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on the system evaluation function. Difference evaluations have proven to produce

superior learned policies in many multiagent settings.

Although difference evaluations have produced excellent empirical results, there

are still three key research questions that must be addressed regarding their
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Chapter 1 – Introduction

1.1 Motivation

The automation of tasks through agent-based control is becoming more critical in

real-world applications, as autonomous systems have significant advantages. For

example, robots for planetary exploration, such as the Curiosity Rover, must also

be autonomous. The rover is continuously exploring Mars terrain; if humans were

required to constantly direct the rover, thousands of hours of manpower would be

lost on a task that could be automated, and preventing those humans from working

on other tasks. Further, by automating the task, more scientific research can be

done due to elimination of lag from human directions. Ultimately, automation

allows for agents to perform tasks without requiring human interaction; this allows

humans to spend time on other tasks, increasing overall productivity.

Often, many autonomous agents are needed to achieve a complex task. For

example, suppose there were 100 robots exploring Mars. Although one rover may

explore Mars, many such rovers would be far more effective, allowing for a far

greater amount of information to be collected and analyzed. In these multiagent

systems, developing autonomous controllers becomes more difficult. Agents in

a multiagent system interact with each other and the environment, and correct

control decisions are often difficult to determine. For example, in the 100 Mars
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rover setting, it is often unclear which area each rover should travel to in order

to maximize the overall amount of data collected. Proper techniques to control

and coordinate multiple agents must be developed in order to ensure efficiency and

performance.

The control and coordination of large systems introduces a complexity well

beyond the autonomy of a single agent. Though autonomy provides significant ad-

vantages for many applications such as self-driving cars, unmanned aerial systems,

or household robots assisting with the elderly, it is often impossible for a human to

determine how to control a large set of autonomous devices. There are simply too

many agents to consider each individually, and coupling between agents is impos-

sible to understand and predict for a human. Multiagent learning algorithms are

designed to allow agents to learn policies, such that they may act autonomously

but coordinate with other agents in a system in order for the collective of agents

to achieve a system level goal.

Cooperative Coevolutionary Algorithms (CCEAs) involve training a set of

autonomous agents to coordinate in order to achieve a system-level objective.

Developing control policies for each agent in a multiagent systems is a critical

area of research, and is involved in many real-world applications, including air-

traffic control, distributed sensor network control, and multiple mobile robot con-

trol [13, 42, 48, 58, 84, 86, 116]. A key challenge to developing these control policies

lies in addressing the credit assignment problem.

Multiple autonomous agents each follow a local control policy and interact with

the environment and other agents in the system, making it difficult to determine
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the effectiveness of a particular agent’s control policy [4, 76, 94, 96]. The credit

assignment problem must be addressed in order to develop adequate control policies

for a multiagent system.

As a simple example of the credit assignment problem, consider the case of

100 mobile robots performing a surveillance task over some environment, and the

goal is to collect as much information about the environment as possible. The

problem which must be addressed is how to provide agent-specific feedback in or-

der to determine the effectiveness of each agent’s control policy. One option is

to use the overall system level performance to provide feedback to each agent.

However, this results in an unfavorable signal-to-noise ratio. A single agent cannot

determine how it impacted the system performance, because 99 other agents are si-

multaneously impacting the system. Another option is to provide feedback to each

individual agent based on that agent’s amount of information collected. However,

this feedback encourages individual agents to collect as much data as possible,

which often results in agents competing over “easy to obtain” data and ignoring

the “hard to obtain” data, ultimately harming overall system performance. In this

case, agent objectives are not aligned with the system objective function, meaning

agents acting to optimize their feedback actually decrease system performance. In

order to address the credit assignment problem, agent feedback should have both

a favorable signal-to-noise ratio, as well as be aligned with the system performance

in order to ensure agents act to help the overall system.

One promising solution to the credit assignment problem is the difference eval-

uation function, which approximates an individual agent’s impact on the system’s
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overall performance [3,7,118]. The difference evaluation function has two key theo-

retical properties which allow it to provide excellent agent-specific feedback. First,

any agent which improves the value of its own difference evaluation also improves

the overall system performance [5]. This alignment between an agent’s local ob-

jective function and the system objective function ensures that learning agents

are not encouraged to take actions which are detrimental to the overall system

performance. Second, the difference evaluation function removes all portions of

the system evaluation function which do not depend on the agent being evaluated.

This results in a favorable signal-to-noise ratio in the agent’s feedback signal, allow-

ing the agent to more easily determine the impact of taking a particular action [5].

In addition to these theoretical properties, difference evaluation functions have

produced excellent empirical results in a variety of multiagent systems, including

congestion games, multiple robot coordination, and air-traffic control [2, 39,120].

Although difference evaluation functions have useful theoretical properties in

addition to extensive empirical results supporting their effectiveness, there are still

many key research topics regarding difference evaluations that must be addressed.

First, we must determine the compatability of difference evaluation functions with

other coordination techniques. This allows us to determine what performance gains

are available, in order to develop the best control policies possible. Second, we must

conduct a prescriptive theoretical analysis, in order to determine under what con-

ditions difference evaluations are expected to improve system performance. Third,

we must develop a method to approximate difference evaluations, in order to imple-

ment them in systems where difference evaluations can not be directly computed.
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1.2 Contributions

This dissertation addresses each of the three research topics described above. In

particular, the contributions of this dissertation are to:

1. Present novel fitness assignment operators which utilize the difference eval-

uation function, and demonstrate the compatibility of difference evaluation

functions with other coordination mechanisms, as well as the performance

gains attainable with these pairings.

2. Provide an evolutionary game theoretic analysis of difference evaluations,

and derive conditions under which they are expected to improve multiagent

system performance.

3. Derive a novel method to approximate difference evaluation functions that

relies on local state and action information as well as a broadcast value of

the system performance.

The first contribution addresses the compatibility of difference evaluation functions

with other coordination mechanisms, and how system performance is impacted

through such combinations. Combining coordination mechanisms is often a dif-

ficult task, because different coordination mechanisms focus on different aspects

of coordination. For example, difference evaluations focus on whether a particu-

lar agent could have performed better given a team of collaborating agents, while

other coordination mechanisms such as leniency or hall of fame methods focus on

whether a different team is better suited to collaborate with a particular agent. We
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demonstrate that agent-centric and team-centric approaches to agent feedback are

compatible, and in fact result in significant performance gains over either method

used alone.

The second contribution addresses the theoretical conditions which guarantee

that difference evaluations will improve performance when compared to traditional

coordination approaches, using an evolutionary game theoretic framework to derive

these conditions. Multiagent learning systems are difficult to analyze theoretically,

due to the high coupling between agents and the limited state information available

to each agent. Very few prescriptive analyses have been conducted on multiagent

learning techniques, and these techniques are often judged solely on their perfor-

mance in a variety of empirical tests. This dissertation provides a prescriptive

theoretical analysis of difference evaluation functions, deriving conditions which

determine when difference evaluations provide benefits to the system and should

thus be implemented.

The third contribution involves deriving a method to approximate difference

evaluation functions when system and state information are limited. While differ-

ence evaluations provide good performance in multiagent learning systems, they

are often difficult or impossible to directly compute in some systems. In order to

implement difference evaluations to achieve improved performance, they often need

to be approximated. This approximation is typically difficult, due to the global

knowledge requirements of calculating difference evaluations. We demonstrate that

difference evaluations may in fact be approximated using only local knowledge, al-

lowing for their implementation in any generic multiagent system where the value
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of the system evaluation function is broadcast.

This dissertation provides evidence demonstrating the effectiveness of differ-

ence evaluation functions; in particular, we demonstrate what performance gains

can be achieved through the use of difference evaluation functions combined with

other coordination mechanisms, derive conditions under which we expect to see

these performance gains, and provide an approach to approximate difference eval-

uations in systems where global state knowledge is unavailable. By demonstrating

compatibility and performance gains, providing a theoretical analysis, and provid-

ing a methodology for implementation, we demonstrate the real-world usefulness

of difference evaluation functions.

The rest of this dissertation is organized as follows: Chapter 2 presents neces-

sary background information and related work. Chapter 3 presents fitness assign-

ment operators incorporating difference evaluation functions. Chapter 4 provides

an evolutionary game-theoretic analysis of difference evaluation functions, and de-

rives conditions under which they are expected to improve system performance.

Chapter 5 presents a methodology for approximating difference evaluation func-

tions. Finally, Chapter 6 concludes the dissertation.
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Chapter 2 – Background

The following sections provide background information on evolutionary algorithms,

cooperative coevolutionary algorithms, difference evaluation functions, fitness func-

tion shaping, evolutionary game theory, and evaluation function approximation.

2.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of stochastic search algorithms, which

have been shown to work well in complex domains where gradient information

is not readily available [11, 20, 52, 74, 105, 133]. EAs typically contain three ba-

sic mechanisms: solution generation, mutation, and selection. These mechanisms

act on an initial set of candidate solutions (the population) in order to generate

new solutions and to retain solutions which show improvement [22, 80, 131]. A

general evolutionary algorithm is shown in Algorithm 1. A population of k can-

didate solutions is initialized randomly. For each generation in the evolutionary

algorithm, the following steps are taken. First, mutated copies (slightly altered)

of each solution in the population are created, doubling the population size to 2k.

Then, each solution in the population is evaluated, and assigned a fitness related

to that solution’s performance. Finally, k solutions are selected for survival to
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the next generation, with the probability of selection depending on the fitness of

that solution. As long as the fitness operator captures the overall quality of the

solution, and the selection operator favors higher fitness individuals, the quality

of the solutions in the population gradually improves with respect to evolutionary

time.

Algorithm 1: Evolutionary Algorithm

1 Initialize Population P with k solutions ;
2 foreach Generation do
3 foreach Population member pi do
4 create mutated copy of pi denoted p1i ;
5 add p1i to population P

6 end
7 foreach Population member pi do
8 assign fitness fi to agent pi ;
9 end

10 select k members to survive based on fitness ;

11 end

EAs have shown excellent results for finding good solutions in single-agent

settings [12,115,132], but need to be modified in order to apply to large multiagent

search problems. One such modification is coevolution, which is detailed in the

following section.

2.2 Cooperative Coevolutionary Algorithms

Cooperative Coevolutionary Algorithms (CCEAs) are an extension of EAs which

are well-suited for multiagent domains [18,31,44,49,55,88,113,123,125,129]. In a
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CCEA, multiple populations evolve simultaneously in order to search for optimal

policies for interacting agents [92, 107, 109, 122, 124, 126]. A general cooperative

coevolutionary algorithm is given in Algorithm 2. A CCEA contains multiple

coevolving populations, each of which corresponds to an agent in the system. At

each generation, the following steps are executed. First, each population produces

mutated solutions, just as in the standard evolutionary algorithm. Then, teams

are created by drawing agents from each population (each agent is assigned to

one team). The effectiveness of these teams are evaluated, and fitness is assigned

to each agent on the team and then the agent is returned to its population. For

each population, agents are selected to survive in the same manner as in standard

evolutionary algorithms.

Algorithm 2: Standard CCEA

1 Initialize N populations of k solutions ;
2 foreach Generation do
3 foreach Population do
4 produce k successor solutions ;
5 mutate successor solutions

6 end
7 for i “ 1 Ñ 2k do
8 randomly select one agent from each population ;
9 add agents to team Ti ;

10 simulate Ti in domain ;
11 assign fitness to each agent in Ti
12 end
13 foreach Population do
14 select k solutions using ε-greedy
15 end

16 end



11

In a CCEA, the fitness of an agent depends on the interactions it has with other

agents [23,28,75,92,113,130]. The fitness of an agent acting in a team is somehow

related to the overall team performance, which the agent cannot completely control.

Thus, assessing the fitness of each agent is context-dependent and subjective [90].

Consider the example of two soccer-playing agents [91]. The first agent’s task is

to pass the ball to the second agent. The second agent must receive the pass and

then shoot the ball into the goal. Success in this system is defined as a goal being

scored. However, this system evaluation function does not provide clear agent-

specific feedback. The first agent may make a perfect pass, but the second agent

could either improperly receive the pass or miss the shot on goal. In this case, the

first agent successfully completed its portion of the task, but the overall system

goal was not met. Conversely, the second agent could be skilled at receiving passes

and shooting, but if the first agent delivers a bad pass, then the second agent

won’t have the opportunity to score a goal. In either case, an agent with a “good”

policy cannot determine that it took the correct actions based on feedback from

the system evaluation function. Concepts such as leniency, the hall of fame, or

difference evaluation functions all address this credit assignment problem, and are

detailed in the following sections.

Clearly, credit assignment should not depend on the overall system perfor-

mance, but on how well each individual agent completed its task. Solving this

credit assignment problem is one of the primary concerns in cooperative coevolu-

tionary algorithms, and this problem is addressed with fitness function shaping.

We focus on shaping agent fitness values with the difference evaluation function.
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2.3 Difference Evaluation Functions

The agent-specific Difference Evaluation Function Dip~s,~aq has been empirically

shown to be an effective fitness assignment operator in multiagent systems, and is

given by [5, 6]:

Dip~s,~aq “ Gp~s,~aq ´Gp~s´i ` ~cs,i,~a´i ` ~ca,iq (2.1)

where Gp~s,~aq is the global evaluation function for a particular system state ~s and

joint action ~a, and Gp~s´i`~cs,i,~a´i`~ca,iq is the global evaluation function without

the effects of agent i. The term ~s´i is the system state without agent i; ~a´i is the

set of joint actions without agent i. The terms ~cs,i and ~ca,i are the counterfactual

state and action, respectively, which are used to replace agent i, and must not

depend on the state and action of agent i. This notation is used for brevity for the

rest of this dissertation, but should be explained in detail. For an n-agent system,

the state and action vectors are:

~s “ ts1, s2, ..., snu

~a “ ta1, a2, ...anu

The state and action vectors without the effects of agent i are:

~s´i “ ts1, s2, ..., si´1, 0, si`1, ..., snu

~a´i “ ta1, a2, ..., ai´1, 0, ai`1, ...anu
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The counterfactual vectors contain the counterfactual action and value for agent

i, and are zero padded elsewhere to allow for vector addition. They are defined as:

~cs,i “ t0, 0, ..., 0, c
i
s, 0, ...0u

~ca,i “ t0, 0, ..., 0, a
i
s, 0, ..., 0u

Intuitively, the difference evaluation function gives the impact of agent i on the

global evaluation function, because the second term removes the portions of the

global evaluation function not dependent on agent i. Note that in systems with a

differentiable system evaluation function, it follows from Equation 2.1 that:

BGp~s´i ` ~cs,i,~a´i ` ~ca,iq

Bai
“ 0 (2.2)

ñ
BDip~s,~aq

Bai
“
BGp~s,~aq

Bai
(2.3)

where ai is the action taken by agent i. Thus, an agent acting to increase the value

of Dip~s,~aq will also act to increase the value of Gp~s,~aq. This property is termed

factoredness [5]. Further, as the second term of Dip~s,~aq removes the effects of all

agents other than agent i, the difference evaluation function provides a feedback

signal with much less noise than Gp~s,~aq. This property is termed learnability [5].

By being factored and learnable, the Difference Evaluation Function provides very

effective agent-specific feedback for learning agents within a multiagent system.

In the context of a CCEA, the difference evaluation function is a much better fit-

ness assignment operator than the global evaluation function [39]. In the context
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of multiagent reinforcement learning, the difference evaluation function provides

accurate rewards for actions taken by individual agents [40]. The difference evalua-

tion function has provided excellent results in many domains, including distributed

sensor network control [40], rover control [6, 39], and air-traffic control [5].

Although there is theoretical and empirical evidence suggesting difference eval-

uations are beneficial in multiagent systems, there are three key research questions

which must be addressed. First, it is unknown if difference evaluations are com-

patible with other coordination mechanisms, and whether combining difference

evaluations with other coordination mechanisms improves system performance in

CCEAs (as opposed to difference evaluations alone); such an analysis is necessary

in order to provide the best system performance possible, and to provide evidence

that difference evaluations can provide high enough performance for implementa-

tion in real-world systems. Second, there is no prescriptive theoretical analysis giv-

ing conditions under which difference evaluations are expected to improve system

performance. This means there is no set of conditions that may be used to deter-

mine whether difference evaluations should be used. Third, computing difference

evaluations is often difficult in practice. In order to compute Gp~s´i`~cs,i,~a´i`~ca,iq,

an agent must have knowledge of the global system state, the joint action taken by

all agents, and the mathematical form of Gp~s,~aq. In practice, agents never have

access to Gp~s,~aq (or traditional optimization techniques would be used), and very

rarely have access to global state and action information. This means that directly

calculating the difference evaluation function is often impossible, and a technique

for approximating these functions is necessary for real-world implementation.
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In order to demonstrate that difference evaluation functions are useful tools

for real-world applications, we must address the three research questions detailed

above. Performance, theoretical benefits, and a path to implementation must all

be demonstrated to provide insight on the real-world applicability of difference

evaluation functions.

2.4 Fitness Function Shaping

The following sections describe multiple methods for shaping fitness functions in

CCEAs. In addition to difference evaluation functions, we consider biased searches,

leniency, shaping for alignment, evolving teams, and hall of fame methods.

Biasing Coevolutionary Search

Panait et al. [90] biased the evolutionary search in order to find optimal solutions,

rather than becoming stuck at locally optimal points. In traditional coevolution,

a single agent is rated on how well the team does as a whole; every agent in

the team gets equal credit. This results in an unfavorable signal-to-noise ratio,

as each agent is unable to determine its individual contribution to the team’s

performance. In a Biased Cooperative Coevolutionary Algorithm (BCCEA), the

fitness of an individual is based partly on its interactions with other agents (as

in usual CCEAs), and partly on an estimate of the best possible fitness for that

individual if it is partnered with optimal collaborators. It is of note that optimal
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collaborators are not optimal agents from a system-level perspective; rather, they

are optimally suited to collaborate with an agent given that agent’s particular

policy. Biasing the agent’s fitness in this manner gives an indication of the best

possible system-level performance that particular agent can attain, given that the

agents it collaborates with are optimized to collaborate with that agent. By biasing

the coevolutionary search in this manner, the algorithm is better able to search for

optimal policies, rather than stable policies, because each agent receives feedback

related to its individual performance, rather than solely the team’s performance.

One issue with this approach is that estimating how an agent would perform with

optimal collaborators is a nontrivial task, and becomes increasingly difficult in

complex domains. To address the difficulty of analytically determining optimal

collaborators, the concept of leniency was developed to approximate the set of

optimal collaborators for an agent.

Leniency

Panait et al. [91] introduced the concept of lenient learners in coevolutionary algo-

rithms, which are agents which forgive possible mismatched teammate actions that

result in poor team performance. Using lenient learners in coevolution is shown

to provide learners with more accurate information about their policies, which in-

creases the likelihood of converging to an optimal solution. In practice, leniency

is achieved by pairing agents with multiple sets of collaborators, and taking the

highest team fitness achieved from all runs. This lowers the likelihood that a learn-
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ing agent will receive poor feedback simply because it was paired with suboptimal

teammates. Leniency provides a mechanism for approximating the set of optimal

collaborators for an agent; by pairing an agent with multiple sets of collaborators

and taking the highest fitness attained, leniency assigns fitness to agents based on

their best-known possible performance.

Fitness Function Shaping

Hoen and De Jong shaped the utilities of the agents so as to contribute to the

system evaluation, such that an agent maximizing its individual utility would act

to increase the system evaluation. By shaping agent fitnesses, the learning process

is sped up considerably [64]. This work is similar to that of Agogino and Tumer,

and Knudson and Tumer, who utilized difference evaluations as fitness functions

to evolve coordination in multiagent systems [5, 73]. By shaping fitness functions

such that each agent’s fitness is related to the individual’s contribution to team

performance, the signal-to-noise ratio is improved considerably, allowing for faster

learning and better learned performance [41].

Evolving Teams

Coevolution is frequently a good algorithm to use in multiagent systems with het-

erogeneous agents. Haynes et al. used evolutionary algorithms to evolve teams

of predators [63]. Rather than evolving single predators, one member of the pop-
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ulation consisted of four predators. In this manner, the predators can evolve to

cooperate. By evolving teams rather than individual agents, communication is not

required in the domain; in place of communication, the team of predators evolves

to act as if they know the other agents’ future actions based on the state of the

system [111] Though effective, this approach becomes computationally inefficient

when the size of the team becomes large, as each population member in the evo-

lutionary algorithm consists of a full set of cooperating agents. Further, although

the result of the algorithm is a set of policies for a multiagent system, the process

to create these policies is centralized. As a result, evolving entire teams typically

results in slow convergence.

Hall of Fame

Rosin and Belew [101] introduced the concept of the Hall of Fame for competitive

coevolution, in which top individuals are saved in order to test against in later

generations. There are two reasons why it is beneficial to save these top individuals.

First, keeping top individuals contributes genetic information to later generations,

which is imperative when conducting any evolutionary algorithm. Secondly, by

keeping top individuals, new individuals in later generations may be tested against

the hall of fame members. We extended this concept to CCEAs by keeping hall

of fame teams, rather than hall of fame individuals [39]. The fitness of an agent is

then a weighted average of that agent’s fitness when it performs with its team (as in

standard coevolution), as well as its fitness when it is placed on the best performing
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team known. In this manner, desirable genotypes won’t be lost if they perform

poorly for a few generations due to being paired with suboptimal collaborators in

the coevolutionary algorithm.

Potential Based Reward Shaping

If improperly utilized, reward or fitness function shaping can lead to unintended

and undesirable behaviors [47]. For example, when trying to make an agent learn

to ride a bicycle from one point to another, an additional reward may be added for

each timestep the bicycle stays balanced [47, 97]. However, the agent learned to

exploit this reward by riding continuously without reaching its destination. Poten-

tial based reward shaping ensures that such problems do not occur, by calculating

the difference between a potential function Φ defined over a source and destination

state [47]:

PBRS “ r ` γΦps1q ´ Φpsq (2.4)

where r is the original reward, s is the source state, s1 is the destination state, and

γ is a discount factor. Potential based reward shaping is proven to not alter the

optimal policy of an agent, while ensuring shaped rewards are not inappropriately

exploited by an agent.
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2.5 Evolutionary Game Theory

Evolutionary Game Theory (EGT) describes a set of models which can be used

to analyze evolutionary processes, and are well suited for analyzing cooperative

coevolutionary algorithms [90, 123]. EGT models populations of individuals who

interact with each other in repeated trials, and these models are used to analyze

how populations change with respect to evolutionary time [78,103,108]. Typically,

EGT models assume that populations are infinite in size, and that expected fitness

values are based on distributions over a finite number of strategies [17, 100]. The

following sections define notation used in EGT settings, as well as provide the

EGT models used to analyze coevolutionary algorithms.

2.5.1 Notation

We now describe the notation for a two population EGT model. This notation

directly extends to systems with more than two populations, so we describe a two

population system for brevity and clarity. Each population represents one agent in

the system. If the first agent has a finite number of n distinct actions it can take,

then its population at each generation is an element of ∆n “ tp P r0, 1sn|
řn

i“1 pi “

1u. A higher value xi corresponds to a higher probability that the agent selects

action i. If the second agent has m actions to choose from, then its population

at each generation is an element of ∆m “ tq P r0, 1sm|
řm

i“1 qi “ 1u. Assuming a

symmetric system where both agents are equally rewarded, then the payoff matrix

C is used to compute the fitnesses in one population, and CT is used to calculate
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fitnesses for the other population.

2.5.2 EGT Models

The two population evolutionary game theoretic model is defined as [90,123]:

u
ptq
i “

m
ÿ

j“1

cijy
ptq
j (2.5)

w
ptq
j “

n
ÿ

i“1

cijx
ptq
i (2.6)

x
pt`1q
i “

˜

u
ptq
i

řn
k“1 x

ptq
k u

ptq
k

¸

x
ptq
i (2.7)

y
pt`1q
j “

˜

w
ptq
j

řm
k“1 y

ptq
k w

ptq
k

¸

y
ptq
j (2.8)

Equations 2.5 and 2.6 assign fitness to each population, while Equations 2.7

and 2.8 define the proportions of each population at the next time step. Thus,

the EGT model defines how populations are assigned fitness and then change with

respect to evolutionary time. This model can be used to analyze how populations

in cooperative coevolutionary algorithms change, allowing for the performance of

the algorithm to be analyzed. The EGT model may be used to analyze how differ-

ence evaluation functions affect population dynamics in cooperative coevolutionary

algorithms.
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2.6 Approximation of Evaluation Functions

In cases where the system evaluation function is unknown, it may be approximated

in order to provide better feedback to learning agents [8, 15]. In the case of re-

inforcement learning, reward functions are modeled; in the case of evolutionary

algorithms, fitness functions are modeled. In either case, approximation of sys-

tem evaluation functions allows for agent-specific evaluation functions to be easily

shaped based on the overall system evaluation function [27,29,43,69,70,87,99,128].

The following sections describe different approaches for approximating system eval-

uation functions, as well as previous work involving approximating difference eval-

uations.

Function approximation is commonly seen in reinforcement learning applica-

tions, where the value function or system state is approximated due to limited

state information [57, 67, 83]. Value functions are often approximated when only

partial state information is available, often using neural networks, maps, or some

other type of function approximator [1, 16, 93]. The conclusion that only partial

state information is necessary to accurately model value functions suggests these

types of approaches can be successfully extended to multiagent learning problems,

where only partial state information is available to each agent.

Fitness functions have also been approximated for use in evolutionary algo-

rithms [21,79]. This fitness approximation is typically used because the number of

fitness function evaluations dominates the optimization cost in evolutionary algo-

rithms, and fitness approximation typically decreases time to convergence [69,85].
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However, these approaches can easily be extended to cases in which the mathe-

matical form of the fitness function is unknown, as in cases where the difference

evaluation must be approximated. All of the methods described above are single

agent cases, but there has also been research investigating approximating system

evaluation functions in multiagent learning settings.

Difference evaluation functions have been approximated in air traffic control do-

mains [95]. A tabulated linear function consisting of neural networks approximates

the system evaluation function. Each neural network approximated a specific as-

pect of the air traffic domain (congestion, delay, etc.), and a weighted sum of

the network outputs was used to provide the approximation of the overall system

evaluation function. This approach yielded accurate approximations of the system

evaluation function and allowed for difference evaluation functions to be accurately

estimated to provide agent-specific feedback during learning.

There are two key drawbacks to this approach. First, expert domain knowl-

edge was needed to create the approximation of the system evaluation function.

In cases where the components which comprise the system evaluation function are

unknown, it is difficult to create an approximation based on domain knowledge.

Second, this approach required global knowledge of the system; an approximation

of the system evaluation function was developed using global state and action in-

formation, which is often unavailable in a distributed multiagent system. Although

this approach gave good results for approximating difference evaluation functions

in the air traffic domain, it does not extend to any generic multiagent domain.

As seen above, there is a wide range of research involving approximation in
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reinforcement learning and evolutionary algorithms. However, very little research

has been conducted on approximating difference evaluations. More importantly,

the research which has been conducted on approximating difference evaluations has

involved approximations which were dependent on expert system knowledge as well

as global state and action information. In order for difference evaluations to be

approximated in generic multiagent settings, the requirements for expert domain

knowledge must be eliminated, and the approximations must be constructed using

only local information.
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Chapter 3 – Shaping Fitness Functions with Difference Evaluation

Functions

3.1 Motivation

Coordinating multiple agents1 in order to achieve some system objective is an

important area of research, and is critical in many domains including rover coordi-

nation, air traffic control, search and rescue, and unmanned aerial vehicle coordi-

nation [5, 119]. One approach to achieving coordination is the use of Cooperative

Coevolutionary Algorithms (CCEAs), which involve evolving multiple populations

simultaneously and evaluating the fitness of individuals based on the individual’s

interactions with other agents in the system [39, 89]. By evolving multiple pop-

ulations at once, CCEAs project the search space into multiple, smaller, search

spaces [26, 56, 123]. Each coevolving population in the CCEA searches through

one of these projected spaces, resulting in a large amount of information available

to agents being lost. Coevolving agents have only a fraction of the total state

space available to them, and their fitness assignment is dependent upon how they

perform when combined with agents from the other coevolving populations. Thus,

CCEAs have the tendency to create agents which are capable of performing ade-

1This chapter based on “Shaping Fitness Functions for Coevolving Cooperative Multiagent
Systems,” M. Colby and K. Tumer, Proceedings of the 11th International Conference of Au-
tonomous Agents and Multiagent Systems, 2012
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quately with a wide range of collaborators, rather than specializing to perform well

with the best set of collaborators; in other words, CCEAs often produce stable,

rather than optimal solutions [19, 49, 90]. In order to ensure CCEAs are a viable

option for coordinating multiagent systems, it is critical that steps be taken to

achieve optimal coordination policies.

There have been multiple approaches to address the issues of suboptimal stable

policies. One approach involves shaping local fitness functions to align with the

system evaluation function. Proper shaping of these fitness functions leads to faster

learning and more optimal policies [5, 60, 64, 81, 112]. Another approach is to bias

searches based on the notion of optimal teammates [90], which involves estimating

agent utilities as if they were paired with optimal collaborators. Although these

biased searches generally increase the effectiveness of CCEAs, an issue with this

approach is that in complex domains, estimating system evaluations as if optimal

collaborators were present is exceedingly difficult. Other methods involve altering

the evolutionary mechanisms in CCEAs in order to optimize CCEA performance,

such as lenient learners or hall of fame methods [91,101].

In this chapter we introduce a shaped fitness function which combines difference

evaluation functions with biasing the search with the best known set of collabora-

tors, in order to address suboptimal solutions created by CCEAs. To test whether

these problems are addressed adequately, two test domains are used. First, a scat-

ter domain, which involves agents moving in a two dimensional plane in order to

become as “spread out” as possible. Secondly, a rover domain involving robots

gathering data from points of interest was utilized in order to test the algorithms
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on a more real-world problem.

The contribution of this chapter is the development of a CCEA which:

• Shapes fitness functions using the difference evaluation function

• Biases search with optimal collaborators using a hall of fame approach, which

is much less complex than approximating optimal collaborators in an ad-hoc

manner

• Makes extremely efficient use of computational resources

In our experiments, this algorithm outperforms a CCEA using the system evalu-

ation to assign fitness by an average of 48.7%, and is extremely computationally

efficient. These results demonstrate not only the performance attainable by com-

bining difference evaluations with other coordination mechanisms, but also that

the computational cost of such an algorithm is low, allowing for use in real-world

systems where agents have limited computational resources. The remainder of

this chapter is organized as follows: Section 3.2 describes the domains analyzed.

Section 3.3 describes the algorithms used in this research. Section 3.4 gives the

experimental results. Finally, Section 3.5 discusses the results and concludes the

chapter.

3.2 Evaluation Domains

In this section, we introduce the two problems analyzed in this work, and provide

a detailed explanation of the system dynamics and evaluation functions used in
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each domain.

3.2.1 Scatter Domain

The scatter domain used in this research is a variant of the mixing problem [110].

In the scatter domain, a team of agents on a two dimensional plane aim to move

around and configure themselves to be as “spread out” as possible (Figure 3.1).

The world is continuous, as are the actions of each agent. Each agent calculates

the distance between itself and the closest teammate using the standard Euclidian

distance. So, if there are N agents, each agent calculates how far away the closest

agent is at any time t using:

δiptq “ min
j

"

b

pxi,t ´ xj,tq
2
` pyi,t ´ yj,tq

2

ˇ

ˇ

ˇ

ˇ

i ‰ j

*

(3.1)

where txi,t, yi,tu is agent i’s x and y position in the world at time t, and j is used to

index all agents other than agent i. The total state of the system st is the set of all

agent positions in the world at time t. The state of each agent is the relative x and

y positions of the n closest agents. At each time step in an episode, an agent takes

two actions ∆x and ∆y, corresponding to its x and y movements, respectively.

The magnitude of these actions are bounded by some upper limit ∆max, which

requires that the agents take multiple actions over multiple time steps in order

to traverse the domain. For our experiments, the agent’s policies are represented

by two layer feedforward neural networks with sigmoid activation functions, with
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Figure 3.1: Scatter Domain Representation. Each agent i calculates the distance
from itself to the closest agent as δi. The global evaluation function is the average
of all of these distances. The goal in this domain is for the agents to be as “spread
out” as possible.

outputs bounded between 0 and 1. The network inputs for each agent are that

agent’s local state (relative x and y position of the n closest agents), and the

network outputs are mapped to agent motion in the world as follows:

∆x “ p2 ¨ o1 ´ 1.0q ¨∆max (3.2)

∆y “ p2 ¨ o2 ´ 1.0q ¨∆max (3.3)

where o1 and o2 are the neural network outputs. Thus, the distance agents may

move in the x and y directions are bounded by ´∆max and ∆max. The system

evaluation function for the scatter domain with N agents is the average minimum
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squared distance between agents, given by:

G
`

st
˘

“

řN
i“1 δiptq

N
(3.4)

Thus, maximizing the average minimum distance between agents will result in

maximizing the system evaluation.

3.2.2 Rover Domain

Figure 3.2: Rover Domain Representation. Each rover senses the closest rover and
POI from each of its four sensing quadrants. The rovers must coordinate in order
to effectively observe the POIs.
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In the rover problem, a collective of rovers on a two dimensional plane aim to

observe points of interest (POIs) scattered across the domain (Figure 3.2). Each

POI has an associated value, and each observation of a POI made by a rover yields

an observation value which is inversely proportional to the distance that the rover

is from the POI. The distance metric used in this domain is the squared Euclidian

norm, bounded by a minimum observation value to prevent division by zero:

δpx, yq “ min
 

||x´ y||2, δ2
min

(

(3.5)

The objective of the rovers is to maximize the observation values of the POIs over

the course of an episode, and the system evaluation is calculated as:

G “
ÿ

t

ÿ

j

Vj
miniδpLj, Li,tq

(3.6)

where Vj is the value associated with POI j, Lj is the location of POI j, and Li,t

is the location of the ith rover at time t.

Each rover senses the world through eight sensors and map those inputs to

two outputs representing the rover’s motion in the x and y directions. The world

is split into four quadrants relative to the rover’s current orientation, with two

sensors per quadrant. For each quadrant, the first sensor returns a function of the

POIs in that quadrant. More specifically, the first sensor in quadrant q returns the

sum of the values of the POIs in that quadrant divided by their squared distance
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to the rover:

s1,q,i “
ÿ

jPIq

Vj
δpLj, Liq

(3.7)

where Iq is the set of POIs in quadrant q. The second sensor returns the sum of

square distances from a rover to all the other rovers in the quadrant:

s2,q,i “
ÿ

i1inNq

1

δpLi1 , Liq
(3.8)

where Nq is the set of rovers in quadrant q. The eight sensors provide an approxi-

mate representation of the world based on the locations of POIs and other rovers.

This representation reduces the location and number of rovers and POIs in each

quadrant to an average number. It is of note that the value of each state variable

is increased if there are many rovers/POIs in a quadrant, or if the rovers/POIs in a

quadrant are close to the agent. The policies of each rover are represented by two

layer feedforward neural networks with sigmoid activation functions. The inputs

to the networks are the state variables defined in Equations 3.7 and 3.8. Each

rover chooses actions which correspond to motion in the x and y directions, and

the motions are bounded by a maximum distance ∆max. The mapping from con-

troller outputs to rover motion is the same as in the scatter domain, and is given

in Equations 3.2 and 3.3. Although any rover may observe any POI, the system

evaluation only takes into account the closest observation made for each POI. In

this instantiation of the rover domain, the POI locations are static throughout each
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experiment. The rovers must coordinate in order to achieve high POI coverage.

An increasing system evaluation corresponds to better observation coverage of the

POIs.

3.3 Algorithms

In this section we provide a detailed explanation of a standard cooperative co-

evolutionary algorithm, as well as introduce three new CCEAs which implement

difference evaluation functions:

1. Standard CCEA using system evaluation

2. CCEA using the difference evaluation

3. CCEA using lenient learners and the difference evaluation

4. CCEA using the hall of fame and the difference evaluation

The standard CCEA using the system evaluation is a “traditional” CCEA algo-

rithm that we use a baseline to assess performance. The second and third al-

gorithms are modifications of existing algorithms which address the problems of

suboptimal convergence. The final algorithm is a modification of the hall of fame

algorithm combined with the difference evaluation, which also aims to address

suboptimal convergence and is the main contribution of this chapter.
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3.3.1 Standard CCEA

In the standard CCEA, N coevolving populations of neural networks are utilized

to form teams comprised of M agents. In the most general case, M is equal to

N . One member of each population is extracted, and these agents are combined

to form a team which operate in the problem domain. Each population is initially

comprised of k neural networks, randomly initialized. At each generation, k suc-

cessor networks are generated in each population, which are mutated versions of

the parent networks. Then, 2k teams of M agents are formed by taking agents

from each population and placing these agents into a team. The performance of

each of the teams is then evaluated in the domain, and the fitness of every agent

in the team is set according to the team’s performance. Next, k networks from

each population are selected to proceed to the next generation, with the fitness of

a network influencing its selection probability. This process is repeated for a set

number of generations. The standard CCEA is detailed in Algorithm 3.

In the standard CCEA, each member of a team receives equal credit for that

team’s performance. This form of credit assignment results in agents’ fitness values

to be heavily dependent upon the performance of teammates, because each mem-

ber of the team receives equal credit for the team’s performance. The standard

CCEA is used as the baseline algorithmm, and serves as a comparison for the other

algorithms considered.
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Algorithm 3: Standard CCEA (See Section 3.4 for parameters)

1 Initialize N populations of k neural networks
2 foreach Generation do
3 foreach Population do
4 produce k successor solutions
5 mutate successor solutions

6 end
7 for i “ 1 Ñ 2k do
8 randomly select one agent from each population
9 add agents to team Ti

10 simulate Ti in domain
11 assign fitness to each agent in Ti using Gp~s,~aq

12 end
13 foreach Population do
14 select k networks using ε-greedy
15 end

16 end

3.3.2 CCEA with the Difference Evaluation

The CCEA with the difference evaluation is carried out in a similar manner to

the standard CCEA, except that when a team of agents is evaluated, the fitness

of each agent is calculated with the difference evaluation, rather than the system

evaluation. Thus, the fitness of each agent of a team is calculated as that agent’s

contribution to the team’s performance, rather than the value of the system eval-

uation function. The CCEA with the difference evaluation is equivalent to the

CCEA detailed in Algorithm 3, except at the fitness assignment stage, the fitness

of each agent is calculated with the difference evaluation rather than the system

evaluation.

Thus, the key difference between the CCEA using the difference evaluation and
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the standard CCEA is credit assignment for the agents. By utilizing the difference

evaluation to assign fitness, the fitness of each agent becomes less dependent upon

the actions of its teammates. Below, we derive the difference evaluation for the

two domains used in this work.

Scatter Domain Directly computing the different evaluation using Equation 2.1

corresponds to applying Equation 2.1 to Equation 3.4. First, we define δji ptq, which

finds the distance from the closest agent to agent i, exluding agent j:

δji ptq “ min
k

"

b

pxi,t ´ xk,tq2 ` pyi,t ´ yk,tq2|k ‰ j

*

(3.9)

The difference evaluation function for the scatter domain is then defined as:

Dipstq “

řN
j“1 δjptq

N
´

ř

j‰i δ
i
jptq

N
(3.10)

However, this evaluation always increases the system evaluation, because of the

nature of the system evaluation function. As the goal in this domain is to maximize

average distance between agents, removing any agent will always have a positive

effect on the system evaluation. As such agents will need to distinguish between

very small positive variations, making the evaluation function in Equation 3.10 a

poor choice for agent fitness function. Instead, in this work, we introduce a default

agent effect. To compute agent i’s fitness then, we replace agent i with this default
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agent, which yields:

Dj “

řN
j“1 δjptq

N
´

´

ř

j‰i δ
i
jptq

¯

` δdef ptq

N
(3.11)

where δdef ptq is a distance associated with the default agent. This distance is

set at the beginning of an experiment, and remains constant for each individual

calculation of the difference evaluation. This default agent distance corresponds

to the cs,i (counterfactual) term in Equation 2.1.

Rover Domain For the rover problem, the difference evaluation is calculated

by directly applying Equation 2.1 to Equation 3.6:

DipLq “
ÿ

t

ÿ

j

Ij,i,tpzq

„

Vj
δpLj, Li,tq

´
Vj

δpLj, Lkj ,tq



(3.12)

where kj is the second closest rover to POI j, and Ij,i,tpzq is an indicator function

which returns 1.0 if and only if rover i is the closest rover to POI j at time t. If

rover i is not the closest rover to any POI at time t, then its difference evaluation is

zero, indicating that the rover is not contributing to the system evaluation function

at time t.

3.3.3 CCEA with Lenient Learners and Difference Evaluation

The CCEA with lenient learners and the difference evaluation is carried out in

a similar manner to the CCEA with the difference evaluation, except that each
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agent is tested with multiple sets of collaborators (i.e. the agent will be placed

in multiple teams), and the highest fitness achieved is the fitness assigned to that

agent. As the algorithm progresses, agents become less lenient learners; that is,

they are tested against fewer sets of collaborators. The CCEA with lenient learners

and the difference evaluation is detailed in Algorithm 4.

It is important to note that in Algorithm 4, each member of each population

is selected exactly m times, and the value of m is decreased as the algorithm

progresses. This corresponds to agents being lenient in the early stages of evolution,

and becoming less and less lenient as evolutionary time passes. Lenient difference

evaluations shape fitness in two ways. First, the difference evaluations approximate

the agent’s individual contribution to the team’s performance. Second, leniency

ensures that suboptimal teammates do not negatively influence the agent’s fitness.

3.3.4 CCEA with Hall of Fame and Difference Evaluation

As noted in Section 2, CCEAs have been shown to provide better solutions when

the fitness of an individual is based partly on how it performs with its team,

and partly on how it would perform if it were paired with optimal collaborators.

However, estimating the fitness of an agent paired with optimal collaborators is a

difficult task, especially in complex domains. Rather than estimating what optimal

collaborators would be for a particular agent, the hall of fame method is altered

to approximate the behavior of optimal collaborators.

The CCEA with the hall of fame and difference evaluation is carried out in
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Algorithm 4: Lenient CCEA using Difference Evaluation (See Section 3.4
for parameters)

1 Initialize N populations of k neural networks
2 foreach Generation do
3 foreach Population do
4 produce k successor solutions
5 mutate successor solutions

6 end
7 for i “ 1 Ñ 2k ¨m do
8 randomly select one agent from each population
9 add agents to team Ti

10 simulate Ti in domain
11 assign fitness to each agent in Ti using Dp~s,~aq
12 foreach Agent in team Ti do
13 for l “ 1 Ñ m do
14 add agent to randomly generated team T 1i
15 simulate T 1i in domain
16 calculate Dp~s,~aq for the agent
17 if Dp~s,~aq ą agent’s fitness then
18 agent’s fitness Ð Dp~s,~aq
19 end

20 end

21 end

22 end
23 foreach Population do
24 select k networks using ε-greedy
25 end

26 end

a similar manner to the CCEA with the difference evaluation, except that the

fitness assignment stage is altered. At the end of each generation, the team that

achieves the highest system evaluation is compared against the hall of fame team.

If that team achieved a higher system evaluation than the hall of fame team,
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Algorithm 5: CCEA using Difference Evaluation and Hall of Fame (See
Section 3.4 for parameters)

1 Initialize N populations of k neural networks
2 foreach Generation do
3 foreach Population do
4 produce k successor solutions
5 mutate successor solutions

6 end
7 for i “ 1 Ñ 2k ¨m do
8 randomly select one agent from each population
9 add agents to team Ti

10 simulate Ti in domain
11 assign fitness to each agent with Eq. 3.14

12 end
13 foreach Team Ti do
14 if Gp~s,~a|Tiq ą Gp~s,~a|HOF q then
15 assign Ti as hall of fame team
16 end

17 end
18 foreach Population do
19 select k networks using ε-greedy
20 end

21 end

then it replaces the hall of fame team. When assigning fitness to each agent of a

team, the difference evaluation of that agent is calculated, as well as the difference

evaluation of that agent when it replaces an agent from the hall of fame team. The

performance of the hall of fame team is nondecreasing with respect to evolutionary

time, so this team approaches the optimal team as the CCEA progresses. The

difference evaluation of an agent when compared with the hall of fame team is
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calculated as:

DHOF,i “ GHOF`i ´GHOF (3.13)

where GHOF`i is the system evaluation of the hall of fame team when agent i

replaces the corresponding member of the hall of fame team, and GHOF is the

system evaluation of the best hall of fame team. So, in the CCEA with the hall of

fame and difference evaluation, the fitness of an agent is calculated as:

F piq “ α ¨Di ` p1´ αq ¨DHOF,i (3.14)

where Di is the difference evaluation of agent i when collaborating with its team,

DHOF,i is the agent’s difference evaluation when paired with the best hall of fame

team as in Equation 3.13, and α P r0, 1s is a weight corresponding to the rel-

ative importance of the difference evaluation and the difference evaluation with

estimated optimal collaborators. The CCEA with the hall of fame and difference

evaluation is detailed in Algorithm 5.

By assuming that the hall of fame team is the set of optimal collaborators for

any agent, the complexities of estimating what a set of optimal collaborators would

be are eliminated. The CCEA using the difference evaluation and the hall of fame

includes shaped fitness functions to tell agents what their individual contributions

to team performance are, as well as biasing the fitness functions using the concept

of estimated optimal collaborators via the hall of fame. This approach modifies

the hall of fame algorithm in two ways. First, the hall of fame is now comprised

of teams, rather than individuals. Secondly, the hall of fame is now utilized in



42

cooperative coevolution, rather than competitive coevolution.

3.3.5 Computational Complexity Analysis

It is important to note the differences in computational complexity of each of

the four algorithms analyzed. Each algorithm will produce a different level of

performance, indicating the effectiveness of each fitness assignment operator used.

However, each of these fitness assignment operators have varying compuational

costs, so we must analyze not only converged performance levels, but performance

as a function of computational cost. We assume that each team is comprised of

N agents. For the standard CCEA using the system evaluation function as a

fitness assignment operator, one call to Gp~s,~aq is required to assign fitness to each

member of that team. For the CCEA using difference evaluations, N ` 1 calls

to Gp~s,~aq are required to assign fitness to each agent in the team. The value of

Gp~s,~aq is calculated for the entire team, and then Gp~s,~aq must be called N times

to find the value of Gp~s´i ` ~cs,i,~a´i ` ~ca,iq for each agent in order to calculate

the difference evaluation function. For the CCEA using lenient learners and the

difference evaluation, pM ` 1qN ` 1 calls to Gp~s,~aq are required to assign fitness

to each agent, where M is the number of teams each agent is tested with. The

difference evaluation is calculated for each agent on the team, requiring N`1 calls

to Gp~s,~aq. Then, each agent is placed on M different teams and the difference

evaluation for that agent is calculated for each team tested, requiring 2M calls to

Gp~s,~aq per agent. For the CCEA using the hall of fame and difference evaluation,
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2N ` 1 calls to Gp~s,~aq are required to assign fitness to each agent. The difference

utillity is calculated for each agent in the team, requiring N ` 1 calls to Gpzq.

Then, the difference evaluation for each agent when placed on the hall of fame

team must be calculated, requiring N more calls to Gp~s,~aq. The computational

cost of each fitness assignment operator is summarized in Table 3.1.

Fitness Assignment Operator Calls to Gp~s,~aq Required per Team
Gp~s,~aq 1
Dip~s,~aq N ` 1

Lenient Dip~s,~aq pM ` 1qN ` 1
Hall of Fame with Dip~s,~aq 2N ` 1

Table 3.1: Computational cost to assign fitness to each member of a team for each
fitness assignment operator tested, where N is the number of agents per team and
M is the leniency value

As seen in Table 3.1, the computational cost of each of the fitness assignment

operators considered varies widely, from 1 call to pM ` 1qN ` 1 calls of the system

evaluation function required per team. Although more computationally expensive

algorithms may provide better converged performance, it is important to note the

computational complexity of each algorithm, especially if the time allocated for

learning is limited. Thus, we will analyze not only performance as a function of

evolutionary time, but performance as a function of computational cost.

3.4 Experimental Results

The algorithms outlined in Section 3.3 were all tested in the scatter domain and

the rover domain, with team sizes varying from 10 to 100 agents. For experiments



44

with 10 agent teams, 10 coevolving populations of 200 members each were used.

For experiments with 100 agent teams, 100 coevolving populations of 25 members

each were utilized. For the standard CCEA, Equation 3.4 with a default agent

distance of 1.0 was used to assign fitness in the scatter domain and Equation

3.6 was used in the rover domain. For the CCEA algorithm with the difference

evaluation, Equation 3.11 was used to assign fitness for the scatter domain and

Equation 3.12 for the rover domain. For the CCEA with lenient learners and the

difference evaluation, the same fitness equations were used as in the CCEA with

the difference evaluation experiments. The leniency value m is set to 10, meaning

that each agent is assigned fitness based on its best performance from 10 different

sets of collaborators. The CCEA with the hall of fame and difference evaluation

had the same fitness assignments as in the CCEA with the difference evaluation.

When calculating the fitness from equation 3.13, α was initially set to 1, and

linearly decreased to 0.25 at the end of the experiment. The value of α initially

is large, which results in the difference evaluation when an agent on the hall of

fame team is initially small. This is because at the beginning of the experiment,

the hall of fame team is severely suboptimal. As evolutionary time progresses,

the hall of fame team improves in performance, and the value of the evaluation

associated with the hall of fame team plays a larger role in fitness assignment. For

all experiments, neural network controllers were initialized with random weights

drawn from a Gaussian distribution with zero mean and unit variance. Network

mutation was carried out by adding values drawn from a Gaussian distribution to

a set of randomly selected network weights. In the beginning of the evolution, one
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weight per network was mutated with a standard deviation of 1.0. At the end of

the evolution, each network weight was mutated with a standard deviation of 0.1.

These mutation parameters were varied linearly throughout evolution. For each

experiment, 100 statistical runs were completed, with the standard error in the

mean (σ{
?
N) being reported as error bars. The experiment details and results

are given in the following sections.

3.4.1 Scatter Domain

First, we applied each of the four CCEA algorithms to the scatter domain. For

the 10 agent experiment, the world was set to a 10 by 10 plane world and run for

10 time steps, and ∆max was set to 1.0. For the 100 agent experiment, the world

was set to a 31.6 by 31.6 plane world and run for 10 time steps, and ∆max was set

to 3.16. These values were chosen such that the plane area to number of agents

ratio was constant for each experiment, and the agents could traverse the world in

the same number of time steps. At the beginning of each experiment, the agents

all started at the center of the plane worlds. Figure 3.3 shows the learning curve

for the 10 agent problem. Figure 3.4 shows the learning curve for the 100 agent

problem. Finally, Figure 3.5 shows the scaling properties of each algorithm in the

scatter domain.

All three algorithms using the different evaluation function outperformed the

standard CCEA in this domain. This is not surprising, because credit assignment

in this algorithm is highly subjective, and the fitness of each agent was greatly



46

Figure 3.3: Performance of each algorithm in the scatter domain, with 10 agents.
The CCEA with the difference evaluation and hall of fame biasing outperforms all
other methods tested.

influenced by its teammates. The CCEA with the difference evaluation and the

CCEA with leniency and the difference evaluation performed almost identically in

the 10 agent case, but the addition of leniency provided improved performance in

the 100 agent case. This is an interesting result, and gives insight to the prop-

erties of leniency. Leniency and the difference evaluation both perform similar

functions. Leniency aims to reduce the subjectiveness of credit assignments in

CCEAs by partnering agents with multiple sets of collaborators. By testing an

agent with multiple teams and taking the highest fitness achieved, the likelihood

that an agent’s fitness is too strongly biased by its teammates is minimized. The

difference evaluation also reduces the subjectiveness of credit assignment, by iso-
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Figure 3.4: Performance of each algorithm in the scatter domain, with 100 agents.
The CCEA with the difference evaluation and hall of fame biasing outperforms all
other methods tested.

lating an agent’s individual contribution to its team’s performance. Thus, leniency

and the difference evaluation achieve a similar goal, although in different manners.

However, as the problem becomes more complex by increasing the team size, cou-

pling both approaches provides benefits, as seen in Figure 3.5. As the team size is

increased, the performance of the CCEA with the difference evaluation and lenient

learners outperforms the CCEA with the difference reward by larger and larger

margins.

The CCEA with the hall of fame and difference evaluations performed the best

out of all of the algorithms tested. As noted in Chapter 2, one of the key properties

of leniency is that an agent will not receive a low fitness evaluation simply because
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Figure 3.5: Scaling Performance in Scatter Domain. The CCEA with the difference
evaluation and hall of fame biasing outperforms all other methods tested, and this
difference in performance increases with team size. The addition of leniency does
not significantly help when there are a small number of agents, but as the team
size goes up, leniency becomes increasingly useful.

it is paired with suboptimal collaborators. With the hall of fame approach, this

advantage is also present, as the hall of fame team is known to provide good system

performance. In this manner, the hall of fame ensures agents do not receive poor

fitness assignment values as a result of suboptimal teammates, while requiring

far less computational expense than leniency. Both leniency and the hall of fame

approach bias the search towards finding agents which perform well with a set of

high-performing collaborators. However, as the hall of fame approach utilizes the

best team known at that point in the algorithm, the searched is biased in a more

favorable area of the search space, which results in the hall of fame with difference
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evaluations outperforming leniency with difference evaluations.

Although the hall of fame and leniency have similar effects on agent learning,

there are two key differences. First, the hall of fame approach is much less compu-

tationally expensive, as an agent only needs to be tested with one set of collabora-

tors, rather than many. Second, both approaches bias the search towards assigning

fitness values based on optimal collaborators, but the hall of fame approach biases

this search with the best known team, as opposed to leniency biasing the search

with randomly sampled teams. In this manner, the hall of fame approach results

in a more directed and precise biasing of the coevolutionary search algorithm.

3.4.2 Rover Domain

Next, we applied each of the four CCEA algorithms to the rover domain. At

the beginning of each experiment, n POIs were placed randomly in the domain,

and their positions remained constant throughout each experiment, where n is

equivalent to the number of agents in the domain. The minimum observation

distance δmin was set to 0.1. The simulations were carried out in a 10 by 10 world

for 25 time steps, and ∆max was set to 1.0. At the beginning of each simulation,

each rover started in the center of the world. Each algorithm was tested over 50

statistical runs. Figure 3.6 shows the results for 10 agent teams, Figure 3.7 shows

the results for 100 agent teams, and Figure 3.8 shows the scaling results for the

rover domain.

As in the scatter domain experiments, all three algorithms using the different
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evaluation function outperformed the standard CCEA in the rover domain. This

can be attributed to the fact that the system evaluation does not give an agent good

feedback on its individual contribution to the team’s performance, and the agent

thus has a difficult time learning an optimal policy. In the scatter domain, the

CCEA with the difference evaluation and the CCEA with lenient learners and the

difference evaluation performed nearly identically with 10 agent teams, but leniency

became more important as the team size went up. In the more complex rover

domain, the CCEA with lenient learners and the difference evaluation performed

slightly better than the CCEA with the difference reward, and this performance

gain also increased with the team size. This indicates that although leniency and

the difference evaluation have similar effects on the learning process, leniency may

become more beneficial in CCEAs as the domain becomes more complex or the

number of cooperating agents increases.

As in the scatter domain, the CCEA with the hall of fame and difference

evaluation performed the best out of all algorithms tested. This further supports

the conclusion that biasing the CCEA with hall of fame teams approximating

optimal collaborators, as well as shaping the fitness functions, helps guide the

search towards better solutions. As seen in Figure 3.8, the difference in performance

between the CCEA with the difference evaluation and hall of fame and the CCEA

with the global evaluation function increases with team size, indicating that for

increasingly complex systems, this new algorithm becomes more and more useful.

In all the experiments that were conducted, the CCEA with the hall of fame and

difference evaluation significantly outperformed all other algorithms, and was able
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to easily estimate optimal collaborators in order to bias the fitness. This fitness

biasing, in addition to shaping the fitness values with the difference evaluation,

contributed to significantly better performance than any other algorithm tested.

Figure 3.6: Performance of each algorithm in the rover domain, with 10 agents
and 10 POIs. The CCEA with the difference evaluation and hall of fame biasing
outperforms all other methods tested.

3.4.3 Computational Cost Analysis

Sections 3.4.1 and 3.4.2 demonstrated that combining difference evaluations with

either leniency or hall of fame methods can significantly improve converged sys-
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Figure 3.7: Performance of each algorithm in the rover domain, with 100 agents.
The CCEA with the difference evaluation and hall of fame biasing outperforms all
other methods tested.

tem performance. However, as noted in Section 3.3.5, the computational cost of

each of the four algorithms varies greatly. We now analyze the performance of

each algorithm as a function of computational cost for each of the experiments

conducted.

Scatter Domain

The most expensive fitness assignment operator utilized in this work is the lenient

difference evaluation, requiring pM ` 1qN ` 1 calls to Gp~s,~aq in order to assign

fitness to each member of a team. In the same number of generations, the lenient
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Figure 3.8: Scaling Performance in Rover Domain. The CCEA with the difference
evaluation and hall of fame biasing outperforms all other methods, and the gap in
performance increases with team size.

difference evaluation calls Gp~s,~aq many more times than the other fitness assign-

ment operators, resulting in much more information available to use to provide

feedback to learning agents. It is therefore important to analyze performance as

a function of computational cost, in order to compare performance of each fitness

assignment operator when given the same amount of computational resources. The

performance in the 10 agent scatter domain as a function of calls to Gp~s,~aq is given

in Figure 3.9.

As seen in Figure 3.9, although difference evaluations and lenient difference

evaluations perform nearly identically with respect to evolutionary time, differ-

ence evaluations perform significantly better with respect to computational cost.
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Figure 3.9: Performance as a function of computational cost of each algorithm in
the scatter domain, with 10 agents.

Using difference evaluations results in about ten times faster convergence than

lenient difference evaluations. So, although the results in Section 3.4.1 indicate

that difference evaluations and lenient difference evaluations perform nearly iden-

tically in some situations, difference evaluations are much more computationally

efficient. Another interesting result seen in Figure 3.9 is that combining the hall

of fame and difference evaluations is extremely efficient. Combining the hall of

fame and difference evaluations converges five times faster than lenient difference

evaluations, and provides superior converged performance. Thus, combining hall

of fame and difference evaluations provides the best converged performance and is

computationally efficient.
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The performance in the 100 agent scatter domain as a function of calls to

Gp~s,~aq is given in Figure 3.10. As in the 10 agent case, difference evaluations are

much more efficient than lenient difference evaluations. However, lenient difference

evaluations do provide better converged performance. The key result seen in Figure

3.10 is that combining the hall of fame and difference evaluations results in the

best converged performance, and this fitness assignment operator makes extremely

efficient use of computational resources.

Figure 3.10: Performance as a function of computational cost of each algorithm in
the scatter domain, with 100 agents.
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Rover Domain

The computational cost analysis of each fitness assignment operator in the rover

domain yields similar results to that of the scatter domain. The performance levels

in the rover domain with 10 and 100 agents as a function of computational cost

are shown in Figure 3.11 and 3.12, respectively.

Figure 3.11: Performance as a function of computational cost of each algorithm in
the rover domain, with 10 agents.

In the more complex rover domain, lenient difference evaluations always con-

verge to better performance than difference evaluations, as seen in Figures 3.11

and 3.12. However, difference evaluations converge around ten times faster. As

in the scatter domain, combining difference evaluations with hall of fame methods

results in superior converged performance with much less computational cost than
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Figure 3.12: Performance as a function of computational cost of each algorithm in
the rover domain, with 100 agents.

lenient difference evaluations, and about the same computational cost as standard

difference evaluations.

A few conclusions regarding performance can be made from the information

presented in Figures 3.9-3.12. First, although lenient difference evaluations con-

verge to better performance levels than difference evaluations in complex domains,

difference evaluations are far more computationally efficient. Second, and more im-

portantly, combining the hall of fame with difference evaluations results in the best

converged performance, and is extremely computationally efficient. This means

that regardless of the time allocated for learning, the best fitness assignment oper-

ator analyzed is the combination of the hall of fame and difference evaluations. If
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enough time is allocated for the algorithm to converge, then the best performance

is attained. If the time available for learning is limited, combining the hall of fame

and difference evaluations might not result in convergence, but will significantly

outperform lenient difference evaluations and will slighlty outperform standard

difference evaluations. Thus, not only does the combination of the hall of fame

and difference evaluations result in the best converged performance, but it makes

the most efficient use of each call to the system evaluation function Gp~s,~aq; this

demonstrates that this fitness assignment operator is far superior to all operators

examined.

3.5 Summary

This chapter presented three CCEA algorithms where leniency and hall of fame

methods were used in combination with fitness shaping. Combining hall of fame

and difference evaluation outperformed all other algorithms in two different do-

mains. It is known that shaping fitness functions can greatly improve the efficacy

of a CCEA [64], but this often isn’t enough to obtain optimal performance. It has

also been shown that biasing a CCEA with an estimate optimal collaborators re-

sults in a more effective search for optimal policies, but this estimate is problematic

because it is an ad hoc, domain dependent estimate. Our algorithm circumvents

the problem of estimating optimal collaborators, so the CCEA search is easily bi-

ased in a domain independent fashion. Furthermore, the algorithm shapes agent

fitnesses in order to provide each agent a measure of its individual contribution to
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the system objective.

A particularly interesting result was that in the simpler scatter domain, using

the difference evaluation to shape the fitness functions performed equivalently to a

method which used lenient learners and the difference evaluation for 10 agent

teams. Intuitively, the difference evaluation and lenient learners both aim to

achieve the same goal, which is to isolate an agent’s individual contribution to

the system evaluation. This is one key reason their performance was similar in the

simpler domains. However, with larger teams or a more complicated domain, le-

niency in addition to the difference evaluation performed better than the difference

evaluation alone.

Although the combination of the hall of fame and difference evaluations con-

verged to the highest performance levels, it is important to analyze the compu-

tational cost of fitness assignment operators in cooperative coevolutionary algo-

rithms. We find that not only does this combination result in the highest converged

performance, but it makes the most efficient use of computational resources out of

all the fitness assignment operators tested. The computational cost analysis clearly

demonstrates that the combination of the hall of fame and difference evaluation

functions is the best fitness assignment operator out of the group analyzed in this

research.

As noted in Chapter 1, the first key research question regarding difference

evaluations involved determining the compatibility of difference evaluations with

other coordination mechanism, and the performance attainable by these combina-

tions. In this chapter, we demonstrated that difference evaluations are compatible
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with other coordination mechanisms, and when combined with leniency or a hall

of fame approach can significantly improve system performance as compared to

any of these operators acting alone. Further, not only does combining difference

evaluations with the hall of fame result in significant performance gains, it is more

computationally efficient than any of these operators acting alone. The results from

this chapter demonstrate that significant performance gains are attainable when

difference evaluations are incorporated into agent fitness functions, and address

the first research question regarding difference evaluation functions.
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Chapter 4 – An Evolutionary Game Theoretic Perspective on

Difference Evaluation Functions

4.1 Motivation

Coordinating multiple agents to achieve a system-level objective is a critical area of

research, and is essential for many applications including air traffic control and mo-

bile robot coordination [5,39]. One approach to solving this coordination problem

is to use Cooperative Coevolutionary Algorithms (CCEAs), which evolve multi-

ple populations simultaneously and evaluate fitness of inidivuals based on their

interactions with other agents in the system [90]. In CCEAs, agents’ fitness as-

signments are influenced by agents from other populations. Thus, CCEAs tend

to create agents which perform well with many types of agents, rather than spe-

cializing to perform optimally with a specific set of collaborators. This results

in CCEAs typically producing stable, suboptimal, solutions [19, 49, 90]. In order

for CCEAs to provide better coordination in multiagent systems, fitness functions

must be shaped in order to provide better agent-specific feedback.

This chapter is focused specifically on the theoretical guarantees regarding dif-

ference evaluation functions as fitness assignment operators in CCEAs, using an

evolutionary game theoretic setting [17,24,53,78,100,103,108]. Difference evalua-

tions approximate an individual agent’s impact on the system evaluation function,
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and assigns a fitness to that agent based on the effectiveness of its particular pol-

icy. The difference evaluation has produced excellent empirical results when used

as a fitness assignment operator in CCEAs [39], as seen in Chapter 3. However,

no prescriptive theoretical analysis of the advantages of difference evaluation func-

tions has been conducted, indicating when their use is beneficial. In this chapter,

we derive conditions under which difference evaluations are expected to improve

performance in CCEAs, using evolutionary game theoretic methods.

The contributions of this chapter are to:

• Theoretically derive conditions under which the difference evaluation func-

tion increases the expected payoff for optimal actions corresponding to opti-

mal Nash equilibrium points.

• Empirically demonstrate the effects of these conditions being met, and show

the empirical results are consistent with the theoretical analysis of difference

evaluations.

The remainder of this chapter is organized as follows: Section 4.2 presents the evo-

lutionary game-theoretic model for cooperative coevolutionary algorithms. Section

4.3 demonstrates how difference evaluation functions are incorporated into the evo-

lutionary game theoretic model. Section 4.4 derives conditions under which the

difference evaluation function increases the expected payoff of optimal actions.

Section 4.5 gives empirical results in multiple games which support the theoretical

results. Section 4.6 extends the theoretical results to systems with more than two

agents. Finally, Section 4.7 concludes the chapter.
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4.2 EGT Model for Cooperative Coevolution

Our analysis is restricted to cooperative coevolutionary algorithms with two agents

learning in stateless domains, where each agent has a finite number of actions.

The model assumes that the populations are infinite, and that the proportions of

individuals in the populations are computed at each time step during evolution.

If the first agent has a finite number of n distinct actions it can take, then its

population at each generation is an element of ∆n “ tp P r0, 1sn|
řn

i“1 pi “ 1u. A

higher value xi corresponds to a higher probability that the agent selects action

i. If the second agent has m actions to choose from, then its population at each

generation is an element of ∆m “ tq P r0, 1sm|
řm

i“1 qi “ 1u. Assuming a symmetric

system where both agents are equally rewarded, then the payoff matrix C is used

to compute the fitnesses in one population, and CT is used to calculate fitnesses

for the other population. The EGT model for CCEAs is defined as in [91,122]:

u
ptq
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m
ÿ
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where xptq and yptq represent the proportions of genotypes (actions) in the two
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populations at generation t, and xpt`1q and ypt`1q represent the proportions at the

next generation. Equations 4.1 and 4.2 compute the fitness of each action in the

two populations. The fitness of action i is estimated as the mean payoff over

pairwise collaborations with every action in the other population. Equations 4.3

and 4.4 calculate the distributions of the two populations for the next generation.

Equations 4.1-4.4 define how the populations in a CCEA progress as evolutionary

time progresses.

4.3 EGT Model with Difference Evaluation Functions

In the following sections, we define payoff matrices which utilize the difference

evaluation function, and incorporate difference evaluations into the EGT model

for CCEAs (Section 4.2).

4.3.1 Difference Payoff Matrices

Consider the case where we have a global payoff matrix C, and we want D1 and D2

to be payoff matrices defined by the difference evaluation function (Section 2.3) for

each agent. Now, the game is not equal payoff, meaning that each agent receives

a different individual payoff (from the difference evaluation) based on the joint

action taken. We assume that the counterfactual term in the difference evaluation

function is the average payoff for an agent across all actions, given the action of
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the collaborating agent. Thus we have:

d1
ij “ cij ´

řn
k“1 ckj
n

` α (4.5)

d2
ij “ cij ´

řm
k“1 cik
m

` α (4.6)

The payoff matrices defined by Equations 4.5 and 4.6 are termed the difference

payoff matrices. Note that α is a constant to ensure that at least one payoff

matrix element is non-negative. Further, note that no hand tuning of the agent-

specific payoff matrices is performed. These are simply the payoff matrices directly

defined by the difference evaluation function.

4.3.2 EGT Model

The EGT model for CCEAs when using the difference evaluation function is:

u
ptq
i “

m
ÿ

j“1

d1
ijy

ptq
j (4.7)

w
ptq
j “

n
ÿ

i“1

d2
ijx

ptq
i (4.8)

x
pt`1q
i “

˜

u
ptq
i

řn
k“1 x

ptq
k u

ptq
k

¸

x
ptq
i (4.9)

y
pt`1q
j “

˜

w
ptq
j

řm
k“1 y

ptq
k w

ptq
k

¸

y
ptq
j (4.10)
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Equations 4.7 and 4.8 can be rewritten as the following for the difference payoff

matrices:

u
ptq
i “

m
ÿ

j“1

ˆ

cij ´

řn
k“1 ckj
n

` α

˙

y
ptq
j (4.11)

w
ptq
i “

m
ÿ

i“1

ˆřm
k“1 cik
m

` α

˙

x
ptq
j (4.12)

The EGT model for CCEAs using the difference evaluation function is identical to

the standard EGT model, except that the fitness of each agent is assigned using

the difference payoff matrices D1 and D2 rather than the system payoff matrix C.

4.4 Expected Payoffs Theory

In this section, we present the results of a theoretical analysis on the effectiveness

of difference payoff matrices and global payoff matrices, using an evolutionary

game-theoretic setting. For this analysis, we make the following assumptions:

Assumption I: All elements of the payoff matrix are positive.

Assumption II: Each payoff matrix has at least two distinct elements (each ele-

ment of the payoff matrix does not have the same value).

If we encounter a payoff matrix with all negative values, then we add a constant

term to each element in the payoff matrix in order to ensure that the payoff matrix

elements are positive. We assume the payoff matrix has at least two distinct

elements so there exists at least one joint action which yields a higher payoff than
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some other joint action, which is necessary for the proof. It is of note that if this

assumption does not hold, then every element of the payoff matrix has the same

value, meaning that no matter what the joint action of the agents is, the payoff

will remain the same. So although this type of game has been eliminated from our

analysis, it is of no theoretical interest.

4.4.1 Global Payoff Matrix

The expected payoff for the first agent taking action i is:

ErC1
piqs “

1

m

m
ÿ

j“1

cij (4.13)

where C1 is the payoff matrix for the first agent. As we are comparing performance

of the CCEA using either the system payoff matrix or difference payoff matrices,

we must normalize the payoffs in order to have a fair comparison. The normalized

payoff for the first agent taking the optimal action ĒrC1pi˚qs is the expected payoff

of the optimal action divided by the sum of expected payoffs for all possible actions:

ĒrC1
pi˚qs “

ErC1pi˚qs
řn

i“1ErC
1piqs

“
ErC1pi˚qs

řn
i“1

”

1
m

řm
j“1 cij

ı

“
ErC1pi˚qs

n ¨ cavg
(4.14)
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Where cavg is the average payoff of the global payoff matrix, and is defined as:

cavg “
1

m ¨ n

n
ÿ

i“1

m
ÿ

j“1

cij (4.15)

The expected global payoff for the second agent taking action j is:

ErC2
pjqs “

1

n

n
ÿ

i“1

cij (4.16)

where C2 is the payoff matrix for the second agent. Note that C1 “ C2 in this

case, as both agents use the system payoff matrix. This notation is introduced for

clarity when difference payoff matrices are utilized, and each agent uses a different

payoff matrix. The normalized expected payoff for the second agent taking the

optimal action ĒrC2pj˚qs is defined as:

ĒrC2
pj˚qs “

ErC2pj˚qs
řm

j“1ErC
2pjqs

(4.17)

“
ErC2pj˚qs

řm
j“1

“

1
n

řn
i“1 cij

‰ (4.18)

“
ErC2pj˚qs

m ¨ cavg
(4.19)
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4.4.2 Difference Payoff Matrix

The expected payoff for the first agent when using the difference payoff matrix and

taking action i is:

ErD1
piqs “

1

m

m
ÿ

j“1

d1
ij

“
1

m

m
ÿ

j“1

˜

cij ´
1

n

n
ÿ

k“1

ckj ` α

¸

“ ErC1
piqs ´ cavg ` α (4.20)

The normalized expected payoff for the first agent when taking the optimal action

and using difference payoff matrices is defined as:

ĒrD1
pi˚qs “

ErD1pi˚qs
řn

i“1ErD
1piqs

“
ErC1pi˚qs ´ cavg ` α

řn
i“1 pErC

1piqs ´ cavg ` αq

“
ErC1pi˚qs ´ cavg ` α

řn
i“1 pErC

1piqsq ´ n ¨ cavg ` n ¨ α

“
ErC1pi˚qs ´ cavg ` α

n ¨ α
(4.21)

Setting α “ cmax ensures that the values in the difference payoff matrix are positive,

so we have:

ĒrD1
pi˚qs “

ErC1pi˚qs ´ cavg ` cmax

n ¨ cmax

(4.22)
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where cmax is defined as:

cmax “ max tcij|i P r1, ns, j P r1,msu (4.23)

A similar derivation can be completed to find ĒrD2pj˚qs for the second agent.

4.4.3 Difference Payoff Matrix Theory

We now prove that under certain conditions, difference evaluation functions provide

a higher normalized expected payoff for the optimal action than the overall system

evaluation does.

Theorem 1. If :

ErC1
pi˚qs ă cavg (4.24)

ErC2
pj˚qs ă cavg (4.25)

Then:

ĒrD1
pi˚qs ą ĒrC1

pi˚qs (4.26)

ĒrD2
pj˚qs ą ĒrC2

pj˚qs (4.27)

This means that if the expected payoff of taking the optimal action is less than the

average of all possible payoffs, then the normalized expected payoff of the optimal

action is higher when using the difference evaluation than when using the system
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evaluation function. This leads to an improved basin of attraction for the optimal

Nash equilibrium point, improving the probability of reaching this point.

Proof. We show that the conditions in Equations 4.24 and 4.25 leads to the nor-

malized expected payoff for the optimal action being higher when using difference

evaluations rather than the system evaluation function. We begin with our as-

sumption for the first agent, given by Equation 4.24:

ErC1
pi˚qs ă cavg

ñ ErC1
pi˚qs ¨

ˆ

cavg
cmax

´ 1

˙

ą
c2
avg

cmax

´ cavg (4.28)

Note that
´

cavg
cmax

´ 1
¯

is strictly negative from assumption 1, so the sign of the

inequality changes. We thus have:

ErC1
pi˚qs ¨

cavg
cmax

´
c2
avg

cmax

` cavg ą ErC1
pi˚qs

ñ cmax

ˆ

ErC1
pi˚qs ¨

cavg
cmax

´
c2
avg

cmax

` cavg

˙

ą ErC1
pi˚qs ¨ cmax

ñ ErC1
pi˚qs ¨ cavg ´ c

2
avg ` cavg ¨ cmax ą ErC1

pi˚qs ¨ cmax

ñ n ¨ cavg ¨
`

ErC1
pi˚qs ´ cavg ` cmax

˘

ą ErC1
pi˚qs ¨ n ¨ cmax

n ¨ cavg ¨ pErC
1pi˚qs ´ cavg ` cmaxq

n2 ¨ cmax ¨ cavg
ą
ErC1pi˚qs ¨ n ¨ cmax

n2 ¨ cavg ¨ cmax

ñ
ErC1pi˚qs ´ cavg ` cmax

n ¨ cmax

ą
ErC1pi˚qs

n ¨ cavg

ñ ĒrD1
pi˚qs ą ĒrC1

pi˚qs
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An analogous derivation yields a similar result for the second population, so we

have:

ErC1
pi˚qs ă cavg ñ ĒrD1

pi˚qs ą ĒrC1
pi˚qs

ErC2
pj˚qs ă cavg ñ ĒrD2

pj˚qs ą ĒrC2
pj˚qs

Thus, if the conditions from Equations 4.24 and 4.25 hold, then the normalized

expected payoff of the optimal action is higher when using difference evaluations

than it is when using the system evaluation function.

4.4.4 Analysis of Theoretical Results

We have shown that the difference matrices yield a higher normalized expected

payoff for the optimal action if the conditions from Equations 4.24 and 4.25 are

met. This means that the difference evaluation either expands the basin of attrac-

tion around the optimal equilibrium point or increases the gradient leading into

this point, improving system performance. For example, the difference evaluation

function leads to a higher normalized expected payoff for the optimal action than

the system evaluation does in the following game:

Cdifficult “

¨

˚

˚

˚

˚

˝

45 ´250 45

´250 50 ´250

45 ´250 45

˛

‹

‹

‹

‹

‚

(4.29)
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However, the difference evaluation function does not lead to a higher normalized

expected payoff for the optimal action than the system evaluation does in games

such as:

Ceasy “

¨

˚

˚

˚

˚

˝

45 49 45

49 50 49

45 49 45

˛

‹

‹

‹

‹

‚

(4.30)

In these games, the optimal Nash equilibrium is at p2, 2q. In the case of the

game given by Equation 4.29, the optimal Nash equilibrium is difficult to reach,

because if only one agent takes the optimal action, then the joint payoff is severely

suboptimal. In the case of the game given by Equation 4.30, the optimal Nash

equilibrium is very easy to reach, because the expected values of the optimal action

for each agent are very high, regardless of the action choice of the collaborating

agent. So, we see that for difficult games with deceptive optimal Nash equilibria,

the difference evaluation function provides better feedback to learning agents than

the system evaluation function, improving the probability that the optimal Nash

equilibrium will be reached.

We now will examine how difference evaluations affect the payoff matrix in

games where the conditions from Equations 4.24 and 4.25 hold, and we expect

difference evaluations to improve system performance. The difference payoff matrix

for the first agent for the game defined by Equation 4.29 is:
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D1
difficult “

¨

˚

˚

˚

˚

˝

295 0 295

96.7 396.7 96.7

295 0 295

˛

‹

‹

‹

‹

‚

(4.31)

We see that the difference payoff matrix allows for the agent to more easily reach

the optimal Nash equilibrium at p2, 2q. The large penalties corresponding with one

agent taking a suboptimal action have been relaxed, resulting in a less deceptive

optimal Nash equilibrium. Further, the average payoffs for each action that the

first agent can take are now all equivalent. The difference evaluation thus alters

deceptive Nash equilibrium points by reducing penalties associated with one agent

deviating from its best response.

If only one of the conditions from Equations 4.24 and 4.25 are met, then the

probability of converging to the optimal Nash equilibrium depends on the extent

to which the conditions are met or violated. In this case, the probability of con-

vergence will vary based on the specific domain being analyzed.

So we have one of the following three cases, whether or not our assumptions in

Equations 4.24 and 4.25 hold:

Case I: Equations 4.24 and 4.25 hold, and the difference evaluations yield a higher

normalized expected payoff for the optimal action than the system evaluation

function.

Case II: Neither Equation 4.24 or 4.25 holds, and the normalized expected payoff
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of the optimal action when using difference evaluations is less than or equal

to those when using the system evaluation function.

Case III: Only one of Equations 4.24 and 4.25 hold. The value of the normalized

expected payoff of the optimal action when using difference evaluations will

depend on how strongly the assumptions are held or violated.

In summary, the conditions in Equations 4.24 and 4.25 holding lead to a higher nor-

malized expected payoff for the optimal action when using difference evaluations,

improving the probability of reaching the optimal Nash equilibrium. If neither

assumption holds, then the normalized expected payoff of the optimal action is

greater when using the system evaluation function. If only one condition holds,

then performance will depend on how strongly each condition is held or violated,

and performance will vary by domain.

4.5 Empirical Results

We now compare the basins of attraction when using the system payoff matrix and

the difference payoff matrices in the penalty game, defined as [91]:

C “

¨

˚

˚

˚

˚

˝

10 0 p

0 2 0

p 0 10

˛

‹

‹

‹

‹

‚

(4.32)
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where p is a penalty term. The penalty game has three equilibrium points, at

p1, 1q, p2, 2q, and p3, 3q. The optimal Nash equilibria are located at p1, 1q and

p3, 3q. The value of the penalty p dictates how deceptive these equilibrium points

are. If p is very low, then the expected payoffs of actions 1 and 3 are low, making it

difficult to reach the optimal equilibrium points. If the value of p is high, then the

optimal Equilibrium points are easy to reach. If p ă ´8, then the conditions from

Equations 4.24 and 4.25 are met, and we expect difference evaluations to improve

system performance. If p ą ´8, then the conditions are not met, and we do not

expect difference evaluations to improve system performance.

Figures 4.1 and 4.2 show the basins of attraction for the system evaluation

function and the difference evaluation functions when the conditions in Equations

4.24 and 4.25 hold and are violated, respectively. For a 3x3 game, each population

is a vector containing three elements, where each element correlates to the proba-

bility of selecting the corresponding action. The x-axis of each plot is the initial

value of the first element x1 of the population vector, and the y-axis of each plot

is the initial value of the second element x2 of the population vector. Note that

the third element x3 is 1´ x1 ´ x2.

As seen in Figure 4.1 when p “ ´15 and the conditions are met, the basin

of attraction corresponding to the difference evaluation is much larger than when

using the system evaluation function. Specifically, the difference evaluation pro-

vides a benefit when the second action (corresponding to the suboptimal Nash

equilibrium) has a high probability of being taken. In these cases, the system

evaluation function leads agents to converge to the suboptimal Nash equilibrium,
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while the difference evaluation allows the agents to learn to find the optimal Nash

equilibrium. The difference payoff matrix for the first agent when p “ ´15 is:

D1|p“´15 “

¨

˚

˚

˚

˚

˝

11.67 ´0.67 ´13.33

1.67 1.33 1.67

´13.33 ´0.67 11.67

˛

‹

‹

‹

‹

‚

(4.33)

The difference payoff matrix for the first agent when p “ 0 is:

D1|p“0 “

¨

˚

˚

˚

˚

˝

6.67 ´0.67 ´3.33

´3.33 1.33 ´3.33

´3.33 ´0.67 6.67

˛

‹

‹

‹

‹

‚

(4.34)

In cases where the optimal Nash equilibrium is deceptive (the conditions from Eq.

4.24 and 4.25 hold), the difference evaluation relaxes the penalty associated with

the collaborating agent taking a suboptimal action, allowing for the optimal Nash

equilibrium to be more easily reached. As seen in Equation 4.33, the suboptimal

Nash equilibrium corresponding with the joint action p2, 2q is no longer a Nash

equilibrium, allowing for agents using difference evaluations to easily reach the

optimal policy. When the conditions from Equations 4.24 and 4.25 do not hold,

the difference payoff matrix for the first agent given in Equation 4.34 still contains

the suboptimal Nash equilibrium.

As seen in Figure 4.2 when p “ 0 and the conditions from Equations 4.24

and 4.25 are not met, the basin of attraction when using difference evaluations is
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approximately equal to that using the system evaluation function. In this case, the

suboptimal Nash equilibrium at p2, 2q is found if an agent has a high probability of

selecting the second action. The collaborating agent learns to also select the second

action in order to maximize the payoff given the first agent’s action selection.

These results are consistent with the theoretical results from Section 4.4.3,

as well as the insight gleaned from examining the payoff matrices in Equations

4.33 and 4.34. When the conditions from Equations 4.24 and 4.25 hold, then the

normalized expected payoff for the optimal action is higher when using difference

evaluations rather than the system evaluation, and the basin of attraction corre-

sponding to the optimal Nash equilibrium point is expanded. When the conditions

do not hold, using the system evaluation function results in slightly better perfor-

mance than when using difference evaluations. A particularly interesting result is

in the case where the optimal Nash equilibrium point is extremely deceptive, the

suboptimal Nash equilibrium is eliminated by the difference evaluation function,

allowing for the optimal equilibrium point to be more easily reached.

4.6 Extension to Multiple Agents

We now extend the theoretical results to systems with three or more agents. This

analysis is restricted to cooperative coevolutionary algorithms with n agents learn-

ing in a stateless domain, where each agent has a finite number of actions. As with

the two agent case, this model assumes that the populations are infinite, and that

the proportions of individuals in the populations are computed at each time step
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Figure 4.1: Case I (assumptions met): penalty game with p “ ´15. The basin
of attraction corresponding to the difference payoff matrices is much larger than
when using the system payoff matrix

during evolution. The number of actions that agent amay take is denoted la. Agent

a’s population at each generation is an element of ∆la “

!

p P r0, 1sla |
řla

i“1 pi “ 1
)

.

The system payoff is defined by an n-dimensional array rather than a payoff matrix,

as there are n (instead of two) agents. Each agent has a two-dimensional payoff

matrix Ca P Rla¨Πi‰ali . The first dimension la corresponds to the action taken by

agent i, and the second dimension Πi‰ali corresponds to the joint action taken by
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Figure 4.2: Case II (assumptions not met): penalty game with p “ 0. The basins
of attraction corresponding to the difference payoff matrices and system payoff
matrix are approximately equal.

the rest of the agents in the system. The EGT model for CCEAs containing n

agents is defined as:

uai ptq “

Πk‰ilk
ÿ

j“1

caijy
a
j ptq (4.35)

xai pt` 1q “

˜

uai ptq
řla

k“1 x
a
kptqu

a
kptq

¸

xai ptq (4.36)
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where:

• uai ptq is the fitness of agent a when taking action i at timestep t

• caij is the pi, jq element of agent a’s payoff matrix

• yaj ptq is the probability of the population (excluding agent a) takes joint

action j

• xai ptq is the proportion of agent a’s population which selects action i at

timestep t

Equation 4.35 assigns fitness values to agent a’s population members and Equation

4.36 updates the population of agent a. Now that we have defined the EGT model

for multiple agents, we can analyze difference evaluation functions in such a system.

4.6.1 Difference Payoff Matrices and EGT Model

Consider the case where each agent has a system payoff matrix Ca, and we want

Da to be agent a’s payoff matrix defined by the difference evaluation function. We

assume the counterfactual term in the difference evaluation function is the average

payoff for an agent across all actions, given the joint action of the rest of the agents

in the system. Thus we have:

daij “ caij ´

řla
k“1 c

a
kj

la
` α (4.37)
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The payoff matrix defined above is the difference payoff matrix for agent a. As in

the two agent case, α is a constant to ensure that all payoff matrix elements are

positive. The multiagent EGT model for agents using difference payoff matrices

is:

uai ptq “

Πk‰ilk
ÿ

j“1

daijy
a
j ptq (4.38)

xai pt` 1q “

˜

uai ptq
řla

k“1 x
a
kptqu

a
kptq

¸

xai ptq (4.39)

Note that this EGT model is identical to that defined in Equations 4.35 and 4.36,

except the fitness of each agent is assigned using difference payoff matrices rather

than the system payoff matrix.

4.6.2 Expected Payoffs Theory

In this section, we present the results of a theoretical analysis on the effectiveness

of difference payoff matrices and global payoff matrices in multiagent systems of

arbitrary size, using an evolutionary game-theoretic setting. For the analysis, we

make the following assumptions:

Assumption I: All elements of the payoff matrix are positive

Assumption II: Each payoff matrix has at least two distinct elements (each ele-

ment of the payoff matrix does not have the same value)
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As in the two agent case, if assumption 1 is violated, we add a constant term to

each element of the payoff matrix to ensure that the payoff matrix elements are

positive. Assumption 2 is necessary for the proof, but cases where this assumption

does not hold are of no interest from a theoretical perspective, as all joint actions

taken by the system would yield an equal payoff.

Global Payoff Matrix The expected payoff for agent a taking action i is:

E rCa
piqs “

1

Πk‰alk

Πk‰alk
ÿ

j“1

caij (4.40)

where Ca is the payoff matrix for the first agent. The normalized expected payoff

for agent a taking the optimal action ĒrCapia˚qs is the expected payoff of agent a’s

optimal action ia˚ divided by the sum of expected payoffs for all possible actions:

ĒrCa
pia˚qs “

ErCapia˚qs
řla

i“1ErC
apiqs

(4.41)

“
ErCapia˚qs

řla
i“1

”

1
Πk‰alk

řΠk‰alk
j“1 caij

ı (4.42)

“
ErCapia˚qs

lacavg
(4.43)

where cavg is the average of the system payoff matrix, defined by:

cavg “
1

la

la
ÿ

i“1

«

1

Πk‰alk

Πk‰alk
ÿ

j“1

caij

ff

(4.44)
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Note that cavg is equivalent for all agents, as each agent’s payoff matrix Ca is

comprised of the same elements in different arrangements.

Difference Payoff Matrix The expected payoff for agent a when using the

difference payoff matrix and taking action i is:

ErDa
piqs “

1

Πk‰alk

Πk‰alk
ÿ

j“1

daij (4.45)

“
1

Πk‰alk

Πk‰alk
ÿ

j“1

˜

caij ´

řla
k“1 c

a
kj

la
` α

¸

(4.46)

“ ErCa
piqs ´ cavg ` α (4.47)

The normalized expected payoff for agent a while taking the optimal action and

using difference payoff matrices is defined as:

ĒrDa
pia˚qs “

ErDapia˚qs
řla

i“1ErD
apiqs

(4.48)

“
ErCapia˚qs ´ cavg ` α

řla
i“1 pErC

apiqs ´ cavg ` αq
(4.49)

“
ErCapia˚qs ´ cavg ` α

řla
i“1 pErC

apiqsq ´ la ¨ cavg ` la ¨ α
(4.50)

“
ErCapia˚qs ´ cavg ` α

la ¨ α
(4.51)
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Setting α “ cmax ensures that the difference payoff matrix elements are all positive,

so we have:

ĒrDa
pia˚qs “

ErCapia˚qs ´ cavg ` cmax

la ¨ cmax

(4.52)

where cmax is defined as:

cmax “ max
 

caij|i P r1, las, j P r1,Πk‰alks
(

(4.53)

Note that the value of cmax is identical for each agent.

Difference Payoff Matrix Theory We now prove that under certain condi-

tions, difference evaluation functions provide a higher normalized expected payoff

for the optimal action than the overall system evaluation does.

Theorem 2. If :

ErCa
pia˚qs ă cavg @a (4.54)

Then:

ĒrDa
pia˚qs ą ĒrCa

pia˚qs @a (4.55)

This means that if the expected payoff of each agent when taking the optimal

action is less than the average of all possible payoffs, then the normalized expected
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payoff of the optimal action is higher when using the difference evaluation than

when using the system evaluation function, This leads to an improved basin of

attraction for the optimal Nash equilibrium point, improving the probability of

reaching this point.

Proof. We begin with the assumption from Equation 4.54 for agent a:

ErCa
pia˚qs ă cavg

ñ ErCa
pia˚s ¨

ˆ

cavg
cmax

´ 1

˙

ą
c2
avg

cmax

´ cavg

Note that
´

cavg
cmax

´ 1
¯

is strictly negative from assumption 1, so the sign of the

inequality changes. We thus have:

ErCa
pia˚qs ¨

cavg
cmax

´
c2
avg

cmax

` cavg ą ErCa
pia˚qs

ñ cmax

ˆ

ErCa
pia˚qs ¨

cavg
cmax

´
c2
avg

cmax

` cavg

˙

ą ErCa
pia˚qs ¨ cmax

ñ ErCa
pia˚qs ¨ cavg ´ c

2
avg ` cavg ¨ cmax ą ErCa

pia˚qs ¨ cmax

ñ la ¨ cavg ¨ pErC
a
pia˚qs ´ cavg ` cmaxq ą ErCa

pia˚qs ¨ la ¨ cmax

ñ
la ¨ cavg ¨ pErC

apia˚qs ´ cavg ` cmaxq

l2a ¨ cmax ¨ cavg
ą
ErCapia˚qs ¨ la ¨ cmax

l2a ¨ cavg ¨ cmax

ñ
ErCapia˚qs ´ cavg ` cmax

la ¨ cmax

ą
ErCapia˚qs

la ¨ cavg

ñ ĒrDa
pia˚qs ą ĒrCa

pia˚qs
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This derivation can be repeated for each agent, so we have:

ErCa
pia˚qs ă cavg ñ ĒrDa

pia˚qs ą ĒrCa
pia˚qs @a

Thus, if the condition from Equation 4.54 holds, then the normalized expected

payoff of the optimal action is higher when using difference evaluations than it is

when using the system evaluation function.

We have demonstrated that the theoretical advantages of difference evaluations

extend to multiagent systems with more than two agents. In cases where the condi-

tion from Equation 4.54 holds, the optimal Nash equilibrium is deceptive, because

an agent taking the optimal action receives a low payoff unless each collaborating

agent in the system also simultaneously take optimal actions. In these cases, the

optimal Nash equilibrium is difficult to reach, and difference evaluations improve

the basin of attraction around such equilibrium points, improving the probability

of agents finding optimal policies.

4.7 Summary

In this chapter, we incorporated difference payoff matrices into the EGT model,

and derived conditions under which using difference evaluations yields a higher

normalized expected payoff for the optimal action than when using the system

evaluation function. When these conditions are met, difference evaluations result

in significant performance increases over using the system evaluation function.
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When these conditions are not met, using the system evaluation function results

in approximately equivalent performance as the difference evaluation function.

Conceptually, difference evaluations relax penalties associated with collaborat-

ing agents selecting suboptimal actions, as well as removing suboptimal Nash equi-

librium points in some cases. Although difference evaluations alter the feedback

that each agent receives, this alteration is not hand-tuned. Rather, the difference

payoff matrices are simply the result of directly applying the difference evaluation

function to the system payoff matrix.

The difference evaluation function has been used successfully in many CCEAs

and multiagent reinforcement learning domains. Empirical results have shown that

the difference evaluation function performs very well in solving the credit assign-

ment problem, providing successful coordination in many cooperative multiagent

systems. However, there has been no prescriptive theoretical work defining how

the difference evaluation function affects the basin of attraction around the optimal

Nash equilibrium.

The key contribution of this chapter is to provide the theoretical analysis which

derives conditions under which the difference evaluation improves the expected

payoff of optimal actions, allowing for better learned policies to be obtained. Dif-

ference evaluations have been successful in many different multiagent learning set-

tings, but there has been no previous work defining when they should improve

performance. This chapter provides a prescriptive framework detailing when dif-

ference evaluations are expected to improve performance in cooperative coevolu-

tionary learning in multiagent systems. Recall from Chapter 1 that the second
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key research question involving difference evaluations was to provide a prescriptive

theoretical analysis, in order to determine when they are expected to benefit sys-

tem performance. Through an evolutionary game theoretic analysis, this chapter

has addressed this key research topic.
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Chapter 5 – Approximating Difference Evaluation Functions with

Local Knowledge

5.1 Motivation

Difference evaluation functions1 have been shown to significantly improve learning

in multiagent systems, both in the speed of convergence and the quality of the

converged policy. They have been successful in many different cooperative multia-

gent domains, including air traffic control, network routing, multiple mobile robot

control, and congestion games such as the bar problem [5, 39]. These evaluation

functions have two key theoretical advantages. First, they are aligned with the

overall system objective [5]. This means an individual agent acting to increase

the value of the difference evaluation function also acts to improve the value of

the overall system evaluation function. Second, they remove much of the noise in

the feedback signal associated with other agents, allowing for individual agents to

more easily learn the effects of their actions on system performance [5].

Difference evaluation functions have a simple formulation. They are the differ-

ence between the system objective function and the counterfactual, or the value of

the system objective function independent of the agent being evaluated. This gives

1This chapter based on ”Approximating Difference Evaluations with Local Knowledge,” M.
Colby, W. Curran, C. Rebhuhn, and K. Tumer, in Proceedings of the 13th International Confer-
ence of Autonomous Agents and Multiagent Systems, 2014
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an approximation to the value that the agent added to the overall system. While

difference evaluation functions are conceptually simple, they are often difficult to

compute. More specifically, it is difficult to calculate the counterfactual system

evaluation function, or the value of the system evaluation function independent of

a particular agent.

There are two key reasons counterfactual evaluation functions are difficult to

compute. First, calculating this term requires global knowledge of the system state

and the actions taken by each agent; in practice, agents in multiagent systems

rarely have such knowledge. This makes local computation of difference evalua-

tion functions difficult in practice. Second, the system objective function itself is

typically unavailable to the agents, meaning that even if agents have global knowl-

edge, a direct computation of difference evaluations is typically unavailable. One

approach to calculate difference evaluations has been to leverage domain knowledge

to estimate the system evaluation function.

Recent work has focused on addressing the calculation of the counterfactual in

which the system evaluation function is unknown [95]. The counterfactual system

evaluation function term is estimated using a function approximator that is trained

on previous observations involving the system evaluation function. This work

extended difference evaluation functions to domains in which the analytical form of

the system evaluation function is unavailable, and computing difference evaluations

requires resimulation or approximation. However, this technique required that the

designer had expert system knowledge as well as global state information in order

to create the function approximator. These are significant limitations, as the form
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of the system evaluation function is often unknown, and global knowledge about

the system is often unavailable. In order for difference evaluations to be applicable

in generic multiagent domains, we must use approximation techniques which do

not require domain-specific knowledge or global knowledge of the system state.

In this chapter, we present a generic and model-free approach to approximating

the system evaluation function in order to estimate difference evaluations. Each

agent maintains a local approximation of the system evaluation functions, based

on their local state and action information and the value of the system evalua-

tion function. We assume that the only information available to agents includes

their local state, their action selection, and the instantaneous value of the system

evaluation function. The only global information needed in this approach is the

value of the system evaluation function, which we assume can be broadcast to each

agent. Each agent uses its private function approximator to estimate the value of

the difference evaluation, in order to provide a feedback signal based only on local

information.

In empirical tests, our results show that using this local approximation results in

faster learning than using global evaluation functions for feedback, while attaining

up to 98% of the performance when using difference evaluation functions calculated

with global knowledge of the system. The key contribution of this work is to

demonstrate the effectiveness of locally approximating difference evaluations to

provide agent-specific feedback which improves coordination in multiagent systems.

Section 5.2 describes the approximation technique used in each domain. Section

5.3 presents the two different domains in which our reward approximation method
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is applied. Section 5.4 shows the performance of our developed approximations in

each domain, and in Section 5.5 we discuss the impact of these results.

5.2 Difference Evaluation Approximation

In this section, we introduce a general algorithm for approximating difference eval-

uations, and then demonstrate how this algorithm is implemented in different types

of domains. In general, multiagent systems may be stateless or stateful, and may

have continuous or discrete state and action spaces. We select two types of do-

mains to demonstrate implementation of our algorithm: a stateless, discrete action

domain as well as a continuous state and action domain. For the purpose of this

analysis, we assume a cooperative multiagent system aims to coordinate in order

to maximize some system level objective function Gp~s,~aq, and that the true value

of Gp~s,~aq is available to each agent. Recall that the difference evaluation is defined

as:

Dip~s,~aq “ Gp~s,~aq ´Gp~s´i ` ~cs,i,~a´i ` ~ca,iq (5.1)

As we assume that Gp~s,~aq is available to each agent, approximating the difference

evaluation function only requires approximating the Gp~s´i ` ~cs,i,~a´i ` ~ca,iq term.

Given the particular domain, a suitable function approximator is chosen. For a

stateless domain with discrete actions, this approximator may simply be a tab-

ular function approximator. For a stateful domain with continuous actions, this
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Algorithm 6: Approximation of difference evaluation functions. The func-
tional form of Ĝ depends on the specific domain. For example, a stateless
discrete action domain may use a vector, while a continuous state and action
domain may use a neural network.

1 Initialize N agents
2 foreach Agent do

3 Initialize private function approximator Ĝipsi, aiq
4 end
5 foreach Learning Step do
6 foreach Agent do
7 collect local state information si
8 select action ai using agent’s policy

9 end
10 Broadcast Gp~s,~aq to each agent
11 foreach Agent do

12 Update Ĝipsi, aiq using si, ai, and Gp~s,~aq

13 D̂ip~s,~aq “ Gp~s,~aq ´ Ĝipcs,i, ca,iq

14 Update policy/value table based on D̂ip~s,~aq

15 end

16 end

approximator may be a neural network. Note that these are not the only possible

options for these function approximators, but are potential choices which match

the domains they will be used in.

The difference evaluation approximation algorithm is presented in Algorithm 6.

At each time step, each agent takes an action, and Gp~s,~aq is computed and broad-

cast to each agent. Each agent i maintains a private approximation for Gp~s,~aq,

denoted as Ĝipsi, aiq. Note that the only information available to the agent in-

cludes the agent’s state, action choice, and the broadcast value of Gp~s,~aq. Each

agent’s approximation of Gp~s,~aq is therefore a mapping from that agent’s state
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and action to the value of the system objective function. It is of note that this

approximation is initially very noisy, because the state and action information used

to approximate Gp~s,~aq is limited only to one agent’s state and action. However,

as learning progresses, the policies of each agent begin to converge; as the policies

of other agents converge, approximating Gp~s,~aq using only one agent’s state and

action becomes less noisy, because the variance in the joint action for a particu-

lar system-level state is reduced. Given an agent’s approximation Ĝipsi, aiq, the

difference evaluation function can be estimated as:

D̂ip~s,~aq “ Gp~s,~aq ´ Ĝipcs,i, ca,iq (5.2)

where D̂ip~s,~aq is agent i’s approximation of the difference evaluation function. In

order to evaluate Ĝipcs,i, ca,iq, a default state and default action are chosen for each

agent at the beginning of each episode for evaluation. In other words, the approx-

imation of the difference evaluation function determines the difference between the

system objective function and the approximated system objective function if agent

i took a default action.

The implementation of this approximation approach in a stateless discrete ac-

tion domain as well as a continuous state and action domain are detailed in the

following sections. We demonstrate how a multiagent reinforcement learning algo-

rithm with an approximation of difference evaluations may be implemented in the

stateless discrete action domain, and how a cooperative coevolutionary algorithm

with an approximation of difference evaluations may be implemented in a contin-
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uous state and action domain. Difference evaluations are commonly used in both

reinforcement learning and cooperative coevolutionary algorithms, so we choose to

demonstrate how both types of algorithms may incorporate approximate difference

evaluations.

5.2.1 Stateless Discrete Action Domains

Algorithm 7: Stateless Discrete-Action Multiagent Reinforcement Learning
using Dip~s,~aq Approximation

1 Initialize N agents
2 foreach Agent do
3 Initialize private value table Vipaq

4 Initialize private function approximator Ĝipaq

5 end
6 foreach Learning Step do
7 foreach Agent do
8 select action ai using agent’s policy
9 end

10 Broadcast Gp~aq to each agent
11 foreach Agent do

12 Ĝipaiq Ð α1 ¨ Ĝipaiq ` p1´ α1q ¨Gp~aq

13 D̂ipaiq “ Gp~aq ´ Ĝipa0q

14 Vipaiq Ð α2 ¨ Vipaiq ` p1´ α2q ¨ D̂ipaiq

15 end

16 end

We now demonstrate how Algorithm 6 may be implemented for a multiagent

reinforcement learning algorithm in a stateless discrete action domain. The imple-

mentation of Algorithm 6 in a multiagent reinforcement learning problem with a
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stateless discrete action domain is given in Algorithm 7. Note that such problems

may also be solved with coevolutionary algorithms. In a stateless discrete action

domain, each agent maintains a value vector Vipaq containing the expected value of

each possible action. Each agent also maintains an approximation of Gp~aq, which

is simply a table containing the estimated value of the system evaluation function

corresponding to each action the agent may take. At each learning step, each agent

i selects an action ai. The system evaluation function Gp~aq is then calculated, and

this value is broadcast to each agent in the system. Each agent then updates its

approximation Ĝipaiq according to:

Ĝipaiq Ð p1´ α1q ¨ Ĝipaiq ` α1 ¨Gpaq (5.3)

Once each agent has updated its approximation of Gp~aq, the difference evaluation

for each agent is estimated as:

D̂ipaiq “ Gp~aq ´ Ĝipca,iq (5.4)

where ca,i is some default action. The value table is then updated using the estimate

of the difference evaluation function:

Qipaiq Ð p1´ α2q ¨Qipaiq ` α2 ¨ D̂ipaiq (5.5)
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5.2.2 Continuous State and Action Domains

We now demonstrate how Algorithm 6 may be implemented in a cooperative co-

evolutionary algorithm in a continuous state and action domain. Note that such

problems may also be solved using multiagent reinforcement learning, and we are

simply demonstrating an approach incorporating evolutionary algorithms in order

to demonstrate that difference evaluation approximations may be used in both

reinforcement learning and evolutionary algorithm settings.

We assume each agent has a neural network policy which maps the agent’s

state to an action. Further, each agent has a two-layer feedforward neural network

approximation of Gp~s,~aq. Note that neural networks are not the only form of

function approximation that may be used, but are chosen to demonstrate this

example. At each timestep, each agent keeps track of its state and chosen actions.

The value of the system evaluation function Gp~s,~aq is broadcast to each agent

after each agent has taken an action. Then, each agent updates its approximation

Ĝipsi, aiq using the ps, a,Gp~s,~aqq tuple and backpropogation, where the error in

the approximation is Gp~s,~aq ´ Ĝipsi, aiq.

The difference evaluation is then approximated using Equation 5.2, and the

estimated value of D̂ipsi, aiq is used to assign the fitness associated with the state-

action pairing selected by the agent’s policy. Agents are selected for survival using

ε-greedy selection. The implementation of Algorithm 6 using a cooperative coevo-

lutionary algorithm is given in Algorithm 8.
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5.3 Experimental Domains

In this section, we introduce the El Farol bar problem, and provide a detailed

description of the system dynamics and evaluation functions used in this domain.

Our approximation approach is tested in two domains. The first domain, the El

Farol bar problem, is a stateless congestion domain with a discrete action space.

The second domain, the rover domain, is a stateful domain with continuous states

and actions, and was presented in Section 3.3. These domains were chosen to high-

light that our approximation approach can be applied in a wide range of different

multiagent problems.

5.3.1 Bar Problem

The El Farol Bar Problem [9] is a frequently-used abstraction of congestion prob-

lems. We use a multi-night modification of the El Farol Bar Problem. In this

problem there is a capacity c which provides the most enjoyment for everyone who

attends the bar on that particular night. This is a stateless one shot problem

where agents choose the night they attend the bar, and receive a reward based

on their enjoyment. The traditional bar problem local reward is a function of the

attendance of that night:

Li “ e
´xipaiq

c (5.6)
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where xipaiq is the attendance on the night agent i went to the bar. The system-

level reward is a simple summation of these local rewards across all agents:

Gp~aq “
K
ÿ

k“0

xkp~aqe
´xkp~aq

c (5.7)

where k is the index of the night, and xkp~aq is the number of agents who attended

on the kth night. From the reward, we know that if there are enough agents to be

equally spread out across the bars, n ď c ¨ k, this becomes a scheduling problem.

This problem becomes a congestion problem when there are more than twice as

many agents as the capacity for each night allows, n ą 2c ¨ k. In this case the

optimal response is for the majority of agents to attend one night, thus making

agents attending that night receive a very low reward, and the rest of the agents

equally distributing over the rest of the nights such that the number of agents for

each other night becomes c, receiving the optimal reward for those nights.

5.4 Experimental Results

The following sections detail the experimental results in both the bar problem and

the rover domain. One bar problem experiment was conducted, with 1000 agents

in the system. Two rover domain experiments were conducted, varying between

10 and 100 agents to determine the effects of system size on the performance of

our approximation algorithm.
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5.4.1 Bar Problem Domain Results

The bar problem was initialized as follows. There are 1000 agents and 10 nights,

where each night had an optimal capacity of 10. The learning rate α1 for the

approximation of the system evaluation function is set to 0.1. The learning rate α2

for the value table is set to 0.1. Each experimental run lasted for 500, 000 timesteps,

and there were 100 statistical runs conducted. The experimental results are shown

in Figure 5.1, and the reported error bars are error in the mean σ{N2.

As seen in Figure 5.1, approximating the difference evaluation function results

in almost 10 times better performance than using the system evaluation function

Gp~aq. When approximating Dipaq, the solution takes much longer to converge than

when analytically computingDipaq. However, converged performance of actual and

estimated difference evaluation functions is nearly identical.

It is of note that although the analytical calculation of Dipaq results in faster

learning, it is often impossible to analytically compute the system evaluation func-

tion in multiagent learning systems. Consider the case where the system was a

“black box,” in which agent actions were inputs and the system evaluation func-

tion Gp~aq was an output. In this case, no domain knowledge is present, and it

is impossible to analytically determine Gp~aq. However, agents can still use local

knowledge to approximate Gpaq and thus estimate difference evaluation functions,

which drastically improve system performance. So, even though the analytical

computation of Dipaq provides faster learning than when approximating Dipaq, it

is not always possible to perform this analytical computation.
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Figure 5.1: Bar problem results. When approximating Dipaq, the learning rate is
slower than when using Dipaq, but the converged performance is nearly identical.
Dipaq performs almost 10 times better than the overall system evaluation function
Gp~aq.
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The key result is that agents with only local knowledge converge to the same

performance (although in more computational time) as agents with global knowl-

edge about the system. In cases where global knowledge is available, it is often

beneficial to use this knowledge while shaping agent feedback signals. However,

in many cases, agents’ knowledge is often limited to what they can observe, and

constructing meaningful agent feedback based on this limited information is criti-

cal for ensuring high system performance. These results demonstrate that in some

cases, approximate difference evaluations result in no significant loss in converged

system performance when only local knowledge is available.

5.4.2 Rover Domain Results

The rover domain was initialized as follows. There are 10 agents and 10 POIs in a

planar world of size 25 units by 25 units. For coevolution, each agent maintains a

population of 25 neural networks. Networks are mutated by adding variables drawn

from a Gaussian distribution with zero mean and unit variance to 10 randomly

drawn weights from each neural network. Each episode lasts 25 timesteps, and

agents can move a maximum of 1 distance unit per timestep. At the beginning

of each episode, agent positions are randomly initialized near the center of the

domain. The coevolutionary algorithm was run for 3000 generations, and 150

statistical runs were conducted for statistical significance. The experimental results

are shown in Figure 5.2. As in the bar problem, reported error bars represent the

error in the mean of the statistical data.
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Figure 5.2: Rover domain results (10 agents). Approximating Dips, aq results in
88% of the performance attained when analytically computing Dips, aq. Approxi-
mating the difference evaluation function results in significant performance gains
when compared to using the system evaluation function Gp~s,~aq.

As seen in Figure 5.2, approximating Dip~s,~aq results in approximately a 23%

increase in converged performance compared to when using the system evaluation

function Gp~s,~aq. When approximating Dip~s,~aq, the converged performance was

88% of the converged performance when analytically computing Dip~s,~aq. Although

the performance decreases when approximating rather than analytically computing

Dips, aq, it is important to note that much less information is required to make

the approximation. The approximation of Dip~s,~aq requires only an agent’s local
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state and action, and the value of the system evaluation function Gp~s,~aq. In order

to analytically compute Dip~s,~aq, global information about the state and action

of each agent is required, as well as the function Gp~s,~aq. So, although estimating

Dip~s,~aq results in slightly worse performance than analytically computing Dip~s,~aq,

it is often extremely difficult to make this analytical calculation, meaning that

approximation is required in order to implement difference evaluation functions.

Unlike the bar problem, there is a drop in converged performance between

Dp~s,~aq and D̂ips, aq. This can be attributed to the increased complexity of the

state and action space in the rover domain. In the stateless bar problem, there were

simply 10 discrete actions that agents had to choose from. In the rover domain,

both the states and actions are continuous. In the bar problem, difference evalua-

tions attempt to answer whether an agent had a positive impact on the system for

the specific night the agent attended; in the rover domain, difference evaluations

attempt to answer whether the agent had a positive impact on information collec-

tion over the course of a time-extended task. Clearly, approximating the system

evaluation function in the rover domain is much more complicated than in the bar

problem, and explains why the approximation resulted in decreased performance

of D̂ips, aq when compared to Dp~s,~aq.

It is important to note that a local approximation only resulted in a 12% de-

crease in performance when the state information used to construct agent feedback

decreased by 90%. The states and actions of all 10 agents are incorporated into

calculating Dp~s,~aq. In the approximation D̂ips, aq, only one agent’s state is used

in the calculation. This is an extremely promising result, as a massive loss in
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information results in only a small loss in performance.

Another important note is that when learning initially begins, D̂ips, aq is simply

a noisy version of Gp~s,~aq. As learning progresses and agent approximations of

Gp~s,~aq become more accurate, D̂ps, aq gradually moves from a noisy representation

of Gps, aq to an approximation of Dip~s,~aq. This is why early in learning, D̂ips, aq

performs closer to Gp~s,~aq, but gradually performs closer to Dip~s,~aq.

5.4.3 Scaling Results

In order to demonstrate the scalability of our approach, we use the difference

evaluation approximation algorithm in a larger instance of the rover domain. In

this experiment, there are 100 agents and 100 POIs in a planar world of size 50

by 50. Learning is allowed to proceed for 5000 generations. All other parameters

of the experiment are identical to the rover experiment in Section 5.4.2. The

experimental results are shown in Figure 5.3. The reported error bars represent

the error in the mean of the statistical data.

As seen in Figure 5.3, approximating the difference evaluation function leads

to 79% of the performance when using the analytically computed difference eval-

uation, outperforms the system evaluation function by 49%. Although D̂ips, aq

performed worse compared to Dip~s,~aq in this larger domain (79% vs. 88%), it

outperformed Gp~s,~aq by a wider margin (49% vs. 23%) as the system grew in

complexity. This is strong evidence supporting the use of approximate difference

evaluations over the system evaluation function.
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Figure 5.3: Rover domain results (100 agents). Approximating Dip~s,~aq results in
79% of the performance attained when analytically computing Dip~s,~aq. Approxi-
mating the difference evaluation function results in significant performance gains
when compared to using the system evaluation function Gp~s,~aq.

It is of note that in this larger domain, learning occurs more slowly (as compared

to Dip~s,~aq) than in the 10 agent domain. This can be attributed to the fact that

the approximation of G~s,~aq is more difficult to learn in the larger domain, and

poor approximations early on in learning decrease the learning speed. As the

approximator becomes more accurate, learning with D̂ips, aq speeds up. However,

even when agents use only local knowledge and approximate Dip~s,~aq, they still

significantly outperform agents using Gp~s,~aq. These results indicate that difference
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evaluations may be extended to applications where global knowledge about the

system state, as well as the form of the system evaluation function, are unavailable.

It is of note that in all three experiments conducted, approximating difference

evaluations instead of directly calculating them required at least 90% less system

information, but only resulted in performance losses of up to 21%. This is an

extremely promising result, as using far less knowledge to calculate agent feedback

results in a comparatively low drop in system performance.

5.4.4 Theoretical Implications of Dpzq Approximation

When approximating difference evaluations, each agent maintains an approxima-

tion of Gp~s,~aq, and uses this approximation to estimate the counterfactual. The

difference evaluation is fully factored, meaning that an agent acting to increase

the value of Dip~s,~aq will always also increase the value of Gp~s,~aq. However, when

approximating the difference evaluation, the guarantee of factoredness is lost. For

the approximation of difference evaluations to be fully factored, we would have

to demonstrate that the sign of Ĝps, aq’s gradient is always equal to the sign of

Gp~s,~aq’s gradient, which is not always possible. It is important to analyze the

degree to which the approximate difference evaluation is factored with respect to

the system evaluation function.

In order to evaluate the degree of factoredness associated with the approxi-

mations of the system evaluation function, we performed random sampling in the

rover domain to compare Gp~s,~aq with Ĝipsi, aiq. Random states are created by
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drawing the positions of the rovers and POIs from a uniform random distribution

such that rovers and POIs could be placed at any location in the planar world.

Then, a random action was selected (x- and y´motion) from uniform random dis-

tributions for a randomly selected rover. This action was executed, and the change

in the value of Gp~s,~aq was recorded. If the sign of this change is equal to the sign

of Ĝipsi, aiq, then Ĝipsi, aiq is factored with Gp~s,~aq for this particular state-action

tuple. This process was repeated for one million randomly generated states.

We found that Ĝipsi, aiq was factored with Gp~s,~aq in 94% of the states tested

in the 10 agent domain, and 78% of the states tested in the 100 agent domain.

This is a particularly interesting result for two reasons. First, the approximation

was capable of attaining a fairly high degree of factoredness, which explains why

the approximation of difference evaluations provided such good learning perfor-

mance. Second, when the approximation of Gp~s,~aq was found to be 95% factored

in the 10 agent domain, the approximation of difference evaluations led to 88%

of the performance of analytically calculated difference evaluations. When the

approximation of difference evaluations was 78% factored, the approximation of

difference evaluations led to 79% of the performance of analytically computed dif-

ference evaluations. In our experiments, the degree of factoredness of Ĝipsi, aiq is

strongly correlated with the performance of D̂ips, aq.
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5.5 Summary

Difference evaluations have been empirically shown to improve coordination in

multiagent systems in a many domains, including air traffic control, rover control,

sensor network control, and congestion games. Further, difference evaluations are

fully factored, and are typically low in noise. However, a key limitation of difference

evaluations is the requirement for global knowledge about the state of the system

as well as the system evaluation function. Thus, directly implementing difference

rewards in generic multiagent domains is often a difficult task.

In this chapter, we demonstrate that difference evaluations may be approx-

imated by each agent using only local state and action information. The only

assumption is that the value of the system evaluation function Gp~s,~aq can be

broadcast to each agent, which in most cases is a reasonable assumption, and in

fact is an assumption in all multiagent learning domains. We present an approach

for approximating difference evaluation functions in order to provide agent-specific

feedback to improve coordination, and demonstrate in two domains the effective-

ness and scalability of our approach.

The key contribution of this work is presenting a novel method to implement

difference evaluation functions in any generic multiagent system, without requiring

global knowledge about the state of the system or the mathematical form of the

system evaluation function. Further, this approximation approach significantly

outperforms methods which use the overall system evaluation function. As each

agent maintains a local approximation of the system evaluation function, increases
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in computational cost are insignificant, because the computation is parallelized

across each agent in the system.

An analysis of the relationship between the degree of factoredness of the func-

tion approximation and the performance relative to difference evaluations provided

very interesting insight. In the 10 agent domain, the approximation of Gps, aq was

94% factored and resulted in 88% of the performance of Dips, aq without approxi-

mation. In the 100 agent domain, the approximation of Gps, aq was 78% factored

and resulted in 79% of the performance of Dips, aq without approximation; this is

an extremely intriguing result, although without further research no claims can be

made. There is a clear relationship between the factoredness of the approximation

and the resultant system performance, but the nature of this relationship has not

been fully investigated.

Recall from Chapter 1 that the third key research question about difference

evaluations was how they may be implemented in systems where global state and

action knowledge is unavailable to agents. In this chapter, we addressed this re-

search question by introducing a novel approach for approximating difference eval-

uations with only local state and action knowledge. In any multiagent learning

domain, it is typically assumed that the system performance Gp~s,~aq is broadcast

to each agent; further, it is assumed that each agent can determine its local state

si and action ai. Using only this knowledge, which is available in any multia-

gent learning system, we demonstrate that agents can successfully approximate

difference evaluations, significantly improving system performance over using the

system evaluation function for agent feedback.
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Algorithm 8: Continuous State and Action CCEA using Dipsi, aiq Approx-
imation
1 Initialize N populations of k neural networks
2 foreach Population i do
3 foreach Individual j do

4 Initialize function approximator Ĝi,jpsi, aiq
5 end

6 end
7 foreach Generation do
8 foreach Population do
9 produce k successor solutions

10 mutate successor solutions

11 end
12 for i “ 1 Ñ 2k do
13 randomly select one agent from each population
14 add agents to team Ti
15 foreach Simulation Timestep do
16 each agent j in team Ti finds local state sj
17 each agent j in team Ti chooses action aj
18 Gp~s,~aq is broadcast to each agent

19 update Ĝi,jpsi, aiq based on si, ai, Gp~s,~aq

20 D̂i,jpsj, ajq “ Gp~s,~aq ´ Ĝi,jpcs,i, cs,aq

21 each agent j increments fitness by D̂i,jpsj, ajq

22 end

23 end
24 foreach Population do
25 select k networks using ε-greedy
26 end

27 end
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Chapter 6 – Discussion

The automation of tasks through agent-based control is becoming more critical

in real-world applications, as autonomous systems have significant advantages.

Examples of the need for autonomy are numerous. Self-driving cars allow humans

to work on more important tasks or relax as they are driven around, improving

efficiency. Household robots to assist the elderly allow for autonomous agents

to complete tasks that are difficult for the humans they serve, improving quality

of life. Autonomous unmanned aerial systems can drastically improve coverage

in search and rescue operations, increasing the likelihood that lost people can

be found before a tragedy occurs. Creating autonomous agents to perform tasks

improves system performance, and allows humans to spend time on different tasks.

Often, many autonomous agents are needed to achieve a complex task. For

example, although a single autonomous Unmanned Aerial System (UAS) may be

fitted with cameras and infrared sensors to assist in the search and rescue of a lost

hiker in a national park, multiple autonomous UASs greatly improve the coverage

of the environment, improving the odds of finding the lost hiker. Although more

agents allow a task to be completed more efficiently, it is extremely difficult to

develop control policies such that each agent acting autonomously will coordinate

with other agents in the system to improve overall system performance. Multiagent

learning techniques can develop such control policies, improving the coordination
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and control of autonomous multiagent systems.

Cooperative coevolutionary algorithms involve training a set of autonomous

agents to coordinate in order to achieve a system level objective. Developing

good control policies for multiagent systems is a critical area of research, and is

applicable to many real-world scenarios including air traffic control and distributed

sensor network control. One of the key difficulties in multiagent learning systems

is addressing the credit assignment problem. As multiple agents are interacting

with each other and the environment, it is difficult to determine the effectiveness

of any particular agent in the context of overall system performance. In order to

learn good policies in a multiagent setting, the credit assignment problem must be

addressed.

One solution to the credit assignment problem is the difference evaluation func-

tion, which approximates an individual agent’s impact on the system evaluation

function. The difference evaluation is aligned with the system evaluation function,

and it has a favorable signal-to-noise ratio. These properties result in difference

evaluation functions providing informative and beneficial agent-specific feedback

during learning, resulting in improved learned performance. The performance

benefits of difference evaluations have been demonstrated empirically in many do-

mains, including congestion games, multiple robot coordination, air traffic control,

and distributed sensor network control.

Although difference evaluation functions have nice theoretical properties and

extensive empirical evidence supporting their usefulness, there are three research

topics which have not been adequately addressed. First, although difference eval-
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uations have provided good learned performance, it is unclear how extending dif-

ference evaluations and combining them with other coordination mechanisms will

improve overall system performance. Second, there has been no prescriptive theo-

retical analysis of difference evaluations, providing conditions which describe sce-

narios where difference evaluations are expected to improve system performance

over traditional coordination mechanisms. Third, there is not a clear path to imple-

mentation in scenarios where difference evaluations can not be directly computed,

and agents only have access to local knowledge. This dissertation addressed each of

these research questions, and demonstrates the real-world usefulness of difference

evaluation functions.

The contributions of this dissertation are to:

1. Demonstrate difference evaluations are compatible with other coordination

mechanisms, and combining difference evaluations with hall of fame ap-

proaches can improve system performance by up to 48%.

2. Provide a prescriptive theoretical result which derives conditions under which

difference evaluations are beneficial for overall system performance.

3. Derive a technique for approximating difference evaluations with local infor-

mation.

The first contribution demonstrates that difference evaluations are compatible

with other types of coordination mechanisms, and pairing difference evaluations

with these mechanisms can significantly improve system performance. We also
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demonstrate that these combinations are extremely efficient with respect to com-

putational resources, allowing for their implementation without a need for more

sophisticated computational power.

The second contribution provides the first prescriptive theoretical framework

for difference evaluations, deriving conditions under which difference evaluations

are expected to improve system performance. The derived conditions demonstrate

that difference evaluations are beneficial in systems with deceptive optimal policies.

Thus, in systems where optimal policies are simple to find, most coordination

mechanisms will provide adequate coordination of control of multiagent systems;

however, in more difficult systems, difference evaluations allow for optimal policies

to be found more easily. These theoretical conditions allow for a form of system

identification to aid the system designer while determining which coordination

mechanisms should be used to train a multiagent system.

The third contribution derives a technique for approximating difference evalua-

tions in systems where agents only have access to local state and action information,

as well as a broadcast value of the system evaluation function. This information

is almost always available in multiagent learning settings, meaning that difference

evaluation functions can be implemented in systems even when there isn’t sufficient

information to directly compute them. Thus, the advantages of difference evalu-

ation functions may be attained even in systems where they can’t be analytically

computed.

By demonstrating that difference evaluations are compatible with other coor-

dination mechanisms, we found that these pairings often produce excellent system
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performance. The evolutionary game theoretic analysis provided a prescriptive

theoretical framework which derived conditions under which difference evaluation

functions are beneficial. The derivation of a novel technique to approximate differ-

ence evaluations provides a clear path to implementation of difference evaluations,

allowing for their use in any generic multiagent system where the value of the

system evaluation function is broadcast. By providing improved performance, a

theoretical framework, and a clear path to implementation, we have demonstrated

that difference evaluation functions are useful tools to be considered for real-world

applications.

There are many avenues of potential future work from this research. An anal-

ysis of the compatibility of difference evaluations with other coordination mecha-

nisms not considered in this dissertation could provide more insight on the general

compatibility of difference evaluations and other techniques, as well as potentially

provide even larger performance gains. The evolutionary game theoretic analysis

could be extended to account for a combination of difference evaluation functions

and other coordination mechanisms, rather than difference evaluation functions

alone. The approximation technique could be extended to include more than in-

formation directly local to an agent. For example, in a large multiagent system,

agents may often be able to communicate with agents which are spatially close.

This information from other agents could be implemented in an approximation of

difference evaluations, improving the accuracy of the approximation and subse-

quently improving the performance of learned policies.

Future work also includes new applications, specifically autonomous multiagent
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control of advanced energy systems. New hybrid power plants which are extremely

efficient are being developed, and traditional control techniques such as model pre-

dictive control are not capable of controlling these plants. We plan on applying

multiagent learning techniques and difference evaluations to attempt to develop

distributed controllers for these plants. Future work also includes more detailed

investigations of phenomena we see in the various experiments we conducted on

difference evaluations. For example, when approximating difference evaluations,

there appeared to be a strong coupling between the degree of factoredness of the

approximation and the performance level when using the approximation. If this

coupling could be quantified, we could determine how accurate we need our ap-

proximation of difference evaluations to be in order to produce a specific level of

system performance.
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