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1. Introduction

The ultimate goal of large-scale design organizations are mainly to reduce costs
and improving reliability and performance of system while assessing how much
risk (cost, schedule, scope) they can take and still remain competitive. To
achieve this goal they need to develop tools to reach the most preferred design
performance while reducing design and decision time, time to market and total
costs and increasing reliability, safety, satisfactory, performance and ease of

design and decision making.

1.1. Motivation

One of the most challenging tasks of the design team during the design process
and development of complex systems is to make decisions in risky and
unambiguous environments to reach the most desirable products. To achieve this
goal, they must obtain the most preferred design product satisfying all design
constraints and requirements within risk and uncertainty constraints. This

process can be divided into these main interconnected steps [76]:

e Risk and uncertainty management: The design and development cycle
for complex systems is full of uncertainty, commonly recognized as the
main source of risk in organizations engaged in design and development.
One of the challenges for complex large organizations is to assess how
much risk (cost, schedule, scope) they can take on and still remain
competitive; to determine the probability and consequences of associated

risks; and, to decide whether or not they should apply additional
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mitigation techniques to reduce risks and uncertainties with respect to

associated costs.

Risk and uncertainty management techniques offer methodologies for
dealing with uncertainties (qualitative or quantitative; controllable or
uncontrollable) and satisfying critical challenges that design teams
encounter. They provide answers for decision maker’s critical questions:
1- Where is uncertainty from?; 2- What is its severity and importance?;
3- What are possible methods to assess, mitigate and dealt with risks in
the design process; 4- How do uncertainties propagate and which model
describes them the best?; 5- How might the sensitivity of the system
performance to this uncertainty be reduced or controlled? 6- How can
the performance of system be improved in spite of the existence of this

uncertainty?

Design requirement management: During the design and development
of complex systems, the design team should be aware of properties of
systems and subsystems such as associated tasks, requirements, criteria,
issues, etc. This step includes modeling and defining the project;
determining associated decisions and subsystems; identifying design
requirements; allocating resources and generating alternatives. These
issues not only define design constraints that should be satisfied to meet
requirements, but also enable decision makers to predict system and
subsystem properties so they can devote more effort (cost, schedule,
additional safeguards) to subsystems with more importance with respect
to certain issues. However; design requirements and information are
unambiguous in early stages of design and they become clearer when the

project progresses. As a result, techniques of design requirement
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management should be changeable and updatable with respect to new

information.

e Collaborative design environment: Because of the complexity of
multidisciplinary systems, the design process of complex systems is
mainly based on team collaboration. However, decision making in
collaborative team has its own challenges. The design team must be able
to communicate and synchronize data and be aware of decisions made by
others as the project goes forward. In recent years many efforts have
been conducted to address challenges of collaborative decision-making.
These challenges mostly include developing optimization tools [119,
126] or providing group decision making collaborative design with
methods, such as Multi-Agent Architecture for collaboration [109], for
eliminating communications barriers of design teams during design

lifecycle.

1.2. Research Approach

As mentioned above, a methodology that can satisfy engineers’, managers’,
stakeholders’ and decision makers’ needs must be able to satisfy the critical
challenges of design teams by understanding the sources of uncertainties and
risks and providing a means for managing them and making best decisions. To

aim this goal, this research provides:

Design Requirement and Resource Allocation Management (DRRAM):
This research provides techniques for Design Requirement and Resource

Allocation Management (DRRAM) by analyzing and defining the project from
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the very early stages, associated tasks, issues and design requirements; dividing
the system into subsystems, parallel decisions, decision nodes, alternatives; and
generating the model. It enables designers, decision makers and stakeholders to
predict system and subsystem properties and requirements and also devote more
effort (cost, schedule, safety guard, etc.) to subsystems with more importance

with respect to certain issues.

The design requirements can be adjusted as the design goes forward and new
criteria are obtained. Prior research by Tumer et al, specifically, Function-
Failure Design Method (FFDM) [149] and Risk and Uncertainty-Based
Integrated Design (RUBIC) [150] are used by DRRAM to allocate resources.
DRRAM'’s information sheet not only provides the necessary information for
decision making, but also helps decision makers to change their decisions more

effectively.

Capture, Assessment and Communication tool for Uncertainty Simulation
(CACTUS): For dealing with risks and uncertainties during the
multidisciplinary complex system’s design process, this research introduces the
“Capture, Assessment and Communication Tool for Uncertainty Simulation”
(CACTUS). CACTUS monitors systems from the very early stages of design
and as the project goes forward, identifies the sources, severity, boundaries and
propagation of uncertainties and identifies and mitigate associated risks that
should be analyzed by decision makers. In addition, since complex systems
commonly rely on concurrent design teams, its collaborative environment for
design teams enables to efficiently and effectively communicate uncertainty
through the design process and as a result, improve their capacity for delivering

complex systems that meet cost, schedule, and performance objectives.



5
The excel-based environment: This research addresses the communication

issue by providing an updatable excel-based communication environment for
design teams during the design life cycle. By applying this excel-based
environment, design members would be able to update and synchronize data to
be aware of decisions made by others as the project goes ahead. This concurrent
environment also reduces the ambiguity uncertainty due to lack of
communication or misunderstanding of the precise definitions of tasks and
requirements and hence helps customers, stakeholders and decision makers to

communicate more effectively and efficiently.

1.3. Terminology

To reduce the ambiguity in applying the methodologies offered by this research,

in this section we define the terminology for terms used:

Stage: The term “Stage” refers to the main steps of design determined by design
teams. They mainly define stages in design by considering parameters such as

timeline, design development, etc.

Parallel decision: Parallel decisions refer to distinct decisions for each
subsystem that have independent end points. In other words, each selected
decision at the end is related to a parallel decision of a subsystem. The parallel
decision number is defined by m= {1, 2,...,M-1, M} where M is the total number

of parallel decisions needed for the subsystem.

Decision node: Decision nodes refer to points in parallel decisions of

subsystems in the design and development of complex systems which where a
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decision must be made among many design alternatives to achieve the same task

and satisfy the same issues.

Phase: Since the design and development of complex systems can be
represented as a decision tree, each decision node represents one phase of the
associated parallel decision. Obviously, different phases of design can be located
in the same or different stages. The phase number is defined by n= {1, 2,...,N-1,

N} where N is referred to the total number of phases in the design process.

Alternative: Each possible decision that can be made through decision-making
in decision nodes is called an alternative. The number of alternatives is defined
by I= {1, 2,...,L-1, L} where L is the total number of alternative in the step. Each

alternative is represented by the symbol of X ]where m is the number of
mn.

parallel decisions, n is the number of phase located in the mth parallel decision,

and / is the number of alternatives located in the nth step.

Task and Issue: Based on associated issues and tasks, decision makers make
decisions among alternatives in decision nodes. Generally tasks introduce why
and for what purpose we are making a decision while issues refer to constraints
that should be satisfied for tasks to obtain the most preferred design product.
Issues might not be equal in importance. In decision sheets, expert judgment
scores qualify issues’ importance and based on these scores, decision makers
can give higher weight to more important issues. Tasks and issues represent
design variables in the form of control factors, which designers can adjust to
reach a desirable performance, and exogenous parameters in the form of noise

factors which are difficult or impossible to control for designers.
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Decision sheet: A decision sheet, created for each decision node, is developed

for alternatives that are considered actively in decision making. Types of
decision sheets might vary based on the nature of issues and uncertainties that
should be considered. For example, for considering qualitative aspects of
uncertainties, a qualifier might be added to the decision sheets. As a result,
decision sheets provide uncertainty assessing tools for combining qualitative and
quantitative aspects of uncertainties. They also can be used to model degree of
beliefs where only expert judgment is possible. Decision sheets also have
columns showing the weight, distribution and type of issues associated with
each decision node. The outcome of decision sheets is identifying alternatives

that should be considered actively in the next decision node.

Information sheet: Information sheets provide all necessary information for a
design team to be able to evaluate criteria and manage design requirements and
resource allocations. They help the design team to manage design resources and
requirements. They enable decision makers at the system level to predict
subsystems properties and requirements and devote more effort to subsystems
with more importance with respect to certain issues. In other words they manage
the system by identifying the amount of effort that should be done for each

subsystem based on criteria that have been defined for the system before.

Flow diagram: A flow diagram helps users to have a better understanding of
active or passive alternatives in each parallel decision. Flow diagrams are
generated for decision nodes and completed as the project goes forward. It
shows both alternatives that are become passive (circles with dashed line) and
active alternatives (circle with solid lines), which are sent to the next decision

node for decision making.
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Model: The model shows a general scheme of the system, subsystem and their
relations by modeling uncertainty propagation through the multidisciplinary
system. It identifies exogenous parameters, design and linking variables and as a
consequence, prepares the data for performing optimal decision making to reach

the desirable product.

1.4. The Case Study

The case study applied in this research is the lunar lander mission design project,
a conceptual mission design team at JPL’s Project Design Center, borrowed
from [33]. This design team, also known as Team X, is a concurrent engineering
team that has the capability to design an entire mission in one week at the
conceptual design stage. Their product is a conceptual design that includes the
mission architecture, equipment lists, launch vehicle and estimates for cost and
schedule. The team was formed in order to shorten the time required to develop
a space mission proposal, a process that previously required months of work

[34].

Figure 1 shows a portion of the decisions that occurred during the design
process of a robotic lunar mission, based on the observations of the team over
the course of a week as they worked on a robotic lunar lander mission design,

initiated by an internal NASA customer [33].

This research uses this case study to show the structure and architecture of the
proposed methodology, its processes, applicability and illustrates the techniques
with more detail. The excel-based collaborative design environment, the

decision and information sheets and other material covered in this research will
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be explained in more detail by applying them into this case study in the chapter

five.

LD e

cps .t e | SR T

Fgure 1: Flowdiagram of thelunar lander mission Team X design

1.5. Structure of Thesis

In the first section of this chapter, an introduction to the thesis topic of Risk-
Based Integrated Design for multidisciplinary complex systems was provided
and research objectives and motivations were briefly described. Section 1.2
summarized achievements and the materials that will be covered in this research
and Section 1.3 defined the terminology used in this methodology. Section 1.4
described the case study that will be used to clarify this methodology. The
present section gives an overview of material that will be covered in upcoming

chapters specifically:
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Chapter two reviews the literature and background of methodologies
covered by this research. It provides definitions of complex systems
and risks and uncertainties from various domains; techniques of
dealing with systems’ uncertainties by classifying, assessing and
mitigating their sources, severity and consequences; design
requirement management and resource allocation by functional
decomposition methods; concepts of decision making in ambiguous
and risky environments; collaborative decision making within the
optimization domain and a brief overview of flexible alternative

generating and decision making.

Chapter three introduces the “Capture, Assessment and
Communication Tool for Uncertainty Simulation” (CACTUS) as the
proposed methodology for dealing with uncertainty to obtain the
optimal risk-based design product. The CACTUS methodology,

resulting sheets and future work will also be covered in this section.

Chapter four proposes the Design Requirement and Resource
Allocation Management (DRRAM) as one of the necessary tools for
optimal risk-based design. The proposed methodology and
optimization problem, information sheets and their properties and
attributes to the design requirement management and resource

allocation will be covered in this chapter.

Chapter five shows CACTUS and DRRAM methodologies and
processes with more details by applying them into the robotic lunar

lander conceptual mission Team x design team case study at NASA
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JPL’s Project Design Center. The structure of the excel-based

collaborative design environment, information sheets and decision
sheets, flow diagrams, models and other covered material will be

clarified with details for the case study in this chapter.

Chapter six introduces complex system architecture for Optimal
Risk-Based Integrated Design (ORBID) as a future work of this
research. This chapter includes the goals, methodology and structure
of ORBOD with respect to its components for design requirement
management and resource allocation, uncertainty management and

collaborative decision making.

This chapter proposes a set of tools and techniques that should be
incorporated into the system architecture of complex
multidisciplinary systems in risky environments to obtain the most
preferred products. The provided framework shows the process and

associated methodologies’ dependency with more details.

This chapter also introduces Flexible Risk-based Optimal Decision
making (FROD), as a decision making tool for generating flexible
alternatives and making the best decisions among sets of optimal
solutions with respect to costs and uncertainties. This chapter also
provides a brief discussion for the properties of the proposed
methodology and challenges of design teams to evaluate and apply

flexibility in their consideration for the design projects.
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® Chapter seven summarizes the results and contributions of this
research to achieve its goal for risk-based design of complex
systems. This chapter also offers recommendations to move forward

this methodology and identifies research items for future work.
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2. Background/Literature Review

This chapter reviews the literature background in related concepts associated
with issues associated with design of complex systems in risky environments.
First, it provides definitions of complex systems and their properties as a
concurrent engineering design; next, it reviews the literature background of risk
and uncertainty in addition to design requirement and resource allocation

management.

2.1. Complex systems
Rechtin and Maier (2002) [162] defined a system as “A set of different elements

so connected or related as to perform a unique function not performable by the
element alone”. In this context, two commonly accepted definitions for the

complexity of a system includes:

“A measure of the numbers and types of interrelationships among system
elements; Generally speaking the more complex a system, the more difficult it is

to design, build, and use” Rechtin and Maier (2002) [162].

“Having many interrelated, interconnected or interwoven elements and

interfaces...an absolute and quantifiable system property” Crawley (2005) [163].

Based on these definitions, the complexity can be characterized by the amount
of information is necessary for the system to be described. As a result, a system

with more complexity includes more stating information. However, the question
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is how much complex a system should be so that it can be defined as a complex

system?

In 2005, Crawley [163] described the property of a complex system by “requires
a great deal of information to specify” and then he classified systems based on

their complexity by this rule:

- Simple systems: (7 £ 2) elements
- Medium systems: (7 + 2)* elements

- More Complex systems: (7 + 2)° elements

Architecture, as “rules to follow when creating a system” [163], is a way to
design and manage complex systems. Here, some properties of complex systems

affected by architecture are listed:

- Robustness: “the demonstrated or promised ability of a system to perform
under a variety of circumstances, including the ability to deliver desired
functions in spite of changes in the environment, uses, or internal variations that

are either built-in or emergent” , (ESD 2002, [164]).

- Adaptability: “the ability of a system to change internally to fit changes in its
environment,” (ESD 2002, [164]).

- Flexibility: “the property of a system that is capable of undergoing classes of
changes with relative ease. Such changes can occur in several ways: a system of
roads is flexible if it permits a driver to go from one point to another using

several paths. Flexibility may indicate the ease of ‘programming’ the system to
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achieve a variety of functions. Flexibility may indicate the ease of changing the

system’s requirements with a relatively small increase in complexity and

rework”, (ESD 2002 [164]).

Maier and Rechtin (2000) [162] showed there are four quantities should be
understood and traded off to achieve the design of a complex systems including:
performance; time to market; cost, and risk. Trading off performance, time, cost
and risks (as the most difficult part to be addressed), in addition to a variety of
techniques to computerize, systematize, communicate, etc is the process need to

be done to support the design of a complex system.

In the next section, this research provides a description about Integrated
Concurrent Engineering (ICE) as one of the best examples of collaborative
design environments to support the communication issue during the design of

complex system.

2.1.1. Integrated Concurrent Engineering (ICE)

Team X was designed to enable JPL, NASA’s lead center for robotic
exploration of the solar system, to deal with the increasing number of
conceptual-phase mission designs. The main purpose of Team X is to provide a
study process to increase the quality and to decrease the time of mission

concepts by dedicating facilities, equipments, procedures and tools [165].

To achieve this goal, Team X includes:
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- 16 subsystem experts: Each expert has a computer workstation for

his/her associated subsystem. These subsystems consist of: Attitude
Control, Command Data Systems, Configuration, Cost, Ground Systems,
Instruments, Mission Design, Power, Program Management, Propulsion,
Science, Structures, System Engineering, Telecommunications-System,

Telecommunications-Hardware and Thermal Control.

- The team leader: He/she leads the study and contact customers before

and after and during the study.

- The documenatalist: The documenatalist is responsible to make sure the
result of the study is documented properly. He/she also documents the

study’s technical discussion, electronic files etc.

As the following paragraph shows, to achieve this goal, the design process of
complex systems needs to be provided with supportive tools to enable

subsystems chairs to communicate.

Integrated Concurrent Engineering (ICE) that is an approach to facilitate and
increase the productivity of complex system’s design teams in conceptual stages

is a collaborative process consists of five principles listed below [166, 167]:

1. Standard Information Products: Organizations should define their
standard information product to systematize their process and determine

benefits of applying ICE.
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2. Network-Linked Tools: These tools such as Computer Aided Design

(CAD) systems, spreadsheets, mathematical models and other types of

software are used to facilitate instant quantitative engineering.

3. Procedures for real time collaboration: It is always important that design
team members have a well understanding of the procedures for real time

collaboration.

4. Standing Multidisciplinary Team: Team should be well-trained and
skilled in the tools and methods by setting clear procedures, roles,

standard information, etc.

5. Applicable Facility: Teams should be facilitated with environments that
support hardware, software and human resources, such as networked

computer workstations (either real or virtual).

To address these principles and increase the ease and speed of applying ICE,
ICEMaker™ was designed. ICEMaker'™ as an Excel based software tool that
applied the ICE methodology and principles, has been adopted by JPL to
implement the ICE to provide a faster and easier tool for team members to share,
browse, send and receive data. In addition, its interface for inputting and
outputting database from/to the model provides a faster send and request

process.

ICEMaker™ facilities the communication between subsystems by providing a

client-server architecture. Figure 2 shows this architecture.
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Subsystem A
Subsystem B |

Subsystem C|— Server —Subsystem N

H_Subsystem D | ||
N atend of Excet Workbaohy Subsystem F

instead of Excel Workbook)

Suhsystem E | NOER

Figure 2: The client-server Architecture of ICEMaker ™ borrowed from [32]

ICEMaker™ server applies Visual Basic and Visual C++ and generates the
client’s excel workbooks that enable subsystems to communicate with each

other via the server.

The workbook consists of four work sheets including: The main sheet (a
summary sheet of calculation results); the input sheet (includes data from other
subsystems as parameters); the output sheet (determines data calculated within
the subsystem and is used by other subsystems) and the project Status sheet (an
alternative menu-based method). Figure 3 shows the client major software

routines.
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CLIENT

Current Outpuls Sheet

Current Inputs Sheet

I

Inputs Sheet with updated values

Send
Receive <
Parameter List

el

Populated Project Status Sheet

Janieg

Figure 3: Client Major Software Routines borrowed from [32]

Figure 4 shows the ICEMaker™ folder structure. Project Chaos shown in this

figure is the root folder consists of two sub folders: Client Subsystems

(including all workbooks) and Project Server (the database associated with the

server).

= Project Chaos

= Chent Subsystems

Inconmirg
Template
= Project Server
= Incoming

Servar Info Requests
Sutsystem [nput Requests
Subsystem Oukputs

Figure 4: The ICEMaker folder structure borrowed from [32]




20
2.2. Risk and Uncertainty

In engineering design teams, decision makers encounter lots of uncertainties in
each decision they make. The risk associated with the design of complex
systems is fundamentally tied to these uncertainties commonly recognized as the
main source of risk in organizations engaged in design and development. In fact,
the design process includes consecutive decisions that start with high levels of
uncertainties in the early stages of design, and lead to a final product at the end

by reducing the overall uncertainty throughout the design cycle.

In the early stages of design, uncertainty is the highest since decisions have not
yet been made and design alternatives to achieve the best design product have
not yet been clearly and actively considered. To deal with the uncertainty in the
design and development of a complex system, team members should be aware
of consequences of their decisions while being aware of decisions made by
others. In addition, different sources of uncertainty might not have the same
importance as other sources. For example, when the number of design
alternatives is increased, the uncertainty associated with that decision is also
increased but obviously, offering more choices, especially in early stages of
design is not as harmful as other types of uncertainty that cause poor or

suboptimal performance, poor decisions and even failure.

Furthermore, selecting a poor or imperfect definition and classification for
uncertainty might guide decision makers to account for uncertainty more or less
than it is necessary. In addition, a well-established uncertainty management
methodology has to be able to deal with all sources of uncertainty (technical or
nontechnical; qualitative or quantitative). These show the importance of having

a clear understanding of uncertainty, knowing its sources, severity,
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consequences and finding methods for mitigation and managing associated risks

and their effects during the design process.

2.2.1. Definitions

Since uncertainty has been a concern in many diverse fields, including design,
engineering analysis, project management, policy development, disaster
recovery, there are several definitions for the term of “uncertainty” in existence.
Selecting a poor or imperfect definition for uncertainty might guide decision
makers to account for uncertainty more or less than necessary in the design
process. So providing a detailed definition for the term “uncertainty” and its
“sources”, exclusively for complex systems, is critical. By using this definition,
decision makers will be able to make more informed choices and reduce risks

due to uncertainty by reallocating resources, adding safeguards, etc.

According to concerns from diverse fields, including design, engineering
analysis, policy making, etc., there are several definitions for the term of

“uncertainty”, such as:

“The slack of certainty; A state of having limited knowledge where it is
impossible to exactly describe existing state or future outcome, more than one

possible outcome™ [144].

In recent decades, several attempts to find the best description of uncertainty in
the field of engineering design have been made but there is still no uniquely
accepted definition for this term. In this research we will use the following

definitions:
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“Uncertainty is a characteristic of a stochastic process that describes the
dispersion of its outcome over a certain domain” [27].

In this context, risk can be defined as:

“Risk is a state of uncertainty where some possible outcomes have an undesired

effect of significant loss” [144].

2.2.2.  Uncertainty classification

Uncertainty can be due to lack of knowledge, refers to Epistemic or Knowledge
uncertainty, or due to randomness in nature, refers to Aleatory, Variability
Random or Stochastic uncertainty. In the following paragraphs, a classification
for sources of uncertainty during the design process and development of

complex systems is introduced.

Ambiguity: One major source of uncertainty, ambiguity uncertainty [66-68],
results from incomplete or unclear definitions, faulty expressions or poor
communication. Ambiguity uncertainty should be reviewed from two aspects:
First, as a lack of knowledge that can be reduced by clear definitions or
linguistic conventions; and second, as an irreducible inherent uncertainty that is
naturally associated with human behavior. Ambiguity uncertainty is also called
imprecision [67] or uncertainty in context [29]. Ambiguity uncertainty shows
itself from the beginning stages of design and has to be placed as a subcategory

of both epistemic and aleatory uncertainty.



23
Model Uncertainty: Model (or process model) uncertainty includes

uncertainties associated with using a process model or a mathematical model for
the system. Model uncertainty is due to lack of knowledge (i.e., aleatory
uncertainty) and appears in all stages of design. Model uncertainty might be a

result of mathematical errors, programming errors, and statistical uncertainty.

Mathematical errors include approximation errors and numerical errors, where
approximation errors are due to deficiencies in models for physical processes

and numerical errors result from finite precision arithmetic [30].

Programming errors [60-63] are errors caused by hardware/software, such as

bugs in software/hardware, errors in codes, inaccurate applied algorithms, etc.

Finally, statistical uncertainty comes from extrapolating data to select a

statistical model or provide more extreme estimates [31].

Behavioral Uncertainty: Uncertainties associated with the behavior of
individuals in design teams (designers, engineers, etc.), organizations, and
customers are called behavioral uncertainty. Just as in ambiguity, behavioral
uncertainty can be described as uncertainties due to lack of knowledge and
uncertainties that are inherent in human behavior. Behavioral uncertainty arises
from four sources: Human errors, decision uncertainty, volitional uncertainty

and dynamic uncertainty.

Volitional uncertainty refers to unpredictable decisions of subjects during the
stages of design [31]. The role of this uncertainty becomes more important in

multidisciplinary design when several organizations are hired to develop the
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system. In this situation, individuals’ decisions in dealing with other
organizations cannot be anticipated [30].

Human errors [69-70] are uncertainties due to individuals’ mistakes during the
design process. Although human errors are inevitable in the system, they can be

reduced by certain methods such as training or applying human factors criteria.

As its name indicates, decision uncertainty is when decision makers have a set
of possible decisions and just one should be selected. To account for the role of
decision uncertainty, a good methodology should be aware of the nature of the
design process. For example, decision uncertainty has a more important role

when the design process is not reversible or iterative.

The fourth major source of behavioral uncertainty is when changes in the
organization or individuals’ variables or unanticipated events (e.g., economic or
social changes) contribute to a change in design parameters that had been
determined initially. In this uncertainty classification, we refer to this as

dynamic uncertainty.

Dynamic uncertainty also includes uncertainties resulted from degrees of beliefs
(instead if knowledge) where just subjective judgments are possible and should

be considered [41-49].

Natural Randomness: Uncertainties associated with the inherent nature of
processes are called Natural Randomness uncertainty. This type of uncertainty is
irreducible and decision makers are not be able to control it in the design
process. Several sources refer to aleatory uncertainty in general as natural

randomness. In this research we make distinction between Behavioral
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uncertainty that is related to individual’s behaviors and Natural Randomness that

is inherent in the nature of processes.
Table 1 shows sources of uncertainty associated with the complex system design
process and the main categories in which they belong (Epistemic, Aleatory, or

both).

Table 1: Uncertainty sources in complex systems

Source of Subcategories Main Category
Uncertainty
Model Mathematical errors, | Epistemic
Uncertainty Programming errors,
Statistical uncertainty
Behavioral Decision uncertainty, Epistemic,
Uncertainty Volitional, Human errors, Aleatory
Dynamic uncertainty
Natural N/A Aleatory
Randomness
Ambiguity N/A Epistemic,
Aleatory

Figure 5 is a general scheme of uncertainty classification based on Table 1. This
research uses this classification to account for uncertainty in every stage of

design.

Figure 6 shows the uncertainty Venn diagram for general understanding of
uncertainty classification. As we can see, the inside of the two sets represents
certain uncertainty referring to uncertainties where we know the sources, while

the intersection of two sets includes Ambiguity and Behavioral uncertainty. The
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outside of the sets is unknown uncertainty, referring to what we don’t know we

don’t know.
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Figure 5: Uncertainty classification
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Figure 6: The Uncertainty Venn diagram
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2.2.3. Uncertainty assessment methods

Design is by nature iterative and driven by decisions that are made under large
amounts of uncertainty. Uncertainty studies typically involve methods for
quantitative uncertainty analysis, including single and multi-variant sensitivity
analysis, stochastic modeling with Monte Carlo techniques, etc. [1-6]. Attempts
to quantify uncertainty during the design process have been published, but most
focus on the quantitative aspects of uncertainty only [13-23]. These quantitative
methods provide only a partial insight into a very complex set of uncertainties.
As a result, these technical methods have to be complemented with qualitative
methods of assessing uncertainties, including expert judgments. While there
have been some attempts to accomplish this in various fields [7-12], methods to
incorporate and propagate both types of uncertainties in a design process are less

paid attention.

This research addresses this problem by combining both types and can be
extended to include places where only expert judgment is possible and decision
makers need to model degree of beliefs (instead of knowledge). Finally, even if
the assessment of uncertainty is satisfactory, managing the uncertainty across
multiple functions and across the entire design process is challenging and there
is need for more research in this area [24-26]. This section provides a brief
review of various uncertainty assessment methods, followed by a review of
mitigating methods attempting to reduce sources which lead to these

uncertainties.

Uncertainty assessment methods generally can be divided into four major

approaches based on their characteristics in analyzing data and representing the
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output parameters. These approaches include probabilistic methods, Bayesian
techniques, simulation methods and qualitative methods, which are generally
combined with quantitative methods. Here we introduce these approaches in
general and some of assessment methods which have been developed based on

these approaches.

Probabilistic methods: A probabilistic approach is based on characterizing the
probabilistic behavior of uncertainties in the model including a range of methods
to quantify uncertainties in the model output with respect to the random
variables of model inputs. These methods allow decision makers to study the
impact of uncertainties in design variables on the probabilistic characteristics of

the model. Probabilistic behavior may be represented in different ways.

One of the basic representations is the estimation of the mean value and standard
deviation. Although this representation is the most commonly used results of the
probability methods, it cannot provide us with a clear understanding of the
probabilistic characteristics of uncertainties associated with the model. Another
representation of probabilistic behavior is the probability density function (PDF)
and the cumulative distribution functions (CDF), which provide the data that is

necessary for analyzing the probabilistic characteristics of the model.

One of the useful methods is the probabilistic sensitivity analysis (PSA) [38-40].
This method determines the importance of input model variables in terms of
their influence on the value of assigned output variables. Sensitivity analysis
traditionally is used in the post-design stage to demonstrate the uncertainties
associated with variables, and determine which variables should be controlled to

improve the performance of the model. Sensitivity analysis also can be applied
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in the pre-design stage to determine the variables which can be eliminated
without having a significant influence on the uncertainties of the model

performance and hence improve the design efficiency.

Bayesian techniques: Although the classic statistical assessment approaches
clarify the type and level of risk by assessing associated uncertainties, they
cannot take past information into account. To address this problem, a Bayesian
approach offers a wide range of methodologies based on Bayesian probability
theory, assuming the posterior probability of an event is proportional to its prior

probability [2], [41], [42].

The Bayesian approach has a variety of applications by itself, or in combination
with other assessment methods, to quantify or qualify uncertainties in single or
multi-objective problems of large scale systems. One of the applications of this
approach used in this paper (see figure 7) is the third-level-Bayesian analysis for
estimating the reliability of launch vehicles [35]. The first level of this method
assumes nothing is known about the reliability before observing the launch
attempts whereas the second and third levels consider the past experience. These
three levels not only determine the probability density function of the future
frequency of the launch success, but also yield the estimation of the future

frequency of success where no launch attempts have been made yet.

The Bayesian logic can also be used to model degrees of beliefs (instead of
knowledge) when just subjective judgments are possible (see dynamic
uncertainty). The role of a Bayesian model for assessing degrees of beliefs is
more important in large-scale multidisciplinary systems. However, this model

can only be used when probability measures of values are known. ULP (the
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upper and lower probabilistic model) and TBM (the transferable belief model),

which are obtained by generalizing Bayesian theory, address this problem and

can be used when the probability measures of some of the values are unknown.

Another advantage of the Bayesian theory is its flexibility in being applied in the
decision making process of multi-disciplinary systems by combining qualitative
and quantitative aspects of uncertainties associated with systems. An example
can be found in ACCORD®), a collaborative decision making method to manage
the trade study process when decisions are a mix of quantitative and qualitative

information, based on the Bayesian decision theory [48-49].

One example of the ULP method is the Dempster-Shafer model which is applied
to assess degrees of belief, especially in multidisciplinary systems. The idea
behind the Dempster-Shafer theory is simply to combine separate pieces of

information to calculate the probability of an event [43-47].

In spite of a wide variety of applicability, applying the Bayesian approach has
not been without criticism. Critics point out two main limitations for this
approach: First, the Bayesian method ignores the chronological history of events
(i.e., when systems mature over time) and second, it does not take into account
the similarities of new and past events. More research in this area might be done
to address limitations of the Bayesian methods by applying some methods such
as decomposing data into certain intervals, devoting unequal weight to events,

etc.

Simulation methods: Simulation methods analyze the model by generating

random numbers and then observing changes in the output. In other words, a
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simulation approach is a statistical technique clarifying the uncertainties that
should be considered by decision makers to reach to the desirable result.
Simulation methods are generally applied when a problem cannot be solved
analytically or there is no assumption on probability distributions or correlations

of the input variables.

The most commonly used simulation-based methodology is the Monte Carlo
Simulation (MCS) [50-54]. MCS includes a large number of repetitions,
generally between hundreds and thousands. Each repetition simulates variables
by their probability density distributions and then generates the probability
distributions of the system parameters (output) by integrated probability
distributions of variables through the system model. Although the model
complexity is not a limiting factor in Monte Carlo simulation, this method can
be computationally expensive or infeasible with models with long run time or
when too many sources of uncertainty must be considered. To address the
limitations of MCS, advanced sampling methods such as Latin Hypercube
sampling have been developed to minimize the number of repetitions that is
needed to obtain the necessary distributional information for the model. Even
though these methods have advantages in efficiency in comparison to MCS,
MCS is still the most preferable method when there is no limitation in run time

or the model complexity.

Simulation methods can be used on their own or in combination with other
methods. One example of this combination is Bayesian Monte Carlo applied in

the robust design process [50].
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Qualitative methods: The above three approaches generally provide only

partial insight into a very complex set of uncertainties. As a result, these
technical methods have to be complemented with qualitative methods of
assessing uncertainties, including expert judgments. Methods which incorporate
and propagate both qualitative and quantitative uncertainties in a design process
are placed in the fourth category as qualitative approaches of uncertainty
assessment. These methodologies may include combinations of two or more

assessment methods.

One example is NUSAP [27] which can be used by itself or in combination with
other assessment methods. The term of “NUSAP” is the acronym for “Numeral,
Unit, Spread, Assessment and Pedigree”, where the first three categories are
quantitative measures and the two next categories are qualitative quantifiers
which might be applied in combination of other assessment methods such as

Monte Carlo, and sensitivity analysis.

The most significant shortcoming of NUSAP is its subjective judgment in the
scoring of pedigree criteria. Furthermore, since no means of calculating, scoring
and individually describing the qualitative components has been determined,
communication with stakeholders, who are not familiar with this method, may
be inefficient and time-consuming. In addition, as it has been mentioned above,
some methodologies, such as ACCORD®, which is based on the Bayesian

decision theory, combines both qualitative and quantitative uncertainties.
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2.2.4. Uncertainty mitigation methods

Although being familiar with sources of uncertainty and methodologies for
assessing them is the first step for dealing with uncertainties, still one challenge
remains: how can we handle and mitigate the effects of these uncertainties in the
systems? In addition, how can we diagnose these uncertainties before it’s too
late and they get out of control? To answer these questions, this research provides

methodologies for uncertainty diagnosis and mitigation:

Programming errors: Uncertainties due to programming errors can be
diagnosed by who committed it. Since programming errors may occur during
input preparation, module design/coding and compilation stages [60, 61], it can
be reduced by better communication, software quality assurance methods [62,

63], debugging computer codes and redundant executive protocols.

Statistical and mathematical errors: Applying higher precision hardware and
software can mitigate the effect of mathematical uncertainties associated with
the model due to numerical errors resulting from finite precision arithmetic. In
addition it reduces the effect of statistical uncertainties by providing a better
precision for the statistical model applied into the system. Statistical uncertainty
also can be mitigated by selecting the best data sample in terms of both size and

the similarity to the model.

Similar to the statistical uncertainty, approximation uncertainty is minimized
when the best model with acceptable range of errors and the best assumption for
variables, boundaries, etc., is selected. Simulation approaches might be applied
to generate the best model. Generalized Likelihood Uncertainty Estimation

(GLUE) [64-65] i1s an example of a methodology for mitigating the effect of
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model uncertainty by generating the best model by simulation. Providing a tool
for modeling uncertainty, this research mitigates model uncertainty in design

and development of large-scale complex systems.

Ambiguity uncertainty: Uncertainties associated with using incomplete or
unclear definitions, faulty expressions or poor communication are naturally
associated with human behavior; however they can be reduced by clear

definitions, linguistic conventions or fuzzy sets theory [66-68].

This research attempts to reduce this uncertainty due to lack of communication

or faulty expressions by providing an excel based communication tool.

Volitional Uncertainty: This type of uncertainty which results from
unpredictable decisions especially in multidisciplinary design is diagnosed by
other organizations or individuals and is mitigated by hiring better contractors,

consultants and labor [30-31].

Human errors: Although Human errors and individuals’ mistakes are
inevitable in the system, they might be diagnosed and mitigated by applying
human factors criteria such as inspection, self checking, external checking, etc.,
to diagnose this uncertainty and better personnel selection, education, etc., for

reducing the effect [69-70].

Dynamic Uncertainty: As has been discussed before, when only subjective
judgments are possible the effect of dynamic uncertainty can be mitigated by
applying Bayesian approach (such as Demster-Shafer theory) by assessing
degrees of beliefs (instead of knowledge) [41-49]. In addition this type of
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uncertainty can be reduced by applying design optimization methods to minimize the
effect of changes in variables or unanticipated events which contribute changes to

design parameters.

This research also addresses this uncertainty by enabling decision makers to
combine both qualitative and quantitative aspects of uncertainty in their
calculation and model degree of beliefs where just subjective judgment is

possible.

Decision Uncertainty: Such as dynamic uncertainty, design optimization is
useful for reducing the effect of uncertainty when a set of possible decisions are
available. Methods based on Bayesian decision theory (such as ACCORD® [48-
49]) also can be used to help decision makers to make more informed choices.
Sensitivity analysis [38-40] and robust design are also be helpful by determining
which variables should be controlled to improve the performance of the model
and then considering them as critical factors in the decision making process to

clarify which available choices are better in satisfying these criteria.

2.3. Design requirement management

It is important for design teams to have a clear understanding of assumptions,
constraints, requirements, performance, parameters, and traceability into trades
and decisions considered. Since the nature of design is iterative, in many phases
of design decision makers may have to step back and change their decisions.
Even in some cases it might be necessary to conduct a whole new team study to
investigate a mission with slightly different requirements [117] and these

iterations increase cost design. However, it is always possible that optimal
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solutions don’t meet design requirements. So providing design requirement
management techniques that help decision makers with these issues minimize

costs of design and increase its speed.

2.3.1 Diversity of optimal solutions/Requirements
Management

In recent decades, some attempts have been made to increase the diversity of
optimal solutions so that they meet design requirements. The first attempts for
increasing the diversity of solutions, have been made in 1975 by Holland [141]
and 1989 by Goldberg [142] by applying genetic algorithms applications. M. L.
Maher and S. Kundu, (1994) [96] conducted research on adaptive design using
graph-based genetic algorithm; K. Abhari et al (1999) [97] applied genetic
algorithms and artificial intelligence for designing of flexible manufacturing;
Gunawan et al (2003) [143] developed methods for increasing the diversity of
Pareto-Optimal Solution sets via the maximization of the entropy quality index.
(Also see Pareto sets in decision-based design by Balling, 2000 [113]). They
also extended their work (2004) to maximize solution diversities in a multi-

objective multidisciplinary genetic algorithm for the design optimization [98].

Figure 7 shows adaptive design by genetic algorithms applications developed by
M. L. Maher and S. Kundu in 1994. As this figure shows, in this methodology,
the size of the population is increased until optimal genetic design solutions

meet the design requirements and the most preferred design product is obtained.

On the other hand, design requirement management by M. W. Fu and W. F. Lu
(2003) [105] brought models of modeling and management of design
requirements in product development life cycle. Geoff Dromey (2005) [99]
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developed a perspective of genetic design for amplifying the ability to deal with
the requirement complexity. V. Agouridas (2006) [103] reviewed -early
assignment of design requirements with stakeholder needs and David Baxter
(2007) brought a framework to integrate design knowledge reuse and
requirements managements in engineering design [104]. Figure 8 shows

Baxter’s framework for requirement management in engineering design.
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2.3.2. Resource Allocation

Functional models that are graphical representation of components functionality
[160] have a variety of applications that represent the product or component
functionality with respect to special needs. One application of functional
models, used by the Function-Failure Design Method (FFDM) [150, 158, 159],
is to map historical and potential failure modes to functions during component
development to improve failure analysis in design. FFDM is based on the logic
that failures modes can be correlated back to functions that a particular

component addresses. FFDM has five steps:
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I- Develop the functional model for the system. This step documents

functional data.

2- Generate the function-component matrix. This matrix is called EC matrix
whose columns (m) represents components and rows (n) represent
components function. It correlates physical components of the system
with the associated functional model. “1” for a given component

corresponds to the function it performs. Other cells are filled with “0”.

3- Extract information from historical data or expert elicitation about
potential failure modes and their sources. This step documents the failure

data.

4- Generate component-failure mode matrix. This matrix is called CF
matrix whose columns (p) are failure modes and rows (n) represents
components. “1” for a given component represents the associated failure

mode. Other cells are filled with “0”.

5- Obtain function-failure matrix (EF) by multiplying the function-
component matrix (EC) and component-failure mode matrix (CF). This
matrix shows the number of occurrences of a specific failure mode for a

specific function.

The importance and applicability of FFDM for risk-based design can be
reviewed from two aspects: First: generated matrices can be documented to
obtain a large knowledge base of failure modes that can be reused by designers

if it’s populated. Second: it can track unknown unknowns in the very early
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stages of design where information is not available by comparing the

functionality of similar systems with the same components.

In this context, the functional failure data can be applied by Risk and
Uncertainty Based Integrated Concurrent Design (RUBIC) [151] to provide a
real-time and evolving resource allocation vector that can be used to prevent

failures, mitigate risk and account for uncertainty throughout the design process.

Resource allocation vectors are the percentages of resources to be spent on each
functional risk elements. Based on this vector, designers can sort their priorities
and allocate optimal amount of resources to reduce risk of each functional

element. These are facts and assumption underlying the RUBIC methodology:

1- Each functional element in a complex system creates a risk premium.
RUBIC allocates resources to either reduce the risk premium or balance

risks against other elements.

2- Risk can be traded homogeneously between subsystems and elements. In
this context, risk of an element is not independent of other elements in its

subsystem and risk of failure can be reduced by allocating resources.

3- Risk can be traded for risk reduction resource. Risks of a certain function
can be reduced by consuming risk reduction resources in the early stages

of design, however, the actual amount of risk reduction is not known

beforehand.
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Applying these assumptions, RUBIC design methodology formulates the model

to the following two-objective optimization problem:

Minimize Fl=W'OW
Maximize: F2= W'

Subject to W

Where w=[w1,...,wn]" is the risk reduction resource allocation vector which is
defined as the percentages of resources to be spent on each functional risk
element. p is the vector of expected risk reduction for b; ’s (b; is a random
process) and [ is the covariance matrix where diagonal elements are the
variance of b;s and off-diagonal elements represent the covariance of risk

elements.

p and [ can be estimated by using FFDM in the early stages. p is proportional
to the failure rate and (] can be estimated by estimating p and also from
incidents where a malfunction in one functional element led to failure in another

element.

The first objective function F1 represents the expected total benefit and the
second function F2 shows the variance of total benefit. Hence, our optimization
problem is to maximize the expected total benefit of risk reduction and to
minimize the variance of total benefit subject to risk reduction resource

. T
allocation vector w=[wy,...,wp] .
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RUBIC design provides a quantitative framework for considering risk and
uncertainty during the conceptual design. It assumes hierarchical decomposition
of a system, based on functional modeling of systems, whose functional models
evolves as the design process moves forward. In addition, RUBIC considers
both historical data and expert opinion and accounts for both individual risks as
a result of failures due to each functional element and the correlation between
multiple elements. Finally, it provides an evolving resource allocating

methodology can be used to prevent failures and mitigate risks.

In this research, RUBIC design methodology is applied to allocate resources by

functional-model decomposition of systems (chapter 4).
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3. The Capture, Assessment and Communication
Tool for Uncertainty Simulation

The task of decision makers during the design process and development cycle of
complex systems is to make optimal decisions in risky environments. Their
decisions should satisfy limitations due to constraints associated with systems.
One of these limitations is risks that might lead to failure or suboptimal
performance of systems. However, uncertainties associated with decisions have

significant effects on critical factors and assumptions underlying each decision.

Having no plan for managing uncertainties increases costs of design and
decision making by changing resources (market, time, etc). Planning for
uncertainty not only prevents these costs but also might provide new
opportunities by reformulating initial models and changing associated issues and
their importance. As a result, uncertainty management changes resource

allocation criteria.

Thos research offers a means for dealing with risk and uncertainty in complex
multidisciplinary systems by introducing the “Capture, Assessment and
Communication tool for Uncertainty Simulation” (CACTUS). CACTUS
satisfies critical challenges that design teams might encounter by identifying
sources of uncertainties, assessing and mitigating associated risks, modeling
propagation of uncertainties and communicating uncertainty. These techniques
are added to systems from the very early stages of design and while the project
goes forward, help identify sources of uncertainties and their boundary which

may lead to failure, help identify and mitigate associated risks, and models their
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propagation to be analyzed by decision makers. It provides answers to these

questions:

1- Where is uncertainty from?
2- What is its severity and importance?
3- What are possible methods to assess mitigate and dealt with uncertainties?

4- How do uncertainties propagate and which model describes them the best?

In the following chapter, CACTUS provides a methodology to answer these

questions.

3.1. Introduction

In a real engineering design team, especially in the early stages of conceptual
design, decision makers encounter lots of uncertainties in each decision they
make. In the early stages of conceptual design, uncertainty is high since many
decisions have not yet been made and design alternatives to achieve the best
design product have not yet been clearly and actively considered. If the whole
design process is considered as a decision tree, each decision point with more
than one alternative represents a decision node. To deal with the uncertainty in
the design and development of a complex system, team members should be
aware of consequences of their decisions in each decision node. To achieve this
goal, they should be able to deal with uncertainties associated with each

decision, while being aware of decisions made by others.

To address these needs, “Capture, Assessment and Communication Tool for

Uncertainty Simulation” (CACTUS) offers a means for dealing with uncertainty
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in a complex system design process to satisfy critical challenges of design

teams:

e CACTUS by identifying sources of uncertainties, classifies sources of
uncertainties associated with systems in different stages of design of
complex systems. Different sources of uncertainties are not the same
with respect to their importance and types of treatments should be
considered. In addition, selecting a poor or imperfect definition and
classification for uncertainty might guide decision makers to account for
uncertainty more or less than necessary in the design process. CACTUS
provides a methodology for identifying and classifying sources of
uncertainties associated with systems from early stages of design to the

end.

Figure 5 and Table 1 in chapter 2 have shown uncertainty classification
used by CACTUS. This classification not only identifies sources of
uncertainties, but also helps decision makers to choose the type of

uncertainty treatment (mitigation, model, etc) that should be considered.

One example of this classification will be shown in chapter 5 by
applying it into the robotic lunar lander mission design case study to

identify sources of uncertainties for alternatives in the decision sheet.

e CACTUS, by providing both qualitative and quantitative
uncertainty assessment method, not only pays attention to quantifying
uncertainty, but also addresses qualitative uncertainties associated with

systems. It achieves this goal by introducing the qualifier and the
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importance number in the decision sheets. The importance score devotes
unequal weighting from 1 (lowest) to 5 (highest) to uncertainties
associated with decision nodes based on expert judgment. This number,
after being normalized, can be used for weighting issues in places expert
judgment is necessary. The qualifier is simply an expression of the

qualitative judgments.

Since it divides the project into system level and associated subsystems
that exchange data with each other in a collaborative excel-based
environment, each team member either at the system level or subsystem,

will have his/her own importance number and qualifier.

The importance number and the qualifier in combination with
quantitative assessment representations of distribution of variables (such
as mean and deviation) introduce CACTUS as an uncertainty assessment
method with the power of combining both qualitative and quantitative
methods. It also can be extended to model degree of beliefs (instead of
knowledge) where just subjective expert judgment is possible (see
descriptions of Bayesian techniques and Dempster-Shafer theory in
section 2.2.3). One example of decision sheets will be provided by
CACTUS for the robotic lunar lander mission design case study in

Chapter 5.

In addition, this step provides design teams with risk boundaries that
may lead to failure. These boundaries are considered as risk constraints.

Techniques applied to obtain risk boundaries include simulation



48
methods, PBA and Dempster-Shafer theory when only expert judgment

is available.

e CACTUS, by providing mitigating techniques with respect to
associated sources of uncertainties, offers solutions to manage all
sources of uncertainty, whether controllable or wuncontrollable,
qualitative or quantitative. The excel-based environment, and hence the
communication tool, reduces ambiguity uncertainty due to a lack of
communication among team members, misunderstandings about
customers requirements and the precise definition of design tasks and
requirements. CACTUS provides techniques of reducing/eliminating
uncertainties with respect to their sources. (See section 2.2.4 for more

details of uncertainty mitigation techniques).

e CACTUS, by modeling uncertainty propagation, provides an
uncertainty-based model for the project by identifying control factors,
noise factors and linking variables. This model is applied for formulating
the project to an optimization problem to obtain the most preferred
design product. A simple example of this model will be shown in chapter

5 for the lunar robotic lander mission design case study.

In summary, CACTUS provides risk and uncertainty management techniques
aimed to identify, assess and mitigate sources of uncertainties associated with
systems and as a consequence, manage risks of suboptimal performance or
system failures. In addition CACTUS provides uncertainty modeling methods

for large-scale multidisciplinary systems. Modeling uncertainty propagation
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determines design variables and parameters and formulates the project as an

optimization problem to reach the desirable design product.

The next section, describes the CACTUS methodology process.

3.2. Methodology

These are three major steps in the CACTUS methodology to obtain desirable

outputs shown in this model:

Step 1: The first step is to identify sources of uncertainties. CACTUS provides
a classification for sources of uncertainties associated with design of complex

systems (Figure 5 in section 2.2.2.).

Different sources of uncertainties are not the same in terms of importance and
treatments that should be considered. For example, some sources of
uncertainties (decision uncertainties) might be desirable to increase by decision
makers by generating more alternatives or in cases where optimal solutions do
not meet design requirement. On the other hand, other sources of uncertainties

might be very harmful and cause failure or suboptimal performance of systems.

In addition, modeling techniques used by CACTUS depend on the sources of
uncertainties. For example, techniques used for modeling behavioral
uncertainties would be completely different from those used for modeling model
uncertainties. As a result, the first step in CACTUS methodology would be
identifying sources of uncertainties and classifying them regarding of their

nature and their effects to the system.
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Step 2: The second step in CACTUS is to apply uncertainty assessment

methods. CACTUS provides design teams with techniques of assessing
uncertainties and their boundaries, severity, importance and consequence to the
system. These criteria are used by Design Requirement and Resource Allocation
Management (DRRAM) to weight uncertainties and allocate resources based on

their severity and importance for the system.

In addition, CACTUS provides techniques of determining risk boundaries which

may lead to failure or suboptimal performance.

Step 3: The third step in CACTUS is to provide uncertainty mitigating
techniques. Weighting uncertainties by DRRAM determines techniques that
should be applied to manage associated uncertainties. These techniques have

tremendous effects in managing risks and reducing costs of design.

Decision sheets which provide tools for making the best decision among sets of
alternatives are generated in this step (See the previous section for properties of
decision sheets). In Chapter 5, a decision sheet will be generated for the lunar

lander mission design case study.

Step 4: The fourth step is to model uncertainty. Applying uncertainty
management techniques in the first three steps of CACTUS methodology
provides the necessary information for design teams regarding the uncertainties,
risks and their constraints that lead to failure. In this step, the uncertainty-based
model for the project is obtained. This model not only gives a general
understanding of the project with respect to variances from the predicted model,

but also clarifies noise, control factors and linking variables.
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In Chapter 5, this methodology will be clarified further by applying it into the

case study.

3.3. Conclusions and Future Work
This chapter introduced the CACTUS methodology to help design teams to

make more informed decisions in risky environment that are full of uncertainties
during the design and development of complex system. CACTUS, as an excel-
based environment, enables decision makers to identify, assess, mitigate, model
and communicate uncertainty from early stages to the end. It creates decision
sheets for alternatives in each decision node and help decision makers to select

the optimal design product.

Although decision sheets provides a means for combining qualitative and
quantitative uncertainties, future work is needed to develop this methodology so
that it can assess, mitigate and model all sources of uncertainty, especially the
qualitative aspects. Developing a decision tree to demonstrate criteria for
selecting the best assessment methodology to capture uncertainties associated
with issues is another work can be done to increase the speed of this process.
This decision tree can be extended to include criteria for decision makers
wherever expert judgment is needed and the scores that should be devoted to

qualify issues.

In addition, future research for CACTUS should focus on developing techniques
to obtain upper and lower margins of uncertainties. Since these margins define
risk constraints, critical factors underlying risk constraints include marginal

distributions of the input variables in addition to their dependency. Future
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research is to extend this methodology to bounding approach to risk analysis so

that it can address mentioned issues.

The bounding approach to risk analysis is the extension of traditional
probabilistic analyses to determine four criteria in the risk model: precise
parameter values for input distributions (i.e. minimum, maximum); marginal
probability distributions for variables, the precise nature of dependencies of
variables and the structure of the risk model. Probability Bounds Analysis
(PBA) based on probability boxes (P-Box) (a class of distribution functions of
epistemic uncertainties of a random variable defined by the upper and lower
bound) and simulation-based methods for determining margins relied on Monte
Carlo analysis are two approaches that would determine marginal distributions
via probabilistic methods. In addition, Dempster-Shafer theory (or evidence
theory) as a variant of probability theory in which elements of the sample space
are sets (instead of single points) is applied to determine maximum and

minimum margins of conceptual design where information is not available.
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4. Design Requirement Management (DRRAM)

During the design and development of complex systems, design teams should be
aware of properties of systems and subsystems and associated tasks,
requirements, criteria, etc. These issues not only define design constraints that
should be satisfied to meet requirements, but also enable decision makers to
predict system and subsystem properties so they can devote more effort (cost,
schedule, additional safeguards) to subsystems with more importance with

respect to certain issues.

In this chapter, this research introduces Design Requirement and Resource

Allocation Management (DRRAM).

4.1. Introduction

This research provides techniques for Design Requirement and Resource
Allocation Management (DRRAM) by analyzing and defining the project,
associated tasks, issues requirements and resources, dividing the system into
subsystems, parallel decisions, decision nodes, alternatives and generating the

model:

e The Design Requirements and Resource Allocation Management
(DRRAM) framework defines the project and provides all necessary

information for decision makers by generating information sheets.
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Information sheets provide the necessary information especially from
early stages of design, providing a useful tool for design teams to be able

to evaluate criteria and manage the project and design requirements.

DRRAM’s information sheets not only provide necessary information
for making decisions, but also help design teams (including designers,
stakeholders and customers) to communicate their needs during the
design process and change their decisions more effectively as the design
goes ahead and new criteria are obtained by providing an updatable

excel-based collaborative environment.

In chapter 5, an example of information sheet will be shown for the lunar

lander mission design case study.

DRRAM also provides the project model to help decision makers to have
a clearer understanding of the design platform in the early stages of
design. This model used by decision makers to define the initial design

platform and design alternatives.

The Design Requirements and Resource Allocation Management
(DRRAM) provides an evolving resource allocating methodology by
hierarchical decomposition, based on functional modeling of systems,

whose functional models evolve as the design process moves forward.

As a result, it provides a methodology to allocate available resources

(cost, schedule, safeguard, etc.) to functions with more importance with
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respect to certain issues and it can also be extended to prevent failures

and mitigate risk.

e Design Requirements and Resource Allocation Managements (DRRAM)
generates flow diagrams for each parallel decision, which helps design
teams to have a better understanding of the active and passive

alternatives in each decision node of the associated parallel decision.

In chapter 5, a flow diagram will be shown for selecting the launch
vehicle during the decision making process of the lunar lander mission

design case study.

4.2. Methodology

Design Requirements and Resource Allocation Management (DRRAM) help the

design team by these major steps:

Step 1: The first step in DRRAM 1is to obtain the initial design project
functional model to help decision makers to have an understanding and
definition of the initial design platform from very early stages of design. This

model also helps them to determine initial design alternatives.

This model is investigated by design teams (including designers, decision
makers, stakeholders, customers, etc.) to determine the requirements of the
project. Knowing these issues, decision makers can model the project at the

early stages of design and predict systems’ and subsystems’ properties.
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Step 2: The second step in DRRAM is to generate the information sheet. For

obtaining information sheets, the model created in step 1 is divided into
subsystems and parallel decisions and associated issues, constraints, and the

design requirements are determined by the design team.

Due to lack of information in early stages of design, generated information
sheets are not complete and accurate at the beginning of a project, but they are

matured as the project moves forward.

Step 3: Decision makers should also determine decision nodes, where decisions

are made and identify active items which are being actively investigated.

The third step in DRRAM helps them in developing decision sheets (For more
information about decision sheets see chapter 4, the CACTUS methodology) for

decision nodes.

In addition, flow diagrams are generated in this step that help the design team to
have a better understanding of alternatives that are being investigated

actively/passively in the decision nodes.

Step 4: The fourth step in DRRAM is to allocate resources. DRRAM uses the
Risk and Uncertainty Based Integrated Concurrent Design (RUBIC) design
methodology  (See chapter 2 for details) which provides a hierarchical
decomposition, based on functional modeling of systems obtained in step 1,

whose functional models evolve as the design process moves forward.
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This step allocates resources to the model by mapping it into this optimization

problem:

Minimize Fl=W'OW
Maximize: F2= W'

Subject to W =[w1,...,wn]"

T . . . . .
Where w=[w,...,w,] is the risk reduction resource allocation vector where w; is

the percentages of resources to be spent on the i™ functional risk element.

In this optimization problem, p is the vector of expected risk reduction for b; ’s
(bi is a random process) and [] is the covariance matrix where diagonal
elements are variance of b;s and off-diagonal elements represents the covariance

of risk elements.

The first objective function F1 represents the expected total benefit and the

second function F2 shows the variance of total benefit.

The optimization problem provided in these steps is to maximize the expected
total benefit of risk reduction and to minimize the variance of total benefit
subject to risk reduction resource allocation vector w=[wi...,w.]' as the

percentages of resources should be spent for functional risk elements.

Figure 9 shows the four major steps of the methodology introduced by DRRAM.
As this figure shows, decision sheets (developed by CACTUS) are developed
after determining decision nodes by DRRAM. In addition, the investigated
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model and alternatives are used to determine possible design change to resolve

defect modes.

Designers
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platform
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|sk reduction
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vector

Figure 9: Design Requirement and Resource Allocation
Management (DRRAM)

In chapter 5, this methodology is clarified by applying it into the lunar lander

mission design case study.
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4.3. Conclusions and Future Work

This chapter provided Design Requirement and Resource Allocation
Management (DRRAM) as a management tool for design of complex systems.
The benefits and process of this methodology was described and a figure

showed its major steps schematically.

This method can be divided into design requirement management and resource
allocation technique. The framework of design requirement management was
provided by updatable excel-based information sheets that enable design teams
to communicate and define design requirements and constraints in different
stages of design concurrently. In addition, dividing the project into parallel
decisions, decision nodes and alternatives helps them to manage the project

more informed.

Future research to provide this method with techniques of design requirement
management (See chapter 2) should be done so that it can address needs of
design teams including designers, stakeholders and customers for trading off

their requirements and design constraints.

On the other hand, as the other approach of DRRAM methodology, future work
for the applied allocating resources technique should be done to extend the
knowledge base that can support the applied RUBIC design tool. Future research
is currently being carried by author of this research to improve the RUBIC

design tool and address its limitations.
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5. The Case study: Lunar lander mission design

In this section, this research presents a case study of the conceptual mission

design team at JPL’s Project Design Center, borrowed from [33].

Figure 10 shows a portion of the decisions that occurred during the design of a
robotic lunar mission, based on the observations of the team over the course of a
week as they worked on a robotic lunar lander mission design, initiated by an

internal NASA customer [33].

The product of this Team X design is a conceptual design that includes the
mission architecture, equipment lists, launch vehicle and estimates for cost and
schedule. This team was formed in order to shorten the time required to develop

a space mission proposal.

The ovals drawn with solid lines show these items were actively investigated
and the ovals in dotted lines are items that were considered but not actively

investigated.

As mentioned, for this case study, the methodology presented in this prepare
provides an excel-based environment for clients to communicate throughout the
design life cycle. Using this environment clients synchronize data (send/receive

data to/from the server) and communicate with each other during the lifecycle.
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Figure 11 shows the general structure of this excel-based environment provided

by the proposed methodology. This environment might not be complete in the
early stages of design. Here, we have generated a general scheme of this
environment for stages of design where all necessary information (subsystems,

parallel decisions, active items, etc.) has been captured by design team.

+ TASKS
1+ REQUIEREMNTS
= MODEL
+ FLOW DIAGRAM
+ INFORMATION SHEET *
= PARALLEL DECISIONS
= X1
+ TASKS
= ISSUES
+ CoST
+ RELIABILITY
+ MATURITY
+ LIFT CAPABILITY
=~ DECISION NODES
= XlI1
= DECISION ITEMS
+ X111
+ X112
= DECISION SHEET **
+ X12
+ X13
+ X14
+ FLOW DIAGRAM #***
+ X2
+ X3
+ X4
+ X5

Figure 11: ORBID Excel-based environment for the robotic
lunar mission design project.
* Figure 13: Information sheet for the design process
** Figure 14: Decision sheet for the 2™ phase of X1
*** Figure 12: Flow diagram of the X1
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The excel based environment provided in Figure 11 for this case study has been
generated using the terminology (see section 1.3.) introduced by design
requirement and resource allocation management (DRRAM) to divide the

project into parallel decisions, decision nodes and alternatives:

The first step to develop such this structure is to identify parallel decisions
should be made for the project. Estimating the necessary decisions in the very
early stages of design helps decision makers to develop the project model and
clarify decision nodes and alternatives in next steps as the project moves

forward.

As Figure 10 showed, five selected alternatives including “Falcon 9”, ‘Bi-prop
motor”, “Conventional”, “Static arrays”, and “Assume 1MB”, shown by solid
lines, represent five associated parallel decisions that should be made by
decision makers including: LAUNCH VEHICLE SELECTION, DEFINE
DESCENT MOTOR, DEFINE BRAKING MOTOR, POWER and CDS. So,
according to the terminology introduced by DRRAM, the set of parallel

decisions would be:

{Xl, Xz, X3, X4, and XS}

Where X is the process of decision making for Launch vehicle selection, X,
presents Define Descent Motor, X3 includes Define Braking Motor, X4 is the

decision should be made for Power and finally X is decisions for CDS.

Each of subsets in the above vector includes sets of associated decision nodes

and each decision node contains a set of alternatives. An example of developing
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this division has been demonstrated in Figure 11 for X; for selecting launch
vehicle. Figure 11 identifies four decision nodes for X1 and defines X1= {X;,

X2, Xi3, Xi4}.

Here, it is helpful to mention that, in the early stages of design decision makers
have no idea about the quality and numbers of possible decision making nodes
they would have during the design process. The above set has been provided for
the final stage of design; however this set is different at the beginning of the
project and will be updated in the excel based collaborative environment when
new information is obtained. Archiving the set of decision nodes not only
archives the process of decision making that was done for the design to obtain
the final product, but also it provides a knowledge-base that can be used by

designers later.

Since decision nodes are places that a decision should be made among
alternatives, each of the decision nodes in the above set is associated with
alternatives. Figure 11 has been categorized alternatives of the first decision
node, X;;, of X;, Launch vehicle selection. This set is obtained by looking into

the Figure 10:

Xi= {Xi11, X112},

where X;;; and X;j, are Taurus and Minoutaur V, alternatives are actively

considered in the first decision node of the selecting launch vehicle process.

In Chapter 4, this research has introduced the flow diagram as one approach of

Design Requirement and Resource Allocation Management (DRRAM) that
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helps decision makers to have a better understanding of alternatives are being
passively and actively investigated. Figure 12 shows the flow diagram of the

parallel decision for selecting the launch vehicle.

Minoutar m
Phase 1 K/

Minotaur,
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Phase 3 K/

Delta 1
Mingutar. -~ Tawrus = ‘Mingtaur /éan Delta ll

Phase 4 \Y

v

v

v

v

Figure 12: An example of decision flow diagram

This flow diagram starts from the first decision phase which is the decision node
between Taurus and Minoutaur V and ends at the last phase in choosing the final
decision. Each dotted circle shows the alternative which is not investigated
actively and circles with solid lines show active items that take part in decisions.
Arrows from left to right show alternatives which are added in each phase. So,
the decision node in each phase is among active alternatives (circles with solid
lines) in the previous phase and items that the arrows show (items which are

added from the previous phase).

The selected alternatives in each decision node will be represented by circles

with solid lines (Falcon 9 for this example in the last phase) that represent
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decisions made by decision makers at the end of the decision making process.
As the excel-based structure in Figure 11 and the set of decision nodes, the flow
diagram shown in the Figure 12 is not complete in the very early stages of

design and be updated in the excel-based environment when the project goes

ahead.

In the flow diagram shown in Figure 12, the first decision node for the launch
vehicle selection parallel decision is a decision node between two launch
vehicles: Minoutaur V and Taurus; where solid lines show Taurus was actively
investigated and dotted lines show Minoutaur V was not actively investigated. In
the next phase, we have the second decision node for this parallel decision
where Minotaur is considered as an active item and Taurus is not investigated
actively. As the design process develops, in phase 3 and 4, we have two more

decision nodes.

As the flow diagram shows, Falcon 9 is added in the 3™ phase as an active item
and Delta II is added to step 4. So, our final decision node is a selection between
two launch vehicles Delta II and Falcon 9, which ends in the selection of Falcon

9.

As mentioned in Chapter 5, The Design Requirements and Resource Allocation
Management (DRRAM) framework defines the project and provides all the
necessary information for decision makers by generating information sheets.
Information sheets provided by DRRAM enables decision makers to be aware of
tasks and issues associated with the project and give all necessary information
they need to manage design requirements and allocate resources. They

determine the name/symbol and tasks and issues associated with parallel
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decision and decision nodes and describe each decision node in terms of its
alternatives in addition to functional requirements and associated resource

allocation vector.

Figure 13: The information sheet provided by DRRAM for the case study

Figure 13 shows the a simple version of an information sheet provided by
DRRAM for the lunar lander mission design to show the general structure of
body of information sheets excluding functional requirements and associated
resource allocation vector. RUBIC design methodology, introduced in Chapter 5

can be applied at this point to obtain the correct resource allocation vectors.
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One example of applying the FFDM methodology (introduced in chapter 5) for

obtaining the functional requirement model of the project and one case study of
applying RUBIC design methodology for the Satellite Reaction Wheel
(borrowed from [151] has been attached in Appendix A and B).

As figure 13 shows, the information sheet provides the necessary information
for the design team including task and issues associated with each decision.
Tasks determine issues associated with parallel decisions and issues determine

criteria that should be considered for the decision making process.

Determining tasks and issues enables CACTUS to develop the decision sheets
for associated decision nodes. Decision sheets are developed from the earliest
decision node to the end where the final decisions are made. Figure 14 illustrates
one example of decision sheet made for one decision node of selecting launch

vehicle provided by CACTUS for the robotic lunar lander mission design case

study.
A B [ 6] D E F G H | J KILIMIN
PARALLEL DECISION | NODE| ACTIVE [TEMS | ISSUES DISTRIBLTION METHODOLOGY | SOURCESOF | SSUE IMPORTANCE
NAME | SYMBOL NAME |SYMBOL MINOUTAR | TAURUS UNCERTAINTY | 1 |2 ﬂal
ol Minotaur| X112 |Reliability| (0.670.1331) |0.620.1228)] Third-level Bayesian | Model uncertainty

K21 | Cost
Maturty
Capabllty
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Oy |y | e e | —
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Figure 14: A simple example of decision sheet provided by CACTUS.

As Figure 14 shows, the decision sheet has columns showing the distribution of

issues. In addition, the importance numbers are devoted to show the importance
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of issues. They provide unequal weighting from 1 (lowest) to 5 (highest) to

uncertainties associated with decision nodes based on expert judgment. This
number, after being normalized, can be used for weighting issues in places only
expert judgment is possible to model degree of beliefs. In addition, the qualifiers
which are the expression of these qualitative judgments could be added to this

information sheet to show the qualitative assessment of uncertainties.

It’s beneficial to mention that since the CACTUS methodology divides the
project into system level and associated subsystems that exchange data with
each others in a collaborative excel-based environment, design team members
either at the system level or subsystem level might use their own importance

number and qualifier.

Figure 14 has provided a decision sheet for the second phase of the first parallel
decision for the selecting launch vehicle process. As the sheet shows, for the
second phase, our decision node is the selection among two launch vehicles:
Taurus and Minotaur. Also, from the information sheet for the project model
(Figure 13), our issues include: Reliability, Cost, Capability and Maturity. By
giving the expert judgment score to these issues decision makers are able to rank

them from the highest important issue to the lowest one.

In this figure the issue considered by this paper is the reliability issue. The
reliability issue’s distributions for two available active alternatives has been
calculated by using the third-level Bayesian analysis method [35] (See Appendix
C). Determining the weight (importance) and distribution of all issues (also see

[36, 37]) helps decision makers to rank alternatives
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Figure 15 shows a simple model for uncertainty propagation provided by

CACTUS where:

C; = Control factors of subsystem 1

Cs = Sharing system control factors

Ns = Sharing system noise factors

N; =Noise factors of subsystem 1

L; = Linking variables (from subsystem i to j)

Z; =Z7Z;(Cs, Ci, N, Nj, Lj)) = output of subsystem 1

¢ N Z,  Independent response
ZIEC — p.
=3 Launch
vehicle

Upper Level

|
IR

s I
&
S | A
Lﬂ s Define SW Final Product

. . architecture | .

— > architecture
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Figure 15: A simple uncertainty propagation model for Lunar Lander Mission
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Multidisciplinary systems are defined by subsystems interacting with each
others. In this model, control factors refer to design variables which designers
have control over while noise factors refer to variations of systems during the

design lifecycle which designers have no control or limited control over.
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Linking variables shows this dependency of subsystems. Figure 15 shows the
propagation of uncertainty in the form of noise and control factors and also
linking variables for the three subsystems of the case study including selecting
the launch vehicle, bus architecture and defining the software architecture. As
this Figure shows, decisions made for each subsystem effects decisions made by

other subsystems.
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6. Future Vision: Optimal Risk-Based Integrated
Design

As mentioned before (See Section 2.1.), The ultimate goal of large-scale design
organizations are mainly to reduce costs and improving reliability and
performance of system while assessing how much risk (cost, schedule, scope)
they can take and still remain competitive. To achieve this goal they need to
trade off performance, time, cost and risks (as the most difficult part to be
addressed). In addition they should be provided with a variety of techniques to
computerize, systematize, communicate, etc to support the design of a complex

system.

In this chapter, this research introduces Optimal Risk Based Integrated Design
(ORBID) [76] as a cumulative tool for dealing with these issues in complex
systems. ORBID satisfies critical challenges that design teams might face and
help them to obtain the highest performance of multidisciplinary systems within
risk constraints while satisfying all limitations and requirements of design and
development of large-scale complex systems. It addresses mentioned issues by
identifying sources of uncertainty and available methods for assessing and
mitigating them, developing methods for modeling, optimizing and decision
making, providing a communication tool for the concurrent design team through
the design life cycle and finally producing the desirable design performance at

the final stage of design and development of multidisciplinary complex systems.

The proposed methodologies of the Capture, Assessment and Communication
Tool for Uncertainty Simulation (CACTUS) (see Chapter 3) and Design
Requirement and Resource Allocation Methodology (DRRAM) (see Chapter 4),
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in this research are applied in the ORBID methodology as tools and techniques

for managing risks and requirements of complex systems. In addition, ORBID
introduces Flexible Risk-based Optimal Decision making (FROD) to help

decision makers to generate and select the most preferred design product.

This chapter focuses on the ORBID methodology as the future work of this

research.

6.1. Motivation

Following paragraphs mentioned the importance of providing tools and
techniques to trade off risks, requirements (cost, time resources) and
performance of complex systems. During the design lifecycle, the design team
must minimize risks while increasing performance considering costs constraints
by allocating resources to the most critical areas. In this research CACTUS and
DRRAM have been proposed as tools for dealing with these issues by managing
risks and requirements; however these critical areas are associated with critical
decisions for risky scenarios tending to cause failure if combined and can be

prevented by decisions made by designers in risky environments.

Decision making process as a perspective of engineering design is generating
and selecting of design alternatives. So, the outcome of the decision making
process can be defined by two steps: 1- Generating all possible design
alternatives and 2- Selecting the most preferred design alternative(s) among
available alternatives. Based on this definition, many alternative selection
methods have been developed and widely applied, such as Taguchi’s robust

decision [86-95], Clausing ’s Quality function deployment [124] and Suh ’s
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design Axiom Matrix [125]. The role of decision makers is to make decisions in
the ambiguous, uncertain and risky phases of design [75]. These uncertainties
are presented in all phases of design, such as model uncertainty (uncertainties
associated with using a process model or a mathematical model for the system),
dynamic uncertainty (when changes in the organization or individuals’ variables
or unanticipated events, such as economic or social changes, to a change in
design parameters) [106], etc. As a consequence, in multidisciplinary complex
systems decision makers should be aware of all independent and interdependent
variables associated with each discipline. However, in the early stages of design,
information about different aspects of design is not always available. For this
reason, the design of such complex systems is iterative by the nature and
designers might have to change decisions made in different phases of design
many times. Therefore, flexibility is another important issue (in addition to risk,
uncertainty and ambiguity mentioned above) that should be considered in the

decision making process.

Optimal Risk-Based Integrated Design (ORBID), shown in Figure 16, as a
cumulative tool to obtain the most preferred product within risks and design
constraints by introducing Design Requirement and Resource Allocation
Management (DRRAM) and the Capture, Assessment and Communication Tool
for Uncertainty Simulation (CACTUS) in a collaborative excel-based design
environment, also addresses the issue of decision making to help designers
wherever a decision has to be made among many alternative choices and
accounts for uncertainties due to having multiple choices in decision nodes of
the design process by introducing “Flexible Optimal Risk-based Decision-
making” (FROD) as a technique for making decisions within the optimization

domain and risk constraints while all design requirements are satisfied. FROD
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also addresses the challenge of increasing costs of design due to unavoidable
decision making iterations under risk and uncertainty by providing updatable
uncertainty-based decision sheets. It generates and optimizes flexible
alternatives with respect to minimization of costs and then ranks options based

on evaluated costs and associated uncertainties.

Optimization techniques
l Cost Benefit analysis

Dedsion making
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Flexible Risk-based Optimal
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Figure 16: A general scheme of Optimal Risk-Based Integrated Design

Figure 16 shows the general scheme of Optimal Risk-Based Integrated Design
(ORBID). It illustrates tools and techniques that are applied in this methodology

to obtain the desirable design.
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In the next sections, this research introduces ORBID with more details and

describes its applied methodology.

6.2. Optimal Risk-Based Integrated Design (ORBID)

Large complex organizations not only should be protected from failures,
degradations or any changes that may lead to negative consequences, but also be
structured for a higher chance of success in the market by capturing associated
risks and uncertainties. They need to optimize their performance in spite of the
existence of risk to stay competitive in the market. Having a risk-based design
plan to optimize system performance in risky environments reduces the costs of

design and provides a successful risk-based design project.

6.2.1. Introduction

Optimal Risk-Based Integrated Design (ORBID) introduces a cumulative set of
tools for decision making, managing risks and uncertainties and design
requirements in an excel-based environment for design teams of
multidisciplinary complex systems to obtain the most preferred optimal design
performance within risk constraints while all design requirements and

constraints are satisfied.

Specifically, three methods are introduced as part of ORBID: Design
Requirements and Resource Allocation Management (DRAAM) introduced in
Chapter 4 of this research analyzes data by defining the project, evaluating tasks,
issues, requirements and dividing the system into disciplines, subsystems,

parallel decisions, decision nodes and alternatives. In addition, in this step
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design team and their tasks should be determined. For example, while everyone
is able to access information sheets, few of them at the system level might have
the permission to modify some specific part of the information. We refer to this
step as ‘evaluate criteria’. In this step, ORBID creates an information sheet for
the system based on design requirements and resource allocations defined by

designers, stakeholders and customers.

The previous process helps designers, customers and stakeholders to manage
design sources and requirements. In addition, risk and uncertainties associated
with decisions should be managed. Capturing, Assessing and Communication
Tool for Uncertainty Simulation (CACTUS) introduced in Chapter 3 of this
research achieves this goal by modeling uncertainty for the system and applying
assessing and mitigating methods. Modeling uncertainty not only gives us a
general understanding of the project, but also clarifies noise and control factors
associated with systems and subsystems, determines the relationship of
subsystems by identifying linking variables and as a consequence, prepares the
information necessary for decision making to model the project as an

optimization problem.

Managing uncertainty, defining risk constraints and identifying design
requirements and resource allocation enable decision makers to model the
design project as an optimization problem. Flexible Risk-based Optimal
Decision-making (FROD) is used for this job where optimized results are
analyzed to determine whether they satisfy all design requirements and

constraints for the most preferred design product.
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Figure 16 in Section 6.1 showed the general structure of ORBID with its

components considered as black boxes showing the interaction with each other.

Figure 17 shows this process as a flow diagram.
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Figure 17: ORBID’s black-boxes.

6.2.2. Methodology
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Figure 18 shows the ORBID methodology. As shown this figure, applications of

components are not separate from each other. For example, a small change in

stakeholders’ requirements leads to changes in the information sheet provided

by DRRAM and as a consequence, information provided by CACTUS and
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FROD might encounter many changes, which might in turn change DRRAM

(and even Stakeholders requirements).
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Figure 18: The ORBID methodology

ORBID’s components are linked through the excel-based environment. In such

an environment, clients are able to communicate by sending/receiving data and

be aware of decisions made by other clients. Sheets used in ORBID are

updatable and criteria can be varied depending on the nature of project.

In this section, ORBID’s major steps are listed briefly:

Step 1:

(DRRAM) by designers, stakeholders and customers.

Design Requirements and Resource Allocation Managements
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DRRAM, introduced in Chapter 4 of this research, provides the information
sheet with all necessary information including requirements and resource
allocations, as well as flow diagram for the whole design project to help design
team in having a clear understanding of the project especially in the early stages

of design.

This step clarifies h(x) which is the vector of design requirements that should be
satisfied in the project’s optimization problem. In addition, DRRAM provides a
hierarchical decomposition, based on functional modeling of systems, whose
functional models evolve as the design process moves forward. As a result, it
provides an evolving resource allocating methodology that can be used to
prevent failures and mitigate risks by modeling the project into the following

optimization problem:

Minimize Fl=W'0OW
Maximize: F2= W'

Subject to W =[W1,...,wn]T

Step 2: Capturing, Assessing and Communication Tool for Uncertainty

Simulation (CACTUS).

This tool introduced in Section 3 of this research provides a means for managing
risk and uncertainties by identifying sources of uncertainties, developing
methods for assessing and mitigating associated risk, identifying risk constraints
that may lead to failures under uncertainties and modeling uncertainty

propagation which provides models of critical factors that should be considered
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by decision makers. CACTUS also provides decision sheets which enable
decision makers to make more informed decisions among active available
alternatives. This step provides g(x) which is the vector of risk constraints that

should be satisfied in ORBID’s optimization problem.

Figure 19 shows the methodology applied by CACTUS in the interaction with
FROD and DRRAM to achieve goals of ORBID and Figure 20 illustrates it as a
black box model.
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Figure 19: CACTUS methodology
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Step 3: Flexible Optimal Risk-based Decision-making (FORD) which provides

decision making tools by applying flexible decision techniques within the

optimization domain. It gives us sets of optimal solutions that meet all design

requirements by applying its flexibility techniques.

These three steps model the project into the following optimization problem:

Objective Functions: F;j (Xsystem, X;)
Objective Functions: f; (Xsysiem, X;)

Constraints: Gj (Xgysiem, Xj) < ()

Constraints: H (Xsystem, Xj)

Subject to: X;
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After each step, data are updated and criteria are re-evaluated and then new
information is synchronized among systems and subsystems. Note that, the
model is incomplete at the very early stages of design, but it is developed
throughout the next stages when the project moves forward and decisions are
made. In the next section, Flexible Risk-based Optimal Decision making

(FROD) will be presented as the other future work of this research.

6.3. Flexible Risk-based Optimal Decision making (FROD)

This section aims to address the issue of decision making by introducing
Flexible Risk-based Optimal Decision making (FROD) that provides a flexible
framework for optimal decision-making under risks and uncertainties for the
ORBID methodology. First, it provides a brief literature review for collaborative

decision making and flexibility issue, next it describes the applied methodology.

6.3.1. Literature Review

Before talking about the FROD methodology, providing this section with a
literature review can be helpful. For more details of decision making under risk

see Appendix C.

6.3.1.1. Collaborative Decision making
Following the complexity of multidisciplinary systems, the design process of
such systems is mostly based on concurrent design teams. Decision making in

design using collaborative teams has its own challenges.
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The collaborative optimization strategy was first proposed in 1994 by Balling

and Sobieszczanski-Sobieski [137] and Kroo et al [138]. Two years later, in
1996, Renaud and Tappeta [139] extended it for multi-objective optimization for

non-hierarchic decisions.

In recent years many efforts tried conducted to address the challenges of
Collaborative Decision-Based Design for eliminating communications barriers
of design team during design lifecycle. Agent-based decision network [133-
135], Multi-Agent architecture for collaboration [109] and decision-based
design framework for collaborative optimization [136, 119, and 126] are
examples of these approaches. (Also see decision-based software development:

design and maintenance by Chris wild et al [110]).

Although these methods are not the same, they should be able to meet the
requirements of making decisions by considering the fact that decisions might
have different sources and disciplines [109]; they might be in conflict due to
different criteria; the decision maker might be individual or group; decisions
might be made sequentially or concurrently; designers might make decisions
based on personal experiences and finally information might be uncertain and
fuzzy. As a consequence, any structure for collaborative decision-based design

has to address all these challenges.

6.3.1.2. Decision making within optimization domain
Decision making in multidisciplinary complex systems is to select options that
maximize the objective function while optimization methods (as automated

decision making) minimizes the number of times an objective function is
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evaluated [112]. The decision making process within the optimization domain is
applied for selecting the most preferred design options from the set of
alternatives without evaluating all possible alternatives in details [121, 130-132].
As a result, optimization techniques increase the speed of design by automating

decision making.

Generally the decision making process has three main elements: options
identification; expectation determination of each option; and, finally, expression
of values. The optimization problem of maximization or minimization of the
objective function when all constraints are satisfied can be modeled as decision

making tool [126, 119].

In this context, the option space can be modeled as a set of possible values of x
in the feasible area; the expectation is modeled as F(x) and the preference is
modeled by maximization or minimization. This is the key of decision-based
design within an optimization domain. In this process, the optimizer is going to

maximize the expected VN-M utility of the profit or net revenue.

The optimization of the design process also depends on the efficiency of the
communication structure of collaborative decision making (See the previous
section for collaborative decision making). Figure 21 shows the basic

architecture of collaborative optimization developed by Barun et al [140].
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Figure 21: Basic collaborative optimization architecture by Barun et al.

6.3.1.4. Flexibility in decision making and design

In general, flexibility is defined as “The ease of changing the system’s
requirements with a relatively small increase in complexity (and rework)” [157].
However, many interpretations for flexibility have been introduced by
researchers in different fields. For example, in 1986, Buzacott et al [152]
developed a framework for flexible manufacturing systems to address the
problem of changing demands of customers and Haubelt (2002) [153]
introduced flexible systems for software applications. In the field of design
methodology, Roser et al have introduced a flexible design methodology [146,
147] to minimize effects of risks and uncertainties in the design process [145];
Olewnik et al have proposed a framework for flexible system design [148-149]

with the implementation of Hazelrigg’s decision making framework [118] and
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Suh et al have developed flexible product platform design [154] to address

market uncertain change demand.

These methods address flexibility in design in places where designers choose
fixed design variables before they select the design. However, Khire et al [155]
proposed a methodology for designing flexible systems in changing operating
conditions. It addresses the problem of flexibility design in changing
environments such as aircrafts, cruises, etc. systems whose operating conditions
and design requirements change during the operating life. The operational
flexibility is an important issue for space systems since space missions are
subjected to wunanticipated changes. Since designing, manufacturing and
launching space systems are highly costly processes, in recent years, flexibility
in space systems has been the center of many research efforts. Nilchiani et al
[156] have addressed both design and operation flexibility in space systems by
introducing a Six-Element (6E) framework for measuring the value of flexibility

in space systems.

6.3.2. Introduction

ORBID addresses the issue of decision making by introducing Flexible Risk-
based Optimal Decision-making (FROD). FROD, by providing a flexible
decision making framework in conjunction with design requirement and
resource allocation management (DRRAM) techniques and the capture,
assessment, and communication tool for uncertainty management (CACTUS),
helps decision makers wherever a decision should be made among many
alternatives and provides the most preferred product within the optimization

domain and risk constraints while all design requirements are satisfied.
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FROD gives us sets of optimal solutions that meet all design by modeling the

design project into an optimization problem:

Objective Functions: Fij (Xgsiem, Xj)

Objective Functions: f (Xsysiem, X;j)

Constraints: Gj (Xgystem, Xj) < ()

Constraints: H (Xsysiem, Xj)= ()

Subject to: X;

Where G(x) refers to risk constraints and H(x) refers to design requirement and
constraints defined by design team (including decision making, stakeholders and

customers).

6.3.3. Methodology

FROD’s approach, as a decision making tool, is to help decision makers select
the most preferred design among sets of possible design. To achieve this goal, it
first identifies possible sets of alternatives associated with each design. Next it
selects the optimized set of alternatives with respect to minimization of costs.
Hence, the most preferred design is obtained by ranking possible designs in
terms of costs of optimal alternatives and also associated uncertainties. This

methodology provides a flexible framework for the decision making process.
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To avoid the ambiguity associated with applying the FROD methodology,

defining a terminology for two major terms is necessary. In this research, a set
of design alternative refers to possible design alternatives that form a design
platform. On the other hand, each possible design platform includes sets of

possible design alternatives that satisfy the goals of the project.

The Flexible Risk-based Optimal Decision making (FROD) methodology

includes listed nine major steps:

Step 1: The first step of the FROD methodology is to investigate the initial
design. The platform of the initial design is obtained by the initial model
generated by Design Requirement and Resource Allocation Management
(DRRAM). This initial design defines the system by identifying initial design
variables and system responses to them; determining market, demands, initial
alternatives and change options. It also provides an early estimation of costs and

time associated with the selected design platform.

Step 2: Uncertainties and variants of the investigated design should be identified
in the second step. CACTUS’s uncertainty identification techniques are applied
in this step. These uncertainties might be due to changes in design or demands.

This step defines the set of uncertain parameters U:

U= {uy, ..., ui}

where u is one of 1 individual uncertainties identified for the selected initial

design platform.
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Step 3: The third step in FROD is to to identify defect modes and possible

design change options. Identifying uncertainties and variants help to model
uncertainties. This uncertainty-based model, which is obtained by CACTUS,
investigates defect modes which occur when system responses cannot satisfy the

upper and lower limits of allowable uncertainty.

Step 4: The fourth step is to generate flexible alternatives. Identifying defect
modes and possible design changes generates flexible component alternatives.
These alternatives create the set of flexible design platform alternatives (A)

includes m design alternatives:

A= {ala seey am}

where a is one of m design alternatives identified for the selected initial design
platform. Each alternative is a set of functional requirement (F) and cost
requirements (C) obtained by Design Requirement and Resource Allocation

management (DRRAM)), so:
a*=[F*,C" ;K=1tom
Step 5: The next step is to optimize each design alternative. Alternatives should

be optimized with respect to minimization of costs while all equality and

inequality constraints are satisfied. This optimization includes:
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Objective Functions: ct (xk)

Constraints: G; o )<0

Constraints: H (x', ¢

Subject to: x*

where the optimization problem is to minimize the objective function (C* (") or

all costs associated with each alternative) with respect to inequality constraints
of functional requirement F* (upper bounds and lower bounds or G; (xk) <0 ) and

quality constraints of functional requirements subject to the set of component

. . k
design variables or x".

Step 6: The sixth step is to evaluate possible costs associated with all possible
design alternatives (C¥) of optimized in Step 5. Associated costs constitute one

of the critical decision making factors for selecting the best design platform.

Step 7: The seventh step is to evaluate expected performance and costs of
flexible design alternatives under uncertainties of the investigated design. Since
flexibility becomes a more important issue as the severity of uncertainty is
increased, in addition to costs, uncertainty is another critical facture for decision

makers to select the design.

As we had mentioned in chapter 3, CACTUS provides techniques of identifying,
assessing and determining upper bounds and lower bounds of uncertainties and
as a result provides a clear understanding of uncertainties associated with the

selected design and as we had mentioned in step 2, defines:
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U= {uy, ..., ui}
where u is one of i individual uncertainties identified for the selected design.

In this step, the performance of alternatives under uncertainty should be

evaluated economically.

Step 8: Step eight is to select the best design from the set of design platform

alternatives.

In this step, decision makers make decisions by ranking possible design.
Decision makers’ discipline for ranking designs depends on costs and
uncertainties of associated design alternatives determined in steps seven and
eight. They rank possible design platforms with respect to obtained expected
value of their alternatives that is a function of costs (C* (x*)) and uncertainties

(U):

Expected Value= EV=f(C* (x"), U)

As decision makers evaluate expected values of alternatives of m possible

designs in the set of A= {ay, ..., am}, they can obtain the most preferred design.

Step 9: It is always possible that the best design generated in Step 8 is not
satisfactory or does not meet the design requirements. In this case, DRRAM is
applied by designers, decision makers and stakeholders to modify design

requirements and allocate resources again.
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Figure 22 shows the process is done by the FROD methodology to help decision
makers select the best design platform. As this figure shows, in this case
previous eight steps are repeated until the best design platform is obtained so
that meets all requirements and constraints of designers, stakeholders and

customers.

Select the
G| o
* ewn

Uncertainty changes
a identification Demand
~ Changes

!

% Uncertainty
modeling

UnCEmna W
related change
optio

YES
Flexible
Satisfactory Alternatives
o Identification

'

Select the Alternatives
Best design Optimization
. Calculate
Uncertainty
Assessment €= Costs .Or
Alternatives

Figure 22: The FROD methodology
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The other strategy in this case is to apply the uncertainty management
techniques provided by the CACTUS methodology (See chapter 2). However
applying these techniques brings additional costs that should be evaluated
beforehand.

In the next section of this chapter, we provide a discussion for the further
research and future work of the FROD methodology that are being carried out to
provide a better framework and methodology that helps the Optimal Risk-Based
Integrated Design (ORBID) to achieve its goals.

6.3.4. Conclusion and Future Work

This chapter has provided a flexible decision making process to obtain the most
preferred optimal design in risky environments of multidisciplinary complex

systems by introducing Flexible Risk-based Optimal Decision making (FROD).

The achievement of the FORD methodology is to decrease costs of design by
reducing costs of design changes. It identifies possible design changes to

generate flexible designs for resolving defects in the predicted model.

The FROD methodology analyzed each possible design by modeling associated
sets of alternatives into the optimization problem of minimization of associated
costs with respect to quality and inequality of design functional requirements in
addition to evaluate associated uncertainties and then calculating expected value
of each possible design. Ranking designs with respect to associated expected
value clarified the most preferred design that should be selected by decision

makers.
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In this research, flexibility was defined as the ease of changing the system’s
requirements with a relatively small increase in complexity, opposite of the
robust design that aims to increase the stability of systems with respect to a
variety of possible changes so that they are less sensitive to variations. The
flexible design identifies possible design alternatives to resolve the design
change problem. It increases the ability of systems for being adopted with new
technologies by reformulating issues and their importance, changing the

methodology achievements and generating more flexible alternatives.

This research addresses flexibility in design in places where designers choose
fixed design variables before they select the design. Future work should be done
to develop this methodology so that it can be applied in operational conditions
and address the flexibility issue in changing environments such as aircrafts,
cruises, etc. or systems whose operating conditions and design requirements
change during the operating life. The operational flexibility is a more important

issue for space systems since they are subjected to unanticipated changes.

As mentioned before, the expected value is a function of costs and uncertainties.
In steps 5 and 6, FORD provides an optimization technique for optimizing and
evaluating costs of design alternatives. So, developing techniques to model and
evaluate performance of systems under uncertainties economically is another

important issue should be addressed by ORBID in the future.

In addition, more research will focus on the quality of providing this
methodology with details and the process that should be followed to generate
flexible design alternatives (Step 4 in the FROD methodology). However,
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increasing systems’ flexibility and generating flexible alternatives also increases
associated uncertainties. This means that increasing the flexibility may not
necessarily may result to the optimal performance. So, one of the most critical
challenges is to provide techniques of measure the optimal flexibility. Decision
makers should be aware of profits of being flexible and its associated costs. In
this context, to develop cost benefit analysis techniques for measuring the value
of flexibility in design is necessary for decision makers during the design

process of multidisciplinary complex systems.
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7. Conclusion

This research presented tools for uncertainty and design requirement
management during the design process of complex systems by introducing
Design Requirement and Resource Allocation Management (DRRAM)
framework, the Capture and Assessment and Communication Tool for
Uncertainty Simulation (CACTUS). The future work for each presented
methodology was identified and a case study for the lunar lander mission design
at NASA JPL’s Project Design Center illustrated the processes with more
details.

As the future work, this research presented Optimal Risk-based Integrated
Design (ORBID) as a methodology for obtaining the highest performance within
risk constraints while satisfying all constraints and requirements of the design
and development of large-scale complex systems. ORBID as a cumulative tool
for trading off risk, resources and performance of complex systems introduced
Flexible Risk-based Optimal Decision-making (FROD) that provides a flexible
framework for decision making in the ORBID’s collaborative excel-based
environment. The properties, methodology and hotspots of FROD has also

1dentified and discussed.

Table 2 has listed the proposed methodology and the future work carrying out.



Table 2: Future Work
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Future Work

Capture, Assessment and
Communication Tool for
Uncertainty Simulation
(CACTUS)

Developing techniques
of assessing, mitigating
and model all sources of
uncertainty,  especially
qualitative aspects.

Developing a decision
tree to  demonstrate
criteria for selecting the
best assessment
methodology to capture
uncertainties associated
with issues to increase
the speed of this process.

Developing techniques
to obtain upper and
lower margins of
uncertainties by
bounding approach to
risk analysis

Design Requirement and
Resource Allocation
Management (DRRAM)

Providing this method
with  techniques  of
design requirement
management so that it
can address needs of
design teams including
designers, stakeholders
and customers for
trading off their
requirements and design
constraints.
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Future work for
extending the knowledge
base that can support the
applied RUBIC design
tool.

Improving the RUBIC
design tool methodology
and addressing its
limitations in identifying
the the efficient frountier
by linearly and
unlinearly utility
functions.

Flexible Risk-based Optimal

Decision making (FROD)

future work should be
done to develop this
methodology so that it
can be applied in
operational  conditions
and address the
flexibility  issue  in
changing environments
such as aircrafts, cruises,
etc. or systems whose
operating conditions and
design requirements
change  during  the
operating life.

Providing techniques to
evaluate the wvalue of
flexibility and measure
the optimal flexibility
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Appendix A: the application of Function-Failure
Design Method (FFDM)

In this section we are going to apply the process of obtaining EF and EB matrix
for a case study (borrowed from [161]). Consider a hardware/software system.
Although such this system can be divided into different subsystems and each
subsystem includes some other components and EF matrices should be

generated for each component, for simplifying we divide it into 3 components:

C2=Software component
C3=Hardware component
Cl=Interfaces which are responsible for importing and exporting data between

users and machine.

Five functions can be considered for components including:

El=import data
E2= Guide data
E3=Export data
E4=Convert data
E5=Store data

Determining components and functions provides the EC matrix. It enables
designers to generate EC matrix. Now, the next step would be to generate CF
matrix by identifying potential technical and dynamic failures mode. However
for such this analysis, we have to determine our strategy beforehand so that we

can categories behaviors, especially external factors. We have considered 6
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failure modes due to technical and dynamic factors. These failure modes would

be:

F11= input,

F12= information
F13=module
F21=culture
F22=economy

F23=society

CF matrix can be obtained by identifying failure modes. Figure A.1 shows the
process of obtaining EF matrix by identifying components, their functions and

possible failure modes for a simplified hardware/software system.

Components Failures
Technical | Dynamic
c1|c2|c3 F11|F12|F13|F21|F22|F23 — F1" . "JZ T F:‘ F;’ T
i E1/11]0/0 cif1|o|of{1]{0]|0 E2021]1]1]0]1
Functions E2/1[1]0] X = mstolo 1T
E3[1]0]1 c2l1|1|1|0]o0]|1 S EAEAERERTAE
E4[1]1]0
Eslolol cyof({oj{ojo|1|0 E5l0|0f0|0|1]0
EC CF EF

Figure A.1: Functional model for a simplified hardware/software system
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Appendix B: The application of Risk and Uncertainty
Based Integrated Design (RUBIC)

In this section, this research shows the applicability of RUBIC design
methodology. This section has been borrowed from [151]. The case study is
Motor Controller subsystem of a satellite reaction wheel (shown in Figure A.2).

For thsi case study, 7 functional elements can be listed including:

- Import Electrical Energy

- Export Electrical Energy

- Guide Electrical Energy

- Regulate Electrical Energy
- Guide Electrical Energy

- Condition Electrical Energy
- Guide Electrical Energy

Motor Sub-system

Reaction Wheel Functional Model

' 1 Motor Controller Sub-system &
Flae (_:’ I e L e e Convert i e e store |13
v EeeE o Guide j Reguiate — ¥ Guide [N tondhlnn? Guide —h RetE o E
@ o
< Elec.E) | gxport M—| E'€%-E- Elec. E. Ele<.E. |g Elec. E Elec. E . H— Supply :E ES
:" El6t.E | jocccccceace e e Mo M | e— ROLE. | i
b 1 5
eeeeees = - it
Motar g LT
Conwel o) wmpore | 0| securs Transter o] Export | Fnucrue,
Control 1| Selid Rot. E. Fl Selid ! .
Structure Sub-system 1l '
[rgpee——— o hea:lhn
Slruuuli Import o Export IFarcas
1?7 sona RotE. | 4

Figure A.2: A high-level functional model of a satellite reaction wheel at some point in
its conceptual design phase borrowed from [151].
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Using FFDM, p and X can be estimated at this stage. p is proportional to the

failure rate and we can estimate o;;’s from z4’s (0;~0.3 1), So:

[0.03 | Import Elec. E.
0.03 | Export Elec. E.
0.05 | Guide Elec. E.

p=|0.45 | Regulate Elec. E.

0.05 | Guide Elec. E.

0.33 | Condition Elec. E.

0.05 | Guide Elec. E.

and;

9 0 0 0 0 0 0
0 9 0 1021 O 0 0
0O 0 25 0 0 0 0
T=[0 1021 0 2025 81 215 0 |x107*
0 O 0 8 25 81 0
0 O 0 215 81 1089 0
0 O 0 0 0 0 25

Now by applying the above formulation of risk reduction, the risk-efficient

design frontier shown in Figure A.3 is obtained.

Minimize w'Sw
Maximize w'p

s.t.we F
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0154 Selected
RED-P
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] ; . .
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Expected TB

Figure A.3: The efficient risk tradeoff frontier
borrowed from [151]

Now the question becomes which RED-P on the efficient frontier should be
selected. To address this problem, RUBIC uses a linearly weighted utility
function to assess the tradeoff between expected value and variance of the total

benefit function two criteria:

u=E(TB)-0.36(TB).

Using this utility, u, the optimization problem represents a allocation vector
(listed in table 3) that corresponds to the most preferred RED-P (the red circle in
Figure A.3). For example Figure A.3 and A.4 shows that two functional
elements of Regulate Elec. E. and Condition Elec. E. require the highest

resources.
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This was an example of the applicability of the RUBIC design methodology for

allocation resources.

Table 1: Optimal resource allocation borrowed from [151] that corresponds

to the red circle in Figure 26.

Column | Function Resource
# Allocation

1 Import Electrical Energy <1%
2nd Export Electrical Energy 6%

31 Guide Electrical Energy <1%
4™ Regulate Electrical Energy  57%
5t Guide Electrical Energy 10%
6" Condition Electrical Energy 26%
7™h Guide Electrical Energy <1%

0.20% ~6%
0.40%
/ 0.40%
6% @ Import Electrical Energy

W Expont Electrical Energy

O Guide Electrical Energy

O Regulate Electrical Energy

B Guide Electrical Energy

10% O Condition Electrical Energy
57 % |H Guide Electrical Energy

Figure A.4 — Optimal Allocation
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Appendix C: Decision making under risk: A
Literature Review

The concept of decision making under risk extends back to Daniel Bernoulli,
1738 [127]. His solution to a problem under risk is known as Bernoulli’s
paradox. This problem, formulated by his cousin Nicholas, is to determine the
amount of money that a person will be willing to enter a game with a prize of
$2" where a fair coin is tossed until on the nth flip it lands on heads. The

expected monetary value (EMV) of this problem would be infinite since:

Where, the probability of n flips is (1/2") and the expected prize for n trails is 2".

Bernoulli showed that, in conflict with the outcome, people are not willing
entering this game as a result of altering from risk associated with this game.
Based on this fact, he introduced the definition of utility by formalizing this
discrepancy between the EMV and the behavior of individuals. Then he
presented his Expected Utility Hypothesis as: Individuals make decisions with
respect to investments in order to maximize expected utility. The disciplines of

decision analysis have been extracted based on Bernoulli’s hypothesis.

In the framework of utility theory, the decision analysis discipline has three
fundamental elements: 1) Options, which are design alternatives; 2)
Expectations, which are range of possible outcome of a decision considering

their probabilities of occurrence; and 3) values, whose purpose are to rank order
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alternatives. As a consequence decision analysis process includes options
identification, expectation determination of each option and finally expression of
values. The resulting of decision rule would be: The preferred decision is the

option whose expectation has the highest value [118].

Since the purpose of values in decision making is to rank order of alternatives,
(for example option A is preferred to B), this preference ordering requires the
existence of a real scalar function such as u we had introduced as utility
function, for this example U, > Ug. Like other engineering design we tend to
automate the process of rank ordering for two reasons: first; making an ad hoc
assessment for relative merits of every design alternative versus every other
design alternative doesn’t sound feasible and second; this comparison would be
too complex without the use of a mathematical value model. This mathematical
requirement for a value function has been formalized by Von-Neumann (a
mathematician) and Morgenstern (an economist) in 1944 [116]. It is referred to

Von-Neumann and Morgenstern utility (VN-M utility).

As Figure A.5 shows, VN-M utility is based on the notion of a lottery where the
utility of the more desired outcome is higher than the utility of the less desired
outcome. Von-Neumann and Morgenstern claimed that if the probability of the
more desired outcome occurrence tends to one, the utility of the lottery tends to
the utility of the more desired outcome and in reverse, if the probability of the
more desired outcome tends to zero; the utility of the lottery approaches the
utility of the less desired outcome. Based on these two principles, Von-
Neumann and Morgenstern concluded that the utility of the lottery always lies

between the utilities of the less and the utility of more desired outcomes.
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Qutcome:
status quo

Decision to enter

the lottery or _
remain at the status More Desired
quo Outcome, At

Random event

Less Desired
Outcome, Ay

Figure A.5: A VN-M lottery

In 1957, Luce and Raiffa [128] developed an interoperation of Von-Neumann

and Morgenstern theory and concluded that:

“If a person is able to express preferences between every pair of gambles, where
gambles are taken over some basic set of alternatives, then one can introduce
utility associations to the basic alternatives in such a manner that, if the person
is guided solely by the utility expected value, he/she is acting in accord with
his/her true tastes provided only that there is an element of consistency in

his/her tastes.” [128].

Based on this interoperation, Luce and Raiffa extracted the Von-Neumann and
Morgenstern axiom in engineering design, which is fundamentally the notion of

utility within engineering design:

“Suppose that one has to make a choice between a pair of lotteries that are each

composed of complicated alternatives. Because of their complexity it may be



127
extremely difficult to decide which one is preferable [and this is usually the case

in engineering design]. A natural procedure, then, is to analyze each lottery by
decomposing it into simpler alternatives, to make decisions as to preference
among these alternatives, and to agree upon some consistency rules that relate
the simpler decisions to the more complicated ones. In this way, a consistent

pattern is imposed upon the choices between complicated alternatives.” [128].

Luce and Raiffa [128] and Hazelrigg [118], summarized Von-Neumann and
Morgenstern axioms, to six axioms which are the basis for decisions in utility

theory:

1- All outcomes of a VN-M lottery can be ordered in terms of the decision

maker’s preferences and that ordering is transitive.

2- Any compound lottery, that is, any lottery that has been outcome another
lottery, can be reduced to a simple lottery that has among its outcomes all the
outcomes of the compound lottery with their associated probabilities of

occurrence.

3- If the outcome of lottery, Aj, A, ,..., A;, are ordered from most desired
to least desired, then there exists a number p, 0< p< 1 , such that one is
indifferent between an outcome A; 1< i<r, and the lottery A; with probability P
and A, with probability p-1.

4- For any lottery such as that given in axiom 3, with U; specified, there
exists an outcome [u;A;, (1-uj)A;] that can be substituted for A;, and the

preferences of the decision maker will remain unchanged.
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5- The decision makers’s preferences and indifferences among lotteries are
transitive.
6- Given two lotteries, each with only two outcomes, and which differ only

in terms of the probabilities of the outcomes, the lottery in which the probability

of the more desired outcome is larger is the proffered lottery.

Here, brief descriptions of terms are used in above six axioms sounds necessary.
These terms are transitive/intransitive and rational/ irrational. Assume a decision
maker should rank between three options A, B and C. where the symbol “>”
means “is preferred to”. If the ordering of preferences is necessary to be in the
form of A >B >C > A, it means Uy > Up > Uc > Uus. While we know U, utility

function, is a real scalar function so it’s not possible.

The preference ordering that causes this problem is said to be intransitive and
the person who has such a preference order is called irrational. Such this person
is not a good design engineer and decisions made by this person are not

compatible with her/his preferences.

On the other hand, if A > B > C, then A > C. In this situation, the preference
ordering is called transitive and the decision maker is said to be rational. In
1963, Arrow [129] proved that groups with rational individuals might have
irrational preferences. This theory is called Arrow’s impossibility theorem.
Based on Arrow’s theorem, any method that requires the formulation of a group

utility to determine group preferences is likely to be fundamentally flawed.
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After being familiar with VN-M axioms and definitions of transitive/intransitive
and rational/ irrational, one can analyze VN-M’s axioms with respect to their

applications:

- First rule of this axioms, talking about ordering in terms of decision
maker’s preferences is necessary in order that rational decision making

be possible.

- The second axiom; which explain reducing of any compound lottery to a

simple lottery, equivalences compound and simple lotteries.

- The third axiom assures the continuity of preferences between outcomes

Ajand A,.

- The fourth axiom shows that any lottery in axiom 3 can be reduced to an
equivalent lottery that contains only the outcomes Al and A;.

- The decision makers’ preferences and indifferences among lotteries are
transitive and it assures that rational preferences exist among lotteries. It

is the base of the fifth axiom.

- Finally, the sixth axiom defines the statement of preference by showing
that between two lotteries with two outcomes which are different in just
probabilities of outcomes, the lottery in which the probability of the

more desired outcome is higher is the preferred lottery.

Based on the notion of Von-Neumann and Morgenstern (that the utility of the

lottery always lies between the utilities of the less and the utility of more desired
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outcomes) and these axioms (which are the basis of decisions in utility theory)
VN-M utility basis in engineering design is build and Expected Utility Theorem

can be described as:

“If the preference or indifference relation (> or ~) satisfies assumption I
through 6, there are numbers U; associated with the basic prizes A;such that for
two lotteries L and L' the magnitude of the expected values
(Piu+Pouy+...+Pau,) and (P;'u;+Puy+...+P.'u,) reflect the preferences

between the lotteries.” [128].

In other words, Expected utility theorem mentions that the utility of a lottery is
the sum of utilities of all possible outcomes of the lottery if they are weighted by
their probabilities of occurrence. Expected utility theorem provides measures of

utility under condition of risk and uncertainty.

First time, in 1996, Hazelrigg [118] expressed the concepts of the six VN-M
axioms and associated utility in the framework of systems design. This
framework applies expected utility theory for selecting designs. It enables
decision makers to assess the value of each design option so that options can be

rationally compared and then the most preferred option is selected.

Figure A.6 shows Hazelrigg’s framework for decision-based engineering design.
The goal used in this framework is profit consisting of revenues less costs.
Revenues are quantities of things sold times their prices. These Quantities
depend upon the demand (q) of the product which is a function of the attributes
of the product (things that determine the worth of the product in aspect of

customers) (a), price (p) and time (t).
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Figure A.6: Hazelrigg’s framework for decision-based design

The variables which designers have control over them are design variables
which have been shown as the design vector X, while variables which designers
doesn’t have control over them are referred to exogenous variables as vector Y.
The ordered set of attributes is referred to vector a.x; y is transformed into a
with uncertainty. The value of revenues is determined as the product of p and q

properly discounted and integrated over time.

The framework then includes an optimization over p (p should be set to
maximize the value of the particular design, X subject to y) with the purpose of
maximizing utility (u) with respect to p with given X and y. It produces the
utility measure for a design and then decision makers can compare alternative
designs using this measure. In other word, it automates the process of alternative

selection with an optimization scheme.
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Hazelrigg’s framework (Figure A.6) models design as a decision-making
process aims to maximize the value of designed artifact. However, still there is a
challenge of how decision-based design framework should be fitted into the
engineering design or in the words, how the utility of a design should be
formulated under a decision-based design framework. In recent years, many
researches on decision-based design have been done. (As references used in the
text demonstrated, Scott and Ontonsson (1999), Gu et al (2000), Azarm et al
(2000), Wood (2000), Agogino et al(2005) , etc.).

Figure A.7 shows Von Neumann- Morgenstern utility framework for decision
based design developed by Wei Chen et al (2001) [110- 111]. In this framework
two different types of attributes are considered, engineering consideration (E)
and the customer key attributes (A).

______________

,' Choose Y and Price P L,

I to maximize E(La0) :\
1 subject to constramnts |
Exogenous
variables ¥
Total
product cost
Carp o
" Discrete | Selection Expected
i Selecti
Design | ——>{ Engmeenng [ Customer Key 9{ Choice |'9 Demand —) v ] tility
options X Attributes E Attributes 4 i H Qusey , 57
I Analysis ) Vio.crry E(Uan)
LEGEND " Memtification |
L Customer [} “f K‘;“Em“ i Market Data Utility fanction
; preferences R S Sy U (1)
Entity 1 Aftributes ]
ey
|
I Event "
_____ ! Corporate | Risk aftifude
r Tune Interests I

Ust  VonNeumann-Morgenstern Utility

Figure A.7: Chen’s Decision-Based Design Framework
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The engineering attributes E are product properties of interest to a design
engineer represented as functions of design variables X. the customer key
attributes A are the product features a customer assess when purchases a
product. The selection criterion V is expressed as a function of the demand (Q),
Price (P), total product cost (C) [The time (t) is considered when discounting v

to the net present value].

In addition, in this framework, corporate interests I acts as requirements
(constraints) while Hazelrigg’s framework is void of constraints.  In this
framework, optimal product design is determined by selecting the design options
(X) and the price p while the expected utility E (Uyny) of the selection criterion

1s maximized and the constraints are satisfied.

As mentioned before, the nature of complex systems are multidisciplinary
design. However, the decision-based design framework of Hazelrigg [48] is a
single level all-at-once optimization approach. Following this fact, building a
framework for decision-based design in multidisciplinary systems needs specific
efforts. X. Gu and J.E. Renaud (2000) [119], developed a framework for
decision-based design of multidisciplinary systems by decomposing it into the

multidisciplinary model.

This decomposed system includes two major organizations; the engineering
disciplines and the business disciplines (while traditionally multidisciplinary
design is focused on disciplines in the field of engineering analysis). The role of
the business disciplines is providing targets for performance improvements in
order to higher profit while the role of engineering disciplines is focusing on
predicting the performance of product while satisfying the performance targets

set in the business discipline.
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Figure A.8 shows Gu and Renaud’s framework for multidisciplinary systems.
As this figure shows, engineering and business disciplines are coupled through
attribute (@), total cost (Cr) and demand (q). Based on this model, the
performance predictions obtained from a system analysis (SA) are referred to as
states y in the contexts of multidisciplinary design. [126]. Contexts of decision
making in aspect of multidisciplinary systems presents us with two new
challenges: First, decision making in the domain of optimization; second,

collaborative decision making.
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Figure A.8: Gu and Renaud’s decision-based design framework
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