AN ABSTRACT OF THE THESIS OF

Saleh Almanei for the degree of Master of Science in

Electrical & Computer Engineering presented on June 3, 2003. Title:

Secure Instant Messaging

The Jabber Protocol.
Redacted for privacy

Abstract approved:

Cetin K. Kog

Instant Messaging (IM) has grown rapidly among network users. It has even
become a very important tool for the industry around the world. It is used in scheduling
meetings, exchanging business information and clients information, and so on. Instant
Messaging has been developed by private sectors or providers such as America Online
Instant Messenger (AIM), MSN, and Yahoo; however, in 1998 a new protocol has seen
the light as an open source Instant Messaging protocol and had the name of Jabber and
thanks to Jeremie Miller the founder of the Jabber protocol.

The project gathered wide public attention when it was discussed on the popular
developer discussion website Slashdot in January 1999. In May 2000, the core Jabber
protocols were released as open source reference server and it have not been changed to
this day. Jabber uses client-server architecture, not a direct peer-to-peer architecture
as some other messaging systems do. It is actually an Extensible Markup Language
(XML) messaging protocol. It relies on XML document format in every aspect of the
communication.[1]

Jabber Protocol have gone a long way to be one of the most attractive protocol
because of its open source and extensibility. Anyone can build or extend the jabber
protocol functionality without actually modifying the core protocol and still maintain
interoperability with other IM clients such as yahoo and MSN. Moreover, as the usage of

jabber Instant Messaging technology increases, the need for information protection in the

Jabber messaging medium also increases. This thesis will explore the Jabber protocol
and the ability to secure a Jabber based communication over the network using third

party cryptographic libraries.

©Copyright by Saleh Almanei
June 3, 2003

All rights reserved

Secure Instant Messaging
The Jabber Protocol

by

Saleh Almanei

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Presented June 3, 2003
Commencement June 2003

Master of Science thesis of Saleh A. Al-Manei presented on June 3, 2003

APPROVED:

Redacted for privacy

Major Professor, representing Electrical & Computer Engineering

Redacted for privacy

Director of the School 6fFtctrical Engineering and Computer Science

Redacted for privacy
Dean of the Gﬁdq@té School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Redacted for privacy

Saleh Almanei, Author

ACKNOWLEDGMENT

I would like to thank Dr. Kog for giving me the opportunity to work on this
interesting subject. Dr. Kog’s discussions, directions, reviews and valuable comments
helped direct me to the right path to accomplish this work.

After all, I want to give my biggest thanks to my father Abdullah Almanei and my

mother Aljoharah AlFantookh for their support and patience during my study overseas.

1.

TABLE OF CONTENTS

Page

INTRODUCGTION. ...t e e e 1
1.1, What is Jabber? o o 1
1.2, History of Jabber o 1
1.3, Technology Overview.............c.iiiiiiiii e, 2
1.4, Architecture Background............... ... i 3
1.4.1. Client/Server Modelcoiiiiiiniiiiiniiiiiai.. 3

1.4.2. XML DATA FORMAT ... e 4

1.4.3. DISTRIBUTED NETWORKccoviiiiiiiiaaaa... 5

1.4.4. STANDARDS-BASED ADDRESSINGccooviniiinn... 5

1.5, The Jabber Protocols i i 6
L5 L. MeSSage oot 6

1.5.2. Presenceot 7

1.5.3. Info/QUEry o 8

1.6. Work path and organization................. ... il 10
AVAILABLE SECURITY OPTIONSoiiiiiiii i 11
2.1, Stream Encryption.......... 12
2100 SSL/TLS ..o e 12

2.1.2. OpenPGP ... o 15

2.2, Stream Authentication............... 17
2.2.1. SASL Authenticationc.coiiiiiiii 18

2.2.2. Dialback Authenticationcoo i 22

2.3. Other work On the Jabber Community................................ 22
2.3.1. Security Sessions............iuiiiiii e 23

2.3.2. Key Transport Mechanismc.cooviuiiaiiani... 24

2.3.3. Message Protectioncoiiiiiiiiiiiiiii 25

2.3.4. Requesting Keysc.ooiiiiiiiiiiiiiiii i 26

TABLE OF CONTENTS (Continued)

Page

2.4, XML SeCurityoouin i 26

3. SECURING JABBER MESSAGES TOOLS AND REQUIREMENTS. 27
3.1 Proof of Concept.o e 27
3.2. A secure Messenger!. it 27
3.2.1. Required Toolscovuini e e 27

3.2.2. XML Modification oo 28

3.2.3. Cryptographic Codet 30

3.2.4. Open Source Jabber Client Code 35

4. SECURE JAVA JABBER CLIENT ILLUSTRATIONccoiiinn.. 37
5. EXPERIMENTAL RESULTS AND ANALYSIS. . ..ottt 47
5.1, Simulation Environment......... i 47
5.2. Jabber Security Analysis. O 47
5.3. Comparison to the Original Design............. ... viiiiiiiiiiin.. 48
5.3.1. Graphical Interfacecooiiiiiiiiiiiiiie e, 48

5.3.2. Features ... 50

6. CONCLUSION AND FUTURE WORK.cc.viuiiiitiiiiianaienn. 51
6.1. Can Jabber be Secure?........... ..ottt e 51
6.2. Jabberismotonly IM...... 51
6.3. Future work. 52

BIBLIOGRAPHY .. e 53

LIST OF FIGURES

Figure Page
1.1 The Jabber client/server streams.cc.ooviiineiiiniiei un.. 2
1.2 The Jabber messaging model.ot 4

2.1 A security session’s XML packets generation and receiving between the
Initiator and the Responder............ i, 24

2.2 XML packet for KeyTransport. The attribute values are the version,

initiator JID, responder JID, sessionldcoviiiiiiiniinn.... 25
2.3 XML packet for Mesaage Protection. The attribute values are version,

from, to, convld, and segNUM.ooot it 26
3.1 A flow diagram of the < message > protocol. 30
3.2 A flow diagram of the Diffie-Hellman key exchange algorithm. 31
4.1 The Jabber Client. e 37
4.2 The Debug Console plug-in.iveiieineiiiinaniana... 38
4.3 Logon WIndow.ouiiiii e 38
4.4 Client Friehd LSt 39
4.5 An empty message WindoW..............oouueieinniiieiai . 39
4.6 The generated keys folder. i 40
4.7 Key exchange XML packet.oouiiiinn i, 41
4.8 Key exchange message (T€Ceiver).o.oiviuieeeiiiiiineneia... 41
4.9 Receiving other user public key XML packet. 42
4.10 Receiving a public key window. ... 42
4.11 The keys files folder....... ..ottt i 43
4.12 The keys files folder for the other user...................c.ooiiio... 43
4.13 Example message which will be encrypted. 44
4.14 The encrypted message XML packet.covviniiiiiiieniin... 44

4.15 The encrypted message XML packet(receiver.) 45

LIST OF FIGURES (Continued)

4.16 Reply message Window.oouiiniiniiieiiiiiiieiia e, 45
4.17 Normal reply XML packet.coiiiiiiiiiiiiii i 46
5.1 Original Message Window........... ... oot . 48
5.2 Modified Message Window.cooiiiiiniinii i, 49

5.3 The Original and Modified Reply Message Window. 49

LIST OF TABLES

Table Page

2.1 Computer security properties compared with Jabber’s present capabilities. 11

5.1 Computer security properties compared with Jabber’s modified capa-
bilities. . ..o 50

SECURE INSTANT MESSAGING
THE JABBER PROTOCOL

1. INTRODUCTION.

1.1. What is Jabber?

Jabber is an open XML protocol for the real-time exchange of messages and pres-
ence between any two points or users in a Jabber network. There are various usage
for the Jabber technology; however, the first application of Jabber technology is an
asynchronous, extensible instant messaging platform, and an IM network that offers
functionality similar to legacy IM systems such as AOL Instant Messaging (AIM) and

Yahoo Instant Messaging.[1]

1.2. History of Jabber

As Part of the Jabber IM standards efforts, in June 2000 the Jabber community
submitted the protocols as a Request For Comments (RFC) to the Internet Engineer-
ing Task Force (IETF) as part of its Instant Messaging and Presence Protocol (IMPP)
standard. Unfortunately, the IMPP effort didn’t succeed. In May 2001 the Jabber
Community (www.jabber.org) and Jabber Inc. (www.jabber.com) created the Jabber
Software Foundation (foundation.jabber.org) to provide direct organizational assistance
and indirect technical assistance to the Jabber community in carrying out its mission. In
Fall 2002, the Internet Engineering Steering Group (IESG) approved the formation of an
Extensible Messaging and Presence Protocol (XMPP) Working Group within the Inter-
net Engineering Task Force (IETF). The scope of the Working Group is to explore and,
where necessary, modify the existing protocol in order to meet the requirements defined

in RFC 2779 as well as the requirements defined in the Common Presence and Instant

2
Messaging (CPIM) specification. The main focus of the Working Group will be on XML
streams (including stream-level security and authentication), the core data elements, and
the namespaces required to achieve basic instant messaging and presence. [2]

The XMPP working group published their XMPP Core Internet-Draft as the doc-
ument which describes the core features of the Extensible Messaging and Presence Proto-
col. This document contains most of the work on Jabber client/server and server/server
security and it will be used as a reference in this thesis. As jabber moves forward,
much work remains to be done. Further standardization work is still underway and new

standards are being proposed to extend the Jabber protocols beyond simple IM.[3]

1.3. Technology Overview

Jabber is based on the well-known client /server architecture. Jabber clients com-
municate with Jabber servers in their Jabber domain. Jabber domains have the advan- .
tage of separating the communication zone, which will be handled by different Jabber
servers. Unlike most IM systems which use one centralized server for the whole commu-

nication zone.[3] The figure below shows the Jabber Client/Server streams flow:

Client Client

abber Server Jabber Server

—— Server/Server

— ClienvServer

FIGURE 1.1: The Jabber client/server streams.

1.4. Architecture Background

1.4.1. Client/Server Model

Jabber uses client-server architecture, not a direct peer-to-peer architecture as
some other messaging systems do. As a result, all Jabber data sent from one client to
another must pass through at least one Jabber server. A Jabber client connects to a
Jabber server on a TCP socket over port 5222. This connection is ”always-on” for the
life of the client’s session on the server, which means the client does not have to poll for
messages as an email client does. Rather, any message intended for delivery to the client
is immediately pushed out to the client messenger as long as the client is connected. The
server keeps track of whether the client is online or not, and when the client go off-line

it stores any messages sent to the client for delivery when he or she connect again.
Modular Server: The Jabber server plays three primary roles:

¢ Handling client connections and communicating directly with Jabber clients.
¢ Communicating with other Jabber servers.

e Coordinating the various server components associated with the server.

Jabber servers are designed to be modular, with specific internal code packages that
handle functionality such as registration, authentication, presence, contact lists,
offline message storage, and so on. In addition, Jabber servers can be extended
with external components, which enable server administrators to supplement the

core server with additional services such as gateways to other messaging systems.

SIMPLE CLIENTS: One of the design criteria for the Jabber system was that it must
be capable of supporting simple clients (e.g., even something as simple as a telnet
connection on the correct port). Indeed, the Jabber architecture imposes very few
restrictions on clients. The tasks a Jabber client must recognize and accomplish

are:

e Communicate with the Jabber server over TCP sockets.
® Parse and interpret well-formed XML ”chunks” over an XML stream.

e Understand the core Jabber data types (message, presence, and iq).

The advantage in Jabber is to move complexity from clients to the server. In
practice, many of the low-level functions of the client (e.g., parsing XML and
understanding the core Jabber data types) are handled by Jabber client libraries,

enabling client developers to focus on the user interface. (3]

1.4.2. XML DATA FORMAT

XML is an integral part of the Jabber architecture because it is of utmost impor-
tance that the architecture be fundamentally extensible and able to express almost any
structured data. The figure below shows the Jabber messaging model which composed
of four main elements, XML packets containing markedup-data, XML streams used to

transport XML packets, and Jabber clients and servers that exchange XML streams.

XML Stream

abber Server

FIGURE 1.2: The Jabber messaging model.

When a client connects to a server, it opens a one-way XML stream from the client
to the server, and the server responds with a one-way XML stream from the server to
the client. Thus each session involves two XML streams. All communications between

the client and the server happens over these streams. Example:

<message from=’jolie@jabber.com/home’ to=’ aima@rhymbox.com/work’>
<body>Hello, I need to ask you a question!?7</body>

</message>

While many Jabber snippets are just that simple, Jabber’s XML format can also
be extended through an official XML namespaces (managed by the Jabber Software
Foundation) and custom namespaces for specialized applications. This makes Jabber a
powerful platform to choose for any structured data, including XML Remote Procedure

Calls (XML-RPC), Resource description framework Site Summary (RSS), and Scalable
Vector Graphics (SVG).[1]

1.4.3. DISTRIBUTED NETWORK

Each user connects to a "home” server, which receives information for them, and
the servers transfer data among themselves on behalf of users. Thus any domain can run
a Jabber server. Each server functions independently of the others, and maintains its
own user list. In addifion, any Jabber server can talk to any other Jabber server that is
accessible via the Internet (if server-to-server communications are enabled). A particular
user is associated with a specific server, and Jabber addresses are of the same form as
email addresses. The result is a flexible, controllable network of servers, which can scale

much higher than the monolithic, centralized services run by legacy IM vendors.|1]

1.4.4. STANDARDS-BASED ADDRESSING

Within Jabber there are many different entities that need to communicate with
each other. These entities can represent transports, groupchat rooms, or a single Jab-
ber user. Jabber IDs are used both externally and internally to express ownership
or routing information. Each Jabber ID (or ”JID”) contains a set of ordered ele-
ments. The JIDs are formed of a domain, node, and resource in the following format:

[nodeQ@]domain[/resource][4]

This is an example: almanei@jabber.com/home.

1.5. The Jabber Protocols

There are three core protocols that Jabber relies on when we deal with messaging

mechanism:

1.5.1. Message

The message protocol is in fact the simplest protocol in Jabber. Most of the traffic
in any jabber network falls under the message protocol. It consist of four attributes and

zero or more child elements. The attributes are:

to: Specifies the intended recipient of the message.

from: Specifies the sender of the message.

id: An optional unique identifier for the purpose of tracking messages.

type: An optional specification of the conversational context of the message.
The child elements are :

body: The textual contents of the message; normally included but not required.
subject: The subject of the message.

thread: A random string that is generated by the sender, used for tracking a conversa-

tion thread.
error: Description of the error.

That is all what the message protocol in the current version of the XMPP core protocol

standard represent.[5] An example of a message packet is shown below:

<message to=’romeo@montague.net’
from="juliet@capulet.com/balcony’
type=’chat’>
<subject xml:lang=’en’>
Greeting!
</subject>
<body xml:lang=’en’>
Hello!!
</body>
<thread>e0£92794b9683a38</thread>

</message>

1.5.2. Presence

This protocol is responsible for subscription, approval, and update of presence
information in the Jabber community. The attribute associated with this protocol is the

same for the message protocol except that the type attribute have 7 states as follows:

1.unavailable: The client is no longer available for communication.
2.subscribe: The sender request to subscribe to the recipient’s presence.
3.subscribed: The sender has allowed the recipient to receive their presence.

4.unsubscribe: A notification that a client is unsubscribing from another client’s pres-

ence.

5.unsubscribed: The subscription request has been denied or a previously-granted

subscription has been cancelled.
6.probe: A request for a client current presence.

7.error: An error has occurred regarding processing or delivery of a previously-sent

presence packet.

8

Also the presence packet may contain zero or one of each of the following child elements:

show Describes the availability status of an entity or specific resource. It have four

values one of them is used:

1. away : Temporarily away.
2. chat : Free to chat.
3. xa : Extended away.

4. dnd : Do ont Disturb.
status An optional natural-language description of availability status.

priority A non-negative integer representing the priority level of the connected resource,

with zero as the lowest priority.
error Description of the error.
An example of a presence packet is shown below:

<presence
from=’juliet@capulet.com/balcony’
to=’romeo@montague.net/orchard’>
<show>away</show>
<status>be right back</status>
<priority>0</priority>

</presence>

Finally, the presence packet can contain any properly-namespaced child element

that doesn’t interfere with the available structured namespaces and tags.[5]

1.5.5. Info/Query

The IQ protocol is the last core Jabber protocol and take care of anything other

than the message and presence protocols. IQ is a generic request-response protocol that

9
is designed to be easily extensible. Just as HTTP is a request-response medium. The
data content of the request and response is defined by the namespace declaration of a
direct child element of the IQ element. The attributes associated with this protocol have
the same attribute as the message and presence protocols except that it differ in the type

attribute. The type attribute have four values that can be used:

1. get: Request information.

2. set: Provide required data.

3. result: Response to a successful get or set request.

4. error: Error occurred in processing or delivery of a get or set requests.[5]

The following is an example of an IQ packet that blocks an incoming message from

a specific JID:

<iq type=’set’ id=’msgl’>
<query xmlns=’jabber:iq:privacy’>
<list name=’message-jid-example’>

<item type=’jid’ value=;tyba1t©dapulet.com’

action=’deny’ order=’3’>
<message/>

</item>
</list>
</query>

</ig>

This IQ protocol is very important if the goal is to build server based security policy that
the clients should follow. The next step after completing the work for clients security

should concentrate on the server based security support.

10

1.6. Work path and organization

As mentioned earlier, covering the Jabber protocol in full is outside the thesis
scope. The goal is to provide enough information in understanding the security available
from the client side only. The modification of a jabber server code is not a necessity to
accomplish the task of securing a Jabber client messaging mechanism.

The remainder of this thesis work is organized in 5 chapters. Chapter 2 presents
the available security options for Jabber as of writing this thesis. Chapter 3 presents an
overview of the mechanism used to secure the jabber conversation in this thesis and the
tools required. Chapter 4 describes a working secure model for Jabber. The experimental
results of the developed design are presented and compared with the available secure

Jabber protocols in Chapter 5. Chapter 6 concludes this work.

2.

11

AVAILABLE SECURITY OPTIONS

Current security features in Jabber to protect message data are generally inade-

quate for many deployments; this is particularly true in security conscious environments

like large, commercial enterprises and government agencies. These current features suf-

fer from issues of scalability, usability, and supported features. Furthermore, there is a

lack of standardization.[3] The table below shows the Jabber present security features

compared to computer security properties.

Securily Property

Description

Ezisting Technology

Jabber Support

thor of data can always

be identified.

Authentication Ensures an entity is | JAASI, Kerebos, Mi- | Jabber Authentication Pro-
who it claims to be. crosoft Passport tocol.

Authorization Determines what an | JAAS, access control | Binary authorization. Unau-
entity has permissions | lists thenticated users are granted
for accessing(data) or certain rights, and authenti-
controlling(resources). cated users others.

Integrity Ensures data has not | Message digests. None
been tampered with.

None-repudiation Ensures that the au- | Digital signatures. None

Confidentiality

Ensures data can be
read only by authorized

entities.

Encryption

Limited client/server confi-

dentiality using SSL.

TABLE 2.1: Computer security properties compared with Jabber’s present capabilities.

The following will present the security options in details that are available as

of writing this document in the Jabber community; however, most of the information

12
presented are proposals or have the title of work on progress” since there is no final

standard that governs security for the Jabber protocol.

2.1. Stream Encryption

XMPP includes a method for securing the stream from tampering and eaves-
dropping. This channel encryption method makes use of the Transport Layer Security
(TLS) protocol, along with a "STARTTLS” extension. The namespace identifier for the
STARTTLS XML extension is ’'http://www.ietf.org/rfc/rfc2595.txt’. TLS may be used
between any initiating entity and any receiving entity (e.g., a stream from a client to a

server or from one server to another).[5]

2.1.1. SSL/TLS

To use SSL/TLS, the client start by issuing STARTTLS and the server responds
of whether it supports TLS or not. The following example shows the data flow for a -

client securing a stream using STARTTLS:

e Step 1: Client initiates stream to server:

<stream:stream
xmlns=’jabber:client’
xmlns:stream="http://etherx. jabber.org/streams’
to=’capulet.com’

version='1.0’>

e Step 2: Server responds by sending a stream tag to the client:

<stream:stream

xmlns=’jabber:client’

13
xmlns:stream=’http://etherx. jabber.org/streams’
id=’12345678’

version=’1.0’>

e Step 3: Server sends the STARTTLS extension to the client along with authenti-

cation mechanisms and any other stream features:

<stream:features>
<starttls xmlns=’http://www.ietf.org/rfc/rfc2595.txt’/>
<mechanisms xmlns=’http://www.iana.org/assignments/
sasl-mechanisms’>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism>
</mechanisms>

</stream:features>

e Step 4: Client sends the STARTTLS command to the server:

<starttls xmlns=’http://www.ietf.org/rfc/rfc2595.txt’/>

e Step 5: Server informs client to proceed:

<proceed xmlns=’http://www.ietf.org/rfc/rfc2595.txt’/>

e Step 5 (alt): Server informs client that TLS negotiation has failed and client con-

tinues with stream authentication.

<failure xmlns=’http://www.ietf.org/rfc/rfc2595.txt’/>

14

e Step 6: Client and server complete TLS negotiation via TCP.

e Step 7: Client initiates a new stream to the server:

<stream:stream
xmlns=’jabber:client’
xmlns:stream=’http://etherx. jabber.org/streams’
to=’capulet.com’

version=’1.0’>

e Step 8: Server responds by sending a stream header to the client along with any

remaining negotiatiable stream features:

<stream:stream
xmlns=’jabber:client’
xmlns:stream="http://etherx. jabber.org/streams’
id=’12345678"
version=’1.0’>
<stream:features>
<mechanisms xmlns=’http://www.iana.org/assignments/
sasl-mechanisms’>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism>
<mechanism>EXTERNAL</mechanism>
</mechanisms>

</stream:features>

e Step 9: Client continues with stream authentication.[5]

The above example illustrates a client to server negotiation; however, server ad-

ministrators may choose to use TLS between two domains for the purpose of securing

15
server-to-server communications. The process and flow of information will not differ

from the above example.

2.1.2. OpenPGP

XMPP working group outline the use of OpenPGP solution as it is used today
with no actual modification in their Internet-Draft titled End-To-End Object Encryp-
tion. They describe object encryption as the key exchange mechanisms were done by
using the OpenPGP key servers. The following is a demonstration of OpenPGP usage

in a Jabber system.

The encrypted payload contains what would be the main < body > element if the
message were not encrypted, along with a message ID to help prevent replay attacks;
both pieces of information are wrapped in a < payload\> element scoped by the 'http :

/ [jabber.org/protocol [e2e#tpayload’ namespace, as shown in the following example:

<payload xmlns=’http://jabber.org/protocol/e2e#payload’>
<id>someID</id>
<body>Wherefore art thou?</body>

</payload>

The encrypted payload includes an < id > element. The CDATA of the < id >

element will be constructed according to the following algorithm:

1. concatenate the sender’s full JID (user@host/resource) with the recipient’s full

JID;

2. concatenate these JID strings with a full ISO-8601 timestamp including year,
month, day, hours, minutes, seconds, and UTC offset if appropriate in the fol-

lowing format: yyyy-mm-dd Thh:mm:ss-hh:mm;

16

3. hash the resulting string according to the SHA1 algorithm;

4. convert the hexidecimal SHA1 output to all lowercase.

The full < payload/ > element (including all XML tag names and angle brackets)
will be encrypted according to the OpenPGP algorithm using the sender’s KeyID. The
armored output in US-ASCII format and have the headers removed. The resulting
cipher text will be provided as the CDATA of an < z/ > element scoped by the 'hitp :
/[jabber.org/protocol/e2¢’ namespace. Finally, the message optionally can contain an
unencrypted < body/ > child element whose CDATA informs the recipient that the
actual message body is encrypted.

The format of the full message that results from the foregoing procedure is shown

in the following example.

<message from=’juliet@capulet.com/balcony’
to=’romeo@montague.net/orchard’>
<body>Encrypted is this message.</body>
<x xmlns=’http://jabber.org/protocol/e2e’>
hQEDA+fczQLixGbBEAP/Uv0JNo1x/h9d6ia75f0KBlsViwAeXnr
AwUDuxFhTBdt3HDOeF61b/sqaHBi4B4L50xn4W+dZd0sxgf4QNo
WucI6WfqcV5BT3K62iTGLVI7LcRoXTylekNsDiNsMVMIBHoYgeo
RmTuMt3uul jBHHnXVya7XGMmyxbM/QtdxuykssD/ jsvERIEyIfY
SWT+G/djvymd9FfgTwLrgyBjC1S0GfQ60E jmEzSFK+BpwfRDzx j
DeR0O8BQ6m7YBC840C4Dq4UCSCcdzhhKHHOpACiz jeG/2N+D1EwDk
wK3b/2ED8fFPE1tCUI16Z8uvAw5Q60BeFabgbjdi3QjqyY32£V5t
0tUkkvkOsAEACRBFOHQEHNDMEb/bGza03mV58d1EQ jhZEu2rCE £
R4mqYSDoF8hNb/XuOssDulvp342ILfAPjyx/AE1/ffdNOtSWt3k
EZzDze JfF0Bzv2n80PNUKrRAoinnRr 9vdFHSK1IQbTFteOFk/x7
YA7PghNWtPZJ/mXQPoCylaK86wGc/KH1d8Y+RopWeZSoicpIqGB
rpuwdl/o/0tEmObVnDh3d Jpz89aJj2RAAi TaKLotLg/Akmwf QGL

</x>

17

</message>
The decoded payload is:

<payload xmlns=’http://jabber.org/protocol/e2e#payload’>
<id>e0ffe42b28561960c6b12b944a092794b9683a38</id>
<body>0 Romeo, Romeo! Wherefore art thou Romeo?</body>

</payload>

In order to signal support for this method of encrypting message bodies, an entity
must broadcast its KeyID in all outgoing presence packets, contained in an < z/ >

element scoped by the 'hitp : //jabber.org/protocol /e2e’ namespace.

<presence
from=’juliet@capulet.com/balcony’
to=’romeo@montague.net/orchard’>
<show>away</show>
<status>be right back</status>
<x xmlns="http://jabber.org/protocol/e2e’>88CA1D46</x>

</presence>

(6]

The above example assumes that the clients already have created their keys and
already can retrieve them from available OpenPGP servers in the network. As of writing
this thesis, there are number of clients that support the usage of OpenPGP encryption

algorithm based on the illustration above.

2.2. Stream Authentication

XMPP includes two methods for enforcing authentication at the level of XML
streams. When one entity is already known to another (i.e., there is an existing trust

relationship between the entities such as that established when a user registers with a

18
server or an administrator configures a server to trust another server), the preferred
. method for authenticating streams between the two entities uses an XMPP adaptation
of the Simple Authentication and Security Layer (SASL). When there is no existing
trust relationship between two servers, some level of trust may be established based on
existing trust in DNS; the authentication method used in this case is the server dialback
protocol that is native to XMPP (no such ad-hoc method is defined between a client
and a server). If SASL is used for server-to-server authentication, the servers must not
use dialback.[5] Both SASL and dialback authentication methods are described in this

section.

2.2.1. SASL Authentication

The Simple Authentication and Security Layer (SASL) provides a generalized
method for adding authentication support to connection-based protocols. XMPP uses a
generic XML namespace profile for SASL and the namespace identifier for this protocol
is 'http : [/ /www.iana.org/assignments/sasl — mechanisms'.

The following example shows the data flow for a client authenticating with a server

using SASL.

1. Client initiates stream to server:

<stream:stream
xmlns=’jabber:client’
xmlns:stream="http://etherx. jabber.org/streams’
to='domain’

version=’1.0’>

2. Server responds with a stream tag sent to the client:

<stream:stream
xmlns=’jabber:client’
xmlns:stream="http://etherx. jabber.org/streams’
id=’12345678’
from=’domain’

version=’1.0’>

3. Server informs client of available authentication mechanisms:

<stream:features>

<mechanisms xmlns=’http://www.iana.org/assignments/
sasl-mechanisms’>

<mechanism>DIGEST-MD5</mechanism>

<mechanism>PLAIN</mechanism>

</mechanisms>

</stream:features>

4. Client selects an authentication mechanism (”initial response”):

<auth xmlns=’http://www.iana.org/assignments/sasl-mechanisms’

mechanism=’DIGEST-MD5’/>

5. Server sends a base64-encoded challenge to the client:

<challenge
xmlns=’http://www.iana.org/assignments/sasl-mechanisms’>
cmVhbGO9ImNhdGF jbH1zbS5 jeCIsbm9uY2U9Tk9BNk1 HOXRFUUdtMmhoIi
xxb3A9ImF1dGgiLGNoYXJzZXQ9dXRmLTgs YWxnb3 JpdGhtPW1kNS12ZXNz

</challenge>

19

20
The decoded challenge is:

realm="cataclysm.cx" ,nonce="0A6MGItEQGn2hh",

\qop="auth",charset=utf8,algorithm=mdS5-sess

6. Client responds to the challenge:

<response xmlns=’http://www.iana.org/assignments/sasl-mechanisms’>
dXN1cm5hbWU9InJvYiIscmVhbGO9ImNhdGFjbH1zbS5jeCIsbmIuY2U9Tk9BNk1H
OXRFUUdtMmhoIixcIGNub25jZTO0iTOE2TUhYaDZWcVRyUmsiLG5jPTAWMDAWMDAX
LHFvcD1hdXRoLFwgZGlnZXNOLXVyaTO0ieGlwcC9jYXRhY2x5¢c20uY3giLlFugcmVz
c¢G9uc2U9ZDM4A0GRhZDkwZDR1YmQ3N jBhMTUyMzIxZjIXNDNhZ jcsY2hhenN1dD11
dGYt0A==

</response>

The decoded response is:

username="rob",realm="cataclysm.cx" ,nonce="0A6MGItEQGm2hh",
\cnonce="0A6MHXh6VqQTrRk",nc=00000001,qop=auth, \
digest-uri="xmpp/cataclysm.cx",
\response=d388dad90d4bbd760a152321f214

3af7, charset=utf-8

7. Server sends another challenge to the client:

<challenge
xmlns=’http://www.iana.org/assignments/sasl-mechanisms’>
<nNwYXV0aD11YTQwZ jYwMzM1YzQyN2I1NTI3Yjg0ZGIhYmNkZmZmZ A==

</challenge>

21
The decoded challenge is:

rspauth=ea40£60335c427b5527b84dbabcdff1d

8. Client responds to the challenge:

<response xmlns=’http://www.iana.org/assignments/sasl-mechanisms’/>

9. Server informs client of successful or failed authentication:

<success xmlns=’http://www.iana.org/assignments/sasl-mechanisms’/>
Or:
<failure xmlns=’http://www.iana.org/assignments/sasl-mechanisms’

code=7454’ />

10. Client initiates a new stream to the server:

<stream:stream
xmlns=’jabber:client’
xmlns:stream="http://etherx. jabber.org/streams’
to=’domain’

version=’1.0’>

11. Server responds by sending a stream header to the client, with the stream already

authenticated:

<stream:stream
xmlns=’jabber:client’

xmlns:stream=’http://etherx. jabber.org/streams’

22
id=’12345678"

from=’domain’

version=’1.0°>

The SASL authentication should provide added security to the Jabber system.[5] How-

ever, as of writing this thesis there is no Jabber client that have SASL support.

2.2.2. Dialback Authentication

XMPP includes a protocol-level method for verifying that a connection between
two servers can be trusted (at least as much as the DNS can be trusted). The method
is called dialback and is used only within XML streams that are declared under the
”jabber:server” namespace. The purpose of the dialback protocol is to make server
spoofing more difficult, and thus to make it more difficult to forge XML stanzas. Dialback
is not intended as a mechanism for securing or encrypting the streams between servers,
only for helping to prevent the spoofing of a server and the sending of false data from
it. However, domains requiring more robust security should not consider this option of

authentication.[5)

2.3. Other work On the Jabber Community

An incomplete draft of a Jabber security protocol has been published at Jabber
software foundation for securing Jabber conversation. The proposed protocol has the

following requirements:

e It must be an optional extension of the existing Jabber protocol.
e It must be transparent to existing Jabber servers.

¢ It must function gracefully in cases where some community members are not run-

ning a user agent that supports the protocol.

23

o It must make good use of XML.
e Jt must avoid encumbered algorithms.

e It must be straightforward to implement using widely available cryptographic

toolkits.
e It must not require a PKI.

The proposed draft have four main security sections discussed below:

2.8.1. Security Sessions

Security sessions are identified by a 3-tuple consisting of the following items:
1. Initiator. This is the JID of the user who initiated the session.
2. Responder. This is the JID of the user who responded to the initiator’s request.
3. Sessionld. A label generated by the initiator.

Security sessions are used to transport conversation keys between the conversation
participants. They are negotiated using an authenticated Diffie-Hellman key agreement
exchange. The two goals of the exchange are to perform the mutual authentication and
to agree to a secret that is known only to each.

Once the pair agrees on a shared secret, they each derive key material from the
secret; this key material is used to securely transport the conversation keys, which are
used to actually protect conversation data. The protocol data units (PDUs) that com-
prise the exchange are transported within existing Jabber protocol elements. There are
three PDU sessions to complete this task, shown in figure 2.1. Notice that the attribute

values are the version, initiator JID, responder JID, sessionld, and hmac value.

Attribute values, nonce, DH-group, G*

’ Session 1

confidentiality algorithms, and
authentication algorithms.

Check attribute values, nonce, DH-group.

Validate confidentiality and authentication Session 2

Check attribute values, nonce, DH-group.
Select confidentiality and authentication
algorithms.

algorithms. Validate authenticator.

. Y
Attribute values, nonce, DH-group, G ,
authenticator is constructed.

Attribute values and authenticator is Session 3

Y

‘ constructed. Include conversation keys.

Check attribute values. Validate
authenticator. process and add conversation
keys to the user agent's key store.

24

FIGURE 2.1: A security session’s XML packets generation and receiving between the
Initiator and the Responder.

| 2.3.2. Key Transport Mechanism

Conversation keys are transported using the symmetric key wrap feature of XML

Encryption embedded in the keyTransport PDU.

Example:

<!ELEMENT keyTransport
(convld, payload, hmac) >
<!ATTLIST keyTransport
version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED

sessionId CDATA #REQUIRED

<!ELEMENT convId (#PCDATA)* >

>

25
<!-- These are actually instances of xenc:EncryptedKey -->
<!ELEMENT payload

(confKey, hmacKey) >

<!ELEMENT hmac (#PCDATA)* > <!ATTLIST hmac

encoding (base64 | hex) #REQUIRED >

Validate attribute values, unwrap payload,
»| vatidate HMAC, and add keys to user
agent's key store.

Attribute values, convld, payload, and KeyTransprort
HMAC

FIGURE 2.2: XML packet for KeyTransport. The attribute values are the version,
initiator JID, responder JID, sessionld

2.3.3. Message Protection

A protected message is defined as a traditional Jabber message whose body content
is extended to include the transport of a cryptographically protected message body. The

two key features are
e The usual body element contains some arbitrary text.

e The message contains Jabber < z > element defining the Jabber:security:message

namespace; this element transports the protected message.

This mechanism has the advantages of allowing transparent integration with existing

Jabber servers and existing Jabber clients.|7]

26

Attribute values, encode message ProtectedMessage | Validate attribute values, unwrap payload,
“payload”, and HMAC — validate HMAC.

FIGURE 2.3: XML packet for Mesaage Protection. The attribute values are version,
from, to, convld, and seqNum.

2.3.4. Requesting Keys

This is the last main section in the proposed draft. However, its titles To Be Added

(TBA)! Hence, there are no more information added as of writing this thesis.

2.4. XML Security

XML is one of the most used language when it comes to designing structured
documents.[8] Hence,One of the advantages that J abber standard provide is the ability
to add custom security system without altering the Jabber standards, protocols, or
the Jabber server. Jabber provides the jx; extension protocol to allow the extension
of the core Jabber protocol. As an example consider the jmessage; packet example
mentioned previously which clearly shows the usage of the jx; extension. Hence, the
XML encryption standard proposed by the World Wide Web Consortium (W3C) can be
used in Jabber without actually modifying or altering the Jabber standards.[?]

As of writing this thesis, various components of XML security are at various stages
in the standardization process. XML Digital Signature (XMLDSIG) and XML En-
cryption (XMLENC) which provides authentication and confidentiality respectively are

among the XML cryptographic suit that is underdevelopment.|9)

27

3. SECURING JABBER MESSAGES TOOLS AND
REQUIREMENTS.

This chapter presents the environment setup, tools required, and goals need to be

achieved to secure a Jabber message and how to complete the task.

3.1. Proof of Concept

The goal for this thesis is to present a working Jabber client that uses Diffie-
Hellman key exchange and DES algorithms for key exchange and encryption/decrption
respectively. Since Jabber is an open source project, the search for such a client would
be easy on the internet, however as of writing this thesis, I didn’t come across a single
messenger that deploy both algorithms. Hence, there will be a need to build one or use
an already available client and modify the code to add the key exchange and encryption

support.

3.2. A secure Messenger!

The requirements to have a working secure Jabber client is limited to the following;:

e Basic knowledge of XML.
e Access to a cryptographic library.

e An already working, open source, Jabber Client.

3.2.1. Required Tools

I used Java as the main programming language in this work. The choice has been
made since Java is a machine independent language as along as there exist a Java Virtual

Machine that can run the code.[10]

28

The cryptographic library used here is the Java Cryptographic Extension (JCE)

from Sun Microsystems. Its already included in their release of J2SE 1.4.2 the beta
version.

The usage of the JCE library will be on the JavaJabberC (JJC), a client available

for download from the sourceforge.net web site. This client is very simple in its design

and looks. A more closer look at this client graphical interface will follow in the next

chapter.

3.2.2. XML Modification

Its not necessary to investigate XML document structure any further. The struc-
ture of a message XML tag is enough to carry out our task in modifying the Jabber
client. However, the following paragraphs will provide the information needed about the
XML tags implemented in this Wofk.

All the work in this project deals with the < message > tag since the goal is
to secure the message it self. As we show earlier how does a message XML packet
looks like in chapter 1, a modification is required to this packet to serve our purpose.
Please notice that there is no use of XML namespaces in this demonstration. The reason
behind omitting XML namespaces is to make it more easier and direct. In fact adding
the namespaces support will not require much work and it should be used to meet
the Jabber protocol standards to its fullest. Although there are no reason to reject this
design because of the fact that the < body > tag is actually optional in the < message >
protocol. Hence, omitting the < body > tag and replacing it with another that serve
different purpose but at the same time does not violate the < message > protocol will
have no side effect on the protocol design. The rest of this section will shows the added
XML tags to support the key exchange and the encryption of the data.

The design of the message packet has three extra tags:

1.< keyexzchange >: This tag is used to initialize the key exchange mechanism with the

receiver. It has this format:

29

<message from=’nodeChost’ to=’receiving-ID’>
<keyexchange>
MIIDKTCCApKgAwIBAgIBDDANBgkqhkiGOwO
BAQQFADCBOTELMAkKGA1UEBhMCWKEXFTATBg
NVBAgTDFd1c3R1cm4gQ2FwZTESMBAGA1UEB
xMJQ2FwZSBUb3duMRowGAYDVQQKExFUaGF3
</keyexchange>

</message>

2.< keyexchangestep2 >: This is the second step in the key agreement protocol which
consist of receiving the other party public key, which is the result of < keyezchange >

packet above. This tag has the formation as shown below:

<message from=’nodeChost’ to=’receiving-ID’>
<keyexchangestep2>
MIIDKkjasdkhjhHHMms jhYhsj767wJiGOwO
oksoKKKKjfd8734j2YHSKAWWRE fsdvTATBg
NVBAgTDFd1c3R1uMRowGAYDVESMBAGA1UEB
K1s8HHdfdnppwJuYTRsdfdssQQKExFUaGF3
</keyexchangestep2>

</message>

3.< cipherdata >: This is where all the encrypted message will be hold. This tag is
only used to hold the encrypted data and it will signal a decrypt method on the

receiver side. it has the formation of:

<message from=’nodeGhost’ to=’receiving-ID’>
<cipherdata>

JJks jfkds763ajsdhfudTHrY

30

</cipherdata>

</message>
The following diagram shows the four types of the message that can be used:

message is
Received

Check Message
Tags

¥ F
ot /<Keyexchange> Tag *i%{eyexchaﬂgaste%’? <giphercata> Tag
(ot Tag sy) (KOO __ Tag Exist? (e)

1

; 1
é Normal i‘-&essage) { Get Public Key) < Get Public Key) (G%;r;c;;ed

",

FIGURE 3.1: A flow diagram of the < message > protocol.

3.2.8. Cryptographic Code

The cryptographic library used in this demonstration is the Java Cryptography
Extension (JCE) provided by SUN Microsystems. JCE is a set of packages that provides
a framework and implementations for encryption, key generation and key agreement,
and Message Authentication Code (MAC) algorithms.[11]

The usage of this crypto library in this project is limited to the Diffie-Hellman
key exchange algorithm and the DES algorithm although the opportunity to add more

support for encryption algorithm is available.

31
The JCE library is bundled with the new release of the J2SE or J2EE and there

was no need to modify the installation to support the JCE library.
The following figure shows the Diffie-Hellman key exchange algorithm that will

take place between the two users namely Alice and Bob.

Alice Public Key Spec
Generate DH key " Generate DH key Store
pair pair Keys

Save Generated

Keys

Store Bob Public Key Spec 5 Sessi Store

Keys Kenerate ession Session
ey Key

Read Stored
Keys
Store Generate Session
Session Key
Key

FIGURE 3.2: A flow diagram of the Diffie-Hellman key exchange algorithm.

| The following will provide an explaination of the java code used to accomplish the

‘ key exchange and encryption tasks respectively.

3.2.3.1. Diffie-Hellman Key Exchange

There are three classes that deal with the key creation and exchange:

1.DHKeysCreation.class: This is the first step in generating and exchanging the

Diffie-Hellman public key with other Jabber users.

A fragment of the the code written to generate a Diffie-Hellman Key pair for any

of the Jabber users is shown below:

System.out.println("Creating Diffie-Hellman parameters...");

32

AlgorithmParameterGenerator paramGen
= AlgorithmParameterGenerator.getInstance ("DH");

paramGen.init(512);

AlgorithmParameters params = paramGen.generateParameters();

dhSkipParamSpec = (DHParameterSpec)params.getParameterSpec
(DHParameterSpec.class);

KeyPair Kpair = KpairGen.generateKeyPair();

System.out.println("Initialization ...");

KeyAgreement KeyAgree = KeyAgreement.getInstance("DH");
KeyAgree.init (Kpair.getPrivate());

// Encodes the public key

byte[] PubKeyEnc = Kpair.getPublic().getEncoded();

byte[] PriKeyEnc = Kpair.getPrivate().getEncoded();

2.DHKeysCreationStep2.class: This class will be called when a public key is received
from the sender who initiated the key exchange and it will extract the public key
material and start generating the public key and session key. The procedure will
not differ from the code instant above except in storing and reading the received

public key, example:

...
String directoryPath =
System.getProperty("user.home")+"//jabberkeys//"+to;
FileInputStream publicKeyFileInputStream = new
FileInputStream(directoryPath+"//"+to+"PublicKey.DH") ;
byte[JenryptedPublicKey = new

byte[publicKeyFileInputStream.available()];

33
publicKeyFileInputStream.read(enryptedPublicKey);

publicKeyFileInputStream.close();

KeyFactory kf = KeyFactory.getInstance("DH");
X509EncodedKeySpec x509KeySpec = new

X509EncodedKeySpec (enryptedPublicKey) ;

PublicKey alicePubKey = kf.generatePublic(x509KeySpec);

bobKeyAgree.doPhase(alicePubKey, true);
SecretKey bobDesKey = bobKeyAgree.generateSecret("DES");
ObjectOutputStream keyOut = new ObjectOutputStream(

new FileOutputStream(directoryPath+"//MyDesKey.des"));
keyOut.writeObject (bobDesKey) ;

keyDut.close();

return encodedData;

3.DHKeyAgreementPhasel.class: This class will be executed when a reply is re-
ceived from the receiver end-point which will hold the public key of the receiver
and since the user already have his or her public key available, the process will be
to generate the session key directly then the session key will be transformed to a

DES key then stored and used when necessary.

34
\\Generate the session key.
aliceKeyAgree.doPhase (bobPubKey, true);

byte[] aliceSharedSecret = aliceKeyAgree.generateSecret();

\\Use the session key for DES.
aliceKeyAgree.doPhase (bobPubKey, true);

SecretKey aliceDesKey = aliceKeyAgree.generateSecret ("DES");

\\Store the DES key.

ObjectOutputStream keyOut = new ObjectOutputStream(
new FileOutputStream(directoryPath+"//MyDesKey.des"));
keyOut.writeObject(aliceDesKey);

keyOut.close();

3.2.3.2. DES Encryption/Decryption

There is only one Java class that deal with DES encryption and decryption:

1.DesEncryption.class: This is the class where all the encryption and decryption take

place after the two users have agreed in a session key. The DES key stored earlier
will be read by the Java class and then used to encrypt or decrypt according to
the argument passed to it. The example below show a fragment of the encryption

method:

{....
String directoryPath =
System.getProperty("user.home")+"//jabberkeys//"+to;

ObjectInputStream keyIn = new ObjectInputStream(

35
new FilelInputStream(directoryPath+"//MyDesKey.des"));
Key key = (Key) keyIn.readObject();

keyIn.close();

Cipher bobCipher = Cipher.getInstance("DES/ECB/PKCS5Padding") ;

bobCipher. init (Cipher .ENCRYPT_MODE, key);

byte[] cleartext = msg.getBytes();
byte[] ciphertext = bobCipher.doFinal(cleartext);

encodedData = encoder.encode(ciphertext);

return encodedData;

-}

3.2.4. Open Source Jabber Client Code

The Jabber client source code is very long to be printed in papers; however, most
of the modifications were made in the JabberMessageCenter.java and for illustration, the
code below presents a check for the tag < cipherdata > and if it does exist then start

decrypting the message:

if (msg.cipherdata != null){
try{
String s = new String(JabberUtil.deXML (msg.cipherdata));
final String nick = jr.getNickname(msg.from);

DesEncryption cipher = new DesEncryption();

String cipherMessage = new String(cipher.decrypt(s,nick));

36

Looking at the code above we can see that msg.cipherdata is the XML node having
the name cipherdata and it will be sent to the deXML class which will get the value that
this node hold then it will be stored in the (s) string and then transferred to the class
DesEncryption to use the method called decrypt to decrypt the cipher message.

The integration of the crypto-code into the already available Java Jabber Client
code was very straight forward as long as there is full understanding of how does the
code implements the Jabber protocol.

Also modification to the graphical user interface were mandatory to present to the
user the availability of such support for key exchange and encryption. A more clearer
look at the graphical user interface will follow in the next chapter and a comparison will

also follow in chapter 5.

37
4. SECURE JAVA JABBER CLIENT ILLUSTRATION

This chapter préscnts the working secure Jabber client in graphical details which
explain how does the generation and exchanging keys take place and how does a secure
communication is established between two users.

The Jabber client interface that I am using is not difficult to understand; however
a step by step illustration is provided in this chapter. The first step is to start the Jabber

client which have the interface shown in figure 4.1:

FIGURE 4.1: The Jabber Client.

This client comes with a very neat plug-in which shows the actual messages sent
and received in raw XML format. This feature is very helpful in showing what is actually

going to the server! This is called the Debug Console as shown in figure 4.2:

38

& 1IC Debugyger Console

SENT:<ig type="get" id="1"><query xmins="jabber:iq.auth™> > ><fquery><fig>

RECV: <ig type="result™ id="1"><query xmins="jabber ig.auth"><usemame>al i<fusemame><p di><digest/><resourcel
><fquery><iig>

SENT <iq type="set” id="2"><query xmins="jabber ig auth"><\ almanei<it ><digest>Balc4balcdDafl e8ffean23

27 5B0e0bedc7 </digest> <resource>home </resource> </query> <ig>

RECV: <ig type="result” id="2"/>

SENT. <ig type="gat" id="3"> <guery xmins="jabher.iq: roslar/><fig>

SENT <presence lype="available™><show>chal</show></presence>

RECV:<ig type="sat"><guery xmins="jabber.iq:raster'/><fig> :
RECV:<iq type="result" from="almanei@rhymbax.com/hama" id="3"><query xmins="jabber:iq:raster"><item jid="almanei@jabber. E

com"” subscription="both"/><item jid="almanei@tipic.com” subscription="both"/></query></ig>
SENT:

SENT:

FIGURE 4.2: The Debug Console plug-in.

JJC does not support the creation and registration of an account with public
servers nor there exist a server for it. Hence, the user needs to have a working Jabber

account from any publicly available Jabber servers around the globe. The sign on window

is shown in figure 4.3:

FIGURE 4.3: Logon Window.

39

After the user logged in, the friend list will be displayed directly and the presence

will be noticeable by a light icon, figure 4.4. This is very important since this secure
model will not really be useful if the receiver is not online! All key exchange requests

will reside on the server and will be outdated!

@ amaneigisbberiom

almanzi@lipic.com

FIGURE 4.4: Client Friend List.

By double clicking on any of the names on the friend list, a message window will

appear, which has 4 buttons as shown in figure 4.5:

FIGURE 4.5: An empty message window.

40

The first button sends the message as normal (ascii) code with no encryption at

all and this is the actual messenger capabilities before the modification presented in this
thesis it only has a send button. However, the modified version shown above has three

buttons which have the following roles:

Generate Keys This is the button where it will generate and store the Diffie-Hellman

keys in a folder that have the name of the intended receiver.

Exchange Key This button will read the stored public key and encode it in (base64)

format then send it to the receiver.

Send Encrypted This button only has an action if a DES key have already been cre-

ated by the user which required the key exchange to be completed first.

Figure 4.6 shows the result of the Generate Keys button when it is clicked. It will
create the folder named jabberkeys which will hold the keys of the users which the

client will exchange the secure messages with.

help.proper... frumwizard.... ntuser.dat..., [&"ﬁiﬁfﬂf_ﬁzg plugini30_... pluginl31_... J3C-plugin...
L. strace |

B
g
Ll

FIGURE 4.6: The generated keys folder.

After the key generation, the sender will click on the key exchange button and the

messenger will read the public key of the sender in (base64) format and then wrap it in

41

the tag < keyexchange > as shown in figure 4.7:

SENT:

|RECV:<presence fo="almanei@thymbox com” frore="almanei@tipic. com/Mome"> <show>chat</shaw></presence>

|RECV: <presence lo="almanei@rhymbaox.com” from="almaneii@lipic. com/home™><show>chat </show> <x stamp="20030523T03
00" xmins="jabber x:delay" fom="almansi@tipic. com/Mmome"/></presence>

SENT:

RECV:<presence to="almanei@rhymbox.com” type=" ilable™ from="all i@tipic. com/home”><status>Dis cted</st
s></presance>

SENT:

SENT:

RECV: <presence to="almanei@rhymbax.com” from="almaneig@jabber. com/home"><show>chat</shaw> </presence>

SENT:

SENT

SENT:

SENT:<message to="almanei@jabber com™><subject>Message from JB_USER</subject><keyexchange>MIHMIGXBgkghkiGZ
BAWEwg YkCQQC1bKxP5CfjsOnMHiuDoOyN1 urXCgxxo4 KkDAF pZNVISxpd
lIgEIZbuXRpHathEVsXQ4F V1 2R/dImepO04F LknRAKAWGgi+zweuemBxyuAb zWkZpuLPCrQ YvhZ
9mMLy33keHHIWQCFBGgH24/pukitwY eVd Y bt Khfghi Y ikv/iNnAgIBANDAAJADV oI CMAXWGH
jooWjhG3gEaCaXCeALF xXimjBaHC THBs ZTNXTqZZE|/Bhi2 AM2NOF sQfSallaBF5mbUDS5Q==

</keyexchange></message>

SENT:

FIGURE 4.7: Key exchange XML packet.

The other party will receive the key exchange message figure 4.8, and for simplicity it

will not show any information about the key nor the message.

FIGURE 4.8: Key exchange message (receiver).

42

The user will double click on the name which hold the message and the execution

of generating the key material from the sender public key will start. Also since the public
key of the sender already available the secret key will be generated and the public key of
the receiver will go directly to the sender without requiring the user action. The sender
will receive the key exchange response as < keyexchangestep2 > XML tag as shown in

figure 4.9.

& 11C Debugger Console = T
[BEnCEs :

{SENT:

RECY: <presence to="almaneig@rhymbox. com” from="almanei@jabber. com/home™> <show>chat</shows </presence>
SENT:

SENT:

SENT:

SENT: =
SENT:<message to="almanei@jabher.com"><subject>Message from JB_USER</subject><keyexchange>MIHMIGXBgkghkiGIwIBAWE
3YkCQQCIbKxP5CsOnMHiuloOyN1urXCgxxod KkDAF pZNVISxpd
ligEIZbuXRpHathEVsXQ4FV1 2R/dImcpO04F LknRAKAWGqi+zweuemBryuAbzfWkZpul PCrQYvhZ i
SmMLy33keHHIWQCFBGEH24/pukitwYeVd Y bEgtkbfati Y ikwiNnAg BAVNDAAJADVaICMAXWGH
:jooWhG3qEaCqXCeALF xXimBaHCTHBs ZTN/XTqZ ZE|/BhiZBMr2NOF sQfSalla8F5mbUDSEQ==

i </keyexchange></message>

{SENT:

SENT:

RECV:<message to="almanei@rhymbox com/home" from="almanei@jabber.com/home"> <subject>Message from JB_USER</subject>
eyexchangestep2>MIHMIGXBgkghkiGIwOBAWEwg YkCQQCtbKxPSCisOnMHiuDoOyN1 urXCaxxad KkDAF pZNVISxpd

: IgEIZbuXRpHathEVsXQ4FV12R/USmcpO04F LknRAKAWG gi+2weuemBxyuAbzWkZpul PCrQYvhZ
9ImMLy33keHHIWQCFBGgH24/pukitwY 8Vd YbEgtiafgtiYikwiNnAg BAVNDAAIARBIRERWIIZD

wwhMQ/AdIptEHBY YVEB+TGKA+OQFwzB2cshi5uwdVA2iBEAF LpilsWgBF Wm Z3Kil Y4 IBQ==</keyexchangestep2></message>

SENT

SENT:

FIGURE 4.9: Receiving other user public key XML packet.

However, a confirmation message is displayed when a key is received asking the

sender wether to proceed with the secret key generation or ignore the task, figure 4.10.

FIGURE 4.10: Receiving a public key window.

43

When both users generate the keys and exchange their public keys, both of them

will have the same share secret which in fact transformed to a DES format and used as
a DES key to encrypt the message data. both of them will have the following folders

associated with the user name as an identifier, see figures 4.11 and 4.12.

:

[Juumn nts mri ‘-u limq«. alnyaned mbl;vrkr y< d!manellﬁ

t'-‘! MyPublicKey .enc
] xj‘ ENC Fie
AR

]

1 KB

FIGURE 4.11: The keys files folder.

moeskev des MyPrivateK... MyPublicKe...
almanel@rhymbox.coﬂm WU'#

Select an item to view its description.
Sea also:

|4 object(s) = e B o e WWWWEW puter

FIGURE 4.12: The keys files folder for the other user.

Now, either user can start encrypting messages. Figure 4.13 is an example of a

message that the user will send to the other party encrypted.

‘Here ig my contactinformation:
‘name : Saleh Almanal
“address: 23352 Hwy. 34, Comvallis, Oregon 97333
‘phone# 541-750-6244

‘emall: almanei@ete. orstedu

EHM anice dayl

FIGURE 4.13: Example message which will be encrypted.

14

We can see the encoded < cipherdata > in (base64) format after pressing the send

encrypted button in figure 4.14.

% 1C Pebugger Console

B e e O B e 1 et A 4

SENT:
1SENT:
SENT:
1 SENT:

XX+ AmMXmQtbKC Z1+a05 +QRC7wuSt Y QBApwslZzxARDIM
HAWIrAIDmUMTS JaBhve7 UZg Ykls/fP/BELSVLOF gRE baekToOhhG3wJPwd -iNBxiSnfwbMUB]

H¥SenreXQYRSyKjeGxxDplgwri/GNOtVEXTWimsleyQ-+dyl QrZF Bps GBS aHIchNIb</cipherdata></message>
SENT:

SENT:

{BENT:
SENT:

SENT:<message to="almanei@jahber.com™><subject>Message from JB_USER</subject><cipherdata>qGiCHEpYBOANTVO YNGCERKOBAK! |

FIGURE 4.14: The encrypted message XML packet.

45
The receiver on the other end should receive the same encoded message that the

sender sent as shown in figure 4.15.

13 Debugger Console
SENT.
SENT:
SENT.
|SENT:
RECV:<message to="almanei@jabber com” frorm="almanei@rhymbox.comhome™><subiect>Message from JB_USER</subject><cipherdatay
GICHSpyBOANT VO YNCSBKOBAKXp-+b B AMm OB Ti+a05 +ORCTwidt Y GBAsws T2t ARDIM
HAWIAIDMUMTS JaBhve? UZg Y kls/riP/ELEVLOF gREbaehToOhhE3w) Pwd-tNBxiOnfwa MIEG)
HrSdnrdXQYRSyKjeGxxDplgEwr/GNOtVEXTWirnsleyvQ +dyl QrZFBpBGASaHIcvNIb</cipherdata></message>
SENT:

-SENT:

SENT:

SENT:

:SENT.

SENT:

SENT: o
SENT g
. hd

FIGURE 4.15: The encrypted message XML packet(receiver.)

Figure 4.16 shows the reply window which displays the message received.

“|Here is my contact information:
“iname ! Saleh Almanet
address: 28352 Hwy. 34, Corvallis, Oregon 87333
phone# 541-760-6244

email: almanei@ece orst edu

Have a nice dayl

FIGURE 4.16: Reply message window.

46

When the receiver double click on the name that has a message waiting, the pro-

gram will check for the message tag and if its < cipherdata > then it will fetch the DES

key corresponding to the sender and will decrypt the cipher data and display it in a reply
window with the option to encrypt the reply as shown above.

however, if the receiver didn’t want to encrypt the message then the button ”Send

Normal” will do just that as shown in figure 4.17.

1IC Debugger Console

|SENT;
{SENT:
SENT;
SENT:
SENT:
ISENT:
SENT: ;
RECV: <message to="almanei@jabber.com” from="almanei@thymbox.com/home"><subject>Message from JB_USER(Isuhjan:txcipherdataﬁ
:GjCHapyBOAN7VO YNgC58k 0BAKrXmi-+h3AmXmQtbKCZ+205+QRCTwudt Y OBApws|Zzx ARDIM

++WErAIDmUMTS JaBhve7 UZg Y kls/PBELEVLOF gREbaebToDhhE3w.Pwd+hNBxSnfwlMJE)
NSdnrdXQYRSyKijeGxxDalgifwr/ GNOtVEXTWimsleyvQ +dyt QrZFBpEGESaHIckNIb</cipherdala> </message>

SENT:

SENT:

:5ENT.

|SENT <message to="zglmanei@rhymbox.comhome™><subject>Message from JB_USER</subject><bady>Thank you</aody></massage>
SENT:

= !}f&

FIGURE 4.17: Normal reply XML packet.

This illustration should give a clear view of the graphical interface and the user
action. Also, with the help of the Debug Console the user or developer can check exactly

how does the message is parsed using the Java XML parser.

47
5. EXPERIMENTAL RESULTS AND ANALYSIS.

5.1. Simulation Environment.

This Secure Jabber Client application presented in this thesis was developed using
the SUN One Studio environment installed in a Windows XP Professional machine. It
have all the tools required to link and compile the project code. However, since the code
is written in Java then there will be no problem in compiling it in any other Java compiler
or environment as long as the JRE 1.4.2 that have the JCE cryptographic library exist
in the CLASSPATH.

There were no significant problems in coding the cryptographic codes nor in mod-
ifying the JJC code; however, understanding how the code implements the Jabber pro-
tocols and most importantly parsing the XML format and getting the values from an

XML formatted message were the most time consuming in regards to implementation.

5.2. Jabber Security Analysis.

The working model in this thesis is far from complete as a secure Jabber client.
However, this demonstration should open the door for developers to start designing
their custom security functions for the Jabber protocol and contribute to the Jabber
community to finalize the standards for securing a Jabber environment.

On the other hand, this model can be adopted by the regular users who care about
their privacy from the server administrators since all the message data is encrypted using
a not so easy, but possible to crack, algorithm known as DES.

There are some vulnerabilities that have to be mentioned to clarify the actual
security strength of the Secure JJC. The Intruder-in-the-Middle attack is possible for
the Diffie-Hellman key exchange where an intruder can fool the two users.[12]

DES is also an old algorithm that is going to be replaced with Advance Encryption

Standard (AES). It have been possible to break DES in a matter of days, and with the

48
advancement in technology there will be no place for DES as a secure algorithm in the
future.[13] However, the design implemented here can easily be extended to support the
new AES algorithm and make DES an optional algorithm or replace it with the modified
algorithm named TripleDES.

JJC original design didn’t support any cryptographic algorithms and so do most of
the Jabber clients available to the public except those clients which support OpenPGP
as mentioned earlier. The following section will compare the two designs in a graphical

illustration and also discuss the features added.

5.3. Comparison to the Original Design

The comparison to the original design will have two sections. The first is the
graphical comparison while the second present the features added and representation of

the table introduced at chapter 2.

5.3.1. Graphical Interface

The new implementation of the JJC differ from the original design in two graphical

areas as seen in the figures below: Figure 5.1 shows the original message window while

FIGURE 5.1: Original Message Window.

49
Figure 5.2 shows the modified message window. Also the Reply Message Window is

almane djabber o

FIGURE 5.2: Modified Message Window.

modified from the original to include the ”Send Encrypted Reply” button as shown

below:

Helio Originali

FIGURE 5.3: The Original and Modified Reply Message Window.

5.3.2. Features

50

As mentioned in chapter 2 that current security implementation for Jabber are

inadequate. The application presented in this work can be used against that fact since

it proofs the ability to support almost any symmetric or asymmetric cryptographic al-

gorithms. which will modify the table 2.1 as shown:

Security Property

Description

Existing Technology

Jabber Support

Authentication

Ensures an entity is

who it claims to be.

JAASI, Kerebos, Mi-

crosoft Passport

Jabber Authentication Pro-
tocol and SASL

Authorization

Determines what an
entity has permissions
for accessing(data) or

controlling(resources).

JAAS, access control

lists

Binary authorization. Unau-
thenticated users are granted
certain rights, and authenti-

cated users others.

Integrity

Ensures data has not

been tampered with.

Message digests.

Can Support Message di-

gests

None-repudiation

Ensures that the au-
thor of data can always

be identified.

Digital signatures.

Can support Digital signa-

ture.

Confidentiality

Ensures data can be
read only by authorized

entities.

Encryption

Full Encryption support.

TABLE 5.1: Computer security properties compared with Jabber’s modified
capabilities.

The table above shows an increased chance in adopting Jabber based IM as the

future IM protocol.

The next chapter will discuss the future of Jabber and the future work that can

be done to increase the Jabber protocol adoption in the network communities.

51
6. CONCLUSION AND FUTURE WORK.

6.1. Can Jabber be Secure?

This thesis proved that existing Jabber protocol can be secured easily when the
required modification is made. However, when looking at the market point of view
of security, in the present time, we can see that Jabber is not a good candidate for
an Instant Messaging System which the industry is shopping for since it is lacking the
security support the industry and corporate are looking for.[14] However, this work can
be extended to support more cryptographic algorithms and protocols, such as digital
certificates, digital signatures, public key cryptography, i.e. RSA.

Judging from the results of this project, Jabber protocol will be very successful
if Jabber developers start designing support for cryptographic libraries or even have a
standard open source library as a backbone for security tasks carried by Jabber, such an
example is the new release of the XML encryption library (still in beta version) by the
W3C, which can be used in the Jabber protocol since its based on XML format.

As seen in table 5.1, Jabber future can provide most if not all the security re-
quirement that the industry is looking for, confidentiality, authorization, authentication,

Integrity, and finally non-repudiation.

6.2. Jabber is not only IM

The Jabber protocol is not limited to Instant Messaging alone, its far more flexible
to support applications that are used daily like scheduling meetings and White boarding!
The Jabber Protocol is extensible since its relies on XML in every piece of the core
protocol which means that anyone who have good imagination or even have a specific
task that can be deployed in a network, Jabber will probably can support it with little

modifications to extend the core protocol.

52
6.3. Future work

The future of a secure Jabber environment is very promising and the work done
by the XMPP group to standardize the end-to-end encryption and the added feature
of SSL/TLS and SASL in the core protocol is a sign of such future. Developers that
implement their own specific design without actually modifying the core Jabber protocol
can be a valuable source of speeding the task to reach the goal of having a well balanced
secure Jabber system. This thesis is an example of such work that can be added to the

community of Jabber users and developers.

10.

11.

12.

13.

14.

53
BIBLIOGRAPHY

“What is jabber,” WWW page, 2003, http://www.jabber.org.

Robin Cover, “IETF Charters Extensible Messaging and Presence Protocol
(XMPP) Working Group.,” WWW page, 2002, http://xml.coverpages.org)/.

Iain Shigeoka, Instant Messaging in Java The Jabber Protocols, Manning Publica-
tions Co., 2002.

Stephen Lee and Terence Smelser, Jabber Programming, Hungry Minds, Inc., 2002.

J. Miller P. Saint-Andre, “Xmpp core draft-ietf-xmpp-core-12,” WWW page, May
2003, Expire on November 2, 2003.

P. Saint-Andre, “End-to-end object encryption in xmpp,” WWW page, May 2003,
Expire on November 18, 2003.

Paul Lloyd, “A Framework For Securing Jabber Conversations.,” WWW page,
2002, http://www.jabber.org/.

Naokhiko Uramoto Makoto Murata Andy Clark Yuichi Nakamura Ryo Neyama,
Kazuya Kosaka Hiroshi Maruyama, Kent Tamura and Satoshi Hada, XML and
Java Second Edition, Developing Web Applications, Prentic, 2002.

Donald E. Eastlake III and Kitty Niles, Secure XML The new Syntaz for Signature
and Encryption, Addison-Wesley, Person Education, 2002.

Cay S. Horstmann and Gary Cornell, Core Java2, Volume II-Advanced Features,
Addison-Wesley, Person Education, 2002.

“Java Cryptography Extension,” WWW page, 2003, http://java.sun.com/.

H.X. Mel and Doris Baker, Cryptography Decrypted, Addison-Wesley, Person Ed-
ucation, 2001.

Wade Trappe and Lawrence C. Washington, Introduction to Cryptography with
Coding Theory, Prentic-Hall, Inc., 2002.

Symantec Security Response, “Secure instant messaging,” White Paper, May 2003,
http://www.symantec.com/avcenter /whitepapers.html.

