

AN ABSTRACT OF THE THESIS OF

Andrew Gabler for the degree of Master of Science in Robotics presented on

June 17, 2015.

Title: Learning-based Control of Experimental Hybrid Fuel Cell Power Plant

Abstract approved:

Kagan Tumer

Direct fired Solid Oxide Fuel Cell (SOFC) Turbine hybrid plants have the poten-

tial to dramatically increase power plant efficiency, decrease emissions, and provide

fast response to transient loads. The US Department of Energy’s (DOE) Hybrid

Performance Project is an experimental hybrid SOFC plant, built at the National

Energy Technology Laboratory (NETL). One of the most significant challenges in

the development and commercialization of this plant is control. Traditional control

techniques are inadequate for this plant due to poor system models, high nonlin-

earities, and extreme coupling between state variables. Learning-based control

techniques do not require explicit system models, and are well suited for control-

ling nonlinear and highly coupled systems. In this work, we use neuro-evolutionary

control algorithms to develop a set-point controller for fuel cell flow rate in this

plant, and demonstrate a controller that can accurately track a desired turbine

speed profile within 50 RPM, even in the presence of 10% sensor noise. In order to

ensure the neuro-evolutionary algorithm is computationally tractable, we develop

a computationally efficient neural network simulator of the plant, using data col-

lected from actual plant operation. We also present an iterative method to improve

plant the controller and simulation performance based on plant run data allowing

for expansion of the operation range of the plant in simulation, and control the

plant for high efficiency operation.

c©Copyright by Andrew Gabler
June 17, 2015

All Rights Reserved

Learning-based Control of Experimental Hybrid Fuel Cell Power
Plant

by

Andrew Gabler

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented June 17, 2015
Commencement June 2016

Master of Science thesis of Andrew Gabler presented on June 17, 2015.

APPROVED:

Major Professor, representing Robotics

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Andrew Gabler, Author

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Kagan Tumer, for his guidance and support

of this project. Also, Dr. Mitchell Colby for his help with all of the code involved

in this work, as well as the other members of the AADI Laboratory, who spent

many hours in aiding me. I would also like to acknowledge the funding agency, The

US Department of Energy’s National Energy Technology Laboratory for making

this work possible under grant DE-FE0012302. I would also like to thank David

Tucker and his team at NETL for providing us with access to the power plant

data and giving us their time showing us the power plant. Lastly, I would like

to thank Melissa Gabler for her continual support throughout my studies, and

without whom I would have completed this thesis.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Background 5

2.1 The HyPer Facility . 5

2.2 Current Control Methods . 12

2.3 Neural Networks . 15
2.3.1 Backpropagation . 17

2.4 Neuro-evolutionary Control . 18

2.5 Fitness Approximation . 20

3 Method 21

3.1 Function Approimation Plant Simulation 21

3.2 Time Domain Simulation . 24

3.3 Evolutionary Algorithm . 26

4 Results 28

4.1 Model Validation Results . 28

4.2 Setpoint Control . 32

4.3 Trajectory Tracking . 36

5 Expanded Simulation and Control Results 39

5.1 Neural Network Architecture . 39

5.2 Simulation Performance . 42

5.3 Control Results . 42

6 Discussion 50

Bibliography 52

LIST OF FIGURES

Figure Page

2.1 The Brayton cycle with regeneration. Air travels along the arrows
shown. First air enters the compressor, then is preheated before the
combustor. Hot air is then run through the turbine, and exhaust
gasses are used to heat the heat exchanger. Typical controls (not
shown in diagram) include fuel in, compressor bleed air valves and
hot air bleed valves before the turbine. These valves control flow rate
and temperature at critical points in the cycle such as the entrance
to the turbine. 6

2.2 Fuel cell configuration. Fuel enters the anode of the fuel cell, air
enters the cathode. Hydrogen ions contained in the fuel are trans-
ported across the ceramic electrolyte and creating an electric poten-
tial difference across the fuel cell. 7

2.3 A simplified diagram of the HyPer facility. Air travels in the direc-
tion of the arrows shown first entering the compressor, then passing
though a heat exchanger to preheat the air before the fuel cell. The
fuel cell exhaust gasses and unused fuel are output to a small com-
bustion chamber, and hot air is fed though the turbine. The exhaust
heats the heat exchanger before exiting the system. Four control
valves control the flow of HyPer and can regulate temperature, fuel,
and flow rate into system components. 11

2.4 Fully connected neural network representation. 16

3.1 Visualization of the development of the neuro-evolutionary con-
troller for HyPer. 22

4.1 Simulation validation for turbine speed. The neural network simu-
lator accurately models the HyPer facility, with the key difference
between simulated and hardware runs being the lack of noise in the
simulator. 29

4.2 Simulation validation for fuel cell flow rate. 30

4.3 Simulation validation for total fuel entering the plant system. 30

4.4 Simulation validation for turbine inlet temperature. 31

LIST OF FIGURES (Continued)

Figure Page

4.5 Control of fuel cell flow rate with the cold air valve response to step
input in control. Initial step down shows small controller overshoot,
the step up shows lightly damped behavior. 32

4.6 Evolved neural network controller response to 10% sensor noise.
Notice that 10% sensor noise is larger than the commanded control
step input. 33

4.7 Control with 5% actuation noise. The level of noise in the flow rate
is les than 0.2%, although a small steady state error is present. . . . 35

4.8 Neruroevolutionary control of turbine speed in the power plant. The
control action to produce the tracking is shown as the out of phase
signal on the plot. 37

4.9 Neruroevolutionary control with 5% noise. The controller is able
to track the trajectory to within approximatly 50 rpm at any given
point in the simulation. 38

5.1 Example of network architecture for the expanded simulation. The
input layer is fully connected to the hidden layer, however outputs
are isolated from one another using a sparse network. This pre-
vents cross-talk and allows us to learn a plant simulation from more
complex data. 41

5.2 Verification of the new network architecture for the turbine speed,
compared to Figure 4.1 we can see that the expanded simulation
network architecture outperforms the single hidden layer network.
At any given point, the network is error is less than that of the
previous simulation. 43

5.3 Verification of the new network architecture for turbine inlet tem-
perature. 44

5.4 Verification of the new network architecture for mass flow rate. . . . 45

LIST OF FIGURES (Continued)

Figure Page

5.5 Approximate plant efficiency for 150 time step simulation showing
the control action taken by the bleed air valve. Plant power output
is relatively constant despite the large changes in control actuation.
The periodic response of the plant control valve suggests that other
plant state variables are changing significantly. 47

5.6 Approximate plant efficiency for 150 time step simulation including
plant state. The bleed air valve causes many changes in turbine
speed, flow rate, and temperature across the fuel cell. These effects
add to produce power at a lower fuel cost compared to nominal
operation at this power output. The controller decreases the reliance
on the turbine speed for power generation and increases fuel cell
utilization to operate at a higher efficiency. 48

LIST OF TABLES

Table Page

3.1 Run-time comparisons for HyPer Plant, HyPer Model, and NN func-
tion approximation. 24

5.1 Table of factorial data vs cold air data learning parameters and MSE 40

Chapter 1 Introduction

Difficult real world problems, from air traffic control to self-driving cars, from

computer networking to power generation and distribution all require increasingly

complex systems as the demand for use increases. More and more often, these

complex systems require complex control decisions to regulate and optimize the

performance of the system. Implementation of complex systems has lead to dis-

tributed systems, hybrid technologies, and large amounts of data, yet the inter-

actions in the complex system are difficult to model and are often poorly under-

stood. Nonlinearites, system noise, stochastic dynamics, coupled control actions,

and heterogeneous technologies make control of these complex systems difficult

with traditional control methods.

Learning based control methods for these complex systems have been success-

ful in many of these challenging domains, such as air traffic control [1], planetary

exploration [18], computer networking [36], power grid managment [28], UAV co-

ordination [5], micro air vehicle control [32], fin-less rocket guidance [12], satellite

vibration elimination [24], nonlinear control for robots [13, 11, 15], power plant

boiler control [22] and many other real world applications [6, 8, 9, 26, 31]. By

taking advantage of statistical models, machine learning applied to control has the

ability to outperform many of the current state of the art control. Because models

are limited and subtle, complex interactions in the real world are difficult to find or

2

quantify, traditional control methods are difficult to implement and limited in their

use for these systems. Learning based control can offer insights into the dynamics

of the system while providing a solution to these control problems.

One example of one of a complex system which is difficult to model and control

is the US Department of Energy’s Hybrid Performance Project (HyPer), a hybrid

power plant which incorporates both a gas turbine power cycle and a solid oxide fuel

cell. The increasing demand for efficient, clean, and cost-effective energy generation

sources has created a desire for energy sources which are thermally efficient and

flexible to rapidly changing load demands. New advanced and experimental power

plants are being designed to meet these demands, and many new power plant

designs incorporate many different types of technologies into their designs. The

HyPer plant’s hybrid configuration creates challenges in modeling and control [30].

HyPer is a hybrid fuel cell turbine plant in a direct fired configuration, a design

which offers many benefits. First, the turbine can recover waste heat from the

fuel cell which operates at high temperatures, resulting in high system efficiency.

Second, the fuel cell can act as a “thermal battery,” allowing for large amounts

of heat to quickly be transferred to the turbine. The design of HyPer allows the

fuel cell to operate as a baseline energy source, and the turbine can then quickly

respond to transient loads [42].

The single largest challenge in the development of HyPer is determining how

to adequately control the plant. Due to the hybrid nature of the plant, there are

highly nonlinear system dynamics and a high degree of coupling between state

variables. As a result, accurate physics based models of HyPer have been difficult

3

or impossible to develop. Furthermore, empirical system models such as empirical

transfer functions are difficult to obtain, and typically only describe limited oper-

ating regimes [37]. Without an accurate model of the HyPer facility, traditional

model-based control techniques are inadequate for control of HyPer.

Learning-based controls, such as neuroevolution, offer advantages over tradi-

tional controllers since they are well suited to nonlinear control, reject noise, and

require no explicit system models [13, 14]. However, learning-based controllers

require a large number of calls to a simulator in order to evaluate different control

policies, meaning that a fast system simulator is required for these algorithms to

be computationally tractable. Current models of HyPer (both analytical and em-

pirical) are inaccurate and computationally expensive, and are thus inadequate for

training a learning-based controller.

In this paper, we develop a fast and computationally efficient simulator of

the HyPer facility, by training a neural-network with data collected from physical

HyPer experiments. This neural network can run orders of magnitude faster than

real time, allowing for different controllers to be quickly and efficiently evaluated.

We then use a neuro-evolutionary algorithm to develop a controller for HyPer,

and the learned controller is capable of controlling the HyPer plant across several

important variables. The specific contributions of this paper are outlined below.

1. Statistic based, learned model for the HyPer Facility which allows for efficient

simulation of the power plant and accurately matches the plant dynamics.

2. Robust, evolved neural network controller capable of reaching arbitrary set

4

points for historic plant states.

3. Robust neural network control capable following an arbitrary turbine speed

trajectory

4. Expanded simulation of the plant and control results using all plant control

valves for high efficiency operation at a given state.

5. General method to expand the operation range of the power plant and im-

prove the power plant simulation.

The rest of this paper is organized as follows. Chapter 2 describes background

material and related work. Chapter 3 describes our plant simulator and neuro-

evolutionary algorithm. Chapter 4 presents our experimental results. Chapter 5

describes the results of the expanded simulation and control. Finally, Chapter 6

discusses the results and concludes the paper.

5

Chapter 2 Background

In the following sections we describe the HyPer facility, current control methods,

neuro-evolutionary algorithms, and fitness approximation.

2.1 The HyPer Facility

The Hybrid Performance Project facility, HyPer, is located at the Department of

Energy’s National Energy Technology Laboratory campus in Morgantown, West

Virginia. The purpose of this experimental plant is to study the complex interac-

tions of the direct fired SOFC hybrid configuration, and to develop controllers for

this plant.

The HyPer project is a small scale SOFC hybrid hardware simulation, capable

of emulating 300 to 900 kilowatt hybrid plants [42]. HyPer uses real power plant

hardware in conjunction with a hardware in the loop simulation of a fuel cell to

study the interactions in these hybrid fuel cell systems. The fuel cell simulation

makes this plant unique in that it allows for a wide range of fuel cells to be simulated

without additional cost, and controllers may be tested without risk of damaging a

costly fuel cell. The plant can be reset in software rather than rebuilt in hardware,

allowing for significant progress in the understanding of such hybrid configurations

[34].

6

The standard Brayton cycle plant with regeneration is a fundamental building

block of the HyPer plant. The Brayton cycle, shown in Figure 2.1 is the typical gas

turbine model for power generation. Gas cycle turbines are desirable because they

have fast start up times, can be built in a wide range of power outputs, and use

readily available fuels such as natural gas [41]. In a typical Brayton cycle power

Compressor Turbine

Heat
Exchanger

Combustor

Fuel In

Air In

Exhaust

Figure 2.1: The Brayton cycle with regeneration. Air travels along the arrows
shown. First air enters the compressor, then is preheated before the combustor.
Hot air is then run through the turbine, and exhaust gasses are used to heat the
heat exchanger. Typical controls (not shown in diagram) include fuel in, compres-
sor bleed air valves and hot air bleed valves before the turbine. These valves control
flow rate and temperature at critical points in the cycle such as the entrance to
the turbine.

plant, atmospheric air is drawn through a compressor, the pressurized air is then

mixed with fuel in a combustion chamber and the fuel is ignited adding thermal

energy to the air. The exhaust gasses from the combustion chamber are then

expanded through a gas turbine, generating mechanical work in a rotating shaft

7

used to drive the compressor and an electric generator. A standard gas turbine

then vents the exhaust gasses from the turbine out into the atmosphere. In a

turbine equipped with regeneration, the hot exhaust from the turbine is used to

preheat the air entering the combustion chamber with a heat exchanger, reducing

the amount of fuel required to heat the air.

C
at

ho
de

A
no

de
Electrolyte

Cool Air Inlet Fuel In

Hot Exhaust Excess Fuel

Electric Current

Figure 2.2: Fuel cell configuration. Fuel enters the anode of the fuel cell, air
enters the cathode. Hydrogen ions contained in the fuel are transported across the
ceramic electrolyte and creating an electric potential difference across the fuel cell.

Solid oxide fuel cells utilize a ceramic electrolyte to channel oxygen ions to

react with hydrogen producing an electric current. Fuel cells operate at a very

high efficiency, typically up to 60% and with low carbon emissions [42]. These fuel

cells operate at a high temperature, reforming natural gas or other hydrocarbon

8

fuels to produce the hydrogen needed for the reaction, and ionizing the hydrogen

and oxygen to be transported across the electrolyte. Temperatures can reach

upwards of 600◦ C, much of which is wasted in the exhaust gas. Stand alone fuel

cell generation facilities take significant time to heat and start up, limiting their

use in applications requiring fast plant startup [41]. Pressurized air enters the

cathode of the fuel cell, and fuel enters the anode. Hot exhaust leaves the fuel cell

at a high temperature, with any unconverted fuel and other gasses.

They HyPer project places a fuel cell in between the regeneration heat exchang-

ers and combustion chamber of the typical Brayton cycle shown above. Figure 2.3

on Page 11 shows the configuration of HyPer. Primary heat generation to run

the turbine comes from the fuel cell exhaust, the combustion chamber burns any

unspent fuel, assists in start up, and regulates turbine inlet temperature. Exhaust

from the turbine runs through a set of parallel heat exchangers to preheat air into

the fuel cell. 120 sensors are located across the plant designed to feed realtime

information to the controller and log the state of the system during experiments.

Along with the addition of the fuel cell, three bypass air valves are used as

actuators. These three valves in tandem with the fuel input are the controls to

HyPer. By utilizing bypass air, temperature and pressure can be regulated at

important locations in the system such as the entrance to the fuel cell or turbine.

These bypass valves are described below:

• Cold Air Bypass: This valve brings cold air to the cathode of the fuel cell.

• Hot Air Bypass: This valve brings high pressure hot air directly from the

9

heat exchanges and sends it to the combustion chamber.

• Bleed Air Valve: Vents high pressure air from the compressor out to the

atmosphere.

• Fuel Valve: Besides the three bypass valves, fuel rate into the anode side of

the fuel cell. Some of the fuel is bled into the secondary combustor.

10

The HyPer plant uses a hardware simulation of the fuel cell. The hardware in

the loop simulation of the fuel cell uses a high fidelity model of a fuel cell in software

to control a combustion chamber with the flow and heat transfer characteristics of

the real fuel cell. Thus, novel control techniques can be studied with low risk of

damaging a costly fuel cell, while accurate interactions between plant components

can still be observed. This hardware simulation of the fuel cell has been validated

in the studies of the plant. By simulating the fuel cell in hardware, the interactions

between fuel cell and turbine can be studied in detail [34].

System wide analytic models and software simulations have yet to capture

authentic behavior of these interactions and limit the study of control systems for

this plant. In the next section we discuss the current modeling and methods of

control for this plant.

11

C
om

pr
es

so
r

Tu
rb

in
e

H
ea

t
E

xc
ha

ng
er

C
om

bu
st

or

Fu
el

C

el
lFu

el
 In

B
le

ed

A
ir

V
al

ve

C
ol

d
A

ir
V

al
ve

H
ot

 A
ir

V
al

ve

A
ir

In

E
xh

au
st

F
ig

u
re

2.
3:

A
si

m
p
li
fi
ed

d
ia

gr
am

of
th

e
H

y
P

er
fa

ci
li
ty

.
A

ir
tr

av
el

s
in

th
e

d
ir

ec
ti

on
of

th
e

ar
ro

w
s

sh
ow

n
fi
rs

t
en

te
ri

n
g

th
e

co
m

p
re

ss
or

,
th

en
p
as

si
n
g

th
ou

gh
a

h
ea

t
ex

ch
an

ge
r

to
p
re

h
ea

t
th

e
ai

r
b

ef
or

e
th

e
fu

el
ce

ll
.

T
h
e

fu
el

ce
ll

ex
h
au

st
ga

ss
es

an
d

u
n
u
se

d
fu

el
ar

e
ou

tp
u
t

to
a

sm
al

l
co

m
b
u
st

io
n

ch
am

b
er

,
an

d
h
ot

ai
r

is
fe

d
th

ou
gh

th
e

tu
rb

in
e.

T
h
e

ex
h
au

st
h
ea

ts
th

e
h
ea

t
ex

ch
an

ge
r

b
ef

or
e

ex
it

in
g

th
e

sy
st

em
.

F
ou

r
co

n
tr

ol
va

lv
es

co
n
tr

ol
th

e
fl
ow

of
H

y
P

er
an

d
ca

n
re

gu
la

te
te

m
p

er
at

u
re

,
fu

el
,

an
d

fl
ow

ra
te

in
to

sy
st

em
co

m
p

on
en

ts
.

12

2.2 Current Control Methods

Modern control theory was designed to deal with large, multi-input, multi-output

systems, and is the basis for modern power plant controls. Historically, develop-

ing models for traditional coal fired power plants has been successful in creating

advanced and robust controllers. Thermodynamics, heat transfer, and fluid dy-

namics within the plant can be modeled, and assumptions used to create these

models have typically held in real-world power plants. Model Predictive Control

(MPC) was developed to use these models for power plant systems to compute op-

timal controls [27]. Further, many model-based control methods in power plants,

including MPC, Linear Quadratic Regulator, and H∞, allow for control robust to

noise and nonlinearities [25]. As a result of the availability of relatively accurate

plant models, model based control methods are prevalent in many power plants.

These model based control methods rely on two major assumptions.

1. Accurate models exist for the system.

2. Models can be linearized about a feasible operation point.

In HyPer, accurate analytical models of the plant have been difficult to obtain

for several reasons. Operation characteristics for interaction of the control valves,

turbo machinery, and fuel cell is not well understood [3]. Computational models

of the system do not match the physical realities of the plant [37]. Stochastic

dynamics due to turbulence cause flow imbalance and can lead to stall surge in

the turbine further increasing the difficulty for modeling and control in the plant

[39]. Thus, most of the expirimental controllers in the plant have been derived

13

using empirical data. Several of these empirical methods of modeling and control

of HyPer have been used to achieve some demonstration of the potential of the

hybrid fuel cell technology but lack the ability to control the full range of the

plant’s operation window [3, 30, 37, 38, 40].

Empirical data from plant runs was proposed by Tsai et al. in [37] to build

empirical transfer functions as models for controllers. Previous work on valve

characterization in [3, 40] used plant data to gain insights into the controllability

of the plant, but did not use the data to derive models for plant controllers. Tsai

uses systematic valve characterization to build empirical transfer functions. The

empricial transfer functions serve to model the frequency response of the plant by

fitting the data and mapping the controls to frequency response.

In [38], Tsai et al, use the empirical transfer functions described above to

implement a robust H∞ controller for the plant. Because sensor noise and model

inaccuracies are an issue in the plant, an optimal robust controller was implemented

in the plant. The controller is successful in setpoint control for several variables,

although nonlinearities in the plant cause difficulties in reaching many states in

the plant.

Restrepo in [30] uses Design of Experiment (DoE) techniques to expand these

empirical transfer functions and more accurately model the plants response to

control inputs. Factorial characterization data demonstrates the complex nonlinear

interactions of the bypass control valves. Using the updated transfer functions, a

Model Perdictive Controller is implemented for the HyPer plant.

14

Most notably, an adaptive scheme presented by Tsai et al. in [39] offers some

solutions to the coupled, nonlinear control system in the HyPer plant. Using a

Model Reference Adaptive Control (MRAC) the plant was shown to be controllable

in simulation. This control scheme uses empirical transfer functions built from

plant characterization tests as a non-linear model of the plant. A control loop uses

these plant models to determine the optimal control input.

There are several disadvantages of this method for the HyPer facility. While

empirical transfer functions of the plant contain plant response data that captures

coupling and nonlinearities in the system, these functions are extremely costly to

acquire. These transfer functions are developed through costly and time consuming

plant characterization runs, where the frequency of actuation is varied and the

plant states captured. The work presented in [39] uses transfer functions outdated

by hardware changes. This method of control also causes unwanted oscillations

due to the nature of the empirical transfer functions, rapid fluctuations in valve

control and in plant state variables is undesired. The use of MRAC with dynamic

models is difficult to compute on the fly for the fast responses needed out of the

system. Methods for numerical simulation of the plant were found by trial and

error and by hand tuning the parameters. This method requires filtering plant

state data and sensor input into the controller, adding delay to control decisions.

The current state of the art controllers used in HyPer have many limitations.

First, these methods use empirical transfer functions as a model; these transfer

functions are difficult to develop and only describe a limited operating regime, so

the controllable region of the HyPer operating regime is fairly limited. Second,

15

the empirical transfer functions run slower than real time, resulting in difficul-

ties for MRAC to make real-time control decisions. Finally, due to the limited

models, MRAC is extremely sensitive to noise, resulting in suboptimal control de-

cisions being made when sensor calibrations are incorrect. Also, nonlinearities in

the empirical models are significant, and when linearized, are not a sufficient ap-

proximation of the plant to base a controller upon. Although HyPer has potential

for providing efficient and reliable energy, the control of HyPer must be further

developed and refined prior to commercial implementation.

2.3 Neural Networks

Neural networks are a distributed computational model used for complex input/output

mappings, and are extremely robust to noise, making them good candidates to

model systems or encode controllers [4]. Further, neural networks can model any

continuous n-dimensional function to arbitrary accuracy [2].

As shown in Figure 2.4, inputs to the network are connected via weights to

hidden units. The hidden units are connected to the outputs. This is a fully

connected network, each unit is connected each unit in the following layer. Units

are made up of activation functions, in this work sigmoidal activation functions

are used and defined as follows:

H(x) =
1

1− ex
(2.1)

Where x is the input to the activation function.

16

x =
∑
i

wixi (2.2)

By passing the inputs through the series of activation functions, highly non-

linear relationships can be encoded in the network weights. A wide range of in-

put/output mappings are quickly computed with a single pass through network.

Inputs'

Hidden'
Units'

Outputs'

Figure 2.4: Fully connected neural network representation.

17

2.3.1 Backpropagation

Error backpropagation is an algorithm used to train a neural network based on

data. The weights of the network can be trained by computing the error between

the target data point and the output of the network. Once the error is computed,

the weights are updated by performing gradient descent in the weight space mini-

mizing mean squared error. The update rule for a particular weight of a network

is given by:

∆wij = −α ∂E

∂wij

= −αδjxi + η∆wt−1
ij (2.3)

δj =


(outputj − targetj)H(inj)(1−H(inj)) output unit

(
∑

l δlwjl)H(inj)(1−H(inj)) hidden unit

Where α is a learning rate and determines how far along the gradient we step,

δ is the gradient of the error backpropagated though the network and is unique

depending on the layer of the network being updated, and xi is the input to the

weight being updated. The second term is called momentum, momentum uses the

previous weight update ∆wt−1
ij scaled by a momentum factor η to prevent becoming

stuck in local optima.

After all data points are presented to the network, the data points are shuffled

and are presented again for another epoch. We split the data between a learning set

and a validation set. The mean squared error of the network for the training and

validation set is saved for each epoch. By comparing the error for the training and

validation set, we can determine the optimal stopping point for training. When

18

the validation error stops decreasing, the ability for the network to generalize to

new inputs. By stopping learning at this point, the network will avoid over fitting

the data.

In Colby et al. a backpropagation network was used to decrease the computa-

tional complexity of simulation to determine fitness in a evolutionary algorithm to

optimize the configuration of a wave energy converter [6]. Through solving energy

and momentum equations and simulating many wave energy converter geometries,

they were able to decrease the computational time required to evolve new geome-

tries. By evolving geometry for the converter in question, the authors were able

to drastically improve the performance of the converter compared to the previous

state of the art geometry.

2.4 Neuro-evolutionary Control

Training neural networks with backpropagation is highly effective to learn weights

when the targets for learning are available, or when gradient information is present.

Neuro-evolution is used when no information about the targets is available [12]. In

difficult control problems, information about the optimal target control outputs is

often unavailable [1, 13, 15].

Neural network controllers can be trained with evolutionary algorithms, which

are stochastic optimization algorithms inspired by biological evolution [6]. Neuro-

evolutionary controllers are robust to noise, are computationally efficient (allowing

for real-time control), are inherently nonlinear, and are adaptive to rapidly chang-

19

ing control inputs. Further, developing neuro-evolutionary controllers does not

require an explicit system model, making them ideal candidates for control of

systems in which accurate system models are unavailable (such as HyPer) [35] .

Neuro-evolutionary control has been demonstrated on many difficult control prob-

lems such as micro air vehicle control in wind currents [32], finless rocket altitude

and attitude control [12], wave energy converter ballast control [6], and even hybrid

power plants [31] .

In neuroevolution, a population of n neural networks is maintained. In each

generation, n new networks are created, which are slightly altered (mutated) ver-

sions of the networks currently in the population. Each of the 2n networks are

evaluated in the target system, and assigned fitness values based on their effective-

ness. Finally, n networks are selected to survive to the next generation, with higher

fitness values corresponding to a higher probability of selection. This process is

repeated until a desired performance threshold or maximum number of generations

is reached [6]. Many evolutionary algorithms use crossover in the mutation opera-

tion, combining solutions to create new population members. In neuro-evolution,

this is unnecessary as replacing sections of random weights with another section of

random weights is not often productive, and neuro-evolution is successful without

this step [6, 18, 32].

20

2.5 Fitness Approximation

In order to assign fitness in the evolutionary algorithm, the candidate controller

must be evaluated. Fitness approximation techniques are used when fitness eval-

uation is difficult or expensive to compute [7, 21, 29]. In the case of the HyPer

power plant, models of the system exist, but are computationally costly and do

not accurately model all system coupling and nonlinearities. In order to preform

an neuro-evolutionary algorithm for control, a computationally efficient approxi-

mation of the plant is required. Work in fitness modeling has demonstrated the

ability to use approximations of the fitness function in lieu of costly simulations or

hardware experiments [16].

Many methods exist to use fitness models to speed up fitness evaluation. Ex-

amples of fitness modeling include online updates of the fitness model [23], the

use of simplified surrogate problems [10, 17, 20], or neural network approximation

trained with real world data [19]. Neural networks trained with backpropagation

are particularity powerful as fitness models since they have the representational

power to model highly nonlinear functions to an arbitrary degree [2, 4]. Neural

network fitness models have been shown to decrease computational cost of fitness

evaluation, while maintaining useful fidelity even while modeling highly nonlinear

functions [6, 33].

The use of fitness approximation to evaluate controllers, is a well established

tool for evolutionary algorithms. By applying it to the HyPer plant, we evolve

controllers which (i) match plant dynamics and (ii) can be computed efficiently.

21

Chapter 3 Method

In this section, we describe the method to evolve neural network controllers for

the power plant. The outline of the method is shown in Figure 3.1. First, we

found measured data from actual HyPer experiments to train a neural network

simulator (1© in Figure 3.1). We use the data to train a neural network using

backpropagation, a gradient descent technique to find optimal network weights

(2© in Figure 3.1). If the resulting simulator has insufficient accuracy, we find

regimes where more measurements needed and conduct more HyPer experiments

to collect measurements or use data from previous experiments.

Once the neural network simulator of HyPer is complete, we develop a neural

network-based time domain simulation of HyPer (3© in Figure 3.1). This time

domain simulator is used to evaluate and assign fitness to controllers developed by

the neuro-evolutionary algorithm (4© in Figure 3.1).

3.1 Function Approimation Plant Simulation

The neuro-evolutionary algorithm used to develop HyPer controllers requires that

many different controllers be evaluated. Current models of HyPer are either

computationally expensive or inaccurate, and are thus inadequate for the neuro-

evolutionary algorithm. To address this problem, we develop a neural network

22

HYPER Facility

Measured Data

Backpropogation
Network

Approximation
Performance

Find Regimes
Where More
Data Needed

Time Domain
Simulation

Neuroevolution
Algorithm

Candidate
Controller

Fitness

1

2

3 4

Figure 3.1: Visualization of the development of the neuro-evolutionary controller
for HyPer.

function approximator trained on data collected from physical HyPer runs to cre-

ate a fast and accurate simulator for HyPer.

Valve characterization runs in HyPer are used as a data source to learn a

controller for the cathode air flow rate. By using data from real plant runs, we can

learn a simulation of the plant that both matches underlying interactions in the

plant, but also represents a reasonable operating range of the plant. We selected

data from cold air valve characterization runs corresponding to 1© in Figure 3.1.

Valve characterization consists of varying the cold air valve between 10% and 80%

23

and allowing the plant to reach steady state operation. Sensor outputs across the

plant were recorded at each timestep. The resultant data set contains 19 plant

state variables and two control variables.

The data set contained 30,626 data points sampled at 12.5 Hz, or about 10

minutes of run data. To decrease the training time for the neural network simu-

lator, data was downsampled by averaging every 25 timesteps. Thus, 1225 points

are presented to the network to learn. Each simulation step will then amount to 2

seconds in the real plant. Assuming control decisions for hot and cold air bypass

valves are made every 2 seconds does not limit the fidelity of the simulation, nor

does it limit the control of the plant, as these valves are simply used to tune the

steady state response of the plant.

A single hidden layer neural network is created with 21 inputs for the current

state and control inputs, and 19 outputs return the plant state at the next time

step. Initial network weights are initiated from a Gaussian distribution with a

standard deviation of 0.75 with full connections to the hidden unit layer and output

layer. The network is trained using backpropagation, where the collected data from

HyPer runs is used to tune the network weights.

Backpropagation is the process of training a neural network using gradient

descent. The gradient of the network approximation error as a function of the

network weights is determined, and this gradient is used to incrementally change

the weights in order to minimize approximation error. A training data set and

a validation data set are created. As neural networks can approximate functions

to arbitrary accuracy, they tend to “overfit” and learn noise in the training data.

24

Network training is stopped once approximation error in the validation data con-

verges. As gradient descent has the property of converging to local optima, the

network training process is run for 750 independent trials, to ensure the trained

network is not located at an undesirable local optimum.

3.2 Time Domain Simulation

Once trained, the network is used to develop time domain simulation of the plant.

The network maps the current plant state and control decisions to the next plant

state, so a time domain simulator simply needs to record the current state of the

plant, get control decisions from the controller, and call the neural network at each

time step. Algorithm 1 describes the simulation in detail.

The learned simulation of the plant allows for fast evaluation of controllers.

Since physics based models of the power plant are difficult to simulate in real-time

and plant runs are costly and time consuming, a learning based controller using

these methods for simulation becomes computationally intractable. In Table 3.1

we compare the run-time of the learned simulation to the required run-time for

models computing at or near real-time.

Run-time Neural Network HyPer Models
Single Sim < 0.001 seconds 10 min
Single Generation < 1 seconds 160 hours
One EA (5000 Gen) 42 minutes 47.5 years

Table 3.1: Run-time comparisons for HyPer Plant, HyPer Model, and NN function
approximation.

25

Algorithm 1 Time Domain Simulation

Input: Control commands, initial state, setpoints, controller F , plant model M
Output: Plant state trajectory, setpoint error

Initialize output = {}
Initialize error = {}
Initialize state = stateinitial
Initialize currentError = (state− setpoint)
For Each (Time Step)

output.Add(state)
For Each error.Add(currentError)

control = F (state, setpoint)
state = M(state, control)

return output

As seen in Table 3.1, a single simulation of the plant can be run in fractions of

a second for minutes of run-time. Even with an order of magnitude speed up in

simulation of the physics models of the plant, evolutionary methods for control of

the plant would still require far too much computation to be useful. By developing

a fast simulation of the plant, we can quickly evaluate controllers and assign them

fitness values in an evolutionary algorithm.

To validate the simulator’s performance, the time domain simulator is tested

against an actual HyPer run. The simulated and actual measured plant variables

are shown in Figures 4.1, 4.2, 4.3, and 4.4. The neural network approximation of

the plant rejects the noise found in the data, and qualitatively reflects an accurate

representation of the plant state.

26

3.3 Evolutionary Algorithm

We use a neuro-evolutionary algorithm to train a controller for HyPer, using the

time domain simulator developed in Section 3.1 to assign fitness to controllers.

A population of 100 neural networks is randomly initialized, with weights drawn

from a normal distribution with zero mean and a standard deviation of 3.5. The

controller inputs include the current state of the system and the desired state of

the system. The controller outputs control decisions for the cold air bypass and

fuel valves.

Networks are mutated by selecting 33 randomly chosen weights and adding a

random value drawn from a normal distribution with zero mean and a standard

deviation of 1.0. Networks are assigned fitness using the time domain simulator

from Section 3.1, where controllers which keep the plant closer to a desired trajec-

tory have a higher fitness (error calculated using mean squared error). Networks

are selected for survival using a binary tournament selection technique, based on

their assigned fitness values. Ties are broken arbitrarily.

Two types of controllers are evolved for the plant. First we evolve a controller

capable of reaching an arbitrary setpoint. Secondly,we evolve a controller capable

of following a trajectory. Both are tested with and without the presence of noise.

27

Algorithm 2 Neuro-evolutionary Algorithm

Initialize n networks
For EachGeneration

For Each(Network in Population)
create a copy of Network;
mutate Network copy;

For Each (Network in Population)
Evaluate network in time domain simulation;
Assign fitness to network;

Select population members for survival;
return best network found;

28

Chapter 4 Results

The following chapter provides the results of the learned plant model simulation

as well as control results for the initial model. Section 4.1 shows the results of the

model validation. Section 4.2 shows the evolved setpoint controller for fuel cell

flow rate. Section 4.3 shows the evolved trajectory controller for turbine speed.

4.1 Model Validation Results

To validate the neural networks simulation of the plant, the simulation is given the

initial plant state from the original data and then allowed to respond to the control

inputs from the original data. Figures 4.1. 4.2, 4.3, & 4.4 show the response of the

system to the original control inputs found in the data. We show the comparison of

the original data set to the learned simulation for several plant variables: turbine

speed, fuel cell flow rate, total fuel input, and turbine inlet temperature.

29

Figure 4.1: Simulation validation for turbine speed. The neural network simulator

accurately models the HyPer facility, with the key difference between simulated

and hardware runs being the lack of noise in the simulator.

30

Figure 4.2: Simulation validation for fuel cell flow rate.

Figure 4.3: Simulation validation for total fuel entering the plant system.

31

Figure 4.4: Simulation validation for turbine inlet temperature.

Mean squared error across all data points is 0.115%. As seen in the validation

plots, the maximum error of the network approximation corresponds to about 5%

at any point in the simulation for turbine speed, one of the most difficult plant

state variables to model in the data. The large discrepancy in turbine speed shows

it is largely dependent on the time state of the system, intuitively this discrepancy

can be accounted for by turbine inertia, and that turbine speed is non-Markov

without turbine acceleration in the state. This is deemed acceptable since the

approximation of the state is within 5%, and the state information is directly

gathered from the sensors.

Fuel cell flow rate in Figure 4.2, shows the network capturing the behavior of

the flow rate very closely, with the network capturing underlying dynamics of the

plant. We conclude that the simulation of the plant captures plant dynamics and

32

can be used to assign fitness to controllers.

4.2 Setpoint Control

We ran three sets of experiments with the controller to demonstrate its effective-

ness. Control of the fuel cell flow rate of with the cold air valve is shown for several

set points. The evolved controller is then tested with sensor and actuator noise.

Figure 4.5: Control of fuel cell flow rate with the cold air valve response to step
input in control. Initial step down shows small controller overshoot, the step up
shows lightly damped behavior.

Setpoint Control: Figure 4.5 shows the fuel cell flow rate response for cold air

valve actuation with neuro-evolutionary control. Initial state of the plant indicates

33

Figure 4.6: Evolved neural network controller response to 10% sensor noise. Notice
that 10% sensor noise is larger than the commanded control step input.

the normalized fuel cell flow rate is at 0.863. Two setpoints are given to the

controller after it has reached a steady state. As we can see in the figure, the

controller immediately corrects the flow to the desired initial setpoint. Slight

overshoot is observed with the first step down, indicative of the drastic change

in plant state occurring with the neural network control. When the setpoint is

switched at timestep 50, the controller follows a smooth trajectory to the desired

setpoint. Because the network is trained on many setpoints, it adaptively adjusts

its response due the the severity of the control change. Once the controller reaches

steady state, the error is minimal.

34

Control with Sensor Noise: The evolved controller does very well for these

state changes on a variable that is difficult to directly control when the input to

the system reflects the actual state of the plant. As can be seen in Figures 4.1. 4.2,

4.3, & 4.4 the actual sensor readings of the plant are very noisy, with upwards of

6% noise on the states. In the actual power plant, the sensor noise is filtered and

averaged over several timesteps to obtain inputs for the controllers [39]. Neural

network controllers, on the other hand, have demonstrated to handle noise well in

the inputs. An ideal controller for this power plant will reject at least the same

level of noise found in the actual plant to control the plant to the desired setpoint.

The evolved controller now is given a noisy input from the plant. The con-

troller was not trained on with noisy states, but on true state data output by the

simulation. We now add 10% Gaussian noise to the input of the controller at each

timestep. Figure 4.6 shows the system response to noisy controller input. The

actual plant state is plotted for a noisy input.

10% noise on the input of the network is larger than the expected change in

the setpoint. In any controller with output directly proportional to the input,

one would expect noise to over shadow the control input. In our neural network

controller noisy inputs are averaged out since the output depends on all plant

state variables. The control decision is robust to the noise in the plant. Plant

output is still noisy, but at the worst 10% sensor noise maps to less than 2% noise

in the true output of the plant. This demonstration shows the noise rejection

capabilities of the neural network controller to be far greater than needed in the

plant. Implemented in the plant, this controller would receive filtered data with

35

Figure 4.7: Control with 5% actuation noise. The level of noise in the flow rate is
les than 0.2%, although a small steady state error is present.

noise far below 5%.

Control with Actuation Noise In addition to sensor noise, we would like

to test the controller’s sensitivity to its own output. We know from the first

experiment that the control inputs can very change the plant state in few timesteps,

and do so very drastically. If there are any deviations in control input to the system

compared to the control command, the controller must be able to recover without

damaging the system or causing drastic changes in plant state. In this experiment

5% actuation noise is added to the output of the controller, while sensors report

the true plant state.

36

Figure 4.7, shows the results of adding actuation noise to the system. Large

actuator noise in the plant is unlikely. Each control valve is equipped with its

own feedback system. This experiment demonstrates that if the learned controller

makes unexpected decisions, the impact on the plant operations will be minimal.

5% actuation noise corresponds to less than 0.2% noise in the plant state.

4.3 Trajectory Tracking

The evolved controller was tested for a turbine speed trajectory for an arbitrary

load cycle. We performed two experiments on the controller using the learned

simulation of the plant. First we track a turbine speed trajectory, in order to

demonstrate the ability of our learned controller to adequately control the plant,

and provide a baseline performance level to compare against. Second, we add noise

to the plant sensors and actuators, in order to demonstrate the capabilities of the

learned controller in a more realistic environment.

We present an arbitrary trajectory to the controller to track, where the initial

plant state was chosen arbitrarily within the simulator operating range. The con-

troller tracks the turbine to within a maximum of 0.001% of the desired trajectory.

As can be seen in Figure 4.8, initial turbine speed is at 41,500 rpm. In 25 seconds

the turbine speed has reached the desired setpoint, and continues to accurately

track the desired response from that point forward. This result demonstrates the

ability of the learned controller to track a desired trajectory. In addition to turbine

speed of the plant, the cold air valve actuation command is plotted. This shows

37

Figure 4.8: Neruroevolutionary control of turbine speed in the power plant. The
control action to produce the tracking is shown as the out of phase signal on the
plot.

that even for drastic changes in state control remains within actuation limits and

does not put unrealistic requirements on valve actuation. The process of develop-

ing a neuro-evolutionary controller would not have been possible without the fast

time domain simulation developed in Section 3.1, because the neuro-evolutionary

algorithm requires every controller created to be evaluated in simulation. By de-

veloping a fast and computationally efficient simulator, we ensured that a neuro-

evolutionary algorithm was computationally tractable.

The results of the addition of 10% sensor and actuator noise noise(approximately

150 RPM) for the same trajectory are shown in Figure 4.9. The addition of noise

38

Figure 4.9: Neruroevolutionary control with 5% noise. The controller is able to
track the trajectory to within approximatly 50 rpm at any given point in the
simulation.

does not significantly alter the performance of the learned controller, demonstrat-

ing the ability of the neural network controller to adequately reject noise and

disturbances while still maintaining control of the plant.

39

Chapter 5 Expanded Simulation and Control Results

As we can see above, control is limited to the range of data found in the original

data set. This chapter describes the expansion of the original simulation to a wider

operation regime based on factorial characterization of the control valves. Section

5.1 describes the neural network architecture for the updated simulation. Section

5.2 shows the performance of the updated function approximation simulation, and

Section 5.3 shows the results of controlling the HyPer simulation for high efficiency

operation.

Factorial characterization data is from plant experiments systematically chang-

ing all actuators simultaneously. By changing all of the controls, the resulting data

demonstrates a wider range of plant states, as well as contains the dynamics of the

interacting actuators. Expanding the simulation to include these actuators and

map the plant states, allows us to create a controller able to control the whole

plant.

5.1 Neural Network Architecture

In order to expand the simulation of the power plant to include more states and

actuators, the neural network simulation must be updated. We found it to be

difficult to replicate the results of for the cold air characterization data with a

40

Table 5.1: Table of factorial data vs cold air data learning parameters and MSE
Data Set Hidden Units Best MSE
Cold Air(best network) 35 0.115
Factorial 10 8.35
Factorial 15 5.52
Factorial 25 3.43
Factorial 35 2.69

factorial valve characterization set. Recall from Chapter 3, that the optimal neural

network weights for the learned simulation required many random restarts to find a

suitable network accurate enough to be used as a fitness approximation. When the

back propagation algorithm used was to learn a simulation based on the factorial

data, the resulting networks were not comparable in accuracy to the original cold

air data set. Results showing the comparison of the data sets is shown in Table

5.1.

The factorial data set is far more complex than the original cold air data set.

4 control valves are simultaneously adjusted, demonstrating the nonlinear nature

of the plant to the coupled control inputs. The neural networks learned from this

data suffered from cross-talk.

Cross-talk occurs when a network has insufficient hidden units to learn the

underlying function to the data. For example, the cold air valve will cause a drop

in flow rate entering the fuel cell while simultaneously increasing the flow rate at

the turbine. The effects of the opposite signs on the weights average out in the

network, and the output is not consistent with the data.

To solve the cross-talk problem, increasing the number of hidden units is useful,

41

but the more complex network takes more time to train, and also required many

random restarts to find the globally optimal weights.

Inputs	

Hidden	

Units	

Outputs	

Figure 5.1: Example of network architecture for the expanded simulation. The
input layer is fully connected to the hidden layer, however outputs are isolated
from one another using a sparse network. This prevents cross-talk and allows us
to learn a plant simulation from more complex data.

Instead, we change the network architecture to isolate the outputs of the net-

work. Rather than a fully connected network as shown in Figure 2.4, a sparse

network is created. Figure 5.1 shows the architecture scheme applied to the facto-

rial data sets.

Each output is given by a sub-network isolated from each other output. For

each sub-network for an output, an independent network is created with the cur-

rent full state and actuation decision as input, a single hidden layer, and a single

42

output: the variable at the next time step. Each of the sub-networks can be trained

independently and have individualized hidden units. A sub-network is created for

each variable in the output vector for the next time step. Thus, the combined

network can be used for a time domain simulation in place of the original neural

network simulation described in Chapter 3.

5.2 Simulation Performance

All the sub-networks are trained as outlined in Chapter 3. Each sub-network

is trained with 3 hidden unit neurons for 1000 epochs and 100 random restarts.

As can be seen comparing Figure 4.1 with Figure 5.2, the new neural network

architecture outperforms the single network.

When presented with the factorial data, the learned simulation outperforms all

of the single networks found in the earlier search shown in Table 5.1. With fewer

neurons and fewer random restarts.

As can be seen in Figure 5.4, the isolated network architecture can learn com-

plex functions for in the data. The simulation also expands the states to learn

controllers from.

5.3 Control Results

One difficult control problem for the plant is operating at peak fuel efficiency for a

given power plant state. With an accurate simulation that uses all plant actuators,

43

Figure 5.2: Verification of the new network architecture for the turbine speed, com-
pared to Figure 4.1 we can see that the expanded simulation network architecture
outperforms the single hidden layer network. At any given point, the network is
error is less than that of the previous simulation.

we can now control the plant for maximum fuel efficiency.

Since we know plant state variables such as turbine speed, temperatures, air

mass flow rates, and fuel mass flow rate, we can approximate the power output of

the plant and the fuel efficiency. Power out of the turbine is proportional to the

air mass flow and the temperature difference across the turbine at steady state.

Wturbine ∝ ˙mair(Tin − Tout) (5.1)

Power output of the fuel cell is also proportional to the air mass flow and

temperature across the fuel cell at steady state.

44

Figure 5.3: Verification of the new network architecture for turbine inlet temper-
ature.

Wfuelcell ∝ ˙mair(Tout − Tin) (5.2)

By maximizing the sum of power output per unit of fuel at each timestep in

the simulation, we can learn a controller to operate the plant at a high efficiency.

We perform an evolutionary algorithm using the approximate power output and

the fuel mass flow rate to regulate the plant. The equation used for the fitness of

the plant is shown below in equation 5.3.

45

Figure 5.4: Verification of the new network architecture for mass flow rate.

Fitness =
∑

timesteps

ApproximateTotalPowerOutput

FuelIn
(5.3)

A neuro-evolutionary algorithm is applied as outlined in Chapter 3, using the

above fitness as an evaluation function. The resulting controller is an open loop

neural network controller which seeks to maximize plant fuel efficiency. Input to

the network is current plant state, output is control decisions to improve plant

efficiency.

46

Looking at the Figure 5.5 it appears as though little is going on in the plant.

The approximate plant efficiency remains relatively level, except in the first several

time steps and after timestep 50. Figure 5.5 shows the control action being taken

by the plant. The bleed air valve is changing dramatically, while the other valves

remain in their standard open or closed positions. The bleed air valve is chang-

ing rapidly, but the total power output remains relatively constant. Plant state

variable must be also be changing in order to keep relative power output constant.

Figure 5.6 shows some plant state variables response to the controller. Here

plant state variables are imposed on the same graph to show the relative changes

in the plant state. All plant state variables, including approximate power output,

are shown in the normalized form output from the simulator to show the dramatic

changes in plant state compared to the power output.

The controller uses the bleed air valve to control many plant state variable to

work together in order to output at maximum efficiency. Figure 5.6 demonstrates

the complexity of the power plant. Distinct operation regimes and nonlinear re-

lationships are evident between all variables shown. As we would expect, we see

the power output by the fuel cell increase while the temperature at the turbine

inlet decreases. Here we see the controller taking advantage of the high efficiency

found in the fuel cell. Also, we see use of the bypass control valve to cyclically

decrease the total flow rate, which is proportional to both power output and fuel

consumption. Oscillations occur where operation regimes transition such as when

the bleed air valve is fully open. These oscillations could also be caused by the

effects of the heat exchanges capturing waste exhaust heat. The controller bleeds

47

Figure 5.5: Approximate plant efficiency for 150 time step simulation showing
the control action taken by the bleed air valve. Plant power output is relatively
constant despite the large changes in control actuation. The periodic response
of the plant control valve suggests that other plant state variables are changing
significantly.

48

Figure 5.6: Approximate plant efficiency for 150 time step simulation including
plant state. The bleed air valve causes many changes in turbine speed, flow rate,
and temperature across the fuel cell. These effects add to produce power at a lower
fuel cost compared to nominal operation at this power output. The controller
decreases the reliance on the turbine speed for power generation and increases fuel
cell utilization to operate at a higher efficiency.

49

off air when the fuel cell begins to run hot, such as at time step 50 in Figure 5.6.

Only the bleed air valve is being used by this controller, which leads us to

conclude that a controller which primarily relies on the bleed air valve is easy to

find in the neural network weight space, and represents a local optima. Future

work should address the difficulty of using interacting valves to control the plant,

algorithms such as cooperative co-evolution or multi-objective fitness assignment

methods could address these difficulties.

It is worth noting that the approximate power output and efficiency scale is

arbitrary and means little in the reality of the plant as presented here. The use of

these metrics as an evaluation function serve to demonstrate that we can control

the plant at a given state with a decreased fuel cost. The problem of controlling the

power plant at maximum efficiency is inherently full of trade offs. More research

is needed to quantify these trade offs and transition between desired power output

levels.

50

Chapter 6 Discussion

Advanced power generation systems such as HyPer are growing increasingly com-

plex in order to meet the demands for clean, efficient, and available energy needs.

As the complexity of these plants increase, they become more more difficult to

control due to complex interactions between plant components not yet well un-

derstood. Plant noise, variable coupling, system nonlinearities, and stochastic dy-

namics lead to inaccurate physics based models. Further, empirical models based

on plant runs are difficult and expensive to obtain, run slower than real time, and

often only describe a limited operating regime. The inability to develop accurate

system models results in traditional model based control techniques to be inade-

quate for newly designed advanced power generation systems such as the HyPer

hybrid plant.

In this work, we developed a computationally efficient simulator of the HyPer

facility by training a neural network function approximator using actual plant run

data. Rather than developing a simulator through physics based models, we used

plant operational data to train a data based simulation to capture the complex

mapping between the plant state and control decisions to the following plant state.

The resulting time domain simulator can quickly and accurately model the response

of the HyPer facility. As opposed to other empirical methods, the neural network

simulation of the plant is both fast to compute and accurately captures plant

51

dynamics.

We then used an evolutionary algorithm to train a neural network controller

for HyPer. Fitness assignment in the neuro-evolutionary algorithm was conducted

using our time domain simulator, which allowed for thousands of controllers to be

quickly evaluated. Without the fast time domain simulator, a neuro-evolutionary

algorithm would have been computationally intractable. The function approxima-

tion using neural networks to approximate fitness in of controllers in the plant is

crucial to make this work possible. The evolutionary algorithm with our learned

simulation runs in hours as opposed to years if current state of the art models of

the HyPer faccility were used to evaluate controllers.

The evolved neural network controller were able to reach arbitrary setpoints

to a high degree of accuracy, and the trained controller was shown to accurately

track desired system trajectories within 0.001% tracking error, even in the presence

of 10% noise. Further, we demonstrate that the control policy learned during

evolution does not place undue stress on actuators, and outputs feasible control

policies at each time step.

In general, this method is applicable to learn controllers for any system with

computationally difficult models or no models without data. Evolved neural net-

work controllers are particularly well suited to these highly nonlinear problems

with a high degree of noise and multiple inputs and outputs. Once a controller is

found, we can use the simulation in conjunction with the power plant, and exist-

ing experimental data to determine where more plant measurements are needed.

By expanding the simulation, we can evolve a controller capable of reaching more

52

states and utilizing more control actuators.

The controllers developed in this work demonstrate the potential of the hybrid

technology in the configuration above, as well as the capabilities of the learning

based control methods at the heart of this work, but in many ways shows the

limitations of the process as well. Three areas of future research into the power

plant have been identified. First, further work on the power plant will need to

include using multiple plant controls to track power demands while optimizing for

the multiple objectives found in the plant, such as fuel cost and power output, or

turbine and fuel cell wear. Secondly, both the model and the evolved controllers

were prone to local optima and required many random restarts and large popula-

tion sizes to find better solutions. Future work will need to answer these limitations

before implementation in the power plant. Third, work is still needed on how to

combine the benefits of setpoint control, trajectory tracking and open loop power

output control to create a unified system for operation of the plant.

53

Bibliography

[1] A. K. Agogino and K. Tumer. A multiagent approach to managing air traffic
flow. Autonomous Agents and MultiAgent Systems, 24:1–25, 2012.

[2] Jean-Gabriel Attali and Gilles Pagès. Approximations of functions by a mul-
tilayer perceptron: a new approach. Neural networks, 10(6):1069–1081, 1997.

[3] Larry Banta, Jason Absten, Alex Tsai, Randall Gemmen, and David Tucker.
Control sensitivity study for a hybrid fuel cell/gas turbine system. In ASME
2008 6th International Conference on Fuel Cell Science, Engineering and
Technology, pages 653–659. American Society of Mechanical Engineers, 2008.

[4] Tianping Chen and Robert Chen. Universal approximation to nonlinear opera-
tors by neural networks with arbitrary activation functions and its application
to dynamical systems, 1995.

[5] M. Colby, M. Knudson, and K. Tumer. Multiagent flight control in dynamic
environments with cooperative coevolutionary algorithms. In 2014 AAAI
Spring Symposium on Modeling in Human Machine Systems: Challenges for
Formal Verification. Palo Alto, CA, 2014.

[6] M. Colby, E. Nasroullahi, and K. Tumer. Optimizing ballast design of wave
energy converters using evolutionary algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 1739–1746, Dublin, Ireland,
July 2011.

[7] Wu Deng, Rong Chen, Jian Gao, Yingjie Song, and Junjie Xu. A novel par-
allel hybrid intelligence optimization algorithm for a function approximation
problem. Computers & Mathematics with Applications, 63(1):325–336, 2012.

[8] Dimitris C Dracopoulos. Evolutionary control of a satellite. In Proceedings of
the Second Annual Conference, pages 77–81, 1997.

[9] Dario Floreano and Francesco Mondada. Automatic creation of an au-
tonomous agent: Genetic evolution of a neural network driven robot. In
Proceedings of the third international conference on Simulation of adaptive

54

behavior: From Animals to Animats 3, number LIS-CONF-1994-003, pages
421–430. MIT Press, 1994.

[10] Chi Keong Goh, Dudy Lim, Learning Ma, Yew-Soon Ong, and PS Dutta.
A surrogate-assisted memetic co-evolutionary algorithm for expensive con-
strained optimization problems. In Evolutionary Computation (CEC), 2011
IEEE Congress on, pages 744–749. IEEE, 2011.

[11] Faustino J Gomez and Risto Miikkulainen. Solving non-markovian control
tasks with neuroevolution. In IJCAI, volume 99, pages 1356–1361, 1999.

[12] Faustino J. Gomez and Risto Miikkulainen. Active guidance for a finless
rocket using neuroevolution. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 2084–2095, San Francisco, 2003.

[13] Faustino John Gomez and Risto Miikkulainen. Robust non-linear control
through neuroevolution. Computer Science Department, University of Texas
at Austin, 2003.

[14] J. Shepherd III and K. Tumer. Robust neuro-control for a micro quadrotor. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages
1131–1138, Portland, OR, July 2010.

[15] A. Iscen, A. Agogino, V. SunSpiral, and K. Tumer. Controlling tensegrity
robots through evolution. In Proceedings of the Genetic and Evolutionary
Computation Conference, Amsterdam, The Netherlands, July 2013.

[16] Yaochu Jin. A comprehensive survey of fitness approximation in evolutionary
computation. Soft computing, 9(1):3–12, 2005.

[17] Yaochu Jin. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation, 1(2):61–70,
2011.

[18] M. Knudson and K. Tumer. Adaptive navigation for autonomous robots.
Robotics and Autonomous Systems, 59:410–420, 2011.

[19] Vladimir M Krasnopolsky, Dmitry V Chalikov, and Hendrik L Tolman. A
neural network technique to improve computational efficiency of numerical
oceanic models. Ocean Modelling, 4(3):363–383, 2002.

55

[20] Minh Nghia Le, Yew Soon Ong, Stefan Menzel, Yaochu Jin, and Bern-
hard Sendhoff. Evolution by adapting surrogates. Evolutionary computation,
21(2):313–340, 2013.

[21] Minh Nghia Le, Yew Soon Ong, Stefan Menzel, Chun-Wei Seah, and Bern-
hard Sendhoff. Multi co-objective evolutionary optimization: Cross surrogate
augmentation for computationally expensive problems. In Evolutionary Com-
putation (CEC), 2012 IEEE Congress on, pages 1–8. IEEE, 2012.

[22] Jianyong Li, ET Ososanya, and RA Smoak. The neural network control ap-
plication in a power plant boiler. In Southeastcon’96. Bringing Together Ed-
ucation, Science and Technology., Proceedings of the IEEE, pages 521–524.
IEEE, 1996.

[23] Haiping Ma, Minrui Fei, Dan Simon, and Hongwei Mo. Update-based evolu-
tion control: A new fitness approximation method for evolutionary algorithms.
Engineering Optimization, (46):1–14, 2014.

[24] M Moshrefi-Torbati, AJ Keane, SJ Elliott, MJ Brennan, and E Rogers. Pas-
sive vibration control of a satellite boom structure by geometric optimization
using genetic algorithm. Journal of Sound and Vibration, 267(4):879–892,
2003.

[25] Fabian Mueller, Faryar Jabbari, Jacob Brouwer, S Tobias Junker, and Hossein
Ghezel-Ayagh. Linear quadratic regulator for a bottoming solid oxide fuel cell
gas turbine hybrid system. Journal of Dynamic Systems, Measurement, and
Control, 131(5):051002, 2009.

[26] Mehdi Abbaszadeh Naseri and Alireza Yazdizadeh. Neural network-based
imc-pid controller design for main steam temperature of a power plant. In
Advances in Neural Networks–ISNN 2009, pages 1059–1068. Springer, 2009.

[27] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive
control technology. Control engineering practice, 11(7):733–764, 2003.

[28] Sarvapali D Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and Nick
Jennings. Agent-based control for decentralised demand side management in
the smart grid. In The 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1, pages 5–12. International Foundation for
Autonomous Agents and Multiagent Systems, 2011.

56

[29] Esmat Rashedi, Hossien Nezamabadi-Pour, and Saeid Saryazdi. Filter model-
ing using gravitational search algorithm. Engineering Applications of Artificial
Intelligence, 24(1):117–122, 2011.

[30] Bernardo Restrepo. Experimental characterization of fuel cell gas turbine
power system and determination of optimal trajectories of operation using a
model predictive controller. WEST VIRGINIA UNIVERSITY, 2011.

[31] Kyoungsoo Ro and Saifur Rahman. Two-loop controller for maximizing per-
formance of a grid-connected photovoltaic-fuel cell hybrid power plant. Energy
Conversion, IEEE transactions on, 13(3):276–281, 1998.

[32] M. Salichon and K. Tumer. A neuro-evolutionary approach to micro aerial
vehicle control. In Proceedings of the Genetic and Evolutionary Computation
Conference, Portland, OR, July 2010.

[33] C Sivapathasekaran, Soumen Mukherjee, Arja Ray, Ashish Gupta, and
Ramkrishna Sen. Artificial neural network modeling and genetic algorithm
based medium optimization for the improved production of marine biosurfac-
tant. Bioresource technology, 101(8):2884–2887, 2010.

[34] Thomas P Smith, Comas L Haynes, William J Wepfer, David Tucker, and
Eric A Liese. Hardware-based simulation of a fuel cell turbine hybrid response
to imposed fuel cell load transients. In ASME 2006 International Mechanical
Engineering Congress and Exposition, pages 319–328. American Society of
Mechanical Engineers, 2006.

[35] James C Spall and John A Cristion. Model-free control of nonlinear stochastic
systems with discrete-time measurements. Automatic Control, IEEE Trans-
actions on, 43(9):1198–1210, 1998.

[36] Xiaoyan Sun, Dunwei Gong, Yaochu Jin, and Shanshan Chen. A new
surrogate-assisted interactive genetic algorithm with weighted semisupervised
learning. Cybernetics, IEEE Transactions on, 43(2):685–698, 2013.

[37] Alex Tsai, Larry Banta, Larry Lawson, and David Tucker. Determination
of an empirical transfer function of a solid oxide fuel cell gas turbine hybrid
system via frequency response analysis. Journal of fuel cell science and tech-
nology, 6(3):034505, 2009.

57

[38] Alex Tsai, Larry Banta, David Tucker, and Randall Gemmen. Multivariable
robust control of a simulated hybrid solid oxide fuel cell gas turbine plant.
Journal of Fuel Cell Science and Technology, 7(4):041008, 2010.

[39] Alex Tsai, David Tucker, and Tooran Emami. Adaptive control of a nonlinear
fuel cell-gas turbine balance of plant simulation facility. Journal of Fuel Cell
Science and Technology, 11(6):061002, 2014.

[40] David Tucker, Larry Lawson, and Randall Gemmen. Characterization of air
flow management and control in a fuel cell turbine hybrid power system us-
ing hardware simulation. In ASME 2005 Power Conference, pages 959–967.
American Society of Mechanical Engineers, 2005.

[41] David Tucker, Michael Shelton, and A Manivannan. The role of solid oxide
fuel cells in advanced hybrid power systems of the future. The Electrochemical
Society Interface, 18(3):45, 2009.

[42] Wolfgang Winkler, Pedro Nehter, Mark C Williams, David Tucker, and Randy
Gemmen. General fuel cell hybrid synergies and hybrid system testing status.
Journal of Power Sources, 159(1):656–666, 2006.

