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An Experimental String Processing
Extension to Pascal

I. INTRODUCTION

A Definition of String Processing

String processing will be defined here as the manipulation of

linear lists of data elements. These strings will be referred to as

"L-lists" and the data elements as simply "elements".

String processing has a very broad range of applications, however,

the most common is in the manipulation of alphanumeric text. In such

areas as translation of computer languages, understanding natural

language, text editing, text formatting, etc. String processing need

not be restricted to these areas since L-list elements can be of any

data type. The only inherent feature of a string is its linear struc-

ture, thus it is possible to have strings of integers, strings of

arrays, strings of records and even strings of files

The Problem

This definition of a string as simply a linear list, consisting

of elements of any data type, is broader than the typical historical

definition but no real reason exists as to why strings should be

limited to some specific data type. It is perfectly reasonable to

create a set of string operations which are independent of the element

data type.

A survey of current string systems reveals, however, that no sys-

tem of this type exists. Most of the existing systems fall into two
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major classes: string processors and list processors. SNOBOL is typi-

cal of the string processors in that its strings are sequences of

alphanumeric characters. SNOBOL permits operations such as concatena-

tion, matching and conversion of numeric values to and from correspond-

ing string representations. LISP, on the other hand, is typical of the

list processors. It allows linear lists of atoms to be created. An

atom is a more general data type which may be a number, a name or a

pointer to another list. LISP lists more closely resemble our defini-

tion of an L-list, but are still somewhat restricted. The LISP language

allows operations that combine lists, extract either the first element

or all remaining elements and comparison of elements, to name a few.

These two languages are probably the most popular of the current

string processing systems. They, along with their cousins, suffer from

the same drawback of not being able to work with string elements of any

data type. In addition, most of these systems lack processing capa-

bilities found as standard features of the general purpose programming

languages. This lack stems from the origins of these systems, which

were created to fill a need that was not addressed by the general pur-

pose languages. These special string processing systems were designed

as tools to be used in exploring the applications of string processing,

but not with the goal of becoming general purpose languages. Now that

they have shown how useful string processing can be, it is time that

their abilities be incorporated into the general purpose programming

languages so that they may be used in everyday programming applications.

The string processing capabilities of most general purpose lan-

guages, such as FORTRAN, BASIC, COBOL or PL /l, are very limited. The
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typical string construct is a variable length character array on which

a few operations such as concatenation or extraction of a substring may

take place. Some of the languages also have very specialized string

handling abilities, such as the way in which COBOL formats its output.

Obviously, these do not provide the same level of string processing

ability as the special string processors, although they do provide

some of the needed functions.

This then is the problem: Advanced string processing capabilities

are needed and can be applied in many ways, both in special string

oriented problems and simply to augment normal computer applications.

Currently there does not exist a system which is general enough to

handle string elements of any data type or that has, in addition to

string capabilities, the features found in general purpose languages

which make them so useful. No stand alone string system or language

extension to date has filled this void. This is the issue which is

addressed in this thesis.

The Objectives

This thesis develops a set of terms, constructs and operations for

dealing with L-lists of data elements in the context of a general pur-

pose programming language. Elements may be of any type allowed in the

language. Further, it will be shown how the general model may be

incorporated into an existing general purpose language in order to

create an effective general L-list system, which also may be used effec-

tively as a string processing system in the traditional sense.
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No actual implementation of the design is done. Instead, a subset

of the system primitives will be described by algorithms in narrative

form and it will further be shown how some of the remaining non-

primitive operations can be coded once the primitives are implemented.

The programming language Pascal was chosen as the base to which

the general model will be adapted. There were several reasons for this,

including the richness of control structures and data types found in

the language and its ability to define new data types based upon the

standard ones. The fact that the language is growing quickly in popu-

larity but is still young enough to easily accept a modification, such

as this, was another factor involved in the decision. Also important

was the simplicity of the language design. The term "elegance" will

be used in reference to this, meaning that the constructs are both

simple and yet broad in scope and thus provide a great amount of power

to the programmer. An attempt was made with the incorporation of the

general string model into Pascal, to maintain the level of elegance

currently found in the language.
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II. DESIGN AND RATIONALE OF THE SYSTEM

Considerations in the Design of a String Processor

In designing an L-list processing extension for Pascal, there are

several factors to be considered. First, the design must be general,

that is, it must be applicable to all of the areas in which string pro-

cessors are currently used and, if possible, to other areas as well.

Second, the design must be complete. It must be capable of per-

forming all of the basic string operations. These are defined by

Housden in (19) as:

1. Create a string of characters.

2. Concatenate two strings to form a new string.

3. Extract a segment of a string.

4. Search within a string for a given substring.

5. Compare two strings.

6. Delete a substring and replace it with another substring.

7. Insert a string within another string at a specified position.

8. Interrogate the length of a string.

Close examination of these reveals that they are not all primi-

tive operations. Extraction, for example, is really just creation of a

copy of the original string from which all of the elements have been

deleted leaving only the substring which was to have been extracted.

It can be seen that the following are primitive operations on strings:

1. Creation of a string.

2. Insertion of a string within another.

3. Deletion of a segment from a string.
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4. Searching for a pattern within a string.

5. Comparison of two strings.

6. Length interrogation.

Concatenation, a common "primitive" in many systems, does not

appear in the list because it is actually a special case of insertion

(insertion at one end).

A third consideration in the design of a string processor is

usability. The language should be easy to use from the programmer's

standpoint. The terminology, symbology and structure should be clear,

understandable, readable and yet concise. It should also be natural,

in that a programmer should be able to develop a "feeling" for the

"spirit" of the design and thus, even in the absence of references, be

able to generalize that understanding and correctly predict the reac-

tions of the system to new uses. To do this, the system must be

based upon simple, fundamental concepts.

Fourth in the list of considerations is the efficiency of the

system, both in terms of space and time. All of the benefits of a

system can easily be overshadowed by a lack of efficiency.

Last, but perhaps the most important consideration of all, is that

the design should be a natural extension to the language. It should

fit cleanly into the language structure. One of the worst sins com-

mitted by people who design language extensions is that of simply

tacking on a hodge-podge of bells and whistles which totally destroys

any quality of unity in the original language design. This is especial-

ly true when dealing with Pascal since one of its finest features is

its simple, unified design. It provides powerful operations which are
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general in their scope of application. If a language has a certain

amount of unity then any extensions should be designed to maintain or

possibly enhance it, no matter how major or trivial they might be.

A Review of Existing Systems and Techniques

Most of the very early string processors (1950s and early 1960s)

were rather simple. A common technique was to design what was effec-

tively a string processing machine and develop an assembler language

for it. Systems such as these, which include IPL-V (28), L-6 (21) and

EOL (23), were fairly primitive, requiring the user to manually control

free storage, work with a fixed number of string "registers" and

various other low level operations. Some, such as LOLITA (4) and TRAC

(27), were interactive and performed much like string-oriented program-

mable calculators. These were really the predecessors of today's inter-

active text editors.

The majority of the early systems were thus too low level to have

much value as extensions to a high level language. They were inter-

esting, however, for their choice of operations and data structures.

Most of them were concerned with operations such as concatenation,

deletion, copying and occasionally, scanning for a pattern match. Each

one had its own unique group of operations, but despite their differ-

ences, they all agreed in one respect: strings were stored as linked

lists of elements, each element being a character or symbol. Typically,

singly linked lists were used. That is, each node contained an element

and a link to the next node.
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Figure 1. A typical string representation found in
early string processing systems.

Some were rather sophisticated, such as IPL-V which included some

extra status flags in each node, or L-6 which permitted multiple links,

thus making it possible to build doubly linked lists, trees and other

complex structures. The L-6 facility is comparable to what may be

achieved through the combination of records and pointers in Pascal,

although the operations provided by L-6 were more primitive.

In contrast to the linked list technique such systems as SASP-1

(2) and DASH (26) used arrays to store string elements. The advantage

of the array storage method is that it makes efficient use of memory.

The disadvantage is that insertions and deletions require a great deal

of data movement. The linked-list method is nearly the reverse of this

since it makes possible very fast insert and delete operations but

requires two or three times as much memory space as does the array

technique.

A compromise technique in which short arrays are linked into lists

has been proposed by several authors, including Madnick (24) and

Berztiss (3). This makes relatively efficient use of memory space and

provides for reasonably fast insertion and deletion operations. The

algorithms which manipulate the data are, however, considerably more

complex than those used with the other two methods.

During the early 1960s three major non-numeric data processing

systems were developed which were much more advanced and would become

and remain quite popular. One of these was McCarthy's LISP systems
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(25, 33) which was designed to manipulate lists or symbols, called

atoms, which could range in complexity from characters or numbers to

whole sentences. The design of LISP is quite simple and yet powerful.

At one point in the design of this proposal, a LISP-like extension to

Pascal was under consideration and another system, LITHP (17, 31),

which is a LISP-like extension to ALGOL (a language similar to Pascal)

was of great interest. Despite its elegance, LISP is not suited for

integration with Pascal because of its radically different design

philosophy. LISP is based upon the concept of recursively evaluated

functions and although Pascal provides such facilities, the majority

of the language constructs stress non-recursive techniques. Inclusion

of a LISP subsystem would be a major break from the design philosophy

of Pascal.

Despite the appearance that it is inapplicable to the current

design, LISP is a popular language and there are several lessons which

may be learned from it. LISP derives its power from the fact that it

is based upon a mathematical foundation, in this case Church's lambda

notation for functions. The popularity of LISP, especially in Artifi-

cial Intelligence circles stems from its generality. List elements in

LISP are much more versatile than just single characters and so LISP

finds its way into a very wide range of applications. One major com-

plaint about LISP is that its heavily parenthesized notation makes pro-

grams difficult to read.

Another of these three systems is Weizenbaum's SLIP (34). Although

it has seen a decline in popularity in the last few years, SLIP intro-

duced a number of concepts which are worth examining. SLIP is based
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upon the combination of a bi-directional linked list and a mechanism

called a reader, which is used in traversing the list. Each element

of the list can be of several different data types, including lists.

This makes it possible to have sublists within lists. The reader

mechanism, recognizing this, is more than just a simple index, but

rather a stack of indices in which the top of the stack is the index

in use at whichever level of sublist is being traversed. SLIP also

points out some problems which shared lists and elements. The main

problem is that if two lists have pointers to the same sublist, which

one "owns" it? In other words, how can it be determined that a sub-

list is no longer in use and therefore should be returned to free

storage? This is an even greater problem in LISP, where each element

exists only once and is pointed to by all of the lists which "contain"

it. Both SLIP and LISP solve this through some bookkeeping operations

on the structures.

Although SLIP lacks the elegance we are looking for, it has much

more of the Pascal flavor that is also desired. It gets this from the

fact that it was indeed a language extension, the language being

FORTRAN in this case. The structures and processes used in SLIP do

complement Pascal much more than the structures found in LISP. The

method by which it gains generality, allowing different data types as

list elements, is worth noting.

SNOBOL (9, 11, 13) was the last of the three languages to come

onto the scene, although it followed SLIP by only a few months. Unlike

LISP or SLIP it is a string processor in the usual sense, dealing

mainly with character data. Because it is not as general as LISP, it
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has not become quite as popular, although it is widely used. Manipula-

tion of single characters is not one of the strong points of LISP,

although some lesser known extensions to LISP have allowed it to manage

fairly well, these are a far cry from the usual implementation. Thus,

SNOBOL does fill an essential niche.

The main feature of SNOBOL is its: ability to examine strings of

characters for matches with specified patterns. Unlike LISP or SLIP,

it does this automatically with no additional user control required.

Each string element in SNOBOL is a single character. Strings vary in

length from being empty to filling all available memory space. Pattern

matching is done via two indices, one of which is called the cursor,

the other is called the needle. The cursor keeps track of the position

in the string being searched of the current point where a match is

being attempted. The needle is used to scan from this point, doing a

character by character comparison of the string and the pattern. If a

mismatch is found by the needle then the cursor advances and a new

comparison is tried. The positioning of these pointers is not under

user control, although a user command may be issued to fix them at the

first character of each string. Normally, however, they are left free.

Needle

String

Pattern

+
Needle

(Cursor

Cursor

An An attempt is made to match DDOG to DDOG.

The needles detect a mismatch on the
second D. The string cursor will advance
and the match will be found on the next
attempt.

Figure 2. SNOBOL string representation showing cursors and needles.
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SNOBOL also provides facilities for deletion and insertion of

strings. There are several other interesting features in SNOBOL such

as the ability to create patterns with alternate forms, any one of

which may be matched, and procedures for transforming arithmetic values

and expressions into string form and back again. In addition, it per-

mits direct arithmetic operations on strings of numeric characters.

Although it is not very general, SNOBOL does point out the need

for a simple pattern matching system and the ability to deal with

characters on an individual basis.

It is important that Yngve's (35, 36) COMIT language be mentioned

in our survey of existing systems. Although COMIT is no longer as

popular, it contributed several important concepts to string processing,

Pattern matching, for example, was originally introduced in its modern

form in COMIT and in fact was the basis for the pattern matching con-

structs found in SNOBOL. COMIT also had a structure called a "sub-

script" which allowed the user to associate certain information with a

pattern. This structure is now found in an analogous form in LISP as

the much used property lists. Thus we can see that COMIT was an impor-

tant contribution to string processing whose major features have been

absorbed into the most popular of the modern string systems.

At this point the design considerations and information derived

from previous systems may be summarized. The design should be general,

complete, usable (and useful), efficient, simple but powerful and a

natural extension to the language, in this case Pascal. Internal data

structures offer various tradeoffs in terms of space and speed, and the

desirability of each depends upon the application environment. Thus
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the conceptual, user level design should be independent of the underly-

ing data structure, permitting the implementors to use whichever struc-

ture is best suited.

Elegance may be achieved by using fundamental concepts such as

algebras, calculus or topology as the mathematical foundation of the

design. Generality is obtained by allowing a wide range of data types

to be represented in the strings but the ability to manipulate indivi-

dual characters must not be lost. The ability to create sublists can

add a great deal of power to the system and readers can be a valuable

tool in working with them. Finally, pattern matching is a useful

operation which may have a place in a string system.

A Review of Pascal

The next step in the design process is to examine Pascal to see

specifically what it already has to offer in the area of string and

list processing. One of its primary data types is the character;

however, variables of this type can contain only one character which

limits their usefulness. Packed arrays of characters may be created

and can be compared to identically dimensioned packed arrays of char-

acters. There do not exist any provisions, however, for insertion,

deletion, concatenation or any other combining operations between them.

These must be done through programming character by character routines

to form each operation. Another hinderance is that arrays are fixed

in size and so it is often possible to run out of space in any parti-

cular array.
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Pascal also allows for list structures through a combination of

record and pointer data types. A record of from one to n characters

with a pointer field leading to the next node and possibly one leading

back to the previous node provides a mechanism for manipulating strings.

Just as with arrays, however, the operations must be programmed at the

lowest level which makes string processing overly inconvenient, especial-

ly for small applications such as output formatting or instructional

programming projects.

A Comparison of Strings With Linear Lists

With these perspectives in mind it is now appropriate to return to

the design process and begin to assemble a framework. First of all a

conceptual model for strings should be found which encompasses all of

the qualities which we desire in them. We must examine our string con-

cept from an objective point of view and determine what structure is

best used to represent it.

Knuth (22) defines a string as: "A finite sequence of zero or more

symbols." This is more general than the traditional "sequence of alpha-

numeric characters" which is what most string systems are based upon.

The use of the term "symbols" implies that a string may be made up of

elements taken from any alphabet of symbols, not necessarily the alpha-

numerics. This is still too restrictive definition since it requires a

specific alphabet. Our definition of a string would permit strings to

be made up of elements of any type. It is possible to select element

types which are not simple symbols or are symbols from a non-finite

alphabet.
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There is one structure which has a definition that matches our

string definition exactly. This is also given by Knuth:

A linear list is a set of n 0 nodes X[1], X[2], ..., X[n]
whose structural properties essentially involve only the
linear (one-dimensional) relative positions of the nodes:
the facts that, if n > 0, X[1] is the first node; when
1 < k < n, the kth node X[k] is preceded by X[k-1] and
followed by X[k +l]; and X[n] is the last node.

It can be seen that strings as defined by Knuth and in the tradi-

tional sense are actually a special case of the linear list. This is

the model which we were looking for. It is simple yet general and it

still permits us to do string manipulation in the usual sense.

We can see the completeness of this structure by comparing the

following set of. linear list operations, given by Knuth, with the set

of essential string operations given by Housden.

1. Gain access to the kth node of the list to examine and/or

change the contents of its fields.

2. Insert a new node just before the kth node.

3. Delete the kth node.

4. Combine two or more linear lists into a single list.

5. Split a linear list into two or more lists.

6. Make a copy of a linear list.

7. Determine the number of nodes in a list.

8. Sort the nodes of the list into ascending order based on cer-

tain fields of the nodes.

9. Search the list for the occurrence of a node with a particular

value in some field.

Thus, we find that the linear list structure as it is formally

defined satisfies all of the criteria which we established for a model
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of a generalized string. In order to distinguish between strings as

defined by Knuth and the type of string defined in this thesis all

further usages of the word "string" will refer to the standard string

while the term "L-list" will refer to our generalized string structure.

We should note that the first three operations as listed above are

performed in relation to the kth element of the L-list. Knuth's defini-

tion indicates, however, that the positions of the elements are purely

relative to each other, that is there is no actual numbering of the

elements: the kth element occupies that position simply because it

follows the (k-1)th element and so on. In order to find the kth element

we will use an index or mark as an aid to traversing the L-list. This

mark will keep track of the location at which we are currently looking

in the L-list and thus provide a reference point from which we can step

to the next node.

This notion of a mark being associated with an L-list will be for-

malized by extending our definition to say that an L-list will consist

of an ordered pair <list, mark>, in which list is a linear list of data

elements, as defined by Knuth, and the mark is an indicator of the cur-

rent reference point element in the list.

If we carefully consider the insert operation as it is defined by

Knuth we will discover another problem with the L-list structure: when

n = 0 there is no kth element before (or after) which the insertion can

take place. Since insertion is the primary method of constructing L-

lists (recall that concatenation is a special case of insertion), we

must provide a method for the "initial insertion" to take place. There

are two ways to do this: we can redefine the insertion operation so
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that it will handle the case where n = 0 or we can redefine the L-list

structure so that n will always be greater than zero.

It turns out that the latter case will not only solve this problem

but will also provide us with some beneficial side effects and thus we

will choose to again modify the definition of the L-list. The result

of this change will be that any L-list will always contain at least one

node. This requires the definition of the X[1] or FIRST node as a

special element which will always and only exist in the first position

of an L-list and which will have a null data value.

Our definition of an L-list is now: An ordered pair <list, mark>

where list is a set of n 2 1 nodes X[1], X[2], ..., X[n] whose struc-

tural properties essentially involve only the linear (one-dimensional)

relative positions of the nodes: the facts that X[1] is the first node

and is a special null data element which may exist only in first posi-

tion; when 1 < k < n, the kth node X[k] is preceded by X[k-1] and

followed by X[k+1]; and X[n] is the last node. Mark is an indicator of

the current point of reference element in the L-list.

To complement this definition we will redefine insertion to be

insertion of an element after the kth node. Also, because X[1] is a

null data element it will not be counted in determining the number of

nodes in an L-list, thus the length of an L-list will be n 1.

The following illustration will help to clarify the structure of

L-lists as we have defined them. For the sake of readability, the X[1]

element will be referred to by the name FIRST in the remainder of this

thesis. The symbol (I) will be used to represent the null data value

contained in the FIRST element.
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FIRST

t
MARK

A newly created L-list

FIRST
4, An L-list which has been built-up

141011, IDI ISITIRIIINIG1
t
MARK

+
FIRST

4112.37148.39112856.41

(MARK

FIRST

11111111111111111111

and had mark movement operations
performed on it

An L-list of reals

An L-list of L-lists of characters

(4) 4) (P* 4' 4, 4, 4, +FIRST for each second
A D E -0 K 0 S Li* Z level L-list. MARKS
B

C

-IF H* L P T U are also indicated
I M w

J N*,11

(MARK
Y

Figure 3. Some sample L-lists showing the marks.

The Proposed Pascal Extension

The proposed extension to Pascal consists of four parts: (1) a

new standard data type, (2) a set of operations, (3) a new constant

and (4) supporting subroutines (procedures and functions).

A New Standard Data Type

The new standard data type is referred to as the L-list type and

is written in the form:

LLIST OF element-type

18
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where the element-type is a Pascal standard or user defined data type.

From the user's point of view, this will appear to be a linear

list or L-list as defined in the previous section. The underlying data

structure which accomplishes this is of no concern here and is left up

to the implementors.

In addition to the basic L-list of elements there are some addi-

tional constructs which will be used when we define the string opera-

tions. Each L-list is said to have two ends, these being the rightmost

and leftmost elements. The element on the left end will be referred to

variously as the first element, head or left-end of the string, or

simply as FIRST. The rightmost element will then be referred to as the

last element or right end of the string, or simply as LAST in the text

of this thesis.

No L-list will ever be completely empty. Even when originally

created there will be a single element in the L-list which signifies

the head of the list. The head of every L-list will be the special

null data element at all times. This is, however, a phantom element in

most L-list operations. For example, in concatenation, although both

L-lists have the null data element as their head, the resulting L-list

has only one null data element, which will be its head. The rule for

this is that every L-list will contain exactly one null data element

which will be its FIRST element.

Two L-lists to be concatenated:

The result is:

HIIIJIKILI

Figure 4. An example of L-list concatenation.
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The FIRST element has no effect in pattern matching, insertion,

deletion or equality comparison, nor is it included in the element

count of the L-list, that is, the length of the L-list is the number of

elements not including the FIRST element.

Each L-list also has associated with it a structure called the

mark which specifies where certain operations take place on the L-list.

The mark is similar to the SLIP reader, but only one mark is associated

with each L-list in this system, thus the user must manage separate

marks in any "sublists" that are used. The mark points at a particular

element in the L-list which is referred to as the current position.

All mark oriented operations take place at the current position or, as

in the case of insertion, at the point immediately following the current

element, between it and the element to the right of it. Note also that

the mark may point to the FIRST element thus permitting such operations

as insertion to the left of the leftmost non-null element. All mark

movements are performed directly by the user through several mark move-

ment operations provided in the system.

L-lists are created in a Pascal program either explicitly or impli-

citly in the VAR statement. L-list constants are not permitted in the

CONST statement although type conversion, through the coercion routines

provided, can virtually take the place of this, as will be seen later.

When an L-list is created it consists of the FIRST element to which the

mark points and has a length of zero. Through various operations the

user may then build it up to any length within the bounds of available

memory. The L-list itself is totally dynamic in terms of size, but its

elements are fixed in type Even this may be partially overcome through
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the use of records with variant fields, as the element type.

In the case of an L-list consisting of elements which are also

L-lists the individual sublists are not explicitly declared in the VAR

statement because the parent L-list is dynamic and it is thus impossible

to know at compile time how many L-lists it will contain. These L-lists

will be created through the BUILD function which will be discussed in

detail in the section on procedures and functions.

A Set of Operations

The second part of the proposed extension to Pascal is a set of

L-list operations for manipulating the new data type. These operations

correspond to the standard operations in Pascal but are now simply

extended (or overloaded) for L-list manipulation. Thus we will use the

same symbols but they will now work with L-lists as well.

Assignment. The assignment operation for L-lists has the usual

Pascal form:

L-list-variable := expression

The expression must evaluate to an L-list of the same type as the

L-list variable. The current value of the L-list variable is replaced

by the L-list resulting from the evaluation of the expression.

Addition. As mentioned earlier, concatenation is really just a

special case of insertion. Thus, the addition operator will be rede-

fined to include the more general operation of L-list insertion. This

is a break from the traditional definition of addition as found in most

string and list processing systems but we will see that the increase in

usefulness obtained by choosing this definition will offset any incon-

venience.
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L-list addition (insertion) will thus take the form:

L-list
1

+ L-list
2

The result of this is that all of the elements of L-list
2

(except

its FIRST element) will be inserted into L-list
I
immediately following

its current mark position. The resulting L-list will have its mark

repositioned to the element which was the current position in L-list2.

Both L-lists must have exactly the same element data type.

IOIGI 45IAINIDI 114

Figure 5. An example of L-list addition showing marks.

Note that L-list addition as defined above may include L-list

variables or expressions which evaluate to L-lists. Also note that

because the mark may be positioned at the FIRST element it is possible

to insert elements at either end of the non-null portion of the L-list.

This provides the ability to perform concatenation at either end of an

L-list.

Subtraction. In the proposed Pascal extension the standard sub-

traction operator (-) will be augmented to work with the L-list data

type as a deletion operation.

L-list deletion will thus take the form:

L-list
1

L-list
2

where the result is that the two L-lists will be aligned by their marks

and if and only if L-list2 exactly matches a corresponding segment in

L-list
1

(i.e. each pair of corresponding elements is identical) then
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that segment will be deleted from L-listi (L-list2 is unchanged). If

the deletion occurs then the mark in L-list
I
will be repositioned at

the element immediately to the left of the deleted segment. Note that

such an element will always exist since the FIRST element must always

be present in an L-list and thus can never be deleted. If the deletion

does not take place the mark in L-listi is, of course, left unchanged.

The segments match and the
deletion takes place. Note
the resulting mark position.

144YIEISI 101RI INIOI

011E1s1 101RI 11\1101

(101Eisl lo[RI INTO(

.1yIEls1 I INTO(

(HY

01E1S1 I 11%1101

- RF(Triq H I$IY

The segments, as aligned by
their marks, fail to match
and no deletion occurs.

(HYIE1S flY1EIS

Note that (I) is

never deleted.

IflyIEIsE

kplYIEISE

(I)

E SI 101RI INIOI

(1) oIRI

(ply1E1s1 loIRI kilo(

In L-list subtraction, it is important to note that the
FIRST elements never take part in either the matching
phase or the deletion phase.

Figure 6. Some examples of L-list subtraction.
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Just as in addition, both L-lists must have exactly the same ele-

ment data type or a compile time error will occur.

The effect of aligning the L-lists by their marks is much like

aligning the decimal points on two numbers which are being manually

subtracted. This operation is valid for any L-list made up of any

Pascal data type for which direct comparison for equality is possible.

Real numbers, for example, may provide unpredictable results due to

round-off error. This operation is roughly the inverse of addition;

however, because neither is commutative the inverse property is only

true when the operations are applied in an order exactly opposite

their original application.

Multiplication. The multiplication operation in this system is

written:

integer * L-list or L-list * integer

where the result of either notation is the same (i.e. it is commutative).

The effect of this is a repeated self insertion of the L-list,

integer - 1 times, at the current mark position.

4)1AIBIC

cpIAIBIC

* 2

3 $1A181AIBIA181CICICI

Figure 7. Two examples of multiplication of an L-list by an integer.

A particularly interesting case of this is when the mark is at

either end of the L-list, since the result is repeated concatenation.

cHNI01 3 'SINIO IN101 INI01

Figure 8. An example of L-list multiplication simulating repreated
concatenation.
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Division. L-list division comes only in one form:

L-list DIV L-list

The result of this is an integer which indicates how many times the

L-list to the right of DIV can be deleted (subtracted) from the L-list

to the left. This uses the same definition of L-list subtraction as

given earlier and does not induce any other mark movements. L-list

division is the inverse of L-list multiplication, in the same sense

as subtraction is the inverse of addition: only if applied in reverse

order.

101AINIAINIAIS1

14)1Nlo1 INIOI INIO1

DIV

DIV

cp[NIAI

OM I

2

3

Figure 9. Two examples of L-list division.

The Pascal / operator is not defined for L-lists.

Modulo. In order to complement the DIV operator, the Pascal MOD

operator has been defined to include L-lists. The result of:

A MOD B

where A and B are L-list variables, is the L-list A with B deleted from

it A DIV B times. In other words, A MOD B is the remainder from A DIV B

and by coincidence happens to be equal to:

A ((A DIV B) * B)

which is the standard Pascal definition of MOD for the other data types

on which it works.
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IAINIAINIAISI MOD

10[01 INI01 INjOl [ MOD (pIN[01
1

11[

Figure 10. Two examples of the MOD operation.

Pattern Matching. Pattern matching in this system is performed by

the Pascal IN operator which is extended to work with L-lists. The

result of

A IN B

is a boolean indicating whether the L-list A can be found anywhere in

the L-list B. Note that is is defined only for L-lists with element

types for which the standard Pascal equality test applies (=). Of

course, the L-lists must have identical element types for it to work

at all.

SI TRUE

(VIYIEIS * FALSE

Figure 11. Two examples of the IN operation.

Note that in all of the comparison operations (including IN) the

comparison is performed over the entire L-lists, independent of the

positions of their marks.

The standard Pascal relational operators are extended to recognize

L-lists in a manner similar to the way that they work on packed arrays.

The standard L-list relations will thus be:

A = B, A >= B, A <= B, A > B, A < B, A <> B

where each one is an element by element comparison of the two L-lists
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to determine whether the relation is true. These tests are only valid

when both L-lists are of the same element type where that type is also

one of the types for which the comparisons are predefined in Pascal.

When two L-lists are compared for exact equality they are first

checked to see if they have the same length, if not then they cannot

be equal. If the lengths match then comparison begins by comparing

the elements that follow FIRST, in each of the two strings, using the

standard Pascal comparison algorithm for the element type. If those

two elements are equal then comparison proceeds to the next pair and

so on, left to right, across the entire length of both L-lists. If

all of the pairs of corresponding elements are equal then the L-lists

are equal. If, however, an unequal pair is discovered then comparison

immediately stops and the L-lists are unequal.

It should be mentioned that this definition of comparison permits

direct testing of not only L-lists but nested L-lists, such as LLIST

OF LLIST OF INTEGER. This is because the L-list comparison will auto-

matically be recursively applied if the elements are themselves L-lists.

In the case of nested L-lists, comparison then proceeds in a recursive

depth-first manner and thus all of the corresponding pairs of lower

level L-lists must also be equal, for the overall structures to be

equal.

When one of the relational operators other than equality is applied

between two L-lists the comparison proceeds in a manner similar to that

for equality, except that their lengths are ignored and when two unequal

elements are encountered the appropriate relational test is applied to

them and the result of that comparison is taken as the result of the
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overall L-list comparison. This is similar to the way in which we

manually compare integer values: starting with the high-order (left-

most) digits and proceeding rightward until we find a pair of digits

that are unequal -- whichever integer contains the greater of the two

unequal digits is then said to be greater than the other integer. If

two L-lists are compared for an inequality relation and are of differ-

ent lengths but are equal for all corresponding pairs of elements then

the longer L-list is said to be greater than the shorter one.

Note that an empty L-list (containing only the FIRST element)

will be less than any other L-list except another empty L-list (to

which it will be equal).

EldE- = 1=01 TRUE All elements are equal

WIOIHINI ISIMIIITIH >=

0 Dam s T all3 FALSE

Although equal over all corresponding elements,
the second L-list is longer and thus greater
than the first one.

Figure 12. Two examples of string comparisons.

To tie all of the operators together it should be noted that for

all of them, despite their extensions, the Pascal precedence rules are

maintained. This includes the ability to alter precedence with paren-

theses. If this is done, however, the programmer must be sure that

the result of a parenthesized expression is of the desired data type.
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A New Constant

In addition to extending the definitions of most of the Pascal

operators, this system also provides a new standard Pascal constant.

This new constant is called EMPTY and is simply an L-list with no

elements other than FIRST.

This constant provides a convenient method for performing such

operations as resetting L-lists to their original empty state, checking

to see if an L-list is empty, etc. EMPTY is also the additive identity

element for L-lists.

Supporting Subroutines and Functions

The fourth and final part of this proposed extension is a set of

functions and procedures which allow some additional manipulation of

the L-lists or simply provide additional convenience. We will first

examine the general functions then the general procedures, the extended

matching functions and lastly the extended matching support procedures.

LENGTH (L-list) is a function which returns an integer, the number of

elements in the L-list. The FIRST element is not counted.

SUCC (L-list) is a standard Pascal function which is extended to handle

L-lists. Its result is the L-list with its mark moved one element

right. If the mark is already at the last element, it aborts.

Note that the result is a copy of the L-list.

PRED (L-list) is also a standard Pascal function. It is the reverse

of SUCC and in regard to L-lists causes the mark to move one

element to the left.
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MATCHAT (L-list 1, L-list 2) produces a boolean result indicating

whether L-list 2 matches a corresponding segment of L-list 1 when

their marks are aligned.

BUILD (array, length, start) produces an L-list of the specified length

made up from the array, starting at the specified array index.

The array must be of the same element type as the L-list. The

L-list mark is left at the element following FIRST. BUILD is one

of the primary coercion routines for transforming data values into

L-list form.

UNBUILD (L-list, length, start) produces an array from the L-list,

starting at the current L-list position, and at the specified

start element in the array, for the number of elements specified

by length. The L-list and the array must be of the same element

type. UNBUILD is another coercion routine but, unlike BUILD, it

transforms L-lists into simple data values.

DISTTO (L-list 1, L-list 2) attempts to find a match of L-list 2, to

the right of the current position in L-list 1. It returns an

integer indicating how far the mark must be moved to reach the

matching segment. If no match is found LENGTH (L-list) + 1 is

returned.

DISTBACK (L-list 1, L-list 2) is the opposite of DISTTO. It searches

to the left of the current position in L-list 1 for a match of

L-list 2 and returns the distance that the mark must be moved back

in order to reach it. If no match is found the result is LENGTH

(L-list 1) + 1. L-list 2 may be EMPTY which will give the dis-

tance to FIRST.
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ENCODE (numexpr) or ENCODE (numexpr:numexpr) or ENCODE (numexpr:numexpr:

numexpr) transforms the result of the leftmost numeric expression

into an L-list of characters. The conversion is done using the

same algorithm as in the Pascal WRITE procedure.

LAST (L-list) chops off the tail of the L-list and returns it as a new

L-list with the mark set to its last element. More formally, the

function copies the argument, starting with the current element

and continuing to the last element. This copy, with the mark

left pointing to the last element, is then returned as the result

of the function. This function is particularly useful in three

cases: (1) DISTTO (L-list, LAST (L-list)) will return the dis-

tance to the last element of the L-list; (2) LAST (LAST(L-list))

will return the last element of L-list; (3) LAST (L-list) is quite

useful whenever it is desired to recurse on the remainder of an

L-list.

MARK (L-list) returns an integer value which is the distance from the

FIRST element to the mark (the number of elements, including

FIRST, preceding the mark). If the mark is at FIRST, the result

is zero.

SHIFT (L-list, dist) moves the L-list mark the specified distance where

dist is an integer. When dist is positive, movement is to the

right and when negative it is leftward. If the distance given

would cause the mark to be shifted part either end of the L-list,

then it is left pointing to the element at that end of the L-list.

CURRENT (L-list) returns the value of the current element in the L-list.

The result will be of the same data type as the L-list elements.
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Current is primarily used as a coercion routine to convert data in

L-list node form to pure values of the element type.

ENCLOSURE (L-listi, L-list2, L-list3) is a bracketted masking function.

L-list
1

is searched from its current position rightward for a

match of L- list2. If no match is found the function result is

EMPTY. When a match is found the function begins copying elements

of L-list
1
starting with the element following the segment that

matched L-list2. Copying continues until a match with L-list3 is

detected in L-listi. Copying terminates with the element pre-

ceding the segment that matches L-list3. If no match is found

the entire remainder of L-list
1

is copied. If the match is found

immediately after the L-list2 segment then no elements are copied

and the result will be EMPTY. The mark of the copy will be

positioned at its last element. The L-list resulting from all of

this is returned by the function. The basic purpose of ENCLOSURE

is to allow the user to extract any sequence of elements enclosed

by two other specific sequences of elements. By appropriate

manipulation of the L-lists, however, the user may also extract

segments bounded at only one end.

DECODE (L-list) uses the same algorithm as the READ statement to trans-

form the characters into a real number which is returned as the

result. The L-list must be an LLIST OF CHAR. The conversion

starts at the current position in the L-list. The mark is left

positioned on the element following the last character of the real

number.
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In addition to the functions, there is one new procedure:

MOVE (L-list, dist, flag) moves the mark of the L-list the specified

distance where dist is an integer. When dist is positive, move-

ment is to the right and when negative it is leftward. The flag

is a boolean variable indicating whether it was possible to move

the mark that distance without going past the end of the L-list.

(TRUE indicates success.) If the move fails the mark is left at

the same position. Note that unlike SHIFT, SUCC or PRED, MOVE

does not create a copy of the L-list but actually moves its mark

directly.

In addition to these functions and procedures, for general L-list

precessing, this system provides a set of special routines for extended

matching comparison. These are based upon a special structure called

a Multi-Valued List which is actually just an LLIST OF LLIST OF ele-

ments but is given special treatment by this set of seven routines.

The shorthand term MV-list will be used to refer to Multi-Valued Lists

in this thesis. (MV-lists are not a predefined type but must be

declared by the user as LLIST OF LLIST OF data-type.)

Each element of an MV -list is itself an L-list and will be referred

to as an alternate value of the MV-list. When comparison is done

between an L-list and an MV-list (as when using the ANYMATCH function

described below), the L-list is compared to each of the alternate values

of the MV-list and may match with any of them. This construct is most

useful in building such structures as symbol tables, dictionaries or

any other application where it is desired to automatically look up a

value in a large table. The RETRIEVE function allows the user to
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associate two MV-lists in which one is a set of key values and the other

is a set of data values (a relationship which may be reversed). Using

RETRIEVE, the user can then search the keys and retrieve data which

corresponds to the desired one.

There are four extended matching functions: ANYMATCH, RETRIEVE,

ANYIN, and LOOKUPIN.

ANYMATCH (MV-list, L-list). The L-list is compared for equality

against each alternative value of the MV-list, starting with the

alternate following the FIRST element of the MV-list and proceed-

ing rightward until a match is found or the LAST alternate has

failed to compare. If a match is found, ANYMATCH returns TRUE,

otherwise FALSE. The MV-list alternates and the L-list must be

of the same data type.

RETRIEVE (MV-listi, MV-list2, L-list). An ANYMATCH type search is per-

formed on MV-list
2

for a match with L-list. When a match is found

the position of the matching alternate in MV-list2 is noted and

RETRIEVE then looks up the alternate in the corresponding posi-

tion in MV-list
1
and returns this (an L-list, by definition) as

its value. It no match with the L-list is found RETRIEVE returns

EMPTY. If there is no alternate in MV-list
1
which corresponds to

the match position in MV-list2 the RETRIEVE aborts with a fatal

execution error. The purpose of this function is to provide a

basic data-base/table look-up facility for the user.

ANYIN (MV-list, L-list) is another comparison routine, similar to

ANYMATCH, which scan the L-list for a segment that will match any

of the alternates in the MV-list. Starting with the current
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position in the L-list, ANYIN looks to see if a segment of elements

will match any of its alternates. If no match is found then ANYIN

advances to the next element of the L-list and tries to find a

matching segment that starts there. ANYIN continues scanning the

L-list and tries to find a matching segment that starts there.

ANYIN continues scanning the L-list until it finds a position at

which a match with one on the alternates occurs or until it

reaches the LAST element of the L-list. If it finds a match ANYIN

returns TRUE, otherwise FALSE. ANYIN is especially suited for any

sort of parsing operation where it is desired to look ahead to see

if a key element is present in the list.

LOOKUPIN (MV-list
1'

MV- list2, LOlist, Dist) is another retrieval func-

tion similar to RETRIEVE which uses an ANYIN type of search to

locate a segment in the L-list which matches one of the alternates

in MV- list2. It then looks up the MV-list
1
alternate that is in

the same position as the MV-list
2
alternate that was matched. If

no match is found, EMPTY is returned, otherwise the MV-list
1

alternate (an L-list) is returned. The Dist parameter must be an

integer variable. LOOKUPIN will return in Dist the number of

positions the L-list mark must be moved forward to reach the seg-

ment that matched the MV-list
2

alternate. If no match is found

the value of Dist will be set to LENGTH (L-list) + 1. It should

be noted that just as in RETRIEVE both MV-list parameters may be

the same. This results in the functions simply returning the alter-

nate that matched the L-list or L-list segment. LOOKUPIN is, like

ANYIN, expecially suited to parsing operations.
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There are three special procedures provided which allow the user

to build and manipulate MV-lists.

INSERT (MV-list, L-list). A copy of the L-list is inserted into the

MV-list as an alternate, following the current position in the

MV-list. The MV-list mark is then repositioned to point to the

newly inserted alternate. Note that this operation is not the

same as addition since the + operator would require that both

operands be MV-lists.

EXTRACT (MV-list, L-list). The L-list (which must be a variable) is

set equal to the current alternate in the MV-list and the alter-

nate is deleted from the MV-list. The MV-list mark is reposi-

tioned to the alternate which preceded the one that was just

removed. If the current position of the MV-list mark was at FIRST,

then the L-list is set to EMPTY and the MV-list is unaffected.

PERMUTE (MV-list, L-list). The MV-list is set equal to the set of

alternates consisting of all of the possible permutations of the

elements of the L-list. This is primarily useful when a user

wishes to check an L-list to see only if it contains contiguously

all of the elements of some set, independent of the order in which

they might appear.

Many of the general L-list routines may also be applied to L-lists.

It should also be noted that the standard Pascal procedures WRITE and

WRITELN are extended to work with the LLIST OF CHAR data type, much as

they do for PACKED ARRAY OF CHAR.
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III. SOME EXAMPLES

Derivation of Non-primitives Using the Primitives

Since this system will not be implemented it was felt that it

would be appropriate to show how some of the functions and procedures

could be written using the basic operations. First we must divide

the constructs into primitives and non-primitives. The primitives are

those which cannot be built from any of the other constructs but must

be programmed at the bottom level.

Primitives:

A := B MOVE(A,D,F)

A + B BUILD(A,I,L)

A - B CURRENT(L)

A = B EMPTY

A > B

Non-primitives:

A IN B * LENGTH(A) ENCODE(A)

A DIV B SHIFT (L,D) DECODE(A)

A MOD B * SUCC(A) LAST(L)

A < B * PRED(A) MARK(L)

A >= B MATCHAT(A,B) * DISTBACK(A,B)

A <= B UNBUILD(L,I,N) ENCLOSURE(A,B,C)

A <> B * DISTTO(A,B) ANYMATCH(M,L)

A * B RETRIEVE(M,N,L) INSERT(L,M)

EXTRACT(L,M) PERMUTE(L,M)

Those non-primitives marked with a * will be shown in this section

as Pascal procedures and functions.
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The LENGTH Function

This function basically sets the mark to the head of the L-list and

then moves it to the last element, keeping count of the number of moves

required. The result is the number of elements in the L-list. Because

the single parameter is a value parameter (pass by value), the position

of the mark in the original L-list is unaffected.

FUNCTION LENGTH (A: LLIST OF element-type): INTEGER;

VAR COUNT: INTEGER;

FLAG: BOOLEAN;

BEGIN

FLAG := TRUE;

WHILE FLAG DO

MOVE(A,-1,FLAG);

FLAG := TRUE;

COUNT := -1;

WHILE FLAG DO

BEGIN

MOVE(A,1,FLAG);

COUNT := COUNT+1

END;

LENGTH := COUNT

END;
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The SUCC and PRED Functions

These two functions are fairly simple. They basically move the

mark one element left or right respectively. If the move fails the

run aborts through the HALT routine. These functions are simply exten-

sions of the standard Pascal SUCC and PRED functions to handle L-lists.

FUNCTION SUCC (A: LLIST OF element-type): LLIST OF element-type;

VAR AFLAG: BOOLEAN:

BEGIN

MOVE(A,1,AFLAG);

SUCC := A;

IF NOT AFLAG THEN HALT

END;

FUNCTION PRED (A: LLIST OF element-type): LLIST OF element-type;

VAR AFLAG: BOOLEAN;

BEGIN

MOVE(A,-1,AFLAG);

PRED := A;

IF NOT AFLAG THEN HALT

END;

The DISTTO and DISTBACK Functions

These two functions are based upon the idea that the subtraction

operator will refuse to delete until the L-lists are positioned so that

the subtrahend is exactly aligned with the matching segment in the L-list
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from which it is to be deleted. By counting the number of times the

string mark must be shifted until this deletion occurs, we will get the

distance to the next occurrence of the pattern.

FUNCTION DISTTO (LIST, PATTERN: LIST OF element-type): INTEGER;

VAR

DIST: INTEGER;

FLAG: BOOLEAN;

BEGIN

DIST := 0;

FLAG := TRUE;

WHILE (LIST PATTERN = LIST) AND FLAG DO

BEGIN

DIST := DIST + 1;

MOVE(LIST,1,FLAG);

END;

IF FLAG

THEN

DISTTO := DIST (*FOUND A MATCH*)

ELSE (*NO MATCH*)

DISTTO := LENGTH(STR) + 1

END;

FUNCTION DISTBACK (LIST, PATTERN: LLIST OF element- type): INTEGER;

VAR

DIST: INTEGER;

FLAG: BOOLEAN;



BEGIN

DIST := 0;

FLAG := TRUE;

WHILE (LIST PATTERN = LIST) AND FLAG DO

BEGIN

DIST := DIST + L; (* COUNT NUMBER OF MOVES *)

MOVE (LIST,1,FLAG);

END;

IF FLAG

THEN DISTTO := DIST

ELSE (* CHECK TO SEE IF WE HIT FIRST *)

IF PATTERN = EMPTY

THEN DISTTO := DIST - 1

ELSE DISTTO := LENGTH(LIST) + 1

END;

A Simple Pascal Program Formatter

41

The previous examples demonstrated how the system primitives could

be used to create some of the non-primitives. Although this is useful

information, it is also valuable to see how the system functions on a

more natural application. With this in mind the following simple

Pascal program formatter was written. The purpose is to indent the

programs such that each successively deeper block will be indented one

level further.

The program scans the Pascal code looking for keywords that start

or end blocks. It takes advantage of the MV-list structures and the
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ability of ANYIN and LOOKUPIN to detect alternates. Each time a block

starting keyword is found the formatting procedure increments the inden-

tation level counter and recursively calls itself to process that block

of the program L-list. Each time a block end is found the indentation

level is decremented and the routine returns to the next higher recur-

sion level. If it runs out of block ends the procedure prints the

remainder of the code and then repeatedly returns until it finally

exits to the main program.

The purpose of the main program is simply to build the MV-lists,

input the program as a single long L-list and call the routine.

PROGRAM FORMAT (INPUT, OUTPUT);

VAR BLOCKEND, BLOCKSTART: LLIST OF LLIST OF CHAR;

PROG: LLIST OF CHAR;

CH: ARRAY[1..1] OF CHAR;

I, INDLEV: INTEGER;

FLAG: BOOLEAN;

BEGIN

BLOCKEND := EMPTY

INSERT(BLOCKEND, BUILD(' BEGIN ',7,1));

INSERT(BLOCKEND, BUILD(' BEGIN;',7,1));

INSERT(BLOCKEND, BUILD(' CASE ',6,1));

INSERT(BLOCKEND, BUILD(' WITH ',6,1));

INSERT(BLOCKEND, BUILD(' RECORD ',8,1));

INSERT(BLOCKEND, BUILD(' REPEAT ',8,1));

BLOCKSTART := BLOCKEND;

INSERT(BLOCKEND, BUILD(' END ',5,1));
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INSERT(BLOCKEND, BUILD(' END;',5,1));

INSERT(BLOCKEND, BUILD(' END.',5,1));

WHILE NOT EOF DO

BEGIN

READ(CH);

PROG := PROG + BUILD(CH,1,1);

END:

INDLEV := 0;

FORM(PROG, INDLEV)

END.

The main program starts by building two MV-lists. BLOCKEND has

included all of the keywords which begin or end blocks. BLOCKSTART

has a subset of these keywords: those which start blocks. The program

then reads in the Pascal code, character by character, building up one

long L-list, PROG, which contains the entire Pascal program to be

formatted. Next, the indentation level variable, INDLEV, is initial-

ized to zero and then the formatting procedure is called.

PROCEDURE FORM (VAR PROG: LLIST OF CHAR; VAR INDLEV: INTEGER);

VAR SEGMENT: LLIST OF CHAR; DIST: INTEGER;

BEGIN

SEGMENT := LOOKUPIN(BLOCKEND, BLOCKEND, PROG, DIST)

IF DIST <= LENGTH(PROG)

THEN (* THERE ARE MORE KEYWORDS IN THE TEXT *)

BEGIN

FOR I := 1 TO DIST 1

BEGIN (* WRITE OUT EACH CHARACTER UP TO THE NEXT * )
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IF CURRENT(PROG) = ';' (* KEYWORD *)

THEN (* END OF A LINE *)

BEGIN

WRITELN(';'); (* TO TERMINATE THE LINE *)

WRITE(' ':(INDLEV*3)) (* INDENT START OF *)

END (* NEW LINE *)

ELSE

WRITE(CURRENT(PROG));

(* WRITE OUT THE CURRENT CHAR *)

MOVE(PROG,1,FLAG) (* AND ADVANCE TO THE NEXT ONE *)

END;

WRITELN; (* FORCE THE KEYWORD TO START ON A NEW LINE *)

IF ANYMATCH(BLOCKSTART, SEGMENT)

THEN (* ITS A BLOCK STARTING KEYWORD *)

BEGIN

FOR I := 1 TO LENGTH(SEGMENT)

(* FOR LENGTH OF THE KEYWORD *)

BEGIN (* WRITE EACH CHAR OF THE KEYWORD *)

WRITE(CURRENT(PROG));

MOVE(PROG,1,FLAG)

END;

WRITELN; (* FORCE NEW LINE AFTER KEYWORD *)

INDLEV := INDLEV + 1; (* DROP DOWN A LEVEL

FORM(PROG,INDLEV)

END

.ELSE (* ITS A BLOCK ENDING KEYWORD *)

* )



END;
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BEGIN

FOR I := 1 TO LENGTH(SEGMENT)

DO (* WRITE OUT EACH CHAR OF THE KEYWORD *)

BEGIN

WRITE(CURRENT(PROG));

MOVE(PROG,1,FLAG)

END;

WRITELN: (* FORCE NEW LINE AFTER KEYWORD *)

INDLEV := INDLEV -11 (* POP UP ONE LEVEL *)

END

END

ELSE (* WE'VE RUN OUT OF KEYWORDS

BEGIN

FOR I := 1 TO DISTTO(PROG, LAST(PROG)) DO

BEGIN (* WRITE OUT EACH REMAINING CHAR IN THE TEXT *)

IF CURRENT(PROG) = ';'

THEN WRITELN (';') (* END THE LINE *)

ELSE WRITE(CURRENT(PROG))

(* WRITE THE CURRENT CHAR *)

MOVE(PROG,1,FLAG) (* ADVANCE TO THE NEXT CHAR *)

END;

WRITELN (* TERMINATE THE LAST LINE *)

END

The comments provided with the procedure should be sufficient to

explain how it works.
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IV. COMPARISONS WITH OTHER SYSTEMS

The LISP Language

LISP is the most widely used of the stand alone list processors.

Since the proposed string processing extension to Pascal is capable of

performing many similar functions, a short comparison of the two

systems is in order.

The LISP system has only one data type, the atom. An atom, how-

ever, may be a symbolic name, an integer or a real. In the Pascal

L-list system no comparable type exists but we may declare a similar

one through variant record fields:

TYPE ATOM = RECORD

CASE TYPE OF

NAME : (NATOM: DICTIONARY);

INT : (IATOM: INTEGER);

REALNO : (RATOM: REAL);

END;

Where DICTIONARY is another user defined type that is a scalar of

all symbolic names that will be used. This presents one drawback of

Pascal: since it is not a dynamically running system, names are fixed

at compile time and cannot be created and deleted at will as in LISP.

One solution would be to make the NATOM an L-list OF CHAR which then

permits the dynamic name handling capability. This will also require

the user to provide a few extra overhead routines to manage these names

so that they function properly.



The LISP list structure is also a non-standard Pascal type, how-

ever a rough equivalent may be created by:

TYPE LINK= ?LIST;

LIST= RECORD

CAR: RECORD

CASE CARFORM OF

LNK: (CARLNK: LINK);

ATM: (CARLNK: ATOM)

END;

CDR: RECORD

CASE CDRFORM OF

LNK: (CDRLNK: LINK);

ATM: (CDRATM: ATOM)

END

END;
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Once again, management of this structure would be up to the user

but it can be seen that with the exception of some of the dynamic and

interpretive capabilities of LISP the Pascal system can be made to

function in a similar manner. (Of course we could always just write

a LISP interpreter in Pascal.)

Of more interest to us is the case where the LISP lists are linear

rather than tree structures. Here we find that the proposed extension

is more comparable to the LISP structure. A simple LLIST OF DICTIONARY

or LLIST OF LLIST OF CHAR will provide a very similar form.
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List manipulation facilities in LISP are very simple and also

quite powerful. Although direct insertion and deletion are not pro-

vided, such functions as CAR, CDR, CONS and APPEND make it possible

to create these operations relatively easily.

Pattern matching in LISP is almost all up to the user to provide.

These are no provisions for an equivalent to alternate matching L-lists.

The LISP user can create equivalent constructs but only with some

difficulty. Property lists in LISP are quite similar to the MV-list/

RETRIEVE combination in the Pascal extension.

Compared to Pascal, LISP has a smaller set of control structures.

LISP is highly dependent upon function calls and especially recursive

function calls to manage flow of control. A fairly simple n-way

sequentially evaluated branching statement is used to control flow

within functions. In addition, the PROG feature provides a simple form

of labels and GOTO's. There are none of the more structured looping

constructs found in Pascal, which does permit those control structures

along with n-way branches, recursive function calls (including the

ability to pass functions as parameters to other functions) and labels

and GOTO's. It should be noted that most modern LISP implementations

have been extended to include structured control structures, similar to

those in Pascal. These have not been standardized between implementa-

tions, however.

Although LISP lists can become quite a bit more complex in struc-

ture, Pascal L-lists can contain a much wider range of data types which

can themselves grow to be quite complex.
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Finally, it must be noted that LISP presents a problem in read-

ability and is much less readable than the proposed Pascal system.

This is primarily due to the language's basis in the lambda notation

which, although it presents a concise form for representing lists, is

a bit obscure to the more casual reader.

In summary, it should be noted that LISP and the proposed extended

version of Pascal are directed toward two different areas. Despite

this, each is capable of substituting for the other with some difficul-

ty. Each of the systems has its good points. LISP is especially

suited to dynamic operation where data may be interpreted as instruc-

tions and where structures may by dynamically allocated and de-allocated.

The system is also better suited for handling more complex list struc-

tures such as trees.

The proposed Pascal L-list system is more oriented toward general

processing with general data types. Alternate pattern matching is

another of its strong points.

In the applications where the two systems overlap it seems that

the Pascal system would be easier to use both because of its generality

and its readability. It is thus that, in a wide range of applications,

the Pascal extension would be found to be better suited than a LISP

system.

The SNOBOL Language

SNOBOL is probably the most popular of the stand alone string

processors. Unlike LISP, which deals with lists of atoms, SNOBOL is

designed to handle strings of alphanumeric characters. Because its
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designers concentrated on developing its ability to handle this data

type, the language is rather lacking in other areas.

As compared to Pascal, SNOBOL is very limited in the range of

data types that it permits. The standard SNOBOL types are integers,

reals and strings. Booleans, Scalars, Sets, Subranges and Files are

some standard Pascal types not provided in SNOBOL. Pointers are pro-

vided in a roughly equivalent form by the ability of SNOBOL to do in-

direct reference through string variables whose values name other

variables. A form equivalent to the basic Pascal RECORD type is pro-

vided by the programmer-defined data type in SNOBOL. Variant field

definitions are not permitted in SNOBOL as they are in Pascal, nor does

the SNOBOL literature indicate whether nested record definitions are

allowed. Arrays in SNOBOL are comparable to those provided in Pascal

although only integer indices are allowed. SNOBOL does, however, per-

mit the programmer to initialize all elements of an array to some

specific value.

SNOBOL does have several data types not found in Pascal; these

include PATTERN, TABLE, NAME, EXPRESSION, CODE and EXTERNAL. Express-

sion variables contain strings which are unevaluated expressions. Code

variables contain executable SNOBOL statements. Externals link to

external routines. SNOBOL does not distinguish named constants as a

special form, different from variables.

Flow of control in SNOBOL is fairly primitive: Statement labels,

conditional and unconditional COTO's are the only provisions for modify-

ing sequential flow of control. The goto construct is simply a label

enclosed by parens, following a colon at the end of any statement.
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Preceding the label by an F or an S turns the goto into a conditional

goto which branches on failure or success of the statement to which it

is appended. Pascal, on the other hand, allows GOTO's IF-THEN, IF-

THEN-ELSE, WHILE, REPEAT and FOR flow of control constructs. Functions

in SNOBOL are comparable to those of Pascal but no equivalent to pro-

cedures is provided.

Strings in SNOBOL are most comparable to the extended Pascal type

LLIST OF CHAR as defined in this thesis. These two structures are

similar in that they are both chains of characters, however, the SNOBOL

string has no empty element preceding it. Also, the SNOBOL equivalent

of the mark is called the cursor and is automatically controlled by an

element of the system called the scanner. The only control permitted

to the user is that the cursor may be fixed in one location and then

later be allowed to move again under control of the scanner. Because

of the way in which the SNOBOL system functions, the automatic cursor

movement poses no problem to the user in terms of control capability

and makes the string operations very convenient to use. The proposed

Pascal system, on the other hand, requires the user to manage cursor

positioning. This gives the user a great deal of control over the sys-

tem, providing abilities to limit the range of operations, and because

of the overall design causes only minor inconvenience.

SNOBOL string
1 1 1 1 1 I I I 1 1

Character type
Automatic Cursor

Pascal L-list (1)1 1 1 I I I I 1 1 1
Any type
Manual Cursor

Figure 13. Comparison of SNOBOL and Pascal string forms.
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Both systems provide an empty string construct. SNOBOL allows

arithmetic to be performed directly on string representations of num-

bers, whereas the Pascal extension does not. SNOBOL allows strings to

be built from literals directly by assignment and in expressions. The

Pascal system requires the use of the BUILD function.

SNOBOL; variable = 'string literal'

Pascal: L-list variable := BUILD ('string literal', length
start)

Concatenation in SNOBOL is a single operation, independent of

cursor position, whereas the Pascal system must do an insertion which

may require that the mark of one of the L-lists be moved to an end.

In contrast, SNOBOL does not provide for direct insertion or deletion;

however, the REPLACE function may be made to perform these operations.

The Pascal system does not provide for direct replacement although

delete and insert may be easily combined to substitute for this.

Pattern matching in SNOBOL is performed automatically by the

scanner. Patterns may include alternate strings similar to the MV-lists

of the Pascal system. Pattern matching is also performed automatically

in the Pascal system although the user may also use the cursor position

to limit the scope of the match. Alternates may be created in the

Pascal extension through the use of an MV-list variable with the alter-

nate L-lists inserted in it. Both systems permit scanning for a match

of one pattern within another, testing two patterns for equivalence and

comparing two strings for relative value (the Pascal system only per-

mits relational comparison on L-lists with base types for which such

comparisons are defined).
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SNOBOL provides another construct, which Pascal does not, in the

form of conditional assignment wherein an assignment can be set up

which will not take place until a condition is met. When the condi-

tion occurs the assignment then takes place as a phantom operation.

SNOBOL also provides a large number of functions and operations for

manipulating strings which contain values that are really character

representations of numbers. These provide the ability to detect such

strings and to convert them to and from numeric variables. Also pro-

vided in SNOBOL is an EVAL function which takes a string which contains

an unevaluated expression and evaluates it, returning the result. The

Pascal system does not directly provide any of this since it is oriented

toward the more general L-lists which may have elements of any data

typed. To augment this to some extent, since it is recognized that

LLIST OF CHAR will form a major portion of the system's usage, the

ENCODE and DECODE functions were provided to allow the equivalent of

printing or reading from one internal buffer to another with the

associated type conversion performed between.

In summary, it would appear that these two systems simply take two

different approaches to providing roughly the same amount of string

processing power. The Pascal system, however, also provides the general

data processing abilities of Pascal and L-lists which are more general-

ized. It is felt that this makes the proposed system much more suit-

able in terms of general applications than SNOBOL.
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V. SUMMARY AND CONCLUSIONS

The system developed in this thesis provides a substantial amount

of list and string processing power. It is at least equal in its

string handling capabilities to the two currently most popular

list/string processing systems. The combination of this with the

general data processing abilities of Pascal makes it a very usable

list/string processor.

Because of this the system is not restricted to the usual academic

sort of applications. It is indeed capable of being applied for natural

language understanding, computer language translation, recognizing for-

mal grammars and the like but it may also be used in such mundane

applications as parsing program commands, fancy formatting of output

(such as what COBOL does) or even something as simple as splitting a

person's name into first, last and middle initial fields.

This L-list construct can be used anywhere that a linear array or

a manually maintained linear linked list could be used in a Pascal pro-

gram. In addition, it is possible to simulate many nonlinear struc-

tures using this system. This is not to say that L-lists should be

used in place of these other structures but simply that they may be.

It is up to the programmer to decide when it is best to use an L-list

instead of another structure.

The proposed design of the Pascal extension purposely made use,

whenever possible, of the existing operators, functions and symbols in

order to minimize the disruption of the language. Thus the extension

turns out to be merely the addition of a new data type, a new constant,

procedures and functions associated with it and redefinition of the
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basic operators to recognize that type. Because the extended meanings

of those operators were chosen to be similar to the corresponding inter-

pretation when applied to the standard data types, it is felt that this

system would provide a very natural means of augmenting Pascal with a

list/string processor. It manages to maintain the "elegance" of the

language.
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