
AN ABSTRACT OF THE THESIS OF

Anil Kumar Yadav for the degree of Master of Science in

Electrical and Computer Engineering presented on October 26. 1989.

Title : Performance Monitoring of Parallel Applications at Large

Grain Level

Redacted for privacy
Abstract approved :

Prof. T. G. Lewis

This thesis is an attempt to create a methodology to analyze the

performance of parallel applications on a wide variety of platforms and

programming environments. First we determined the monitoring

functions required to collect traces for accurate representation of the

parallel application. We used the Extended Large Grain Data Flow

(E L G D F) representation of an application to determine granularity

and which monitoring functions should be inserted for sufficient

feedback to application designer. The monitoring routines (real

time clock access procedures) with a common interface were

developed for the SequentTM multiprocessor machine and the C-Linda

programming environment . We also developed an Execution Profile

Analyzer(E PA) for post-processing the traces. The EP A gives

feedback to the mapping and scheduling (TaskGrapher) tool by

providing actual performance data. These tools are being developed as

a part of Parallel Programming Support Environment (PP SE)
research . Results indicate that when actual grain execution time is

made available to scheduling tools, accurate projections of program

behavior are obtained.

Performance Monitoring of Parallel Applications at

Large Grain Level

by

Anil Kumar Yadav

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Completed October 26, 1989

Commencement June 1990

APPROVED :

Redacted for privacy

Prof. T. G. Lewis, Electrical and Computer Engineering

in-charge of major

Redacted for privacy

Head of Department of Electrical and Computer Engineering

Redacted for privacy

Dean of GraduVte School

Date thesis is presented October 26. 1989

ACKNOWLEDGEMENT

I would like to take this opportunity to thank the staff and
faculty of the Departments of Electrical and Computer Engineering

and Computer Science for extending their constant support and

encouragement.

In particular I am very grateful to my major professor
Dr. T. G. Lewis for introducing me to the exciting field of parallel

computing and Dr. Shreekant Thakkar of Sequent Computer Systems,

Inc. Beaverton, Oregon, for his constant guidance and support.

I would also like to express my sincere thanks to Oregon
Advanced Computing Institute, Beaverton, Oregon and Sequent
Computer Systems Inc, for letting me have access to their valuable

equipment for conducting the experiments.

I am also very thankful to the PPSE researchers and guests at

the PPSE meeting on 2nd and 3rd October 1989. The presentation of

this work and subsequent discussions made me view this thesis from a

broader perspective.

And last but not the least I am thankful to my friends and my

family members for making things easy for me.

Anil Kumar Yadav

TABLE OF CONTENTS

1 INTRODUCTION 1

2 AN APPROACH TO PERFORMANCE ANALYSIS 5

2.0 Introduction 5

2.1 Existing Analysis Tools 5

2.2 Overview of P P S E 6

2.3 Steps in Performance Analysis 10

2.4 Instrumentation Experiments 13

3 TIMING ROUTINES 19

3.0 Introduction 19

3.1 Common Interface 19

3.2 Implementation on SequentTM machine 24

3.3 Implementation using Linda-C 3 0

3.4 Extensions to Timing Routines 31

4 EXECUTION PROFILE ANALYZER 3 7

5 ALL TOGETHER 46

6 CONCLUSIONS AND SUMMARY 58

BIBLIOGRAPHY 6 2

APPENDICES

Appendix A : Instrumented Code of Travelling

Salesman Problem 65

Appendix B : Source Code of Execution Profile Analyzer 74

Appendix C : Instrumented Code generated by SuperGlue 9 5

LIST OF FIGURES

Fig. 2.1 Overview of PPSE 8

Fig. 2.2 Performance Analysis Methodology 11

Fig. 2.3 A generic Simulated Annealing Algorithm 14

Fig. 2.4 ELGDF representation of TSM 16

Fig. 2.5 Instrumentation Levels 17

Fig. 3.1 Grain Model and timing interface 22

Fig. 3.2 Trace file format 23

Fig. 4.1 Top level ELGDF of E P A 38

Fig. 4.2 Data structures of E P A 40

Fig. 4.3 Data structures of E P A 41

Fig. 4.4 Data Structures of E P A 42

Fig. 4.5a General Performance Report 42

Fig. 4.5b Actual Task Graph file 43

Fig. 4.5c Actual Gantt chart file 43

Fig. 5.1 ELGDF representation of pi approximation problem 47

Fig. 5.2 Specifications of an arc 48

Fig. 5.3 Specification of a node 49

Fig. 5.4 Code fragment for node "start" 50

Fig. 5.5 Task graph at 'cold start' 50

Fig. 5.6 Execution Gantt Charts 51

Fig. 5.7 Task graph after first run 53

Fig. 5.8 Speed up projections with 'cold start' data 54

Fig. 5.9 Speedup projections with actual data 55

Fig. 5.10 Actual speedups 56

Fig. 5.11 Effect of Grain Size on actual Speedup 57

LIST OF TABLES

Table 3.1 Timing Routines for SequentTM SymmetryTM

multiprocessor 24

Table 3.2 Parallel Programming Library Microtasking Routines 29

Table 3.3 Timing Routines for Linda-C environment 3 3

Table 4.1 Procedures in E P A 44

Performance Monitoring of Parallel
Applications at Large Grain Level

Chapter 1

Introduction

One of the most serious problems in the full utilization of

multiprocessor architectures for parallel applications is the lack of

tools and techniques for debugging and doing performance analysis. An

approach to performance analysis of parallel applications should

provide the program designer with sufficient synchronization and

execution information for fine tuning the application. It should present

a consistent interface and parameters for evaluation across a wide

variety of machines and programming environments. The methodology

should be independent of specific architectures and should provide a

high level abstraction of application performance.

The performance of parallel programs can be analyzed in
basically two ways :- 1) On-line analysis and 2) Postmortem analysis. In

on-line analysis execution trace is collected and analyzed during a

program execution [1, 2, 3]. The on-line analysis approach requires

the creation of trace collection and analysis process on the machine.

Online analysis leads to an interactive analysis tool that is dynamically

controlled by the programmer. Since the profile gathering

computations take place on an additional processor, this method is

less intrusive then the Postmortem method. Furthermore, online

2

analysis is capable of handling large profiling tasks since the traces

are summarized prior to storing them in off-line database files. Online

analysis has intrinsic machine dependencies since it needs an
additional processor and may be ineffective for architectures which

have substantial interprocessor communicational delays such as cube

machines. Therefore while online analysis yields excellent results for

specific architectures (e.g. shared memory multiprocessors) , it can

not form the basis of a more general approach.

Postmortem analysis of applications [4, 5, 6, 7] involves

collection of execution traces and then processing the traces off-line

to obtain performance parameters such as processor utilization, order

of execution, task mapping and speedup. This method is more
intrusive than on-line analysis since the executing application is
diverted to collection of trace information. However this approach has

no machine dependencies and can therefore form the basis of a more

general approach. The trace data can also be analyzed by more
sophisticated programs thus giving different views of the history of

execution of a program.

One of the earliest systems for monitoring multiprocessor

programs was the METRIC system [3] for applications that
communicate over a local area network. This system is divided into

three parts : probes, accountants and analysts. Probes are the

procedure calls used by a programmer to generate trace data. A probe

inserted into the program source code sends data over the network to

an accountant. Accountants record or filter the incoming data. Analysts

3

are the collection of processes which summarize the trace data. This

system helped to define the explicit separation of data generation,

selection and analysis. The METRIC system has been the basis of later

analysis tools.

Most of the recent work in performance monitoring [1, 2, 4, 5,

6, 7] has centered around creating exclusive environments for trace

collection and analysis. Trace collection has been done either by

inserting special routines in the source code or by means of special

hardware hooks. The trace analysis approach used most frequently is

the creation of a relational database of execution history and a set of

queries for obtaining performance information about the application.

These methods have shown efficacy for the systems on which these

were implemented but the portability of such methods over
completely different architectures and the integration of performance

analysis tools with programming environments are issues which have

been addressed marginally at best [8]. The more portable UNIXTM

profilers prof and gprof are sufficient for static analysis of sequential

programs but fail to represent the synchronization behavior of parallel

applications.

The work of this thesis is an attempt to create a methodology to

analyze the performance of parallel applications on a wide variety of

platforms and programming environments. First we determined the

monitoring functions required to collect traces for accurate

representation of the parallel application. We used the Extended Large

Grain Data Flow (E L G D F) [10] representation of an application to

4

determine granularity and which monitoring functions should be

inserted for sufficient feedback to application designer. The
monitoring routines (real time clock access procedures) with a

common interface were developed for the SequentTM multiprocessor

machine and the C-Linda programming environmentl . We also
developed an Execution Profile Analyzer(E P A) for post-processing

the traces. The E P A gives feedback to the mapping and scheduling

tool (TaskGrapher) by providing actual performance data. These tools

are being developed as a part of Parallel Programming Support
Environment (P P S E) research [11].

The rest of this thesis is organized as follows : Chapter 2

describes the approach and the experiments for determining the
instrumentation and correct granularity for performance analysis. The

context of this work is further explained with a brief overview of the

P P S E. Chapter 3 describes the timing routines and their usage with

the SuperGlue [12] source code generator. The mapping of these

routines to real machines is also explained. The analysis program,

E P A is explained in Chapter 4. Chapter 5 presents a complete
example of application design and performance analysis using the

P P S E tools. And finally chapter 6 summarizes the work done,
effectiveness of the approach developed and the work needed to be

done in the future.

1 C-Linda supports a common interface for parallel application development on
different architectures such as cube, shared memory and connection machines .

5

Chapter 2

An Approach to Performance Analysis

2.0 Introduction

This chapter describes the proposed performance analysis
methodology in concert with the P P S E research. We used the

solution of the Traveling Salesman Problem (TSM) by Simulated

Annealing [13] as a test for determining suitable instrumentation,

levels of granularity at which to insert instrumentation, and the

effects of such instrumentation on program execution time. The

experiments and the results are also summarized in this chapter.

2.1 Existing Analysis Tools

In our brief survey of general purpose monitoring tools we found

gprof and parasight to be portable across different UNIXTM platforms.

gprof is a stand-alone utility used in post-mortem mode[14]. The

application to be profiled, is compiled with an option to link the trace

collection procedures e.g

>> < cc, pascal, fortran > -pg prog.< c, p, f >

On successful execution the application dumps a binary trace file

gmon.out. The gprof utility then translates this trace to yield a call

graph of the application along with call statistics such as time spent in

6

a particular function, number of times a function is called and

percentage of user time occupied by various functions. While gprof

presents a coarse overview of a sequential program, it is unsuitable for

analyzing parallel applications since it completely hides the order of

execution and the synchronization events.

Another interesting approach to monitoring parallel programs is

considered in parasight [1]. It is a parallel programming environment

for shared memory multiprocessors. The main idea behind parasight is

to use one processor in the machine to harbor monitoring processes

called parasites. These parasites periodically examine the process

tables of the running application and build an on-line view of the

application. The approach is very non-intrusive, has scope for dynamic

monitoring and control of the application by the programmer, and

produces a summary of traces rather than raw traces. However we find

this approach unsuitable because it requires an additional processor

for monitoring and may not be effective if the inter-processor

communication delays are more than grain execution times.

2.2 Overview of PPSE

The Parallel Programming Support Environment (P P S E) is a

set of software tools developed under the aegis of Oregon Advanced

Computing Institute (OACIS) to address the problems associated

with parallel application development in an integrated fashion [11] .

Numerous prototype tools address almost all aspects of parallel

programming such as :-

7

partitioning of application into parallel parts

mapping parallel parts onto multiple processors

optimal scheduling of parallel parts

reverse engineering existing serial code into parallel

programs

performance measurement and analysis

how to coordinate design, coding, debugging and performance

Fig. 2.1 illustrates the various P P S E tools and their interaction.

The application designer uses the Application Design System
(Parallax)) to construct a data flow design of the desired program. The

design system produces a data flow graph which describes the
interconnections and data dependencies of the proposed program.

8

1

Dusty
Deck

Import/Export Tools
Reverse Engineering

.._{Application Design
System(Parallelax)

(Super Glue

traces

Libraries

User Interface, Networking
Maintainance, other tools

'Schedular Heuristics
(Task Grapher)

..

.:Performance:.:.".
-:Analysis

Target Machine
Description

Ntlapper Algorithm)

PE 1
PE 2
PE 3

III 1111 11 III
III II 1 III I

II II III 11 II

Fig. 2.1 : Overview of PPSE

9

Parallax can also be used to write the code fragments for
implementing the nodes in the data flow diagram in a particular
programming language. These code fragments are used by source

code generator Super Glue [12] to produce compilable source code for

a particular platform. Similarly the target machine(s) for the proposed

program is designed and stored as a file of architectural properties

such as connection topology, communication delays, cache structures

etc. using the Target Machine Editor (T M E).

The programmer next uses a mapper and scheduler
(TaskGrapher) to allocate and schedule the data flow design onto the

target machine. This produces an execution schedule as a Gantt chart

of processing elements versus time. The output at this stage also

includes the plot of the speed up versus number of processors (PEs).

This information is used to evaluate the " goodness" of the design (the

program and the target machine).

From this preliminary analysis of a number of designs the
programmer choses one for actual execution on a real machine. At this

stage SuperGlue is used to yield the compilable code for the specified

machine and programming language. When the resulting program is

actually run on the machine, an execution profile is collected and

analyzed by Execution Performance Analyzer (E P A). This analysis

yields feedback to the application design system about the actual

execution time, actual scheduling Gantt chart and statistics for

speedup, processor utilization and distribution of execution time

10

among grains. Collecting traces for generating feedback is the work of

this thesis.

2.3 Steps in Performance Analysis

The methodology which we found appropriate for analyzing

parallel applications in P P S E is illustrated in Fig. 2.2. It consists of

the following steps :-

11

Timing
Routines

Obtain Parallel source
code from Super Glue

1141111111
Instrument Code with
timing functions

run program on
real machine

49

Traces

Execution Profile
Analyzer

Actual Task Graph
of Execution

(to TaskGrapher)

Actual Gantt chart of
Execution
(to TaskGrapher)

speed up curves
processor utilization
time distribution

Fig.2.2 : Performance Analysis Methodology

1 2

Identify synchronization points and grain boundaries in the program

with the help of E L G D F description and programming language

constructs such as m fork and m mu 1 t i in SequentTM environment

and in () and out () in the C-Linda language.

Insert real-time measurement routines into the source code of the

application at the synchronization points and large grain boundaries1

(the time measurement routines are described in chapter 3) .

Run the instrumented program on the target machine and collect

the execution traces.

Analyze the traces off-line using the analysis program (described in

chapter 4) .

In selecting this particular approach we addressed the following

issues :-

What execution data is necessary and sufficient for validating the

prediction of current P P S E tools ?

At what level of granularity should the measurement functions be

placed ? (" level of granularity" is shown in Fig. 2.5 and explained in

section 2.5)

1 SuperGlue automatically inserts timing functions at the grain boundaries if 'Timing"
option is chosen while generating source code.

13

What are the measurement functions which make this performance

analysis method portable ?

What is the effect of the measurement functions on the execution

time of the application ?

To determine the answers to these issues we conducted a series of

instrumentation experiments using the SequentTM SymmetryTM shared

memory multiprocessor. These experiments are summarized in
section 2.5. Using this methodology we conducted analysis of
applications developed using P P S E tools. A complete example is

explained in Chapter 5.

2.4 Instrumentation Experiments

We solved the parallel implementation of the Traveling Salesman

Problem (T S M) using simulated annealing to fine tune the
methodology and to address the issues mentioned in section 2.4. The

T S M problem is an example of the NP-complete class of

combinatorial problems. In T S M a salesperson visits N cities, each of

which is represented by coordinates [Xi, Yi I on a two dimensional

plane. Each city is to be visited exactly once and the total path length

for such a trip is to be minimized. This rather simple problem is of

practical importance in cell placement in VLSI design, and process-

processor mapping in parallel machines, for example.

14

In NP class of combinatorial problems the computational load

increases exponentially with the number of variables handled.
Therefore approximate solutions along with manual improvements

have been found to yield optimal results [15]. Simulated annealing [13]

solves this class of problems by iterative improvement of an assumed

solution in association with a hill climbing algorithm. Fig. 2.3 shows a

generic simulated annealing algorithm.

S = state of solution.
Sn = new state of solution.

E = cost function.

T = control parameter for finding
low-cost state.

To = initial value of control parameter.
Tf = Final value of control parameter
c = rate of change in T.

frozen = FALSE
Start with some state, S
T = TO
Repeat (
While (not in equilibrium) (

Perturb S to get new state Sn

AE = E(Sn) - E(S)
it AE < 0
Replace S with Sn

Else with probablity exp(-AE/T)
replace S with Sn.

}

T = c*T. /* c < 1 */

if (T <= Tf)

frozen = TRUE

) Until(frozen)

Fig. 2.3 : A generic Simulated Annealing Algorithm

15

An initial guess to the solution is made (in our case the path of the

salesman), then this solution is modified slightly and the variable to

be minimized is recalculated. If there is an improvement in the
solution, the new solution is accepted; otherwise the new solution is

still accepted with a probability which depends on the 'state' of the

solution. Therefore this algorithm makes it possible to escape from

local minima in search space and approach absolute minima with

greater probability of success.

A top level E L G D F description of T S M problem is shown in

Fig.2.4. The program begins with the grain Read Data which inputs

the cities to be covered by the salesman. Then the grain Link
Points creates a circular linked list of cities thus forming the initial

guess about the salesman path. The program then forks a selected

number of parallel processes Anneal which perform simulated
annealing on the salesman's path. During an iteration each parallel

process makes modification to the shared structure Path. After the

selected number of iterations have been performed , the final path is

written to an output file by the grain Write Data.

In our experiments we manually wrote the source code for this

application in C language on SequentTM SymmetryTM machine 1.

1 Current prototype of SuperGlue provides source code in C-Linda language only.

16

Read Data

control / Data arc

V_

X.---.

Link Points

F Arta arc control arc

_h

/
Path

A' data arc

data
R F

arc
IIC:1

Anneal(i)

i = 1, NP

control arc

Write Data

Fig.2.4 : ELGDF representation of TSM

To enforce parallel execution, routines from micro-tasking and
parallel library were used [16, 17, 18]. These routines also served to

identify the synchronization points and grain boundaries in the source

code and thus helped in placing time measurement functions.
Appendix A show the implemented source code of one of the versions

of TSM problem' .

Execution traces can be collected at three levels of detail as

shown in Fig.2.5. Program level provides total execution time, large

1 The timing routines have been highlighted for easy identification.

17

grain level provides the execution time for each grain. The small grain

level of instrumentation involves tracking each variable and the time

spent on their access. We conducted experiments with all the three

levels of instrumentation and found that in PPSE

start Small Grain
i := i + 1 ;

stop Small Grain

start Small Grain
k := k + 1 ;

stop Small Grain

0 start program

start
()Large

Grain

I

()stop
Large
Grain

Ostop program

Fig.2.5 : Instrumentation Levels

the large grain level of instrumentation is suitable as it provides

sufficient and manageable information on program execution.

The experiments also indicated that real-time measurement at

the beginning and ending of each large grain is the data required. By

comparing the total execution time of the clean and instrumented

18

programs, it was deduced that instrumentation at large grain level

produced at most 8% deviation. It was also noted that as grain size

became smaller the perturbance due to instrumentation increased.

The trace collected could also identify differences between the
underlying hardware by means of the differences in the execution

times. However, the trace collected is not enough to identify which

part of the architecture (CPU, I/O subsystem, Cache, primary memory

) is responsible for delay/speedup of an application.

In conclusion, by instrumenting programs at the large grain level

with real time measurement we were able to characterize the
performance of the parallel application without significant distortion

in actual behavior.

Chapter 3

Timing Routines

3.0 Introduction

19

This chapter describes the timing routines used to generate an

execution profile of an application. These routines are the common

interface of performance analysis to the Super Glue source code

generator. The actual implementation of these routines for a machine

or programming environment is dependent on the timing functions

available on a particular system. The implementation of these routines

and the procedure for incorporating them into Super Glue are
described for the Sequent machine and Linda-C programming
environment.

3.1 Common Interface

Following are the common interface routines for the Super Glue

source code generator :-

initialize clock()

Routine to set up and activate the time measurement facility on the

target machine. It involves creation and initialization of variables so

that times for the application start with 0.

20

Routines for Measuring Grain Execution Time :-

get grain start time(processor id, grain id)

Routine to access the current value of the clock when the grain begins

computation. The identifier start 1, the variables processor_id and

grain id and value of the time are printed on the standard output2.

get_grain_stop_time(processor_id, grain_id)

Routine to access the current value of the clock when computations in

a grain are finished. The identifier stop , the variables processor_id

and grain_id and value of the time are printed on the standard

output.

Routines for finding data dependencies between grains and
approximating3 communication delays :-

get_send_begin_time(grain_id, structure_name)

Routine to access the current value of the clock prior to placing a

variable into tuple4 space. The identifier sendBegin, the variable

structure name and grain id and the value of time is printed on

the standard output.

1 The identifiers start, stop. sendBegin. sendEnd. recvBegin and recvEnd are printed on
the execution trace. These are used by EPA to recreate actual Gantt Chart, Task Graph
etc.
2 The redirected standard output file is the execution trace file of the
application.
3 The communication delay is approximate since I/O activity in parallel with the
receiving grain can make the variable collect time for receiving grain appear when
measured using these routines.
4 The word 'tuple' is Linda specific. Here it means a message queue for hypercube, shared
structure for shared memory machine etc.

21

get send end time (grain id, structure name)

Routine to access the current value of the clock after placing a variable

into tuple space. The identifier sendEnd, the variable

structure name and grain id and the value of time is printed on

the standard output.

get recv begin time(grain id, structure name)

Routine to access the current value of the clock prior to obtaining a

variable from tuple space. The identifier recvBegin, the variable

structure name and grain id and the value of time is printed on

the standard output.

get send end time (grain id, structure name)

Routine to access the current value of the clock after obtaining a

variable from tuple space. The identifier recvEnd, the variable
structure name and grain id and the value of time is printed on

the standard output.

processor id = integer number identifying a processor on

the target machine.

grain id = integer number identifying a grain in the ELGDF

description of the problem.

structure name = string identifying a structure passed between two

grains.

The communication time for a structure is calculated by the following

expression :-

22

communication time = (sendEndTime sendBeginTime) +

(recvEndTime recvBeginTime).

These routines are suitable for obtaining dependencies between grains

when message passing paradigm is used for inter-grain

communication. In Linda the message passing is implemented by the

functions in () and out () while on a hypercube this is implemented

by the system functions send () and receive 0 .

The placement of these routines and general model of grain is shown

in Fig. 3.1.A section of the execution trace generated using these

routines is shown in Fig. 3.2.The execution trace is used by Execution

Profile Analyzer (EPA) to yield the execution times of the grain and

the communication delay or synchronization wait time.

get_recv_begin_time

get structure

get_recv_end_time

get_grain_start_time

get_grain_stop_time

get_send_begin_time

put structure

get_send_end_time

ICommunication

Compute

ICommunication

Fig. 3.1 : Grain Model and timing interface.

23

Identifier

Processor .id
Structure_name

Grain_id7 Clock value
V(

recvBegin superGlue01 1 520
recvEnd superGlue01 1 540
start 2 1 540
stop 2 1 2350
sendBegin superGluei6 1 2350
sendEnd superGluei6 1 2360
recvBegin superGlue05 5 2360
recvEnd superGlue05 5 2360
start 2 5 2360
stop 2 5 4170

Fig. 3.2 : Trace file format

24

3.2 Implementation on SequentTM Machine

Following steps are required to use the timing routines on the

SequentTM SymmetryTM machine :-

1. Include the interface file in the source code of the application by

#include "time sequent c.h"

The time_sequent_c.h file is as shown in Table 3.1

Table 3.1 : Timing Routines for SequentTM SymmetryTM multiprocessor

#include <usclkc.h> /* microsecond clock header file */

#include <stdio.h>

#define CONVERSION FACTOR 1000 /* factor to convert to milli-seconds */

usclkt clock_offset ;

void initialize clock()

{

usolkinit();

/* value of real time at start */

clock_offset = getusclk();

/* procedure to setup the clock */

1

void get_grain_start_time(processor_id, grain_id)

int processor_id ;

int grain id ;

25

usclk_t temp ; /* scratch variables */

usclk_t time_now ; /* get the time since program start */

temp = (getusclk() - clock_offset) ;

time_now = temp / CONVERSION FACTOR ;

printf(" start \t%d\t%d\t\t%d\n", processor_id, grain_id,

time_now) ;

1

void get_grain_stop_time(processor_id, grain_id)

int processor_id ;

int grain_id ;

usclk_t temp ; /* scratch variables */

usclkt time_now ; /* get the time since program start */

temp = (getusclk() clock_offset) ;

time_now = temp / CONVERSION FACTOR ;

printf(" stop \t%d\t%d\t\t%d\n", processor_id, grain_id.

time_now) ;

get_send_begin_time(grain id, structure_name)

int grain_id ;

char structure_name[1(X));

usclk_t temp ; /* scratch variables */

usclkt time_now ; /* get the time since program start */

temp = (getusclk() clock_offset) ;

time_now = temp / CONVERSION FACTOR ;

26

printf(" sendBegin %s %d %d\n", structure_name, grain_id,

time_now) ;

}

get_sendend_time(grain_id, structure_name

int grain_id ;

char structurename[100];

usclkt temp ; /* scratch variables */

usclk_t time_now ; /* get the time since program start */

temp = (getusclk() clock_offset) ;

time_now = temp / CONVERSION_FACTOR ;

printf(" sendEnd %s %d %d\n", structure_name, grain_id,

time_now) ;

get_recv_begin_time(grain_id, structure_name

int grain_id ;

char structurenamej100];

usclk_t temp ; /* scratch variables */

usclk_t time_now ; /* get the time since program start */

temp = (getusclk() clock_offset) ;

time_now = temp / CONVERSION_FACTOR ;

printf(" recvBegin %s %d %d\n", structure_name, grain_id,

time_now) ;

get_recv_end_time(grain_id, structure_name

27

int grain_id ;

char structure name[100];

usclk_t temp ; /* scratch variables */

usclkt time_now ; /* get the time since program start */

temp = (getusclk() clock_offset) ;

time_now = temp / CONVERSION FACTOR ;

printf(" recvEnd %s %d %d\n", structure name, grain_id,

time_now) ;

28

The microsecond clock on the SymmetryTM machine is a 32-bit
register which is synchronously incremented across all the

processors. The clock overflows after 4195 seconds and there is no

system function to inform the process of this event. Thus these
routines can give incorrect time measurements and are not suitable

for measuring programs which last more then 4195 seconds. This

drawback could be removed by using system clock to determine such

overflows. However using system clock makes the execution time of

the clock routines large thus suppressing the 1 microsecond

resolution of the clock'. For tracing programs with large execution

times the clock routines in time linda c.h file should be used. The

timing routines in the file t imel in dac .h use the standard UNIXTM

system timer and do not make any Linda dependent calls. Thus these

routines could be used on any UNIXTM system and C programming

environment.

2. Modify compilation option to include the microsecond timing
library /usr/libilibseq. a e.g.

cc -o myprog myprog.c -lseq

3. Placement

init clock : preferably the first executable statement in the source

code of the application. This must be run prior to any other timing
routine.

'In course of instrumentation experiments it was found that clock resolution of 1
microsecond is not necessary for monitoring performance at large grain level.

29

get_grain start time : the first statement in the grain to be_
measured.

get __grain stop_time : the last statement in the grain to be

measured.

get send begin time before an m lock () statement._
get send end time after an m unlock () statement._ _ _
get recv begin time before an m lock () statement._
get recv end time after an m unlock() statement._ _

The grain boundaries can be detected by the synchronization points in

the program. Table 3.2 shows the synchronization functions available

in the parallel programming/microtasking library of the SequentTM

SymmetryTM.

Table 3.2: Parallel Programming Library Microtasking Routines

Routine Descriptions

m fork execute a subprogram in parallel

m get myid return process identification number

m get_numprocs return number of child processes

m killprocs terminate child process

m lock lock a lock

m multi end of single process code section

m next increment global counter

m_park_proc suspend child process execution

30

m rele_procs resume child process execution

m set_procs set number of child process

m single begin single process code section

m sync check in at barrier

munlock unlock a lock

shared indicates a shared variable

private indicates private variable

Source : Guide to Parallel Programming on Sequent Computer Systems,

Second Edition, 1987.

Appendix A shows an example source code instrumented for
SequentTM SymmetryTM machine.

4. For detailed information about the implementation of the timing

routines refer to the DynixTM Programmer's Manual, system
commands getusclk(3), usclk_conf(8), usclk(4).

3.3 Implementation using Linda-C

Following steps are required for using the timing routines on any

machine supporting Linda-C parallel programming environment :-

1. Include the interface file in the source code of the application by

#include "time linda c.h"

31

The file time linda c.h is shown in Table 3.3.

2. There are no compile time modifications.

3. Placement

initialize clock : preferably the first executable function in the

source code.

get_grain start time : the first statement in the grain to be

measured.

get _grain _stop _time : the last statement in the grain to be

measured.

get send begin time : before an out () statement.

get send end time : after an out () statement.

get recv begin time : before an in () statement.

get recv end time: after an in() statement.

In Linda-C environment the grains are implemented as functions, thus

there are no specific grain boundary identifiers.

4. For detailed information about the implementation of the timing

routines refer to the UNIX Programmer's Manual, system commands

gettimeofday(2).

3.4 Extensions to Timing Routines

The ability of SuperGlue to insert timing functions from a

common interface into source code of parallel application makes it

easy to extend the performance analysis methodology to animation and

32

debugging. For example if we replace the current implementation of

init ..._clock by having this routine setup an animation process and if

we change the other 'timing' routines to send the event messages to

the animation process then we can animate the application as it is run

on a real machine. Similarly debugging can be viewed as performance

monitoring at a small grain level.

33

Table 3.3 : Timing Routines for Linda-C environment

#include <sys/time.h>

struct timeval clock offset ;

initialize_clock()

gettimeofday(&clock_offset, 0);

get_grain_etart_time(processor_id, grain_id)

int processor_id ;

int grain_id ;

struct timeval temp ;

long time_elapsed ;

gettimeofday(&temp, 0);

time_elapsed = (temp.tv_sec - clock_offset.tv_sec) * 1000 ;

time_elapsed += (temp.tv_usec - clock_offset.tv_usec)/1000 ;

printf(" start %d %d %d\n",processor_id, grain_id,

time_elapsed);

}

get_grain_stop_time(processor_id, grain_id)

int processorid ;

int grain_id ;

34

struct timeval temp ;

long time_elapsed ;

gettimeofday(&temp, 0);

time_elapsed = (temp.tv_sec clock_offset.tv_sec) * 1000 ;

time_elapsed += (temp.tv_usec - clock_offset.tv_usec)/1000 ;

printf(" stop %d %d %d\n",processor_id,

grain_id, time_elapsed);

get_send_begintime(grain_id, structure name

int grain_id ;

char structure name[100];

struct timeval temp ;

long time_elapsed ;

gettimeofday(&temp, 0);

time_elapsed = (temp.tv_sec clock_offset.tv_sec) * 1000 ;

time_elapsed += (temp.tv_usec clock_offset.tv_usec)/1000 ;

printf(" sendBegin %s %d %d\n",structure_name,

grain_id, time elapsed);

get_sendend_time(grain_id, structure_name)

int grain_id ;

char structure name[100];

1

35

struct timeval temp ;

long time_elapsed ;

gettimeofday(&temp, 0);

time_elapsed = (temp.tvsec - clock_offset.tv_sec) * 1000 ;

time elapsed += (temp.tvusec - clock_offset.tv_usec)/1000 ;

printf(" sendEnd as %d %d\n",structure_name,

grain_id, time_elapsed);

get_recv_begintime(grain_id, structure_name

int grain_id ;

char structure name[100];

{

struct timeval temp ;

long time_elapsed ;

gettimeofday(&temp, 0);

time_elapsed = (temp.tvsec clockoffset.tvsec) * 1000 ;

time_elapsed += (temp.tvusec - clockoffset.tv usec)/1000 ;

printf(" recvBegin %s %d %d \n ",structure name,

grain_id, time_elapsed);

get_recv_end_time(grain_id, structure_name

int grain_id ;

char structure_name[100];

struct timeval temp ;

36

long time_elapsed ;

gettimeofday(&temp, 0);

time elapsed = (temp.tvsec clockoffset.tv_sec) * 1000 ;

time_elapsed += (temp.tv_usec - clock_offset.tv_usec)/1000 ;

printf(" recvEnd %s %d %d\n",structure_name,

grain_id, time_elapsed);

}

37

Chapter 4

Execution Profile Analyzer

Execution Profile Analyzer (EPA) is a program which reads

the execution profile produced by the timing routines in a parallel

application and generates result files which serve as input to
TaskGrapher. It also produces a general report giving the overall

speedup, overall processor utilization and per processor data on
utilization and the time distribution among the grains which were

mapped onto it. This chapter explains the operation and structure of

E P A so that this analyzer can be used for generating different reports.

38

readArrite arc

Grain Lists

reed only

reed onlT-

read only

Initialize

control arc

make Task Graph

control arc

make Gantt Chart

control arc

makeGeneral Report

Fig. 4.1 : Top level ELGDF of E P A

The E P A is implemented using the Standard Pascal available on

most UNIXTM machines (see Appendix B). The traces generated from

an instrumented program can be piped directly to the EPA thus
removing the intermediate trace storage. The EPA is also
implemented on AppleTM MacintoshTM computer for off-line analysis.

The UNIXTM version of EPA was developed for easy portability to

different systems. The top level ELGDF of the program is shown in

Fig.4.1. The main data structures manipulated in E P A are a doubly

linked list of trace elements for all the processors in the application

(see Fig. 4.2), a doubly linked list of all the arc elements
(see Fig.4.3), and a doubly linked list of all the processors which

39

were used in the application(see Fig. 4.4). Each of the processor in

the list of processors also has a doubly linked list of trace elements of

the grains which were mapped onto that processor during actual
execution.

The program first reads the trace file to create the three linked

lists. Then report generation functions are executed yielding textual

description of actual Gantt chart of execution, task graph of
application and a General performance report. The General

performance report contains the actual speedup, processor utilization

and the percentage of times occupied by the grains mapped on the

processors. Fig. 4.5 show an example of the reports generated. Table

4.1 gives the list of the procedures and functions in the current
version of E P A. A complete listing of the program for UNIXTM based

machines is provided in the Appendix B .

40

k

List of Trace Elements for all

Processors in the Application

S.

Pointer to prey element

Trace identifier

Processor Id

Grain Id (Sort fey)

Time Stamp

Execution Begin Time

Execution End Time

Start Time

Stop Time

Pointer to next element

Fields of a Trace Element

Fig. 4.2 : Data structures of E P A

41

(

List of Arc Elements f or all

Grains in the Application

Pointer to prey. Arc

Arc Identifier

Sender Grain Id

Receiver Grain Id

Send Begin Time

Send End Time

Recv Begin Time

Recv End Time

Arc Name (Sort KeT9

Time Stamp

Pointer to next Arc

Fields of an Arc Element

Fig. 4.3 Data structures of E P A

42

T. E

T. E

---> T. E

T. E

.E

List of All Processors

P = processor
T.E = trace element

Pointer to prey processor

Processor Id (Sort "67)

Pointer to head of list of
elements mapped on this
processor

Pointer to next processor

Fields of a Processor

Fig. 4.4 : Data Structures of E P A

Speed up = 1.55
Overall Processor Utilization = 77
Data on Processor 1
Utilisation = 93
Grain id X time
1 0
3 31
4 30
5 30
7 0

Data on Processor 2
Utilisation = 62
Grain id X time
2 31
6 31

Fig. 4.5a : General Performance Report

43

Task_Graph <Identifies a Task Graph file >
7 < Total Number of Nodes >

1 20 40 80 6 0

2 1810 40 160 1 1
3 1810 40 240 1 1

4 1790 40 320 1 1
5 1800 40 400 1 1
6 1810 80 80 1 1
7 10 80 160 0 6

11 < Total Number of Edges >
1 3 0
1 4 20
1 5 0
1 7 10
1 6 10
1 2 20
2 7 10
3 7 0
4 7 10
5 7 0
6 7 10

Fig. 4.5b : Actual Task Graph file

Schedule
7
2
1

5

< Identifies this as a schedule file >
< Total Number of Tasks on All Processors >

1.0 < Number of Processors, Transfer Rate >
< Processor# >
< Number of Tasks on this processor >

1 290 310 0 0

3 350 2160 0 0

4 2170 3960 0 0

5 3980 5780 0 0
7 5810 5820 0 0
2 < Processor# >
2 < Number of Tasks on this processor >
2 590 2400 0 0
6 2410 4220 0 0

Fig. 4.5c : Actual Gantt chart file

44

Table 4.1 : Procedures in E P A

Procedure Called By Calls

readMarker getTracePoint none

getTracePoint makeTraceList readMarker

swapTracePoints orderByGrainId none

swapProcessors orderByProcessorld none

swapProcessorTracePoints orderByStartTime none

placeTraceElement makeTraceList none

makeTraceList initialize getTracePoint

placeTracePoint

orderByGrainId initialize swapTracePoints

orderByStartTime orderByProcessorld swapProcTracePts.

regroupTraceByProcessor initialize none

orderByProcessorld initialize swapProcessors

orderByStartTime

makeELGDFfile program none

getTraceCount makeMacScheduleReport none

makeGeneraiReport

getProcessorCount makeMacScheduleReport none

getTotalExecutionTime makeGeneralReport none

makeMacScheduleReport program getTraceCount

getProcessorCount

getTotalExecTime

45

getRealExecutionTime makeGeneralReport none

makeGeneralReport program getRealExecTime

getTotalExecTime

initialize program makeTraceList

orderByGrainId

regroupTraceByPrc

orderByProcic

46

Chapter 5

All Together

This chapter presents an example of the usefulness of PPSE

tools for parallel programming. We consider the complete design,

implementation and performance analysis of a program consisting of

large grained, loosely coupled processes.

The example we consider approximates pi using the rectangle

rule[19]. The parallel version of this program is a typical broadcast,

calculate and aggregate (BCA) problem where the data is

sent(broadcast) to a number of worker tasks which after doing the

calculations, send the data to a task which collects (aggregate) the

results. An ELGDF expression' of the problem using the Parallax

editor is shown in Fig.5.1.

1 A succinct ELGDF representation of this problem would replace the workers by a
Repetition symbol. However this is not done here since current version of SuperGlue
requires simple nodes in the ELGDF representation of problem.

47

Fig. 5.1 : ELGDF representation of pi approximation problem

While editing the ELGDF description we enter the data to be passed

along the arcs. Fig. 5.2 show the dialog box for entering data for the

arc between the node "start" and "worker 1" .

48

Arc I nforamtion
Arc Uars

Arc Usage

Mutual Exclusion
Compound Arc

Num. Of Iteration

Message Size

Documentation

linterual,startl,stopl

Read 0 Write 0 R/W
C) No 0 Yes
C) No 0 e s
1 Times

Bytes

refer start_workerl

Cancel OK

Fig. 5.2 : Specifications of an arc

The specifications of the nodes are similarly entered. Fig.5.3. shows

the data entry dialog box for the node "start". The code fragment

implementing the node start could be also entered at this stage'. The

code fragment for node "start" is shown in Fig.5.4.

After the Data flow design of application is completed, a
transformer2 would convert this ELGDF description into a task graph

of the application.Using the task graph of the application we schedule

the program using the scheduling tool TaskGrapher. From the ELGDF

description of the problem it is clear that having five processors would

yield the greatest speedup for this problem. However for this example

1 Current implementation of SuperGlue uses a separate code fragment file rather than
the code fragments entered through Parallax.
2 This transformer has not been implemented in PPSE. Currently this transformation
is done manually.

49

we used Hu's Highest Level First heuristic with two processors to

illustrate the optimizing features of TaskGrapher.

Symbol Information

Compound Symbol

Symbol Name

Execution Time

Num. Of Interation

Documentation

,
Cancel

® No 0 Y e s

start

1

1

NS

Times

refer start_code

(OK

Fig. 5.3 : Specification of a node

Fig. 5.5 shows the task graph for this example. Each bubble

represents the task to be scheduled. The number on the top of each

bubble is the grainid while the number at the bottom is the
estimated time of execution. Note that at this stage we have no idea as

to how long each task will take. Thus we use the default value of 1 at

'cold start'. The numbers on the arcs represent the communication

delay which are similarly assumed to be unity.

50

<$$StartCodeFragmentBlock$$>
start
<$$StartFragment$$>
int 1,1=1,m,n, vorkers,processors;
int start1,start2,start3,start4,start5;
int stopl,stop2,stop3,stop4,stop5;
double interval,h;
<$$EndDCLW
n = 10000;
interval = 1.0/n;

start1=1;
start2=2000;
start3=4000;
start4=6000;
start5=8000;
stop1=1999;
stop2=3999;
stop3=5999;
stop4=7999;
stop5=10000;
<$$EndCodeFragmentBlock$$>

Fig. 5.4 : Code fragment for node "start"

Fig. 5.5 : Task graph at 'cold start'

51

On the basis of this information the projected execution Gantt

chart is obtained from the TaskGrapher. This is chart #1 in Fig.5.6.

Fig. 5.6 : Execution Gantt Charts

52

Now we use Super Glue to generate the source code for the SequentTM

machine and Linda-C parallel programming environment. Super Glue

takes in the description of the target machine, code fragments and

the Gantt chart to yield the compilable source code as shown in
Appendix C. The instrumented source code is produced when
Super Glue Build Rpplication menu is selected with the timing option

enabled. The program was compiled and run on the SequentTM

SymmetryTM in at 3:00 am when there were only two users on the

machine. This was done to minimize the effects of operating system

on process scheduling.

When the execution trace was analyzed by Execution Profile

Analyzer(E P A) we obtained the actual execution time of the grains

and the actual schedule. The actual Gantt chart of the first iteration is

shown as chart # 2 in Fig.5.6. The total execution time was 260 milli-

second, therefore the Gantt chart was scaled by a factor of 13 to fit on

the screen.

Note that in the actual Gantt chart the execution of the program

begins at the time of 40 milliseconds and not at 0 as shown in the

projected Gantt chart. This apparent anomaly is due to the fact that

the first 40 milliseconds are spent in the initialization of the program

and the first grain starts execution after this interval. TaskGrapher

assumes that the grains start executing when the program is launched.

The order in which grains are executed is the same as projected but

the execution times are much bigger than expected.

53

Fig. 5.7 : Task graph after first run

The task graph of the actual application is shown in Fig.5.7.

Again using Hu's Highest Level First heuristic we get the projected

execution Gantt chart. The projected execution time is 222
milliseconds, the Gantt Chart is too long to fit on the paper, so we

scale it by 1:10. The scaled execution chart is shown as chart # 3 in

Fig.5.6. We also note that on the basis of actual execution times the

mapping of the tasks on the processors has been changed. The grains

5 and 6 have been moved to processor 2 while grain 4 has been

mapped onto processor 1.

Armed with the new schedule, we go back again to Super Glue

and generate the instrumented source code and run it on the target

machine. The traces are collected and analyzed. The actual execution

54

Gantt chart on the basis of this feedback is shown as chart # 4 in

Fig.5.6. This actual chart is very close to the projected chart # 3

except for the initialization part of the program.

We also used TaskGrapher to get the speedup in this application

as the number of processors in the machine is changed. The number

of processors was set to five in the TaskGrapher. Then the Speed up

Curue item in the Analyze menu is chosen. The TaskGrapher then

draws the speedup curves for the selected scheduling heuristic(in

this example Hu's highest level first). Fig. 5.8 shows the speedup

curve for the graph in Fig. 5.5. For the graph in Fig.5.7 the projected

speedup curve is shown in Fig. 5.9.

1 .800

1.600
fa,

R:1
1.400

as
a)

tnfal 1.200

1.000

0 B0.0 2 3 4 5

Number of Processors

Fig. 5.8 : Speed up projections with 'cold start' data

55

4.000

3.000

2.000

04 1 .000

0.000
1 2 3 4 5

Number of Processors

Fig. 5.9: Speedup projections with actual data

By changing the number of processors in the Task Graph of the

application we obtained a set of Gantt charts for Hu's highest level first

heuristic. These were used by SuperGlue to generate source code for

the selected number of processors. When these applications were run

we obtained the actual speedup. The actual speedups are shown in Fig.

5.10.

56

Fig. 5.10: Actual speedups

It is seen that there is considerable difference between the
speed-ups especially when the number of processors is increased. A

possible cause for this could be the fact that initialization time is not

used by TaskGrapher for calculating speedups. We recalculated the

speedups from the Gantt charts after ignoring the initialization to

check if this was the only cause. As seen in Fig. 5.10 ignoring the

initialization cost is not the only reason for mismatch. Notice that each

grain in this example. is implemented as a set of three phases :- get

variables, compute and put variables. By changing the number of

iterations in the compute portion of the grain we can change the grain

size (execution time). We experimented with changing the grain size

to see how it compares with TaskGrapher predictions. The results of

these experiments are summarized in Fig. 5.11.

57

Grain Size (mSec)

a = 70
b = 650
c = 6500
d = 65000
e = 650000

Fig. 5.11 : Effect of Grain Size on actual Speedup

It is seen that the prediction of TaskGrapher is close to the
actual speedup for large grains (execution time more then 6500
milliseconds) for the C-Linda environment on the SequentTM
SymmetryTM machine. This also indicates that it is okay for
TaskGrapher to ignore the initialization and process creation time in

making the projections if large grains are used.

58

Chapter 6

Conclusions and Summary

In this thesis a methodology to analyze the performance of

parallel applications was devised. The methodology involves inserting

real-time measurement routines in the application's source code,

collecting execution traces and off -line analysis of traces. It was seen

that measurement of grain start and stop time in the E L G D F
representation of an application provided data which makes it possible

for TaskGrapher tool to accurately predict the application
performance. The methodology presented in this thesis is most useful

to the software engineer. However this method is unable to identify

hardware bottlenecks within a specific architecture for a given
application.

While developing the instrumentation and conducting the
experiments, it was noted that Linda-C programming environment

provided a straight forward model of parallel application in terms of

interprocessor communication via shared tuple space. This high level

abstraction frees the programmer from being concerned about
synchronization or process scheduling. On the other hand the
Sequent's parallel programming/microtasking library provides low

level synchronization primitives which require a programmer's
constant attention. On the basis of rather limited experience with

these two environments, I found the choice of Linda based parallel

59

programming environment for Super Glue to be appropriate in PPSE

context.

The P P S E tools used most in connection with the work of this

thesis were E L G D F / Parallelax, TaskGrapher and SuperGlue. The

tools E L G D F and TaskGrapher are conceptually fully functional, but

the human interface needs work. Parallax needs the following features

On screen display of basic information about the nodes and

arcs of the data flow diagram. This includes full name and

type of the symbol'.

Printing dataflow diagram or a part of it.

TaskGrapher requires the following improvements :-

Ability to scale Gantt charts so that a full chart can be seen

on the screen.

Zoom out sections of the selected charts i.e the user selects a

section of the Gantt chart and then TaskGrapher redraws the

screen so that the selected section covers the complete

screen.

If the number of processors is so large that all Gantt charts

can not fit on the screen then, it should be possible to select

1This could lead to a cluttered display for large designs. But on the other hand this
cluttering would indicate to the user that he must coalesce some of the nodes into
compound nodes.

60

processors and see their Gantt chart clearly.

Print all or selected Gantt charts or selected part of a Gantt

chart.

An alternative to long Gantt charts could be the use of color

to represent length i.e using green to show small grains, red

to indicate long grains, other shades for intermediate grain

sizes. The use of colors would also quickly identify the

important grains.

The current version of Super Glue generates source code for a

flat E L G D F diagram of an application consisting of simple nodes

and arcs only. The source code is generated in Linda-C language for

the SequentTM BalanceTM machine. The Parallel Program Data Base is

not functional at this stage or P P S E research. As a result the
interfacing between different tools is via one-to-one compatible files.

This made the movement from one tool to another rather clumsy.

In P P S E context, a useful extension to Parallelax would be to

link the actual execution time data with an execution time estimator

within the Parallelax. Another possibility is to build a database of

execution reports. Then the Parallelax could direct queries to it for

getting the estimate of execution time a particular grain.

We had started with the intuition that high resolution clocks are

required for performance monitoring. The results indicate that for

EL G D F model of parallel programs and for accurate P P S E tools

predictions, high resolution real-time clocks are not necessary. In fact

61

the standard UNIXTM system clock with a resolution of 10 milli-

seconds is sufficient. The real-time measurement is of tremendous use

in performance monitoring of parallel programs since it captures the

synchronization of events in an unambiguous manner. Therefore

implementing global clocks on the system along with simple routines

to access them is an idea which parallel computer manufacturers

should seriously consider.

A limitation of this proposed performance analysis methodology

is that the inter-grain communication delay can not be measured

accurately in the presence of parallel I/O channels in the system. This

is because the instrumentation itself is a part of the application and it

is subject to manipulation by the system on which the application is

running. A valuable extension to this methodology would be to develop

a mechanism which can relate the communications occurring at the

hardware level (bus traffic, cache hit etc.) to the higher level
language inter-grain communication primitives (send, receive etc.).

62

References

[1] Aral Z. and Gertner I. " High Level Debugging in Parasight " ACM
Workshop on Parallel and Distributed Debugging, University of
Wisconsin Madison, May 1988.

[2] Brandis C. and Thakkar S. " A Parallel Program Event Monitor "
Proc. of the Twentieth Annual Hawaii International conference on
System Sciences, 1987.

[3] McDaniel G. " METRIC : A kernel instrumentation system for
distributed environments " Proceedings of the 6th Symposium on
Operating System Principles, November 1975.

[4] Snodgrass E. " Monitoring Distributed Systems : A Relational
Approach " PhD dissertation, Carnegie Mellon University, December
1982.

[5] Maples C. " Analyzing Software Performance in a Multiprocessor
Environment " IEEE Software , July 1985.

[6] Miller B. " DPM : A measurement system for distributed programs "
5th International Conferences on Distributed Computing Systems,
IEEE Computer Society, May 1985.

[7] Segall S. and Rudolph R " PIE : A programming and
instrumentation environment for parallel processing " IEEE Software,
November 1985

[8] Summary of Proceedings, Workshop on Parallel and Distributed
Debugging, May 1988, University of Wisconsin Madison, in SIGPLAN
Notices v24 nl, January 1989.

63

[9] prof, gprof : UNIXTM utilities for displaying profile data, DYNIXTM
Programmer's Manual, revision 1.6 86/05/13

[10] El-Rewini H. and Lewis T. G. " Software Development in Parallax :
The ELGDF Language " Technical Report (88 - 60 -17), Dept. of
Computer Science, Oregon State University, July 1988.

[11] Lewis T. G. " Parallel Programming Support Environment
Research " TR-PPSE-89-1, Oregon Advanced Computing Institute,
Beaverton, Oregon, 1989.

[12] Rudd W. G., El-Rewini H., Handley S., Judge D. V. and Kim I.
" Status Report : Parallel Programming Support Environment Research
at Oregon State University " Corvallis, 1989.

[13] Kirkpatrick S, Gelatt C, Vecchi M " Optimization by Simulated
Annealing ", Science v220, n459, pp45 - 54 May 1983.

[14] Graham S. L. , Kessler P. B. , McKusick M. K. " prof : a Call graph
Execution Profiler" Proceedings of the SIGPLAN ' 82 Symposium on
Compiler Construction, SIGPLAN Notices, v17, n6, June 1982.

[15] Durand M. D. " Parallel Simulated Annealing : Accuracy vs Speed
in Placement " IEEE Design and Test of Computers, pp 8 34 ,

June 1989

[16] Dynix Programmer's Manual, revision 1.6 86/05/13.

[17] Symmetry Technical Summary, 1987, Sequent Computer
Systems, Beaverton, Oregon

[18] A Guide to Parallel Programming on Sequent Computers, Book,
2nd Edition, 1987.

64

[19] Karp A. and Babb R. A. " A comparision of 12 Parallel Fortran

Dialects " IEEE Software, Sept 1988, pp. 52-67.

65

Appendix A : Instrumented code of Travelling Salesman Problem

/***
*

* Traveling Salesman Problem
*

* This is a parallel implementation of the Travelling Salesman Problem
* First the initial path of the salesman is read as x and y coordinates
* of the cities to be visited. Next the annealing parameters are
* inputted. The annealing parameters determine how quickly and
* accuratly the path of the salesman will be converged.
* In parallel implemetation, each of the processor is given a copy of
* the current path. The processor reduce the path for a number of
* iterations and then they join at a barrier. The best solution is
* selected and made the latest path. This contines till the annealing
* parameters are satisfied.
*

ORIGINAL VERSION BY : Martha, 01/1986
CURRENT VERSION BY : Anil Kumar Yadav, 09/1989

*

#include "time_sequent_c.h" /* timing routines for execution trace */
#include <stdio.h>
#include <math.h>
#include <parallel/microtask.h>
#include <sys/time.h>
#include <sys/resource.h>

#define TRUE 1
#define FALSE 0

#define MAXCYC 800
#define MAXPTS 1000

#define MAXPROC 100
#define EPSILON 0.000001
#define RANF ((double)((randx =

/* maximum temperature drops */
/* maximum points in path */

/* for floating point comparison */
randx * 1103515245 + 12345) &

Ox7fffffff)) / 214
7483647.

typedef int boolean;

typedef struct pointtype {

float x;
float y;
struct pointtype *prev;
struct pointtype *next;

/*

/*

ptr to previous point */
ptr to next point */

POINT; /* x,y coords of point on path */

shared float beta; /* temperature for swapping */
shared float currtemp; /* current temperature */
shared float drop; /* drop in temperature */
shared float ftemp; /* final temperature */
shared float itemp; /* initial temperature */
shared long niter; /* iterations per drop in temp */
shared int nprocs; /* number of processes participating */

shared int npts; /* number of points in the path */
shared POINT *mypath[MAXPROC]; /* first point for each processor */

66

shared float mypathlen[MAXPROC]; /* pathlength for each process */
shared POINT *path; /* first point in salesman's path */
shared float pathlen; /* current path length */
shared float plog[MAXCYC]; /* path lengths at various temperatures */
shared static long randx; /* for randomization of swapping */
shared float tlog[MAXCYC]; /* temperature log */
shared float timelog[MAXCYC]; /* time per iteration */

/*
* function to get the latest path from common path
*/

void get_current_path(pathpointer)
POINT *pathpointer;
{

POINT *t, *s;
int i;

for(i = 0, t=pathpointer, s= path;i < npts; i++, s++, t++)

t->x = s->x;
t->y = s->y;

/* link the points */
for(i=0, t=pathpointer; i < npts; i++,t++)

{

if(i==(npts-1))
t->next = &pathpointer[0];

else
t->next = &pathpointer[i +l];

if(i==0)
t->prev = &pathpointer[npts -1];

else
t->prev = &pathpointer[i - 1];

/*
* function to put the latest path to common path
*/

void put_current_path(pathpointer)
POINT *pathpointer;

POINT *t, *s;
int i;

for(i = 0, t=pathpointer, s= path;i < npts; i++, s++)
{

s->x = t->x;
s->y = t->y;
t=t->next;

/* link the points */
for(i=0, t=path; i < npts; i++,t++)

{

if(i==(npts-1))
t->next = &path[0];

else
t->next = &path[i+1];

if (i = =0)

t->prev = &path[npts -1];
else

t->prev = &path[i - 1];
}

}

67

/*
* function to return the index of the process having the smallest path
*/

int get_smallest_path_index()
{

int currentIndex, i;
float minPath;

currentIndex = 0;
minPath = mypathlen[0];
for(i=0; i< nprocs; i++)

{

if(mypathlen[i] <= minPath)
{

currentIndex = i;
minPath = mypathlen[i];

return(currentIndex);

/*
* Swap points t and t->next if they make the path length shorter or if
* they don't with a certain probability.Calculate distances using the
* point below i and the two points above.
* This function called by iterate and run by multiple processes.
*

* 1/21/86: I originally had locked this entire routine since the
* values that the pointers pointed to could change, but there was no
* speedup at all when I added multiple processors. This was because
* the swaps were essentially being done sequentially. By only locking
* the section where the swap takes place, I am introducing a little
* more randomness into the algorithm. The actual points could be
* changed by the time they are swapped, but now there is some speedup.
*

* 9/1/89 : In the barrier based version each processor is minimizing
* its own copy of the path, thus there is no contention in accessing
* this function. Hence there are no locked parts in this functions
*/

cswap(t, swap, eint, erem)
POINT *t; /* path pointer */
boolean *swap; /* true if points interchanged */
float eint[], erem[]; /* for randomization of swapping */

float delta; /* distance between points */
int idel; /* integer of delta */

68

POINT point, *p; /* temporary coordinates */

p = &point;

p->x = t->prev->x - t->next->x;
p->y = t->prev->y - t->next->y;
delta = sqrt(p->x * p->x + p->y * p->y);

p->x = t->x - t->next->next->x;
p->y = t->y - t->next->next->y;
delta += sqrt(p->x * p->x + p->y * p->y);

p->x = t->prev->x - t->x;
p->y = t->prev->y - t->y;
delta -= sqrt(p->x * p->x + p->y * p->y);

p->x = t->next->x - t->next->next->x;
p->y = t->next->y - t->next->next->y;
delta -= sqrt(p->x * p->x + p->y * p->y);

*swap = FALSE;
if (delta <= 0.0) *swap = TRUE;
else (

delta *= beta;
if (delta > 49.0) delta = 49.0;
idel = (int)delta;
if (RANF < eint[idel] * erem((int)(1000.0 * (delta idel))])

*swap = TRUE;

/* Switch t and t->next. */

if (*swap) {

t->prev->next = t->next;
t->next->prev = t->prev;
t->next = t->next->next;
t->next->prev = t;
t->prev->next->next = t;
t->prev = t->prev->next;
}

/*
* Calculate the distance between two points.
*/

float distance(a, b)
POINT *a, *b;

POINT point, *p;

p = &point;
p->x = a->x - b->x;
p->y = a->y - b->y;

return(sqrt(p->x * p->x + p->y * p->y));

/*
* Each process tries to reduce the size of its path at each
* temperature drop. At the end of its iterations it recalculates
* the length of its path.
*/

void iterate()

static float eint[100];
static float erem[1000];
int high;
long i;
int j, k, 1;

int keep;
int low;
POINT *mylow;
int rem;

/* for randomization of swapping */
/* " TI */

/* index of top point I work on */
/* loop index */
/* loop indices */
/* points I work on */
/* index of bottom point I work on */

/* pointer to starting index of my points */
/* remainder when points div. by procs */

static struct rusage start, finish; /* for timing */
boolean swapped; /* true if points interchanged */
POINT *t, *s, *tprime; /* temporary path pointers */
double x; /* for randomization of swapping */

69

/* Each node sets up randomizing constants for swapping. */
get_grain_starttime(m myid, (3 + m_myid));

randx = (long)(27 * m myid);
for (i = 0; i < 50; i++)

eint[i] = exp(-(double)i);
for (i = 0, x = 0.0005; i < 1000; i++, x += 0.001)

erem[i] = exp(-x);

m single();

/*

* since the processes are acting on parallel on the same path each will
* will be given a part of the iterations
*/

niter = niter / nprocs;

for (currtemp = itemp, j = 0; currtemp > (ftemp - EPSILON) && currtemp >
0.0;

currtemp -= drop, j++)
m multi();
get_current_path(mypath[m myid]);
low = 0;
high = low + npts 1;

/* Find and save a pointer to the first point in my portion of the path.
*/

mylow = mypath[m myid]; /* save the lowest point in my path */
beta = 1.0 / currtemp;

/* Move points around */

for (i = OL; i < niter; i++) {

if (keep > 2) {

/* swap pts within my path? (first point not involved) */
for (k = low + 1, tprime = mylow->next; k < high 1; k++)

cswap(tprime, &swapped, eint, erem);

70

tprime = tprime->next;
}

1

/* mylow may be swapped in these two calls; want to keep it
pointing to lowest one in MY path. */

if (keep > 1) {

cswap(mylow, &swapped, eint, erem);
/* swap my first two points? */

if (swapped) {

mylow = mylow->prev; /* back to my lowest */

cswap(mylow->prev, &swapped, eint, erem);
/* swap with previous point? */
if (swapped) {

mylow = mylow->next; /* back to my lowest */

/* Calculate the length of my path and its connection to my next
neighbor. Update the shared path length. */

mypathlen[m myid] = 0.0;
for (1 = low, t = mylow; 1 <= high; 1++, t = t->next)

mypathlen[m myid] += distance(t, t->next);

/* all processes come together */
m sync();
m single();
1 = get_smallest_path_index();
pathlen = mypathlen[1];
put_currentpath(mypath[1]);

/* Calculate iteration time. */
tlog[j] = currtemp;
plog[j] = pathlen;

m multi() ;

get_grain_stop_tima(m myid, (3 + m myid));
1

/*

* Use simulated annealing
*/

void anneal()

int i,j,k;
char yn;
char filename[30];
FILE *fp, *fopen();
POINT *s, *t;
get_grain_start_time(0,

/* Get input from user. */

to approach the solution.

/* loop indices */
/* yes/no answer */
/* log file */
/* log file pointer */

3) ;

printf("\nEnter initial temperature: ");
scanf("%f", &itemp);
printf("Initial temperature is %6.3f\n", itemp);

71

printf("\nEnter drop in temperature: ");
scanf("%f", &drop);
printf("Drop in temperature is %6.3f\n", drop);

printf("\nEnter final temperature: ");
scanf("%f", &ftemp);
printf("Final temperature is %6.3f\n", ftemp);

printf("\nEnter the number of iterations per drop in temperature: ");
scanf("%ld", &niter);
printf("Number of iterations per cycle is %ld\n", niter);

/* Set up multiple processes. */

printf("\nEnter number of processors: ");
scanf("%d", &nprocs);
printf("nprocs = %d\n", nprocs);
if Om set_procs(nprocs) != 0) {

perror("It didn't work\n");
printf("I asked for %d processes.\n", nprocs);
exit(-1);
}

/* shared memory for each process is generated */
for(i = 0; i < nprocs; i++)
mypath[i] = (POINT *) shmalloc(sizeof(POINT)* npts);

get_grain_stoptime(0, 3) ;

m fork(iterate);

/*
* Write data to file.
*/
void
write_data()

int i;
FILE *fopen();
char outfile[30];
FILE *outfp;
POINT *t;

do

/* loop index */
/* for opening file */
/* data file names */
/* file pointer */
/* runs along points on path */

printf("Enter output data file name: ");
scanf("%s", outfile);

if ((outfp = fopen(outfile, "w")) == NULL)
printf("Error opening output file.\n");

) while (outfp == NULL);

fprintf(outfp, "%d\n", npts);
t = path;

for (i = 0; i < npts; i++, t = t->next)
fprintf(outfp, "%6.3f\t%6.3f\n", t->x, t->y);

fclose(outfp);

72

main()
{

char command;
boolean done;
FILE *fopen();
int i;
static char infile[30];
static FILE *infp;
POINT *t;

/* user-entered */
/* boolean */
/* to open file */
/* loop index */
/* data file names */
/* file pointer */
/* runs along points on path */

initialize_ clock() ;

get_grain_start_time(0 , 1);

do {

printf("Enter name of data file: ");
scanf("%s", infile);
printf("\nfile = %s\n", infile);
if ((infp = fopen(infile, "r")) == NULL)

printf("Input file not found.\n");
1 while (infp == NULL);

fscanf(infp, "%d", &npts);
if (npts > MAXPTS) {

printf("Number of points in file (%d) exceeds maximum allowed
(%d)\n",

npts, MAXPTS);
exit(1); /* error exit */

printf("npts = %d\n", npts);
path = (POINT *) shmalloc(sizeof(POINT) * npts);

for (i = 0, t = path; i < npts; i++, t++) {

fscanf(infp, "%f %f", &(t->x), &(t->y));
ifdef DEBUG

printf("path[%d]:\tx = %6.3f\ty = %6.3f\n", i, t->x, t->y);
endif

get_grain_stoptime(0 , 1) ;

/* Link the points. */
get_grain_start_time(0 , 2) ;

for (i = 0, t = path; i < npts; i++, t++) {

if (i == npts - 1)
t->next = &path[0];

else
t->next = &path[i + 1);

if (i == 0)
t->prev = &path[npts - 1);

else
t->prev = &path[i - 1];

1

get_grainstoptime(0 , 2) ;

fclose(infp);
anneal();
get_grain_start_time(0 , (3 + nprocs))

73

write_data();
get_grain_stop_time(0 , (3 + nprocs)) ;

1

74

Appendix B : Source Code of Execution Profile Analyzer

PROGRAM EXECUTION TRACE ANALYZER 1

Written By : Anil Kumar Yadav 1

On : September 01, 1989 1

Last Modified : October 01, 1989 1

}

{ }

{ This program reads the execution trace of a program and
{ generated the following reports :-

ELGDFReport : a list of grains and their execution
and their execution time. }

MacScheduleReport : A MacSchedular compatible Gnatt 1

chart file to see the Gnatt
of actual execution

GeneralReport : a file containing overall speedup data 1

and individual processor utilisation

program analyser (ELGDFReport,
MacScheduleReport,GeneralReport,input,output);

const
TRUE = 1 ;

FALSE = 0 ;

START = 0 ;

STOP = 1 ;

SENDBEGIN = 2 ;

SENDEND = 3 ;

RECVBEGIN = 4 ;

RECVEND = 5 ;

CHARTLENGTH = 25 ;

type
identifier = (start, stop, sendBegin, sendEnd, recvBegin,

recvEnd) ; { trace identifiers 1

text = file of char ;
tracePointer = AtraceElement ;
traceElement = record

traceType : identifier ;
processorld : integer ;
grainId : integer ;
flashTime : integer ;
startTime : integer ;
stopTime : integer ;
prey : tracePointer ;
next : tracePointer ;
end ;

processorPointer = ^processorElement ;

processorElement = record
processorld : integer ;
grainListHead : tracePointer ;
next : processorPointer ;
prey : processorPointer ;
end ;

var

75

arcPointer = ^arcElement ;

arcElement = record
arcType : identifier ;
sender : integer ;
receiver : integer ;
sendBeginTime : integer ;
sendEndTime : integer ;
recvBeginTime : integer ;
recvEndTime : integer ;
arcName : array[1..100] of char ;
flashTime : integer ;
next : arcPointer ;
prey : arcPointer ;
end ;

ELGDFReport : text ;

MacScheduleReport : text ;

GeneralReport : text ;

arcHead : arcPointer ;
processorHead : processorPointer ;
traceHead : tracePointer ;

function readMarker : integer ;
1

f This function reads in the standard input till it finds the }

{ keywords 'start' or 'stop' which mark the begining of a
{ trace point. It returns 0 for 'start', 1 for 'stop' and 99 for}
{ if the keywords are not found. }

{ Called From : getTracePoint }

1 Calls : none
var

character : char ;
word : array[1..100] of char ;
found : integer ;

counter : integer ;
status : integer ;

begin
status := 99 ;

found := FALSE ;

while((not eof) and (found = FALSE)) do
begin

counter := 1 ; { initialize a blank word }
while(counter <> 101) do
begin
word[counter] := ' ;

counter := counter + 1 ;

end ;

counter := 0 ; { read word from input }

read(character) ;

while((character <> ")and(character <> chr(9))
and (counter < 100)) do

begin

76

counter := counter + 1 ;

word[counter] := character ;
read(character) ;

end ;

if(word = 'start') then
begin

status := START ;
found := TRUE ;

end ;

if(word = 'stop') then
begin

status :=STOP ;

found := TRUE ;
end ;

{ check if it is an identifier }

{ check if it is an identifier }

if(word = 'sendBegin') then { check if it is an identifier }
begin

status :=SENDBEGIN ;
found := TRUE ;

end ;

if(word = 'sendEnd') then { check if it is an identifier)

begin
status :=SENDEND ;
found := TRUE ;

end ;

if(word = 'recvBegin') then { check if it is an identifier
begin

status :=RECVBEGIN
found := TRUE ;

end ;

if(word = 'recvEnd') then { check if it is an identifier }

begin
status :=RECVEND ;
found := TRUE ;

end ;
end ; { while

if(found = TRUE) then
readMarker := status

else
readMarker := 99 ;

end ; { readMarker }

{

{ return the search status }

function getArcPoint (marker : integer) : arcPointer ;
var

temp : arcPointer ;
counter : integer ;
character : char ;
word : array[1..100] of char ;

begin
new(temp) ;

77

case marker of
SENDBEGIN : tempA.arcType := sendBegin ;
SENDEND : tempA.arcType := sendEnd ;
RECVBEGIN : tempA.arcType := recvBegin ;
RECVEND : tempA.arcType := recvEnd ;

end ; { case }

counter := 1 ;

while (counter <> 101) do
begin
word[counter] := "
counter := counter + 1 ;

end ;

counter := 0 ;

read(character) ;

while((character = ') or (character = chr(9))) do
read(character);

while((character <> ') and (character <> chr(9))

and (counter < 100)) do
begin

counter := counter + 1 ;

word[counter] := character ;
read(character) ;

end ;

tempA.arcName := word ;

case marker of
SENDBEGIN, SENDEND : read(tempA.sender) ;

RECVBEGIN, RECVEND : read(tempA.receiver) ;

end ; { case }

read(tempA.flashTime) ;

readln ;
getArcPoint := temp ;

end ; { getArcPoint }

function getTracePoint(marker : integer) : tracePointer ;
1

{ This function reads in one trace point from the standard }

{ input and stores it in a newly created record. }

{ Called From : makeTraceList
Calls : readMarker

var
temp : tracePointer ;

begin
new(temp) ;

if((marker = STOP) or (marker = START)) then
begin
read(tempA.processorId) ;

read(tempA.grainId) ;

read(tempA.flashTime) ; { read the time stamp 1

readln ;
tempA.next := nil ;

tempA.prev := nil ;

temp^.startTime := 0 ;

temp^.stopTime := 0 ;

if(marker = STOP) then
tempA.traceType := stop

else
tempA.traceType := start ;

getTracePoint := temp ; { return the pointer I
end

else
getTracePoint := nil ;

end ; { getTracePoint I

procedure swapArcPoints(one, two : arcPointer) ;

{ }

f This procedure exchanges two trace elements in the linked of 1

trace points of all the processors 1

f Called By : orderBySenderld
Calls : none

var
temp : arcPointer ;

begin
temp := oneA.prev ;
if (temp = nil) then
begin
ones.next := two-.next ;
ones.prev := two ;

twoA.prev := nil ;

if (two^.next <> nil) then
begin
two^.next^.prev := one ;

end;

twoA.next := one ;

if (one = arcHead) then
arcHead := two ;

end { if }

else
begin

oneA.next := two-.next ;

oneA.prevA.next := two ;
twoA.prev := one-.prev ;
oneA.prev := two ;

if (two^.next <> nil) then
begin
twoA.nextA.prev := one ;

end ;

twoA.next := one ;

end ; { else 1

end ; { swapArcPoints }

1

78

79

procedure swapTracePoints(one, two : tracePointer) ;

{ This procedure exchanges two trace elements in the linked of }

{ trace points of all the processors
{ Called By : orderByGrainld }

Calls : none 1

1

var
temp : tracePointer ;

begin
temp := oneA.prev ;
if (temp = nil) then
begin
oneA.next := twoA.next ;
oneA.prev := two ;
twoA.prev := nil ;

if (twoA.next <> nil) then
begin
twoA.nextA.prev := one ;
end;

twoA.next := one ;

if (one = traceHead) then
traceHead := two ;

end { if }

else
begin

oneA.next := twoA.next ;
oneA.prevA.next := two ;
twoA.prev := oneA.prev ;
oneA.prev := two ;

if (twoA.next <> nil) then
begin
twoA.nextA.prev := one ;
end ;

twoA.next := one ;
end ; { else }

end ; { swapTracePoints }

{ }

procedure swapProcessors(one, two : processorPointer) ;

{ This procedure exchanges two processor records in the global }

{ linked list of processors. }

{ Called By : orderByProcessorld
1 Calls : none
1 1

var
temp : processorPointer ;

begin
temp := oneA.prev ;
if (temp = nil) then
begin
oneA.next := twoA.next ;

80

oneA.prev := two ;
twoA.prev := nil ;

if (twoA.next <> nil) then
begin
twoA.nextA.prev := one ;

end;

twoA.next := one ;

if (one = processorHead) then
processorHead := two ;

end { if }

else
begin

oneA.next := twoA.next ;

oneA.prevA.next := two ;

twoA.prev := oneA.prev ;
oneA.prev := two ;

if (twoA.next <> nil) then
begin
twoA.nextA.prev := one ;

end ;

twoA.next := one ;
end ; else 1

end ; { swapProcessors }

{

procedure swapProcessorTracePoints(myProcessor : processorPointer ;
one, two : tracePointer) ;

{

{ This procedure exchanges the trace points within the linked
of the tracepoints of a particulat processor.

{ Called By : orderByStartTime
{ Calls : none
var

temp : tracePointer ;
begin

temp := oneA.prev ;
if (temp = nil) then
begin
oneA.next := twoA.next ;
oneA.prev := two ;
twoA.prev := nil ;

if (twoA.next <> nil) then
begin
twoA.next .prev := one ;

end;

twoA.next := one ;

if (one = myProcessorA.grainListHead) then
myProcessorA.grainListHead := two ;

end { if }

81

else
begin

oneA.next := twoA.next ;

oneA.prevA.next := two ;

twoA.prev := oneA.prev ;
one ".prev := two ;

if (twoA.next <> nil) then
begin
twoA.nextA.prev := one ;
end ;

twoA.next := one ;
end ; { else }

end ; { swapProcessorTracePoints }

}

procedure placeArcElement (newPoint : arcPointer) ;

var
temp : arcPointer ;
found : integer ;

begin
if (arcHead = nil) then
begin

case newPointA.arcType of
sendBegin : newPointA.sendBeginTime := newPointA.flashTime ;
sendEnd : newPointA.sendEndTime := newPoint ".flashTime ;
recvBegin : newPointA.recvBeginTime := newPoint ".flashTime ;
recvEnd : newPointA.recvEndTime := newPointA.flashTime ;

end ; { case }

arcHead := newPoint ;
end
else
begin

found := FALSE ;
temp := arcHead ;

while ((temp <> nil) and (found = FALSE)) do
begin

if(tempA.arcName = newPointA.arcName) then
found := TRUE

else
temp := tempA.next ;

end; { while }

if (found = FALSE) then
begin
case newPointA.arcType of
sendBegin : newPoint ".sendBeginTime := newPoint ".flashTime ;
sendEnd : newPointA.sendEndTime := newPointA.flashTime ;
recvBegin : newPoint ".recvBeginTime := newPointA.flashTime ;
recvEnd : newPointA.recvEndTime := newPointA.flashTime ;

end ; { case }

newPointA.next := arcHead ;
arcHeadA.prev := newPoint ;

arcHead := newPoint ;
end

82

else
begin
case newPointA.arcType of
sendBegin : begin

tempA.sendBeginTime := newPointA.flashTime ;
tempA.sender := newPointA.sender ;
end ;

sendEnd : begin
tempA.sendEndTime := newPointA.flashTime ;
tempA.sender := newPointA.sender ;
end ;

recvBegin : begin
tempA.recvBeginTime := newPointA.flashTime ;
tempA.receiver := newPointA.receiver ;
end ;

recvEnd : begin
tempA.recvEndTime := newPointA.flashTime ;
tempA.receiver := newPointA.receiver ;
end ;

end ; { case }

dispose(newPoint) ;

end ;
end ;

end ; { placeArcElemenet }

procedure placeTraceElement(newPoint : tracePointer) ;

{ This procedure takes in the raw timestamped trace and then
{ recreates the starting and ending times of the grain based on }

{ the marker type. The newly created trace element is put on the}
{ top of the global linked list of such trace elements
{ Called By : makeTraceList }

Calls : none 1

var
temp : tracePointer ;
found : integer ;

begin
{ if this is the first element in the list the create the list }

if (traceHead = nil) then
begin

if(newPointA.traceType = start) then
newPointA.startTime := newPointA.flashTime

else
newPointA.stopTime := newPointA.flashTime ;

traceHead := newPoint ;
end { if }

else
begin

found := FALSE ;
temp := traceHead ;

{ check if any element
while ((temp <> nil)

begin
if (tempA.grainId =
found := TRUE

related to this grain already exists }

and (found = FALSE)) do

newPointA.grainId) then

83

else
temp := tempA.next ;

end ; { while }

if (found = FALSE) then
begin
if(newPointA.traceType = start) then
newPointA.startTime := newPointA.flashTime

else
newPoint ".stopTime := newPointA.flashTime ;

newPointA.next := traceHead ;
traceHeadA.prev := newPoint ;
traceHead := newPoint ;
end { if }

else
begin
case newPointA.traceType of

stop :

tempA.stopTime := newPointA.flashTime ;
start :

tempA.startTime := newPointA.flashTime ;
end ; { case }

end ; { else }

end ; { else }

end ; { placeTraceElement }

procedure makeTraceList ;

{ This procedure creates the initial global linked list of
{ grains, their mapping on processes and their start and stop
{ times.
{ Called By : initialize }

Calls : getTracePoint, placeTracePoint 1

var
kuka : tracePointer ;
temp : arcPointer ;
marker : integer ;

begin

while (not eof) do
begin
marker := readMarker ;
case marker of

START, STOP : begin
kuka := getTracePoint(marker) ;

placeTraceElement(kuka) ;

end ;
SENDBEGIN, SENDEND, RECVBEGIN, RECVEND :

begin
temp := getArcPoint(marker) ;

placeArcElement(temp) ;

end ;
99 : ;

end ; { case }

end ; { while }

84

end ; { makeTraceList 1

}

procedure orderBySenderld ;
{ }

f This procedure goes through the global linked list of trace 1

f elements and arranges the grains by their grain Id in an)

{ ascending order. }

{ Called By : initialize }

Calls : swapArcPoints 1

var
temp : arcPointer ;
kuka : arcPointer ;
changed : integer ;

begin
changed := TRUE ;

while (changed = TRUE) do
begin
temp := arcHead ;
changed := FALSE ;

kuka := temp^.next ;

while (kuka <> nil) do
begin

if (tempA.sender > temp^.next^.sender) then
begin
swapArcPoints(temp, temp^.next) ;

changed := TRUE ;

end ;

temp := tempA.next ;

if (temp = nil) then
kuka := temp

else
kuka := temp^.next ;

end ; { while)

end ; { while }

end ; { orderBySenderld 1
}

procedure orderByGrainId ;
1

f This procedure goes through the global linked list of trace 1

{ elements and arranges the grains by their grain Id in an
{ ascending order. }

{ Called By : initialize }

{ Calls : swapTracePoints }

var
temp : tracePointer ;
kuka : tracePointer ;
changed : integer ;

begin
changed := TRUE ;

while (changed = TRUE) do
begin
temp := traceHead ;
changed := FALSE ;

85

kuka := tempA.next ;
while (kuka <> nil) do
begin

if (tempA.grainId > tempA.nextA.grainId) then
begin
swapTracePoints(temp, tempA.next) ;

changed ;= TRUE ;
end ;

temp := tempA.next ;

if (temp = nil) then
kuka := temp

else
kuka := tempA.next ;

end ; { while
end ; { while

end ; { orderByGrainId }
{ }

procedure orderByStartTime(tempProcessor : processorPointer) ;

{ This procedure arranges the trace elements for a processor
f in the increasing order of start time, which is used for
f creating MacSchedule report file.
f Called By : orderByProcessorld

Calls : swapProcessorTracePoints
var

temp : tracePointer ;
kuka : tracePointer ;
changed : integer ;

begin
changed := TRUE ;

while (changed = TRUE) do
begin
temp := tempProcessorA.grainListHead ;
changed := FALSE ;

kuka := tempA.next ;
while (kuka <> nil) do
begin

if (tempA.startTime > tempA.nextA.startTime) then
begin
swapProcessorTracePoints(tempProcessor, temp, tempA.next)

changed := TRUE ;
end ;

temp := tempA.next ;

if (temp = nil) then
kuka := temp

else
kuka := tempA.next ;

end ; { while }

end ; f while 1

end ; { orderByStartTime
}

86

{

procedure regroupTraceByProcessor ;
{

{ This procedure reads in the global linked list of the trace
{ elements and makes a linked list of processors with each }

{ processor having a linked list of grains which were mapped on }

{ itself.
{ Called By : initialize

Calls : none
var

found : integer ;
tempHead : processorPointer ;
tempTrace : tracePointer ;
temp : tracePointer ;

begin
temp := traceHead ;

while(temp <> nil) do
begin

new(tempTrace);
tempTraceA.processorId := tempA.processorId ;
tempTraceA.grainId := tempA.grainId ;
tempTraceA.startTime := tempA.startTime ;
tempTraceA.stopTime := tempA.stopTime ;
tempTraceA.next := nil ;

tempTraceA.prev := nil ;

if (processorHead = nil) then
begin

new(processorHead) ;

processorHeadA.processorId := tempTraceA.processorId ;
processorHeadA.grainListHead := tempTrace ;

end { if }

else
begin

found := FALSE ;
tempHead := processorHead ;

while ((found = FALSE) and (tempHead <> nil)) do
begin
if (tempHeadA.processorId = tempTraceA.processorId) then

found := TRUE
else
tempHead := tempHeadA.next ;

end; { while

if (found = TRUE) then
begin

tempTraceA.next := tempHeadA.grainListHead ;
tempHeadA.grainListHeadA.prev := tempTrace ;
tempHeadA.grainListHead := tempTrace ;

end { if }

else
begin

new(tempHead) ;

tempHeadA.prev := nil ;

tempHeadA.grainListHead := tempTrace ;

tempHeadA.processorId := tempTraceA.processorId ;

87

processorHeadA.prev := tempHead ;
tempHead^.next ;= processorHead ;
processorHead := tempHead ;

end ; { else Jr

end ; { else }

temp := temp^.next ;

end ; while
end; regroupTraceByProcessor }

procedure orderByProcessorid ;

{ This procedure rearranges the linked list of processors to }

{ give an ascending order. Also within each process it
{ rearranges the list of trace elements in ascnding order by
{ by the start time.
{ Called By : initialize

Calls : swapProcessors, orderByStartTime
var

temp : processorPointer ;
kuka processorPointer ;
changed : integer ;

begin
changed := TRUE ;

while (changed = TRUE) do
begin
temp := processorHead
changed := FALSE ;

kuka := tempA.next ;
while (kuka <> nil) do
begin

if (tempA.processorId > temp^.next^.processorId) then
begin
swapProcessors(temp, temp^.next) ;

changed := TRUE ;
end ;

temp := temp^.next

if (temp = nil) then
kuka := temp

else
kuka := temp ".next ;

end ; { while }

end ; { while)

temp := processorHead ;

while(temp <> nil) do
begin

orderByStartTime(temp) ;

temp := temp^.next ;

end ; { while 1

end ; orderByProcessorld 1

function getTraceCount(head : tracePointer) : integer ;

88

f This function goes through a list of trace elements and }

f returns the number of elements present in the list.
{ Called By : makeMacScheduleReport, makeGeneralReport

Calls : none }

var
tempCount : integer ;

temp : tracePointer ;
begin

tempCount := 0 ;

temp := head ;

while (temp <> nil) do
begin

tempCount := tempCount + 1 ;

temp := tempA.next ;

end ; { while }

getTraceCount := tempCount ;
end ; { getTraceCount 1

function getProcessorCount : integer ;
}

f This function counts the number of elements present in the 1

f linked list of processors.
f Called By : makeMacScheduleReport

Calls : none
var

tempCount : integer ;
tempProc : processorPointer ;

begin
tempCount := 0 ;

tempProc := processorHead ;

while (tempProc <> nil) do
begin
tempCount := tempCount + 1 ;

tempProc := tempProc^.next ;
end ;

getProcessorCount := tempCount
end ; { getProcessorCount 1

function getTotalExecutionTime : integer ;
}

f This function goes through the linked list of all the trace
{ elements and yeilds the overall execution time. Overall
{ execution time is the higest value of the stop time among all }

f the grains. 1

f Called By : makeGeneralReport
Calls : none

var
temp : tracePointer ;
maxTime : integer ;

begin
maxTime := 0 ;

temp := traceHead ;

89

while (temp <> nil) do
begin

if (tempA.stopTime > maxTime) then
maxTime := tempA.stopTime ;

temp := tempA.next ;

end ;

getTotalExecutionTime := maxTime ;
end ; { getTotalExecutionTime }

{

function getActualStartTime : integer ;
{ }

{ This function goes through the linked list of all the trace }

{ elements and yeilds the actual start time . Overall }

{ execution time is the higest value of the stop time among all }

{ the grains.
{ Called By : makeGeneralReport }

Calls : none 1

var
temp : tracePointer ;
minTime : integer ;

begin
minTime := 9999999 ;

temp := traceHead ;

while (temp <> nil) do
begin

if (tempA.startTime < minTime) then
minTime := tempA.startTime ;

temp := tempA.next ;

end ;

getActualStartTime := minTime ;
end ; { getActualStartTime }

{ }

procedure makeMacScheduleFile ;

{ This procedure goes through the linked list of the processors }

{ and prints a file named 'MacScheduleReport' in the format of }

{ of the MacSchedule 1.0 Gnatt Chart. }

{ Called By : program }

{ Calls : getTraceCount, getProcessorTime, }

{ getTotalExecutionTime,
var

tempProc : processorPointer ;
tempTrace : tracePointer ;
count : integer ;
factor : integer ;

begin
rewrite(MacScheduleReport);
writeln(MacScheduleReport,'Schedule',

< Identifies this as a schedule file >') ;

count := getTraceCount(traceHead) ;

writeln(MacScheduleReport, count,
< Total Number of Tasks on All Processors >') ;

90

count := getProcessorCount ;

writeln(MacScheduleReport, count, ' 1.0',
< Number of Processors, Transfer Rate > ');

count := getTotalExecutionTime ;
writeln('The total execution time for this program was ',count,

msec') ;
factor := 1 ; {count div CHARTLENGTH ;
writeln(' The Gantt Chart and Task Graph have been scaled by :

factor,' for proper display');
tempProc := processorHead ;

while(tempProc <> nil) do
begin
writeln(MacScheduleReport, tempProcA.processorId,

1 < Processor# >') ;

count := getTraceCount(tempProcA.grainListHead) ;

writeln(MacScheduleReport, count,
< Number of Tasks on this processor > ');

tempTrace := tempProcA.grainListHead ;

while(tempTrace <> nil) do
begin
write(MacScheduleReport, tempTraceA.grainId);
write(MacScheduleReport, tempTraceA.startTime div factor);
write(MacScheduleReport, tempTraceA.stopTime div factor);

count := 0 ;

writeln(MacScheduleReport, count, count);
tempTrace := tempTraceA.next ;

end ;
tempProc := tempProcA.next ;

end ;
end ; { makeMacScheduleFile
{ }

function getRealExecutionTime(temp : tracePointer) : integer ;
{ This procedure totals the execution time of all the grains to }

{ indicate the amount of time it will take if the program were }

to be executed in serial fashion. 1

{ Called By : makeGeneralReport }

{ Calls : none }

var
time : integer ;

begin
time ;= 0 ;

while(temp <> nil) do
begin
time := time + (tempA.stopTime - tempA.startTime) ;

temp := tempA.next ;

end ;

getRealExecutionTime := time ;
end ; I getRealExecutionTime

procedure makeGeneralReport ;
}

91

{

{ This procedure prints the information regarding overall
performance of the program and also utilzation by each of the

{ the processor and grains
{ Called By : program
1 Calls : getTotalExecutionTime, getRealExecutionTime
var

count, totalTime, goodTime : integer ;
efficiency : real ;
tempTrace : tracePointer ;
tempProc : processorPointer ;

begin
totalTime := getTotalExecutionTime ;
goodTime := getRealExecutionTime(traceHead);

rewrite(GeneralReport) ;

writeln(GeneralReport,' Speed up =
(goodTime / totalTime):10:1);

count := getProcessorCount ;
efficiency := ((goodTime * 100) /(totalTime * count)) ;

writeln(GeneralReport,' Overall Processor Utilization =
efficiency:10:1,' %') ;

writeln(GeneralReport) ;

tempProc := processorHead ;

while(tempProc <> nil) do
begin

writeln(GeneralReport,' Data on Processor ',
tempProcA.processorId:6) ;

goodTime := getRealExecutionTime(tempProcA.grainListHead);
writeln(GeneralReport,' Utilisation = 1,

(goodTime*100/totalTime):10:1,' %');

writeln(GeneralReport,' Grain id % time ');
tempTrace := tempProcA.grainListHead ;

while (tempTrace <> nil) do
begin

writeln(GeneralReport,tempTraceA.grainId,
((tempTraceA.stopTime - tempTraceA.startTime)

* 100 / totalTime):10:1) ;

tempTrace := tempTraceA.next ;
end ; { while)

tempProc := tempProcA.next ;
writeln(GeneralReport) ;

end ; { while }

end ; { makeGeneralReport }

{

function getArcCount : integer ;
var

temp : arcPointer ;
count : integer ;

begin
temp := arcHead ;
count := 0 ;

while (temp <> nil) do
begin

92

count := count + 1 ;

temp := tempA.next ;

end ; { while }

getArcCount := count ;
end ; { getArcCount }

{

function getNumberOfSuccessor(nodeId : integer) : integer ;
var

temp : arcPointer ;
count : integer ;

begin
count := 0 ;

temp := arcHead ;

while(temp <> nil) do
begin

if (temp^.sender = nodeId) then
count := count + 1 ;

temp := temp^.next ;

end ; 1

getNumberOfSuccessor := count ;

end ; { getNumberOfSuccessor }

1

function getNumber0fPredecessor(nodeId : integer) : integer ;
var

temp : arcPointer ;
count : integer ;

begin
count := 0 ;

temp := arcHead ;

while(temp <> nil) do
begin

if (temp^.receiver = nodeId) then
count := count + 1 ;

temp := tempA.next ;
end ; { while }

getNumber0fPredecessor := count ;

end ; { getNumber0fPredecessor }

{

procedure makeELGDFfile ;

{ This procedure reads the global linked list of the grains and }

{ prints out the grain Id and the execution time in the file }

{ named 'ELGDFReport'
{ Called By : program

Calls : none
var

factor : integer ;
top : integer ;
left : integer ;
count : integer ;
mynum : integer ;
delay : integer ;
temp : tracePointer ;

93

tempArc : arcPointer ;
executionTime : integer ;

begin
rewrite(ELGDFReport) ;

count := getTotalExecutionTime ;
factor := 1 ; { count div CHARTLENGTH ; }

writeln(ELGDFReport, 'Task_Graph <Identifies a Task Graph file
>');

temp := traceHead ;
count := getTraceCount(traceHead)
writeln(ELGDFReport, count,' < Total Number of Nodes >');

count := 0 ;

top := 40 ;

left := 80 ;

while(temp <> nil) do
begin

write(ELGDFReport, (tempA.grainId + 1)) ;

executionTime := tempA.stopTime tempA.startTime ;
write(ELGDFReport, (executionTime div factor)) ;

write(ELGDFReport, top) ;

write(ELGDFReport, left) ;

mynum := getNumberOfSuccessor(tempA.grainId) ;

write(ELGDFReport, mynum) ;

mynum := getNumberOfPredecessor(temp^.grainId) ;

write(ELGDFReport, mynum) ;

writeln(ELGDFReport) ;

count := count + 1 ;

top := 40 + 40 * (count div 5) ;

left := 80 + 80 * (count mod 5) ;

temp := tempA.next ;

end ; { while }

tempArc := arcHead ;
mynum := getArcCount ;
writeln(ELGDFReport, mynum,' < Total Number of Edges >') ;

while(tempArc <> nil) do
begin
delay := (tempArc^.sendEndTime tempArcA.sendBeginTime) ;

delay := delay+(tempArc^.recvEndTime - tempAres.recvBeginTime) ;

write(ELGDFReport, (tempArcA.sender + 1 ;

write(ELGDFReport, (tempArc^.receiver + 1))
writeln(ELGDFReport, (delay div factor)) ;

tempArc := tempArc^.next ;
end ;

end ; { makeELGDFfile)

procedure getCorrectSpeedup ;
var

startTime : integer ;
stopTime : integer ;
pcount : integer ;
speed : real ;
realTime : integer ;

begin
pcount := getProcessorCount ;
stopTime := getTotalExecutionTime ;

94

realTime := getRealExecutionTime(traceHead) ;

startTime := getActualStartTime ;
speed := (realTime) / (stopTime - startTime) ;

writeln('processors = ',pcount,' speedup is =',speed:10:2);
end ;

procedure initialize ;
{

f This procedure makes calls to appropriate routines to
{ create the linked lists of trace elements, processors, arrange}
{ them in order suitable for proper file generation
f Called By : program

Calls : see inside
begin

processorHead := nil ;
traceHead := nil ;
arcHead := nil ;
makeTraceList ;
orderByGrainId ;
regroupTraceByProcessor ;
orderByProcessorld ;
orderBySenderId ;

end; { initialize }

begin { program }

initialize ;
makeELGDFfile ;
makeMacScheduleFile ;
makeGeneralReport ;

end. { program }

Appendix C : Instrumented Code generated by Super Glue

#include <linda.h>
#include "time_linda_c.h"
#include <stdio.h>

/*It worked **********************!!*/
real_main ()
{

int df0;
int dfl;
int df2;
int df3;
int df4;
int df5;
int df6;
int i;
initialize_clock();
scheduler();

} /* End of MainLine!! */
df0 ()
{

int i,1=1,m,n, workers,processors;
int startl,start2,start3,start4,start5;
int stopl,stop2,stop3,stop4,stop5;
double interval,h;

get_grain_start_time(1,0);
n = 100000;
interval = 1.0/n;

startl =1;
start2=20000;
start3=40000;
start4=60000;
start5=80000;
stop1=19999;
stop2=39999;
stop3=59999;
stop4=79999;
stop5=100000;

get_grain_stop_time(1,0);

get_send_begintime(0,"superGlue06");
out("superGlue06", interval);
get_sendend_time(0,"superGlue06");

get_send_begin_time(0,"superGlue05");
out("superGlue05", interval, start5, stop5);
get_send_end_time(0,nsuperGlue05");

get_send_begintime(0,"superGlue04");
out("superGlue04", interval, start4, stop4);
get_sendend_time(0,"superGlue04");

get_send_begintime(0,"superGlue03");
out("superGlue03", interval, start3, stop3);
get_sendend_time(0,"superGlue03");

95

96

get_send_begin_time(0,"superGlue02");
out("superGlue02", interval, start2, stop2);
get_send_end_time(0,"superGlue02");

get_send_begin_time(0,"superGlue01");
out("superGlue01", interval, startl, stopl);
get_send_end_time(0,"superGlue01");

} /* End of function df0*/
dfl()

int startl,stopl;
int i;
double interval,x,result1=0.0;

get_recv_begin_time(1,"superGlue01");
in("superGlue01", ?interval,?startl,?stopl);
get_recv_end_time(1,"superGlue01");

get_grain_start_time(2,1);
for(i=start1;i<=stopl;++i)

x=(i-0.5)*interval;
result1+=4.0/(1.0+x*x);

get_grain stop time(2,1);

get_send_begin_time(1,"superGluel6");
out("superGluel6", resultl);
get_send_end_time(1,"superGluel6");

} /* End of function df1*/
df2()
{

int start2,stop2;
int i;
double interval,x,result2=0.0;

get_recv_begin_time(2,"superGlue02");
in("superGlue02", ?interval,?start2,?stop2);
get_recv_end_time(2,"superGlue02");

get_grain_start_time(1,2);
for(i=start2;i<=stop2;++i)

{

x=(i-0.5)*interval;
result2+=4.0/(1.0+x*x);

get_grain_stoptime(1,2);

get_send_begintime(2,"superGlue26");
out("superGlue26", result2);
get_sendend_time(2,"superGlue26");

/* End of function df2*/
df3()

{

97

int start3,stop3;
int i;
double interval,x,result3=0.0;

get_recv_pegin_time(3,"superGlue03");
in("superGlue03", ?interval,?start3,?stop3);
get_recv_end_time(3,"superGlue03");

get_grain_start_time(1,3);
for(i=start3a<=stop3;++i)

x=(i-0.5)*interval;
result3+=4.0/(1.0+x*x);

get_grain_stop_time(1,3);

get_send_begin_time(3,"superGlue36");
out("superGlue36", result3);
get send end time(3,"superGlue36");

} /* End of function df3*/
df4()

int start4,stop4;
int i;
double interval,x,result4=0.0;

get_recv_begin_time(4,"superGlue04");
in("superGlue04", ?interval, ?start4, ?stop4);
get_recv_end_time(4,"superGlue04");

get_grain_start_time(1,4);
for(i=start4;i<=stop4:++i)

{

x=(i-0.5)*interval:
result4+=4.0/(1.0+x*x);

get_grain_stop_time(1,4);

get_send_begin_time(4,"superGlue46");
out("superGlue46", result4);
get_send_end_time(4,usuperGlue46");

} /* End of function df4*/
df5()
{

int start5,stop5;
int i;
double interval,x,result5=0.0;

get_recv_begin_time(5,"superGlue05");
in("superGlue05", ?interval,?start5,?stop5);
get_recv_end_time(5,"superGlue05");

get_grain_start_time(2,5);
for(i=start5;i<=stop5;++i)

{

x=(i-0.5)*interval;

98

result5+=4.0/(1.0+x*x);

get_grain_stoptime(2,5);
get_send_begin_time(5,"superGlue56");
out("superGlue56", result5);
get_sendend_time(5,"superGlue56");

1 /* End of function df5*/
df6 ()

double resultl,result2,result3,result4,result5;
double h,pi_approx=0.0, interval;

get_recv_begin_time(6,"superGlue56");
in("superGlue56", ?result5);
get_recv_end_time(6,"superGlue56");

get_recv_begintime(6,"superGlue46");
in("superGlue46", ?result4);
get_recv_end_time(6,"superGlue46");

get_recv_begintime(6,"superGlue36");
in("superGlue36", ?result3);
get_recv_end_time(6,"superGlue36");

get_recv_begintime(6,"superGlue26");
in("superGlue26", ?result2);
get_recv_end_time(6,"superGlue26");

get_recv_begintime(6,"superGluel6");
in("superGluel6", ?resultl);
get_recv_end_time(6,"superGluel6");

get_recv_begin_time(6,"superGlue06");
in("superGlue06 ", ?interval);
get_recv_end_time(6,"superGlue06");

get_grain_start_time(1,6);
pi_approx=resultl+result2+result3+result4+result5;
pi_approx=pi_approx*interval;
printf("pi approximation %20.151f\n",piapprox);

get_grain_stop_time (1, 6) ;
1 /* End of function df6*/
gantl() I

df0();
df2();
df3();
df4();
df6();
out("gant_done");

1 /*end of gantt chart 1 */
gant2() {

dfl();
df5();
out("gant_done");

/*end of gantt chart 2 */
scheduler()

(

eval (gantl 0) ;

eval (gant2 0) ;

in ("gantdone") ;
in ("gantdone") ;

)

99

