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This paper details a method to compute absolute water velocity profiles from glider-based 

acoustic Doppler current profiler (ADCP) measurements based on the “shear method” 

developed for lowered ADCPs. The instrument is a 614-kHz Teledyne RDI ADCP 

integrated into the body of a Teledyne Webb Research Slocum Glider. Shear is calculated 

from velocity measurements and averaged over depth intervals to create a dive-averaged 

shear profile. Absolute velocities are computed by vertically integrating shear profiles 

yielding relative velocity profiles and then referencing them to dive-average velocity 

measurements calculated from glider dead-reckoning and GPS. Bottom-track referenced 

velocities also provide absolute velocities when bottom-tracking is available, and can be 

applied to relative velocities, producing absolute velocity profiles through linear fitting. 

Data quality control is based on ADCP percent good measurements. Compass heading 

bias corrections are applied to the raw ADCP measurements before averaging shear 

profiles. Comparison between simultaneous, full-water column velocities referenced to 

dive-average currents and those referenced to bottom-track profiles, resulted in RMS 

error values of 0.05 m s-1 for both north and east components. During open ocean 

deployments, the glider ADCP recorded velocities concurrent and proximate to vessel 



 

ADCP measurements in waters of similar thermal characteristics. The combined 

comparison analysis resulted in RMS error values ranging 0.08-0.31 m s-1 and 0.06-0.21 

m s-1 for north and east components, respectively. 
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 1 INTRODUCTION 

The integration of Acoustic Doppler Current Profilers (ADCPs) onto Autonomous 

Underwater Vehicle (AUV) Gliders is a new application of two prolific technologies 

which offers significant potential for enhancing oceanographic observations. ADCPs 

determine water velocity by transmitting a sound pulse and measuring the acoustic 

Doppler shift of the returning signal from scattering material in the water column. When 

the instrument is within range of the seafloor, over-ground velocities are recorded by 

bottom-track velocity measurements (RD Instruments, 1996). Gliders are robotic ocean 

sensor platforms driven by variable negative and positive buoyancy, traveling through the 

water in a saw-tooth pattern as the pitched glider body and wings translate vertical 

motion into directed horizontal motion. Glider technology emerged in the 1990’s after 

advances in satellite communication capabilities, accurate GPS positioning, and 

buoyancy engine technology (Rudnick, et al 2004). Gliders have many integrated 

oceanographic sensors and development of additional sensors and applications continue 

(Schofield, et al, 2007). Instruments must be compact to fit on the glider and light weight 

to allow neutral ballasting. Gliders possess an advantage over other AUVs in their 

efficient use of energy (Davis, et al, 2003). Glider instruments must have a low power 

draw to capitalize on the long-duration, ship-free operations. Integrated ADCPs are now 

becoming available on commercially manufactured gliders due to advancements in 

instrument compactness and power efficiency. 

Whilst making vertical profiles and progressing horizontally, the glider sensors 

collect concurrent oceanographic measurements. The suite of sensors on a given glider 

enables researchers to delineate linkages between observed variables. For example, in the 
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coastal ocean, salinity, and temperature measurements may suggest upwelling currents. 

Tandem dissolved oxygen measurements allow quantification of the hypoxic effects of 

the upwelling feature (Grantham, et al, 2004). Likewise, ADCP velocity measurements 

concurrent to other glider sensor observations can further reveal the dynamic structure of 

studied ocean locations. Velocity shear and Richardson numbers (Ri) derived from the 

velocity measurements can provide important values for ocean mixing research. 

Glider-based acoustic velocity measurements are currently being applied in 

various ways. Techniques are being developed to use the Teledyne RD Instruments 

Explorer Doppler Velocity Log (DVL) to improve glider through-water navigation 

(Woithe, et al, 2011). High resolution shear measurements have been collected with 

gliders using the Nortek Aquadopp Profiler (Lohrmann and Nylund, 2008). Dive-average 

current referenced velocity profiles have been applied with 30-hour smoothing to the 

coastal ocean (Todd, et al, 2011). The implementation of these methods have many 

oceanographic research applications. Improved navigation can enhance the acquisition of 

other sensor measurements by maintaining position on the desired transect. High 

resolution shear can provide information on plankton thin layer dynamics. Smoothed 

absolute velocities can confirm or improve geostrophic current calculations. 

The research presented in this thesis explores the ability of the glider-mounted 

ADCP to yield absolute velocity profiles for individual gliders dives consisting of one or 

more yos. The technology used is a Teledyne RDI Explorer DVL integrated into a 

Teledyne Webb Research (TWR) Slocum. Over the course of one yo, the instrument can 

record hundreds of multiple-bin ensembles at different glider depths providing velocity 

measurement overlap within depth intervals. The research method modifies the “shear 
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method” developed for Lowered ADCP research, that is depth interval averaging 

horizontally overlapping velocity bin measurements and referencing relative velocity 

profiles to dive-average water currents. Effective data filtering, heading bias corrections, 

and instrument settings to optimize horizontal overlap of measurements are required for 

this approach. The results of this application are statistically compared to bottom-track 

referenced velocities measured by the same Explorer DVL and to concurrent, 

independent ADCP measurements from an observational buoy and research vessels. The 

agreement between absolute velocities produced from this research and commonly-used 

independent measurements suggest that application of the modified shear method to 

glider ADCP measures offer a viable process for use in observational oceanography.  

The scope of this thesis focuses on profiles calculated from dive depth interval 

averaging. Depth interval averaging, however, can be applied to individual yos to yield 

profiles for vertical shear and bottom-referenced velocities with increased horizontal 

resolution. 
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MOUNTED ACOUSTIC DOPPLER CURRENT PROFILERS 


Christopher E. Ordonez, R. Kipp Shearman, John A. Barth, T. Patrick Welch, Anatoli 


Erofeev, Zen Kurokawa 




 

5 

2.1 OVERVIEW 

Oceanographic researchers require direct velocity measurements with vertical 

structure to fully understand the dynamic features of the studied region. Relative velocity 

observations can produced vertical shear values which yield the Richardson number (Ri) 

and provide quantitative measures of ocean mixing. Acoustic Doppler technology has 

been widely utilized by oceanographic researchers to measure water velocity since 

becoming commercial in the late 1970’s (RD Instruments, 1996). A variety of scientific 

ocean sensor platforms have hosted Acoustic Doppler Current Profilers (ADCPs), each 

application with differing objectives and strengths. Moored ADCPs provide persistent 

observations at stationary positions. Ship-mounted ADCPs provide water velocity 

measurements in the upper ocean with real-time reporting to onboard researchers. 

Lowered ADCPs (LADCPs) provide velocity profiles over deep ocean water columns by 

taking horizontally overlapping and consecutive measurements (Fischer and Visbeck, 

1993). 

Autonomous Underwater Vehicle (AUV) Gliders are now becoming available 

with incorporated ADCPs enabling current measurements concurrent to other physical 

and biological sensor measurements from the glider platform (Davis, 2010). Energy-

efficient gliders collect high-density measurements for weeks to months without 

continuous vessel operations and expenditures. The compact size and limited weight of 

the ADCP unit permits integration inside the glider hull. Sensor weight is an important 

consideration on a glider as the vehicle must be ballasted neutrally buoyant for operation 

(Teledyne Webb Research, 2009). Low ADCP power requirements allow long glider 
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deployments and can be set to record on periodic dive intervals. The integrated ADCP is 

amongst the expanding suite of sensors available for the gliders (Schofield, et al, 2007). 

Data collection and processing methods have been developed to use LADCP to 

obtain absolute velocity profiles using the “shear method” and the “inverse velocity 

solution”, (Fischer and Visbeck, 1993, Visbeck, 2002). LADCP systems consist of 

vertically-oriented ADCPs, mounted onto a Conductivity Temperature Depth (CTD) 

sensor frame, lowered and raised from vessel winch lines measuring water column 

velocity relative to the movement of the package. LADCPs can utilize multiple velocity-

referencing constraints for each cast, enabling absolute velocity profile calculations. 

Referencing data includes vessel drift inferred from continuous Global Positioning 

System (GPS) positions during the LADCP casts, shipboard ADCP measurements in the 

upper portions of cast, and bottom-track velocity measures where available during the 

lower cast (Thurnherr, 2010). To obtain absolute velocities the shear method utilizes one 

reference source and the inverse velocity solution applies multiple references, both for 

individual casts (Visbeck, 2002). 

ADCP operation from a glider shares similar aspects to LADCP deployments that 

enables application of the depth interval averaging to the measurements, but also has 

unique constraints requiring different approaches. Gliders use variable buoyancy to 

descend and ascend in a saw-tooth shaped pattern, collecting water column measurements 

along the glide path. Gliders have a pitch angle that is effective for vertical sampling and 

like the LADCP make successive velocity measurements at overlapping depths while 

descending (Davis, et al, 2003). Gliders have access to GPS only at the surface, before 

and after dives. The glider uses GPS positioning combined with a dead reckoning 
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algorithm to calculate dive-average water current velocities (Teledyne WRC 2009, Davis 

2002). Dead reckoning calculations use glider attitude, compass heading, and depth 

changes to model flight vectors. Gliders use GPS to infer water currents during the dive, 

by calculating the offset between surfacing and dead reckoned positions, whereas 

LADCP GPS positioning tracks vessel movement during the casts. In both cases, 

platform motion must be removed to ascertain absolute water velocities. Previous 

research using the inverse velocity solution and 30-hour Gaussian time-domain filtering 

has been applied to Spray glider-mounted Sontek 750-kHz ADP measurements to 

observe water currents (Todd, et al, 2011). 

This research utilized two 350-m Slocum Gliders from Teledyne Webb Research 

(TWR), each integrated with a Teledyne RD Instruments (TRDI) Explorer Doppler 

Velocity Log (DVL). The Explorer DVL is a 614.4-kHz, 4-beam phased array ADCP 

depth rated to 1000 m, integrated into a science bay on the glider body and has a 

compact, downward-facing transducer weighing 1.1 kg. See Fig. 1 for a photograph of 

ADCP Glider “John.” The two gliders deployed, gliders “June” (unit #186) and “John” 

(unit #185), are early versions of the Generation 2 Slocum, with oil-filled buoyancy 

bladder and depth range of 350 m. GPS and Iridium antennae are mounted in the tail, 

receiving positions and communicating with onshore operators while surfaced. The 

gliders also include integrated optical fluorometers (WET Labs ECO Triplet and ECO 

FL) and a CTD (Sea-Bird SBE41). A factory transducer misalignment on Glider John 

altered its ADCP measurements and reprocessing of the collected data is required. In this 

paper, only data from Glider June is presented. 
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Applying the shear method to glider velocity measurements requires data 

processing, data inaccuracy removal, and post-processing velocity profile comparison. 

Water velocity measurements from a propeller-driven autonomous platform have been 

assessed through quantitative comparisons of REMUS AUV-mounted ADCP 

measurements to concurrent and proximal water velocity profiles from a stationary 

ADCP (Fong and Jones, 2006). Depth interval averaging velocity requires quality control 

measures and removal of significant outliers from the collected data (Fischer and Visbeck 

1993). Instrument settings should be optimized for long range and high accuracy as best 

suited to the environmental conditions, (Visbeck 2002). Heading dependent compass 

errors must be mitigated to correctly calculate dive-average water currents (Gourdea, et 

al, 2008). Uncertainty in GPS positions will cause errors in surface drift measurements, 

also affecting dive-average water current values (Merckelbach, et al, 2008).  

The objective of this study is to obtain absolute velocity profiles from glider-

based ADCPs for dives (consisting of multiple yos) by modifying the shear method. The 

accuracy of the absolute velocity profiles are tested by comparison to bottom-tracked 

velocity measurements and nearby moored and ship-based ADCP measurements. Section 

2 describes the data sets collected, Section 3 details the implementation of the LADCP 

shear method for glider-based ADCPs, Section 4 discusses the resulting absolute velocity 

estimates and the comparison to other measurements.  



 

 

 

 

9 

2.2 Data Sets 

2.2.1 Glider Deployments 

Data for this analysis were collected by ADCP-gliders in coastal and deep-ocean 

locations with differing environmental conditions affecting ADCP performance. In 

September 2011, Glider June flew along the Newport Hydrographic Line (NH Line) 

which occupies the 44.65° N latitude westward of the 25-m isobath on the Oregon shelf. 

The glider transects are predominantly cross-shelf. These coastal waters contains 

abundant scatterers, allowing higher resolution settings. Dives #2-17 are used for 

comparative analysis where bottom-track is available for the full water column. Dive #1 

was a test dive, and dives #18 and onward did not have bottom-track for the full profile 

depth. In June 2011, the ADCP gliders were deployed in the Sargasso Sea which contains 

few scatters in the water column and has a seafloor too deep for the ADCP to collect of 

bottom-track velocity measurements. In February/March 2012, both gliders were 

deployed in the North Atlantic Gulf Stream region where bottom-track measurements 

were also unavailable. See Fig. 2 for a map of glider deployment locations and Table 1 

for glider deployment and instrument settings. 

2.2.2 Glider Sensor Inputs to ADCP 

The ADCP records raw water velocity, bottom-track velocity, and data quality 

information for each bin of each ensemble (Teledyne RD Instruments, 2010). Unlike 

typical models, this ADCP receives heading, pitch, roll, and depth data from the glider’s 

sensors, for each ensemble. The ADCP measures velocities in beam coordinates relative 

to the transducer and converts the data to glider and earth coordinates based on data from 
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glider pitch, roll, and compass sensors. Post-mission analysis assigns depths to each bin 

based on glider depth, pitch, roll, bin size, bin number, and blanking distance. 

Dive profiles can encompass long horizontal distances relative to the vertical 

range. In one common six-hour dive traveling 0.35 m s-1 horizontally, the glider can 

transit approximately 7.6 km absent water current influence (Rudnick, et al 2004). Each 

dive consists of one or more yos (a glider descent/ascent cycle), with four yos being a 

common number per dive. The horizontal yo distance traveled with a 26-deg pitched 

descent/ascent is approximately four times the vertical distance. Velocity measurements 

are only recorded during the descent of the yo. Each ADCP ensemble of the yo is 

recorded from a successively deeper position with an ADCP range that often varies with 

depth. The result is a diagonal swath of variable thickness, where velocity measurements 

overlap at each depth. Multiple yos in the dive increase the overlapping velocity values at 

each depth. See Fig. 3 for a plot of raw velocity measurements versus depth and yo 

ensemble for Dive #13 of the Oregon coast deployment. 

2.2.3 ADCP Settings 

The multi-element phased-array transducer face is tilted forward by 11 degrees to 

optimize three-beam measurements on the 26 degree pitched glider descents. This 

configurations allows the three forward ADCP beams to orient 15 deg from vertical on 

descents while the fourth is 45 deg aft relative to the glider, see Fig. 4. The transducer 

angle is fixed forward, making the instrument orientation unsuitable for collecting 

measurements during ascents. While the instrument is oriented to record on the descent, 

data collection often starts before the glider has fully achieved its dive angle resulting in 

inaccurate measurements.  
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The ADCP uses attitude and compass data from the glider sensors for orientation. 

This is required for converting beam-relative velocities into earth-coordinate velocities 

and for dead-reckoning calculations. All water velocity data used in this research were 

collected in earth-coordinates and converted from magnetic to true north orientation. 

Magnetic declinations were calculated from the midpoint between latitude and longitude 

extents for each deployment using a National Geophysical Data Center (NGDC) 

algorithm (National Geophysical Data Center, 2012). 

Similar to LADCP deployments, glider mounted ADCP settings should be 

optimized for data density and signal range to produce more precise shear and velocity 

depth interval averages from ensemble data (Fischer and Visbeck, 1993). ADCP bin 

measurements begin below a blanking distance (0.88 m) to avoid data noise from 

transducer ringing. As the glider descends and collects data, subsequent ensemble 

velocities overlap at the same water depth intervals. Greater signal range of acceptable 

velocity returns and faster ping rates will increase measurement density within each depth 

interval. The maximum range is set by the user with the bin number and bin size 

parameters, but range is ultimately limited by environment conditions. Water columns 

with fewer scatterers will limit the range. Setting the ADCP to transmit narrow 

bandwidth pings instead of wide extends the depth range, but decreases single-bin 

precision. Designating larger bin sizes can extend the range while reducing vertical 

resolution (Teledyne RD Instruments, 2010).  

In high-scattering, coastal Oregon waters, ADCP settings were 2-m bin lengths, 

30 bins per ensemble, and wideband transmission. The ADCP collected bottom-track 
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velocities when altitudes were 65-75m. Common coastal ranges were 0-16 bins (0-32 m) 

in the 0-150 m depth range and 3-10 bins (6-30 m) at 150-300 m depths.  

In the low-scattering and deep North Atlantic Ocean locations, ADCP settings 

were 4-m bin lengths, 30 bins per ensemble, and narrowband transmission. Because 

ocean depths exceeded the ADCP range, bottom-tracked velocities were not obtained. 

Common ranges for measured velocities were 3-7 bins (12-28 m) for 0-150 m glider 

depths and 0-3 bins (0-12 m) at 150-350 m depths.  

For all locations the time-between-pings were set to fast-as-possible and pings­

per-ensemble were set to 10. The average time-per-ensemble was 3.4 sec. for Oregon, 4.2 

sec. for the Sargasso Sea, and 3.4 sec. for the Gulf Stream deployment, excluding outliers 

greater than 30 sec. The glider has an approximate descending vertical velocity of 0.10 m 

s-1. During the 3.4 seconds of one ensemble, the glider travels a vertical distance of 0.34 

m, which is less than the 2 m and 4 m bin size settings. See Table 1 for instrument 

settings. 

For all velocities and shear values of each dive, we calculate a depth based on 

glider depth, bin length, bin number, and glider pitch. Oregon deployment dive #13 

velocity and shear data is displayed in Fig. 5 with depth versus magnitude after the depth-

assigning calculation is applied. After depths are established, the data is averaged within 

discrete depth intervals to produce single velocity and shear profiles for the dive. 

2.2.4 Compass Calibration 

In order to correctly establish earth-referenced velocity components, accurate 

vehicle heading is required. Glider compasses have observed heading-dependent biases 

influenced by the magnetic properties of the glider body, internal hardware, and from the 
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exchangeable battery packs (Gourdeau, et al 2008, Merckelbach, et al 2008). Glider 

compass biases can vary for different battery packs, and manufacture-supplied calibration 

software does not fully remove these biases from the recorded heading values. True and 

measured heading differ by as much as ±25 deg with the offset magnitude being a 

sinusoidal function of compass heading; see Fig. 6. Over the course of a deployment, 

heading biases from the same battery pack have also been found to change. During the 

nine day Oregon coast deployment the heading bias amplitude changed from 10.4 to 7.1 

deg. Directional biases must be established by positioning the glider on a true compass 

rose and measuring reported headings. Heading correction values will be a function of the 

recorded glider heading and the bias. The heading corrections to water and bottom-track 

velocity components are applied to each ensemble. Components are recalculated from the 

corrected heading and the magnitude. Heading bias measurements found in this research 

were obtained either pre- or post-mission, resulting in a single correction that was applied 

to the full mission data set.  

2.2.5 Glider Dive-Average Current Calculations 

Dive-average water velocities are calculated by differencing anticipated surfacing 

positions calculated from internal glider flight-model dead-reckoning to those actual 

GPS-reported surfacing positions (Rudnick, et al 2004). Dive-average current 

calculations rely on headings from the glider compass which require recalculation with 

corrected headings. The glider calculates one horizontal water current velocity vector per 

dive. The glider’s dead-reckoning calculation uses glider attitude, vertical velocity 

(derived from pressure and time), and glider operational-state variables to infer horizontal 

glider travel distance. The water currents which cause the difference between the 
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calculated and actual surfacing positions may vary temporally and spatially during the 

dive. The resulting dive-average water current calculation will not reflect whether these 

encountered currents were constant or variable. 

The glider calculates through water dead reckoned positions using a proprietary 

algorithm to establish glider speeds and positions while flying underwater and unable to 

collect GPS signals (Lauren Cooney TWR, personal communication, October 2012). This 

research recreates the dead reckoning calculation using the corrected heading, glider 

attitude, and glider operational-state variables, though it is not exactly the same 

calculation as the one performed by TWR software.  

The dive-average current calculation summary is as follows: 



1. Identify initial position from GPS fix before glider dive, x0 . 

dp
2. Calculate vertical speed from change in pressure over change in time, .


dt 

3. Calculate the horizontal_speed u , from vertical speed, pitch  , and angle of 

attack  . 

dp
u   cos   (1)

dt 


Calculate horizontal velocity vector u 

 u  cosheading  90  i  sinheading  90 (2) 

4.
 with corrected heading. 



u 

5. Integrate velocity to obtain dead reckoned surfacing position, 

 
xDR . 

T
 
 
u 
 dt 





 
     (3) 
  x xDR 0 

0 

6.
 Obtain glider surfacing position 


xGPS from extrapolation of surface drift. 
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
7. Calculate dive-average current vector VDA  from position difference and time 

of dive. 

  xxDR  GPS   V (4)
T DA 

For each deployment the algorithm used in this research is analyzed against the 

glider calculated values, both using uncorrected heading measurements. Comparisons 

show significant correlation, but slopes suggest our calculation may produce dive-

average currents that differ from the TWR values by scaling factor. For the Oregon coast 

deployment regression analysis resulted in the following: slope: 1.15 ±0.07, offset: 0.00 

±0.04 m s-1, and R2: 0.97 for north (V) dive-average velocity, slope: 1.04 ±0.16, offset 

0.00 ±0.02 m s-1, and R2: 0.82 for east (U). RMS errors were 0.01 m s-1 and 0.03 m s-1 for 

north (V) and east (U), respectively. See Fig. 7, for regression analysis plots. Scaling 

factors are calculated from the inverse slope of biased heading water current regression. 

Scaling factors are then applied to corrected heading water current calculations for 

velocity referencing. For the Oregon Coast deployment, water current calculations are 

scaled by 0.87 for V and 0.96 for U velocity components. 

Because water current calculations use the same variables as TWR algorithms, 

except for heading, resulting values are susceptible to the same biases. See Table 3 for 

glider variables required for re-calculating dive-average currents. For example, 

experiments using the Spray glider have found that the length of time during the dive 

when the glider vertical motion is slower (e.g. during lower portions of the down-yo) will 

bias the dive-average water current calculation to water currents present during those 

instances (Gourdeau, et al, 2008). Glider dive-average current calculations include 

motion from the upcasts for which there is no ADCP data. Dive-average referenced 
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velocities are calculated for each profile by finding the relative velocity profile mean, 

subtracting that value from the dive-average water current, and adding the remainder to 

the relative profile. Because the ADCP measurements are not collected on the upcast, but 

water current measurements are, upcast current biases will be included in the referencing.  

2.2.6 Glider Surface Drift Velocities 

Surface currents can be calculated from glider drift between dives and provide an 

independent check on absolute velocity profiles. After completing a multi-yo dive, the 

glider calls via Iridium satellite phone to send data files and receive pilot instructions. 

During the 10-20 min. interval at surface, the glider collects GPS fixes and drifts with 

surface currents. Surface currents can be estimated based on the change in glider position 

over time at the surface. The average of surface currents between two successive 

surfacings should roughly match the upper profile velocities of the absolute velocity 

profiles collected during the dive. Wind driven currents, however, will likely be faster at 

the surface (Marshall and Plumb, 2008)  

GPS fixes received immediately after surfacing or closely preceding a dive can be 

inaccurate and inappropriate for velocity calculations. GPS data used for the drift 

calculation are filtered to have uncertainty values less than 2 m. Drifts further than 10 km 

or with durations longer than 12 hrs were removed because these values indicate a 

disruption to the operation, such as interim glider recovery to the vessel.  

The glider body is not designed to be a Lagrangian float, but its drift 

characteristics are indicative of surface currents. We performed an at-sea experiment 

measuring the spatial separation of an ADCP glider drifting concurrent to two CODE-

style floats for eight 30-min drifts (Davis, 1985). We compared speed over ground (SOG) 
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because the drift directions were similar for all items. CODE Float SOG drifts deviated 

from each other by less then 2%. Regression analysis of the drift SOG comparisons 

between glider and floats yielded a slope of 0.83, offset of 0.09 m s-1, and R2 of 0.87. 

RMS error between SOG drifts was 0.01 m s-1 over a SOG range of 0.55-0.65 m s-1. This 

experiment suggests that the glider drift is an approximate Lagrangian float and surface 

drift velocity calculations may agree with surface currents. During this research, surface 

drift velocities were compared to upper-profile, absolute velocities from the ADCP. 

Given the current limitations of surface drift velocity characterization, the comparisons 

were used only to aid in method development, check order of magnitudes and temporal 

trends. Further drift experiments would help to increase the accuracy of the glider drift 

characterization. See Fig. 8 for image of glider drift experiment. 

http:0.55-0.65
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2.3 Methods 

The objective of this method is to produce absolute horizontal velocity profiles 

over the full depth of each dive from limited-range, relative-to-glider ensemble ADCP 

data. Raw velocity measurements include absolute water velocities, platform velocities, 

and noise. The gliders in this experiment do not have accelerometers, positioning 

beacons, or other means of obtaining accurate glider positions and velocities while 

submerged and out of acoustic range from the seafloor. Taking the vertical central 

difference of raw water velocities for each ensemble provides the shear values for each 

bin (Fischer and Visbeck, 1993). See Fig. 5b. Depth interval averaging shear values 

creates a shear profile. Integrating the shear profile yields a velocity relative to the 

bottom dive-depth, independent from glider motion. Referencing the relative velocity 

then produces absolute velocity (Thurnherr, 2010). 

2.3.1 Data Quality Control 

The ADCP is mounted with an orientation to collect water velocity data during 

the descent, but the instrument often starts recording before the glider has completed its 

apogee maneuver and pitched to -26 deg. Velocities collected before the glider achieves 

half the descent angle (-13 deg.) or while it is still changing pitch per ensemble at 

magnitudes greater than 1 deg are removed. The glider spends 94%-96% of its descent 

duration pitched steeper than -13 deg., but other factors influence the time and depth of 

the descent measured by the ADCP, including scatterer density and the glider’s 

automated ADCP off-switch at the descent bottom. The pitch change filter is applied to a 

pitch curve smoothed with a three point moving average to avoid fluctuating pitch angles 
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activating the filter deeper than desired. Raw water and bottom-track velocities with a 

percent good value less than 90% are removed. Velocities from locations within 3 m of 

the seafloor are removed to avoid acoustic sidelobe contamination (RD Instruments, 

1996). Bottom-track velocities have an observed range of 65-75 m altitude and the 

operational manual specifies a bottom-tracking range of 100 m (Teledyne RDI, 2010). 

Values near the upper range can be sparse and contain increased, consequently velocities 

recorded at above 70 m altitude are removed when bottom range values are available 

from the instrument. Locally weighted scatter plot smoothing (i.e. “Lowess” smoothing) 

is also applied to bottom-track values and resulting values deviating greater than two 

standard deviations from mean are removed. Ensembles recorded with the glider roll 

angle is greater than 18 deg are removed according to LADCP conventions, but such roll 

is rare in glider data.  Data filtering is necessary to creating accurate profiles, (Fischer 

and Visbeck, 1993). 

2.3.2 Depth Interval Averaging and Interpolation 

Depth interval averaging takes successive, horizontally overlapping shear bin 

data, turning ensemble measurements limited to the transducer range, into a profile over 

the full dive-depth (Visbeck, 2002). Data density for the depth intervals is a function of 

ensemble vertical range, time per ensemble, accuracy of raw water velocities, and 

number yos per dive. The density is also dependent on the depth interval length, which is 

2 m for this research. When the glider is pitched for descent the transducer face is not 

horizontal and bin length does not represent the true vertical distance of velocity 

measurements. The bin depth ( DBin ) calculation must include this correction as follows 

(Gregory Rivalan TRDI, personal correspondence, November 2012):  
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D  D  Blanking _ Dist.  Bin _ Size  Bin _ Num.Bin Glider 

Bin _ Size (5)
  cos11  Pitch 

2 

The data density of profile depth intervals are a geometric function of the factors 

mentioned above, but in practice, the number of averaged bin values vary due to 

changing signal depth ranges and percent good data filtering. At depth intervals where the 

data density is low, noisy velocity values (and resulting shear) can disproportionately 

influence the average and produce inaccurate values. Noise and low data density may 

result from sparse scatterers. Low data density also occurs near the beginning and end of 

yos due to fewer overlapping ensembles per depth interval. Setting a minimum number of 

data points required for depth interval averaging reduces erroneous profile values. We set 

the minimum number of data points to 15 for the upper and lower 10 bins of each profile 

in order to target area where erroneous averages proliferate and decrease frequent mid-

profile gaps. 

Mid-profile gaps may occasionally result from lack of measurements. Where mid-

profile data gaps occur, shear values were calculated by interpolating values from 

adjacent depth intervals to avoid creation of erroneous velocity profiles by including data 

gaps while integrating vertical shear profiles. The average profile percentage of 

interpolated depth interval gaps were 0.9%, 0.2%, 1.8%, and 0% for all Oregon dives, 

Oregon nearshore dives, Sargasso Sea, and Gulf Stream deployments, respectively. 

Isolated shear values may remain at depths far from the grouping of continuous depth 

interval values. Shear depth interval values below data gaps of 20 intervals or more, are 

removed. Interpolating between these large gaps would otherwise create erroneous 

values. 
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2.3.3 Computing Velocities 

Once the shear profile is established, the values are trapezoidally integrated 

starting from the deepest depth interval of the dive to create a velocity profile relative to 

the dive-bottom. Velocities collected from the lower depths consistently have lower depth 

interval standard deviation. Standard deviation calculations of raw velocity depth 

intervals generally show values (approx. 0.15-0.2 m s-1) above the baseline (approx. 0.05 

m s-1) in the upper water column (approx 5-20 m depth) and increased for water columns 

shallower than 50 m; see Fig 9. for plot of north velocity depth interval standard 

deviation from the Gulf Stream deployment. For depth intervals above the upper extent of 

shear profile data, no velocities are calculated to avoid creating values where data was 

not collected. 

Referencing combines relative velocity data with an additional data source to 

obtain absolute velocity. Referencing an integrated relative velocity profile to dive-

average water current velocity yields an absolute velocity profile for the vertical extent of 

dive. Referencing adds the dive-average current and subtracts the relative velocity profile 

vertical mean from the relative velocity depth interval velocities. For example, if the 

dive-average was 0 m s-1, the absolute velocity profile would need to average to 0 m s-1. 

Absolute_Velocity  Relative_Velocity (n depth intervals)  
(6)

Dive_Averaged_Current - Vertical Mean Relative Velocity 

For the calculation of vertical mean relative velocity, the deepest velocity value is 

repeated for depth intervals near the bottom of the glider path, that otherwise have no 

velocity data. Similarly, the upper depth interval velocity is repeated in depth intervals 

extended up to the shallowest glider depth. The mean is then computed for all depth 
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intervals. This method will produce a mean that better reflects the currents influencing 

the dive-average current calculation and increases referencing accuracy. 

Dive-average referencing is suitable for dives, not for individual yos, because the 

dive-average values are influenced by the entire dive. Current variability may increase 

during longer duration dives, but the glider only calculates one averaged current for the 

entire dive. Integrated velocities referenced to dive-average water velocities are here 

termed “dive-average referenced velocities.” 

Bottom-track measurements are based off pings returning from the seafloor and 

provide a speed of the instrument over ground. Referencing bottom-track to raw water 

velocities yields absolute water velocities, here “bottom-referenced velocities.” Bottom-

referenced velocity profiles are created using the depth interval averaging strategy at 2 m 

interval lengths. The same minimum depth interval data point criteria is applied to the 

upper and lower intervals of bottom-referenced profiles. 

If quality control measures do not adequately filter inaccurate velocity 

measurements, shear profiles can propagate errors when integrating into relative velocity 

profiles which may result in diverging trends compared with the profile of bottom-

referenced velocities, (Visbeck 2002). The diverging profiles can have vertical structure 

that are not constant with depth, vary in magnitude, and trend differently for each dive. 

Relative velocity profiles can diverge, either positively or negatively, during integration.  

A strategy to lessen the divergence of velocity profiles and further utilize bottom-

referenced velocity data, fits integrated profiles to bottom-referenced velocities where 

available. Linear regression is applied to the difference of integrated and bottom-

referenced velocity profiles, establishing a divergence trend and offset. Differences 
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greater than two standard deviations are not included in the regression. The resulting 

linear trend and constant offset are then removed from integrated profile producing an 

absolute velocity, here “bottom-fitted” velocity. The calculation is performed for all 

profiles where any bottom-track velocities are present. Even if the diverging trend is not 

removed from the integrated velocity profile, the relative velocities will still be 

referenced to bottom-track values and become an absolute velocity profile. 
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2.4 Results and Discussion 

2.4.1 Measurement Coverage of Glider Dive 

The velocity profile vertical extents can differ from the depths of the glider dive. 

Data quality filtering and backscatter contribute this difference. The deployment averages 

of the difference between the top depth of the velocity profile and the top of the glider 

dive (generally, 0 m) and were 5.1m, 22.4 m, and 10.3 m, for the Oregon nearshore, 

Sargasso Sea, and Gulf Stream deployments, respectively. The differences between the 

bottom depth of the glider dives and the bottom of the velocity profiles were dependent 

on scatterer availability. The Oregon nearshore deployment average difference between 

glider dive maximum depth and the velocity profile was -1.0 m, indicating that the ADCP 

range extended passed the glider dive range. Seven of the sixteen dives featured velocity 

profiles below the dive bottom. The Gulf Stream deployment bottom difference was -11.8 

m, with every velocity profile extending below the dive bottom depth. The Sargasso Sea 

deployment velocity profile depth ranged between 60 m and 160m with a distribution 

independent of glider dive depth. Excluding the first 12 dives in which the glider dove to 

350 m, the remaining 70 dives had an average difference between glider dive maximum 

depth and the velocity profile of 35.2 m where the glider dove between 120 m and 160m. 

The limited ADCP range suggests that the Sargasso Sea deployment area contained few 

scatterers at depth. 

2.4.2 Velocity Comparisons in the Coastal Ocean 

The glider deployment on Oregon shelf transited through shallow water during 

the first transect and in proximity to an observational buoy equipped with an ADCP. Both 
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aspects allow for comparative analysis of the dive-referenced velocity profiles. Velocity 

profiles calculated from glider dives 2-17 included bottom-track measurements for the 

full profile depths. Comparing dive-average referenced velocity and full-depth bottom-

referenced velocity profiles provides a comparison that takes into account the full scope 

of profile error and variance, thus providing a more comprehensive analysis.  

Linear regression analysis for north (V) velocities between corresponding dive-

referenced and bottom-referenced depth interval values yielded a slope = 1.01 ±0.08, y-

intercept = 0.03 ±0.01 m s-1, and R2 = 0.63, where bottom-referenced velocities are the x-

axis. See Fig. 10 for regression plots. RMS error calculation yielded 0.05 m s-1. For east 

(U) velocities the same analysis produced a slope = 1.13 ±0.15, y-intercept = 0.02 ±0.01 

m s-1, R2 = 0.39, and RMS error = 0.05 m s-1. Coincident velocity profiles show broad 

vertical structure agreement.  

The glider made an east-west oriented dive north of the Newport Hydrographic 

Line Observation Buoy (NH10 Buoy). The average distance of the glider to buoy during 

this Dive #13 was 3.76 km northward and 0.96 km eastward. The dominant velocity 

characteristics in this eastern boundary coastal environment are alongshore currents, 

which are meridonial at this transect, increasing the potential that the buoy and glider 

ADCP observe the same water (Huyer, 1990). The Dive #13 average temperature 

measured by the glider above 10 m was 12.24 C. The buoy measured temperature at 

approximately 2.5 m depth using the TRDI Sentinel Workhorse 300-kHz ADCP 

temperature sensor. The averaged buoy temperature over the glider dive time extents was 

12.11 C, suggesting the surface waters may have similar thermal signatures. The buoy is 
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in 83 m water depth and glider ADCP bottom-referenced velocities were available from 6 

m depth for 77 m of the water column. 

Dive #13 had a distance of 2.00 km between end points and duration of 2.65 hrs. 

For comparison, NH10 bin velocities were averaged at each depth interval to produce a 

velocity profile during the same time interval. Glider depth interval velocities in 2 m bins 

were interpolated to match the 2m NH10 bins which coincided with different depths. 

Linear regression analysis between the north (V) velocities of the NH10 averaged profile 

and the glider dive-average referenced profile resulted in a slope = 1.26 ±0.60, y-intercept 

= 0.03 ±0.05 m s-1, and R2 = 0.41, where NH10 velocities are the x-axis. RMS error was 

0.05 m s-1. East (U) velocity comparison resulted in slope = 1.12 ±0.48, y-intercept = 

0.03 ±0.02 m s-1, R2 = 0.46, and RMS error = 0.04 m s-1. See Fig. 11 for Dive #13 

velocity profiles.  

Qualitative comparison between dive-average referenced velocity and NH10 

velocity suggests that the north component matches the dive-average velocity profile 

structure and differs by a constant ~0.05 m s-1. Bottom-referenced north velocities more 

closely matched the NH10 profile. The north component of the surface current, averaged 

from the surface drift calculation before and after Dive #13, was 0.005 m s-1, closest to 

the NH10 profile upper bin velocity. These aspects suggest that the dive-average profile 

for Dive #13 may be referenced to a velocity over-correcting by a value approximately 

consistent with the RMS error. Qualitatively, the buoy-measured east component matches 

profile structure with the dive-average velocity, increasing positive separation from near 

0 m s-1 at the bottom to 0.08 m s-1 at the top of profile. The bottom-referenced profile 

shows increasing negative separation. The surface current average for the dive is 0.14 m 
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s-1 which most closely matched the dive-average velocity top bin. The NH10 profile has a 

structure with features not represented in either dive-average referenced or bottom-

referenced velocities, suggesting possible different velocity features present between the 

glider and buoy. 

Bottom-referenced velocities from the glider compared to the buoy ADCP 

measurements with RMS errors of 0.02 m s-1 and 0.03 m s-1 for V and U, respectively. 

Linear regressions comparisons yielded a slope = 0.75 ±0.30 and y-intercept = 0.02 ±0.03 

m s-1 for the north (V) and a slope = 0.83 ±0.46 and a y-intercept = -0.02 ±0.02 m s-1 for 

the easy (U) components. The low RMS error values provide indication that the ADCPs 

measured similar water masses. Bottom-fitted velocity profile structures, north velocities 

(V) appear to align with the buoy ADCP measurements more closely than the dive-

average referenced velocities based on the plots. See Fig. 6 for velocity profile 

comparisons. The results of the regression comparison between bottom-fitted velocities 

and the buoy did not statistically improve against the dive-average current referenced 

velocity results. See Table 2 for comparison details.  

2.4.3 Velocity Comparisons in the Open Ocean 

During the June 2011 deployment in the Sargasso Sea and March 2011 

deployment in the North Atlantic Gulf Stream, Glider June’s flight path had close spatial-

temporal ranges to research vessel positions that allowed for comparative analysis of 

ADCP measurements. Only three deployments met the criteria for analysis. During the 

2011 deployment, the vessels and gliders followed a NNW-traveling large-scale thermal 

filament concurrently for approx. 280 km along-stream and had two suitable vessel 

ADCP data sets for comparison. During the 2012 Gulf Stream deployments gliders and 



 

 

28 

vessels followed a path approx. 370 km along-stream had one suitable vessel ADCP data 

set. See Fig. 2 for glider deployment maps and dive-average current velocities. For each 

of the experiments the vessels generally made cross-stream transects through the thermal 

ocean feature, whereas the glider flight paths were generally along-stream.  

Vessel ADCP measurements were compared to individual glider dive profiles. To 

isolate the vessel ADCP measurements for each glider dive, only data collected during 

the time extents of the dive and within 1 km of the straight line between glider diving and 

surfacing locations. Corresponding velocity bins of vessel ADCP measurements were 

averaged to create one vessel velocity profile to compare to the one glider velocity profile 

for the dive. To further ensure measurement of the same water mass, only dives were 

considered in which the average surface temperature recorded by the vessel and the 

glider-recorded upper 10m temperature average differed by less than 1 °C. The thermal 

filter criteria did not remove any compared profiles from the two 2011 data sets, but did 

remove 3 of the 12 profiles from the 2012 Gulf Stream data set otherwise meeting the 

spatial-temporal proximity filter. Large temperature gradients are associated with velocity 

differences in the Gulf Stream North Wall region. 

Two vessel ADCP data sets met the criteria for the 2011 deployment. 

Measurements from the R/V Cape Hatteras TRDI 300-kHz Workhorse ADCP provided 

15 comparative profiles. The R/V Oceanus collected data with a TRDI 75-kHz Ocean 

Observer ADCP, provided 10 velocity profiles. Overlapping vessel and glider data ranges 

enabled comparisons from 20 m to 130 m depth. Regression analysis of the glider dive-

average referenced velocities to the Cape Hatteras showed the closest correlation and 

smallest RMS errors of all three of the open ocean data set comparisons. See Fig. 12 east 
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(U) component regression plot and averaged velocity profiles including all concurrent 

velocity measurements. North velocity linear regression resulted in a slope of 1.05 ± 

0.06, offset of -0.08 ±0.07 m s-1, and R2 of 0.88. East velocity linear regression produced 

slope of 0.85 ±0.06, offset of 0.00 ±0.04 m s-1 and an R2 of 0.87. RMS errors were 0.08 

m s-1 and 0.06 m s-1, north and east velocities, respectively. Comparison to Oceanus 

ADCP data showed RMS errors of 0.10 m s-1 and 0.08 m s-1, north and east velocities. 

See Table 2 for comparison details. 

Gulf Stream vessel ADCP data during 2012 from the R/V Knorr provided a 

greater range of velocities for comparison. Vessel and glider data ranges coincided from 

10 m to 146 m depth. Vessel ADCP data during 2011 ranged from approximately -0.05 to 

0.6 m s-1 and -0.45 to 0.05 m s-1 for north and east velocities. Knorr measurements ranged 

from approximately -0.1 to 1.6 m s-1 for north and east. Knorr to glider RMS error values 

were 0.31 m s-1 and 0.21 m s-1, north and east. 
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2.5 Conclusion 

Glider-mounted ADCPs offer a mobile platform for collecting high-resolution 

water velocity profiles from dense data measurements but require attentive data 

processing to address the multiple sources of possible error. The resulting velocity RMS 

errors found in this analyses ranged 0.040-0.31 m s-1. 

Shear and absolute velocity profiles are developed for each dive by applying the 

shear method to instrument-relative velocity measurements and appropriately referencing 

to glider dive-average water currents. Absolute velocities are also attained by referencing 

raw water velocities to bottom-track measurements where available. Bottom-fitted 

velocities, employs bottom-track referencing up though the water column to attain 

absolute velocities. 

Implementing quality control to the data is necessary to achieve accurate shear 

and dive-average referenced velocity profiles. Instrument settings should increase depth 

range, utilize bottom-referenced velocities where possible, and increase horizontal 

velocity data overlap. Processing methods need to address the fact that dive-average 

water current calculations are influenced by the total glider dive whereas the glider 

ADCP collects usable measurements on the descents, between apogee maneuvers. 

Compass bias corrections are critical for accurately obtaining earth-coordinate velocities 

and revising dead-reckoning calculations. Recalculating dive-average currents with 

corrected headings using a simplified algorithm creates a potential source of errors. A 

deployment-specific scaling factor is established based on the linear regression slope 

comparing our dive-average current calculation and the TWR calculation each with 

biased headings. The scaling factor is then applied to our dive-average current calculation 

http:0.040-0.31
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with corrected headings, in order to reduce errors from incorrectly estimating glider 

through-water speed. 

The process required to achieve absolute velocities is data and calculation 

intensive, drawing on many sensors and recorded glider variables. Reducing errors based 

on correct assumptions in every aspect of the data processing is requisite to implementing 

the shear method with dive-average referencing constraints. The benefits to 

oceanographic research of producing high-resolution shear and absolute velocity profiles 

from glider platforms will be significant where traditional ADCP observations are 

logistically or economically prohibitive, where multiple mobile platforms are required, 

and in innovative applications as glider capabilities and uses advance.  
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Deployment DVL Settings Environmental 
Conditions 

Start Date Mean 
Coordinate 

LatMix 2011 
Sargasso Sea 
Glider June 

Bin Size: 2 m 
Band: Broad 
Pings/Ensemble: 10 
Avg. Ensemble Interval: 4.17 sec. 
Profile Depth Interval: 2 m 

Deep Open. 
Few Scatterers. 

13-Jun-2011 33.221 N, 
73.678 W 

Oregon Coast 
Glider June 

Bin Size: 4 m 
Band: Broad 
Pings/Ensemble: 10 
Avg. Ensemble Interval: 3.40 sec. 
Profile Depth Interval: 2 m 

Coastal Shelf. 
Sufficient 
scatterers. 

19-Sep-2011 44.679 N, 
124.457 W 

LatMix 2012 
Gulf Stream 
Glider June 

Bin Size: 4 m 
Band: Narrow 
Pings/Ensemble: 10 
Avg. Ensemble Interval: 3.37 sec. 
Profile Depth Interval: 2 m 

Deep Open. 
Gulf stream 
influence. 

01-Mar­
2012 

38.687 N, 
64.853 W 

TABLE 2.1: Glider Deployments and Instrument Settings. 
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Glider  BR, Oregon NH10 Buoy Cape Hatteras 
Sargasso Sea 

Oceanus 
Sargasso Sea 

Knorr  
Gulf Stream 

DAR 
(V) 

M: 1.01 ±0.08 
C: 0.03 ±0.01 
R2: 0.63 
RMS: 0.05 

M: 1.26 ±0.60 
C: 0.03 ±0.05 
R2: 0.41 
RMS: 0.05 

M: 1.05 ±0.06 
C: -0.08 ±0.07 
R2: 0.88 
RMS: 0.08 

M: 1.08 ±0.28 
C: -0.11 ±0.17 
R2: 0.38 
RMS: 0.10 

M: 0.96 ±0.06 
C: -0.25 ±0.12 
R2: 0.84 
RMS: 0.31 

DAR 
(U) 

M: 1.13 ±0.15 
C: 0.02 ±0.01 
R2: 0.39 
RMS: 0.05 

M: 1.12 ±0.48 
C: 0.03 ±0.02 
R2: 0.46 
RMS: 0.04 

M: 0.85 ±0.06 
C: 0.00 ±0.04 
R2: 0.87 
RMS: 0.06 

M: 1.23 ±0.26 
C: 0.10 ±0.09 
R2: 0.47 
RMS: 0.08 

M: 0.85 ±0.15 
C: 0.23 ±0.42 
R2: 0.40 
RMS: 0.21 

BR (V) N/A M: 0.75 ± 0.30 
C: 0.02 ±0.03 
R2: 0.49 
RMS: 0.02 

N/A N/A N/A 

BR (U) N/A M: 0.83 ±0.46 
C: -0.02 ±0.02 
R2: 0.34 
RMS: 0.03 

N/A N/A N/A 

BF (V) Not Independent M: 1.25 ±0.53 
C: 0.01 ±0.05 
R2: 0.47 
RMS: 0.03 

N/A N/A N/A 

BF (U) Not Independent M: 0.59 ±0.25 
C: -0.01 ±0.01 
R2: 0.47 
RMS: 0.03 

N/A N/A N/A 

TABLE 2.2: Velocity Comparison Results. 
DAR: Dive-Average Referenced Velocity. BR: Bottom-Referenced Velocity. BF: Bottom Fitted Velocity. LM11/12: Lateral 
Mixing Project 2011 / 2012. M = Linear regression slope where variable from the header row is the x-axis. C: Linear 
regression y-axis intercept (m s-1). R2: Correlation coefficient of velocity comparison to linear regression model. RMS: Root 
mean square error between velocity measurements (m s-1). For all values, error ranges are in parentheses.  
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Variables Comment 
m_present_time Unix time. 
m_depth Or use sci_water_pressure * 10 for meters. 
m_pitch In radians. 
m_heading Use heading corrected for compass bias. 
m_water_vx, 
m_water_vy 

Water velocities required for using current correction. 

m_vx_lmc, 
m_vy_lmc 

Glider horizontal velocity in Local Mission Coordinates 

m_speed Dampened glider horizontal speed. 
m_x_lmc, 
m_y_lmc 

Glider position. Requires “x_dr_state” to identify whether 
position is based on calculation or GPS positioning. Recalculate 
for with heading correction. 

x_dr_state Identifies glider status. 
m_dr_fix_time Duration of glider on surface without GPS positions. May need 

to recalculate. 
m_dr_postfix_time Duration of glider on surface with GPS positions. May need to 

recalculate. 
m_gps_x_lmc, 
m_gps_y_lmc 

Glider GPS position in Local Mission Coordinates. 

m_dr_surf_x_lmc, 
m_dr_surf_y_lmc 

Glider estimated surface position in Local Mission Coordinates. 
The variable must be recalculated.  

m_dr_time Duration of glider dive. May need to recalculate. 
TABLE 2.3: Minimum TWR Slocum variables required to re-calculate dive-average 
current velocity. 
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(A) (B) 
FIGURE 2.1: ADCP Glider Photographs. (A): ADCP glider. (B): ADCP Phased Array 
transducer and bio-optic sensors on bottom of glider. 

(A) (B) 




 

 

 

 

 

37 

(C) 
FIGURE 2.2: Map of Glider Deployments and Dive-Average Currents.  
(A) Oregon coast deployment. (B) Sargasso Sea deployment. (C) Gulf Stream 
deployment. 

FIGURE 2.3: Raw velocity measurements vs. depth and all bins for Dive #13 of Oregon 
Coast deployment. 
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26° Pitch 

FIGURE 2.4: Mounting Arrangement Beam Angles of Glider-Mounted ADCP (Teledyne 
Webb Research, 2011) 

(A) (B) 
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(C) 

FIGURE 2.5: Velocity Data and Shear Data Profiles, north direction for Oregon coast 
dive #13. (A) Raw Velocity. (B) Vertical Shear. (C) Bottom-referenced Velocity. 

19-Sep-12 

03-Oct-12 

FIGURE 2.6: Compass Correction Curve: Glider June with same battery pack before and 
after Oregon coast deployment. 
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Dive Avg Velocities with Biased Headings (V) Dive Avg Velocities with Biased Headings (U) 
R2: 0.9654. Slope: 1.1456 +/-0.065373. Y-int: -0.000592 +/-0.04439. R2: 0.81609. Slope: 1.0399 +/-0.16372. Y-int: -0.00055554 +/-0.016812. 

RMS error: 0.012378 [m s-1]. RMS error: 0.032577 [m s-1]. 
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(A) (B) 
FIGURE 2.7: Regression Plots: Dive-Average Velocities with Biased Headings, Oregon 
coast dives #2-17. (A) North Velocity, V. Slope: 1.15 ±0.07, Y-intercept: 0.00 ±0.04 m  
s-1, R2: 0.97, RMS error: 0.01 m s-1. (B) East Velocity, U. Slope: 1.04 ±0.16, Y-intercept: 
0.00 ±0.02, R2: 0.82, RMS error: 0.03. 

FIGURE 2.8: Photograph of Glider Drift Test. 
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FIGURE 2.9: North velocity depth interval standard deviation. 
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FIGURE 2.10: Oregon Shelf Dives #2-17, Regression Plots: Dive-Average Referenced 
vs. Bottom-Referenced Depth Interval Velocities. (A) North Velocity, V. (B) East 
Velocity, U. 
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V Velocity Profile, Dive #13. U Velocity Profile, Dive #13.
 
Start Time: 20-Sep-2011 19:09:24. (2.649 hrs) Start Time: 20-Sep-2011 19:09:24. (2.649 hrs)
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(A) (B) 
FIGURE 2.11: Oregon Shelf Dive #13: Velocity Profiles 

(A) (B) 
FIGURE 2.12: Cape Hatteras and Glider June Deployment Comparison. (A) Linear 
regression plot comparing velocities from all concurrent profile bins. (B) Velocity profile 
bin-average for all concurrent profiles. 
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3  FURTHER WORK 

The results of this research indicates that the modified shear method correctly 

establishes absolute velocity profiles from the relative velocity measurements of glider-

mounted ADCPs. Refinements to this method can increase the velocity accuracy. 

Alternatively, the inverse velocity solution may be applied to relative glider-ADCP 

velocity measurements with additional referencing constraints and error mitigation. 

Advancements in glider-ADCP research may improve incrementally during these initial 

years of utilization. 

This research suggests specific refinements that should be initially investigated. 

Developing a model of compass bias as a function of battery voltage and based on 

compass correlation measurements before and after deployments with the same battery 

pack will increase the accuracy of earth-referenced vector components and dead-

reckoning calculations. Experiments depleting the battery pack will be required as the 

change in compass bias parameters may not be linear with battery pack depletion. 

Currently, the compass correction is a function of heading with constant parameters 

derived from one correlation measurement before or after the deployment. Further 

refinements to the glider dead reckoning and dive-average water current calculations 

using corrected headings should also be pursued. The calculations used in this research 

utilize glider dive state parameters but lack the complexity of the Teledyne Webb 

Research (TWR) proprietary algorithm and could more accurately mimic the TWR 

calculation. Finding methods to decrease bias in compass measurements sensor may 

significantly mitigate the inaccuracies associated with compass errors, but will not 
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entirely eliminate the problem because of the variability of battery pack magnetic 

influence over the duration of the deployment.  

Implementing different operational practices may serve to improve velocity 

profile accuracy. In seas with highly variable currents (e.g. nearshore), limiting the 

duration of glider dives may reduce the smoothing effect of the dive-average current 

calculation. For instance, if the glider encounters an alongshore, surface jet which affects 

one hour of a three hour dive, the movement of the glider by the jet will influence the 

horizontal and vertical extents of one profile. Conversely, the dive-average water current 

calculations from three one-hour dives would spatially refine the jet influence into three 

absolute velocity profiles during referencing. Similarly, users of high-endurance, high-

depth rated gliders (e.g. the 1000-m Slocum Glider with lithium batteries) may record 

water velocities less frequent then every down-yo to reduce power consumption during 

extended deployments. If the glider records velocities only during the first 1000m yo, but 

does not surface until performing several more yos, the dive-average water current will 

be biased to the dive duration where no ADCP measurements are made. Referencing this 

dive-average velocity to the relative ADCP measurements may introduce inaccuracies. 

Surfacing after one yo will limit the bias of non-ADCP measurement flight to one up-yo. 

Identifying other sources of measurement bias may reveal errors that require 

additional mitigations. Previous research has established possible across-ship bias in 

AUV-mounted ADCPs (Fong and Jones, 2006). Deploying an ADCP glider to fly 

multiple constant-heading transects of differing orientations in proximity to a stationary 

and independent ADCP sensor would help establish measurement biases which may or 

may not be unrelated to compass inaccuracies.  
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Applying the inverse velocity solution to LADCP measurements has been shown 

to increase accuracy compared to the shear method when multiple referencing constraints 

are applied (Thurnherr, 2010). The inverse velocity solution may also be applied to glider 

ADCP measurements but additional efforts are required to establish low-error referencing 

constraints. Bottom-track referenced velocities may be referenced to ADCP 

measurements within range of the seafloor in a similar manner to LADCP research. 

Whereas LADCP profiles may utilize vessel ADCP measurements as a referencing 

constrain for upper water column velocities, glider ADCP measurements may reference 

properly characterized surface drift velocities. In order to utilize surface drift velocities 

further comparative surface drift experimentation is required to establish possible scaling 

factors relating glider drift to actual surface currents. Also, as glider ADCP profiles begin 

beneath the surface, the relation between the surface drift velocity and the upper depth 

interval of the velocity profile requires proper characterization. The present status of 

surface drift to top bin velocity characterization in this research indicates limited 

correlation consistency. Further experimentation and application of fluid dynamic theory 

may provide a method to better correlate the measurements. For all inverse velocity 

reference constraints, error sources should be mitigated as much as possible (Thurnherr, 

2010). 

This research provides an effective method to obtain absolute velocity 

observations with glider ADCPs. Further research may enable observations with 

increased accuracy and vertical resolution. Producing absolute velocity profiles from 

glider ADCP measurements based on depth interval averaging and proper referencing 
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enables observations based on this technology for use by oceanographic researchers with 

continued refinements as research progresses. 



 

 

 

 

 

 

 

 

 

 

 

 

 

47 

BIBLIOGRAPHY 

Davis, R. E., 1985: Drifter Observations of Coastal Surface Currents During CODE: The 
Method and Descriptive View. J. Geophys. Res., 90, 4741-4755. 

Davis, R. E., 2010: On the coastal-upwelling overturning cell. Journal of Marine 
Research, 68, no 3-4, 369-385. 

Davis, R .E., C.C. Eriksen and C. P. Jones, 2002: Autonomous Buoyancy-Driven 
Underwater Gliders. Technology and Applications of Autonomous Underwater Vehicles, 
G. Griffiths, Ed., Taylor and Francis, 37-58. 

Fischer. J., and A. M. Visbeck, 1993: Deep Velocity Profiling with Self-contained 
ADCPs. J. Atmos. Oceanic Technol., 10, 764-773. 

Fong, D. A., and N. L. Jones, 2006: Evaluation of AUV-based ADCP measurements. 
Limnol. Oceangr.: Methods, 4, 58-67. 

Gourdeau, L., W. S. Kessler, R. E. Davis, J. Sherman, C. Maes, E. Kestenare, 2008: 
Zonal Jets Entering the Coral Sea. J. Phys. Oceanogr., 38, 715–725. 

Grantham, B. A.,  F. Chan, K. J. Nielsen, D. S. Fox, J. A. Barth, A. Huyer, J. Lubchenco, 
B. A. Menge, 2004: Upwelling-driven nearshore hypoxia signals ecosystem and 
oceanographic changes in the northeast Pacific, Nature, 429, 749-754. 

Hickey, B. M., 1998: Coastal Oceanography of Western North America from the tip of 
Baja California to Vancouver Island. The Sea, 11, A. R. Robinson and K. H. Brink, Eds., 
John Wiley & Sons, Inc, 345-393.  

Huyer A., 1990: Shelf Circulation. The Sea, 9 (part B), B. Le Mehaute and D. M. Hanes, 
Eds., John Wiley & Sons, Inc, 423-466. 

Lohrmann, A. and S. Nylund, 2008: Pure Coherent Doppler Systems, 2008, IEEE/OES 
9th Working Conference on Current Measurement Technology. IEEE, 2008. 

Marshall, J. and R. A. Plumb, 2008: Atmosphere, oceans, and climate dynamics: an 
introductory text. Elsevier Academic Press. 

Merckelbach, L. M., R. D. Briggs, D. A Smeed, and G. Griffiths, 2008: Current 
measurements from autonomous underwater gliders. IEEE Ninth Working Conference on 
Current Measurement Technology, 61-67. 

National Geophysical Data Center (NGDC) of the National Oceanic and Atmospheric 
Administration (NOAA), Estimated Value of Magnetic Declination. Retrieved 2012, 
from http://www.ngdc.noaa.gov/geomagmodels/Declination.jsp 

http://www.ngdc.noaa.gov/geomagmodels/Declination.jsp


 

 

 

 

 

 

 

 

 

 

 

48 

RD Instruments, 1996: Acoustic Doppler Current Profile principles of operation a 
practical primer, 2ND Ed. [P/N 951-6069-00] 

Rudnick, D. L., R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Peery, 2004: 
Underwater Gliders for Ocean Research. Marine Technology Society Journal, 38, no. 1, 
48-59. 

Schofield, O., J. Kohut, D. Aragon, L. Creed, J. Graver, C. Haldeman, J. Kerfoot, H. 
Roarty, C. Jones, D. Webb, and S. Glenn, S. 2007: Slocum Gliders: Robust and ready. J. 
Field Robotics, 24, 473–485. 

Teledyne RD Instruments, Inc., 2010: Explorer DVL Operation Manual. [P/N 95B-6027­
00] 

Teledyne Webb Research, 2011: RDI ADCP Sensor Glider Integration Revision 01 
[Draft]  

Teledyne Webb Research, 2009: User Manual, Slocum Glider Version 02. East 
Falmouth, Massachusetts, USA. 

Thurnherr, A. M., 2010: A Practical Assessment of the Errors Associated with Full-Depth 
LADCP Profiles Obtained Using Teledyne RDI Workhorse Acoustic Doppler Current 
Profilers. J. Atmos. Oceanic Technol., 27, 1215-1227. 

Todd, R. E., D. L. Rudnick, M. R. Mazloff, R. E. Davis and B. D. Cornuelle, 2011: 
Poleward flows in the southern California Current System: Glider observations and 
numerical simulation. J. Geophys. Res., 116, 1-16. 

Visbeck, M, 2002: Deep Velocity Profiling Using Lowered Acoustic Doppler Current 
Profilers: Bottom Track and Inverse Solutions. J. Atmos. Oceanic Technol., 19, 794-807. 

Woithe, H. C., D. Boehm, and U. Kremer, 2011: Improving Slocum Glider Dead 
Reckoning Using a Doppler Velocity Log, OCEANS 2011, 1-5 IEEE, 2011. 


