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Preface

This thesis has been written in manuscript format rather than
in the traditional format. The School of QOceanography encourages
this approach to expedite the publication of the results of graduate
research projects in scientific journals. For this reason, some
deviations from the ordering of a traditional thesis are present:
1) Tables appear in order after the References; 2) Figures appear in
order after the Tables; 3) Acknowledgments are placed after the text,
rather than before. This manuscript will be submitted to the Journal

of Geophysical Research with Hiroshi ishida, Clayton A. Paulson and

Wayne V. Burt as first, second and third authors, respectively.
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Locations of meteorological buoys, JASIN-1978.

Time series of hourly averaged variables observed at
B3 from 28 July to 6 September 1978.

Progressive vector diagram of wind at B3 from 2300 GMT
on 28 July to 6 September 1978. Each square is
plotted at 0000 GMT.

Composite spectrum of wind speed from Bl and B3. The
symbols X are spectra from one-hourly averages, @] are
spectra from 3.5-minute averages, and + are spectra
from 1.75-minute averages. The vertical bars show
the 90% confidence interval.

Composite spectrum of air temperature from B2 and B3.
The symbols X, {3, +, and I are defined in Figure 4.

Composite spectrum of sea temperature from B1 and B3.
The symbols X, {J, +, and I are defined in Figure 4.

Variance-preserving plot of the spectrum of wind

speed from B1 and B3 together with the spectrum from
Kaimal et al. [1972]. The symbols X, £, and + are
defined in Figure 4, and o is Kaimal et al's [1972]
spectrum. The broken line shows the spectrum measured
by Smedman-Hogstrom and Hogstrom [1975] over land.

Rotary spectra (A) and rotary coefficient (B) of hourly
averaged wind velocity from R". The broken line
represents clockwise rotati~1 and the solid Tine
represents counterclockwise rotation.

Mean auto-correlation functions ¢f unfiltered wind
speed from parts A, B and C. The auto-correlation
functions are averages over buoys B1, B2, B3 and B4.
The lengths of the vertical bars are twice the
standard deviation. Cross-correlation coefficients
from pairs of buoys lying along the mean wind direc-
tion are plotted. The symbols X, [, Xand + repre-
sent the combinations B1-B4, B2-B4, B2-B3, and B3-B4
respectively in parts A and B. The symbol X repre-
sents the combination B1-B2 in part C.
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ANALYSIS OF METEOROLOGICAL OBSERVATIONS
FROM AN ARRAY OF BUOYS DURING JASIN

I. INTRODUCTION

In the past ten years, many observational and theoretical inves-
tigations have been directed toward understanding mesoscale processes
in the atmospheric boundary layer over the sea. Internationally or-
ganized programs, all part of the Global Atmospheric Research Program
(GARP), have included: 1) the Air-Mass Transformation Experiment
(AMTEX); 2) the Barbados Oceanographic and Meteorological Experiment
(BOMEX); 3) the GARP Atlantic Tropical Experiment (GATE); and 4) the
Joint Air-Sea Interaction (JASIN) Experiments. The observations re-
ported in this paper were made from an array of meteorological buoys
about 400 km northwest of Scotland in the summer of 1978 as a part
of JASIN.

The JASIN project was proposed in 1966 by the Royal Meteorolog-
ical Society as an appropriate United Kingdom contribution to the
GARP. A summary of the scientific and operational plans for the
experiment is given by Pollard [1978]. The primary objeétives of
JASIN were: "(1) to observe and distinguish between physical pro-
cesses causing mixing in the oceanic and atmospheric boundary layers
and relate them to mean properties of the layers; (2) to examine and
quantify aspects of the momentum and heat budgets in the ocean and
atmospheric boundary layers and fluxes across and between them.f

The objectives of this paper are to analyze the meteorological

observations obtained from an array of buoys deployed during JASIN.

We will describe temporal and spatial variability and examine the




data for the existence of organized structures, such as horizontal

roll vortices.




IT. INSTRUMENTS

Moored, toroidal buoys provided the platform for the instru-
ments. They were similar to those used in JASIN 70 and 72 [Burt
et al., 1974]. Wind speed and direction were measured with a cup
anemometer and a highly-damped wind vane and magnetic compass system
manufactured by Ivar Aanderaa of Bergen, Norway. Dry and wet-bulb
temperatures were measured with thermistors exposed to the air inside
radiation shields ventilated by the wind. The measurements of wet-bulb
temperature were not reliable because of the difficulty of keeping
the thermistor entirely wetted by means of a wick and reservoir and
were excluded from the analysis. The solar radiation sensor was
manufactured by Lintronics. The instrumenfs were mounted 2.5 m above
mean sea level. Water temperatures were measured at 0.5 m and 2 m
depth with rugged Aanderaa p1atihum resistance thermometers.

The data were recorded digitally on magnetic tape by an Aanderaa
data logger attached to each buoy. Wind speed was averaged over
sampling intervals while the other variables were sampled instantan-
eously. Variables were sampled at intervals of 3.5 or 1.75 minutes.

Data obtained by instantaneously sampling a fluctuating record
are subject to aliasing errors. If fluctuations are present with
frequencies greater than the Nyquist frequency (half the sampling
frequency), spectral energy at frequencies greater than the Nyquist
will be folded back to lower frequencies. Despite damping, the wind

direction measurments were particularly susceptible to aliasing error.

The error is magnified by erroneous fluctuations in wind direction
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induced by the motion of the buoy. R. Weller [personal communication,
1979] has compared rotary spectra measured by a vector-averaging meter
with spectra from an Aanderaa cup and vane and found excess energy in
the Aanderaa spectra in the highest decade of frequency. Measurements
of temperature and solar radiation are not seriously affected by
aliasing because the response time of the sensors is generally about
one minute.

The measurements of wind speed are not expected to be seriously
in error. Even though the buoy motion induces fictitious fluctuations
of wind speed, averaging over the sampling interval practically elim-
inates aliasing. The effects of buoy motion on measurements of mean

wind speed have been estimated by Pond [1968] and Badgley et al.

[1972] and are expected to be small.




ITI. OBSERVATIONS

Observations were made from 28 July to 6 September 1978 about
400 km north-west of Scotland at the four locations shown in Figure
1 and Table 1. As shown in Table 1, the measurements were briefly
interrupted on 12 and 30 August to change the data logger at each
buoy. The sampling interval was 3.5 minutes during the first two
periods and 1.75 minutes during the last period.

Meteorological observations were also taken from ships operating
in the area. The most complete record was taken by the R/V METEOR.
She was stationed near buoys Bl, B2 and B3 during the experiment.
Meteorological measurements were also made from other buoys.

The general weather in early August was influenced by high pres-
sure in the Norwegian Sea resulting in north winds in the experimental
area. In the middle of August, two low pressure systems passed the
experimental site. In late August, there were westerly winds due to
stationary high pressure west of England. The strongest winds during
the experiment occurred over a period of several days beginning on 17
August, reaching a maximum of 15 m/s on 20 August. The near-surface
sea temperature decreased by about 1°C during this event, presumably
as the result of deepening of the well-mixed layer. Following the
decrease of wind speed 24 August, the sea surface temperature rose
about 1°C over a period of several days, very likely due to weak
mixing and net heating of the upper layers.

A progressive vector diagram of the wind at B3 is shown in Figure

3. The first section of the wind direction record from B3 was cor-

rected prior to plotting Figure 3. The correction was based on a




linear regression to the data from B2 and B3. Three parts of the
record, A, B and C, each 2.5 days tong, were selected for the cross-
correlation analysis discussed in subsequent sections. The criterion
used in making the selections was to require that the wind be nearly
constant in speed and direction. The times of beginning and ending of
each part are tabulated in Table 2 together with average bulk
Richardson numbers, wind direction and wind speed. The effect of the
vertical humidity gradient on the bulk Richardson number was included
by use of the hourly wet and dry bulb temperature observations from
the R/V METEOR. The effect was equivalent to an air-sea potential tem-
perature difference of -0.31, -0.08 and -0.16°C for parts A, B and

C respectively. The stratification during part C was close to neu-
tral. However, the estimates (B3, B3, METEOR) used to obtain the mean
bulk Richardson number are all negative making it highly probable that
the stratification was unstable during part C. No allowance was made
for a cool skin temperature in the calculation of the bulk Richardson
number. However, the error (~ 0.1°C) is probably compensated by
errors caused by daytime radiatior 1 heating of the air temperature
sensors. .

The accuracy of the measurements can be estimated by comparing
averages from the buoys and the R/V METEOR. Such a comparison for
parts A, B and C shown in Table 3. The hourly observations of wind
~ speed and direction from the METEOR were taken at a height of 23 m
above mean sea level while observations of wet and dry bulb temper-

atures were taken at a height of 11 m. The wind speeds from the
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METEOR were reduced to a height of 2.5 m based on the assumption of a
| Tog profile and a roughness length of 0.015 cm. Measured wind speeds
from B1, B2 and B3 averaged over part A differ by no more than 0.24
m/s with each other and differ no more than 0.1 m/s with means over
parts B and C. When B4 is included, the means differ by no more than
0.5 m/s. The difference between B4 and the other buoys may be
accounted for by the distance between B4 and the other buoys (See
Figure 1 and Table 4). The average over part A of hourly observations
i of wind speed from the METEOR (2.5 m) differs with means from B1, B2
and B3 by as much as 1.3 m/s. The difference is no more than 0.5 m/s
in parts B and C. Part of the difference may be ascribed to an error
in reduction of wind speed from the METEOR to a height of 2.5 m, i.e.
the neglect of the effect of stability and uncertainty in the value of
roughness Tength. In addition, the effect of interference of the ship's
hull with the air flow could cause an error in measurements from the
METEOR. In summary, agreement to within 0.5 m/s between the buoys and
METEOR should be considered good.
There were systematic errors in the observation of wind direction
from some of the buoys (See Table 3). Observations from B1, B3 and
B4 averaged over part A were in error by about 40°. Observations from
B4 averaged over parts B and C continued to systematically disagree
with the other means by 24° and 40° respectively. The discrepancy is
too large to be ascribed to the separation between B4 and the other

buoys. A possible source of error is the disturbance of the magnetic

field by ferromagnetic materials, although this possibility was




minimized by the use of aluminum for the structure of the buoy.
Means from the METEOR and those buoys considered reliable are in
excellent agreement, within 4°, 2° and 9° in parts A, B and C res-
pectively.

The comparison of mean air temperatures tabulated in Table 3
shows temperatures from B2 systematically in disagreement with the
other observations. The cause of the error is undetermined. Fluc-
tuations in temperature measured at B2 did not appear to be affected.
Mean temperatures measured at B4 are on average a few tenths °C
colder than temperatures from Bl and B3, possibly because of the
northward displacement of B4 from the other buoys. Mean air temper-
atures from Bl and B3 are within 0.45°C of each other. Mean air
temperature from METEOR is always at least 0.1°C and never more than
0.5°C cooler than temperature from Bl and B3. The disagreement among
means from different buoys and METEOR may be rartly caused by the
natural variability of air temperature. There may also be errors,
e.g. daytime heating gf the sensors’by solar radiation.

Sea- temperature was measured 1t 0.5 and 2 m depth at most of the
buoys. The agreement between means from both depths is excellent,
the magnitude of the difference never exceeds 0.11°C and averages
0.04°C. In only one case is the mean from the upper sensors warmer
than the lower mean, suggesting that the upper 2 m was unstably
stratified during parts A, B and C. The wind speed was strong

enough during all parts to cause vigorous mixing of the upper few

meters. The sense of the temperature gradient suggests that there
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was, on average, net cooling of the surface. Mean sea temperatures
from B1, B2 and B3 differ by no more than 0.13°C and differences are
on average 0.03°C. Mean sea temperatures from B4 are systematically
0.1 to 0.4°C cooler than at the other buoys, which is similar to the
behavior of air temperature. Mean bucket temperatures from METEOR
differ by no more than 0.13°C with averages over Bl1, B2 and B3.
Differences in mean sea temperatures among buoys may be partly as-
cribed to horizontal temperature gradients. The difference between
mean temperature at 2 m depth from B2 and B3, the two buoys closest
together (2.6 km), did not exceed 0.02°C in part A, B or C. We con-

clude that measurements of sea temperatures from buoys show excellent

consistency and are 1ikely to be accurate to within = 0.03°C.
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IV. SPECTRA

. /
Spectra of wind speed, air temperature and sea temperature shown

in Figures 4, 5 and 6 were estimated by averaging and patching spectra
from different time series. The Tow-frequency estimates (X) in each
of the plots were obtained from a spectral analysis of time series of
hourly averages from two buoys, usually B1 and B3. The air tempera-
ture record from B2 was used in place of B3 because the record from

B3 was incomplete. The time series of hourly averages extended over
the entire 43 days of the experiment with the gaps filled by Tinear
interpolation. Zeros were added to the series after subtracting the
mean to increase their length to 1024 points permitting the use of the
Fast Fourier Transform. The number of zeros added was less than 10%
of the total length of the record in every case. Spectra were
smoothed by averaging in non-overlapping frequency bands, equally
spaced on a logarithmic scale. Finally, spectra from each of two
buoys were averaged to obtain the low-frequency spectra shown in
Figures 4, 5 and 6. The spectra at intermediate frequencies were
estimated by analysis of the first 4096 points of each of the records
obtained during periods one and tv: (See Table 1). The high-frequency
spectra were obtained from analysis of the first 4096 points of
records obtained during the third period (sampling interval, 1.75 min).
For both intermediate and high-frequency spectra, the records used

for analysis were more than two-thirds of the total available length.
The smoothing and averaging used to obtain the intermediate and high-

frequency spectra was similar to that used to obtain the low-frequency

spectra. The validity of the procedure used to obtain the composite
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spectra can be judged from the agreement between spectra in the over-
lapping frequency ranges.

The spectrum of wind speed, shown in Figure 4, suggests a plateau
at a period of about 20 days, falls off with a slope of about -2 for
periods between 5 days and 2 hr, and falls off with a slope of -5/4 for
periods between 2 hr and 3.5 min. There are no significant peaks in the
spectrum. Unlike spectra from near-shore locations under the influence
of a sea breeze [Halpern, 1974; 0'Brien and Pillsbury, 1974] there is
no significant peak or shoulder at diurnal frequences,

The spectrum of air temperature, shown in Figure 5, differs in
some respects from the wind speed spectra. There is no suggestion of
a peak or plateau at low frequencies. The spectra fall off with s1ope‘
about -3/2 for periods between 10 days and 8 hr. For periods between
8 hr and 15 min, the slope is about -5/3. The increase in slope to
greater than -1 at periods less than 15 min is very likely caused by
aliasing associated with instantaneously sampling a thermistor having a
time response less than 3.5 min. There is a significant peak in the
spectrum at a period of one day associated with diurnal solar heating of
the lower atmosphere.

The spectrum of sea temperature at 2 m depth is shown in Figure
6. The spectra fall off with a slope of about -2 for periods between
10 days and 3 hr. The slope increases to -3/2 for periods between 1
hr and 3.5 min. There is a large peak in the spectrum at the diurnal
period which is larger in comparison to background energy than the
similar peak in the spectrum of air temperature. There is no evidence

that the high-frequency end of the spectrum is affected by aliasing.
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The spectrum of wind spéed was examined‘for consistency with
the concept of a gap or region of low spectral energy, separating
macro- and microscales. The spectrum in Figure 5 is plotted in
variance-preserving form in Figure 7. This form is called variance-
preserving because equal areas under the curve contribute equally to
the variance. A region of Tow energy in spectra plotted in this form
is often found between about 0.5 and 5 cph and is referred to as the
spectral gap. Most observations of this gép have beeh oVef ]aﬁd (Van
der Hoven, 1957; Vinnichenko, 1970; Fiedler and Panofsky, 1970].
Millard [1968] found a prominent gap between 0.1 and 10 cph in spectra
taken over the sea. However, the observation may be suspect because

of errors caused by buoy motions. Our spectra do not extend to

- sufficiently high frequencies to demonstrate by themselves the

existence of a spectral gap. We have, therefors, plotted the simi-
larity spectrum of Kaimal et al. [1972] to extend the spectrum to
high frequencies. In so doing, we assumed neutral stability and a
drag coefficient of 1.8x10'3, a valv~ equivalent to 1,3x10-3 for an
observation height of 10 m. Kaim.. et al's. spectrum matches ours
at intermediate frequences and is consi~tent with a gap. The justi-
fication for using the Kaimal spectrum is strengthened by the obser-
vation that ﬁicrosca]e spectra over the sea scale similarly to those
over land [e.g. Leavitt, 1975]. | |

For purposes of additional comparison, the spectrum of wind speed
over land from Smedman-Hagstram and Hagstram [1974] is also shown

in Figure 7. The microscale peak in Smedman-HagstrSm and HSgstrSm's
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spectrum cccurs at lower frequences than in Kaimal et al's. spectrum
because conditions were unstably stratified for the spectrum reported by
Smedman-Hagstram and Hagstram. The shift in the peak associated with
stratification changing from neutral to unstable agrees qualitatively
with Kaimal et al. [1972].

Rotary spectral analysis is a useful technique for analyzing
time series of two-dimensional vectors [Gonella, 1972; Mooers, 1973].
The rotary spectrum is composed of two parts, clockwise and counter-
closewise components which correspond to the distribution of variance
with frequency of fluctuations associated with clockwise and counter-
clockwise rotation respectively. For example, if there is a peak in
the clockwise component Targer than that in the counterclockwise at
the same frequency, and the rotary coefficient is -1, that means the
vector rotates clockwise at the prescribed frequenCy,kits tip tracing
a circle.

The rotary spectrum of hourly averages of horizontal wind velo-
city observed at B3 is shown in Figure 8. The spectrum was smoothed
as previously described in non-overlapping ffequency bands, 10 per
decade. The clockwise spectral density exceeds the counterclockwise
for frequencies above .015 cph. This result agrees with observations
reported by Burt et al. [1974] who found clockwise spectral levels
generally higher than counterclockwise. However, Burt et al. also
found evidence of diurnal and inertial oscillations in the clockwise
spectra, evidence of which is lacking in Figure 8. Inertial oscilla-

tions are expected to be small in the atmosphere [Holton, 1972], may

depend on weather conditions and may not be sufficiently persistent
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or energetic to appear in the spectrum of a 43-day record. Diurnal

variations in wind will likely be associated with diurnal fluctuations

in stability which may have been small during JASIN.
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V. TAYLOR'S HYPOTHESIS

It is a common and ordinarily well-justified practice to convert
frequency spectra of microscale turbulence to wavenumber spectra by
use of Taylor's hypothesis, the hypothesis that turbulence structure
changes slowly while being advected past a point by the mean wind
Speed. It is tempting to also use Taylor's hypothesis to infer the
statistics of mesoscale structure because time series at a single
point are usually more easily obtained than spatial samples. However,
the justification for using Taylor's hypothesis to infer mesoscale
spatial structure is not well established.

An analysis was carried out to test the validity of Taylor's
hypothesis for mesoscale structure. The three wind speed and air
temperature records, parts A, B and C (Table 2) were used in the
analysis. The autocorrelation function of wind speed averaged over
all buoys is shown in Figure 9 for each part. If Taylor's hypothesis
is strictly true, the cross-correlation coefficient computed between
buoys lying along the path of the mean wind will be equal to the
autocorrelation function at a lag, T = x/u wheré X is the separation
between the buoys and u is the mean wind speed. Values of the cross-
correlation coefficient plotted in Figure 9 are qualitatively consis-
tent with Taylor's hypothesis. The autocorrelation function of air
temperature in parts A and B averaged over all buoys is shown in
Figure 10 together with cross-correlation coefficients between buoys

lying along the path of the mean wind. Part C was not included be-

cause the air temperature record from Bl was incomplete. The
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cross-correlation coefficients are qualitatively consistent with
Taylor's hypothesis except that in part B the two cross-correlation
coefficients involving the air temperature at B2 are in very poor
agreement with Taylor's hypothesis. The reason may be the erroneous
drift in the mean value of air temperature at B2 which was previously
noted (Table 3).

A comparison between autocorrelation functions and cross-correla-
tion coefficients was also carried out on time serjes which were
filtered to remove the effect of long-period fluctuations. The wind
speed and air temperature records from parts A, B and C were high-pass
filtered by subtraction of a running two-hr mean. This filter passes
100% of the spectral energy at a period of two hr and 50% at five hr.
Two hours is long compared to the distance between buoys divided by
the mean wind speed. The filtered time series of wind speed and air
temperature were analyzed identically to the unfiltered series as des-
cribed above. The comparison between autocoryelation functions and
cross-correlation coefficients is shown in Figures 11 and 12 for wind
speed and air temperature respectively. The results are consistent
with Taylor's hypothesis in parts \ and C and inconsistent in part B.
The results from part B suggest that mesoscale eddies propagate about
twice as fast as the mean wind.

Propagation speeds of mesoséa]e structures were estimated by
examining cross-correlation functions of high-pass filtered wind speed

and air temperature from parts A, B and C. An estimate of the propa-

gation time of an eddy between a pair of buoys lying along the path of
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the mean wind was taken as the lag at which the cross-correlation
function is a maximum. An example of two cross-correlation functions,
one of wind speed and the other air temperature, is shown in Figure
13. The estimates of propagation times are tabulated in Table 4 and
are compared with propagation times computed by use of Taylor's
hypothesis. The results from parts A and C are consistent with
Taylor's hypothesis while the results from part B show eddy propa-
gation times about half as large as those predicted by Taylor's hypo-
thesis. The results in Table 4 are consistent with the comparison of
autocorrelation functions and cross-correlation coefficients shown in
Figures 11 and 12, i.e. mesoscale structures travel with the mean
wind in parts A and C but travel twice as fast as the mean wind in
part B.

The reason Taylor's hypothesis fails in part B is probably
associated with frontal passages. Examination of the barometric
pressure record and the synoptic analysis shows that there were
frontal passages on 18 August about 12 hr into part B and on 20
August near the end of part B. These frontal passages are visible as
shifts in wind direction in the progressive vector diagram shown in
Figure 3. The propagation in a direction approximately normal to the

mean wind of pressure disturbances and air masses associated with the

fronts accounts for the failure of Taylor's hypothesis in part B.
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IV.  HORIZONTAL ROLL VORTICES

There is growing theoretical and observational evidence [Brown,
1970; Kuettner, 1972; Lemone, 1973; Agee et al., 1973; Burt et al.,
1974; Agee and Dowel, 1974; Burt and Agee, 1977] that horizontal roll
vortices are a common feature of the planetary boundary layer. A
schematic diagram of the circulation associated with these vortices
is shown in Figure 14.

An analysis was carried out to investigate whether there was
evidence of roll vortices in the buoy measufements. It is possible,
of course, that even though there mighf Ee vdrffces present in the
planetary boundary layer, their influence on the variability of velocity,
temperature and solar radiation 2.5 m above the sea surface might be
undetectable. If they are felt at the surface, they might have impor-
tant influences on the circulation of the uppe ocean.

Evidence for the existence of roll v-rtic2s was sought by examining
the cross-correlation functions of high-pass filtered data from parts
A, B and C (Table 2). An example ¢ the cross-correlation between
wind speed and air temperatufe during Part C is shown in Figure 15. At
zero lag there is a negative correlatiou betweeﬁ wind speed and air
temperature associated with downward propagation of cool air having an
excess of momentum. This result is consistent with the schematic of
rolls shown in Figure 14, However, it is by no means conclusive verifi-

cation of the presence of rolls. The result would also be consistent

with cellular convection and perhaps other types of mesoscale struc-

ture. The case in favor of rolls is strengthened by the periodic




19
nature of the cross-correlation function, consistent with the migra-
tion of rolls normal to the mean wind direction. Assuming the rolls
have cross-wind dimensions of about 1 km, the period of 1 hr is con-
sistent with a migration velocity of about 30 cm/s and an angle of
2° between the roll axis and the mean wind direction.

Cross-correlation functions from other buoys in part C and from
buoys in parts A and B are qualitatively similar to Figure 15 except
that the oscillation of the functions is usually not as periodic.

The cross-correlation functions at zero lag in part B are positive as

might be expected because the stratification was stable (Table 2).
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TABLE 1. Locations and periods of buoy observations,

JASIN - 1978.
Buoy Location Period 1 Period 2 Period 3
Lat. (N) Long. (W) Begin End Begin End Begin End
(GMT) (GMT) (GMT)
B1 59° 00.4' 12°33.6' 8/1 8/12 8/12 8/30 8/30 9/6

1221 1538 1553 1302 1409 1100

B2 59° 00.2' 12°27.5' 7/29 8/12 8/12 8/30 8/30 9/6
1030 1847 1859 1235 1247 912

B3 59° 01.6' 12°27.4! 7/28 8/12 8/12 8/30 8/30 9/6
2206 1917 1938 1022 1040 750

B4 59° 10.7' 12°31.0' 7/28 8/12 8/12 8/30 8/30 9/3
1350 1253 1317 1545 1612 1328




TABLE 2. Parts of meteorological records having approximately constant
wind speed and direction which were selected for cross-correlation
analyses. The beginning and ending time for each part is 0000 and
1140 GMT respectively. Rig is the mean bulk Richardson number,
averaged over reliable buoys and the R/V METEOR. Wind speed and
direction are similarly averaged. Observations from the METEOR
were reduced to a height of 2.5 m assuming a log profile and
Zo = 0.015 cm.
Part Time (GMT) Rig Wind Wind
: Direction Speed
Begin End (z =2.5m) | (degrees) (m/s)
A 8/6 8/8 -0.0032 357 6.6
B 8/18 8/20 0.0004 172 11.1
C 8/22 8/24 -0.0001 266 8.8

Ny
(8]



TABLE 3. Comparison ot means from the buoys and the R/V METEOR. Ihe records, parts A, B and C, are each
59 hr long and are defined in Table 3. Means from the R/V METEUR are the averages of hourly ship
observations. The symbols are defined as follows: u, wind speed; 6, wind direction; T_, air
temperature; T 1» sea temperature at 0.5 m depth (buoy) or bucket temperature (MEIEOR);"Tsp,
sea temperatura at 2 m depth. The temperature, Tgi, 1n part A from the R/V MLTEUR was corrected
by subtracting 0.49C trom the observed mean following the suggestion of A. Macklin (personal

communication).

Part A Part B Part C
Buoy
or u 8 Ta Te1 TSZ u 6 Ta Ts) Ts2 u 8 Ta Ts1 1Y)
Ship (m/s) (deg) (°C) (%) (%) (m/s) (deg) (°¢) (%) (%) (m/s) (deg) (%) (%) (%)
Bl 6.82 42 11.53  12.97 13.00 1. 172 13.70 12.85 ,12.87 8.98 270 - 12.13  12.13
B2 6.99 355 12.30 12.97 12.93 1.1 173 15.45 12.89 12.9 8.94 264 15.30 12.07 12.14
B3 7.06 42 11.98 12.84 7.95 1.1 170 13.50 12.85 12.91 8.90 269 12.21  12.12 12.13
B4 6.58 324 11.37 - 12.71 10.7 148 13.27 - 12.52 8.48 226 12.03 - 12.06
METEOR 7.08 359 11.45 13.05 - 13.95 171 13.43 12.83 - 10.39 261 12.07 12.24 -
METEOR 5.8 1.4 8.5 |
@2.5m

9¢




TABLE 4. Comparison of along-wind eddy travel times estimated by
use of Taylor's hypothesis (t¢), from lags (t,) associated
with peaks in the cross-correfation of wind speed measured
at buoys 1ying on a 1ine parallel to the mean wind direction
and from similar lags (Tt) associated with peaks in the
cross-correlation of temperature.

BUOY SEPARATION Part A Part B Part C
PAIR (km) e T, Tt Te T, Tt Te T Tt
(min) (min) (min)

B1-B4 19.3 46 50 43 29 16 16 | = —~ccmmmmmmmeee
B2-B4 19.8 46 43 47 29 15 12 |  cemmmcmccccmeeaas
B3-B4 17.2 40 38 4 25 15 15 | ;cmmmmmdeaee oo
B2-B3 2.6 6 9 9 4 4 | e e
B1-B2 5.9 | emmemmmmmmeemcee | meemeemmceeeo 1 10 9

L2
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Figure 9.

Mean auto-correlation functions of unfiltered wind
speed from parts A, B and C. The auto-correlation
functions are averages over buoys B1, B2, B3 and B4.
The lengths of the vertical bars are twice the
standard deviation. Cross-correlation coefficients
from pairs of buoys lying along the mean wind direc-
tion are plotted. The symbols X, {7, Xand + repre-
sent the combinations B1-B4, B2-B4, B2-B3, and B3-B4
respectively in parts A and B. The symbol X repre-
sents the combination B1-B2 in part C.
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APPENDIX
Hourly Averages From Buoy B3

There follows a listing of hourly averages from buoy B3. The
averaging interval extends from a half hour before the hour to a half
‘ hour after the hour. The symbols are defined as follows: U, wind
_ speed; DIR, wind direction; TA, air temperature; TS1, sea temperature
at 0.5 m depth; TS2, sea temperature at 2 m depth; R, incoming solar
radiation. Wind speed and direction and air temperature were measured
2.5 m above mean sea Tevel. Wind speed direction has been corrected

between the beginning of the observations and 1917 GMT on 12 August

based on a linear regression between B2 and B3.
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g 8 ¢ 4.89 5o 1l.%s 12,80 wD.910 115.98
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