at hand.

Instead of executing a sequential program to accomplish a

task, as in the Von Neumann model of computing, neural networks

2

explore many competing hypotheses simultaneously. Computations

occur in a parallel distributed manner throughout the network.

There has been a recent resurgence in interest in the field of

neural networks due to the development of new network

topologies, algorithms, and VLSI implementation techniques. In

addition, the belief that computing systems incorporating massive

parallelism are essential to achieve the high performance required

in speech and image recognition tasks has brought about increased

research funding in this area.

1.2 Historical Perspective

Work on artificial neural networks has a long history. The

development of detailed mathematical models for neural computing

began more than 40 years ago with the works of McCullough and

Pitts of The University of Illinois. McCullough and Pitts outlined

how neurons communicate with each other eletrochemically, and

derived an original mathematical model for neuron behavior under

various stimuli [2].

In 1958 Cornell University psychologist Frank Rosenblatt

used hundreds of these artificial "neurons" in creating a two-layer

pattern learning neural network called the "Perceptron" [3]. The

key to Rosenblatt's system was that it had the ability to learn. In the

brain, learning occurs predominantly by the modification of the

connections between neurons. If a neuron is active, e.g. producing

an output, and is connected to the input of another neuron which is

3

active as a result of the connection, then the connection between

them will become stronger. If one of the neurons is active the other

is not, then the connection between them will become weaker.

This physiological mechanism is utilized by all animals during the

process of learning, and was first presented formally by Donald

Hebb. It is called Hebb's learning rule [4]. It was later verified

experimentally. This rule was used as the basis for learning in the

Perceptron.

Other more complex neural networks were built by Bernard

Widrow, an electrical engineering professor at Stanford University.

Widrow developed a machine called "Adaline"[5] that could

translate speech and predict the weather with greater accuracy

than the local weather forecaster.

In 1969, Marvin Minsky and Seymour Papert- Major forces in

the AI field of MIT wrote a book called "Perceptrons" that attacked

the perceptron design as being " too simple to be serious". The

Problem with early neural network was that these neural networks

were so limited to some simple logic operations, because they

could only solve those problems in which each categories in the

input set are linearly separatable. The idea of a multi-layer

perceptron was proposed, but without a good multi-layer network

learning rule, there was no possibility of achieving Rosenblatt's

expectations for neural networks. As a result of this book neural

network research went into its "dark ages". It was an inactive one

until 1982.

4

It was John Hopfield , a professor at Cal Tech, who brought

neural networks back to life again in the research community. A

paper he wrote in 1982 described mathematically how neurons

could act collectively to process and to store information, It

presented a sophisticated, coherent theoretical picture of how a

neural network could work [6]. This paper is credited with

reinvigorating the neural network field .

The resurgence of more sophisticated neural networks was

largely due to the availability of VLSI as an implementation medium,

low-cost semiconductor memory, generally greater computer

power, new network topologies and more sophisticated learning

rules. The examples of these neural networks are Back-Propagation

[7], Grossberg's machine [8], etc.

One of the most important application areas in neural

network research is pattern recognition. Character recognition is a

subset of pattern recognition. We know that neural computing

systems handle a large amount of information at once and are often

good at pattern recognition tasks.

One of the research areas within the neural network

community is that recognition of characters under translation and

rotation. Bernard Widrow and Rodney Winter of Stanford, and M.

Hosokawa of Univ. of Tokushima, did research work on this subject.

The neural network they trained could recognize letter patterns

even if these patterns had been translated or rotated. They both

used the same approach to solve this problem. They used a network

5

Preprocessor called an invariance network, the output of which is

invariant to the translations or rotations of the input

patterns[9][101.

Another character recognition area of great interest, although

different from the subject of this thesis is the recognition of

handwritten characters. Researchers at Nestor, Inc. have developed

a neural computing system for recognition of handwritten letter

patterns. It can recognize a variety of handwriting styles and is able

to make better guesses. Other research work in this area have done

by W.E. Weideman of Recognition equipment, Inc [Il], K. Yamada of

NEC. Co.[12], H.Y. Lee of Univ. of Maryland[13].

Complicated character can also be recognized using neural

networks, like a Chinese character. This research has been

performed successfully by Wuhan University[14].

1.3 Objectives

The objective of this thesis is to present the architecture and

design of two multi-layer neural networks capable of performing

English character recognition. The characters in question are

subject to translation and rotation, but not magnification. The

neural network is also capable of recognizing characters in the

presence of random noise. The performance of the two

architectures are compared and contrasted and simulation results

are presented.

6

2 NEURAL NETWORK ARCHITECTURE

2.1 What is Neural Computing

2.1.1 Neural Networks and Human Physiology

The human brain is the most complex computing device

known to man. The brain's powerful capabilities allow thought,

memory, and problem-solving to occur. These capabilities have

inspired scientists to attempt computer modeling or simulation of

some portions of the brain's operation. One of the physiologically

motivated areas of computation in which significant progress has

been made recently is that of neural computing. Before we describe

the building blocks and operation of neural networks, the heart of

all neural computing systems, it is instructive to briefly examine the

corresponding microstructual components of the brain which

inspired neural computing. The most elementary functional unit of

the nervous system, of which the brain is a part, is the individual

neuron.

The neuron, illustrated in Figure 2.1, is a highly specialized

individual cell. It's function is to act as a simple processing unit

which receives inputs via its input terminals or dendrites from

other neurons, and combines these signals to produce an

appropriate output signal. If the combined signal is strong enough

to exceed the neuron's "threshold" it activates the neuron. The

neuron then "fires", producing an output signal or action potential.

7

Dendrites

Nucleus

Fig. 2.1 Neuron- Building Blocks for Brain

8

The action potential is a pulse of approximately lms duration and

100mv amplitude. The output occurs on the axon of the neuron.

The axon is connected to many other neurons. The connections

occur as a result of the branching of the axon. If the combined

signal is not strong enough to exceed the threshold level, no output

pulse is generated.

The brain itself consists of approximately ten billion

interconnected neurons. Each neuron is connected to one to ten

thousand other neurons. The output of each neuron splits up and

connects to the input of other neurons at the dendrites though a

junction referred to as a synapse. The transmission of information

across this junction is chemical in nature, and the magnitude of the

signal transferred depends on the synaptic strength of the junction.

Synaptic strength is the neural parameter which is modified in the

process of learning. Synapse modification can be considered the

basis for long term memory as well.

A neural network is a simplified mathematical model for the

brain. It consists of many processing elements which are analogous

to neurons. These processing elements are usually organized into a

sequence of layers with full or random connections between

successive layers. Fig 2.2 shows a simple neural network

architecture. A input layer is the layer where input data is

presented to the neural network. An output layer holds the

response of the neural network to a given input. Layers between the

input layer and output layer are called hidden layers.

Output Layer

Hidden Layer

Input Layer

Fig 2.2 Neural Network Architecture

9

10

2.1.2 Neural Network Operation

We begin with an analysis of basic processing elements(PE's)

in neural network models and then describe specific assumptions

regarding these PE's.

The basic PE's of a neural network are illustrated in Figure

2.3. In the neural network, there exist a set of PE's, indicated by

circles in the diagram. At each point in time, each PE ui has an

activation value, denoted in the diagram as ai(t); this activation value

is passed through a function fi to produce an output value oi(t). This

output value is then passed through a set of connections to other

PE's in the networks. There is associated with each connection a

real number, usually called a weight or strength of the connection.

This weight is designated w . The weight determines the effect

that the first PE in the network has on the second. All the inputs to

a given PE are multiplied by their respective weights and then

combined by some operator, usually summation. The weighted

summation to an PE along with its current activation, determine,

via a function F, its new activation value. The whole system is

viewed as being plastic in the sense that the pattern of

interconnections is not fixed ; rather, the weights can undergo

modification as a function of experience. The experience involves

exposing the network to a set of inputs. As a result of applying

theses inputs, the weights are modified according to some

supervised or unsupervised learning algorithm. In this way the

11

Fig. 2.3 Processing Elements of Neural Network

12

system can evolve. We now describe some of the major elements of

a neural network in detail.

2.1.2.1 A Set of Processing Elements

All neural networks include a set of PE's. Specifying the set of

PE's and what external variables they process is typically the first

stage in specifying a neural network. In some models these PE's

may represent particular conceptual objects such as features,

letters, words; in others they are simply abstract elements over

which meaningful patterns can be defined. When we talk about a

distributed representation 115], we mean one in which the PE's

represent small, feature-like entities. In this case it is the pattern

as a whole that is the meanful level of analysis. This should be

contrasted to a one-unit-one-concept representation in which a

single PE represents entire concepts or other larger meaningful

entities.

There are many PE's in a neural network. All the processing

or computing is carried out by these PE's. There is no executive

processor or other manager. There are only very simple semi-

autonomous processing units, each doing its own relatively simple

job. An PE's job is to receive inputs from its neighbors and, as a

function of the inputs, to compute an output value which it sends to

its neighbors. The system is massively parallel in that many PE's

can carry out their computations at the same time.

13

Within any system we are modeling, it is useful to
characterize three types of PE's: input PE's, output PE's, and

hidden PE's. Input PE's receive inputs from sources external to the

neural network. Output PE's send signals out of the neural networks

to other neural systems or to the motor system. Hidden PE's are

those PE's whose inputs and outputs are connected internally, that

is, within the neural network. They are not "visible" to the outside

world.

2.1.2.2. The State of Activation.

In addition to the set of PE's, we need to create a
representation of the state of the entire neural system at a given

time, t. The state is specified by a vector of N real numbers a(t),

representing the pattern of activation over the set of PE's. Each

element of the vector stands for the activation of one of the PE's at

time t. The activation of PE ui at time t is designated ai (t). It is the

pattern of activation over the set of PE's that captures the state of

the system at any time. It is useful to observe that the processing

taking place in the system may be considered as the evolution of a

pattern of activity over the entire set of PE's.

Different models make different assumptions about the

activation value that a PE can take on. Activation values may be

continuous or discrete. If they are continuous, they may be

unbounded or bounded. If they are discrete, they may take on

binary values or any of a small set of values. If the PE's are

14

continuous, then they can take on any real valued number as an

activation value. In other cases, they may take on any real value

between some minimum and maximum, for example, the interval

[0,1]. When the activation values are restricted to discrete values,

they are usually binary. Sometimes these values only take on the

value 0 and 1, where 0 is taken to mean that the PE is inactive and

1 is taken to mean that it is active. As we see each of these

assumptions will lead to a model with slightly different

characteristics.

2.1.2.3. Processing Elements Outputs

In any neural network a number of PE's will interact. They

transmit output signals to their neighbors. The strength of the

signals they transmit is determined by their degree of activation.

Associated with each PE, ui , there is an output function, fi(ai(t)),

which maps the current state of activation ai(t) to an output signal

oi(t), that is oi(t) =fi(ai(t)). In vector notation, we represent the

current set of output values by a vector o(t). In some models the

output value is exactly equal to the activation level of the PE. In this

case f is the identity function f(x)=x. But for most models f is some

form of threshold function, so that a one PE has no affect on

another PE unless its activation value exceeds a certain threshold.

Sometimes the function f is a stochastic function in which the

output of the PE depends in a probabilistic fashion on its activation

values.

15

2.1.2.4 Patterns of Connectivity and Propagation Rules.

PE's are connected to one another as described previously. It

is this pattern of connectivity that constitutes exactly what the

network knows and eventually determines how the network will

respond to any arbitrary input. Specifying the whole neural network

and the knowledge encoded therein is a matter of specifying the

exact pattern of connectivity among the PE's.

In the general case, we assume that each PE provides an

additive contribution to the input of the PE's to which it is

connected. So the total input to a PE is simply the weighted sum of

the separate inputs from each of individual PE's. That is, the inputs

from all of incoming PE's are simply multiplied by a weight and

then summed together to calculate the overall input to the PE. The

total pattern of connectivity can be represented by specifying the

weights for each of the connections in the neural system. A positive

weight represents an excitatory input and a negative weight

represents an inhibitory input. It is often convenient to represent

such a pattern of connectivity by a weight matrix w in which the

entry wij represents the strength and sense of the connection from

PE ui to PE uj. The wij is a positive number if PE ui excites PE uj ; it

is a negative number if PE ui inhibits PE uj; and it is 0 if there is no

direct connection between PE ui and PE uj. The absolute value of wij

specifies the strength of the connection. The relationship between

the connectivity and the weight matrix is illustrated in Fig 2.4.

Ul

U2

U3

U4

U5

0
W41"11/4

0 0 0
Fig 2.4a Network Structure

Ul U2 U3 U4 U5

0 0 0 W41 W51

0 0 0 W42 W52

0 0 0 W43 W53

0 0 0 0 0

0 0 0 0 0

Fig 2.4b Connection Matrix

16

Fig. 2.4 Neural Network Structure and Associated Connection Matrix

17

An additional important issue which determines both the

amount information can be stored and how much serial processing

the neural networks have to perform is the fan-in and fan-out of a

PE. The fan-in is the number of PE's that either excite or inhibit a

given PE. The fan-out of a PE is the number of PE's affected by this

PE.

Now we will denote the output of a set of PE's as o(t). We also

need a propagation rule which takes on the values of the output

vector o(t), and combines it with the connectivity matrix to

produce a net input for a specific PE. We denote the net input to

PE ui as neti(t). The propagation rule is that neti(t)=wo(t). So the

net input for a PE is the outputs of those who send its output to the

PE, multiplied by the corresponding weights.

2.1.2.5. Activation Rule.

We also need a rule whereby the net input impinging on a

particular PE is combined with the current state of the PE to

produce a new state of activation. We have a function F, which takes

ai(t) and the net input neti(t) and produces a new state of activation

for the PE. In the simplest case, when F is the identity function, we

can write ai(t+1)=wo(t). If F is a threshold function, the net input

must exceed some value before contributing to the new state of

activation. Generally , the new state of activation depends on the

old one and the current input as well. So we have ai(t+1)=F(ai(t),

neti(t)), the function F itself is what we call the activation rule.

18

Usually, the function is assumed to be deterministic. For example, if

a threshold is involved it may be ai(t)=1 if the net input exceeds the

threshold value, and ai(t)=0 otherwise.

2.1.2.6. Modifying the Weights as a Function of Experience.

Changing the processing or knowledge structure of the neural

network system involves modifying the patterns of

interconnectivity. There are mainly three kinds of modifications:

1. The development of new connections.

2. The loss of some existing connections.

3. The modification of the strengths of connections.

Case (1) and (2) can be considered as a special case of (3).

Whenever we change the connection strength from zero to some

positive or negative value, it has the same effect as growing a new

connection. Whenever we change the connection strength to zero,

it has the same effect as losing an existing connection. We will next

discuss those rules whereby the strengths of these connections are

modified though learning.

We will now discuss the Hebbian learning rule. Virtually all

learning rules for neural models of this type can be considered a

variant of the Hebbian learning rule. The following constitute the

basic idea behind Hebbian learning: If an active unit, ui, receives an

input from another unit, ui; then , if both are highly active, the

weight, wii, which is the connection strength of unit i and unit j,

should be strengthened. The idea can be mathematically stated as :

19

Awij = g(a, (t),t, (t))*h(oj(t), w,j)

where ti(t) is a kind of teaching input to ui. Simply stated, this

equation says that the change in the connection from ui to uj is

given by the product of a function, go, of the activation of ui and its

teaching input ti and another function, ho, of the output value of uj

and the connection strength wij.

Learning is the most important part of the neural network

operation. we will discuss learning in detail in a later section.

2.2. A Comparison of Neural and Traditional Computing Techniques

2.2.1. Traditional Computing versus Massive Parallelism

We know that traditional computing machines execute

programs in a sequential manner. It is very time consuming for

some tasks to be performed using traditional computing
approaches. Speech and pattern recognition tasks, for example, are

required to process a large volume of information in a very short

time. Using traditional Von Neumann computers,the time to

process the information sequentially may be excessive. We need

some computing machinery that processes large amounts of data

simultaneously, then generate appropriate categorical outputs. We

also require a reasonable response to noisy and incomplete input

data. This is very difficult for a traditional Von Neunamm computer

to do.

20

Neural computing systems provide us with a new way to

handle such problems. Because of their architecture, they can

process all the input data simultaneously (in parallel), plus they also

have the ability to learn and build unique feature recognition

structures for particular problems. With the computing power of

neural networks, difficult computing tasks can be done a lot faster.

2.2.2. Learning by Example.

In a traditional computing system we have well defined

hardware and software structures. The structure never changes or

adapts during system usage. Unlike traditional Von Neumann

machine where knowledge is made explicit in the form of rules or

programs consisting of algorithms plus data structures, neural

networks generate their own rules and their own knowledge

structures by learning from the example input data presented to

them. So there is always a process of adapting to variations of data

presented to the network from the outside world. Learning is

achieved through a learning rule which adapts or modifies the

connection weights of the neural network in response to the

example input and (in the case of supervised learning) the desired

outputs associated with these inputs.

2.2.3 Distributed Associative Memory.

An important characteristic of neural networks is the way

they store information. Unlike traditional Von Neumann computers

21

which store data in a block of memory centrally, neural computing

systems store their data and information in a distributed manner.

Since the connection weights constitute the memory elements in

the neural computing system. It is this kind of structure for storing

data and information that makes it possible for neural computing

systems to process all information simultaneously in parallel,

because all the PE's store their data locally, so all PE's can get the

data they need simultaneously. The value of the weights represent

the current state of knowledge of the neural network. A unit of

knowledge, represented for example by an input-output
relationship, is distributed across all memory units in the neural

network. It shares these memory units with all other units of

knowledge stored in the neural network system.

Neural computing memory is associative in that if the trained

neural network is presented with a partial input the neural network

will choose the closest match in memory to that input, and

generate an output which corresponds to a fully specified input. If

the neural network is auto-associative, that is, the input is equal to

the desired output for all example pairs used to train the neural

network, then the presentation of partial input patterns to the

neural network will result in their completion.

The distributed and associative nature of neural network

memory leads to reasonable network response when it is presented

with incomplete, noisy or previously unseen input pattern. The

latter property is referred as generalization. The quality and

22

meaningfulness of a generalization is dependent on the particular

application and on the sophistication of the neural network. Some

neural networks, like accretive neural network, map the input to

the response of the closest previously learned input pattern; others

like non-linear multi-layer neural networks, in particular back-

propagation networks, which learn in their hidden layers important

features of the knowledge domain, can use this hidden knowledge

to construct non-trivial generalizations about the input data, i.e.

they provide a prediction capability.

2.2.4. Fault Tolerance.

Whereas traditional Von Neumann computing systems are

rendered useless by even a small amount of damage to system

memory, neural computing systems are more fault tolerant. Fault

tolerance refers to the fact that in most neural networks, if some

elements or links are destroyed, disabled, or their connection

strength changed, then the behavior of the neural network as a

whole is only altered slightly. As more PE's or links are destroyed,

the behavior of the neural network as a whole is degraded further.

Performance will suffer in this case, but the whole computing

system does not come to an abrupt halt, in general. This advantage

of neural computing systems arises from three aspects of its

architecture. First, because the connections of a PE to other PE's

are local, damage to a single PE or some links constitutes local

damages. It will not damage the whole computing system. Second,

23

unlike traditional computing systems where all the information is

stored in one place, neural networks store their information and

data in a distributed way throughout the whole computing system.

Global storage of information results from this distribution process.

Information stored in this manner is difficult to destroy without

destroying the entire system. Third, the non-linear characteristics

of the PE's makes the neural networks more fault tolerant. If, for

example, there are n inputs to a PE, and the weighted summation

of these inputs exceeds a threshold level, causing a PE to be active.

If some connections in this system are broken, it may be the case

that the weighted summation still exceeds the threshold level, and

the PE is still active.

The effect of some malfunctioning PE's or some broken

connections will becoming less and less as the number of PE's in

the system as a whole increases, either within a given layer, or

across multiple layers. This characteristic of fault tolerance, or

graceful degradation, makes neural computing systems extremely

well suited for applications where failure of computing equipment

may mean disaster: in nuclear power plant operation, missile

guidance systems, space probe operations, and so on.

2.3. Adaption and Learning.

Learning in neural networks is the process of adapting the

neural connection weights in response to stimuli presented at the

24

input layer buffer. Learning can be separated into two distinct

classes:

1. Associative learning, a learning technique in which the

units of a network learn to produce a particular pattern of activation

at the output of one set of PE's when a different pattern is

presented at the input to the other set of PEs. In general, such a

learning scheme must allow an arbitrary pattern at the input to one

set of PE's to produce another arbitrary pattern at the output of

another set of PE's. This kind of learning requires a knowledgeable

teacher to compare the difference between the desired output and

the actual output. The teacher must cause the connection strengths

or weights to be modified if there exists a difference between the

desired output values and the actual output values for a given set of

inputs. This learning approach is referred to as supervised

learning.

2. Regularity discovery, a learning technique in which PE's

learn to response to "interesting" patterns presented at their

inputs. In general, such a scheme should be able to form the basis

for the development of feature detectors or structures which define

input categories. Regularity discovery does not require a

knowledgeable teacher, so it is referred to as unsupervised

learning.

In some neural networks, these two modes of learning are

mixed. This type of learning is called reinforcement learning. An

external teacher indicates whether the response to an input is good

25

or bad. It is valuable to see the different goals of the two kinds of

learning. Associative learning is generally employed whenever we

are concerned with storing patterns so that they can be re-evoked

in the future. Associative learning rules are primarily concerned

with storing the relationships among sub-patterns. Regularity

detectors are concerned with establishing the "meaning" or
category associated with a single PE response. Regularity detectors

are used when feature discovery is the essential task at hand.

2.3.1 Associative Learning

Associative learning may be broken down into two subcases,

pattern-association, and auto-association. A pattern association

learning paradigm is one in which the goal is to build up an

association between patterns defined over one subset of the PE's

and other patterns defined over a second subset of PE's. The goal is

to find a set of connections so that whenever a particular pattern

reappears on the first set of PE's, the associated pattern will appear

on the second set. In this case, there is usually a teaching input to

the second set of PE's during' training indicating the desired

pattern association. An auto-association learning paradigm is one in

which an input pattern is associated with itself, or a noisy or

incomplete version of itself. The goal in this case is pattern

completion. Whenever a portion of the input pattern is presented,

the remainder of the pattern is to be filled in or completed. This

technique is similar to simple pattern association, except that the

26

input pattern plays both the role of the teaching input and the

pattern to be associated. It can be seen that auto-association is a

special case of pattern association. Fig 2.5 illustrates the two types

of learning paradigms. Figure 2.5a shows the basic structure of

pattern association. There are two distinct groups of PE's: a set of

input PE's and a set of output PE's. Each input PE connects with

output PE's and each output PE receives inputs from input PE's.

During training, patterns are presented to both the input and

output PE's. The weights connecting the input to the output PE's

are modified during this period. During recall, patterns are

presented to the input PE's and the response on the output PE's is

measured. The input patterns and the corresponding output
patterns should reflect the desired input/output pattern
relationship. Fig 2.5b shows the connectivity matrix for the pattern

associator. The only modifiable connections are from the input PE's

to the output PE's, all other connection weights are fixed at zero.

Fig 2.5c illustrates the basic architecture of an auto-
associative network. All PE's are both input PE's and output PE's.

The figure shows a group of 4 PE's feeding back on itself through

modifiable connections. Note that each PE feeds back on itself as

well as to each of its neighbors. Fig 2.5d shows the connectivity

matrix for the auto-associator. All PE's connect to all other PE's.

The weights are modifiable. In the case of auto-association,

potentially modifiable connections exist from every PE to every

other PE. In the case of pattern association, however, the PE's are

set of input units set of output units

input

units

output

units

input
units

output
units

modifiable

weights

Fig. 2.5a Pattern Association Fig. 2.5b Connection Matrix for
Pattern Association

Fig. 2.5c Auto Association

input and

output units

input and output units

all weights are

modifiable

27

Fig. 2.5d Connection Matrix for
Auto Association

Fig. 2.5 Pattern Association and Auto Association

28

broken into two subgroups, one representing the input patterns

and another representing the output patterns(that is teaching

input patterns). The only modifiable connections are those from the

input PE's to the output PE's receiving the teaching input.

2.3.2. Regularity Discovery

In the case of regularity detectors, a teaching input is not

explicitly provided; instead, the teaching function is performed by

the PE's themselves. The form of internal teaching function and the

nature of the input patterns determine what features the PE will

learn to respond to. This activity constitutes unsupervised learning.

When a stimulus pattern is presented with some probability P, the

system is supposed to discover statistically salient features of the

input population. Unlike the associative pattern learning paradigm,

there is no a prior set of categories into which the patterns are to

be classified; rather, the system must develop its own featural

representation of the input stimuli which captures the most salient

features of the population of input patterns. The units themselves

subdivide the input set into several well-defined classes. Learning

via this approach has recently been found to occur in the human

olfactory (smell) system.

29

3 DESIGN AND IMPLEMENTATION

There are many approaches to the character recognition

problem. One of the most common way is to use a preprocessor

called an invariance network. The output of the invariance network

is independent of the translation and rotation of the input patterns

to the invariance network. The output of the invariance network is

fed into a Back-Propagation network to create standard patterns

associated with input patterns. The problem with this approach is

that many processing elements are required in the invariance

network. Another approach to the problem is to design a multi-

layer Back-Propagation network having special connections from

the input layer to the hidden layer. This is the famous "T-C

problem"[16]. The problem with this solution is that when you have

a large number of patterns to classify, it is very difficult to establish

the correct connections between the input layer and the hidden

layer. The general problem is not as simple as the "T-C" problem in

which you can clearly see the solution. Several approaches to this

problem were considered. The approach used in this thesis proved

to be the most effective.

At the beginning of the research effort, a four layers(two

hidden layers) Back-Propagation network was used trying to map

the entire input pattern set into three categories. These categories

were the standard patterns for the characters 'T', "C", and "L". The

network included 36 processing elements in its input layer. Each

30

input processing element was connected to one of the pixels on the

input grid in the appropriate order. Thirty-six processing elements

were used for the first and second hidden layers. In the output

layer, we used 25 processing elements, each connected to one of

pixels on the output grid in order. A sigmoid function was used as

the non-linear transfer function for each processing element. We

trained the network using the Back-propagation learning rule. The

training patterns were presented to the neural network 5000

times. While training the neural network, the error decreased until

it reached an unsatisfactory local minimum, i.e. the whole neural

network could only output a few of desired the output patterns. We

tried changing the random weights to help the neural network

converge, and changing the number of times the training patterns

were presented to the neural network. These approaches did not

solve the local minimum problem. During the experiment, we found

some interesting properties of the network. For a processing

element in the output layer, if the desired output for this
processing element had more "1"s than "0"s in all of the training

patterns, that processing element tended to become stuck in a "1",

it would never go to a "0". For a processing element that had more

"0"s than "1"s in the training patterns, it tended to become stuck in

a "0", and the state would never go to a "1". The three desired

output patterns for the network are illustrated in the Fig 3.1. We

can see that on the output grid, the upper most row has "1"s for

pattern"T" and pattern "C", and has "0"s in the pattern "L". The

31

117:111111
UM

Fig. 3.1 Standard Output Patterns

32

upper most row of the trained network tended to become stuck in

"1"s. The same thing happened to the left most column, and the

bottom row. For the middle 3 processing elements in column 3 of

the output grid, they have "1"s in pattern"T' but "0"s in patterns"C"

and "L", so after training these processing elements tended to

become "0"s.

We presented these training patterns to the Back-Propagation

network. The result of presenting these patterns was that the

neural network produced the pattern"C". We also tried some very

simple mapping experiments involving the implementation of the

exclusive OR, which worked well. Through these experiments of

mapping we found that for simple input-output mapping, the Back-

Propagation learning algorithm works well. For very complex input-

output mapping structure, it may fail.

We also tried a Hopfield network to implement the character

recognition system. The network had 36 processing elements in

each layers. After training this network, we presented translated

and rotated input patterns to the trained network. As we expected,

the trained network could only recall some of the patterns. The

problem with this neural network is that it's capacity was too small.

Experiments showed by Hopfield that the number of pattern it can

store is less than 0.15 times of the processing elements in the

input layer[8]. So for a neural network with .36 processing elements

it was only possible store 5 patterns. We need to use approximately

300 processing elements to recognize 48 exemplars. There is no

33

way that the Hopfield network of this size could classify those

rotated, translated input patterns.

3.1 System Overview

The objective of this thesis is to design a neural network-

based English text classifier system. The input set to the neural

network will be patterns representing the letters L, C, and T. Dark

areas in the patterns will be represented as logical "1" values, and

light areas in the patters will be represented as logical "0"'s. We will

allow rotation and translation of these patterns within the field of

view. This is illustrated in Fig. 3.2. We will therefore expose the

network to many views of the same pattern. In addition noise will

be added to these patterns. The neural networks under

consideration will be able to recognize the characters which are

presented to their inputs under the above specified conditions and

produce outputs indicative of the characters thus applied. This

activity is illustrated in Fig. 3.3. Two different types of neural

network classifiers will be examined in the thesis; a classifier

which employs the back-propagation network algorithm and one

which employs a Hamming network algorithm. The merits of each

of these algorithms will be presented.

A grid system is used in characterizing the pixel levels (dark

or light) for all input patterns. The grid is composed of a 6 by 6

pixel array. All input patterns can be created using this grid. The

input pixels may take on the value +1 (logical "1") for black pixels

34

E MIME NM ENNE MIME EM ENE
MENU ME E N E

MEE

ENNEUrnEENEMENUS

MIME

MEME
MENMMEMUM.

Fig 3.2 Noisy and Rotated Input Patterns

35

>

/
Neural

Network

Classifier

Fig. 3.3 Structure of Character Recognition System

36

and -1 (logical "0") for white pixels. Each pixel value is applied to

one of the processing elements in the input layer. The order of

application is illustrated in Fig. 3.4.

3.2 Design Environment

The neural networks described in this thesis were designed

with the help of a neural network simulation package. The

simulator, called "Neural Works" was developed by Neural Ware Inc.

It is used by people who wish to design, develop, and test neural

networks for specific applications. The software currently runs on

IBM PC's, Macintoshes, and SUN workstations, and the NCUBE

parallel processor. The applications may be run, after development,

on the Neural Works simulator directly, or ported to an external

high-performance computer. Many different kinds of neural

network can be designed with help of Neural Works. The simulator

allows you to specify neural network topology, the characteristics of

each processing element, to set initial connection strengths or

weights, and to specify the learning rule to be utilized. We can also

train neural networks via supervised and unsupervised learning

techniques, using Neural Works. Finally the trained neural networks

can be tested to determine if the network is functioning correctly.

3.3 Neural Networks and Traditional Classifiers

Block diagrams of traditional and neural network-based

classifiers are presented in Fig. 3.5. Both types of classifiers

37

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Fig. 3.4 Input Data Grid

38

Parameters
from training
data

Input Output
symbol symbol

Compute
matching
scores

*
*

Intermediate
scores

Select and
enhance
Maximum

))

Outputs

*

Adopt weights

Learning
rule

Fig. 3.5 Comparision of Traditional and Neural Network Classifiers

39

determine which of several possible classes is most representative

of an unknown input pattern.

The traditional classifier contains two stages. The first stage

computes how well the inputs match the patterns stored within the

classifier. The second stage elements select among first stage

outputs having the maximum performance in their own class.

Inputs to the first stage are symbols representing values of the

input elements. These input symbols are entered sequentially and

decoded from external symbolic form into an internal

representation useful for performing arithmetic and symbolic

operations. A classification algorithm computes a matching score

for each of the classes which indicates how close the input pattern

matches the exemplar or idealized pattern for each class. This

exemplar pattern is that pattern which is most representative of

each class. Matching scores are coded into symbolic

representations and passed sequentially to the second stage of the

classifier. Here they are decoded and the class with maximum

score is selected. A symbol representing that class is then sent out

to complete the classification.

A generalized neural network-based classifier is shown in the

Fig. 3.5. In this classifier input values are fed in parallel to the first

stage via input connections. Each input connection receives an

input value which may take on one of two possible binary values, or

the input may vary continuously over a large range of values. The

first stage computes a matching score and passes these scores to

40

the next stage. In the second stage, these values are evaluated and

the maximum values enhanced. The final stage has one output for

each of the output classes. After classification is complete, only that

output corresponding to the most likely class will be in a high state;

other outputs will be low. Note that in this design, outputs exist for

every class and that this multiplicity of outputs must be preserved

in further processing stages as long as the classes are considered

distinct.

The neural network classifiers in Fig. 3.5 can perform three

different tasks. First, they can identify which class best represents

an input pattern, where it is assumed that inputs have been

corrupted by noise or some other process. This is a classical

decision theory problem. Second, the classifier can be used. as a

content-addressable or associative memory, where the class of the

exemplar is the desired output and the input pattern is used to

determine which exemplar to produce. A content-addressable

memory is very useful when only part of the input pattern is

available and the complete pattern is required. It can retrieve the

original pattern from partial information. A third task that these

classifiers can perform is to vector quantize or cluster the inputs

into output clusters. Vector quantizers are used in image and

speech transmission systems to reduce the number of bits to be

transmitted. In speech and image recognition applications they are

used to compress the amount of data that must be processed

without losing important information.

41

3.4 A Framework for System Design

We begin the discussion with a consideration of the input

exemplars. The grid we are using for input patterns is composed of

6*6 pixels, We use 5 pixels for each segment of the letters C, L, T.

If no noise is mixed with the input patterns, there exist 48 possible

input patterns. The number 48 may be calculated as follows: We

may move any input pattern upward; downward; right or left, and

we can also turn these patterns by 900; 1800; 270°. The total

number of permutations involved in this process is 48. See Fig. 3.6.

The character recognition system is composed of two neural

networks in series as shown in the Fig. 3.7, the first neural network

(Hamming Net) performs pattern matching activates on the inputs.

The connection weights of the Hamming net are determined using

the input patterns and the desired output patterns during a "one

shot learning" process.

The Hamming net first calculates what is referred to as a

"matching score". The matching score indicates the Hamming

distance of the input from the 48 possible exemplars. The

exemplar with the shortest Hamming distance from the input has

the highest matching score. These 48 outputs are then fed into the

second neural network, a back-propagation net. Only one of these

outputs are active at any time. The back-propagation network then

retrieves a standard pattern corresponding to the original 5*5

input pattern, and presents this pattern at its output terminals.

M
MIMEO

MEN
MEN
EE

MEN
E NE
MENE

N NE
MEN
E NE

NN
ENE

EMM
OONS

NNN
EN

ENNEENEMM
MIMEO

MEN
ENENEMUM

N OME
MN MEN
MN MEN
MEN M M

OMENEN
M N
ENE

MENEE
MEN

MEOE
NOMENEENE

E MMENENMIME
MMEN

MONO
ENE.
MONONEN
NEON

m
MEMO
OMENME

NNE
N NE NM

NM
EN

MEN MN

ENEN
UNE

MENNE

MEN.
MEN
N NE
E NE
MEN

EMEOEME E
MEMO

MUM
MINN
N EON
O MENME

ME E
ME
N E MUM
N M MENM
E EENE

MMEE
E NNUI

ENENENE

O MEN
m

OMEN
MEMOO

EMNEEENENEME
N OMMEN

ME
MENEMMMNEE

E OM ME
ON NME NM

MEN OME

ENEOEN
OMEN

m ENEN
MEMO

MENNs
MUNN

NNEM
MNON

9 . 1 0

E
MEN
N NE
N NE

OMM

ENMOM
O MEN.
EMEMEM

MIMEO
N UM
O MEN
O MENE

NEMNEN
MINIM

N M EM
N M MEN
N M
N M EM

si
EMNO

ON
MOM.
E NE'
MENU
N EON

.us .1

MEN
ENMENENE

MEMOEOEEN
mNEM
N OMENMEMNEM

NEONEEN
NEONMINIM

N IEME
E NM

MEN NM
MEN MNN MN

EM NM
NM

E NE MNE NM
E MMEN

OMMEE
O MEN.

E
MEN

*

input
*rIIIMi>

Hamming
Network

IMI)

011101)

Back
Propagation
Network

43

output

Fig. 3.7 Structure of the Character Recognition System

44

Following the testing of the character recognition system for

basic functionality, we then feed the original input patterns, after

having been corrupted by noise, back into the character recognition

system. The task for the internal Hamming network is to filter out

the noise in the input patterns and correctly produce one of 48

possible input exemplars to be applied to the back-propagation

network. When a noisy input pattern is fed to the Hamming net, the

network calculates the Hamming distance of the input pattern from

the 48 exemplars. Again, whichever exemplar has the shortest

Hamming distance from the noisy input pattern will be chosen as

the output. The exemplar output of the Hamming net is then fed to

the input of the back-propagation network. This network classifies

all the exemplars of a particular letter into a specific category and

produces a standard pattern output for this letter. The same

process applies to all of the letters to be recognized

The output of the system is a 25 bits pattern corresponding

to the 5*5 pixel array. The standard output patterns for letter C, L,

T are shown in Fig. 3.1. Each time one of the 16 possible exemplars

for a specific letter is fed to the back-propagation network, the net

will produce a standard output pattern for that letter.

In summary, when a 36 bit pattern corresponding to a

particular letter (rotated or translated within the field of view, or

mixed with noise) is fed into the neural network classifier system,

the system produces a standard pattern for that letter.

45

3.5 The Design of a Hamming Network Classifier

For the first stage of the neural network classifier, we

implemented a Hamming network. A Hamming network

implements a minimum error classifier for binary vectors where

error is defined using Hamming distance. In a minimum error

classifier, classes are defined by means of exemplar vectors.

Exemplar vectors contain those +ls and -ls that represent a

particular exemplar. Input vectors are then assigned to the class for

which the Hamming distance between the exemplar vector and the

input vector is minimum. Hamming distance is a way of measuring

the distance between two binary vectors and is defined as the

number of bits in the input vector which do not match the

corresponding bits in the exemplar vector. In this project, we have

48 exemplars. So the Hamming network classifies all inputs into 48

different categories. An unknown input vector is assigned to the

category whose exemplar is closest in Hamming distance to the

input vector.

3.5.1 Network Topology

A Hamming network consists of two subnets, the first subnet

is composed of two layers of processing elements which are fully

connected. The second subnet also consists of layer of processing

elements. These processing elements function in a competitive

manner and perform a "winner-takes-all" function. In this layer, the

output of each processing element is fed back to all other

46

processing elements via equal weights as illustrated in Fig. 3.8. This

layer is called category layer.

3.5.2 Network Learning Algorithm

The 3-layer Hamming network used in this project has 36

processing elements in its input layer corresponding to the 36

pixels in the input grid. It has 48 processing elements in both the

category layer and output layer corresponding to the 48 exemplar

vectors. Each processing element in the category layer represents a

different classification category as represented by exemplar vector

which is encoded in the weights on its incoming connections.

These weights are set in the one-shot learning phase as follows:

let

xi= (x1,xi2, x136) j=1, 2 48

be the 48 exemplar vectors used to define the categories. We

assume that the components xji of xi take on the values +1 and -1

where +1 represents a black pixel and -1 represents a white pixel.

Then the learning phase consists of setting the weights to be

wji = / 2.0 = 1, 2, . . . 36, j = 1, 2 . 48 (1)

w10 = 36 / 2.0 j = 1, 2, . . ., 48

where wij is the weight on the connection from processing element

i in the input layer to processing element j in the category layer,

and w10 is the weight on the connection from the bias which is a

constant input to the processing element j in the category layer.

Fig. 3.8 Hamming Network.

47

48

The weights are set up this way during one shot learning, and

will not be changed during use. It will soon become apparent why

the weights are set up in this manner.

During use, when an input vector is presented at the input

layer of the system, the input vector is processed through these

weighted connections from the input layer to the category layer in

the standard way, and combined with the bias term to produce the

following input to processing element j in the category layer:

Ii = Dwtix,)
j=1, 2 48 [3)

where

x = X2 X36)

is the input vector which, like the exemplar, has components

which take on values -1 and +1.

From equations 1, 2, and 3, we have

= 1/24{Lxitx1)4- 36) j =1, 2, . . . , 48

Since xi' and xi only take on the values -1 and +1, equation 4 can be

rewritten as

Ij= 1/2 * (Nai Ndi + 36) j = 1, 2, . . ., 48 (5)

where Nai is the number of bits where x and xj agree, and Ndi is the

number of bits where x and xj disagree. Note that

N = Nai + Ndi j = 1, 2, . . . 48

so equation 5 can be rewritten as

Ij = 1/2 * (Nai - (N - Nai) + N)

49

= Nai [61

= N - Ndi j = 1, 2, . . . 48 [7]

Equations 6 and 7 say that the bottom-up connection between the

input layer and the category layer calculates N minus the Hamming

distance or, equivalently, the number of bits for which the input

vector and exemplar vector agree. Every time an input pattern is

presented at the input layer, this information is processed through

the weighted connections between the input layer and the category

layer. The summed input to each processing element j in the

category layer is equal to 36 minus the Hamming distance between

the input vector and the exemplar j.

The transfer function for processing in the category layer is

the perceptron transfer function Tp:

Tp (I) = I if I > 0 (8)

Tp (I) = 0 if I<= 0

This processing activity implies that the processing element with

the largest initial state will be the one whose exemplar has the

smallest hamming distance to the input pattern.

For the second subnet of the Hamming network we use a

competitive layer in which the processing element which has the

largest initial state will win out, becoming active, and the other

processing elements in the same layer will become inactive. This

architecture can be implemented in an interactive way through

lateral connections in the category layer, as shown in Fig. 3.8. Each

processing element in the category layer is laterally connected to

50

every other processing element through a weighted connection

having a fixed strength pvi where v and j are v th and j th

processing elements in the category layer. These weights are set up

as follows

pvj = 1.0 v = j

Pvj = e v <> j 0.0< e < 1/48

in this way, the output of the processing element with the largest

initial state will remain relatively high, and the output of other

processing elements will be become lower. At the end of the

process, just one of the categories will be active (high), that is,

having a non-zero output.

We now describe this process mathematically, and we will

show how the competition through lateral inhibition evolves. Let us

assume that yj(t) represents the output of processing element j in

the category layer at the t th iteration of the competition. From

equation 8, the category layer is initialized as:

yi(0) = Tp(Ii)

After initialization of the category layer, the input is removed from

the category layer, so that the category layer can iterate, without

the influence of the input, until stabilization occurs. The output of

processing element j at the t th iteration is :

yi(t)= Tplyi(t 1) ely,,(t1))
vsJ

This equation shows that, after some number of iterations,

the network can converge to a stable state where only one

51

processing element in the layer is active. This processing element

is the one which has the largest initial state, and also corresponds

to the exemplar that has the shortest Hamming distance to the

input vector.

In addition, an output layer exists which is connected to the

category layer. We set these connection weights to 1.0. Each

processing element in the output layer uses a step function as its

transfer function. The processing elements in the output layer

therefore only take on the values 1 and 0.

3.5.3 Network Information Capacity and Fault Tolerance

The information capacity of a network is defined as the

number of patterns it can store internally. These patterns may be

defined in terms of the set of connection weights. We assume there

are N processing elements in the input layer of a Hamming

network, and there are M processing elements in its category layer.

It can store up to 2N patterns when M= 2N. But in practical use

there are constraints that prevent us from implementing this full

set. In the example under consideration, we need to have enough

pixels to represent an input pattern. This means we must have

enough input processing elements to represent the pattern, but we

are not required to consider the full set of possible patterns.

Another important fact is that once you store an excessive number

of patterns in a Hamming network, it will lose one of the important

advantage of neural network, fault tolerance. If, for example, we

52

store 2N patterns for N input processing elements, and if one bit in

a pattern has been changed by noise, the system will consider this

pattern as another unique pattern, not the pattern you want. In

general it is suggested that all the patterns to be classified have a

non-minimum Hamming distance between each other.

3.6 The Design of a Back-Propagation Network Classifier.

For the second part of our neural network classifier, we use a

back-propagation network. A back-propagation neural network

classifies the output of Hamming network into 3 categories. They

are standard pattern for letters 'C"L"T. We know that there are 48

exemplars coming from the Hamming network, 16 exemplars for

each letter pattern. What it does for the back-propagation network

is to classify 16 exemplars for each letter pattern into a some group

and output a standard pattern for that letter.

3.6.1 Network Topology

The back-propagation network, illustrated in Fig. 3.9 is a feed

forward, multi-layer network. It has an input layer, an output layer,

and at least one hidden layer. There are no theoretical limits on the

number of hidden layers, but typically one or two are utilized.

Research work has indicated that a four layer back-propagation

network containing two hidden layers can solve any arbitrarily

complex input-output mapping [81. In this network, each layer is

fully connected to the layer adjacent to it. The arrows in Fig. 3.9

53

output layer

hidden layer 2

hidden layer 1

input layer

Fig. 3.9 Multi-Layer Back-Propagation Network

54

indicate the flow of information in the network. Although it can not

be proven that the back-propagation algorithm will always

converge, they have been proven to be successful for many

problems of interest.

The capabilities of multi-layer back-propagation networks

stem from the non-linearities used within each processing

elements. If these processing elements are linear, then a single-

layer network could exactly duplicate those calculations performed

by any multi-layer network. The non-linearities help provide feature

detection capabilities in what is know as "weight space" that would

be otherwise unobtainable.

The back-propagation network designed for this application

has three layers. There are 6 linear processing elements in its

input layer, 6 non-linear processing elements in its hidden layer,

and 25 non-linear processing elements in its output layer. These

layers are fully connected. The connection weights in the network

are adapted or modified during the learning or training period.

Techniques for modifying these weights will be discussed in a later

section. The connections between the input layer of the back-

propagation network and output layer of the (previous) Hamming

network are connected in a special way. The first 16 processing

elements of the output layer of the Hamming network are fully

connected with the first 2 processing elements of the input layer of

the back-propagation network. All the connection weights are set

to one. These connections will not be changed during learning.

55

Identical connections were utilized in rest of the network, as

illustrated in Fig. 3.10.

Whenever the weighted sum at the inputs to one of the

processing elements in the input layer of the back-propagation

network is greater then one, then the processing element output is

a one. In this way, whenever one of the processing elements in the

output layer of the Hamming network is active high, it will cause

two processing elements in the input layer of the back-propagation

networks to produce a logical one output.

With this connection scheme, all 16 possible exemplars for a

given letter are classified into one unique category. Note that

redundancy has been deliberately included in the design of the

input layer of the back-propagation network, to achieve some level

of fault tolerance.

3.6.2 Network Learning Algorithm

The back-propagation network used in this project has three

layers, this is to assure the correct mapping of all inputs into 25

outputs with 3 possible output categories corresponding to the

letters C,T, and L. Theory indicates that a network without a

hidden layer could only classify those inputs that are linearly

separatable [9].

Each output processing element connects to a pixel in the

output grid in order to show the standard image of the input letter

pattern.

P"1

p'l

56

4111 "21 "30

V41*..f.,,...,,
li1 "01.-m,..:,....-....

Lw irA 7-47-,
p"25

ofr :fr PA .0 4%
pl

of o16 o17 o32 o33 o48

P Represents Processing Elements in the Input Layer of B-P Net

P' Represents Processing Elements in the Hidden Layer of B-P Net

P" Represents Processing Elements in the Output Layer of B-P Net

o Represents Processing Elements in the Output Layer of Hamming Net

Fig. 3.10 Connection Between Back-Propagation and Hamming Network

57

3.6.2.1 Overview of the Back-Propagation Algorithm

As discussed above, a multi-layer network can solve complex

input-output mapping problems. A fundamental question regarding

such a network is "How can the weights of the network be adjusted

such that we achieve the desired mapping? This constitutes the

"credit assignment" problem. The back-propagation training

algorithm was the first neural network algorithm to solve this

problem and is a generalization of the LMS(least mean square)

algorithm. The training algorithm uses gradient search techniques

to minimize a cost function equal to the mean square difference

between the desired outputs and the actual net outputs for. a

particular training or input set. It assumes that all processing

elements and connections are somewhat responsible for an

erroneous output. Responsibility for the error is affixed by

propagating the output error backward through the connection to

the previous layer. Weights are modified in this layer as a result of

the error propagation. This process is repeated until the input layer

is reached and all appropriate weights are modified. Repetition of

the algorithm occurs until the overall error in the network is

reduced below some desired minimum value. This process

constitutes a major breakthrough in neural network research.

To avoid confusion, a clear notation is need for describing the

learning rule. A standard processing element for a back-propagation

network is illustrated in Fig. 3.11. We use a superscript in square

brackets to indicate the layer of the network being considered.

xi,t9-ii

Fig. 3.11 Structure of Processing Element

58

59

: current output state of j th neuron in layer s.

wiiisi : weight on connection joining i th neuron in layer (s-1)

j th neuron in layer s.

: weighted summation of inputs to j th neuron in layer s.

A processing element transfers its input as follows:

xj(s} = f(E(witisl*x,Is-11))

=

where f can be a any differentiable function.

3.6.2.2 The Global Error Function

The aim of the training process is to minimize the global

error of the system by modifying the weights. It is useful to define a

global error function, E. This global error function is defined as the

collective error at the output layer for a complete training set

applied to the inputs to the network. The back-propagation

network back propagates this error to modify the connection
weights. Suppose a vector i is fed into the input layer of the back-

propagation network, and suppose the desired output d is provided

by a teacher. Let o denote the actual output produced by the back-

propagation network with its current set of weights. Then a

measure of the error in achieving that desired output is given by:

E = 0.5* Ip(dk -002)

60

where the subscript k indexes the components of d and o. E
defines the global error of the network for a particular pattern.

3.6.2.3 Back-Propagation of the Local Error

Suppose, we have a global error function E. We define a new

parameter eifsi :

eils1= aE/aqs)

This is a critical parameter that is passed back through the layers of

the network. The chain rule gives us a relationship between the

local error at a particular processing element at level s and all the

local error at the level s+1

e
J
is1= V(II8))*X(e kEs+11*w 19+1))

k kj

As described before f can be any differentiable non-linear

function. Here we use a sigmoid function. A sigmoid function is

defined as:

f(z) = (1.0 + e-z)-1 e = 2.718 ...

so its derivative can be expressed as a simple function of itself :

f'(z) = f(z)*(1.0 f(z))

Therefore we have:

ei,s1= 'CEP* (1. 0 ICEP (ern * W1Z+1))

The summation term in the equation which is used to back-

propagate errors is analogous to the summation term which is used

to forward propagate the input through the layers to the output

61

layer. So the basic mechanism of back-propagation network is to

determine the error between the actual output and the desired

output, and then propagate the error back through the network

from the output layer to the input layer, modifying the weights in

proportion to the error at each level.

3.6.2.4 Minimizing the Global Error by Modifying Weights

Given the current set of weights and a global error

function E, it is necessary to determine how to decrease the global

error by changing the weights. This can be done by using a gradient

descent rule as follows:

AwiiEs1 = (agawiiEsi)

Where c1 is a learning coefficient. This rule causes the weights to

change according to the size and direction of the gradient on the

error surface. The partial derivative in the equation can be

calculated directly from the -local error and the input to that

processing element.

aE/aw.ii[s] =0E/ai,[8])*(ai,[8]/awEs])

= e 18)*x 18-13

Combining these , we have:

Aw J1181 = c
1
*e ial*x 1(1"i

3.6.2.5 Summary of the Back-propagation Learning Algorithm

62

1. It will be assumed that all processing elements utilize a

sigmoidal (nonlinear) transfer function.

2. All weights and offsets for each processing element are to

small random values between -0.1 to +0.1.

3 An input vector x1, x2, . . . xn is presented to the network. The

corresponding desired outputs do, d1, . . . dn. are defined.

4. The actual outputs of the network. 01, 02, . . . on are calculated.

5 A recursive algorithm (starting at the output processing

elements and working back to the first hidden layer) is utilized to

adjust the weights. The weights are adjusted by:

wji(t +1)= wii(t) + ci*e*xi

where:

a wii(t) is the current weight from a hidden processing

element i or from an input processing element to processing

element j.

b. wji(t +1) is the updated weight of the same connection. ci is

the gain term or learning coefficient. xi is the input to processing

element j or the output of processing element i.

c. e is the error term for processing element j. If processing

element j is an output processing element, then :

ej= oi(1- oj)(dj- oi),

d. of is the actual output of processing element j of output layer,

di is the desired output for processing element j of the output layer.

If processing element j is an internal hidden processing element,

then:

63

e
J

= x
J
(I x ,w

where i is over all processing elements in the layer above
processing element j. We can see from here that the error for an

internal hidden processing element can be calculated from all the

error terms in the above layer, as they are back-propagated through

the connection weights.

6. The process is repeated until the desired error measure is

achieved.

3.6.2.6 Back-Propagation Momentum Term

One of the important aspects of learning in back-propagation

networks is to set up a proper learning rate. If the learning rate is

too high, the error may oscillate wildly and never converge to an

acceptably small value. If the learning rate is too low, the network

will require excessive time to converge. The learning rate is

determined by the learning coefficient cl. If it is assumed that the

error surface is locally linear, this keeps learning coefficient small.

Small learning coefficients can lead to very slow learning process.

In order to improve the time performance of the algorithm and still

maintain stability, a momentum term is often introduced into the

equation for learning. The learning equation is modified by adding a

portion of previous weight.

wii(t+1)= Wji(t) + ci *ej *xi +c2(wil(t) wii(t-1))

where 0< c2 < 1

64

This makes the learning process faster. In our simulations, c1 was

set to 0.9, and c2 was set to 0.6. The resulting simulation had

acceptable performance.

3.7 Simulation Results

The complete neural network classifier was simulated using

Neural Works. We first defined the network topology using

Neural Works, set up the parameters for each processing element,

and defined the required learning rules. It was then necessary to

train the system, or allow the system to learn about the input data.

The Hamming Network used the one shot learning algorithm

described earlier. After learning is complete, no parameters in the

Hamming Net are allowed to change. The input learning file for the

Hamming Net is shown in Appendix A. During recall, the input

pattern is applied to the trained network. This input pattern

consists of the character under consideration after translation,

rotation, and/or corruption by noise. When an input pattern is fed

to the Hamming Net, the network will output the exemplar that has

the least Hamming distance from the input pattern. Test results

associated with this process are shown in Appendix B.

The second network in the system, a back-propagation

network, was trained using 9 different input patterns. The desired

outputs from the net were also presented at the same time. The

patterns were applied to the network input repetitively during

training. When the output patterns showed no errors, training was

65

stopped, and convergence was achieved. Approximately 500

training cycles were required to achieve zero output errors. The

learning curve for the back-propagation network is shown in Fig.

3.12. The actual outputs from the Hamming network were then

applied to the back-propagation network to test the network. The

correct output pattern was obtained from the back-propagation

network in all cases. Test results for the back-propagation network

are illustrated in Appendix C.

66

Fig. 3.12 Learning Curve for Back-Propagation Network

67

4 CONCLUSIONS

4.1 Concluding Remarks

We have designed a neural network classification system

specialized to perform character recognition. The neural network

classifier implements quite different algorithms comparing with

the ordinary pattern recognition algorithms. The system consists

of 169 processing elements distributed in 6 layers, with two

different learning algorithms implemented in the two internal

neural networks. This neural network classifier was functionally

simulated using Neural Works. The results are quite encouraging.

The system worked quite well. It also provided a limited amount of

fault tolerance.

Although we did not physically implement the neural network

classifier in hardware, it is believed that its processing speed

exceeds conventional hardware or software implementations for

pattern recognition. The reason for this is that a high degree of

parallelism is incorporated in the algorithms which, when reflected

in a hardware realization, should provide very high performance.

This project also indicates that neural networks may well

have great potential in the fields of speech and pattern recognition

and in other area where a large amount of information need to be

processed in parallel.

68

4.2 Future Considerations

The work started in this project should be continued.

Specifically, analog VLSI implementation technology should be used

to implement a classifier such as this on a silicon chip. Secondly,

we need to investigate more powerful and flexible learning rules

instead of the elementary back-propagation learning rule for the

training of multi-layer neural networks. Although the back-

propagation learning rule is considered successful in the research

community, there is no guarantee that it will always lead to a

correct input-output mapping. Some time the learning rule can

lead a neural network into a local minimum in weight space instead

of of a global minimum. This may cause the neural network to

provide incorrect or at best, suboptimal results.

Finally, it is obvious that more powerful neural network

simulators capable of running on parallel machines will be

necessary in the future for similar research.

69

BIBLIOGRAPHY

[1] "An Introduction to Neural Computing", Neural Works,

P13-P28 Neural Ware, Inc 1988.

[2] W.S. McCulloch, and W. Pitts, "A Logic Calculus of the Ideas

Imminent in Nervous Activity," Bulletin of Mathematical

Biophysics, 5, 115-133, 1943.

[3] "An Introduction to Neural Computing", Neural Works,

P347-P366 Neural Ware, Inc 1988.

[4] "An Introduction to Neural Computing", Neural Works,

P170-P172 Neural Ware, Inc 1988.

[5] B. Widrow, and M.E. Hoff, "Adaptive Switching Circuits", 1960

IRE WESCON Cony. Record, Part 4, 96-104, August 1960.

[6] J. J. Hopfield, "Neural Networks and Physical Systems with

Emergent Collective Computational Abilities," Proc. Natl.

Acad. Sci. USA, Vol. 79, 2554-2558, April 1982.

[7] "An Introduction to Neural Computing", Neural Works,

P438-P465 Neural Ware, Inc 1988.

[8] R P. Lippmann, "An Introduction to Computing with Neural

Nets" , IEEE ASSP Magazine April, 1987.

[9] B. Widrow, R. Winter, " Neural Nets for Adaptive Filtering and

Adaptive Pattern Recognition" IEEE, Computer Magazine,

March, 1988.

70

[10] M. Hosokawa, " A new approach for pettern recognition with

scramblers", International Joint Conference on Neural

Network, 1989, 1183

[11] W. E. Weideman, " A comparision of nearest neighbor

classifier and a neural network for numberic handprint

character recognition", International Joint Conference on

Neural Network, 1989, 1117

[12] K. Yamada, " Handwritten numberal recognition by a multi-

layer neural network", International Joint Conference on

Neural Network, 1989, II 259

[13] H. Y. Lee, " Handwritten letter recognition with neural

network",International Joint Conference on Neural Network,

1989, II 618

[14] Wuhan Univ.," A model for chinese word recognition in neural

network", International Joint Conference on Neural Network,

1989, II 619

[15] D. E. Rumelhart, J. L. McClelland "Parallel Distributed

Processing", MIT Press, 1987, P77-P110

APPENDICES

71

APPENDIX A

TRAINING FILE FOR THE HAMMING NETWORK

This is the training file for hamming net. It has 6*6 inputs and has

48 outputs. In the file, i represents training input, d represents

desired output, "1." represents a logical"1", and " -1." represents a

logical"0".

i 1. 1. 1. 1. 1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1.

-1. -1. -1. -1. 1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

d 1.

i -1. 1. 1. 1. 1. 1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1.

-1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. -1. -1. -1.

d O. 1.

i -1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. -1. -1. 1. -1. -1. -1. . -1. 1. -1.

-1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1.

d O. O. 1.

I -1. -1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. -1. -1. 1. -L -1. -1. -1. -1. 1.

-1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1.

d O. O. O. 1.

i -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. 1. 1. 1. 1.

1. -1. -1. -1. -1 -1. 1. -1. -1. -1. -1. -1. 1. -1.

d 0. 0. 0. 0. 1.

i - 1 . - 1 . - 1 . - 1 . 1 . - 1 . - 1 . - 1 . 1 . - 1 . 1 . - 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .

1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. -1. -1.

d O. O. O. O. O. 1.

72

i -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. 1. 1.

1. 1. 1. -1. -1. -1. -L -1. 1. -1. -1. -1. -1. -1. 1.

d O. O. O. O. O. O. 1.

i -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1.

-1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. -1.

d O. O. O. O. O. O. O. 1.

i -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -L -1. -1. -1. 1. -1. -1. -1. -1. -1. 1.

-1. -1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1. -1.

d O. O. O. O. O. O. O. O. 1.

1-1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1.

1. -1. -1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1.

d 0. O. O. O. O. O. O. O. O. 1.

i -1. -1. -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1.

-1. -1. -1. -1. -1. 1. -1. -1. -1. 1. 1. 1. 1. 1. -1.

d O. O. O. O. O. O. O. O. O. O. 1.

i -1. -1. -1. -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1.

1. -1. -L -1. -1. -1. 1. -1. -1. -1. 1. 1. 1. 1. 1.

d O. O. O. O. O. O. 0. O. O. O. 0. 1.

i -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. 1. 1. 1.

1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1.

d O. O. O. O. O. O. O. O. O. O. O. O. 1.

i 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. 1. -1. -1. -1.

-1. -1. 1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

d O. O. O. O. O. O. O. O. O. O. O. O. O. 1.

73

i -1. -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. 1.

1. 1. 1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1.

d O. O. O. O. O. O. O. O. O. O. O. O. O. O. 1.

i -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. 1. -1. -1.

1. -1. -1. 1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

d 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.
i 1. 1. 1. 1. 1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1.

-1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1. -1.

d 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.
i -1. 1. 1. 1. 1. 1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1 -1. -1. -1. 1. -1. -1.

-1. -1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1.

d0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.
i - 1 . 1 . - 1 . - 1 . - 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . - 1 . 1 . - 1 . 1 . - 1 . 1 . 1 . - 1 . - 1 .

-1. -1. 1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1.

d 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.
i -1. -1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. 1. -1. -1. 1. -1. -1. 1. -1. -1.

-1. -1. -1. 1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1.

d O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. 1.

i -1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1. -1.

1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1. -1. 1. -1.

d0.1.
i1. 1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1. -1. 1.

-1. 1. -1. -1. -1. 1. -1. -1. -1. -1. -1. -1. -1.

d O. 1

i -1. -1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1.

74

-1. 1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1. -1. 1.

d O. 1.

1-1. 1. 1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1. -1.

1. -1. 1. -1. -1. -1. 1. -1. -1. -1. -L -1. -1.

d O. 1.

i1. 1. 1. 1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1.

1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1. -1.

d O. 1.

i -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. 1. -1. '4. -1. -1. -1. 1. -1. -1. -1. -1.

1. 1. -1. 1. 1. 1. 1. 1. -L -L -1. -1. -1. -1.

d O. 1.

i -L -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. -L -1. -1. -1. 1. -1. -1. -1. -1. -1.

1. -1. -1. -1. -1. -1. 1. -1. 1. 1. 1. 1. 1. -1.

d O. 1.

i -1. -1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. 1. -L -L -1. -1.

1. 1. -1. -1. -1. -1. -1. 1. -1. 1. 1. 1. 1. 1.

d O.

1.

i -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1.

1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 1. 1. -1.

d O. O. 0. O.

0. 1.

i 1. -1. -1. -1.. 1. -1. 1. -1. -1. -.1. 1. -1. 1. -L -I. -1. 1. -1. 1. -1. -1. -1.

1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1. -1.

75

d O.

O. O. 1.

i -1 . -1 . -1 . -1 . -1 .- 1 .- 1 . 1 . -1 .- 1 .- 1 . 1 .- 1 . 1 . -1 .- 1 .- 1 . 1 .- 1 . 1 .- 1 .

1. -1. 1. -1. 1. -1. -1. -1. 1 . 1 . 1.1. 1. 1. 1.

d O.

0.0.0. 1.
i -1. 1. -1. -1. -1. 1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1. -1. 1. -1. 1. -1. -1.

-1. 1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1.

d O.

O. O. O. O. 1.

i 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1.

1. -1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1. -1.

d0.
O. O. O. O. O. 1.

i -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1.

1. -1. -1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1.

d O. 0.0. O.

O. O. O. O. O. O. 1.

i -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1.

-1. -1. -1. 1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1.

d O. 0.0. O. 0.0.0. O. O. 0.0. O. O. 0.0. O. O. O. 0.0. O. O. 0.0. O. 0.0.

O. O. O. O. O. O. O. 1.

i -1. -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1.

-1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1.

76

d O.

0. 0. 0. 0. 0. 0. 0. 0. 1.

i -1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1.

-1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1.

d O.

0. 0. 0. 0. 0. 0. 0. 0. 0. 1.

i -1. -1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1.

1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1.

d O.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.

i 1. 1. 1. 1. 1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1.

1. -1. 1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.

d O.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.

i -1. 1. 1. 1. 1. 1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1.

1. -1. -1. 1. -1. -.1. -1. -1. -1. -1. -1. -1. -1. -1.

d O.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.

i 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1.

1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. -1. -1.

d O.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.

i -1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1.

1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1.

77

d O.

O. O. O. O. O. O. O. O. O. O. O. O. O. O. 1.

i -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1.

-1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. -1.

d O. O. O. O. O. O. O. O. O. O. 0. O. O. O. O. O. O. O. O. O. O. O. 0.0. O. O. O.

O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. 1.

i -1. -1. -1. -1. -1. -1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1.

-1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1.

d0.
O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. 1.

i -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1.

-1. 1. -1. -1. -1. -1. -1. 1. -1. 1. 1. 1. 1. 1. -1.

d0.0.0.0.0.0.0. 0.0.0.0.0. 0.0.0.0.0.0. 0.0.0.0. 0.0. 0.0.0.

O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. 1.

i -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1.

-1. -1. 1. -1. -1. -1. -1. -1. 1. -1. 1. 1. 1. 1. 1.

d O. O. O. O. O. O. O. O. O. 0.0. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. 1.

i -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1.

-1. 1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1. -1.

d0.
O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. 1.

i -1 . -1 . -1 .- 1 .- 1 . 1 . -1 . -1 . -1 .- 1 .- 1 . 1 . -1 . -1 . -1 .- 1 .- 1 . 1 . -1 .- 1 .- 1 .

-1. -1. 1. -1. 1. 1. 1. 1. 1. -1. -1. -1. -1. -1. -1.

78

d O.

O. 1.

APPENDIX B1
TEST RESULTS FOR THE HAMMING NETWORK

Input Patterns Output

I I IC I / 0

'C'/90

'C'/90

L I I 'C'/270
1

1 1_1___M

Input Patterns

MM
MN II

1111

'C'/O Indicates Letter 'C' Without Rotation
'C'/90 Indicates Letter 'C' With 90 Degree Rotation
'C'/180 Indicates Letter 'C' With 180 Degree Rotation
'C'/270 Indicates Letter 'C' With 270 Degree Rotation

79

Output

'C'/180

'C'/O

'C'/O

'C'/270

11111
11111111011
111111

APPENDIX B2
TEST RESULTS FOR THE HAMMING NETWORK

Input Patterns

11111111iiii111111

Output Input Patterns

'T' /0

'T'/270

'T' /0

'T'/180

111.111111111
U

.11111111.

T/O Indicates Letter T' Without Rotation
T' /90 Indicates Letter T' With 90 Degree Rotation
T/180 Indicates Letter T With 180 Degree Rotation
T/270 Indicates Letter T' Wth 270 Degree Rotation

80

Output

'T'/270

'T'/180

'T'/90

'T'/270

APPENDIX B3

TEST RESULTS FOR THE HAMMING NETWORK

Input Patterns Output Input Patterns

'L'/O

'L'/180

'L'/90

'L'/90

MIME
MIME

II

81

Output

'L'/180

'L'/90

'L'/O

'L'/270

'L'/O Indicates Letter 'L' Without Rotation
'L'/90 Indicates Letter 'L' With 90 Degree Rotation
'L'/180 Indicates Letter 'L' With 180 Degree Rotation
'L'/270 Indicates Letter'L' With 270 Degree Rotation

82

APPENDIX C

TEST RESULT FOR THE BACK-PROPAGATION NETWORK

INPUT VECTOR FOR
BACK-PROPAGATION
NETWORK

1 to 16 bit 17 to 32 bit 33 to 48 bit

OUTPUT
PATTERNS

I I I I

1 0 0 0 0 0 0 0 0 0 0 0 0000
0 1 0 0 0 0 0 0 0 0 0 0 0000
00 1 0 0 0 0 0 0 0 0 0 0000
0 0.0 1 . . 0 0 0 0 . . . 0 0 0 0 0000

RN NM

*

MU

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0000 0 0 1 0 0 0 0 0 0 0 0 0
0000.... 0 0 0 1 . . 0 0 0 0 . . 0000

MN MN
NM III

* II
IMO

0 0 0 0 0 0 0 0 1 0 0 0 0000
0 0 0 0 0 0 0 0 0 1 00 0000
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 . . 0 0 0 0 . . 0 0 0 1 0000

MU
OM

0 0 0 0 0 0 0 0 0 0 0 0 1 000
EU III

III

0 0 0 0 0 0 0 0 0 0 0 0 0 1 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

