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1. Introduction 
_________________________________________________________________________________________________ 

 

The ultimate goal of large-scale design organizations are mainly to reduce costs 

and improving reliability and performance of system while assessing how much 

risk (cost, schedule, scope) they can take and still remain competitive. To 

achieve this goal they need to develop tools to reach the most preferred design 

performance while reducing design and decision time, time to market and total 

costs and increasing reliability, safety, satisfactory, performance and ease of 

design and decision making.  

 

1.1. Motivation 

One of the most challenging tasks of the design team during the design process 

and development of complex systems is to make decisions in risky and 

unambiguous environments to reach the most desirable products. To achieve this 

goal, they must obtain the most preferred design product satisfying all design 

constraints and requirements within risk and uncertainty constraints. This 

process can be divided into these main interconnected steps [76]: 

 

• Risk and uncertainty management: The design and development cycle 

for complex systems is full of uncertainty, commonly recognized as the 

main source of risk in organizations engaged in design and development. 

One of the challenges for complex large organizations is to assess how 

much risk (cost, schedule, scope) they can take on and still remain 

competitive; to determine the probability and consequences of associated 

risks; and, to decide whether or not they should apply additional 
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mitigation techniques to reduce risks and uncertainties with respect to 

associated costs. 

 

Risk and uncertainty management techniques offer methodologies for 

dealing with uncertainties (qualitative or quantitative; controllable or 

uncontrollable) and satisfying critical challenges that design teams 

encounter. They provide answers for decision maker’s critical questions: 

1- Where is uncertainty from?; 2- What is its severity and importance?; 

3- What are possible methods to assess, mitigate and dealt with risks in 

the design process; 4- How do uncertainties propagate and which model 

describes them the best?; 5- How might the sensitivity of the system 

performance to this uncertainty be reduced or controlled?   6- How can 

the performance of system be improved in spite of the existence of this 

uncertainty?  

 

• Design requirement management: During the design and development 

of complex systems, the design team should be aware of properties of 

systems and subsystems such as associated tasks, requirements, criteria, 

issues, etc. This step includes modeling and defining the project; 

determining associated decisions and subsystems; identifying design 

requirements; allocating resources and generating alternatives. These 

issues not only define design constraints that should be satisfied to meet 

requirements, but also enable decision makers to predict system and 

subsystem properties so they can devote more effort (cost, schedule, 

additional safeguards) to subsystems with more importance with respect 

to certain issues. However; design requirements and information are 

unambiguous in early stages of design and they become clearer when the 

project progresses. As a result, techniques of design requirement 
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management should be changeable and updatable with respect to new 

information. 

 

• Collaborative design environment: Because of the complexity of 

multidisciplinary systems, the design process of complex systems is 

mainly based on team collaboration. However, decision making in 

collaborative team has its own challenges. The design team must be able 

to communicate and synchronize data and be aware of decisions made by 

others as the project goes forward. In recent years many efforts have 

been conducted to address challenges of collaborative decision-making. 

These challenges mostly include developing optimization tools [119, 

126] or providing group decision making collaborative design with 

methods, such as Multi-Agent Architecture for collaboration [109], for 

eliminating communications barriers of design teams during design 

lifecycle. 

 

 

1.2. Research Approach 
As mentioned above, a methodology that can satisfy engineers’, managers’, 

stakeholders’ and decision makers’ needs must be able to satisfy the critical 

challenges of design teams by understanding the sources of uncertainties and 

risks and providing a means for managing them and  making best decisions. To 

aim this goal, this research provides: 

 

Design Requirement and Resource Allocation Management (DRRAM): 

This research provides techniques for Design Requirement and Resource 

Allocation Management (DRRAM) by analyzing and defining the project from 
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the very early stages, associated tasks, issues and design requirements; dividing 

the system into subsystems, parallel decisions, decision nodes, alternatives; and 

generating the model. It enables designers, decision makers and stakeholders to 

predict system and subsystem properties and requirements and also devote more 

effort (cost, schedule, safety guard, etc.) to subsystems with more importance 

with respect to certain issues. 

 

The design requirements can be adjusted as the design goes forward and new 

criteria are obtained. Prior research by Tumer et al, specifically, Function-

Failure Design Method (FFDM) [149] and Risk and Uncertainty-Based 

Integrated Design (RUBIC) [150] are used by DRRAM to allocate resources. 

DRRAM’s information sheet not only provides the necessary information for 

decision making, but also helps decision makers to change their decisions more 

effectively.  

 

Capture, Assessment and Communication tool for Uncertainty Simulation 

(CACTUS): For dealing with risks and uncertainties during the 

multidisciplinary complex system’s design process, this research introduces the 

“Capture, Assessment and Communication Tool for Uncertainty Simulation” 

(CACTUS). CACTUS monitors systems from the very early stages of design 

and as the project goes forward, identifies the sources, severity, boundaries and 

propagation of uncertainties and identifies and mitigate associated risks that 

should be analyzed by decision makers. In addition, since complex systems 

commonly rely on concurrent design teams, its collaborative environment for 

design teams enables to efficiently and effectively communicate uncertainty 

through the design process and as a result, improve their capacity for delivering 

complex systems that meet cost, schedule, and performance objectives. 
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The excel-based environment: This research addresses the communication 

issue by providing an updatable excel-based communication environment for 

design teams during the design life cycle. By applying this excel-based 

environment, design members would be able to update and synchronize data to 

be aware of decisions made by others as the project goes ahead. This concurrent 

environment also reduces the ambiguity uncertainty due to lack of 

communication or misunderstanding of the precise definitions of tasks and 

requirements and hence helps customers, stakeholders and decision makers to 

communicate more effectively and efficiently. 

 

 

1.3. Terminology 
To reduce the ambiguity in applying the methodologies offered by this research, 

in this section we define the terminology for terms used: 

 

Stage: The term “Stage” refers to the main steps of design determined by design 

teams. They mainly define stages in design by considering parameters such as 

timeline, design development, etc. 

 

Parallel decision: Parallel decisions refer to distinct decisions for each 

subsystem that have independent end points. In other words, each selected 

decision at the end is related to a parallel decision of a subsystem. The parallel 

decision number is defined by m= {1, 2,…,M-1, M} where M is the total number 

of parallel decisions needed for the subsystem. 

 

Decision node: Decision nodes refer to points in parallel decisions of 

subsystems in the design and development of complex systems which where a 
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decision must be made among many design alternatives to achieve the same task 

and satisfy the same issues. 

 

Phase: Since the design and development of complex systems can be 

represented as a decision tree, each decision node represents one phase of the 

associated parallel decision. Obviously, different phases of design can be located 

in the same or different stages. The phase number is defined by n= {1, 2,…,N-1, 

N} where N is referred to the total number of phases in the design process. 

 

Alternative: Each possible decision that can be made through decision-making 

in decision nodes is called an alternative. The number of alternatives is defined 

by l= {1, 2,…,L-1, L} where L is the total number of alternative in the step. Each 

alternative is represented by the symbol of where m is the number of 

parallel decisions, n is the number of phase located in the mth parallel decision, 

and l is the number of alternatives located in the nth step. 

X
mnl

 

Task and Issue: Based on associated issues and tasks, decision makers make 

decisions among alternatives in decision nodes. Generally tasks introduce why 

and for what purpose we are making a decision while issues refer to constraints 

that should be satisfied for tasks to obtain the most preferred design product. 

Issues might not be equal in importance. In decision sheets, expert judgment 

scores qualify issues’ importance and based on these scores, decision makers 

can give higher weight to more important issues. Tasks and issues represent 

design variables in the form of control factors, which designers can adjust to 

reach a desirable performance, and exogenous parameters in the form of noise 

factors which are difficult or impossible to control for designers. 
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Decision sheet: A decision sheet, created for each decision node, is developed 

for alternatives that are considered actively in decision making.  Types of 

decision sheets might vary based on the nature of issues and uncertainties that 

should be considered. For example, for considering qualitative aspects of 

uncertainties, a qualifier might be added to the decision sheets. As a result, 

decision sheets provide uncertainty assessing tools for combining qualitative and 

quantitative aspects of uncertainties. They also can be used to model degree of 

beliefs where only expert judgment is possible.  Decision sheets also have 

columns showing the weight, distribution and type of issues associated with 

each decision node. The outcome of decision sheets is identifying alternatives 

that should be considered actively in the next decision node.  

 

Information sheet: Information sheets provide all necessary information for a 

design team to be able to evaluate criteria and manage design requirements and 

resource allocations. They help the design team to manage design resources and 

requirements. They enable decision makers at the system level to predict 

subsystems properties and requirements and devote more effort to subsystems 

with more importance with respect to certain issues. In other words they manage 

the system by identifying the amount of effort that should be done for each 

subsystem based on criteria that have been defined for the system before.  

 

Flow diagram:  A flow diagram helps users to have a better understanding of 

active or passive alternatives in each parallel decision. Flow diagrams are 

generated for decision nodes and completed as the project goes forward. It 

shows both alternatives that are become passive (circles with dashed line) and 

active alternatives (circle with solid lines), which are sent to the next decision 

node for decision making.  
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Model: The model shows a general scheme of the system, subsystem and their 

relations by modeling uncertainty propagation through the multidisciplinary 

system. It identifies exogenous parameters, design and linking variables and as a 

consequence, prepares the data for performing optimal decision making to reach 

the desirable product.  

 

 

1.4. The Case Study 
The case study applied in this research is the lunar lander mission design project, 

a conceptual mission design team at JPL’s Project Design Center, borrowed 

from [33]. This design team, also known as Team X, is a concurrent engineering 

team that has the capability to design an entire mission in one week at the 

conceptual design stage. Their product is a conceptual design that includes the 

mission architecture, equipment lists, launch vehicle and estimates for cost and 

schedule. The team was formed in order to shorten the time required to develop 

a space mission proposal, a process that previously required months of work 

[34].   

 

Figure 1 shows a portion of the decisions that occurred during the design 

process of a robotic lunar mission, based on the observations of the team over 

the course of a week as they worked on a robotic lunar lander mission design, 

initiated by an internal NASA customer [33].   

 

This research uses this case study to show the structure and architecture of the 

proposed methodology, its processes, applicability and illustrates the techniques 

with more detail. The excel-based collaborative design environment, the 

decision and information sheets and other material covered in this research will 
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be explained in more detail by applying them into this case study in the chapter 

five. 

 

Figure 1: Flow diagram of the lunar lander mission Team X design
 

 

1.5. Structure of Thesis 
In the first section of this chapter, an introduction to the thesis topic of Risk-

Based Integrated Design for multidisciplinary complex systems was provided 

and research objectives and motivations were briefly described. Section 1.2 

summarized achievements and the materials that will be covered in this research 

and Section 1.3 defined the terminology used in this methodology. Section 1.4 

described the case study that will be used to clarify this methodology. The 

present section gives an overview of material that will be covered in upcoming 

chapters specifically: 
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• Chapter two reviews the literature and background of methodologies 

covered by this research. It provides definitions of complex systems 

and risks and uncertainties from various domains; techniques of 

dealing with systems’ uncertainties by classifying, assessing and 

mitigating their sources, severity and consequences; design 

requirement management and resource allocation by functional 

decomposition methods; concepts of decision making in ambiguous 

and risky environments; collaborative decision making within the 

optimization domain and a brief overview of flexible alternative 

generating and decision making. 

 

• Chapter three introduces the “Capture, Assessment and 

Communication Tool for Uncertainty Simulation” (CACTUS) as the 

proposed methodology for dealing with uncertainty to obtain the 

optimal risk-based design product. The CACTUS methodology, 

resulting sheets and future work will also be covered in this section.  

 

• Chapter four proposes the Design Requirement and Resource 

Allocation Management (DRRAM) as one of the necessary tools for 

optimal risk-based design. The proposed methodology and 

optimization problem, information sheets and their properties and 

attributes to the design requirement management and resource 

allocation will be covered in this chapter. 

 

• Chapter five shows CACTUS and DRRAM methodologies and 

processes with more details by applying them into the robotic lunar 

lander conceptual mission Team x design team case study at NASA 
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JPL’s Project Design Center. The structure of the excel-based 

collaborative design environment, information sheets and decision 

sheets, flow diagrams, models and other covered material will be 

clarified with details for the case study in this chapter. 

 

• Chapter six introduces complex system architecture for Optimal 

Risk-Based Integrated Design (ORBID) as a future work of this 

research. This chapter includes the goals, methodology and structure 

of ORBOD with respect to its components for design requirement 

management and resource allocation, uncertainty management and 

collaborative decision making.  

 

This chapter proposes a set of tools and techniques that should be 

incorporated into the system architecture of complex 

multidisciplinary systems in risky environments to obtain the most 

preferred products. The provided framework shows the process and 

associated methodologies’ dependency with more details. 

 

This chapter also introduces Flexible Risk-based Optimal Decision 

making (FROD), as a decision making tool for generating flexible 

alternatives and making the best decisions among sets of optimal 

solutions with respect to costs and uncertainties. This chapter also 

provides a brief discussion for the properties of the proposed 

methodology and challenges of design teams to evaluate and apply 

flexibility in their consideration for the design projects.  
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• Chapter seven summarizes the results and contributions of this 

research to achieve its goal for risk-based design of complex 

systems. This chapter also offers recommendations to move forward 

this methodology and identifies research items for future work.
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2. Background/Literature Review 
_________________________________________________________________________________________________ 

 

This chapter reviews the literature background in related concepts associated 

with issues associated with design of complex systems in risky environments. 

First, it provides definitions of complex systems and their properties as a 

concurrent engineering design; next, it reviews the literature background of risk 

and uncertainty in addition to design requirement and resource allocation 

management.  

 

 

2.1. Complex systems 
Rechtin and Maier (2002) [162] defined a system as “A set of different elements 

so connected or related as to perform a unique function not performable by the 

element alone”. In this context, two commonly accepted definitions for the 

complexity of a system includes:  

 

“A measure of the numbers and types of interrelationships among system 

elements; Generally speaking the more complex a system, the more difficult it is 

to design, build, and use”  Rechtin and Maier (2002) [162]. 

 

“Having many interrelated, interconnected or interwoven elements and 

interfaces...an absolute and quantifiable system property” Crawley (2005) [163]. 

 

Based on these definitions, the complexity can be characterized by the amount 

of information is necessary for the system to be described. As a result, a system 

with more complexity includes more stating information. However, the question 
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is how much complex a system should be so that it can be defined as a complex 

system?  

 

In 2005, Crawley [163] described the property of a complex system by “requires 

a great deal of information to specify” and then he classified systems based on 

their complexity by this rule:  

 

- Simple systems: (7 ± 2) elements 

- Medium systems: (7 ± 2)2 elements 

- More Complex systems: (7 ± 2)3 elements 

 

Architecture, as “rules to follow when creating a system” [163], is a way to 

design and manage complex systems. Here, some properties of complex systems 

affected by architecture are listed:  

 

- Robustness: “the demonstrated or promised ability of a system to perform 

under a variety of circumstances, including the ability to deliver desired 

functions in spite of changes in the environment, uses, or internal variations that 

are either built-in or emergent” , (ESD 2002, [164]). 

 

- Adaptability: “the ability of a system to change internally to fit changes in its 

environment,” (ESD 2002, [164]). 

 

- Flexibility: “the property of a system that is capable of undergoing classes of 

changes with relative ease. Such changes can occur in several ways: a system of 

roads is flexible if it permits a driver to go from one point to another using 

several paths. Flexibility may indicate the ease of ‘programming’ the system to 
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achieve a variety of functions. Flexibility may indicate the ease of changing the 

system’s requirements with a relatively small increase in complexity and 

rework”, (ESD 2002 [164]). 

 

Maier and Rechtin (2000) [162] showed there are four quantities should be 

understood and traded off to achieve the design of a complex systems including: 

performance; time to market; cost, and risk. Trading off performance, time, cost 

and risks (as the most difficult part to be addressed), in addition to a variety of 

techniques to computerize, systematize, communicate, etc is the process need to 

be done to support the design of a complex system.   

 

In the next section, this research provides a description about Integrated 

Concurrent Engineering (ICE) as one of the best examples of collaborative 

design environments to support the communication issue during the design of 

complex system.  

 

 

2.1.1. Integrated Concurrent Engineering (ICE)  
Team X was designed to enable JPL, NASA’s lead center for robotic 

exploration of the solar system, to deal with the increasing number of 

conceptual-phase mission designs. The main purpose of Team X is to provide a 

study process to increase the quality and to decrease the time of mission 

concepts by dedicating facilities, equipments, procedures and tools [165].   

 

To achieve this goal, Team X includes: 
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- 16 subsystem experts: Each expert has a computer workstation for 

his/her associated subsystem. These subsystems consist of: Attitude 

Control, Command Data Systems, Configuration, Cost, Ground Systems, 

Instruments, Mission Design, Power, Program Management, Propulsion, 

Science, Structures, System Engineering, Telecommunications-System, 

Telecommunications-Hardware and Thermal Control. 

 

- The team leader: He/she leads the study and contact customers before 

and after and during the study. 

 

- The documenatalist: The documenatalist is responsible to make sure the 

result of the study is documented properly. He/she also documents the 

study’s technical discussion, electronic files etc. 

 

As the following paragraph shows, to achieve this goal, the design process of 

complex systems needs to be provided with supportive tools to enable 

subsystems chairs to communicate. 

 

Integrated Concurrent Engineering (ICE) that is an approach to facilitate and 

increase the productivity of complex system’s design teams in conceptual stages 

is a collaborative process consists of five principles listed below [166, 167]: 

 

1. Standard Information Products: Organizations should define their 

standard information product to systematize their process and determine 

benefits of applying ICE. 
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2.  Network-Linked Tools: These tools such as Computer Aided Design 

(CAD) systems, spreadsheets, mathematical models and other types of 

software are used to facilitate instant quantitative engineering. 

 

3. Procedures for real time collaboration: It is always important that design 

team members have a well understanding of the procedures for real time 

collaboration.  

 

4. Standing Multidisciplinary Team: Team should be well-trained and 

skilled in the tools and methods by setting clear procedures, roles, 

standard information, etc. 

 

5. Applicable Facility:  Teams should be facilitated with environments that 

support hardware, software and human resources, such as networked 

computer workstations (either real or virtual). 

 

To address these principles and increase the ease and speed of applying ICE, 

ICEMakerTM was designed. ICEMakerTM as an Excel based software tool that 

applied the ICE methodology and principles, has been adopted by JPL to 

implement the ICE to provide a faster and easier tool for team members to share, 

browse, send and receive data. In addition, its interface for inputting and 

outputting database from/to the model provides a faster send and request 

process. 

 

ICEMakerTM  facilities the communication between subsystems by providing a 

client-server architecture.  Figure 2 shows this architecture.  

 

 



 
 

18
 

 
  borrowed from [32] 

 
Figure 2: The client-server Architecture of ICEMaker TM

 
 

 

ICEMakerTM server applies Visual Basic and Visual C++ and generates the 

client’s excel workbooks that enable subsystems to communicate with each 

other via the server.   

 

The workbook consists of four work sheets including: The main sheet (a 

summary sheet of calculation results); the input sheet (includes data from other 

subsystems as parameters); the output sheet (determines data calculated within 

the subsystem and is used by other subsystems) and the project Status sheet (an 

alternative menu-based method). Figure 3 shows the client major software 

routines. 
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Figure 3: Client Major Software Routines borrowed from [32] 

 

Figure 4 shows the ICEMakerTM folder structure. Project Chaos shown in this 

figure is the root folder consists of two sub folders: Client Subsystems 

(including all workbooks) and Project Server (the database associated with the 

server). 

 

 
orrowed from [32] Figure 4: The ICEMaker folder structure b
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2.2.    Risk and Uncertainty     
In engineering design teams, decision makers encounter lots of uncertainties in 

each decision they make. The risk associated with the design of complex 

systems is fundamentally tied to these uncertainties commonly recognized as the 

main source of risk in organizations engaged in design and development. In fact, 

the design process includes consecutive decisions that start with high levels of 

uncertainties in the early stages of design, and lead to a final product at the end 

by reducing the overall uncertainty throughout the design cycle.  

 

In the early stages of design, uncertainty is the highest since decisions have not 

yet been made and design alternatives to achieve the best design product have 

not yet been clearly and actively considered. To deal with the uncertainty in the 

design and development of a complex system, team members should be aware 

of consequences of their decisions while being aware of decisions made by 

others. In addition, different sources of uncertainty might not have the same 

importance as other sources. For example, when the number of design 

alternatives is increased, the uncertainty associated with that decision is also 

increased but obviously, offering more choices, especially in early stages of 

design is not as harmful as other types of uncertainty that cause poor or 

suboptimal performance, poor decisions and even failure.  

 

Furthermore, selecting a poor or imperfect definition and classification for 

uncertainty might guide decision makers to account for uncertainty more or less 

than it is necessary. In addition, a well-established uncertainty management 

methodology has to be able to deal with all sources of uncertainty (technical or 

nontechnical; qualitative or quantitative). These show the importance of having 

a clear understanding of uncertainty, knowing its sources, severity, 
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consequences and finding methods for mitigation and managing associated risks 

and their effects during the design process. 

 

 

2.2.1.     Definitions  
Since uncertainty has been a concern in many diverse fields, including design, 

engineering analysis, project management, policy development, disaster 

recovery, there are several definitions for the term of “uncertainty” in existence. 

Selecting a poor or imperfect definition for uncertainty might guide decision 

makers to account for uncertainty more or less than necessary in the design 

process. So providing a detailed definition for the term “uncertainty” and its 

“sources”, exclusively for complex systems, is critical. By using this definition, 

decision makers will be able to make more informed choices and reduce risks 

due to uncertainty by reallocating resources, adding safeguards, etc.  

 

According to concerns from diverse fields, including design, engineering 

analysis, policy making, etc., there are several definitions for the term of 

“uncertainty”, such as: 

 

“The slack of certainty; A state of having limited knowledge where it is 

impossible to exactly describe existing state or future outcome, more than one 

possible outcome” [144]. 

 

In recent decades, several attempts to find the best description of uncertainty in 

the field of engineering design have been made but there is still no uniquely 

accepted definition for this term. In this research we will use the following 

definitions:  
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“Uncertainty is a characteristic of a stochastic process that describes the 
dispersion of its outcome over a certain domain” [27]. 
 

In this context, risk can be defined as: 

 

“Risk is a state of uncertainty where some possible outcomes have an undesired 

effect of significant loss” [144]. 

 

 

2.2.2.     Uncertainty classification 
Uncertainty can be due to lack of knowledge, refers to Epistemic or Knowledge 

uncertainty, or due to randomness in nature, refers to Aleatory, Variability 

Random or Stochastic uncertainty. In the following paragraphs, a classification 

for sources of uncertainty during the design process and development of 

complex systems is introduced. 

 

Ambiguity: One major source of uncertainty, ambiguity uncertainty [66-68], 

results from incomplete or unclear definitions, faulty expressions or poor 

communication. Ambiguity uncertainty should be reviewed from two aspects: 

First, as a lack of knowledge that can be reduced by clear definitions or 

linguistic conventions; and second, as an irreducible inherent uncertainty that is 

naturally associated with human behavior. Ambiguity uncertainty is also called 

imprecision [67] or uncertainty in context [29]. Ambiguity uncertainty shows 

itself from the beginning stages of design and has to be placed as a subcategory 

of both epistemic and aleatory uncertainty. 
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Model Uncertainty: Model (or process model) uncertainty includes 

uncertainties associated with using a process model or a mathematical model for 

the system. Model uncertainty is due to lack of knowledge (i.e., aleatory 

uncertainty) and appears in all stages of design. Model uncertainty might be a 

result of mathematical errors, programming errors, and statistical uncertainty.  

 

Mathematical errors include approximation errors and numerical errors, where 

approximation errors are due to deficiencies in models for physical processes 

and numerical errors result from finite precision arithmetic [30].  

 

Programming errors [60-63] are errors caused by hardware/software, such as 

bugs in software/hardware, errors in codes, inaccurate applied algorithms, etc.  

 

Finally, statistical uncertainty comes from extrapolating data to select a 

statistical model or provide more extreme estimates [31].  

 

Behavioral Uncertainty: Uncertainties associated with the behavior of 

individuals in design teams (designers, engineers, etc.), organizations, and 

customers are called behavioral uncertainty. Just as in ambiguity, behavioral 

uncertainty can be described as uncertainties due to lack of knowledge and 

uncertainties that are inherent in human behavior. Behavioral uncertainty arises 

from four sources: Human errors, decision uncertainty, volitional uncertainty 

and dynamic uncertainty.  

 

Volitional uncertainty refers to unpredictable decisions of subjects during the 

stages of design [31].  The role of this uncertainty becomes more important in 

multidisciplinary design when several organizations are hired to develop the 
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system. In this situation, individuals’ decisions in dealing with other 

organizations cannot be anticipated [30].  

Human errors [69-70] are uncertainties due to individuals’ mistakes during the 

design process. Although human errors are inevitable in the system, they can be 

reduced by certain methods such as training or applying human factors criteria. 

 

As its name indicates, decision uncertainty is when decision makers have a set 

of possible decisions and just one should be selected. To account for the role of 

decision uncertainty, a good methodology should be aware of the nature of the 

design process. For example, decision uncertainty has a more important role 

when the design process is not reversible or iterative.  

 

The fourth major source of behavioral uncertainty is when changes in the 

organization or individuals’ variables or unanticipated events (e.g., economic or 

social changes) contribute to a change in design parameters that had been 

determined initially. In this uncertainty classification, we refer to this as 

dynamic uncertainty.  

 

Dynamic uncertainty also includes uncertainties resulted from degrees of beliefs 

(instead if knowledge) where just subjective judgments are possible and should 

be considered [41-49]. 

 

Natural Randomness:  Uncertainties associated with the inherent nature of 

processes are called Natural Randomness uncertainty. This type of uncertainty is 

irreducible and decision makers are not be able to control it in the design 

process. Several sources refer to aleatory uncertainty in general as natural 

randomness. In this research we make distinction between Behavioral 
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uncertainty that is related to individual’s behaviors and Natural Randomness that 

is inherent in the nature of processes.     

 

Table 1 shows sources of uncertainty associated with the complex system design 

process and the main categories in which they belong (Epistemic, Aleatory, or 

both).   

 

 Table 1: Uncertainty sources in complex systems 

Source of 
Uncertainty 

Subcategories Main Category 

Model 
Uncertainty 

Mathematical errors,
Programming errors,  
Statistical uncertainty 

 Epistemic 

Behavioral 
Uncertainty 

Decision uncertainty, 
Volitional,  Human errors, 
Dynamic uncertainty 

Epistemic, 
Aleatory 

Natural 
Randomness 

N/A Aleatory 

Ambiguity N/A Epistemic, 
Aleatory 

 

Figure 5 is a general scheme of uncertainty classification based on Table 1. This 

research uses this classification to account for uncertainty in every stage of 

design.  

 

Figure 6 shows the uncertainty Venn diagram for general understanding of 

uncertainty classification. As we can see, the inside of the two sets represents 

certain uncertainty referring to uncertainties where we know the sources, while 

the intersection of two sets includes Ambiguity and Behavioral uncertainty. The 
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outside of the sets is unknown uncertainty, referring to what we don’t know we 

don’t know. 

 
 
Figure 5: Uncertainty classification  

 
 

  

ty Venn diagram  
 
Figure 6: The Uncertain  
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2.2.3. Uncertainty assessment methods 
Design is by nature iterative and driven by decisions that are made under large 

amounts of uncertainty. Uncertainty studies typically involve methods for 

quantitative uncertainty analysis, including single and multi-variant sensitivity 

analysis, stochastic modeling with Monte Carlo techniques, etc. [1-6]. Attempts 

to quantify uncertainty during the design process have been published, but most 

focus on the quantitative aspects of uncertainty only [13-23].  These quantitative 

methods provide only a partial insight into a very complex set of uncertainties.  

As a result, these technical methods have to be complemented with qualitative 

methods of assessing uncertainties, including expert judgments. While there 

have been some attempts to accomplish this in various fields [7-12], methods to 

incorporate and propagate both types of uncertainties in a design process are less 

paid attention. 

 

This research addresses this problem by combining both types and can be 

extended to include places where only expert judgment is possible and decision 

makers need to model degree of beliefs (instead of knowledge).  Finally, even if 

the assessment of uncertainty is satisfactory, managing the uncertainty across 

multiple functions and across the entire design process is challenging and there 

is need for more research in this area [24-26].  This section provides a brief 

review of various uncertainty assessment methods, followed by a review of 

mitigating methods attempting to reduce sources which lead to these 

uncertainties. 

 

Uncertainty assessment methods generally can be divided into four major 

approaches based on their characteristics in analyzing data and representing the 
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output parameters. These approaches include probabilistic methods, Bayesian 

techniques, simulation methods and qualitative methods, which are generally 

combined with quantitative methods. Here we introduce these approaches in 

general and some of assessment methods which have been developed based on 

these approaches. 

 

Probabilistic methods: A probabilistic approach is based on characterizing the 

probabilistic behavior of uncertainties in the model including a range of methods 

to quantify uncertainties in the model output with respect to the random 

variables of model inputs. These methods allow decision makers to study the 

impact of uncertainties in design variables on the probabilistic characteristics of 

the model. Probabilistic behavior may be represented in different ways.  

 

One of the basic representations is the estimation of the mean value and standard 

deviation. Although this representation is the most commonly used results of the 

probability methods, it cannot provide us with a clear understanding of the 

probabilistic characteristics of uncertainties associated with the model.  Another 

representation of probabilistic behavior is the probability density function (PDF) 

and the cumulative distribution functions (CDF), which provide the data that is 

necessary for analyzing the probabilistic characteristics of the model.  

 

One of the useful methods is the probabilistic sensitivity analysis (PSA) [38-40]. 

This method determines the importance of input model variables in terms of 

their influence on the value of assigned output variables. Sensitivity analysis 

traditionally is used in the post-design stage to demonstrate the uncertainties 

associated with variables, and determine which variables should be controlled to 

improve the performance of the model. Sensitivity analysis also can be applied 
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in the pre-design stage to determine the variables which can be eliminated 

without having a significant influence on the uncertainties of the model 

performance and hence improve the design efficiency. 

 

Bayesian techniques: Although the classic statistical assessment approaches 

clarify the type and level of risk by assessing associated uncertainties, they 

cannot take past information into account. To address this problem, a Bayesian 

approach offers a wide range of methodologies based on Bayesian probability 

theory, assuming the posterior probability of an event is proportional to its prior 

probability [2], [41], [42].  

 

The Bayesian approach has a variety of applications by itself, or in combination 

with other assessment methods, to quantify or qualify uncertainties in single or 

multi-objective problems of large scale systems. One of the applications of this 

approach used in this paper (see figure 7) is the third-level-Bayesian analysis for 

estimating the reliability of launch vehicles [35]. The first level of this method 

assumes nothing is known about the reliability before observing the launch 

attempts whereas the second and third levels consider the past experience. These 

three levels not only determine the probability density function of the future 

frequency of the launch success, but also yield the estimation of the future 

frequency of success where no launch attempts have been made yet.  

 

The Bayesian logic can also be used to model degrees of beliefs (instead of 

knowledge) when just subjective judgments are possible (see dynamic 

uncertainty). The role of a Bayesian model for assessing degrees of beliefs is 

more important in large-scale multidisciplinary systems. However, this model 

can only be used when probability measures of values are known. ULP (the 
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upper and lower probabilistic model) and TBM (the transferable belief model), 

which are obtained by generalizing Bayesian theory, address this problem and 

can be used when the probability measures of some of the values are unknown.  

 

Another advantage of the Bayesian theory is its flexibility in being applied in the 

decision making process of multi-disciplinary systems by combining qualitative 

and quantitative aspects of uncertainties associated with systems. An example 

can be found in ACCORD®, a collaborative decision making method to manage 

the trade study process when decisions are a mix of quantitative and qualitative 

information, based on the Bayesian decision theory [48-49].  

 

One example of the ULP method is the Dempster-Shafer model which is applied 

to assess degrees of belief, especially in multidisciplinary systems. The idea 

behind the Dempster-Shafer theory is simply to combine separate pieces of 

information to calculate the probability of an event [43-47].  

 

In spite of a wide variety of applicability, applying the Bayesian approach has 

not been without criticism. Critics point out two main limitations for this 

approach: First, the Bayesian method ignores the chronological history of events 

(i.e., when systems mature over time) and second, it does not take into account 

the similarities of new and past events. More research in this area might be done 

to address limitations of the Bayesian methods by applying some methods such 

as decomposing data into certain intervals, devoting unequal weight to events, 

etc.  

 

Simulation methods: Simulation methods analyze the model by generating 

random numbers and then observing changes in the output. In other words, a 
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simulation approach is a statistical technique clarifying the uncertainties that 

should be considered by decision makers to reach to the desirable result.  

Simulation methods are generally applied when a problem cannot be solved 

analytically or there is no assumption on probability distributions or correlations 

of the input variables.  

 

The most commonly used simulation-based methodology is the Monte Carlo 

Simulation (MCS) [50-54]. MCS includes a large number of repetitions, 

generally between hundreds and thousands. Each repetition simulates variables 

by their probability density distributions and then generates the probability 

distributions of the system parameters (output) by integrated probability 

distributions of variables through the system model. Although the model 

complexity is not a limiting factor in Monte Carlo simulation, this method can 

be computationally expensive or infeasible with models with long run time or 

when too many sources of uncertainty must be considered. To address the 

limitations of MCS, advanced sampling methods such as Latin Hypercube 

sampling have been developed to minimize the number of repetitions that is 

needed to obtain the necessary distributional information for the model. Even 

though these methods have advantages in efficiency in comparison to MCS, 

MCS is still the most preferable method when there is no limitation in run time 

or the model complexity.  

 

Simulation methods can be used on their own or in combination with other 

methods. One example of this combination is Bayesian Monte Carlo applied in 

the robust design process [50]. 
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Qualitative methods: The above three approaches generally provide only 

partial insight into a very complex set of uncertainties.  As a result, these 

technical methods have to be complemented with qualitative methods of 

assessing uncertainties, including expert judgments. Methods which incorporate 

and propagate both qualitative and quantitative uncertainties in a design process 

are placed in the fourth category as qualitative approaches of uncertainty 

assessment. These methodologies may include combinations of two or more 

assessment methods.  

 

One example is NUSAP [27] which can be used by itself or in combination with 

other assessment methods. The term of “NUSAP” is the acronym for “Numeral, 

Unit, Spread, Assessment and Pedigree”, where the first three categories are 

quantitative measures and the two next categories are qualitative quantifiers 

which might be applied in combination of other assessment methods such as 

Monte Carlo, and sensitivity analysis.  

 

The most significant shortcoming of NUSAP is its subjective judgment in the 

scoring of pedigree criteria. Furthermore, since no means of calculating, scoring 

and individually describing the qualitative components has been determined, 

communication with stakeholders, who are not familiar with this method, may 

be inefficient and time-consuming. In addition, as it has been mentioned above, 

some methodologies, such as ACCORD®, which is based on the Bayesian 

decision theory, combines both qualitative and quantitative uncertainties. 
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2.2.4.     Uncertainty mitigation methods 
Although being familiar with sources of uncertainty and methodologies for 

assessing them is the first step for dealing with uncertainties, still one challenge 

remains: how can we handle and mitigate the effects of these uncertainties in the 

systems? In addition, how can we diagnose these uncertainties before it’s too 

late and they get out of control? To answer these questions, this research provides 

methodologies for uncertainty diagnosis and mitigation: 

 

Programming errors: Uncertainties due to programming errors can be 

diagnosed by who committed it. Since programming errors may occur during 

input preparation, module design/coding and compilation stages [60, 61], it can 

be reduced by better communication, software quality assurance methods [62, 

63], debugging computer codes and redundant executive protocols.  

 

Statistical and mathematical errors: Applying higher precision hardware and 

software can mitigate the effect of mathematical uncertainties associated with 

the model due to numerical errors resulting from finite precision arithmetic. In 

addition it reduces the effect of statistical uncertainties by providing a better 

precision for the statistical model applied into the system. Statistical uncertainty 

also can be mitigated by selecting the best data sample in terms of both size and 

the similarity to the model.  

 

Similar to the statistical uncertainty, approximation uncertainty is minimized 

when the best model with acceptable range of errors and the best assumption for 

variables, boundaries, etc., is selected. Simulation approaches might be applied 

to generate the best model. Generalized Likelihood Uncertainty Estimation 

(GLUE) [64-65] is an example of a methodology for mitigating the effect of 
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model uncertainty by generating the best model by simulation. Providing a tool 

for modeling uncertainty, this research mitigates model uncertainty in design 

and development of large-scale complex systems. 

 

Ambiguity uncertainty: Uncertainties associated with using incomplete or 

unclear definitions, faulty expressions or poor communication are naturally 

associated with human behavior; however they can be reduced by clear 

definitions, linguistic conventions or fuzzy sets theory [66-68]. 

 

This research attempts to reduce this uncertainty due to lack of communication 

or faulty expressions by providing an excel based communication tool. 

 

Volitional Uncertainty: This type of uncertainty which results from 

unpredictable decisions especially in multidisciplinary design is diagnosed by 

other organizations or individuals and is mitigated by hiring better contractors, 

consultants and labor [30-31]. 

 

Human errors: Although Human errors and individuals’ mistakes are 

inevitable in the system, they might be diagnosed and mitigated by applying 

human factors criteria such as inspection, self checking, external checking, etc., 

to diagnose this uncertainty and better personnel selection, education, etc., for 

reducing the effect [69-70]. 

 

Dynamic Uncertainty: As has been discussed before, when only subjective 

judgments are possible the effect of dynamic uncertainty can be mitigated by 

applying Bayesian approach (such as Demster-Shafer theory) by assessing 

degrees of beliefs (instead of knowledge) [41-49]. In addition this type of 
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uncertainty can be reduced by applying design optimization methods to minimize the 

effect of changes in variables or unanticipated events which contribute changes to 

design parameters.  

 

This research also addresses this uncertainty by enabling decision makers to 

combine both qualitative and quantitative aspects of uncertainty in their 

calculation and model degree of beliefs where just subjective judgment is 

possible. 

 

Decision Uncertainty: Such as dynamic uncertainty, design optimization is 

useful for reducing the effect of uncertainty when a set of possible decisions are 

available. Methods based on Bayesian decision theory (such as ACCORD® [48-

49]) also can be used to help decision makers to make more informed choices. 

Sensitivity analysis [38-40] and robust design are also be helpful by determining 

which variables should be controlled to improve the performance of the model 

and then considering them as critical factors in the decision making process to 

clarify which available choices are better in satisfying these criteria.  

 

 

2.3. Design requirement management 
It is important for design teams to have a clear understanding of assumptions, 

constraints, requirements, performance, parameters, and traceability into trades 

and decisions considered. Since the nature of design is iterative, in many phases 

of design decision makers may have to step back and change their decisions. 

Even in some cases it might be necessary to conduct a whole new team study to 

investigate a mission with slightly different requirements [117] and these 

iterations increase cost design. However, it is always possible that optimal 
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solutions don’t meet design requirements. So providing design requirement 

management techniques that help decision makers with these issues minimize 

costs of design and increase its speed. 

 

2.3.1 Diversity of optimal solutions/Requirements 
Management 
 
In recent decades, some attempts have been made to increase the diversity of 

optimal solutions so that they meet design requirements. The first attempts for 

increasing the diversity of solutions, have been made in 1975 by Holland [141] 

and 1989 by Goldberg [142] by applying genetic algorithms applications. M. L. 

Maher and S. Kundu, (1994) [96] conducted research on adaptive design using 

graph-based genetic algorithm; K. Abhari et al (1999) [97] applied genetic 

algorithms and artificial intelligence for designing of flexible manufacturing; 

Gunawan et al (2003) [143] developed methods for increasing the diversity of 

Pareto-Optimal Solution sets via the maximization of the entropy quality index. 

(Also see Pareto sets in decision-based design by Balling, 2000 [113]). They 

also extended their work (2004) to maximize solution diversities in a multi-

objective multidisciplinary genetic algorithm for the design optimization [98].  

 

Figure 7 shows adaptive design by genetic algorithms applications developed by 

M. L. Maher and S. Kundu in 1994. As this figure shows, in this methodology, 

the size of the population is increased until optimal genetic design solutions 

meet the design requirements and the most preferred design product is obtained. 

 

On the other hand, design requirement management by M. W. Fu and W. F. Lu 

(2003) [105] brought models of modeling and management of design 

requirements in product development life cycle. Geoff Dromey (2005) [99] 
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developed a perspective of genetic design for amplifying the ability to deal with 

the requirement complexity. V. Agouridas (2006) [103] reviewed early 

assignment of design requirements with stakeholder needs and David Baxter 

(2007) brought a framework to integrate design knowledge reuse and 

requirements managements in engineering design [104].  Figure 8 shows 

Baxter’s framework for requirement management in engineering design.  
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aher et al (1994)) 
 
Figure 7: Adaptive design by genetic algorithm application (M
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or engineering design 
 
Figure 8: Baxter’s design requirement management framework f

 
 
 
2.3.2. Resource Allocation 
Functional models that are graphical representation of components functionality 

[160] have a variety of applications that represent the product or component 

functionality with respect to special needs. One application of functional 

models, used by the Function-Failure Design Method (FFDM) [150, 158, 159], 

is to map historical and potential failure modes to functions during component 

development to improve failure analysis in design. FFDM is based on the logic 

that failures modes can be correlated back to functions that a particular 

component addresses. FFDM has five steps: 
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1- Develop the functional model for the system. This step documents 

functional data. 

 

2- Generate the function-component matrix. This matrix is called EC matrix 

whose columns (m) represents components and rows (n) represent 

components function. It correlates physical components of the system 

with the associated functional model. “1” for a given component 

corresponds to the function it performs. Other cells are filled with “0”. 
 

3- Extract information from historical data or expert elicitation about 

potential failure modes and their sources. This step documents the failure 

data. 

 

4- Generate component-failure mode matrix. This matrix is called CF 

matrix whose columns (p) are failure modes and rows (n) represents 

components. “1” for a given component represents the associated failure 

mode. Other cells are filled with “0”. 

 

5- Obtain function-failure matrix (EF) by multiplying the function-

component matrix (EC) and component-failure mode matrix (CF). This 

matrix shows the number of occurrences of a specific failure mode for a 

specific function. 

 

The importance and applicability of FFDM for risk-based design can be 

reviewed from two aspects: First: generated matrices can be documented to 

obtain a large knowledge base of failure modes that can be reused by designers 

if it’s populated. Second: it can track unknown unknowns in the very early 
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stages of design where information is not available by comparing the 

functionality of similar systems with the same components. 

 

In this context, the functional failure data can be applied by Risk and 

Uncertainty Based Integrated Concurrent Design (RUBIC) [151] to provide a 

real-time and evolving resource allocation vector that can be used to prevent 

failures, mitigate risk and account for uncertainty throughout the design process.  

 

Resource allocation vectors are the percentages of resources to be spent on each 

functional risk elements. Based on this vector, designers can sort their priorities 

and allocate optimal amount of resources to reduce risk of each functional 

element.  These are facts and assumption underlying the RUBIC methodology: 

 

1- Each functional element in a complex system creates a risk premium. 

RUBIC allocates resources to either reduce the risk premium or balance 

risks against other elements. 

 

2- Risk can be traded homogeneously between subsystems and elements. In 

this context, risk of an element is not independent of other elements in its 

subsystem and risk of failure can be reduced by allocating resources. 

 

3- Risk can be traded for risk reduction resource. Risks of a certain function 

can be reduced by consuming risk reduction resources in the early stages 

of design, however, the actual amount of risk reduction is not known 

beforehand. 
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Applying these assumptions, RUBIC design methodology formulates the model 

to the following two-objective optimization problem:  

 

Minimize   F1= WT�W 

Maximize: F2= WTμ 

 

Subject to W 

 

Where w=[w1,...,wn]T is the risk reduction resource allocation vector which is 

defined as the percentages of resources to be spent on each functional risk 

element. μ is the vector of expected risk reduction for bi ’s (bi  is a random 

process) and � is the covariance matrix where diagonal elements are the 

variance of bis and off-diagonal elements represent the covariance of risk 

elements.  

 

μ and � can be estimated by using FFDM in the early stages. μ is proportional 

to the failure rate and � can be estimated by estimating  μ and also from 

incidents where a malfunction in one functional element led to failure in another 

element. 

 

The first objective function F1 represents the expected total benefit and the 

second function F2 shows the variance of total benefit. Hence, our optimization 

problem is to maximize   the expected total benefit of risk reduction and to 

minimize the variance of total benefit subject to risk reduction resource 

allocation vector w=[w1,...,wn]T. 
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RUBIC design provides a quantitative framework for considering risk and 

uncertainty during the conceptual design. It assumes hierarchical decomposition 

of a system, based on functional modeling of systems, whose functional models 

evolves as the design process moves forward. In addition, RUBIC considers 

both historical data and expert opinion and accounts for both individual risks as 

a result of failures due to each functional element and the correlation between 

multiple elements. Finally, it provides an evolving resource allocating 

methodology can be used to prevent failures and mitigate risks. 

 

In this research, RUBIC design methodology is applied to allocate resources by 

functional-model decomposition of systems (chapter 4). 
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3. The Capture, Assessment and Communication 
Tool for Uncertainty Simulation 
_________________________________________________________________________________________________ 

 

The task of decision makers during the design process and development cycle of 

complex systems is to make optimal decisions in risky environments. Their 

decisions should satisfy limitations due to constraints associated with systems. 

One of these limitations is risks that might lead to failure or suboptimal 

performance of systems. However, uncertainties associated with decisions have 

significant effects on critical factors and assumptions underlying each decision. 

 

Having no plan for managing uncertainties increases costs of design and 

decision making by changing resources (market, time, etc). Planning for 

uncertainty not only prevents these costs but also might provide new 

opportunities by reformulating initial models and changing associated issues and 

their importance. As a result, uncertainty management changes resource 

allocation criteria.  

 

Thos research offers a means for dealing with risk and uncertainty in complex 

multidisciplinary systems by introducing the “Capture, Assessment and 

Communication tool for Uncertainty Simulation” (CACTUS). CACTUS 

satisfies critical challenges that design teams might encounter by identifying 

sources of uncertainties, assessing and mitigating associated risks, modeling 

propagation of uncertainties and communicating uncertainty. These techniques 

are added to systems from the very early stages of design and while the project 

goes forward, help identify sources of uncertainties and their boundary which 

may lead to failure, help identify and mitigate associated risks, and models their 
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propagation to be analyzed by decision makers. It provides answers to these 

questions:  

 

1- Where is uncertainty from? 

2- What is its severity and importance? 

3- What are possible methods to assess mitigate and dealt with uncertainties? 

4- How do uncertainties propagate and which model describes them the best? 

 

In the following chapter, CACTUS provides a methodology to answer these 

questions. 

 

 

3.1. Introduction 
In a real engineering design team, especially in the early stages of conceptual 

design, decision makers encounter lots of uncertainties in each decision they 

make. In the early stages of conceptual design, uncertainty is high since many 

decisions have not yet been made and design alternatives to achieve the best 

design product have not yet been clearly and actively considered. If the whole 

design process is considered as a decision tree, each decision point with more 

than one alternative represents a decision node. To deal with the uncertainty in 

the design and development of a complex system, team members should be 

aware of consequences of their decisions in each decision node. To achieve this 

goal, they should be able to deal with uncertainties associated with each 

decision, while being aware of decisions made by others.  

 

To address these needs, “Capture, Assessment and Communication Tool for 

Uncertainty Simulation” (CACTUS) offers a means for dealing with uncertainty 
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in a complex system design process to satisfy critical challenges of design 

teams: 

 

• CACTUS by identifying sources of uncertainties, classifies sources of 

uncertainties associated with systems in different stages of design of 

complex systems. Different sources of uncertainties are not the same 

with respect to their importance and types of treatments should be 

considered. In addition, selecting a poor or imperfect definition and 

classification for uncertainty might guide decision makers to account for 

uncertainty more or less than necessary in the design process. CACTUS 

provides a methodology for identifying and classifying sources of 

uncertainties associated with systems from early stages of design to the 

end.   

 

Figure 5 and Table 1 in chapter 2 have shown uncertainty classification 

used by CACTUS. This classification not only identifies sources of 

uncertainties, but also helps decision makers to choose the type of 

uncertainty treatment (mitigation, model, etc) that should be considered.  

 

One example of this classification will be shown in chapter 5 by 

applying it into the robotic lunar lander mission design case study to 

identify sources of uncertainties for alternatives in the decision sheet. 

 

• CACTUS, by providing both qualitative and quantitative 

uncertainty assessment method, not only pays attention to quantifying 

uncertainty, but also addresses qualitative uncertainties associated with 

systems. It achieves this goal by introducing the qualifier and the 
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importance number in the decision sheets. The importance score devotes 

unequal weighting from 1 (lowest) to 5 (highest) to uncertainties 

associated with decision nodes based on expert judgment. This number, 

after being normalized, can be used for weighting issues in places expert 

judgment is necessary. The qualifier is simply an expression of the 

qualitative judgments. 

 

Since it divides the project into system level and associated subsystems 

that exchange data with each other in a collaborative excel-based 

environment, each team member either at the system level or subsystem, 

will have his/her own importance number and qualifier.  

 

The importance number and the qualifier in combination with 

quantitative assessment representations of distribution of variables (such 

as mean and deviation) introduce CACTUS as an uncertainty assessment 

method with the power of combining both qualitative and quantitative 

methods. It also can be extended to model degree of beliefs (instead of 

knowledge) where just subjective expert judgment is possible (see 

descriptions of Bayesian techniques and Dempster-Shafer theory in 

section 2.2.3). One example of decision sheets will be provided by 

CACTUS for the robotic lunar lander mission design case study in 

Chapter 5. 

 

In addition, this step provides design teams with risk boundaries that 

may lead to failure. These boundaries are considered as risk constraints. 

Techniques applied to obtain risk boundaries include simulation 

 



 
 

48
methods, PBA and Dempster-Shafer theory when only expert judgment 

is available. 

 

• CACTUS, by providing mitigating techniques with respect to 

associated sources of uncertainties, offers solutions to manage all 

sources of uncertainty, whether controllable or uncontrollable, 

qualitative or quantitative. The  excel-based environment, and hence the 

communication tool, reduces ambiguity uncertainty due to a lack of 

communication among team members, misunderstandings about 

customers requirements and the  precise definition of design tasks and 

requirements. CACTUS provides techniques of reducing/eliminating 

uncertainties with respect to their sources. (See section 2.2.4 for more 

details of uncertainty mitigation techniques). 

 

• CACTUS, by modeling uncertainty propagation, provides an 

uncertainty-based model for the project by identifying control factors, 

noise factors and linking variables. This model is applied for formulating 

the project to an optimization problem to obtain the most preferred 

design product. A simple example of this model will be shown in chapter 

5 for the lunar robotic lander mission design case study.  

 

In summary, CACTUS provides risk and uncertainty management techniques 

aimed to identify, assess and mitigate sources of uncertainties associated with 

systems and as a consequence, manage risks of suboptimal performance or 

system failures.  In addition CACTUS provides uncertainty modeling methods 

for large-scale multidisciplinary systems. Modeling uncertainty propagation 
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determines design variables and parameters and formulates the project as an 

optimization problem to reach the desirable design product. 

  

The next section, describes the CACTUS methodology process. 

 

 

3.2. Methodology 
These are three major steps in the CACTUS methodology to obtain desirable 

outputs shown in this model: 

 

Step 1:  The first step is to identify sources of uncertainties. CACTUS provides 

a classification for sources of uncertainties associated with design of complex 

systems (Figure 5 in section 2.2.2.).  

 

Different sources of uncertainties are not the same in terms of importance and 

treatments that should be considered. For example, some sources of 

uncertainties (decision uncertainties) might be desirable to increase by decision 

makers by generating more alternatives or in cases where optimal solutions do 

not meet design requirement. On the other hand, other sources of uncertainties 

might be very harmful and cause failure or suboptimal performance of systems.  

 

In addition, modeling techniques used by CACTUS depend on the sources of 

uncertainties. For example, techniques used for modeling behavioral 

uncertainties would be completely different from those used for modeling model 

uncertainties. As a result, the first step in CACTUS methodology would be 

identifying sources of uncertainties and classifying them regarding of their 

nature and their effects to the system. 
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Step 2: The second step in CACTUS is to apply uncertainty assessment 

methods. CACTUS provides design teams with techniques of assessing 

uncertainties and their boundaries, severity, importance and consequence to the 

system. These criteria are used by Design Requirement and Resource Allocation 

Management (DRRAM) to weight uncertainties and allocate resources based on 

their severity and importance for the system.  

 

In addition, CACTUS provides techniques of determining risk boundaries which 

may lead to failure or suboptimal performance.  

 

Step 3: The third step in CACTUS is to provide uncertainty mitigating 

techniques. Weighting uncertainties by DRRAM determines techniques that 

should be applied to manage associated uncertainties. These techniques have 

tremendous effects in managing risks and reducing costs of design.  

 

Decision sheets which provide tools for making the best decision among sets of 

alternatives are generated in this step (See the previous section for properties of 

decision sheets). In Chapter 5, a decision sheet will be generated for the lunar 

lander mission design case study. 

 

Step 4: The fourth step is to model uncertainty. Applying uncertainty 

management techniques in the first three steps of CACTUS methodology 

provides the necessary information for design teams regarding the uncertainties, 

risks and their constraints that lead to failure. In this step, the uncertainty-based 

model for the project is obtained. This model not only gives a general 

understanding of the project with respect to variances from the predicted model, 

but also clarifies noise, control factors and linking variables.  
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In Chapter 5, this methodology will be clarified further by applying it into the 

case study. 

 
 

3.3. Conclusions and Future Work 
This chapter introduced the CACTUS methodology to help design teams to 

make more informed decisions in risky environment that are full of uncertainties 

during the design and development of complex system. CACTUS, as an excel-

based environment, enables decision makers to identify, assess, mitigate, model 

and communicate uncertainty from early stages to the end. It creates decision 

sheets for alternatives in each decision node and help decision makers to select 

the optimal design product. 

 

Although decision sheets provides a means for combining qualitative and 

quantitative uncertainties, future work is needed to develop this methodology so 

that it can assess, mitigate and model all sources of uncertainty, especially the 

qualitative aspects. Developing a decision tree to demonstrate criteria for 

selecting the best assessment methodology to capture uncertainties associated 

with issues is another work can be done to increase the speed of this process. 

This decision tree can be extended to include criteria for decision makers 

wherever expert judgment is needed and the scores that should be devoted to 

qualify issues.  

 

In addition, future research for CACTUS should focus on developing techniques 

to obtain upper and lower margins of uncertainties. Since these margins define 

risk constraints,  critical factors underlying risk constraints include marginal 

distributions of the input variables in addition to their dependency. Future 
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research is to extend this methodology to bounding approach to risk analysis so 

that it can address mentioned issues. 

 

The bounding approach to risk analysis is the extension of traditional 

probabilistic analyses to determine four criteria in the risk model: precise 

parameter values for input distributions (i.e. minimum, maximum); marginal 

probability distributions for variables, the precise nature of dependencies of 

variables and the structure of the risk model. Probability Bounds Analysis 

(PBA) based on probability boxes (P-Box) (a class of distribution functions of 

epistemic uncertainties of a random variable defined by the upper and lower 

bound) and simulation-based methods for determining margins relied on Monte 

Carlo analysis are two approaches that would determine marginal distributions 

via probabilistic methods. In addition, Dempster-Shafer theory (or evidence 

theory) as a variant of probability theory in which elements of the sample space 

are sets (instead of single points) is applied to determine  maximum and 

minimum margins of conceptual design where information is not available. 
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4. Design Requirement Management (DRRAM) 
_________________________________________________________________________________________________ 

 

During the design and development of complex systems, design teams should be 

aware of properties of systems and subsystems and associated tasks, 

requirements, criteria, etc. These issues not only define design constraints that 

should be satisfied to meet requirements, but also enable decision makers to 

predict system and subsystem properties so they can devote more effort (cost, 

schedule, additional safeguards) to subsystems with more importance with 

respect to certain issues.  

 

In this chapter, this research introduces Design Requirement and Resource 

Allocation Management (DRRAM). 

 

 

4.1. Introduction 
This research provides techniques for Design Requirement and Resource 

Allocation Management (DRRAM) by analyzing and defining the project, 

associated tasks, issues requirements and resources, dividing the system into 

subsystems, parallel decisions, decision nodes, alternatives and generating the 

model:  

 

• The Design Requirements and Resource Allocation Management 

(DRRAM) framework defines the project and provides all necessary 

information for decision makers by generating information sheets. 
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Information sheets provide the necessary information especially from 

early stages of design, providing a useful tool for design teams to be able 

to evaluate criteria and manage the project and design requirements. 

 

DRRAM’s information sheets not only provide necessary information 

for making decisions, but also help design teams (including designers, 

stakeholders and customers) to communicate their needs during the 

design process and change their decisions more effectively as the design 

goes ahead and new criteria are obtained by providing an updatable 

excel-based collaborative environment.   

 

In chapter 5, an example of information sheet will be shown for the lunar 

lander mission design case study. 

 

• DRRAM also provides the project model to help decision makers to have 

a clearer understanding of the design platform in the early stages of 

design. This model used by decision makers to define the initial design 

platform and design alternatives.  

 

• The Design Requirements and Resource Allocation Management 

(DRRAM) provides an evolving resource allocating methodology by 

hierarchical decomposition, based on functional modeling of systems, 

whose functional models evolve as the design process moves forward.  

 

As a result, it provides a methodology to allocate available resources 

(cost, schedule, safeguard, etc.) to functions with more importance with 
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respect to certain issues and it can also be extended to prevent failures 

and mitigate risk. 

 

• Design Requirements and Resource Allocation Managements (DRRAM) 

generates flow diagrams for each parallel decision, which helps design 

teams to have a better understanding of the active and passive 

alternatives in each decision node of the associated parallel decision. 

 

In chapter 5, a flow diagram will be shown for selecting the launch 

vehicle during the decision making process of the lunar lander mission 

design case study. 

 

 

4.2. Methodology 
Design Requirements and Resource Allocation Management (DRRAM) help the 

design team by these major steps: 

 

Step 1:  The first step in DRRAM is to obtain the initial design project 

functional model to help decision makers to have an understanding and 

definition of the initial design platform from very early stages of design.  This 

model also helps them to determine initial design alternatives.  

 

This model is investigated by design teams (including designers, decision 

makers, stakeholders, customers, etc.) to determine the requirements of the 

project. Knowing these issues, decision makers can model the project at the 

early stages of design and predict systems’ and subsystems’ properties. 
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Step 2: The second step in DRRAM is to generate the information sheet. For 

obtaining information sheets, the model created in step 1 is divided into 

subsystems and parallel decisions and associated issues, constraints, and the 

design requirements are determined by the design team. 

 

Due to lack of information in early stages of design, generated information 

sheets are not complete and accurate at the beginning of a project, but they are 

matured as the project moves forward. 

 

Step 3: Decision makers should also determine decision nodes, where decisions 

are made and identify active items which are being actively investigated.  

 

The third step in DRRAM helps them in developing decision sheets (For more 

information about decision sheets see chapter 4, the CACTUS methodology) for 

decision nodes. 

 

In addition, flow diagrams are generated in this step that help the design team to 

have a better understanding of alternatives that are being investigated 

actively/passively in the decision nodes. 

 

Step 4:  The fourth step in DRRAM is to allocate resources. DRRAM uses the 

Risk and Uncertainty Based Integrated Concurrent Design (RUBIC) design 

methodology  (See chapter 2 for details) which provides a hierarchical 

decomposition, based on functional modeling of systems obtained in step 1, 

whose functional models evolve as the design process moves forward.   
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This step allocates resources to the model by mapping it into this optimization 

problem: 

  

Minimize   F1= WT�W 

Maximize: F2= WTμ 

 

Subject to W =[w1,...,wn]T 

 

Where w=[w1,...,wn]T is the risk reduction resource allocation vector where wi is 

the  percentages of resources to be spent on the ith functional risk element.  

 

In this optimization problem, μ is the vector of expected risk reduction for bi ’s 

(bi  is a random process) and � is the covariance matrix where diagonal 

elements are variance of bis and off-diagonal elements represents the covariance 

of risk elements.  

 

The first objective function F1 represents the expected total benefit and the 

second function F2 shows the variance of total benefit.  

 

The optimization problem provided in these steps is to maximize the expected 

total benefit of risk reduction and to minimize the variance of total benefit 

subject to risk reduction resource allocation vector w=[w1,...,wn]T as the 

percentages of resources should be spent for functional risk elements. 

 

Figure 9 shows the four major steps of the methodology introduced by DRRAM. 

As this figure shows, decision sheets (developed by CACTUS) are developed 

after determining decision nodes by DRRAM. In addition, the investigated 
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model and alternatives are used to determine possible design change to resolve 

defect modes. 

 

 

 

ce Allocation 

 
 
Figure 9: Design Requirement and Resour
Management (DRRAM)  

 

 

In chapter 5, this methodology is clarified by applying it into the lunar lander 

mission design case study. 
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4.3. Conclusions and Future Work 
This chapter provided Design Requirement and Resource Allocation 

Management (DRRAM) as a management tool for design of complex systems. 

The benefits and process of this methodology was described and a figure 

showed its major steps schematically.  

 

This method can be divided into design requirement management and resource 

allocation technique. The framework of design requirement management was 

provided by updatable excel-based information sheets that enable design teams 

to communicate and define design requirements and constraints in different 

stages of design concurrently. In addition, dividing the project into parallel 

decisions, decision nodes and alternatives helps them to manage the project 

more informed. 

 

Future research to provide this method with techniques of design requirement 

management (See chapter 2) should be done so that it can address needs of 

design teams including designers, stakeholders and customers for trading off 

their requirements and design constraints. 

 

On the other hand, as the other approach of DRRAM methodology, future work 

for the applied allocating resources technique should be done to extend the 

knowledge base that can support the applied RUBIC design tool. Future research 

is currently being carried by author of this research to improve the RUBIC 

design tool and address its limitations. 

 

 

 

 



 
 

60

5. The Case study: Lunar lander mission design 
_________________________________________________________________________________________________ 

 

In this section, this research presents a case study of the conceptual mission 

design team at JPL’s Project Design Center, borrowed from [33].  

 

Figure 10 shows a portion of the decisions that occurred during the design of a 

robotic lunar mission, based on the observations of the team over the course of a 

week as they worked on a robotic lunar lander mission design, initiated by an 

internal NASA customer [33].  

 

The product of this Team X design is a conceptual design that includes the 

mission architecture, equipment lists, launch vehicle and estimates for cost and 

schedule. This team was formed in order to shorten the time required to develop 

a space mission proposal. 

 

The ovals drawn with solid lines show these items were actively investigated 

and the ovals in dotted lines are items that were considered but not actively 

investigated. 

 

As mentioned, for this case study, the methodology presented in this prepare 

provides an excel-based environment for clients to communicate throughout the 

design life cycle. Using this environment clients synchronize data (send/receive 

data to/from the server) and communicate with each other during the lifecycle.  
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Figure 11 shows the general structure of this excel-based environment provided 

by the proposed methodology. This environment might not be complete in the 

early stages of design. Here, we have generated a general scheme of this 

environment for stages of design where all necessary information (subsystems, 

parallel decisions, active items, etc.) has been captured by design team. 
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The excel based environment provided in Figure 11 for this case study has been 

generated using the terminology (see section 1.3.) introduced by design 

requirement and resource allocation management (DRRAM) to divide the 

project into parallel decisions, decision nodes and alternatives:  

 

The first step to develop such this structure is to identify parallel decisions 

should be made for the project. Estimating the necessary decisions in the very 

early stages of design helps decision makers to develop the project model and 

clarify decision nodes and alternatives in next steps as the project moves 

forward.  

 

As Figure 10 showed, five selected alternatives including “Falcon 9”, ‘Bi-prop 

motor”, “Conventional”, “Static arrays”, and “Assume 1MB”, shown by solid 

lines, represent five associated parallel decisions that should be made by 

decision makers including: LAUNCH VEHICLE SELECTION, DEFINE 

DESCENT MOTOR, DEFINE BRAKING MOTOR, POWER and CDS. So, 

according to the terminology introduced by DRRAM, the set of parallel 

decisions would be: 

 

{X1, X2, X3, X4, and X5}.  

 

Where X1 is the process of decision making for Launch vehicle selection, X2 

presents Define Descent Motor, X3 includes Define Braking Motor, X4 is the 

decision should be made for Power and finally X5 is decisions for CDS.  

 

Each of subsets in the above vector includes sets of associated decision nodes 

and each decision node contains a set of alternatives. An example of developing 
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this division has been demonstrated in Figure 11 for X1 for selecting launch 

vehicle. Figure 11 identifies four decision nodes for X1 and defines X1= {X11, 

X12, X13, X14}.  

 

Here, it is helpful to mention that, in the early stages of design decision makers 

have no idea about the quality and numbers of possible decision making nodes 

they would have during the design process. The above set has been provided for 

the final stage of design; however this set is different at the beginning of the 

project and will be updated in the excel based collaborative environment when 

new information is obtained. Archiving the set of decision nodes not only 

archives the process of decision making that was done for the design to obtain 

the final product, but also it provides a knowledge-base that can be used by 

designers later. 

 

Since decision nodes are places that a decision should be made among 

alternatives, each of the decision nodes in the above set is associated with 

alternatives. Figure 11 has been categorized alternatives of the first decision 

node, X11, of X1, Launch vehicle selection. This set is obtained by looking into 

the Figure 10: 

 

X11= {X111, X112}, 

 

where X111 and X112 are Taurus and Minoutaur V, alternatives are actively 

considered in the first decision node of the selecting launch vehicle process. 

 

In Chapter 4, this research has introduced the flow diagram as one approach of 

Design Requirement and Resource Allocation Management (DRRAM) that 
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helps decision makers to have a better understanding of alternatives are being 

passively and actively investigated. Figure 12 shows the flow diagram of the 

parallel decision for selecting the launch vehicle. 

 

 

 
 

Figure 12: An example of decision flow diagram   
 

 

This flow diagram starts from the first decision phase which is the decision node 

between Taurus and Minoutaur V and ends at the last phase in choosing the final 

decision. Each dotted circle shows the alternative which is not investigated 

actively and circles with solid lines show active items that take part in decisions. 

Arrows from left to right show alternatives which are added in each phase. So, 

the decision node in each phase is among active alternatives (circles with solid 

lines) in the previous phase and items that the arrows show (items which are 

added from the previous phase).  

 

The selected alternatives in each decision node will be represented by circles 

with solid lines (Falcon 9 for this example in the last phase) that represent 
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decisions made by decision makers at the end of the decision making process. 

As the excel-based structure in Figure 11 and the set of decision nodes, the flow 

diagram shown in the Figure 12 is not complete in the very early stages of 

design and be updated in the excel-based environment when the project goes 

ahead. 

 

In the flow diagram shown in Figure 12, the first decision node for the launch 

vehicle selection parallel decision is a decision node between two launch 

vehicles: Minoutaur V and Taurus; where solid lines show Taurus was actively 

investigated and dotted lines show Minoutaur V was not actively investigated. In 

the next phase, we have the second decision node for this parallel decision 

where Minotaur is considered as an active item and Taurus is not investigated 

actively. As the design process develops, in phase 3 and 4, we have two more 

decision nodes.  

 

As the flow diagram shows, Falcon 9 is added in the 3rd phase as an active item 

and Delta II is added to step 4. So, our final decision node is a selection between 

two launch vehicles Delta II and Falcon 9, which ends in the selection of Falcon 

9. 

 

As mentioned in Chapter 5, The Design Requirements and Resource Allocation 

Management (DRRAM) framework defines the project and provides all the 

necessary information for decision makers by generating information sheets. 

Information sheets provided by DRRAM enables decision makers to be aware of 

tasks and issues associated with the project and give all necessary information 

they need to manage design requirements and allocate resources. They 

determine the name/symbol and tasks and issues associated with parallel 
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decision and decision nodes and describe each decision node in terms of its 

alternatives in addition to functional requirements and associated resource 

allocation vector.  

 

 
Figure 13: The information sheet provided by DRRAM for the case study 

 
 

Figure 13 shows the a simple version of an information sheet provided by 

DRRAM for the lunar lander mission design to show the general structure of 

body of information sheets excluding functional requirements and associated 

resource allocation vector. RUBIC design methodology, introduced in Chapter 5 

can be applied at this point to obtain the correct resource allocation vectors. 
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One example of applying the FFDM methodology (introduced in chapter 5) for 

obtaining the functional requirement model of the project and one case study of 

applying RUBIC design methodology for the Satellite Reaction Wheel 

(borrowed from [151] has been attached in Appendix A and B). 

 

As figure 13 shows, the information sheet provides the necessary information 

for the design team including task and issues associated with each decision.  

Tasks determine issues associated with parallel decisions and issues determine 

criteria that should be considered for the decision making process.  

 

Determining tasks and issues enables CACTUS to develop the decision sheets 

for associated decision nodes. Decision sheets are developed from the earliest 

decision node to the end where the final decisions are made. Figure 14 illustrates 

one example of decision sheet made for one decision node of selecting launch 

vehicle provided by CACTUS for the robotic lunar lander mission design case 

study. 

 
 

 
Figure 14: A simple example of decision sheet provided by CACTUS. 

 
 
As Figure 14 shows, the decision sheet has columns showing the distribution of 

issues. In addition, the importance numbers are devoted to show the importance 
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of issues. They provide unequal weighting from 1 (lowest) to 5 (highest) to 

uncertainties associated with decision nodes based on expert judgment. This 

number, after being normalized, can be used for weighting issues in places only 

expert judgment is possible to model degree of beliefs. In addition, the qualifiers 

which are the expression of these qualitative judgments could be added to this 

information sheet to show the qualitative assessment of uncertainties.   

 

It’s beneficial to mention that since the CACTUS methodology divides the 

project into system level and associated subsystems that exchange data with 

each others in a collaborative excel-based environment, design team members 

either at the system level or subsystem level might use their own importance 

number and qualifier.  

 

Figure 14 has provided a decision sheet for the second phase of the first parallel 

decision for the selecting launch vehicle process. As the sheet shows, for the 

second phase, our decision node is the selection among two launch vehicles: 

Taurus and Minotaur. Also, from the information sheet for the project model 

(Figure 13), our issues include: Reliability, Cost, Capability and Maturity. By 

giving the expert judgment score to these issues decision makers are able to rank 

them from the highest important issue to the lowest one.  

 

In this figure the issue considered by this paper is the reliability issue. The 

reliability issue’s distributions for two available active alternatives has been 

calculated by using the third-level Bayesian analysis method [35] (See Appendix 

C). Determining the weight (importance) and distribution of all issues (also see 

[36, 37]) helps decision makers to rank alternatives  
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Figure 15 shows a simple model for uncertainty propagation provided by 

CACTUS where: 

 

Ci   = Control factors of subsystem i 

CS = Sharing system control factors 

NS  = Sharing system noise factors 

Ni    = Noise factors of subsystem i 

Lji    = Linking variables (from subsystem i to j) 

Zi     = Zi (CS, Ci, Ns, Ni, Lji) = output of subsystem i 

 

 

unar Lander Mission 
 
Figure 15: A simple uncertainty propagation model for L

 
Multidisciplinary systems are defined by subsystems interacting with each 

others. In this model, control factors refer to design variables which designers 

have control over while noise factors refer to variations of systems during the 

design lifecycle which designers have no control or limited control over. 
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Linking variables shows this dependency of subsystems. Figure 15 shows the 

propagation of uncertainty in the form of noise and control factors and also 

linking variables for the three subsystems of the case study including selecting 

the launch vehicle, bus architecture and defining the software architecture. As 

this Figure shows, decisions made for each subsystem effects decisions made by 

other subsystems. 
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6.  Future Vision: Optimal Risk-Based Integrated 
Design 
_________________________________________________________________________________________________ 
 
 
As mentioned before (See Section 2.1.), The ultimate goal of large-scale design 

organizations are mainly to reduce costs and improving reliability and 

performance of system while assessing how much risk (cost, schedule, scope) 

they can take and still remain competitive. To achieve this goal they need to 

trade off performance, time, cost and risks (as the most difficult part to be 

addressed). In addition they should be provided with a variety of techniques to 

computerize, systematize, communicate, etc to support the design of a complex 

system.   

 

In this chapter, this research introduces Optimal Risk Based Integrated Design 

(ORBID) [76] as a cumulative tool for dealing with these issues in complex 

systems. ORBID satisfies critical challenges that design teams might face and 

help them to obtain the highest performance of multidisciplinary systems within 

risk constraints while satisfying all limitations and requirements of design and 

development of large-scale complex systems. It addresses mentioned issues by 

identifying sources of uncertainty and available methods for assessing and 

mitigating them, developing methods for modeling, optimizing and decision 

making, providing a communication tool for the concurrent design team through 

the design life cycle and finally producing the desirable design performance at 

the final stage of design and development of multidisciplinary complex systems.  

 

The proposed methodologies of the Capture, Assessment and Communication 

Tool for Uncertainty Simulation (CACTUS) (see Chapter 3) and Design 

Requirement and Resource Allocation Methodology (DRRAM) (see Chapter 4), 
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in this research are applied in the ORBID methodology as tools and techniques 

for managing risks and requirements of complex systems. In addition, ORBID 

introduces Flexible Risk-based Optimal Decision making (FROD) to help 

decision makers to generate and select the most preferred design product. 

 

This chapter focuses on the ORBID methodology as the future work of this 

research. 

 

 
6.1. Motivation 
Following paragraphs mentioned the importance of providing tools and 

techniques to trade off risks, requirements (cost, time resources) and 

performance of complex systems. During the design lifecycle, the design team 

must minimize risks while increasing performance considering costs constraints 

by allocating resources to the most critical areas. In this research CACTUS and 

DRRAM have been proposed as tools for dealing with these issues by managing 

risks and requirements; however these critical areas are associated with critical 

decisions for risky scenarios tending to cause failure if combined and can be 

prevented by decisions made by designers in risky environments. 

 

Decision making process as a perspective of engineering design is generating 

and selecting of design alternatives. So, the outcome of the decision making 

process can be defined by two steps: 1- Generating all possible design 

alternatives and 2- Selecting the most preferred design alternative(s) among 

available alternatives. Based on this definition, many alternative selection 

methods have been developed and widely applied, such as Taguchi’s robust 

decision [86-95], Clausing ’s Quality function deployment [124] and Suh ’s 
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design Axiom Matrix [125]. The role of decision makers is to make decisions in 

the ambiguous, uncertain and risky phases of design [75]. These uncertainties 

are presented in all phases of design, such as model uncertainty (uncertainties 

associated with using a process model or a mathematical model for the system), 

dynamic uncertainty (when changes in the organization or individuals’ variables 

or unanticipated events, such as economic or social changes, to a change in 

design parameters) [106], etc. As a consequence, in multidisciplinary complex 

systems decision makers should be aware of all independent and interdependent 

variables associated with each discipline. However, in the early stages of design, 

information about different aspects of design is not always available. For this 

reason, the design of such complex systems is iterative by the nature and 

designers might have to change decisions made in different phases of design 

many times. Therefore, flexibility is another important issue (in addition to risk, 

uncertainty and ambiguity mentioned above) that should be considered in the 

decision making process. 

 

Optimal Risk-Based Integrated Design (ORBID), shown in Figure 16, as a 

cumulative tool to obtain the most preferred product within risks and design 

constraints by introducing Design Requirement and Resource Allocation 

Management (DRRAM) and the Capture, Assessment and Communication Tool 

for Uncertainty Simulation (CACTUS) in a collaborative excel-based design 

environment, also addresses the issue of decision making to help designers 

wherever a decision has to be made among many alternative choices and 

accounts for uncertainties due to having multiple choices in decision nodes of 

the design process by introducing ”Flexible Optimal Risk-based Decision-

making” (FROD) as a technique for making decisions within the optimization 

domain and risk constraints while all design requirements are satisfied. FROD 
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also addresses the challenge of increasing costs of design due to unavoidable 

decision making iterations under risk and uncertainty by providing updatable 

uncertainty-based decision sheets. It generates and optimizes flexible 

alternatives with respect to minimization of costs and then ranks options based 

on evaluated costs and associated uncertainties. 

 

 

 

rated Design  
 
Figure 16: A general scheme of Optimal Risk-Based Integ

 
 

Figure 16 shows the general scheme of Optimal Risk-Based Integrated Design 

(ORBID). It illustrates tools and techniques that are applied in this methodology 

to obtain the desirable design. 
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In the next sections, this research introduces ORBID with more details and 

describes its applied methodology. 

 

 

6.2. Optimal Risk-Based Integrated Design (ORBID) 

Large complex organizations not only should be protected from failures, 

degradations or any changes that may lead to negative consequences, but also be 

structured for a higher chance of success in the market by capturing associated 

risks and uncertainties. They need to optimize their performance in spite of the 

existence of risk to stay competitive in the market. Having a risk-based design 

plan to optimize system performance in risky environments reduces the costs of 

design and provides a successful risk-based design project. 

 

 

6.2.1. Introduction 
Optimal Risk-Based Integrated Design (ORBID) introduces a cumulative set of 

tools for decision making, managing risks and uncertainties and design 

requirements in an excel-based environment for design teams of 

multidisciplinary complex systems to obtain the most preferred optimal design 

performance within risk constraints while all design requirements and 

constraints are satisfied. 

 

Specifically, three methods are introduced as part of ORBID: Design 

Requirements and Resource Allocation Management (DRAAM) introduced in 

Chapter 4 of this research analyzes data by defining the project, evaluating tasks, 

issues, requirements and dividing the system into disciplines, subsystems, 

parallel decisions, decision nodes and alternatives. In addition, in this step 
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design team and their tasks should be determined. For example, while everyone 

is able to access information sheets, few of them at the system level might have 

the permission to modify some specific part of the information. We refer to this 

step as ‘evaluate criteria’. In this step, ORBID creates an information sheet for 

the system based on design requirements and resource allocations defined by 

designers, stakeholders and customers. 

 

The previous process helps designers, customers and stakeholders to manage 

design sources and requirements. In addition, risk and uncertainties associated 

with decisions should be managed. Capturing, Assessing and Communication 

Tool for Uncertainty Simulation (CACTUS) introduced in Chapter 3 of this 

research achieves this goal by modeling uncertainty for the system and applying 

assessing and mitigating methods. Modeling uncertainty not only gives us a 

general understanding of the project, but also clarifies noise and control factors 

associated with systems and subsystems, determines the relationship of 

subsystems by identifying linking variables and as a consequence, prepares the 

information necessary for decision making to model the project as an 

optimization problem.  

 

Managing uncertainty, defining risk constraints and identifying design 

requirements and resource allocation enable decision makers to model the 

design project as an optimization problem. Flexible Risk-based Optimal 

Decision-making (FROD) is used for this job where optimized results are 

analyzed to determine whether they satisfy all design requirements and 

constraints for the most preferred design product. 
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Figure 16 in Section 6.1 showed the general structure of ORBID with its 

components considered as black boxes showing the interaction with each other. 

Figure 17 shows this process as a flow diagram. 

 

 
 
Figure 17: ORBID’s black-boxes.  

 
 
 
6.2.2. Methodology 
Figure 18 shows the ORBID methodology. As shown this figure, applications of 

components are not separate from each other. For example, a small change in 

stakeholders’ requirements leads to changes in the information sheet provided 

by DRRAM and as a consequence, information provided by CACTUS and 
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FROD might encounter many changes, which might in turn change DRRAM 

(and even Stakeholders requirements).   

 
 
 

 
 
Figure 18: The ORBID methodology 
 

 

ORBID’s components are linked through the excel-based environment. In such 

an environment, clients are able to communicate by sending/receiving data and 

be aware of decisions made by other clients. Sheets used in ORBID are 

updatable and criteria can be varied depending on the nature of project. 

 

In this section, ORBID’s major steps are listed briefly: 

 

Step 1:  Design Requirements and Resource Allocation Managements 

(DRRAM) by designers, stakeholders and customers.  
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DRRAM, introduced in Chapter 4 of this research, provides the information 

sheet with all necessary information including requirements and resource 

allocations, as well as flow diagram for the whole design project to help design 

team in having a clear understanding of the project especially in the early stages 

of design.  

 

This step clarifies h(x) which is the vector of design requirements that should be 

satisfied in the project’s optimization problem. In addition, DRRAM provides a 

hierarchical decomposition, based on functional modeling of systems, whose 

functional models evolve as the design process moves forward. As a result, it 

provides an evolving resource allocating methodology that can be used to 

prevent failures and mitigate risks by modeling the project into the following 

optimization problem: 

 

Minimize   F1= WT�W 
Maximize: F2= WTμ 
 
Subject to W =[w1,...,wn]T 
 
 

Step 2: Capturing, Assessing and Communication Tool for Uncertainty 

Simulation (CACTUS). 

 

This tool introduced in Section 3 of this research provides a means for managing 

risk and uncertainties by identifying sources of uncertainties, developing 

methods for assessing and mitigating associated risk, identifying risk constraints 

that may lead to failures under uncertainties and modeling uncertainty 

propagation which provides models of critical factors that should be considered 
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by decision makers. CACTUS also provides decision sheets which enable 

decision makers to make more informed decisions among active available 

alternatives. This step provides g(x) which is the vector of risk constraints that 

should be satisfied in ORBID’s optimization problem. 

 

Figure 19 shows the methodology applied by CACTUS in the interaction with 

FROD and DRRAM to achieve goals of ORBID and Figure 20 illustrates it as a 

black box model. 

 

 
gy 

 
Figure 19: CACTUS methodolo  
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Figure 20: CACTUS Black-box model  

 

 

Step 3:  Flexible Optimal Risk-based Decision-making (FORD) which provides 

decision making tools by applying flexible decision techniques within the 

optimization domain. It gives us sets of optimal solutions that meet all design 

requirements by applying its flexibility techniques. 

 

These three steps model the project into the following optimization problem: 

 

Objective Functions: Fi,j (xsystem , xj) 
Objective Functions: fj (xsystem, xj) 
 
Constraints: Gj (xsystem, xj) ≤ 0 
Constraints: H (xsystem, xj) 
 
Subject to:  Xj 
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After each step, data are updated and criteria are re-evaluated and then new 

information is synchronized among systems and subsystems. Note that, the 

model is incomplete at the very early stages of design, but it is developed 

throughout the next stages when the project moves forward and decisions are 

made. In the next section, Flexible Risk-based Optimal Decision making 

(FROD) will be presented as the other future work of this research. 

 
 
6.3. Flexible Risk-based Optimal Decision making (FROD) 
This section aims to address the issue of decision making by introducing 

Flexible Risk-based Optimal Decision making (FROD) that provides a flexible 

framework for optimal decision-making under risks and uncertainties for the 

ORBID methodology. First, it provides a brief literature review for collaborative 

decision making and flexibility issue, next it describes the applied methodology. 

 

 

6.3.1. Literature Review 
Before talking about the FROD methodology, providing this section with a 

literature review can be helpful. For more details of decision making under risk 

see Appendix C. 

 

 

6.3.1.1. Collaborative Decision making 
Following the complexity of multidisciplinary systems, the design process of 

such systems is mostly based on concurrent design teams. Decision making in 

design using collaborative teams has its own challenges.  
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The collaborative optimization strategy was first proposed in 1994 by Balling 

and Sobieszczanski-Sobieski [137] and Kroo et al [138]. Two years later, in 

1996, Renaud and Tappeta [139] extended it for multi-objective optimization for 

non-hierarchic decisions.   

 

In recent years many efforts tried conducted to address the challenges of 

Collaborative Decision-Based Design for eliminating communications barriers 

of design team during design lifecycle.  Agent-based decision network [133-

135], Multi-Agent architecture for collaboration [109] and decision-based 

design framework for collaborative optimization [136, 119, and 126] are 

examples of these approaches. (Also see decision-based software development: 

design and maintenance by Chris wild et al [110]).  

 

Although these methods are not the same, they should be able to meet the 

requirements of making decisions by considering the fact that decisions might 

have different sources and disciplines [109]; they might be in conflict due to 

different criteria; the decision maker might be individual or group; decisions 

might be made sequentially or concurrently; designers might make decisions 

based on personal experiences and finally information might be uncertain and 

fuzzy. As a consequence, any structure for collaborative decision-based design 

has to address all these challenges. 

 

 

6.3.1.2. Decision making within optimization domain 
Decision making in multidisciplinary complex systems is to select options that 

maximize the objective function while optimization methods (as automated 

decision making) minimizes the number of times an objective function is 
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evaluated [112]. The decision making process within the optimization domain is 

applied for selecting the most preferred design options from the set of 

alternatives without evaluating all possible alternatives in details [121, 130-132]. 

As a result, optimization techniques increase the speed of design by automating 

decision making.  

 

Generally the decision making process has three main elements: options 

identification; expectation determination of each option; and, finally, expression 

of values. The optimization problem of maximization or minimization of the 

objective function when all constraints are satisfied can be modeled as decision 

making tool [126, 119].   

 

In this context, the option space can be modeled as a set of possible values of x 

in the feasible area; the expectation is modeled as F(x) and the preference is 

modeled by maximization or minimization. This is the key of decision-based 

design within an optimization domain. In this process, the optimizer is going to 

maximize the expected VN-M utility of the profit or net revenue.  

 

The optimization of the design process also depends on the efficiency of the 

communication structure of collaborative decision making (See the previous 

section for collaborative decision making). Figure 21 shows the basic 

architecture of collaborative optimization developed by Barun et al [140]. 
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arun et al. 
 
Figure 21: Basic collaborative optimization architecture by B

 

 
6.3.1.4. Flexibility in decision making and design 
In general, flexibility is defined as “The ease of changing the system’s 

requirements with a relatively small increase in complexity (and rework)” [157]. 

However, many interpretations for flexibility have been introduced by 

researchers in different fields. For example, in 1986, Buzacott et al [152] 

developed a framework for flexible manufacturing systems to address the 

problem of changing demands of customers and Haubelt (2002) [153] 

introduced flexible systems for software applications. In the field of design 

methodology, Roser et al have introduced a flexible design methodology [146, 

147] to minimize effects of risks and uncertainties in the design process [145]; 

Olewnik et al have proposed a framework for flexible system design [148-149] 

with the implementation of Hazelrigg’s decision making framework [118] and 
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Suh et al have developed flexible product platform design [154] to address 

market uncertain change demand.  

 

These methods address flexibility in design in places where designers choose 

fixed design variables before they select the design. However, Khire et al [155] 

proposed a methodology for designing flexible systems in changing operating 

conditions. It addresses the problem of flexibility design in changing 

environments such as aircrafts, cruises, etc. systems whose operating conditions 

and design requirements change during the operating life. The operational 

flexibility is an important issue for space systems since space missions are 

subjected to unanticipated changes. Since designing, manufacturing and 

launching space systems are highly costly processes, in recent years, flexibility 

in space systems has been the center of many research efforts. Nilchiani et al 

[156] have addressed both design and operation flexibility in space systems by 

introducing a Six-Element (6E) framework for measuring the value of flexibility 

in space systems. 

 

 

6.3.2. Introduction 
ORBID addresses the issue of decision making by introducing Flexible Risk-

based Optimal Decision-making (FROD). FROD, by providing a flexible 

decision making framework in conjunction with design requirement and 

resource allocation management (DRRAM) techniques and the capture, 

assessment, and communication tool for uncertainty management (CACTUS), 

helps decision makers wherever a decision should be made among many 

alternatives and provides the most preferred product within the optimization 

domain and risk constraints while all design requirements are satisfied.  
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FROD gives us sets of optimal solutions that meet all design by modeling the 

design project into an optimization problem: 

 

Objective Functions: Fi,j (xsystem , xj) 

Objective Functions: fj (xsystem, xj) 

 

Constraints: Gj (xsystem, xj) ≤ 0 

Constraints: H (xsystem, xj)= 0 

 

Subject to:  Xj 

 

Where G(x) refers to risk constraints and H(x) refers to design requirement and 

constraints defined by design team (including decision making, stakeholders and 

customers). 

 

 

6.3.3. Methodology 
FROD’s approach, as a decision making tool, is to help decision makers select 

the most preferred design among sets of possible design. To achieve this goal, it 

first identifies possible sets of alternatives associated with each design. Next it 

selects the optimized set of alternatives with respect to minimization of costs. 

Hence, the most preferred design is obtained by ranking possible designs in 

terms of costs of optimal alternatives and also associated uncertainties. This 

methodology provides a flexible framework for the decision making process. 
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To avoid the ambiguity associated with applying the FROD methodology, 

defining a terminology for two major terms is necessary. In this research, a set 

of design alternative refers to possible design alternatives that form a design 

platform. On the other hand, each possible design platform includes sets of 

possible design alternatives that satisfy the goals of the project.  

 

The Flexible Risk-based Optimal Decision making (FROD) methodology 

includes listed nine major steps: 

 

Step 1: The first step of the FROD methodology is to investigate the initial 

design. The platform of the initial design is obtained by the initial model 

generated by Design Requirement and Resource Allocation Management 

(DRRAM). This initial design defines the system by identifying initial design 

variables and system responses to them; determining market, demands, initial 

alternatives and change options. It also provides an early estimation of costs and 

time associated with the selected design platform. 

 

Step 2: Uncertainties and variants of the investigated design should be identified 

in the second step. CACTUS’s uncertainty identification techniques are applied 

in this step. These uncertainties might be due to changes in design or demands. 

This step defines the set of uncertain parameters U: 

 

U= {u1, …, ui} 

 

where u is one of i individual uncertainties identified for the selected initial 

design platform. 
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Step 3: The third step in FROD is to to identify defect modes and possible 

design change options. Identifying uncertainties and variants help to model 

uncertainties. This uncertainty-based model, which is obtained by CACTUS, 

investigates defect modes which occur when system responses cannot satisfy the 

upper and lower limits of allowable uncertainty.  

 

Step 4: The fourth step is to generate flexible alternatives. Identifying defect 

modes and possible design changes generates flexible component alternatives. 

These alternatives create the set of flexible design platform alternatives (A) 

includes m design alternatives: 

 

A= {a1, …, am} 

 

where a is one of m design alternatives identified for the selected initial design 

platform. Each alternative is a set of functional requirement (F) and cost 

requirements (C) obtained by Design Requirement and Resource Allocation 

management (DRRAM), so: 

 

ak= [Fk, Ck]  ; K= 1 to m 

 

Step 5: The next step is to optimize each design alternative. Alternatives should 

be optimized with respect to minimization of costs while all equality and 

inequality constraints are satisfied. This optimization includes: 
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Objective Functions: Ck (xk) 

Constraints: Gj (xk
) ≤ 0 

Constraints: H (xk
)= 0 

 

Subject to:  xk
 

 

where the optimization problem is to minimize the objective function (Ck (xk)) or 

all costs associated with each alternative) with respect to inequality constraints 

of functional requirement Fk (upper bounds and lower bounds or Gj (xk
) ≤ 0 ) and 

quality constraints of functional requirements subject to the set of component 

design variables or xk. 

 

Step 6: The sixth step is to evaluate possible costs associated with all possible 

design alternatives (Ck) of optimized in Step 5. Associated costs constitute one 

of the critical decision making factors for selecting the best design platform. 

 

Step 7: The seventh step is to evaluate expected performance and costs of 

flexible design alternatives under uncertainties of the investigated design. Since 

flexibility becomes a more important issue as the severity of uncertainty is 

increased, in addition to costs, uncertainty is another critical facture for decision 

makers to select the design.  

 

As we had mentioned in chapter 3, CACTUS provides techniques of identifying, 

assessing and determining upper bounds and lower bounds of uncertainties and 

as a result provides a clear understanding of uncertainties associated with the 

selected design and as we had mentioned in step 2, defines:  
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U= {u1, …, ui} 

 

where u is one of i individual uncertainties identified for the selected design. 

 

In this step, the performance of alternatives under uncertainty should be 

evaluated economically.  

 

Step 8: Step eight is to select the best design from the set of design platform 

alternatives.  

 

In this step, decision makers make decisions by ranking possible design. 

Decision makers’ discipline for ranking designs depends on costs and 

uncertainties of associated design alternatives determined in steps seven and 

eight. They rank possible design platforms with respect to obtained expected 

value of their alternatives that is a function of costs (Ck (xk)) and uncertainties 

(U): 

 

Expected Value= EV= f (Ck (xk), U) 

 

As decision makers evaluate expected values of alternatives of m possible 

designs in the set of A= {a1, …, am}, they can obtain the most preferred design. 

 

Step 9: It is always possible that the best design generated in Step 8 is not 

satisfactory or does not meet the design requirements. In this case, DRRAM is 

applied by designers, decision makers and stakeholders to modify design 

requirements and allocate resources again.  
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Figure 22 shows the process is done by the FROD methodology to help decision 

makers select the best design platform. As this figure shows, in this case 

previous eight steps are repeated until the best design platform is obtained so 

that meets all requirements and constraints of designers, stakeholders and 

customers.  

 

 
Figure 22: The FROD methodology  
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The other strategy in this case is to apply the uncertainty management 

techniques provided by the CACTUS methodology (See chapter 2). However 

applying these techniques brings additional costs that should be evaluated 

beforehand. 

 
In the next section of this chapter, we provide a discussion for the further 

research and future work of the FROD methodology that are being carried out to 

provide a better framework and methodology that helps the Optimal Risk-Based 

Integrated Design (ORBID) to achieve its goals. 

 

 

6.3.4. Conclusion and Future Work 
This chapter has provided a flexible decision making process to obtain the most 

preferred optimal design in risky environments of multidisciplinary complex 

systems by introducing Flexible Risk-based Optimal Decision making (FROD).  

 

The achievement of the FORD methodology is to decrease costs of design by 

reducing costs of design changes.  It identifies possible design changes to 

generate flexible designs for resolving defects in the predicted model. 

 

The FROD methodology analyzed each possible design by modeling associated 

sets of alternatives into the optimization problem of minimization of associated 

costs with respect to quality and inequality of design functional requirements in 

addition to evaluate associated uncertainties and then calculating expected value 

of each possible design. Ranking designs with respect to associated expected 

value clarified the most preferred design that should be selected by decision 

makers.  

 



 
 

95
 

In this research, flexibility was defined as the ease of changing the system’s 

requirements with a relatively small increase in complexity, opposite of the 

robust design that aims to increase the stability of systems with respect to a 

variety of possible changes so that they are less sensitive to variations. The 

flexible design identifies possible design alternatives to resolve the design 

change problem. It increases the ability of systems for being adopted with new 

technologies by reformulating issues and their importance, changing the 

methodology achievements and generating more flexible alternatives. 

 

This research addresses flexibility in design in places where designers choose 

fixed design variables before they select the design. Future work should be done 

to develop this methodology so that it can be applied in operational conditions 

and address the flexibility issue in changing environments such as aircrafts, 

cruises, etc. or systems whose operating conditions and design requirements 

change during the operating life. The operational flexibility is a more important 

issue for space systems since they are subjected to unanticipated changes.  

 

As mentioned before, the expected value is a function of costs and uncertainties. 

In steps 5 and 6, FORD provides an optimization technique for optimizing and 

evaluating costs of design alternatives. So, developing techniques to model and 

evaluate performance of systems under uncertainties economically is another 

important issue should be addressed by ORBID in the future.   

 

In addition, more research will focus on the quality of providing this 

methodology with details and the process that should be followed to generate 

flexible design alternatives (Step 4 in the FROD methodology).  However, 
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increasing systems’ flexibility and generating flexible alternatives also increases 

associated uncertainties. This means that increasing the flexibility may not 

necessarily may result to the optimal performance. So, one of the most critical 

challenges is to provide techniques of measure the optimal flexibility. Decision 

makers should be aware of profits of being flexible and its associated costs. In 

this context, to develop cost benefit analysis techniques for measuring the value 

of flexibility in design is necessary for decision makers during the design 

process of multidisciplinary complex systems.  
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7.  Conclusion 
_________________________________________________________________________________________________ 
 

This research presented tools for uncertainty and design requirement 

management during the design process of complex systems by introducing 

Design Requirement and Resource Allocation Management (DRRAM) 

framework, the Capture and Assessment and Communication Tool for 

Uncertainty Simulation (CACTUS). The future work for each presented 

methodology was identified and a case study for the lunar lander mission design 

at NASA JPL’s Project Design Center illustrated the processes with more 

details.  

 

As the future work, this research presented Optimal Risk-based Integrated 

Design (ORBID) as a methodology for obtaining the highest performance within 

risk constraints while satisfying all constraints and requirements of the design 

and development of large-scale complex systems. ORBID as a cumulative tool 

for trading off risk, resources and performance of complex systems introduced 

Flexible Risk-based Optimal Decision-making (FROD) that provides a flexible 

framework for decision making in the ORBID’s collaborative excel-based 

environment. The properties, methodology and hotspots of FROD has also 

identified and discussed. 

 

Table 2 has listed the proposed methodology and the future work carrying out. 
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Table 2: Future Work 
 Future Work 
  

Capture, Assessment and 
Communication Tool for 
Uncertainty Simulation 
(CACTUS) 

 
- Developing techniques 

of assessing, mitigating 
and model all sources of 
uncertainty, especially 
qualitative aspects. 

 
- Developing a decision 

tree to demonstrate 
criteria for selecting the 
best assessment 
methodology to capture 
uncertainties associated 
with issues to increase 
the speed of this process. 

 
- Developing techniques 

to obtain upper and 
lower margins of 
uncertainties by 
bounding approach to 
risk analysis 

 

Design Requirement and 
Resource Allocation 
Management (DRRAM) 

 
- Providing this method 

with techniques of 
design requirement 
management so that it 
can address needs of 
design teams including 
designers, stakeholders 
and customers for 
trading off their 
requirements and design 
constraints. 
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- Future work for 

extending the knowledge 
base that can support the 
applied RUBIC design 
tool.  

 
- Improving the RUBIC 

design tool methodology 
and addressing its 
limitations in identifying 
the the efficient frountier 
by linearly and 
unlinearly utility 
functions. 

 

Flexible Risk-based Optimal 
Decision making (FROD) 

 
- future work should be 

done to develop this 
methodology so that it 
can be applied in 
operational conditions 
and address the 
flexibility issue in 
changing environments 
such as aircrafts, cruises, 
etc. or systems whose 
operating conditions and 
design requirements 
change during the 
operating life. 

 
- Providing techniques to 

evaluate the value of 
flexibility and measure 
the optimal flexibility  
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Appendix A: the application of Function-Failure 
Design Method (FFDM) 
_________________________________________________________________________________________________ 
 

In this section we are going to apply the process of obtaining EF and EB matrix 

for a case study (borrowed from [161]). Consider a hardware/software system. 

Although such this system can be divided into different subsystems and each 

subsystem includes some other components and EF matrices should be 

generated for each component, for simplifying we divide it into 3 components:  

 

C2=Software component 

C3=Hardware component 

C1=Interfaces which are responsible for importing and exporting data between 

users and machine.  

 

Five functions can be considered for components including: 

 

E1=import data 

E2= Guide data 

E3=Export data 

E4=Convert data 

E5=Store data 

 

Determining components and functions provides the EC matrix. It enables 

designers to generate EC matrix. Now, the next step would be to generate CF 

matrix by identifying potential technical and dynamic failures mode. However 

for such this analysis, we have to determine our strategy beforehand so that we 

can categories behaviors, especially external factors. We have considered 6 
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failure modes due to technical and dynamic factors. These failure modes would 

be: 

 

F11= input, 

F12= information 

F13=module 

F21=culture 

F22=economy  

F23=society 

 

CF matrix can be obtained by identifying failure modes. Figure A.1 shows the 

process of obtaining EF matrix by identifying components, their functions and 

possible failure modes for a simplified hardware/software system. 
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Figure A.1: Functional model for a simplified hardware/softw
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Appendix B: The application of Risk and Uncertainty 
Based Integrated Design (RUBIC) 
_________________________________________________________________________________________________ 
 

In this section, this research shows the applicability of RUBIC design 

methodology. This section has been borrowed from [151]. The case study is 

Motor Controller subsystem of a satellite reaction wheel (shown in Figure A.2). 

For thsi case study, 7 functional elements can be listed including: 

- Import Electrical Energy 

- Export Electrical Energy 

- Guide Electrical Energy 

- Regulate Electrical Energy 

- Guide Electrical Energy 

- Condition Electrical Energy 

- Guide Electrical Energy 

 

 

n wheel at some point in 
 
Figure A.2: A high-level functional model of a satellite reactio
its conceptual design phase borrowed from [151]. 
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Using FFDM, μ and Σ can be estimated at this stage. μ is proportional to the 

failure rate and we can estimate σii’s from μi’s (σi ≈ 0.3 μi), So:  

and;                      
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Now by applying the above formulation of risk reduction, the risk-efficient 

design frontier shown in Figure A.3 is obtained. 
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Now the question becomes which RED-P on the efficient frontier should be 

selected. To address this problem, RUBIC uses a linearly weighted utility 

function to assess the tradeoff between expected value and variance of the total 

benefit function two criteria:  

u=E(TB)-0.3σ(TB).  

 

Using this utility, u, the optimization problem represents a allocation vector 

(listed in table 3) that corresponds to the most preferred RED-P (the red circle in 

Figure A.3). For example Figure A.3 and A.4 shows that two functional 

elements of Regulate Elec. E. and Condition Elec. E. require the highest 

resources.  
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This was an example of the applicability of the RUBIC design methodology for 

allocation resources.  

 

Table 1: Optimal resource allocation borrowed from [151] that corresponds 

to the red circle in Figure 26. 

Column 
# 

Function Resource 
Allocation 

1st Import Electrical Energy <1% 
2nd Export Electrical Energy 6% 
3rd Guide Electrical Energy <1% 

4th Regulate Electrical Energy 57% 
5th Guide Electrical Energy 10% 

6th Condition Electrical Energy 26% 
7th Guide Electrical Energy <1% 

 

Figure A.4 – Optimal Allocation 
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Appendix C: Decision making under risk: A 
Literature Review 
_________________________________________________________________________________________________ 

 
The concept of decision making under risk extends back to Daniel Bernoulli, 

1738 [127]. His solution to a problem under risk is known as Bernoulli’s 

paradox. This problem, formulated by his cousin Nicholas, is to determine the 

amount of money that a person will be willing to enter a game with a prize of 

$2n where a fair coin is tossed until on the nth flip it lands on heads. The 

expected monetary value (EMV) of this problem would be infinite since: 

 

  1

1 2n
n

∞

=

= ∞∑ 2n

 
Where, the probability of n flips is (1/2n) and the expected prize for n trails is 2n. 

 

Bernoulli showed that, in conflict with the outcome, people are not willing 

entering this game as a result of altering from risk associated with this game. 

Based on this fact, he introduced the definition of utility by formalizing this 

discrepancy between the EMV and the behavior of individuals. Then he 

presented his Expected Utility Hypothesis as: Individuals make decisions with 

respect to investments in order to maximize expected utility. The disciplines of 

decision analysis have been extracted based on Bernoulli’s hypothesis.  

 

In the framework of utility theory, the decision analysis discipline has three 

fundamental elements: 1) Options, which are design alternatives; 2) 

Expectations, which are range of possible outcome of a decision considering 

their probabilities of occurrence; and 3) values, whose purpose are to rank order 
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alternatives. As a consequence decision analysis process includes options 

identification, expectation determination of each option and finally expression of 

values. The resulting of decision rule would be: The preferred decision is the 

option whose expectation has the highest value [118].  

 

Since the purpose of values in decision making is to rank order of alternatives, 

(for example option A is preferred  to B), this preference ordering requires the 

existence of a real scalar function such as u we had introduced as utility 

function, for this example UA > UB. Like other engineering design we tend to 

automate the process of rank ordering for two reasons: first; making an ad hoc 

assessment for relative merits of every design alternative versus every other 

design alternative doesn’t sound feasible and second; this comparison would be 

too complex without the use of a mathematical value model. This mathematical 

requirement for a value function has been formalized by Von-Neumann (a 

mathematician) and Morgenstern (an economist) in 1944 [116]. It is referred to 

Von-Neumann and Morgenstern utility (VN-M utility).  

 

As Figure A.5 shows, VN-M utility is based on the notion of a lottery where the 

utility of the more desired outcome is higher than the utility of the less desired 

outcome. Von-Neumann and Morgenstern claimed that if the probability of the 

more desired outcome occurrence tends to one, the utility of the lottery tends to 

the utility of the more desired outcome and in reverse, if the probability of the 

more desired outcome tends to zero; the utility of the lottery approaches the 

utility of the less desired outcome. Based on these two principles, Von-

Neumann and Morgenstern concluded that the utility of the lottery always lies 

between the utilities of the less and the utility of more desired outcomes.  
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Figure A.5:  A VN-M lottery 

 
 

In 1957, Luce and Raiffa [128] developed an interoperation of Von-Neumann 

and Morgenstern theory and concluded that: 

 

“If a person is able to express preferences between every pair of gambles, where 

gambles are taken over some basic set of alternatives, then one can introduce 

utility associations to the basic alternatives in such a manner that, if the person 

is guided solely by the utility expected value, he/she is acting in accord with 

his/her true tastes provided only that there is an element of consistency in 

his/her tastes.” [128]. 

 

Based on this interoperation, Luce and Raiffa extracted the Von-Neumann and 

Morgenstern axiom in engineering design, which is fundamentally the notion of 

utility within engineering design:  

 

“Suppose that one has to make a choice between a pair of lotteries that are each 

composed of complicated alternatives. Because of their complexity it may be 
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extremely difficult to decide which one is preferable [and this is usually the case 

in engineering design]. A natural procedure, then, is to analyze each lottery by 

decomposing it into simpler alternatives, to make decisions as to preference 

among these alternatives, and to agree upon some consistency rules that relate 

the simpler decisions to the more complicated ones. In this way, a consistent 

pattern is imposed upon the choices between complicated alternatives.” [128]. 

 

Luce and Raiffa [128] and Hazelrigg [118], summarized Von-Neumann and 

Morgenstern axioms, to six axioms which are the basis for decisions in utility 

theory: 

 

1- All outcomes of a VN-M lottery can be ordered in terms of the decision 

maker’s preferences and that ordering is transitive. 

 

2- Any compound lottery, that is, any lottery that has been outcome another 

lottery, can be reduced to a simple lottery that has among its outcomes all the 

outcomes of the compound lottery with their associated probabilities of 

occurrence. 

 

3- If the outcome of lottery, A1, A2 ,…, Ar , are ordered from most desired 

to least desired, then there exists a number p, 0< p< 1 , such that one is 

indifferent between an outcome Ai ,1< i< r, and the lottery At  with probability P 

and Ar with probability p-1. 

 

4- For any lottery such as that given in axiom 3, with Ui specified, there 

exists an outcome [uiA1, (1-ui)Ar] that can be substituted for Ai, and the 

preferences of the decision maker will remain unchanged. 
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5- The decision makers’s preferences and indifferences among lotteries are 

transitive. 

 

6- Given two lotteries, each with only two outcomes, and which differ only 

in terms of the probabilities of the outcomes, the lottery in which the probability 

of the more desired outcome is larger is the proffered lottery. 

 

Here, brief descriptions of terms are used in above six axioms sounds necessary. 

These terms are transitive/intransitive and rational/ irrational. Assume a decision 

maker should rank between three options A, B and C. where the symbol “>” 

means “is preferred to”. If the ordering of preferences is necessary to be in the 

form of A >B >C > A, it means UA > UB > UC > UA. While we know U, utility 

function, is a real scalar function so it’s not possible.  

 

The preference ordering that causes this problem is said to be intransitive and 

the person who has such a preference order is called irrational.  Such this person 

is not a good design engineer and decisions made by this person are not 

compatible with her/his preferences.  

 

On the other hand, if A > B > C, then A > C. In this situation, the preference 

ordering is called transitive and the decision maker is said to be rational. In 

1963, Arrow [129] proved that groups with rational individuals might have 

irrational preferences. This theory is called Arrow’s impossibility theorem. 

Based on Arrow’s theorem, any method that requires the formulation of a group 

utility to determine group preferences is likely to be fundamentally flawed.  
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After being familiar with VN-M axioms and definitions of transitive/intransitive 

and rational/ irrational, one can analyze VN-M’s axioms with respect to their 

applications: 

 

- First rule of this axioms, talking about ordering in terms of decision 

maker’s preferences is necessary in order that rational decision making 

be possible. 

 

-  The second axiom; which explain reducing of any compound lottery to a 

simple lottery, equivalences compound and simple lotteries. 

 

- The third axiom assures the continuity of preferences between outcomes 

A1 and Ar. 

 

- The fourth axiom shows that any lottery in axiom 3 can be reduced to an 

equivalent lottery that contains only the outcomes A1 and Ar..  

- The decision makers’ preferences and indifferences among lotteries are 

transitive and it assures that rational preferences exist among lotteries. It 

is the base of the fifth axiom.  

 

- Finally, the sixth axiom defines the statement of preference by showing 

that between two lotteries with two outcomes which are different in just 

probabilities of outcomes, the lottery in which the probability of the 

more desired outcome is higher is the preferred lottery.  

 

Based on the notion of Von-Neumann and Morgenstern (that the utility of the 

lottery always lies between the utilities of the less and the utility of more desired 
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outcomes) and these axioms (which are the basis of decisions in utility theory) 

VN-M utility basis in engineering design is build and Expected Utility Theorem 

can be described as: 

 

“If the preference or indifference relation (> or ~) satisfies assumption 1 

through 6, there are numbers Ui associated with the basic prizes Ai such that for 

two lotteries L and L′ the magnitude of the expected values 

(P1u1+P2u2+…+Prur) and (P1′u1+P2′u2+…+Pr′ur) reflect the preferences 

between the lotteries.” [128]. 

 

In other words, Expected utility theorem mentions that the utility of a lottery is 

the sum of utilities of all possible outcomes of the lottery if they are weighted by 

their probabilities of occurrence. Expected utility theorem provides measures of 

utility under condition of risk and uncertainty. 

 

First time, in 1996, Hazelrigg [118] expressed the concepts of the six VN-M 

axioms and associated utility in the framework of systems design. This 

framework applies expected utility theory for selecting designs. It enables 

decision makers to assess the value of each design option so that options can be 

rationally compared and then the most preferred option is selected.  

 

Figure A.6 shows Hazelrigg’s framework for decision-based engineering design. 

The goal used in this framework is profit consisting of revenues less costs. 

Revenues are quantities of things sold times their prices. These Quantities 

depend upon the demand (q) of the product which is a function of the attributes 

of the product (things that determine the worth of the product in aspect of 

customers) (a), price (p) and time (t).  
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Figure A.6: Hazelrigg’s framework  for decision-based design 

 

The variables which designers have control over them are design variables 

which have been shown as the design vector X, while variables which designers 

doesn’t have control over them are referred to exogenous variables as vector Y. 

The ordered set of attributes is referred to vector a.x; y is transformed into a 

with uncertainty. The value of revenues is determined as the product of p and q 

properly discounted and integrated over time. 

 

The framework then includes an optimization over p (p should be set to 

maximize the value of the particular design, x subject to y) with the purpose of 

maximizing utility (u) with respect to p with given x and y. It produces the 

utility measure for a design and then decision makers can compare alternative 

designs using this measure. In other word, it automates the process of alternative 

selection with an optimization scheme. 
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Hazelrigg’s framework (Figure A.6) models design as a decision-making 

process aims to maximize the value of designed artifact. However, still there is a 

challenge of how decision-based design framework should be fitted into the 

engineering design or in the words, how the utility of a design should be 

formulated under a decision-based design framework. In recent years, many 

researches on decision-based design have been done. (As references used in the 

text demonstrated, Scott and Ontonsson (1999), Gu et al (2000), Azarm et al 

(2000),  Wood (2000),  Agogino et al(2005)  , etc.).  

 

Figure A.7 shows Von Neumann- Morgenstern utility framework for decision 

based design developed by Wei Chen et al (2001) [110- 111]. In this framework 

two different types of attributes are considered, engineering consideration (E) 

and the customer key attributes (A).  

 

 
Figure A.7: Chen’s Decision-Based Design Framework 
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The engineering attributes E are product properties of interest to a design 

engineer represented as functions of design variables x. the customer key 

attributes A are the product features a customer assess when purchases a 

product. The selection criterion V is expressed as a function of the demand (Q), 

Price (P), total product cost (C) [The time (t) is considered when discounting v 

to the net present value].  

 

In addition, in this framework, corporate interests I acts as requirements 

(constraints) while Hazelrigg’s framework is void of constraints.   In this 

framework, optimal product design is determined by selecting the design options 

(x) and the price p while the expected utility E (UVNM) of the selection criterion 

is maximized and the constraints are satisfied.  

 
As mentioned before, the nature of complex systems are multidisciplinary 

design.  However, the decision-based design framework of Hazelrigg [48] is a 

single level all-at-once optimization approach. Following this fact, building a 

framework for decision-based design in multidisciplinary systems needs specific 

efforts. X. Gu and J.E. Renaud (2000) [119], developed a framework for 

decision-based design of multidisciplinary systems by decomposing it into the 

multidisciplinary model. 

 

This decomposed system includes two major organizations; the engineering 

disciplines and the business disciplines (while traditionally multidisciplinary 

design is focused on disciplines in the field of engineering analysis).  The role of 

the business disciplines is providing targets for performance improvements in 

order to higher profit while the role of engineering disciplines is focusing on 

predicting the performance of product while satisfying the performance targets 

set in the business discipline. 
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Figure A.8 shows Gu and Renaud’s framework for multidisciplinary systems. 

As this figure shows, engineering and business disciplines are coupled through 

attribute (a), total cost (CT) and demand (q). Based on this model, the 

performance predictions obtained from a system analysis (SA) are referred to as 

states y in the contexts of multidisciplinary design. [126]. Contexts of decision 

making in aspect of multidisciplinary systems presents us with two new 

challenges: First, decision making in the domain of optimization; second, 

collaborative decision making. 

 

 
 design framework  Figure A.8: Gu and Renaud’s decision-based
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