
AN ABSTRACT OF THE THESIS OF

Saleh Almanei for the degree of Master of Science in

Electrical & Computer Engineering presented on June 3, 2003. Title:

Secure Instant Messaging

The Jabber Protocol.

Abstract approved:

cetin K. Koc

Instant Messaging (IM) has grown rapidly among network users. It has even

become a very important tool for the industry around the world. It is used in scheduling

meetings, exchanging business information and clients information, and so on. Instant

Messaging has been developed by private sectors or providers such as America Online

Instant Messenger (AIM), MSN, and Yahoo; however, in 1998 a new protocol has seen

the light as an open source Instant Messaging protocol and had the name of Jabber and

thanks to Jeremie Miller the founder of the Jabber protocol.

The project gathered wide public attention when it was discussed on the popular

developer discussion website Slashdot in January 1999. In May 2000, the core Jabber

protocols were released as open source reference server and it have not been changed to

this day. Jabber uses client-server architecture, not a direct peer-to-peer architecture

as some other messaging systems do. It is actually an Extensible Markup Language

(XML) messaging protocol. It relies on XML document format in every aspect of the

communication. [1]

Jabber Protocol have gone a long way to be one of the most attractive protocol

because of its open source and extensibility. Anyone can build or extend the jabber

protocol functionality without actually modifying the core protocol and still maintain

interoperability with other IM clients such as yahoo and MSN. Moreover, as the usage of

jabber Instant Messaging technology increases, the need for information protection in the

Redacted for privacy

Jabber messaging medium also increases. This thesis will explore the Jabber protocol

and the ability to secure a Jabber based communication over the network using third

party cryptographic libraries.

©Copyright by Saleh Almanei

June 3, 2003

All rights reserved

Secure Instant Messaging
The Jabber Protocol

by

Saleh Almanei

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented June 3, 2003
Commencement June 2003

Master of Science thesis of Saleh A. Al-Manei presented on June 3, 2003

APPROVED:

Major Professor, representing Electrical & Computer Engineering

Director of the School oEctrical Engineering and Computer Science

Dean of the GJduaté School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Saleh Almanei, Author

Redacted for privacy

Redacted for privacy

Redacted for privacy

Redacted for privacy

ACKNOWLEDGMENT

I would like to thank Dr. Koç for giving me the opportunity to work on this

interesting subject. Dr. Koc's discussions, directions, reviews and valuable comments

helped direct me to the right path to accomplish this work.

After all, I want to give my biggest thanks to my father Abdullah Almanei and my

mother Aljoharah AlFantookh for their support and patience during my study overseas.

TABLE OF CONTENTS

Page

1. INTRODUCTION
. 1

1.1. What is Jabber? .. 1

1.2. History of Jabber ... 1

1.3. Technology Overview .. 2

1.4. Architecture Background .. 3

1.4.1. Client/Server Model ... 3

1.4.2. XML DATA FORMAT .. 4
1.4.3. DISTRIBUTED NETWORK 5

1.4.4. STANDARDS-BASED ADDRESSING 5

1.5. The Jabber Protocols ... 6

1.5.1. Message ... 6
1.5.2. Presence ... 7
1.5.3. Info/Query .. 8

1.6. Work path and organization ... 10

2. AVAILABLE SECURITY OPTIONS 11

2.1. Stream Encryption .. 12

2.1.1. SSL/TLS .. 12
2.1.2. OpenPGP ... 15

2.2. Stream Authentication .. 17

2.2.1. SASL Authentication .. 18
2.2.2. Dialback Authentication 22

2.3. Other work On the Jabber Community................................ 22

2.3.1. Security Sessions ... 23
2.3.2. Key Transport Mechanism 24
2.3.3. Message Protection .. 25
2.3.4. Requesting Keys ... 26

TABLE OF CONTENTS (Continued)

Page

2.4. XML Security ... 26

3. SECURING JABBER MESSAGES TOOLS AND REQUIREMENTS 27

3.1. Proof of Concept .. 27

3.2. A secure Messenger' ... 27

3.2.1. Required Tools .. 27
3.2.2. XML Modification ... 28

3.2.3. Cryptographic Code ... 30
3.2.4. Open Source Jabber Client Code 35

4. SECURE JAVA JABBER CLIENT ILLUSTRATION 37

5. EXPERIMENTAL RESULTS AND ANALYSIS 47

5.1. Simulation Environment ... 47

5.2. Jabber Security Analysis .. 47

5.3. Comparison to the Original Design 48

5.3.1. Graphical Interface .. 48
5.3.2. Features ... 50

6. CONCLUSION AND FUTURE WORK.................................... 51

6.1. Can Jabber be Secure? .. 51

6.2. Jabber is not only IM ... 51

6.3. Future work ... 52

BIBLIOGRAPHY .. 53

LIST OF FIGURES

Figure Page

1.1 The Jabber client/server streams 2

1.2 The Jabber messaging model .. 4

2.1 A security session's XML packets generation and receiving between the
Initiator and the Responder .. 24

2.2 XML packet for KeyTransport. The attribute values are the version,
initiator JID, responder JID, sessionld 25

2.3 XML packet for Mesaage Protection. The attribute values are version,
from, to, convld, and seqNum.. 26

3.1 A flow diagram of the <message> protocol........................... 30

3.2 A flow diagram of the Diffie-Hellman key exchange algorithm........... 31

4.1 The Jabber Client ... 37

4.2 The Debug Console plug-in ... 38

4.3 Logon Window.. 38

4.4 Client Friend List.. 39

4.5 An empty message window... 39

4.6 The generated keys folder.. 40

4.7 Key exchange XML packet... 41

4.8 Key exchange message (receiver)....................................... 41

4.9 Receiving other user public key XML packet 42

4.10 Receiving a public key window... 42

4.11 The keys files folder.. 43

4.12 The keys files folder for the other user.................................. 43

4.13 Example message which will be encrypted.............................. 44

4.14 The encrypted message XML packet 44

4.15 The encrypted message XML packet(receiver.) 45

LIST OF FIGURES (Continued)

Figure Page

4.16 Reply message window . 45

4.17 Normal reply XML packet ... 46

5.1 Original Message Window .. 48

5.2 Modified Message Window... 49

5.3 The Original and Modified Reply Message Window..................... 49

LIST OF TABLES

Table Page

2.1 Computer security properties compared with Jabber's present capabilities. 11

5.1 Computer security properties compared with Jabber's modified capa-
bilities... 50

SECURE INSTANT MESSAGING
THE JABBER PROTOCOL

1. INTRODUCTION.

1.1. What is Jabber?

Jabber is an open XML protocol for the real-time exchange of messages and pres-

ence between any two points or users in a Jabber network. There are various usage

for the Jabber technology; however, the first application of Jabber technology is an

asynchronous, extensible instant messaging platform, and an TM network that offers

functionality similar to legacy TM systems such as AOL Instant Messaging (AIM) and

Yahoo Instant Messaging. [TI

1.2. History of Jabber

As Part of the Jabber TM standards efforts, in June 2000 the Jabber community

submitted the protocols as a Request For Comments (RFC) to the Internet Engineer-

ing Task Force (TETF) as part of its Instant Messaging and Presence Protocol (IMPP)

standard. Unfortunately, the TMPP effort didn't succeed. In May 200T the Jabber

Community (www.jabber.org) and Jabber Inc. (www.jabber.com) created the Jabber

Software Foundation (foundation.jabber.org) to provide direct organizational assistance

and indirect technical assistance to the Jabber community in carrying out its mission. In

Fall 2002, the Internet Engineering Steering Group (IESG) approved the formation of an

Extensible Messaging and Presence Protocol (XMPP) Working Group within the Inter-

net Engineering Task Force (TETF). The scope of the Working Group is to explore and,

where necessary, modify the existing protocol in order to meet the requirements defined

in RFC 2779 as well as the requirements defined in the Common Presence and Instant

2

Messaging (CPIM) specification. The main focus of the Working Group will be on XML

streams (including stream-level security and authentication), the core data elements, and

the namespaces required to achieve basic instant messaging and presence. [2]

The XMPP working group published their XMPP Core Internet-Draft as the doc-

ument which describes the core features of the Extensible Messaging and Presence Proto-

col. This document contains most of the work on Jabber client/server and server/server

security and it will be used as a reference in this thesis. As jabber moves forward,

much work remains to be done. Further standardization work is still underway and new

standards are being proposed to extend the Jabber protocols beyond simple TM. [3

1.3. Technology Overview

Jabber is based on the well-known client/server architecture. Jabber clients corn-

municate with Jabber servers in their Jabber domain. Jabber domains have the advan-

tage of separating the communication zone, which will be handled by different Jabber

servers. Unlike most TM systems which use one centralized server for the whole commu-

nication zone.[31 The figure below shows the Jabber Client/Server streams flow:

Client

Se,no,/Selve,

CliettlJSen#er

Ler See,

-

Client

= =

eberSee,

FIGURE 1.1: The Jabber client/server streams.

-

Client

3

1.4. Architecture Background

1..1. Client/Server Model

Jabber uses client-server architecture, not a direct peer-to-peer architecture as

some other messaging systems do. As a result, all Jabber data sent from one client to

another must pass through at least one Jabber server. A Jabber client connects to a

Jabber server on a TCP socket over port 5222. This connection is "always-on" for the

life of the client's session on the server, which means the client does not have to poii for

messages as an email client does. Rather, any message intended for delivery to the client

is immediately pushed out to the client messenger as long as the client is connected. The

server keeps track of whether the client is online or not, and when the client go off-line

it stores any messages sent to the client for delivery when he or she connect again.

Modular Server: The Jabber server plays three primary roles:

Handling client connections and communicating directly with Jabber clients.

Communicating with other Jabber servers.

Coordinating the various server components associated with the server.

Jabber servers are designed to be modular, with specific internal code packages that

handle functionality such as registration, authentication, presence, contact lists,

offline message storage, and so on. In addition, Jabber servers can be extended

with external components, which enable server administrators to supplement the

core server with additional services such as gateways to other messaging systems.

SIMPLE CLIENTS: One of the design criteria for the Jabber system was that it must

be capable of supporting simple clients (e.g., even something as simple as a telnet

connection on the correct port). Indeed, the Jabber architecture imposes very few

restrictions on clients. The tasks a Jabber client must recognize and accomplish

are:

4

Communicate with the Jabber server over TCP sockets.

Parse and interpret well-formed XML "chunks" over an XML stream.

. Understand the core Jabber data types (message, presence, and iq).

The advantage in Jabber is to move complexity from clients to the server. In

practice, many of the low-level functions of the client (e.g., parsing XML and

understanding the core Jabber data types) are handled by Jabber client libraries,

enabling client developers to focus on the user interface. 3]

1.22. XML DATA FORMAT

XML is an integral part of the Jabber architecture because it is of utmost impor-

tance that the architecture be fundamentally extensible and able to express almost any

structured data. The figure below shows the Jabber messaging model which composed

of four main elements, XML packets containing markedup-data, XML streams used to

transport XML packets, and Jabber clients and servers that exchange XML streams.

XML Stream XML Packets T
-o

Client S Client

________ Jabber Server

FIGURE 1.2: The Jabber messaging model.

When a client connects to a server, it opens a one-way XML stream from the client

to the server, and the server responds with a one-way XML stream from the server to

the client. Thus each session involves two XML streams. All communications between

the client and the server happens over these streams. Example:

5

<message from=' jo1iejabber corn/home' to=' aimarhyinbox. corn/work'>

<body>Ilello, I need to ask you a question!?</body>

</message>

While many Jabber snippets are just that simple, Jabber's XML format can also

be extended through an official XML namespaces (managed by the Jabber Software

Foundation) and custom namespaces for specialized applications. This makes Jabber a

powerful platform to choose for any structured data, including XML Remote Procedure

Calls (XML-RPC), Resource description framework Site Summary (RSS), and Scalable

Vector Graphics (SVG).[1}

1.1.3. DISTRIBUTED NETWORK

Each user connects to a "home" server, which receives information for them, and

the servers transfer data among themselves on behalf of users. Thus any domain can run

a Jabber server. Each server functions independently of the others, and maintains its

own user list. In addition, any Jabber server can talk to any other Jabber server that is

accessible via the Internet (if server-to--server communications are enabled). A particular

user is associated with a specific server, and Jabber addresses are of the same form as

email addresses. The result is a flexible, controllable network of servers, which can scale

much higher than the monolithic, centralized services run by legacy TM vendors. [1]

1..4. STANDARDS-BASED ADDRESSING

Within Jabber there are many different entities that need to communicate with

each other. These entities can represent transports, groupchat rooms, or a single Jab-

ber user. Jabber IDs are used both externally and internally to express ownership

or routing information. Each Jabber ID (or "JID") contains a set of ordered ele-

ments. The JIDs are formed of a domain, node, and resource in the following format:

node©]domain[/resource] [4]

This is an example: almanei@jabber.com/home.

1.5. The Jabber Protocols

There are three core protocols that Jabber relies on when we deal with messaging

mechanism:

1.5.1. Message

The message protocol is in fact the simplest protocol in Jabber. Most of the traffic

in any jabber network falls under the message protocol. It consist of four attributes and

zero or more child elements. The attributes are:

to: Specifies the intended recipient of the message.

from: Specifies the sender of the message.

Id: An optional unique identifier for the purpose of tracking messages.

type: An optional specification of the conversational context of the message.

The child elements are

body: The textual contents of the message; normally included but not required.

subject: The subject of the message.

thread: A random string that is generated by the sender, used for tracking a conversa-

tion thread.

error: Description of the error.

That is all what the message protocol in the current version of the XMPP core protocol

standard represent.[5] An example of a message packet is shown below:

7

<message to=' romeotmontague net'

from="juliet@capulet corn/balcony'

type'chat'>

<subject xml:lang='en'>

Greeting!

</subj ect>

<body xml:lang='en'>

Hello!!

</body>

<thread>e0f92794b9683a38</thread>

</message>

1.5.2. Presence

This protocol is responsible for subscription, approval, and update of presence

information in the Jabber community. The attribute associated with this protocol is the

same for the message protocol except that the type attribute have 7 states as follows:

1.unavailable: The client is no longer available for communication.

2.subscribe: The sender request to subscribe to the recipient's presence.

3.subscribed: The sender has allowed the recipient to receive their presence.

4.unsubscribe: A notification that a client is unsubscribing from another client's pres-

ence.

5.unsubscribed: The subscription request has been denied or a previously-granted

subscription has been cancelled.

6.probe: A request for a client current presence.

7.error: An error has occurred regarding processing or delivery of a previously-sent

presence packet.

Also the presence packet may contain zero or one of each of the following child elements:

show Describes the availability status of an entity or specific resource. It have four

values one of them is used:

1. away: Temporarily away.

2. chat : ee to chat.

3. xa: Extended away.

4. dnd: Do ont Disturb.

status An optional natural-language description of availability status.

priority A non-negative integer representing the priority level of the connected resource,

with zero as the lowest priority.

error Description of the error.

An example of a presence packet is shown below:

<presence

froni='juliet@capulet. corn/balcony'

to 'rorneo@rnontague . net/orchard'>

<show>away</show>

<status>be right back</status>

<priority>O</priority>

</presence>

Finally, the presence packet can contain any properly-namespaced child element

that doesn't interfere with the available structured namespaces and tags.[5]

1.5.3. Info/Query

The IQ protocol is the last core Jabber protocol and take care of anything other

than the message and presence protocols. IQ is a generic request-response protocol that

9

is designed to be easily extensible. Just as HTTP is a request-response medium. The

data content of the request and response is defined by the namespace declaration of a

direct child element of the IQ element. The attributes associated with this protocol have

the same attribute as the message and presence protocols except that it differ in the type

attribute. The type attribute have four values that can be used:

1. get: Request information.

2. set: Provide required data.

3. result: Response to a successful get or set request.

4. error: Error occurred in processing or delivery of a get or set requests. [5]

The following is an example of an IQ packet that blocks an incoming message from

a specific JID:

<iq type=set' id=msgi'>

<query xmlns='jabber: iq:privacy'>

<list naxne= 'message-j id-example'>

<item type= ' j id' value= 'tybalt@capulet . corn'

action='deny' order='3'>

<message!>

<!item>

<!list>

<!query>

</ iq>

This IQ protocol is very important if the goal is to build server based security policy that

the clients should follow. The next step after completing the work for clients security

should concentrate on the server based security support.

10

1.6. Work path and organization

As mentioned earlier, covering the Jabber protocol in full is outside the thesis

scope. The goal is to provide enough information in understanding the security available

from the client side only. The modification of a jabber server code is not a necessity to

accomplish the task of securing a Jabber client messaging mechanism.

The remainder of this thesis work is organized in 5 chapters. Chapter 2 presents

the available security options for Jabber as of writing this thesis. Chapter 3 presents an

overview of the mechanism used to secure the jabber conversation in this thesis and the

tools required. Chapter 4 describes a working secure model for Jabber. The experimental

results of the developed design are presented and compared with the available secure

Jabber protocols in Chapter 5. Chapter 6 concludes this work.

11

2. AVAILABLE SECURITY OPTIONS

Current security features in Jabber to protect message data are generally made-

quate for many deployments; this is particularly true in security conscious environments

like large, commercial enterprises and government agencies. These current features suf-

fer from issues of scalability, usability, and supported features. Furthermore, there is a

lack of standardization. [3] The table below shows the Jabber present security features

compared to computer security properties.

Security Property Description Existing Technology Jabber Support

Authentication Ensures an entity is JAASI, Kerebos, Mi- Jabber Authentication Pro-

who it claims to be. crosoft Passport tocol.

Authorization Determines what an JAAS, access control Binary authorization. TJnau-

entity has permissions lists thenticated users are granted

for accessing(data) or certain rights, and authenti-

controlling(resources). cated users others.

Integrity Ensures data has not Message digests. None

been tampered with.

None-repudiation Ensures that the an- Digital signatures. None

thor of data can always

be identified.

Confidentiality Ensures data can be Encryption Limited client/server confi-

read oniy by authorized dentiality using SSL.

entities.

TABLE 2.1: Computer security properties compared with Jabber's present capabilities.

The following will present the security options in details that are available as

of writing this document in the Jabber community; however, most of the information

12

presented are proposals or have the title of "work on progress" since there is no final

standard that governs security for the Jabber protocol.

2.1. Stream Encryption

XMPP includes a method for securing the stream from tampering and eaves-

dropping. This channel encryption method makes use of the Transport Layer Security

(TLS) protocol, along with a "STARTTLS" extension. The namespace identifier for the

STARTTLS XML extension is 'http://www.ietf.org/rfc/rfc2595.txt'. TLS may be used

between any initiating entity and any receiving entity (e.g., a stream from a client to a

server or from one server to another).
[51

2.1.1. SSL/TLS

To use SSL/TLS, the client start by issuing STARTTLS and the server responds

of whether it supports TLS or not. The following example shows the data flow for a

client securing a stream using STARTTLS:

Step 1: Client initiates stream to server:

<stream: stream

xmlns= 'jabber: client'

xmlns : stream='http : //etherx. jabber. org/streams'

to=' capulet . corn'

version=' 1.0'>

Step 2: Server responds by sending a stream tag to the client:

<stream: stream

xmlns= 'jabber: client'

13

xmlns: stream= 'http: //etherx. jabber. org/streams'

id=' 12345678'

version='l.O'>

Step 3: Server sends the STARTTLS extension to the client along with authenti-

cation mechanisms and any other stream features:

<stream: features>

<starttls xinlns='ht-tp: //www. ietf .orglrf c/rf c2595 .txt'!>

<mechanisms xmlns='http://www. iana.org/assigninents/

sasi-mechanisms'>

<mechanisrn>DIGEST-MD5</mechanism>

<mechanisxn>PLAIN</mechanism>

</mechanisms>

</stream:features>

Step 4: Client sends the STARTTLS command to the server:

<starttls xmlns'http://www.ietf.org/rfc/rfc2595.txt'/>

Step 5: Server informs client to proceed:

<proceed xmlns='http: //www. ietf .org/rfc/rfc2595 .txt'!>

Step 5 (alt): Server informs client that TLS negotiation has failed and client con-

tinues with stream authentication.

<failure xmlns='http: !/www. ietf .orglrf c/rf c2595 .txt'!>

14

Step 6: Client and server complete TLS negotiation via TCP.

Step 7: Client initiates a new stream to the server:

<stream: stream

xinlns= 'jabber: client'

xrnlns : stream= 'http://etherx.jabber.org/streams'

to=' capulet .corn'

version'l .0'>

Step 8: Server responds by sending a stream header to the client along with any

remaining negotiatiable stream features:

<stream: stream

xrnlns='jabber: client'

xinlns : stream= 'http://etherx.jabber.org/streams'

id=' 12345678'

version=' 1.0'>

<stream: features>

<mechanisms xmlns='http://www. iana.org/assignments/

sasi-mechanisms'>

<mechanism>DIGEST-MD5</rnechani sm>

<xnechanism>PLAIN</mechanism>

<mechanism>EXTERNAL</mechanism>

</mechanisms>

</streazn: features>

Step 9: Client continues with stream authentication. [5]

The above example illustrates a client to server negotiation; however, server ad-

ministrators may choose to use TLS between two domains for the purpose of securing

15

server-to-server communications. The process and flow of information will not differ

from the above example.

2.1.2. OpenPCP

XMPP working group outline the use of OpenPGP solution as it is used today

with no actual modification in their Internet-Draft titled End-To-End Object Encryp-

tion. They describe object encryption as the key exchange mechanisms were done by

using the OpenPGP key servers. The following is a demonstration of OpenPGP usage

in a Jabber system.

The encrypted payload contains what would be the main < body> element if the

message were not encrypted, along with a message ID to help prevent replay attacks;

both pieces of information are wrapped in a <payload\> element scoped by the 'http:

//jabber. org/protocol/e2epayl oad' namespace, as shown in the following example:

<payload xinlns= 'http :1/jabber. org/protocol/e2e#payload'>

<id>somelD</±d>

<body>Wheref ore art thou?</body>

</payload>

The encrypted payload includes an <id> element. The CDATA of the <id>

element will be constructed according to the following algorithm:

1. concatenate the sender's full JID (user©host/resource) with the recipient's full

JID;

2. concatenate these JID strings with a full ISO-8601 timestamp including year,

month, day, hours, minutes, seconds, and UTC offset if appropriate in the fol-

lowing format: yyyy-mm-dd Thh:mm:ss-hh:mm;

16

3. hash the resulting string according to the SHA1 algorithm;

4. convert the hexidecimal SHA1 output to all lowercase.

The full <payload! > element (including all XML tag names and angle brackets)

will be encrypted according to the OpenPGP algorithm using the sender's KeylD. The

armored output in US-ASCII format and have the headers removed. The resulting

cipher text will be provided as the CDATA of an <x/ > element scoped by the 'http:

/ /jabber.org/protocol/e2e' namespace. Finally, the message optionally can contain an

unencrypted < body/ > child element whose CDATA informs the recipient that the

actual message body is encrypted.

The format of the full message that results from the foregoing procedure is shown

in the following example.

<message frorn= 'juliet@capulet . corn/balcony'

'romeo@montague . net/orchard'>

<body>Encrypted is this message.</body>

<x xrnlns= 'http //j abber . org/protocol/e2e'>

hQEOA+fczQLixGb6EAP/UvOJNo lx/h9d6ia75foKBlsViwAeXnr

AwUDuxFhTBdt3HDOeF6 lb/sqaHBi4B4L5Oxn4W+dZdOsxgf4QNo

WucI6WfqcV5BT3K62iTGLVJ7LcRoXTy1ekNsDiNsMVMJBH0Yqeo

RmTuMt3uulj BHHnXVya7XGMmyxbM/QtdxuykssD/j svERlEyIfY

SWT+G/dj vyrnd9FfgTwLrgyBjClSOGfQ6oEjmEz5FK+BpwfRDzxj

DeRO8Q6m7Y8C84OC4Dq4UCSCcdzhhKHHOpAC1zj eG/2N+D1EwDk

wK3b/2ED8fFPEltCUIl6Z8uvAw5Q6OBeFabgbj di3Qj qY32fV5t

OtUkkvkOsAEAcRBF9RqEHNDMEb/bGzaO3mV58dlEOjhZEu2rCff

R4mqYSD0F8hNb/XuOssDuIvp342ILfAPj yx/AE1/ffdNOtSWt3k

EZzDzeJfFDBzv2n8QPNUKrRAoinnRr9vdFH5KlIQbTFteOFk/r7

YA7PghNWtPZJ/mXQPoCylaK86wGc/KH1d8Y+RopWeZSoi cpIqGB

rpuwdl/o/OtErnObVnDh3dJpz89a.Jj 2RAAiTaKLotLg/AkmwfQGL

</x>

17

<Imessage>

The decoded payload is:

<payload xmlns= 'http://jabber. org/protocol/e2e#payload'>

<id>e0ffe42b28561960c6b12b944a092794b9683a38</id>

<body>O Romeo, Romeo! Wherefore art thou Romeo?</body>

</payload>

In order to signal support for this method of encrypting message bodies, an entity

must broadcast its KeylD in all outgoing presence packets, contained in an < x/ >

element scoped by the 'http: //jabber.org/protocol/e2e' namespace.

<presence

from=' juliet@capulet .com/balcony'

to= 'romeo@montagi.ie . net/orchard'>

<show>away<Ishow>

<status>be right back</status>

<x xmlns= 'http :1/jabber. org/protocol/e2e '>88CA1D46</x>

</preserlce>

[6j

The above example assumes that the clients already have created their keys and

already can retrieve them from available OpenPGP servers in the network. As of writing

this thesis, there are number of clients that support the usage of OpenPGP encryption

algorithm based on the illustration above.

2.2. Stream Authentication

XMPP includes two methods for enforcing authentication at the level of XML

streams. When one entity is already known to another (i.e., there is an existing trust

relationship between the entities such as that established when a user registers with a

server or an administrator configures a server to trust another server), the preferred

method for authenticating streams between the two entities uses an XMPP adaptation

of the Simple Authentication and Security Layer (SASL). When there is no existing

trust relationship between two servers, some level of trust may be established based on

existing trust in DNS; the authentication method used in this case is the server dialback

protocol that is native to XMPP (no such ad-hoc method is defined between a client

and a server). If SASL is used for server-to-server authentication, the servers must not

use dialback. [5] Both SASL and dialback authentication methods are described in this

section.

2.2.1. SASL Authentication

The Simple Authentication and Security Layer (SASL) provides a generalized

method for adding authentication support to connection-based protocols. XMPP uses a

generic XML namespace profile for SASL and the namespace identifier for this protocol

is 'http: //www.iana.org/assignments/sasl mechanisms'.

The following example shows the data flow for a client authenticating with a server

using SASL.

1. Client initiates stream to server:

<stream: stream

xmlns= 'jabber: client'

xmlns : stream= 'http: //etherx. jabber. org/streams'

to= ' domain'

version=' 1.0'>

2. Server responds with a stream tag sent to the client:

19

<streaxn:streani

xmlns='jabber: client'

xmlns stream='http: //etherx . jabber. org/streams'

id=' 12345678'

from= 'domain'

version' 1 0'>

3. Server informs client of available authentication mechanisms:

<stream: features>

<mechanisms xmlns='http: //www. iana. org/assignments/

sasl-mechanjsms'>

<me chani sin>DIGEST-MD5</mechani Sm>

<me chani sm>PLAIN</me chanism>

</mechanisms>

</stream: features>

4. Client selects an authentication mechanism (" initial response"):

<auth xmlns='http: //www. iana. org/assignments/sasl-mechanisms'

mechanism= 'DIGEST-MD 5' 1>

5. Server sends a base64-encoded challenge to the client:

<challenge

xmlns 'http: IIw. . lana. org/assignments/sasl-mechanisms'>

cmVhbGO9ImNhdGFj bHlzbS5j eCI sbm9uY2U9Ik9BNklHOXRFUUdtMinhoI i

xxb3A9ImF1dGgiLGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS 1zZXNz

</challenge>

20

The decoded challenge is:

realm" cataclysm. cx" ,nonce"0A6MG9tEQGxn2hh",

\qop=" auth" , charset=utf 8, algorlthm=md5-sess

6. Client responds to the challenge:

<response xmlns='http: //www. lana. org/assignnients/sasl-mechanisms'>

dXNlcm5hbWU9InJvYl IscmvhbGO9lmNhdGFjbHlzbS5j eCIsbm9uY2U9Ik9BNklH

OXRFUUdtMmho I ixc IGNub25j ZTOITOE2TUhYaDZWc VRyUmsiLG5j PTAwNDAwMDAx

LHFvcD1hdXRoLFwgZG1nZXNOLXVyaTO1eG1wcC9j YXRhY2x5c2OuY3giLFwgcmVz

cG9uc2U9ZDM4OGRhZDkwZDRIYmQ3NjBhMTUyMzIxZj IxNDNhZj csY2hhcnNldDl 1

dGYtOA=

</response>

The decoded response is:

usernaine="rob" ,realm="cataclysm. cx" ,nonce0A6MG9tEQGm2hh",

\cnonce="OA6MHXh6VqTrRk" ,nc=00000001 ,qop=auth, \

digest-uri="xmpp/cataclysm. cx",

\response=d388dad90d4bbd760a152321f214

3af 7, charset=utf-8

7. Server sends another challenge to the client:

<challenge

xmlns= 'http: //www. lana. org/asslgnments/sasl-mechanisms'>

cnNwYXVOaD 1lYTwZj YwMzM1YzQyN2I 1NTI3Yj gOZGJhYmNkZinZmZA=

</challenge>

21

The decoded challenge is:

rspauth=ea4Of6O335c427b5527b84dbabcdfffd

8. Client responds to the challenge:

<response xmlns='http: //www. iana. orglassignmentslsasl-mechanisms'I>

9. Server informs client of successful or failed authentication:

<success xmlns='http://www. iana.org/assignnients/sasl-mechanisms'/>

Or:

<failure xmlns='http: //www. iana. org/assignments/sasl-mechanisms'

code='454'/>

10. Client initiates a new stream to the server:

<stream: stream

xin1ns'jabber: client'

xinlns : stream= 'http://etherx.jabber.org/streams'

to=' domain'

version='l.O'>

11. Server responds by sending a stream header to the client, with the stream already

authenticated:

<stream: stream

xinlns='jabber: client'

xmlns: stream= 'http: //etherx. jabber. org/streams'

22

id=' 12345678'

from='domain'

version='l.O'>

The SASL authentication should provide added security to the Jabber system.[5] How-

ever, as of writing this thesis there is no Jabber client that have SASL support.

2..2.2. Dialback Authentication

XMPP includes a protocol-level method for verifying that a connection between

two servers can be trusted (at least as much as the DNS can be trusted). The method

is called dialback and is used only within XML streams that are declared under the

"jabber:server" namespace. The purpose of the dialback protocol is to make server

spoofing more difficult, and thus to make it more difficult to forge XML stanzas. Dialback

is not intended as a mechanism for securing or encrypting the streams between servers,

only for helping to prevent the spoofing of a server and the sending of false data from

it. However, domains requiring more robust security should not consider this option of

authentication.

2.3. Other work On the Jabber Community

An incomplete draft of a Jabber security protocol has been published at Jabber

software foundation for securing Jabber conversation. The proposed protocol has the

following requirements:

. It must be an optional extension of the existing Jabber protocol.

. It must be transparent to existing Jabber servers.

. It must function gracefully in cases where some community members are not run-

ning a user agent that supports the protocol.

24

Attribute values, nonce, DH-group, G
Session I

I Check attribute values, nonce, DH-group.
confidentiality algorithms, and _________________Select confidentiality and authentication
authentication algorithms.

I
algorithms.

Check attribute values, nonce, DH-group.
Session 2 I

Attribute values, nonce, DH-group, GValidate confidentiality and authentication
' authenticator is constructed.algorithms. Validate authenticator.

Attribute values and authenticator is Session 3 Check attribute values. Validate
constructed. Include conversation keys. authenticator. process and add conversation

keys to the user agent's key store.

FIGURE 2.1: A security session's XML packets generation and receiving between the
Initiator and the Responder.

2.3.2. Key Transport Mechanism

Conversation keys are transported using the symmetric key wrap feature of XML

Encryption embedded in the keyTansport PDTJ.

Example:

<!ELEMENT keyTransport

(convld, payload, hmac) >

<!ATTLIST keyTransport

version CDATA #REQUIRED

initiator CDATA #B.EQUIRED

responder CDATA #REQUIRED

sessionld CDATA #REQUIRED >

<!ELEMENT convld (#PCDATA)* >

25

<!--- These are actually instances of xenc:EncryptedKey -->

<!ELEMENT payload

(conf Key, hmacKey) >

<!ELEMENT bmac (#PCDATA)* > <!ATTLIST hniac

encoding (base64 I hex) #REQUIRED >

i::IIIEEIII

Attribute values, convld, payload, and
UMAC

(ndeT
Validate attribute values, unwrap payload,

KeyTransprort j validate HMAC, and add keys to user
I agent's key store.

FIGURE 2.2: XML packet for KeyTransport. The attribute values are the version,
initiator JID, responder JID, sessionld

2.3.3. Message Protection

A protected message is defined as a traditional Jabber message whose body content

is extended to include the transport of a cryptographically protected message body. The

two key features are

. The usual body element contains some arbitrary text.

e The message contains Jabber <x> element defining the Jabber:security:message

namespace; this element transports the protected message.

This mechanism has the advantages of allowing transparent integration with existing

Jabber servers and existing Jabber clients. {7}

Attribute values, encode message
"payload", and HMAC

(ve
ProtectedMessage Validate attribute values, unwrap payload,

validate HMAC.

26

FIGURE 2.3: XML packet for Mesaage Protection. The attribute values are version,
from, to, convld, and seqNum.

2.3.. Requesting Keys

This is the last main section in the proposed draft. However, its titles To Be Added

(TBA)! Hence, there are no more information added as of writing this thesis.

2.4. XML Security

XML is one of the most used language when it comes to designing structured

documents. [8] Hence,One of the advantages that Jabber standard provide is the ability

to add custom security system without altering the Jabber standards, protocols, or

the Jabber server. Jabber provides the iXL extension protocol to allow the extension

of the core Jabber protocol. As an example consider the message packet example

mentioned previously which clearly shows the usage of the extension. Hence, the

XML encryption standard proposed by the World Wide Web Consortium (W3C) can be

used in Jabber without actually modifying or altering the Jabber standards. [?]

As of writing this thesis, various components of XML security are at various stages

in the standardization process. XML Digital Signature (XMLDSIG) and XML En-

cryption (XMLENC) which provides authentication and confidentiality respectively are

among the XML cryptographic suit that is underdevelopment. [9]

27

3. SECURING JABBER MESSAGES TOOLS AND
REQUIREMENTS.

This chapter presents the environment setup, tools required, and goals need to be

achieved to secure a Jabber message and how to complete the task.

3.1. Proof of Concept

The goal for this thesis is to present a working Jabber client that uses Diffie-

Heilman key exchange and DES algorithms for key exchange and encryption/decrption

respectively. Since Jabber is an open source project, the search for such a client would

be easy on the internet, however as of writing this thesis, I didn't come across a single

messenger that deploy both algorithms. Hence, there will be a need to build one or use

an already available client and modify the code to add the key exchange and encryption

support.

3.2. A secure Messenger!

The requirements to have a working secure Jabber client is limited to the following:

. Basic knowledge of XML.

. Access to a cryptographic library.

An already working, open source, Jabber Client.

3.2.1. Required Tools

I used Java as the main programming language in this work. The choice has been

made since Java is a machine independent language as along as there exist a Java Virtual

Machine that can run the code. [10]

The cryptographic library used here is the Java Cryptographic Extension (JCE)

from Sun Microsystems. Its already included in their release of J2SE 1.4.2 the beta

version.

The usage of the JCE library will be on the JavaJabberC (JJC), a client available

for download from the sourceforge.net web site. This client is very simple in its design

and looks. A more closer look at this client graphical interface will follow in the next

chapter.

8.2.2. XML Modification

Its not necessary to investigate XML document structure any further. The struc-

ture of a message XML tag is enough to carry out our task in modifying the Jabber

client. However, the following paragraphs will provide the information needed about the

XML tags implemented in this work.

All the work in this project deals with the < message > tag since the goal is

to secure the message it self. As we show earlier how does a message XML packet

looks like in chapter 1, a modification is required to this packet to serve our purpose.

Please notice that there is no use of XML namespaces in this demonstration. The reason

behind omitting XML namespaces is to make it more easier and direct. In fact adding

the namespaces support will not require much work and it should be used to meet

the Jabber protocol standards to its fullest. Although there are no reason to reject this

design because of the fact that the < body > tag is actually optional in the < message>

protocol. Hence, omitting the < body > tag and replacing it with another that serve

different purpose but at the same time does not violate the <message> protocol will

have no side effect on the protocol design. The rest of this section will shows the added

XML tags to support the key exchange and the encryption of the data.

The design of the message packet has three extra tags:

1. < keyexchange>: This tag is used to initialize the key exchange mechanism with the

receiver. It has this format:

29

<message from='nodehost' to='receiving-ID'>

<keyexchange>

MIIDKTCCApKgAwIBAgIBDDANBgkqhk1G9wO

BAQQFADCBOTELMAkGA1UEBhNCWkExFTATBg

NVBAgTDFd1c3R1cm4gQ2FwZTESMBAGA1UEB

xMJQ2FwZSBUb3duNRowGAYDVQQKExFUaGF3

</keyexchange>

</rne s sage>

2.< keyexcharigestep2>: This is the second step in the key agreement protocol which

consist of receiving the other party public key, which is the result of < keyexcharige >

packet above. This tag has the formation as shown below:

<message from= 'node@host' to= 'receiving-ID'>

<keyexchangestep2>

MI IDKkj asdkhjhHHMms j hYhsj 767wJiG9wO

oksoKKKKj fd8734j 2YHSKAWWRffsdvTATBg

NVBAgTDFd1 c3R1uMRowGAYDVESMBAGA1UEB

Kls8HHdfdnppwJuYTRsdfdssQQKExFUaGF3

</keyexchangestep2>

</me s sage>

3.< cipherdata>: This is where all the encrypted message will be hold. This tag is

only used to hold the encrypted data and it will signal a decrypt method on the

receiver side, it has the formation of:

<message from= ' nodehost' to= 'receiving-ID'>

<cipherdata>

JJksj fkds763aj sdhfu4THrY

<Icipherdata>

</mes sage>

The following diagram shows the four types of the message that can be used:

Tag Exist? Ti 1 eyeiiangestep2 (tdata' hg,1 'stJ \ Tag ExsI / Exist?

(orrnEss, Qet Puc Key LJliCKeY) C[d

FIGURE 3.1: A flow diagram of the <message> protocol.

3.2.3. Cryptographic Code

The cryptographic library used in this demonstration is the Java Cryptography

Extension (JCE) provided by SUN Microsystems. JCE is a set of packages that provides

a framework and implementations for encryption, key generation and key agreement,

and Message Authentication Code (MAC) algorithms.[11]

The usage of this crypto library in this project is limited to the Diffie-Heliman

key exchange algorithm and the DES algorithm although the opportunity to add more

support for encryption algorithm is available.

31

The JCE library is bundled with the new release of the J2SE or J2EE and there

was no need to modify the installation to support the JCE library.

The following figure shows the Diffie-Heliman key exchange algorithm that will

take place between the two users namely Alice and Bob.

Alice

Alice Public Key Spec

[Generate DH key

Save Generated
Keys

Store Bob

Read Sto

Keys

Session
Generate Sea

Key
Key

bI

Generate DH key

I-H
Store

pair Keys

Generate Session SessionH Store

Key Key

FIGURE 3.2: A flow diagram of the Diffie-Heliman key exchange algorithm.

The following will provide an explaination of the java code used to accomplish the

key exchange and encryption tasks respectively.

3.2.3.1. Diffie-Heliman Key Exchange

There are three classes that deal with the key creation and exchange:

1.DHKeysCreation.class: This is the first step in generating and exchanging the

Diffie-Hellman public key with other Jabber users.

A fragment of the the code written to generate a Diffie-Hellman Key pair for any

of the Jabber users is shown below:

System. out .pririt1n(Creating Diffie-Heilman parameters...");

32

AlgorithmParaineterGenerator paramGen

= AlgorithmParameterGenerator . getlnstance ("DH");

paramGen. mit (512);

AlgorithmParaineters params = paramGen. generateParameters0;

dhSkipParamSpec = (DHParameterSpec) params . getParameterSpec

(DHParaxneterSpec class);

KeyPair Kpair = KpairGen.generateKeyPair0;

System.out.printlnC'Initialization

KeyAgreement KeyAgree = KeyAgreement getlnstance("DH');

KeyAgree. unit (Kpair . getPrivate 0);

II Encodes the public key

byte [] PubKeyEnc = Kpair .getPublic() getEncodedO;

byte 11) PriKeyEnc = Kpair .getPrivate() .getEncoded0;

2.DHKeysCreationStep2.class: This class will be called when a public key is received

from the sender who initiated the key exchange and it will extract the public key

material and start generating the public key and session key. The procedure will

not differ from the code instant above except in storing and reading the received

public key, example:

String directoryPath =

System.getProperty("user.home")+"//jabberkeys//"+to;

FilelnputStreain publicKeyFilelnputStream = new

FilelnputStream(directoryPath-i-"//"+to+"PublicKey.DH'O;

byte [1 enryptedPublicKey = new

byte [publicKeyFilelnputStrea.m. available 0]

publicKeyFilelnputStream. read(enryptedPublicKey);

publicKeyFilelnputStream. close0;

KeyFactory kf KeyFactory. getInstance(DH");

X5O9EncodedKeySpec x5O9KeySpec = new

X5O9EncodedKeySpec (enryptedPublicKey);

PublicKey alicePubKey = kf . generatePublic(x5O9KeySpec);

bobKeyAgree.doPhase(alicePubKey, true);

SecretKey bobDesKey bobKeyAgree.generateSecret("DES");

ObjectOutputStreani keyQut = new ObjectoutputStream(

new FileOutputStreari(directoryPath+"//MyDesKey.des"));

keyout . writeDbj ect (bobDesKey);

keyOut.close0;

return encodedData;

}

33

3.DHKeyAgreementPhasel.class: This class will be executed when a reply is re-

ceived from the receiver end-point which will hold the public key of the receiver

and since the user already have his or her public key available, the process will be

to generate the session key directly then the session key will be transformed to a

DES key then stored and used when necessary.

{....

34

\\Generate the session key.

aliceKeyAgree.doPhase(bobPubKey, true);

byte [1 aliceSharedSecret = aliceKeyAgree.generateSecretO;

\\Use the session key for DES.

aliceKeyAgree.doPhase(bobPubKey, true);

SecretKey aliceDesKey = aliceKeyAgree .generateSecret("DES');

\\Store the DES key.

ObjectDutputStream keyDut = new ObjectOutputStream(

new FileOutputStream(directoryPath+"//MyDesKey.des"));

keyOut .writeObject(aliceDesKey);

keyOut.closeO;

}

3.2.3.2. DES Encryption/Decryption

There is oniy one Java class that deal with DES encryption and decryption:

1.DesEncryption.class: This is the class where all the encryption and decryption take

place after the two users have agreed in a session key. The DES key stored earlier

will be read by the Java class and then used to encrypt or decrypt according to

the argument passed to it. The example below show a fragment of the encryption

method:

String directoryPath =

System . getProperty("user . home ") +"//j abberkeys//"+to

ObjectlnputStreani keyln = new QbjectlnputStream(

35

new FilelnputStreani(directoryPath+"//MyDesKey.des"));

Key key = (Key) keyln.readobjectO;

keyln.closeO;

Cipher bobCipher = Cipher. getlnsta7nce (DESIECBIPKCS5Padding");

bobCipher.init(Cipher.ENCRYPT_MODE, key);

byteD cleartext msg.getBytesO;

byteE] ciphertext = bobCipher.doFinal(cleartext);

encodedData = encoder.encode(ciphertext);

return encodedData;

3.2.. Open Source Jabber Client Code

The Jabber client source code is very long to be printed in papers; however, most

of the modifications were made in the JabberMessageCenter.java and for illustration, the

code below presents a check for the tag < cipherdata > and if it does exist then start

decrypting the message:

if (rnsg.cipherdata != null){

try{

String s = new String(JabberUtil.deXML(msg.cipherdata));

final String nick = jr.getNickname(msg.from);

DesEncryption cipher = new DesEncryptionO;

String cipherMessage = new String(cipher.decrypt(s,nick));

}

}

36

Looking at the code above we can see that msg.cipherdata is the XML node having

the name cipherdata and it will be sent to the deXML class which will get the value that

this node hold then it will be stored in the (s) string and then transferred to the class

DesEncryption to use the method called decrypt to decrypt the cipher message.

The integration of the crypto-code into the already available Java Jabber Client

code was very straight forward as long as there is full understanding of how does the

code implements the Jabber protocol.

Also modification to the graphical user interface were mandatory to present to the

user the availability of such support for key exchange and encryption. A more clearer

look at the graphical user interface will follow in the next chapter and a comparison will

also follow in chapter 5.

37

4. SECURE JAVA JABBER CLIENT ILLUSTRATION

This chapter presents the working secure Jabber client in graphical details which

explain how does the generation and exchanging keys take place and how does a secure

communication is established between two users.

The Jabber client interface that I am using is not difficult to understand; however

a step by step illustration is provided in this chapter. The first step is to start the Jabber

client which have the interface shown in figure 4.1:

.JflJ2J

SeMces Mout

FIGURE 4.1: The Jabber Client.

This client comes with a very neat plug-in which shows the actual messages sent

and received in raw XML format. This feature is very helpful in showing what is actually

going to the server! This is called the Debug Console as shown in figure 4.2:

38

SENT: <iq type&ger I "><query xrnins=jsbber:iq. auth"><usemame,arnanei</usemame></query><Iiq>
RECV: <iq type="resur id1 <query xmInsjabberiq:auTh"><usemarne>aImanek/usememe><passwordf><digest/<resourcW
><Jquery>'cIiq>
SENT <iq Iype"ser id=2"><query ,rnlns&'jabber iq: auth"><usemame>a1manei</usememe><diges>QaOc4thaOc4OefIe8ffieO23
27d5eObedc7</digest> <resource>horne source></query> <Iiq>
RECV: <iq Iype"resuIt" iri."2"/>
SENT: <iq type="get" i"3><query xmlns"jabber iq: rosIer/></iq>
SENT <presence Iype="avaiIable><show>chat/show></presence>
RECV:<iq type"set"><query xmlns="jabber:iq:roster"I><Iuq>
RECV<iq type"resuIt from="aImanerhymbox.com/horne" d3"><query xmlnsjabber.iq:roster"><ilemjid=alrnaneiQabber.
corn" subscription='both/><item jid"aIrnanetipic. corn" subscriptiori"both/> </query></uq>
SENT:
SENT:

I

FIGURE 4.2: The Debug Console plug-in.

JJC does not support the creation and registration of an account with public

servers nor there exist a server for it. Hence, the user needs to have a working Jabber

account from any publicly available Jabber servers around the globe. The sign on window

is shown in figure 4.3:

:.' IQJ.J

Please enter your

username and password...

Host mymboo corn

(isecnrne: almanei

P3sswc%ctH""

' Sapassword

ance4
:

FIGURE 4.3: Logon Window.

39

After the user logged in, the friend list will be displayed directly and the presence

will be noticeable by a light icon, figure 4.4. This is very important since this secure

model will not really be useful if the receiver is not online! All key exchange requests

will reside on the server and will be outdated!

FIGURE 4.4: Client Friend List.

By double clicking on any of the names on the friend list, a message window will

appear, which has 4 buttons as shown in figure 4.5:

FIGURE 4.5: An empty message window.

40

The first button sends the message as normal (ascii) code with no encryption at

all and this is the actual messenger capabilities before the modification presented in this

thesis it only has a send button. However, the modified version shown above has three

buttons which have the following roles:

Generate Keys This is the button where it will generate and store the Diffie-Heliman

keys in a folder that have the name of the intended receiver.

Exchange Key This button will read the stored public key and encode it in (base64)

format then send it to the receiver.

Send Encrypted This button only has an action if a DES key have already been cre-

ated by the user which required the key exchange to be completed first.

Figure 4.6 shows the result of the Generate Keys button when it is clicked. It will

create the folder named jabberkeys which will hold the keys of the users which the

client will exchange the secure messages with.

r: Do unin s tnd ist LI,.I;j;.
-

--

___J J U U
9rt Merj Tempie.tes UcerDaba V5WebCche WINDOWS appetviewer Fvorite. xI

E.
çcv$ew32.n, ntuser.jn NTUSER.DAT .jursesion wnchent.... rndefaut.., 8irnsproxy.

[gi
h&p,proper... juniizard.... rjcr4r p1uin131. i)C-p1un...

L trace I

U
jabberkeys

FIGURE 4.6: The generated keys folder.

After the key generation, the sender will click on the key exchange button and the

messenger will read the public key of the sender in (base64) format and then wrap it in

41

the tag <keyexchange> as shown in figure 4.7:

SNJ
SENT:

RECV:<presence 1oa1manethymbox.com fromaImanetiptc. com/home><show>chat</show></preseflce>
RECV: <presence o=aImaneIrhymboxcom fron emanetipic.corn/hom?><show>chat</show <x s1amp3O3C5231D3:
:OU xmIns=jabbers:deIay fror=aImanetpic.com1home/></presence
SENT:

PECV:<presence toaImsne@rhymbox.com typeunavaiIabIe from&aImanetipic.comlhome><status>OisconneCted</sh
s>4presence>
SENT:
SENT:
RECV: <presence toaImanei@rhymbox.com" from=aJmanejabber.cam/home"><show>chat</show></presence>
SENT.
SENT
SENT
SENT:

SENT: <message toaImaneijabbercom><subject>Message from JB_USER</subject><keyexchange>MIHfMIGXBgkqhkiG9
BAwEwgYkCQQCIbKxPSCfjsOnMHiuOoOyNl urXCgxxo4KkDAFpZN'vSxp4
ItqEZbuXRpHathEVsXQ4FV1 2R/d9mcpOO4FLknRAkAwGqi+zwcuem8xyuAbzfWkZpuLPCrOYvhZ
9mMLy33kcHHJwQcF8CgH24/pukitwYeVdYb6q1KbfgIiYikv/iNnAqIB/wNDA.JAdXVoICMAXWGb
jooWjhG3qEaCqXCeALFxXimj3aHCTHrBsZrN1)crqZZEjr/Bh128Mr2NOFsQISaUa8F5mbUDS5Q=
</keyexchange></message>
SENT:
SENT:

4} &1L1 '
lMessgeViewer

FIGURE 4.7: Key exchange XML packet.

The other party will receive the key exchange message,flgure 4.8, and for simplicity it

will not show any information about the key nor the message.

Services *bot

aImaneiDIc corn

FIGURE 4.8: Key exchange message (receiver).

42

The user will double click on the name which hold the message and the execution

of generating the key material from the sender public key will start. Also since the public

key of the sender already available the secret key will be generated and the public key of

the receiver will go directly to the sender without requiring the user action. The sender

will receive the key exchange response as < keyexchangestep2 > XML tag as shown in

figure 4.9.

_lcI

SENT.

SENT

RECV: <presence to=amanerhymbox. com
SENT:

SENT:
SENT:
SENT:

SENT: <message tc"almanekjabber com>ssubject>Message from J8_USER</subjecl><keyexchange>MIHfMGXEgkqhkiG9vOBAw
gYkCQQClbKxPSCfjsCnMHiuOoOyNl urXCgxxo4KkDAFpZNV9Ssp4
IIqEIThuXRpHaIhEVsXO4FV1 2R/d9mcpOO4FLknRAkAwGqi+zwcuenxyuAbofMLpuLPCrQYviiZ
9mMLy33kcF1HJwQcFUGgH24/pukitwYeVdYqtKbfgtiYikvINnAgI9twNDAAJAdA'oICMd4XWGb
jooWjhG3qEaCqXCeALFxXImj6aHCTHrBsLTNIXTqZZEjr/Shi2BMr2NOFsOfSaUa8F5mbUDSSQ==
<Jkeyexchange></message>
SENT:
SENT:

RECV.<message to"aImaneirhymbox.com/home from=amaneijabber.com/home">csubject>Message from JB_USER<Isubject>
eyexchangestep2>MIHfMIGXBgkqhkiG9O8AwEwgYkCOQCtbKxP5CsflnMHiuOoOyN1 urXCgxxo4KkDAFpZIW9Sxp4
IIqEIZhuXRpHathEVoXO4FV1 2P/cf3mcpOO4FLknRAkAwGqi+zwcuerrxyuAbzMIkZpuLPCrQYvhZ
9mMLy33kcHHJwQcF8GgH24/pukitwYeVdYb6qtKb1gtiYikv/iNnAgflwNDMJARBifR6pWtI2O
vwtMQ/AdIpt6HEyYvE8+TGkA+OQFwzB2csbl5uw3V52iBbEFLpiUsWgBFWm1 v3KifflYt4JI5Q=</keyexchangestep2></message>
SENT
SENT:

MessgeV

FIGURE 4.9: Receiving other user public key XML packet.

However, a confirmation message is displayed when a key is received asking the

sender wether to proceed with the secret key generation or ignore the task, figure 4.10.

he reced the IJbC keyc(saneØthe.com.I1iaM

Wotd xi Nke to qenerme a secre(key?

{JL

FIGURE 4.10: Receiving a public key window.

43

When both users generate the keys and exchange their public keys, both of them

will have the same share secret which in fact transformed to a DES format and used as

a DES key to encrypt the message data. both of them will have the following folders

associated with the user name as an identifier, see figures 4.11 and 4.12.

* i:\Dournent

1:I
MyPr1vateey

MyPublicKey.enc

[TTh MyPtA,kKey

FIGURE 4.11: The keys files folder,

File E1& View Favorites loots Help --

iij:
abTbaneirhym MyDe*ey.des MyPriveteK... MyPubIlcKe...ánanekrhymboxk

Select an Item to view Its descriptIon.

See also:

Mv Dxinents

Mv NeworkPIaes

My Cotn

4I:
Conp.ter

FIGURE 4.12: The keys files folder for the other user.

44

Now, either user can start encrypting messages. Figure 4.13 is an example of a

message that the user will send to the other party encrypted.

i1IIPjoLj
Message

Here is my contact lnformaUon:

name : Saleh Almanoi
address: 29352 Hwy. 34. Coraflis Oregon 97333
phone# 54t-780-6244

email: almanei©ece.orstedu

Hae a nice da'i

Send Uormal jGenertteKeYsExchangeKeYl Semi Enctted

FIGURE 4.13: Example message which will be encrypted.

We can see the encoded < ciphcrdata > in (base64) format after pressing the send

encrypted button in figure 4.14.

SENT:

SENT

SENT

SENT:

SENT:<message io'almaneijabbercom5<subjecl>Message from JB_USER<1subject<cipherda1a>gGjCH6py8O4N7'YNgC58kQ6Ak

rJXrpX+bI3ArnXmQtbKCZJ+ao5+QRC7wu9IVQ8ApwsIZzxAHDtM

lvSdnrdXOYRSyljeGxxDpIqwr/lGNOtrVExffimsIeyQ+dytQrZF8G8SaHOcMJlb</cipherdata><Jmessage>

!SENT:

SENT:

SENT:

SENT:

ssgeflew

FIGURE 4.14: The encrypted message XML packet.

45

The receiver on the other end should receive the same encoded message that the

sender sent as shown in figure 4.15.

SENT:

SENT

SENT:

RECV:'zmessage toaImanejabbercom fromamanerhyrnbox.cornThom95'subject>Msage from JB_USER</subjsct><cipherdata

GjCHSpyBO4N7VOYNg8kO6A<rJXr+b3AmXmOtbKCfl+ao54ORC7wtYO8ApwslZzxARD1M

+t+VrftJDmUMTSJa6hve7UZgYkIs/rtPiEL5VUiFgREbaebTWhh83wJPwd+hN6xnfwbMJj

IvSdnrdXQYRSyIjeGxxDpIqwrI/GNOtrVExfiimsIeyvQ+dytQrZF8G8S*UcNIb</cipherdata></message>
SENT.

SENT

SENT:

SENT:

SENT:

SENT:

SENT:

SENT

SENT:

FIGURE 4.15: The encrypted message XML packet(receiver.)

Figure 4.16 shows the reply window which displays the message received.

Froeidnbox.com.
Subjecr Messagefrem JU_USER

Here is rr tonlact niormatton:
name : Saleh Almanei
address 29352 Hwy. 34 Coraflis Oregon 97333
phonsl 541-760-5244

email almarlei@ece orstedu

Have a nice dayl

FIGURE 4.16: Reply message window.

46

When the receiver double click on the name that has a message waiting, the pro-

gram will check for the message tag and if its < cipherdata> then it will fetch the DES

key corresponding to the sender and will decrypt the cipher data and display it in a reply

window with the option to encrypt the reply as shown above.

however, if the receiver didn't want to encrypt the message then the button "Send

Normal" will do just that as shown in figure 4.17.

SENT:

SENT:

SENT:

SENT:

SENT:

SENT

SENT:

RECV: <message to=aImane jabber.com' from"aImanerhymbox.com/home"><subject>Message from JB_USER</subject><cipherdata

GjCH5pyBO4N7VOYNgC58kQ&rJXrpX+bDAmXmQtbKCZ1+aoE+QRC7witYQeApwsIZzARDtM

/vSdnrdXQYRSyKjeGxxDpIqi5wr//GNOtrVEofrWimsIeyQ+dytQrZF8p8GBSacvMb</cpherdata><Jmessage>

SENT:

SENT:

SENT

SENT: <message ta=aImaee:rhymbox.cornIhome5<subject>Message from JB_USER</subject><body>Thank you</body><lmessage>

SENT:

4 :.,., :::.
. -- -.. .---

FIGURE 4.17: Normal reply XML packet.

This illustration should give a clear view of the graphical interface and the user

action. Also, with the help of the Debug Console the user or developer can check exactly

how does the message is parsed using the Java XML parser.

47

5. EXPERIMENTAL RESULTS AND ANALYSIS.

5.1. Simulation Environment.

This Secure Jabber Client application presented in this thesis was developed using

the SUN One Studio environment installed in a Windows XP Professional machine. It

have all the tools required to link and compile the project code. However, since the code

is written in Java then there will be no problem in compiling it in any other Java compiler

or environment as long as the JRE 1.4.2 that have the JCE cryptographic library exist

in the CLASSPATH.

There were no significant problems in coding the cryptogTaphic codes nor in mod-

ifying the JJC code; however, understanding how the code implements the Jabber pro-

tocols and most importantly parsing the XML format and getting the values from an

XML formatted message were the most time consuming in regards to implementation.

5.2. Jabber Security Analysis.

The working model in this thesis is far from complete as a secure Jabber client.

However, this demonstration should open the door for developers to start designing

their custom security functions for the Jabber protocol and contribute to the Jabber

community to finalize the standards for securing a Jabber environment.

On the other hand, this model can be adopted by the regular users who care about

their privacy from the server administrators since all the message data is encrypted using

a not so easy, but possible to crack, algorithm known as DES.

There are some vulnerabilities that have to be mentioned to clarify the actual

security strength of the Secure JJC. The Intruder-in-the-IVliddle attack is possible for

the Diffie-Heilman key exchange where an intruder can fool the two users. [12]

DES is also an old algorithm that is going to be replaced with Advance Encryption

Standard (AES). It have been possible to break DES in a matter of days, and with the

advancement in technology there will be no place for DES as a secure algorithm in the

future.[13] However, the design implemented here can easily be extended to support the

new AES algorithm and make DES an optional algorithm or replace it with the modified

algorithm named TripleDES.

JJC original design didn't support any cryptographic algorithms and so do most of

the Jabber clients available to the public except those clients which support OpenPGP

as mentioned earlier. The following section will compare the two designs in a graphical

illustration and also discuss the features added.

5.3. Comparison to the Original Design

The comparison to the original design will have two sections. The first is the

graphical comparison while the second present the features added and representation of

the table introduced at chapter 2.

5.3.1. Graphical Interface

The new implementation of the JJC differ from the original design in two graphical

areas as seen in the figures below: Figure 5.1 shows the original message window while

FIGURE 5.1: Original Message Window.

49

Figure 5.2 shows the rriodified message window. Also the Reply Message Window is

to attfl.)O(9tI*t(Wt

Send Normal Generate Keys exchange Key Sen4tEticlVPtedj

FIGURE 5.2: Modified Message Window.

modified from the original to include the "Send Encrypted Reply" button as shown

below:

From: lmaneirtiytnbox.com From: alrnetipic.com
Subject: Message from JD_IJSER Subject: Message tram JB_USER

Hello Original! Hello Modified!

SufldRP fld Enced Reply [Senepi]

FIGURE 5.3: The Original and Modified Reply Message Window.

50

5.3. . Features

As mentioned in chapter 2 that current security implementation for Jabber are

inadequate. The application presented in this work can be used against that fact since

it proofs the ability to support almost any symmetric or asymmetric cryptographic al-

gorithms. which will modify the table 2.1 as shown:

Security Property Description Existing Technology Jabber Support

Authentication Ensures an entity is JAASI, Kerebos, Mi- Jabber Authentication Pro-

who it claims to be. crosoft Passport tocol and SASL

Authorization Determines what an JAAS, access control Binary authorization. Unau-

entity has permissions lists thenticated users are granted

for accessing(data) or certain rights, and authenti-

controlling(resources). cated users others.

Integrity Ensures data has not Message digests. Can Support Message di-

been tampered with. gests

None-repudiation Ensures that the au- Digital signatures. Can support Digital signa-

thor of data can always ture.

be identified.

Confidentiality Ensures data can be Encryption Full Encryption support.

read only by authorized

entities.

TABLE 5.1: Computer security properties compared with Jabber's modified
capabilities.

The table above shows an increased chance in adopting Jabber based TM as the

future TM protocol.

The next chapter will discuss the future of Jabber and the future work that can

be done to increase the Jabber protocol adoption in the network communities.

51

6. CONCLUSION AND FUTURE WORK.

6.1. Can Jabber be Secure?

This thesis proved that existing Jabber protocol can be secured easily when the

required modification is made. However, when looking at the market point of view

of security, in the present time, we can see that Jabber is not a good candidate for

an Instant Messaging System which the industry is shopping for since it is lacking the

security support the industry and corporate are looking for. [141 However, this work can

be extended to support more cryptographic algorithms and protocols, such as digital

certificates, digital signatures, public key cryptography, i.e. RSA.

Judging from the results of this project, Jabber protocol will be very successful

if Jabber developers start designing support for cryptographic libraries or even have a

standard open source library as a backbone for security tasks carried by Jabber, such an

example is the new release of the XML encryption library (still in beta version) by the

W3C, which can be used in the Jabber protocol since its based on XML format.

As seen in table 5.1, Jabber future can provide most if not all the security re-

quirement that the industry is looking for, confidentiality, authorization, authentication,

Integrity, and finally non-repudiation.

6.2. Jabber is not only IM

The Jabber protocol is not limited to Instant Messaging alone, its far more flexible

to support applications that are used daily like scheduling meetings and White boarding!

The Jabber Protocol is extensible since its relies on XML in every piece of the core

protocol which means that anyone who have good imagination or even have a specific

task that can be deployed in a network, Jabber will probably can support it with little

modifications to extend the core protocol.

52

6.3. Future work

The future of a secure Jabber environment is very promising and the work done

by the XMPP group to standardize the end-to-end encryption and the added feature

of SSL/TLS and SASL in the core protocol is a sign of such future. Developers that

implement their own specific design without actually modifying the core Jabber protocol

can be a valuable source of speeding the task to reach the goal of having a well balanced

secure Jabber system. This thesis is an example of such work that can be added to the

community of Jabber users and developers.

53

BIBLIOGRAPHY

1. "What is jabber," WWW page, 2003, http://www.jabber.org.

2. Robin Cover, "IETF Charters Extensible Messaging and Presence Protocol
(XMPP) Working Group.," WWW page, 2002, http://xm1.coverpages.org/.

3. lain Shigeoka, Instant Messaging in Java The Jabber Protocols, Manning Publica-
tions Co., 2002.

4. Stephen Lee and Terence Smelser, Jabber Programming, Hungry Minds, Inc., 2002.

5. J. Miller P. Saint-Andre, "Xmpp core draft-ietf-xmpp-core-12," WWW page, May
2003, Expire on November 2, 2003.

6. P. Saint-Andre, "End-to-end object encryption in xmpp," WWW page, May 2003,
Expire on November 18, 2003.

7. Paul Lloyd, "A Framework For Securing Jabber Conversations.," WWW page,
2002, http://www.jabber.org/.

8. Naokhiko Uramoto Makoto Murata Andy Clark Yuichi Nakamura Ryo Neyama
Kazuya Kosaka Hiroshi Maruyama, Kent Tamura and Satoshi Hada, XML and
Java Second Edition, Developing Web Applications, Prentic, 2002.

9. Donald E. Eastlake III and Kitty Niles, Secure XML The new Syntax for Signature
and Encryption, Addison-Wesley, Person Education, 2002.

10. Cay S. Horstmann and Gary Cornell, Core Java2, Volume 11-Advanced Features,
Addison-Wesley, Person Education, 2002.

11. "Java Cryptography Extension," WWW page, 2003, http://java.sun.com/.

12. H.X. Mel and Doris Baker, Cryptography Decrypted, Addison-Wesley, Person Ed-
ucation, 2001.

13. Wade Trappe and Lawrence C. Washington, Introduction to Cryptography with
Coding Theory, Prentic-Hall, Inc., 2002.

14. Symantec Security Response, "Secure instant messaging," White Paper, May 2003,
http://www.symantec.com/avcenter/whitepapers.html.

