Roderic Jamie Mitchell (Name) for the \qquad in \qquad presented on

Title: AN ANALYSIS OF THE VEGETATION OF ABBOTT CREEK NATURAL AREA, OREGON Abstract approved:
Signature redacted for privacy. Dr. David Milne

Abbott Creek Natural Area is a 2600 acre research area of the Mixed-Conifer forest type. This study delineated plant association units within the area, and demonstrates the use of the computer program SIMORD as a tool in the definition of such associations. One hundred fourteen sites were sampled by a reconnaissance plot technique and were used, by SIMORD, in the construction of a two-dimensional ordination. On this ordination high, moderate, moist, dry, and Arctostaphylos/Ceanothus plant associations were defined. For each association, tables were constructed of the overstory, shrub and understory vegetation. Where it was meaningful, associations we re compared to topographic features of the area, and to similar associations elsewhere.

An Analysis of the Vegetation of Abbott Creek Natural Area, Oregon

by

Roderic Jamie Mitchell

A THESIS
submitted to
Oregon State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
June 1972

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. David Milne and Dr. Jerry Franklin, without whose guidance and encouragement I could never have completed this study. I would also like to acknowledge my gratitude to Dr. William Moir for his assistance in the adaptation of SIMORD to this study; to Dr. William Chilcote and Dr. Ted . Dyrness for their assistance in preparation of the field techniques used; to Dr. Kenton Chambers for his assistance in the classification of plant species; and to the staff of the Prospect Ranger Station for their assistance in transporting me to various locations and for granting the use of the natural area for this study.

Most of all, I would like to acknowledge the encouragement and perseverance of my wife Marilyn, son Todd and daughter Erin, that has made this undertaking possible and worthwhile.

TABLE OF CONTENTS

Page
INTR ODUCTION 1
STUDY AREA 3
Geographic Location 3
Physiography and Geology 7
Soils 8
Climate 9
Vegatation 11
METHODOLOGY 14
Data Collecting Technique 14
Analysis Technique 19
RESULTS 29
Species Distribution 29
Plant Community Types 33
Vegetation Units 52
High Elevation Unit 52
Moist Unit 56
Moderate Unit 62
Dry Unit 64
Arctostaphylos/Ceanothus Unit 66 66
DISCUSSION 69
The Technique 69
Successional Patterns 72
Vegetational Association Units 73
SUMMARY 80
BIBLIOGRAPHY 82
APPENDIX 86

LIST OF FIGURES

Figure
1 Map of Oregon, insert represents Figure 2.
2 Map of southwestern Oregon, insert represents study area as seen in Figure 3.5

3 Topographic map of study area.
4 Map of study area with plot locations.
5 Data sheet used for collection in the field.

6 Location of three overstory discriminators.
7 Location of Abies magnifica as an overstory indicator of high elevation.

8 Species breakdown of largest trees in plots.
9 Reproductive and mature age classes of selected tree species.34

10 First ordination of 116 plots and no pre-selected end points is plotted on a two dimensional axis.

Second ordination of 114 plots and no pre-selected end points is plotted on a two dimensional axis.40

12 Third ordination of 114 plots and all four end points pre-selected is plotted on a two dimensional axis.44

13 Spacial arrangement of third ordination of 114 plots with five plots re-classified.47

14 Final ordination of 114 plots and all four end points pre-selected. (Forty species characteristics were used in the similarity matrix construction rather than the original 50.)

15 The darkened circles indicate the plots with an elevation of over 5,000 feet.

LIST OF FIGURES (Cont.)

16 The darkened circles indicate the plots with a slope of less than 25 degrees.58

17 The darkened circles indicate the plots with a humus layer of more than l-1/2 inches.59

18 Map of study area with the locations of plots comprising the five plant associations designated.

1 United States Weather Bureau statistical data from the Prospect Weather Station, Prospect, Oregon. Data collected from 1905-1960.

2 A list of the plots initially placed in vegetational associations by the author.

3 A list of the species used as criteria for placing plots initially into different vegetational associations.

4 A list of the 50 species characteristics initially used in the production of the similarity matrix of the plots.

5 A list of the plots by vegetational association groups and their X, Y coordinates (first ordination).

6 A list of the plots by vegetational association groups and their X, Y coordinates (second ordination).39

7 A list of the plots by vegetational association groups and their X, Y coordinates (third ordination).43

8 The ten species characteristics eliminated from the matrix construction in the final ordination.48

9 A list of the plots by vegetational association groups and their X, Y coordinates (final ordination).49

10 Overstory species distribution of the high community type.

11 Distribution of the shrub species component in the five community types (consistency, abundance, and percent cover).

LIST OF TABLES (Cont.)

Table Page12 Distribution of the understory species componentin the five community types (consistency,abundance, and percent cover).57
13 Overstory species distribution of the moist community type. 60
14 Overstory species distribution in the moderate community type. 63
15 Overstory species distribution of the dry community type. 65
16 Overstory species distribution of the Arctostaphylos/Ceanothus community type. 67

AN ANALYSIS OF THE VEGETATION OF ABBOTT CREEK NATURAL AREA, OREGON

INTR ODUCTION

The basic principle involved in phytosociological analysis is that of ordination, in which vegetation samples are arranged along an axis on the basis of their composition. Ordination was originally used (Curtis and McIntosh, 1951; Brown and Curtis, 1952) to support the view that the forests of Wisconsin formed a vegetational continuum. "Continuum" implies a gradual change in the vegetation as one moves from one area to another, as opposed to a classification system which implies a discontinuity of composition and which divides vegetation into associations with distinctive characters and discrete boundaries.

This paper is not intended as a vehicle for discussion of the relative merits of the continuum as opposed to the discrete approach to vegetation analysis. Rather, it is the author's intent to use the original ordination principle, coupled with the tools of computer analysis, to characterize the vegetational composition of Abbott Creek Natural Area.

There are two contributions that might be made by this work. The first is a description of the vegetation with some comments upon its relation to topography and successional patterns. The second contribution is in the area of technique. An attempt is made to
integrate reconnaissance plots with computer manipulations to provide a viable method of vegetation analysis which is both simple and quick. Further, an attempt is made to justify the use of non-measured reconnaissance plots (Franklin, Dyrness, and Moir, 1970) as preferable to the more traditional Daubenmire plots (Daubenmire, 1959) which involve precise measurements and considerably more labor.

In the following, an attempt is also made to carry the reader through a specific problem in which the computer analysis technique is used in making decisions about how different stands of vegetation in the area are related. The major emphasis intends to show that the computer is a tool which can serve as an adjunct to the investigator's own judgment in making decisions about vegetation analysis.

The computer program used was developed by William Moir (Dick-Peddie and Moir, 1970) and involves the development of a twodimensional ordination, upon which are placed the 120 stands considered in this study. The plot reconnaissance technique was developed by Jerry F. Franklin and C. T. Dyrness (Franklin, Dyrness, and Moir, 1970) in their study of the H. J. Andrews Experimental Forest in Oregon.

Geographic Location

Abbott Creek Natural Area is located 12 statute miles west of Crater Lake National Park, in the Rogue River National Forest of southern Oregon (Figures 1 and 2). Its boundaries include parts of Douglas and Jackson counties. The total area comprises 2660 acres in one continuous location.

The western border of the natural area is defined by the main branch of Abbott Creek and is the location of easiest access to major portions of the area. An unmaintained logging road parallels the more southerly half. This road is easily accessible from U.S. Highway 26 via forest road 3047. The northern border is defined by a ridge which divides the Rogue and Umpque river drainages. The main access to this border is via Abbott Butte fire lookout, which is serviced by forest road 2923, and the remnants of a trail which follows this ridge. The eastern edge of the area follows the Golden Stairs Trail, for the most part, which is accessible at its southern end by forest road 3017 and which can be reached from forest road 3016 with little difficulty at a more northerly point. The southern border is not long, and access to it can be gained from forest road 3047. There are no trails or roads within the area, the major topographic features of which are shown in Figure 3.

Figure 1. Map of Oregon, insert represents Figure 2.

Figure 2. Map of southwestern Oregon, insert represents study area as seen in Figure 3

Figure 3. Topographic map of study area.

Physiography and Geology

Three drainages make up the major portion of the area, with the northernmost containing almost half of the total acreage. The general topography is quite rugged, with much of the area consisting of slopes of 25 percent or more. There are some portions of gentle to almost flat relief along the western edge of the area near Abbott Creek, and some benches at high elevations below Abbott Butte. Many of the ridges between and along the borders of drainages contain rock outcroppings with little vegetation.

The highest point in the area is Abbott Butte, elevation 6131 feet, located in the northwestern corner. The crest of the ridge that parallels the northern border and much of the crest of the ridge paralleling the eastern border are above 5000 feet. The southwestern corner is the lowest point, at about 3300 feet.

Geologically, the entire area is volcanic in origin. It belongs to the "old" or Western Cascades of upper Eocene to late Miocene origin (Williams, 1942). This formation flanks the western edge of the High Cascades, ranging from Mount Hood to as far south as Mount Shasta. The older origin of the Abbott Creek region permitted the rocks of this area to become folded and deeply eroded before the High Cascades began to erupt. In some locations, the rock of this formation accumulated to thicknesses of 7,000 to 10,000 feet.

In the natural area, bedrock at the higher elevations has been described as belonging to the Sardine formation of middle and upper Miocene andesite flows. The lower elevations contain lower Miocene pyroclastic rocks and may include tuffs, breccias, and conglomerates (Franklin, 1971). The summit of Abbott Butte itself is mapped as basalt of Pliocene or Pleistocene age (Peck and Wells, 1961).

Soils

The soil of the natural area is described as belonging to the Freezener-Coyata soil series (Power and Simonson, l969), which is typically found in moderately steep to very steep forested uplands. These soils are used mainly for forest production, and, to a limited extent, for pasturage in locations of moderate slope: In the Rogue drainage basin, a mapping unit of 186,600 acres of Freezener-Coyata series exists. About 70 percent of the series is Freezener; the remaining 30 percent is Coyata. Typically these soils are deep and well drained with dark reddish-brown, friable, loam surface layers and clay loam, moderately blocky subsoils. Rock fragments range in abundance from 0 to 30 percent or more by volume. The soils are moderately acid in reaction.

Climate

The climate in the natural area is characterized as "modified maritime" in nature. Most of the precipitation is a result of low pressure systems which move eastward across western Oregon from the Pacific Ocean. During the summer, this dominant climatic feature is modified by high pressure systems which shift fronts northward, resulting in clear, dry weather. The overall outcome of such a weather pattern is a climate of cool, wet winters and warm, dry summers.

The climatic data from the United States Weather Bureau station at Prospect, Oregon (Table l) support such a conclusion. However, the general climatic features in the area reflect the elevational gradient of some 2800 feet, as well as the fact that the Prospect station is located to the south and at a lower elevation than any part of the area. It would therefore be expected that the natural area experiences a wetter and cooler climatic scheme than that found at Prospect, and that this would be especially true at higher elevations. It is not uncommon, for example, to find snow packs at the higher elevations as late as early August.

Table 1. United States Weather Bureau statistical data from the Prospect Weather Station, Prospect, Oregon. Data collected from $1905-1960$.

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total	$\begin{gathered} \text { Years Ob- } \\ \text { sérved } \end{gathered}$
Average Precipitation (inches)	6. 60	4. 94	4.55	2. 90	2.73	1. 80	.0. 33	0.30	1. $0.0{ }^{\wedge}$	3. 95	5.67.	6.86 .	41.69	56
Average Snow (inches)	20.8	13.7	9.6	2. 3	0.3	T	0.0	T	T	0.3	4.1	12.5	63.6	52
Days of Rain 0.1 inch	13	10	12	7	6	4	1	1	3	7	9	11	84	7
Days of Rain 0.5 inch	5	3	4	1	2	1	+	+	1	3.	4	6	30	10
Mean Temperature ${ }^{\circ} \mathrm{F}$	35.4	38.5	40.0	47.8	53.9	59.2	66.2	65.0	60.4	51.3	42. 2	37.4	49.9	53
Mean Daily Maximum ${ }^{\circ} \mathrm{F}$	44.4	49.4	55.2	62.4	69.3	75.8	86.1	85.5	78.4	66.9	53.9	45. 8	64.4	53
Mean Daily Minimum ${ }^{\circ} \mathrm{F}$	26. 1	27.6	29.2	32.6..	. 37.2	42.0	45.8.,	44.3.	. 39.8	34.6	3.0. 5	27.6	34.8	53
Highest Temperature ${ }^{\circ} \mathrm{F}$	70	74	88	90	98	101	106	104	106	96	82	68	106	53
Lowest Temperature ${ }^{\circ} \mathrm{F}$	-12	-2	7	17	21	27	30	27	20	12	2	-3	-12	53
Mean Days Above $90{ }^{\circ} \mathrm{F}$	0	0	0	0	1	3	14	11	8	1	0	0	38	10
Mean Days Below $32{ }^{\circ} \mathrm{F}$	24	21	25	17	8	2	+	1	4	11	20	24	157	10

Vegetation

Almost all of the natural area is forested. Typically, it can be described as belonging to the Mixed-Conifer Forest group described by Franklin and Dyrness (1969). The overstory is characterized by Pseudotsuga menziesii, Pinus lambertiana, Libocedrus decurrens and Abies concolor. At several locations in the higher elevations the Mixed-Conifer forest type gives way to Abies magnifica and Abies concolor zones. Along the streams a more mesic forest exists containing Tsuga heterophylla, Pinus monticola and Taxus brevifolia.

Some locations are nonforested. At higher elevations, some meadows are dominated by various grasses and sedges, while rock outcroppings can be found at various locations throughout the area. These are typically very exposed, and are very xeric habitats. Other nonforested locations are represented by an association of various evergreen shrubs, Castanopsis chrysophylla, Garriza fremontii, Arctostaphylos patula and Ceanothus velutinus. These shrubs are also found in some of the drier forested locations.

It is difficult to generalize about the understory species, but some that have a wide range in the area are Achlys triphylla, Berberis nervosa, Chimaphila umbellata, Iris chrysophylla, Linnaea borealis, $\underline{\text { Rubus ursinus, Trientaliés latifolia, and Whipplea modesta. }}$

Influence of Man

Human disturbance within the natural area has been minimal. There is a small clearcut of about 30 acres, just north of the west branch of Abbott Creek, which is the only obvious human disturbance. However, traces of caterpillar trails just inside the western border indicate that some selective logging may have been carried out the re at one time. There is also an area of about five acres within the eastern border in section 30 , which is the upper extension of an old logging operation which extended down the ridge marking the eastern border of the natural area. There are two more extensive clearcuts on the east side of this ridge, but outside the natural area border. These clearcuts influence the area's vegetation, as cattle are grazed in them during the summer, and they often stray into the natural area. There is also limited grazing by cattle in some of the meadows at high elevations.

A fire lookout is maintained on a limited basis during the summer months on Abbott Butte. However, this, as well as the occasional hiker or hunter, has little, if any, influence upon the vegetation of the area.

There is evidence that fires have been a part of the natural development of the area. Fire scars are found on many of the older trees, and one location in section 31 exhibits a stand of young

Pseudotsuga menziesii of almost identical size. This stand encompasses 30 acres or more and is the result of a recent fire.

Due to the relatively rugged topography and lack of logging operations, the natural area has remained quite pristine and is an ideal location for plant community studies.

The regulations governing the management of natural areas have, as a guiding principle, the prevention of any unnatural encroachment by man. Any activity which might directly or indirectly modify the area's natural ecological processes is discouraged. Logging and uncontrolled grazing of cattle are not allowed. Roads, trails, fences, and buildings are prohibited. Public use of the land which might contribute to a modification of its value for research is discouraged; such activities as camping, picknicking, and gathering of berries, nuts, or plants is therefore prohibited. However, hunting, fishing, and trapping are subject only to state regulations.

Abbott Creek Natural Area was established on November 18, 1946 and, until the time of this study, no research had been done in the area.

METHODOLOGY

During the late summer of 1970 , a reconnaissance of the area's topography and vegetation was conducted. At that time, many plant specimens were collected for identification, and some preliminary data were gathered concerning the age structures and species compositions of certain stands. The major purpose of this preliminary study was to familiarize the author with the area, and to establish a plan for data collection procedures in the summer of 1971.

Data Collecting Technique

The data for this study we collected during the months of June, July, August, and September, 1971. One hundred and twenty stands* were selected throughout the study area (Figure 4), with no attempt made to cover all of the natural area in either a uniform or random manner. An attempt was made to sample all of the various types of stands which had mature trees. Young stands represented by many small and even aged trees, and nonforested areas, were not selected for study. For the most part, stands at lower elevations were examined first, with higher elevations examined after the snow packs had melted.

[^0]

Figure 4. Map of study area with plot locations.

At each sampling location, a "reconnaissance" plot was established at a point which seemed representative of the vegetation which the plot was intended to characterize. A reconnaissance plot, described in detail below, does not require the staking out of borders and other detailed measuring techniques. This allows the establishment of more plots per unit of time than would be feasible using more traditional vegetation analysis techniques. It is the author's opinion that the small amount of precision that is lost is more than compensated by the doubling or tripling of the number of plots which can be established in a given time period.

A field data sheet was developed (Figure 5) which defines the three categories of data collected at each plot; species and size classes of the trees, frequency and cover estimates of the understory species, and topographic and geological features of the site.

The data collection procedure was usually conducted in the following manner. A site was selected well within the confines of a stand as a location for collecting data which would be representative of that stand. The center of a circular plot ranging from 50 to 100 feet in diameter was established, and the species and size classes of the trees within the plot were recorded. The size of the plot was determined by the density of the trees in the stand; for denser stands, smaller plots are needed to obtain a representative sample of the trees. From 10 to 20 mature trees were considered to constitute a

representative sample. Because this study does not involve a quantitative comparison of tree species abundance on different sites, there is no necessity to adhere to a specific plot size. The important criterion in establishing the plot size is that it be large enough to obtain a sample which will represent the proportional composition of the tree species within the stand. Once the plot size was determined, the tree data defined in Figure 5 were taken.

The plot was thoroughly examined to determine which plant species other than trees were present. Any species which could not be identified were collected for future identiciation. A frequency number ranging from 1 to $6(1=$ rare, $6=$ abundant $)$ and percent cover designations ranging from 1 to $6(1=0-5 \% ; 2=5-25 \% ; 3=25-45 \%$; $4=45-65 \% ; 5=65-85 \% ; 6=85-100 \%$) were recorded for each species.

After the vegetation observations were completed, the elevation, slope and aspect of the site were recorded. These were determined through the use of a topographic map, an Abney level and a compass. These measurements were followed by a brief description of the topography and landform of the site. A shallow soil pit was dug, and the thickness of the humus, the soil texture and percent rock content, the sizes and shapes of rocks and the soil color were recorded.

Upon completion of all of the field work, the data were coded (see Appendices 1 and 2) and transferred to computer cards. All of the data from one plot could be assembled on five 80 -column cards.

When all of the data were collected from all of the sites which comprised this investigation, the plots were subjectively divided by the investigator into groups based upon their vegetational composition (Table 2). Each group was defined as those sites having a number of species in common and an absence of certain other species (Table 3). Some plots were not easily fitted into specific groups and were considered separately. Four plots were eliminated from the analysis because their vegetation was considered aberrant from that of the rest of the area.

The computer analysis was conducted at the Oregon State University Computer Center using a Control Data Corporation 3300 computer system. The method of analysis was adapted from the original program, SIMORD, written by W. H. Moir (1970) and used in the vegetation analysis of the Organ Mountains of New Mexico. This program was designed to ordinate plots on a two dimensional plane. The distribution of plots on the plane can be analyzed to assist in refining judgements previously made concerning plot relationships.

Initially, the program involved the establishment of a matrix of similarity values based upon comparisons of each plot with all

Table 2. A list of the plots initially placed in vegetational associations by the author.

Series Name	Plot Numbers
High Altitude Series	$\begin{aligned} & 93,94,95,97,98,99,100,101,104, \\ & 105,106,107,109 \end{aligned}$
Moist Series	$\begin{aligned} & 1,15,22,23,31,32,35,48,49,50, \\ & 58,59,62,67,68,82,85,86,87, \\ & 88,89,90,91,119 . \end{aligned}$
Moderate Series	$\begin{aligned} & 9,11,12,18,20,21,26,29,30,34, \\ & 43,51,52,53,54,55,56,57,60,61 \\ & 63,65,69,70,73,76,77,81,83,84, \\ & 96,108,111,115,116,118,120 . \end{aligned}$
Dry Series	$\begin{aligned} & 4,5,7,8,14,37,39,44,64,66,71, \\ & 72,74,75,78,79,113 . \end{aligned}$
Arctostaphylos/Ceanothus Series	$\begin{aligned} & 2,6,10,17,19,24,25,27,28,33, \\ & 38,40,41,42,45,80,112,114 . \end{aligned}$
Odd \& Intermediate Series	3, 13, 46, 47, 102, 110, 117.

Plots rejected because species composition is far divergent from the rest of the plots $16,36,92,103$.

Table 3. A list of the species used as criteria for placing plots initially into different vegetational associations.
$\left.\left.\begin{array}{lcl}\text { Group Species } & \begin{array}{c}\text { Number of plots in } \\ \text { which each } \\ \text { species is found }\end{array} & \text { Group Species }\end{array}\right] \begin{array}{c}\text { Number of plots in } \\ \text { which each } \\ \text { species is found }\end{array}\right]$
other plots. Each similarity value defines, numerically, a measure of the similarity between two plots. The computation of the similarity values between pairs of plots was, in the original Moir program, based upon up to 50 characteristics of the plots being compared. The similarity matrix is a table of all the similarity values.

Only vegetation characteristics we re used to make comparisons in this study, since the author wished to develop a model totally based upon vegetation. The topographic and soil data were used for interpretation of and comparison with the vegetation model. However, under different objectives, topographic and soil characteristics could be used in the development of similarity values.

Five different categories of vegetative characteristics were available for use in developing site similarity values: frequency of young trees, middle aged trees, and older trees, frequency of understory species, and cover of understory species. With a limit of 50 characteristics, due to computer storage capacity, and with over 100 understory species occurring in the natural area, it is obvious that not all of the vegetative characters of the sites could be used. It was the refore necessary to select 50 characters that best represented the vegetative similarities and differences between the stands involved.

In the selection of the 50 species characters, several criteria were considered. A character found in all the plots was of little value because it tended simply to raise the similarity values of the entire
matrix. A characteristic found in few stands would have the opposite effect of lowe ring most of the matrix values. However, a character found in several stands would establish a criterion for discrimination, hopefully isolating the stands into groups by lowering the similarity values of certain stands while raising those of others.

Of the 50 characters used (Table 4) those species which were felt to be poor discriminators were avoided. Both understory and overstory species were used. Because of the magnitude of the size differences between different understory species, the frequency data were not used in the comparisons. It was also felt that the reproductive age classes of trees were a better monitor of recent site characteristics than were older age classes, in that they represented the species the site will perpetuate.

The similarity between two stands, I and J, was computed as:

$$
\operatorname{SIM}(I, J)=\frac{1}{n}, \sum_{k=1}^{50}\left(\frac{2 \text { minimum }\left(a_{i k}, a_{j k}\right)}{a_{i k}+a_{j k}}\right)
$$

where $a_{i k}$ and $a_{j k}$ are the frequency or cover measurements of the kth species in stands I and J. The summation was performed only for those n^{\prime} species which appear in one or both stands.

Once the similarity matrix is produced, the end stands Rland R2 for the first or X axis in the ordination plane can be identified.

The initial end stand Rl is derived by summing the column similarity

Table 4. A list of the 50 species characteristics initially used in the production of the similarity matrix of the plots.

Reproducing Pseudotsuga menziesii	Erigeron aliceae
Reproducing Libocedrus decurrens	Galium aparine
Reproducing Abies magnifica	Garria fremontii
Mature Abies magnifica	Hieracium $\underline{\text { albiflorum }}$
Reproducing Tsuga heterophylla	Linnaea borealis
Mature Tsuga heterophylla	Lupinus andersonii
Reproducing Abies concolor	Montia sibirica
Mature Pinus lambertiana	Osmorhiza chilensis
Reproducing Pinus monticola	Pachystima myrsinites
Castanopsis chrysophylla	Pedicularis racemosa
Taxus brevifolia	Pteridium aquilinum
Acer circinatum	Ribes lacustre
Achlys triphylla	$\underline{\text { Ribes viscosissimum }}$
Adenocaulon bicolor	Rosa gymnocarpa
Anemone deltoidea	$\underline{\text { Smilacina sessilifolia }}$
Arctostaphylos nevadensis	Symphoricarpos mollis
Arenaria macrophylla	Trientaliés latifolia
Asarum caudatum	Trillium ovatum
Berberis nervosa	Vaccinium membranaceum
Ceanothus prostratus	Vicia americana
Chimaphila umbellata	Vicia californica
Circaea alpina	Viola sempervirens
Clintonia uniflora	Whipplea modesta
Collomia heterophylla	Vancouveria hexandra
Corylus cornuta	

values, from the similarity matrix. The stand with the lowest total was designated as Rl. Therefore Rl is the most divergent of all of the stands considered. R2 is that stand which is least similar to R1. If two or more stands tie for this distinction, that stand least similar to all other stands in the matrix, as determined by summation, is designated R2.

Next, all of the stands are ordinated on the X axis, which is divided into 100 units between R1 and R2. The location of each stand on this axis is determined by its respective similarity value to Rl and R2. This axis represents the greatest expanse of variability within the stands because its endpoints are represented by the stand least similar to all other stands at one end and the stand least similar to it at the other. However, there may have been other sources of variability in the population of stands. Therefore, quite often in vegetation data the re would be a number of stands that we re not very similar to either R1 or R2. These stands would cluster near the middle of the X axis. However, there could be considerable variability among these stands, so that two stands located near one another on the X axis in this central region might, in fact, be quite dissimilar. To discriminate between these central stands, a second Y axis is produced, the end stands R3 and R4 being derived from the central cluster of stands located between values 40 and 60 on the X axis.

R3 is derived by finding the stand in the central cluster with the lowest total similarity to all other stands in the central cluster, much the same as Rl was determined from the total number of stands. R4 is that stand in the central cluster with the lowest similarity to R3.

Once R3 and R4 have been established, all stands are positioned on the Y axis relative to their similarity values to $R 3$ and $R 4$. The length of the Y axis is determined by the similarity value of $R 3$ to R4 and is on the same scale as the X axis.

The result of the X and Y axis formation is a two dimensional ordination, in which the position of each stand is determined by its X and Y coordinates.

At this point the stands can be plotted on an X, Y plane and the positions of the subjective groups that were originally determined by the investigator noted. The ordination may now be used to reaffirm the investigator's original judgement in assigning the plots to vegetation associations. The members of subjective groups may be found occurring in clusters on the X, Y ordination. If this is not the case, either the original subjective grouping by the investigator was poorly conducted or the end stands picked by the computer were so widely divergent from the majority of the stands that they did not represent the ends of vegetation gradients, but were simply odd stands. A stand which is completely atypical, and the refore greatly different from all
of the others, will be selected as an end stand by the program. However, it is of little value to the classification of the rest of the stands, and is best eliminated. Often such stands can be subjectively eliminated before the initial run of the program is made.

Plotting the stands can often serve to re-constitute the subjective grouping of plots. A plot which is initially placed in one group may, upon plotting, fall into another group. When this happens the investigator should look at the total vegetational composition of the plot again and determine whether it should remain in the original group or be placed in the group suggested by the ordination technique.

Another option that is available is the pre-selection of end plots. After an initial run, it may become apparent that a group of plots is projected toward one end of an axis. However, the actual end plot may not be representative of this group. It would better serve the overall position of the plots within the group to select a more representative member of the group as an end plot. This would also be a better plot to use for the determination of the position of all the plots on that particular axis. Again, this is because it is a better representative of the vegetation at that end of the gradient.

Repeated modifications of the computer analysis may be necessary before a viable ordination is developed. If this ordination involves the clustering of certain plots into groups, the basis of a community classification system may be developing. The homogeneity of
the groups can be checked by comparing the similarity values of the plots in the group to those outside the group.

Once the investigator feels he has produced a viable ordination which is representative of the relative vegetation composition of the plots, the non-vegetation data can enter the analysis. The objective here was to determine if the re was any relation between the position of the stands on the ordination and the soil, slope, etc. This could give insight into the reasons for the distribution pattern found in the area of study. For example, it might be found that one end of the axis represented stands of high elevations while the other those of low. This might indicate that elevation, or the result thereof, was a major factor in determining the vegetation distribution of the area.

RESULTS

Species Distribution

Almost all of the 120 locations sampled in the study area can be described as belonging to the Mixed-Conifer Forest group (Franklin and Dyrness, 1969). The dominant overstory species were Abies concolor, Pseudotsuga menziesii and Libocedrus decurrens occurring, respectively, in 116,103 , and 87 of the 120 sample locations. Pinus $\underline{\text { lambertiana }}$ was also widely distributed, but occurred in only 47 of the stands sampled. Other overstory species were not so ubiquitous in their distribution. Tsuga heterophylla, Taxus brevifolia, and Pinus $\underline{\text { monticola, }}$ were found in the moister locations, especially along stream beds (Figure 6). Abies magnifica was confined in its distribution to higher elevations (Figure 7).

The understory vegetation also contained species of wide distribution, such as Trientali申s latifolia, Chimaphila umbellata and Iriis chrysophylla which occurred, respectively, in 81,84 , and 86 of the plots sampled. Other species, such as Clintonia uniflora and Vaccinium membranaceum were confined to moist areas. Erigeron aliceae and Montia sibirica represented species confined to higher elevations.
$\underline{\text { Pseudotsuga menziesii }} \underline{\text { and }} \underline{\text { Pinus }}$ lambertiana were the predominant species of largest size in the stands that were sampled (Figure 8). This could be partially due to the normally large size of

- Tsuga hete rophylla
- Taxus brevifolia
- Pinus monticola

Figure 6. Location of three overstory discriminators.

Figure 7. Location of Abies magnifica as an overstory indicator of high elevation.

LaRGEST TREE IN THE PLOT

Figure 8. Species breakdown of largest trees in plots.
mature individuals of the se two species, in comparison with that of other overstory species. In the case of Pinus lambertiana, this may in fact be the case, since plots which contained this species usually contained only a few very old individuals. With respect to Pseudotsuga menziesii, this was not the case, as the overstory of most of the natural area was dominated by this species.

When the age structure of the overstory species was evaluated (Figure 9), Pseudotsuga menziesii was unique in that a majority of the stands contained old dominant individuals, but in most cases, no younger individuals. In essence, Pseudotsuga menziesii is not reproducing itself in older stands (probably due to its relatively low shade tolerance) and represents a late seral stage'species. Abies concolor and Libocedrus decurrens, by contrast, were represented by all age classes in the stands in which they occur, and might be considered dominant climax species. However, a climax situation in an area such as Abbott Creek may not be a real situation. Due to the periodic fires which occur, and the opening of the forest by fallen trees, Pseudotsuga menziesii may be able to compete successfully and remain the permanent dominant overstory species.

Plant Community Types

From the visual evaluation of the individual species distributions and groups of species, and from insight acquired in the field, the

Reproductive age classes are represented \square

Figure 9. Reproductive and mature age classes of selected tree species.
author initially divided the various sample plots into five groups, or community types, within the Mixed-Conifer Forest group (Table 2). Each group is represented by several species which most of the individual plots have in common (Table 3). Many species were found in more than one of the groups and few we exclusive to one group. It was the combinations of species which constituted the identity of a specific group. This initial subjective grouping of the plots was used as a basis for comparison with distributions generated by the computer. Subsequently, certain plots were placed in a different series when their relative positions on X, Y ordination initiated a reevaluation of the vegetation composition which resulted in the decision that the initial designation of the group was incorrect.

The results of the initial run (Table 5) produced a two dimensional ordination, with plots 46 and 104 selected as end plots of the X axis and plots 40 and 87 as end plots on the Y axis.

When the plots were located on the two dimensional field produced by the X and Y axis (Figure l0) the re seemed to be a good correlation between the locations of the plots with those in the preselected plot groups. The high elevation and moist groups were especially distinct. However, the separation of the plots along the X axis was reduced greatly due to the fact that plot 46 , which was one of the end plots, had a very low similarity value to all the other plots with the exception of plot 47 . These two plots we re on the east side

Table 5. A list of the plots by vegetational association groups and their X, Y coordinates (first ordination).

	X	Y		x	Y		X	Y
High:			Moderate:			Dry:		
93	31.7	57.5	9	73.9	58.5	4	72.4	57.7
94	28.6	65.2	11	71.1	56.9	5	58.5	61.4
95	41.3	44.7	12	59.7	51.8	7	79.9	60.9
97	42.6	42.3	18	61.2	35.9	8	57.1	60.3
98	41.6	45. 2	20	63.8	25.9	14	68.7	48.7
99	23.7	55.8	21	65.3	43.9	37	77.8	59.1
100	16.5	53.3	26	59.0	59.0	39	77.8	68.8
101	21.3	58.7	29	67.7	55.9	44	70.9	66.4
104	0.0	54.5	30	69.0	46.3	64	70.3	55.1
105	17.6	47.8	34	59.3	39.5	66	64.5	55.6
106	24.2	54.5	43	57.7	79.3	71	56.8	46.7
107	33.0	46.7	51	64.1	47.1	72	53.8	57.3
109	24.1	52.0	52	69.0	37.3	74	42.0	63.1
			53	66.5	28.2	75	48.3	55.9
Moist:			54	59.2	44.4	78	54.3	60.6
1	58.3	29.6	55	65.2	43.9	79	44.1	51.0
15	64.3	43.7	56	61.4	54.8	113	64.3	52.2
22	49.6	22.3	57	55.9	65.8	Arctostaphylos/Ceanothus:		
23	56.9	12.6	60	68.5	37.5			
31	52.3	25.5	61	65.2	40.0	2	70.0	67.3
32	55.0	24.3	63	69.3	37.8	6	69.5	59.7
35	59.1	51.5	65	56.3	42.8	10	65.2	62.9
48	54.6	22. 1	69	64.3	42.5	17	66.8	67.4
49	49.2	26.9	70	59.9	22.4	19	70.7	81.6
50	50.0	36.8	73	40.1	52.8	24	70.2	55.6
58	54.9	18.5	76	45.2	57.7	25	75.7	79.9
59	59.3	26.6	77	45.6	55.9	27	62.0	83.3
62	61.6	23.7	81	39.1	50.2	28	71.5	64.9
67	54.8	38.3	83	63.5	52.5	33	67.2	71.2
68	61.4	20.9	84	65.9	36.9	38	69.9	65.1
82	60.6	26.7	96	52.8	. 47.3	40	55.7	92.9
85	51.3	17.9	108	33.0	45.5	41	60.8	89.4
86	49.1	28.9	111	42.7	45.7	42	56.4	76.5
87	55.8	7.1	11.5	57.6	54.2	45	78.3	72.8
88	55.9	20.7	116	48.6	53.0	80	45.3	61.9
89	60.7	24.6	118	55.4	34.3	112	61.5	55.5
90	63.1	19.4	120	48.5	41.8	114	59.2	59.1
91	53.1	19.0						
119	53.4	35.0		Odd:				
						3	78.0	51.7
						13	68.2	60.6
						46	100.0	54.5
						47	93.3	53.3
						102	30.5	59.8
			-			110	34.8	52.5
						117	52.0	51.5

Figure 10. First ordination of 116 plots and no pre-selected end points is plotted on a two dimensional axis.
of the crest which runs up the eastern side of the area, and were quite distinct from the other plots in their vegetation. They had not initially been placed in any of the five major groups. It is the refore not difficult to see why plot 46 was selected as one of the end plots, and it is also quite possible that it did not represent an end point of a naturally occurring gradient running through all of the plots. It was probably an odd plot not related to the predominant pattern in the area. Therefore, plots 46 and 47 were eliminated from subsequent runs in the hope of developing a new set of end plots which would better demonstrate any major trend in the vegetation composition of the plots involved.

On the second run with 114 plots and the same 50 characters, plots 38 and 104 became the end plots of the X axis and plots 43 and 87 the end plots of the Y (Table 6). When the different community groups were plotted, the moist and high elevation groups remained distinct (Figure ll). However, the dry and Arctostaphylos/Ceanothus groups showed considerable overlap.

Upon close scrutiny of the dry and Arctostaphylos/Ceanothus plot locations, it could be seen that, even though plot 38 was the end plot on the X axis, most of the dry plots were positioned toward the bottom end of the Y axis. Plot 43 , which represented the end plot at the bottom of this axis, was a preliminary member of the moderate group. However, upon closer examination of the vegetational

Table 6. A list of the plots by vegetational association groups and their X, Y coordinates (second ordination).

	X	Y		X	Y		X	Y
High:			Moderate:			Dry:		
93	42.0	66.2	9	75.2	55.0	4	85.0	54.0
94	35.1	74.7	11	73.9	55.3	5	69.9	58.5
95	52.0	48.9	12	61.6	57.5	7	87.5	54.3
97	44.9	50.4	18	62.6	35.5	8	72.4	56.8
98	47.1	51.5	20	66.7	25.5	14	62.6	54.2
99	34.0	59.9	21	66.6	37.9	37	82.7	70.8
100	26.0	56.2	26	61.8	54.5	39	76.8	74.1
101	23.3	69.7	29	76.6	54.5	44	61.4	70.9
104	0.0	64.3	30	69.4	47.4	64	81.6	56.4
105	20.8	43.4	34	70.3	36.7	66	67.4	62.9
106	26.1	67.0	43	53.3	92.9	71	66.5	55.7
107	39.9	54.6	51	68.2	51.6	72	63.8	62.3
109	29.7	55.8	52	66.7	36.0	74	55.6	64.7
			53	65.1	28.2	75	59.8	58.2
Moist:			54	63.4	45.0	78	60.5	64.3
1	57.1	35.6	55	68.6	47.4	79	53.6	54.0
15	70.1	37.3	56	61.6	56.8	113	68.3	45.7
22	54.8	22.3	57	62.7	58.9	Arctostaphylos/Ceanothus:		
23	53.2	14.8	60	66.3	40.5			
31	54.9	28.5	61	62.1	43.3	2	69.0	62.7
32	59.0	26.6	63	63.4	37.2	6	75.0	53.4
35	73.7	50.2	65	63.5	39.8	10	65.0	64.1
48	59.1	26.2	69	65.9	41.3	17	66.0	69.3
49	48.0	32.5	70	61.6	19.9	19	70.2	67.1
50	56.4	37.9	73	52.8	50.1	24	76.8	44.9
58	52.5	25.7	76	61.7	63.1	25	76.7	71.9
59	62.7	20.8	77	57.0	58.4	27	71.4	67.2
62	60.2	26.1	81	48.3	49.4	28	77.1	55.1
67	62.1	44.9	83	74.0	49.2	33	77.0	62.3
82	60.0	29.5	84	62.0	40.0	38	100.0	63.2
85	52.8	15.4	96	63.2	54.8	40	65.1	79.3
86	55.1	35.1	108	44.1	45.5	41	68.0	76.9
87	54.5	7.1	111	48.7	50.7	42	69.4	72.0
88	51.2	20.7	115	63.6	53.7	45	75.6	74.8
89	54.2	27.3	116	60.6	54.7	80	53.9	64.8
90	57.2	22.1	118	56.9	34.3	112	69.3	55.5
91	48.5	17.8	120	55.4	37.7	114	60.9	53.8
119	58.4	42.0						
			Odd:					
						3	71.1	59.7
						13	71.0	64.9
						102	34.4	47.5
						110	42.4	48.3
						117	57.2	47.8

Figure 11. Second ordination of 114 plots and no pre-selected end points is plotted on a two dimensional axis.
composition of plot 43, it became apparent that it had been misclassified and that it should have occupied a position about mid-way between the dry group and the Arctostaphylos/Ceanothus group. The overall species composition is very similar to that used to define the Arctostaphylos/Ceanothus group. However, the plot did not contain Ceanothus prostratus or Arctostaphylos nevadensis.

Because of the position of the pre-selected moist plots 15,35 , and 67, their species compositions were investigated more closely. Plots 15 and 35 were re-classified to "moderate" because they did not have any Tsuga heterophylla, Taxus brevifolia, Acer circinatum or other key species of the moist group. However, 67 was left as a moist group plot, even though some key species were absent.

At this point no other attempts were made to re-classify plots, even though there was considerable overlap of groups, especially the -dry and Arctostaphylos/Ceanothus groups.

The next step was to select new end plots which would better represent the overall distribution of plots on each axis. One end of the X axis was dominated by the high elevation group. Therefore, plot 99 was selected as an end plot in that it seemed to best represent this group of plots due to its more central location among the plots on the ordination and species composition. For the other end of the X axis, plot 64, a typical dry plot, was selected. This was a difficult decision, since the dry and the Arctostaphylos/Ceanothus plots
overlapped in their distribution. However, the dry plots seemed to be closer to the center of the Y axis and farther to the right on the X axis than did the Arctostaphylos/Ceanothus group.

For the end plots on the Y axis, plot 87 was retained as it seemed representative of the moist group at one end. Plot 17 was selected as a good representative of the Arctostaphylos/Ceanothus group and was designated the second end plot on the Y axis.

From the X and Y designations (Table 7) the plots were positioned on a two dimensional ordination (Figure 12).

The general positioning of the groups remained similar to that found in Figure ll. However, there was a much better separation of the dry from the Arctostaphylos/Ceanothus group. The dry, high and Arctostaphylos/Ceanothus groups, all of which had one plot pre-selected as an end plot for one of the axes, were more compact than in the previous distribution. This indicated that the selected end plots were better indicators of the total groups vegetation composition than were the original end plots.

With the exception of the high elevation group, the re was little separation on the X axis. The major axis of separation of groups remained the Y axis.

There were also a few plots whose vegetational composition was re-evaluated, since the computer evaluation consistently placed them in groups other than those in which they were originally classified.

Table 7. A list of the plots by vegetational association groups and their X, Y coordinates (third ordination).

	X	Y		X	Y		X	Y
High:			Moderate:			Dry:		
93	34.5	53.5	9	73.4	60.0	4	76.6	63.2
94	31.0	67.1	11	70.8	60.9	5	62.9	66.4
95	43.0	45.7	12	64.6	62.3	7	70.6	68.8
97	39.6	41.1	15	60.6	47.3	8	61.4	65.6
98	45.7	41.0	18	58.0	40.6	14	57.3	55.3
99	23.7	51.4	20	57.6	28.8	37	64.5	67.6
100	28.8	44.1	21	63.5	52.5	39	66.1	64.7
101	27.4	58.4	26	67.3	66.7	44	61.3	65.0
104	25.6	52.4	29	56.8	62.5	64	76.3	58.5
105	34.5	46.9	30	62.6	45.7	66	54.5	66.1
106	29.9	58.3	34	65.2	40.0	71	59.5	42. 9
107	40.8	48.3	35	57.1	48.9	72	69.4	60.6
			51	60.7	49.0	74	44.7	55.9
Moist :			52	67.1	41.8	75	53.6	54.1
1	57.3	35.5	53	67.2	39.7	78	57.0	58.8
22	57.3	27.8	54	68.8	46.0	79	56.0	49.2
23	59.4	19.9	55	65.0	39.8	113	70.0	51.6
31	57.1	31.5	56	75.8	62.5			
32	59.9	26. 2	57	59.3	64.7	Arctostaphylos/Ceanothus:		
48	59.6	34.6	60	63.5	38.0	2	64.2	71.8
49	52.3	35.9	61	67.8	44.7	6	63.4	70.8
50	68.6	40.9	63	70.8	45.2	10	60.9	75.4
58	55.2	19.7	65	71.2	44. 2	17	63.7	86.7
59	62.5	24.2	69	69.7	45.7	19	62.7	80.2
62	55.2	27.7	70	58.7	22.5	24	66.2	61.2
67	49.1	39.0	73	57.7	48.4	25	67.5	82.5
68	67.2	26.2	76	50.6	53.8	27	58.6	79.5
82	62.4	34.9	77	56.2	56.2	28	74.7	70.8
85	65.1	21.9	81	52.0	40.6	33	68.1	79.3
86	58.6	37.1	83	63.0	49.7	38	67.8	66.7
87	56.6	13.3	84	64.5	45.1	40	55.5	70.7
88	62.5	23.5	96	51. 3	52. 8	41	56.5	76.4
89	68.3	31.9	108	44.4	45. 4	42	54.0	73. 2
90	63.1	25.5	109	45.1	49.0	45	69.0	82.5
91	56.8	24.6	111	44.8	49.8	80	57.2	58.2
119	55.5	41.3	115	63.3	53.9	112	545	75.2
			116	48, 6	54.9	114	66.6	71.1
			118	63.2	32.2			
			120	57.0	35.5	Odd:		
						3	60.5	57.8
						13	65.9	58.7
						43	52.9	72.4
						102	44.3	48.2
						110	45.1	41.6
						117	58.2	44.8

Figure 12. Third ordination of 114 plots and all four end points pre-selected is plotted on a two dimensional axis.

Plots 24 and 80 were changed from Arctostaphylos/Ceanothus to the moderate group. Plot 24 had an overall composition similar to the Arctostaphylos/Ceanothus group. However, the presence of Linnaea borealis and Vaccinium membranaceum as major components of its understory rationalized its re-classification to the moderate group. Plot 80 contained several species which were found only infrequently in the Arctostaphylos/Ceanothus group, but which were often found in the moist group plots. If only one or two of these species had been present I would not have re-classified the plot. However, with eight species in this category I re-classified it to moderate also.

From a closer analysis of plot 71 , it appeared that it was not a typical dry plot. However, it didn't fall clearly into any other group. It could best be placed somewhere between the dry and moderate groups. I the refore re-classified it to the odd or intermediate series.

Plots 20 and 70 were re-classified from moderate to moist, as the three most abundant understory species were Vaccinium membranaceum, Linnaea borealis and Corylus cornuta. Plot 70 also contained Calypso bulbosa, a species with a distinctly moist distribution.

Plots 108 and 111 were re-examined on the basis of their position on the X, Y ordination and found to contain many of the species of the high elevation group as well as of the moderate group. Neither plot seemed to fall clearly into either category. Plot 108 lacked seven of the high elevation indicators, and six of the moderate indicators, while
plot 111 lack $\in d$ five of each. I the refore re-classified these two plots to the odd and intermediate series.

After the above re-classification of plots, the five classification groups were re-constituted (Figure 13). The result is a fairly distinct separation of the dry, high, moist, and Arctostaphylos/Ceanothus groups. The moderate group overlapped both the dry and moist groups.

There seemed to be a distinct gradient running along the Y axis. The X axis seemed to have initially separated out the high altitude group, which appeared to be a somewhat distinct flora from the rest.

For the next step in the analysis, the members of the 50 characters used in the initial similarity matrix construction were re-examined. Certain species were found to occur in all five groups in approximately equal proportions. These species tend to increase the similarity values of all plots, and therefore condense the positions of the plots on the ordination. It was the author's desire to separate the groups, if the re were distinct differences in their vegetative composition. Therefore, ten species were eliminated (Table 8) from the next run on the basis of their fairly ubiquitous distribution.

From the results of the final run (Table 9) of the 114 plots and 40 species characters, a two dimensional ordination was constructed using the same pre-selected end plots (Figure l4). Slight condensation of the groups, with the exception of the dry group, seems to result, At the same time the Y axis was lengthened.

Figure 13. Spacial arrangement of third ordination of 114 plots with five plots re-classified.

Table 8. The ten species characteristics eliminated from the matrix construction in the final ordination.

1. Reproductive Libocedrus decurrens
2. Reproductive Abies concolor
3. Reproductive Pinus monticola
4. Asarum caudatüm
5. Berberis nervosa
6. Chimaphila umbellata
7. Rosa gymnocarpa
8. Symphoricarpos mollis
9. Trientalies latifolia
10. Whipplea modesta

Table 9. A list of the plots by vegetational association groups and their X, Y coordinates (final ordination).

	X	Y		X	Y		X	Y
High:			Moderate:			Dry:		
93	30.2	53.9	9	71.6	59.5	4	75.3	62.8
94	25. 1	63.9	11	66.1	59.6	5	58.9	74.6
95	39.2	48.6	12	60.1	64.8	7	61.4	68.5
97	36. 3	41.3	15	51.5	38.5	8	58.3	67.1
98	37.7	38.1	18	52.1	33.8	14	40.0	51.9
99	19. 3	52.0	21	56.5	51.1	37	52.8	66.5
100	26.5	46.4	24	57.6	57.5	39	64.4	75.5
101	18.6	63.9	26	57.1	66.5	44	57.5	61.8
104	18.4	52.6	29	47.9	61.3	64	80.2	56. 0
105	26.3	46.3	30	55.3	42.3	66	44.2	63.3
106	15.7	60.0	34	64.7	34.7	72	62.7	65.3
107	30.4	50.8	35	52.4	48.7	74	40.3	60.6
			51	51.3	41.4	75	49. 4	58.2
Moist:			52	58.8	29. 1	78	50.3	61.3
1	49.0	23.0	53	60.9	26.2	79	45.8	47.0
20	50.1	17.7	54	62.3	41.2	113	69.5	43. 4
22	54.0	19.6	55	67.5	32.5			
23	52.2	8.5	56	68.6	61.2	Arctostaphylos/Ceanothus:		
31	47.3	22.4	57	56.8	64.0	2	54.6	75.3
32	52.1	14.8	60	56.4	28.9	6	55.1	74.3
48	51.8	27.6	61	59.0	37.8	10	52.5	79.1
49	43.3	28.4	63	61.9	37.1	17	57.1	96.9
50	62.2	35.5	65	68.2	40.5	19	59.7	87.1
58	51.1	10.7	69	59.7	34.3	25	59.6	93.2
59	59.3	16.0	73	55.0	50.8	27	59.7	86.9
62	47.2	15.4	76	44.6	55.1	28	71.6	73.7
67	44.6	33.3	77	42.4	53.7	33	60.7	88.4
68	59.5	12.3	80	50.1	60.2	38	67.3	65.3
70	54.8	13.6	81	47.1	40.6	40	58.9	78.8
82	54.4	21.6	83	60.0	47.3	41	55.3	86.0
85	58.9	9.8	84	56.3	34.2	42	48.0	79.8
86	49.9	27.2	96	47.4	52.3	45	64.1	89.1
87	53.2	3.1	109	43.6	53.2	112	466	78.8
88	51.8	8.3	115	56.9	53.6	114	57.2	75.0
89	55.6	15.0	116	43.3	54.9			
90	55.2	11.1	118	56.2	26.0	Odd:		
91	51.6	8.5	120	55.1	31.4	3	48.4	55.4
119	42.6	32.0				13	60.5	61.6
						43	45.3	76.4
						71	56.5	38.9
						102	45.3	47.6
						108	41.9	46.9
						110	46.3	42.7
						111	36.4	52.1
						117	50.1	45.1

Figure 14. Final ordination of 114 plots and all four end points pre-selected. (Forty species characteristics were used in the similarity matrix construction rather than the original fifty.)

The vegetation of several plots was re-examined. However, plot 50 was the only one reclassified. It went from the moist to the odd and intermediate group. It contained all the species of the moist group except three and all of those were of the moderate group. A complete re-classification could not be justified to moderate because some of the species such as the Pacific Yew, although not abundant in the plot, are quite specific to the moist plots.

At this point, manipulation of the plots was terminated as there seemed to be a consensus between the arrangement of the plots on the X, Y ordination by the computer and the subjective evaluation of the author.

An evaluation of the plot group patterns would reaffirm the previous evaluation that the X axis seemed to separate the high elevation group as a distinct floral series while the Y axis represents a gradient from moist to dry within a second vegetation series. The Arctostaphylos/Ceanothus group occurs at the dry end of the moisture gradient in that it is vegetatively quite similar to the drier end of the dry group. However, it also contained Ceanothus prostratus and Arctostaphylos nevadensis almost exclusively. Thus, there was a compounding effect of a dry as well as a partially distinct vegetation series that positioned this group at the extreme end of the Y axis.

$\underline{\text { Vegetation Units }}$

High Elevation Unit

This unit is the most distinct of the five communities identified in this study. As can be seen from Figure 15, it occupies the higher elevations of the study area. It is characteristic of most of the area in the northwest corner of the natural area below Abbott Butte and Elephant Head. Some of the area below Falcon Butte and along the ridge between Falcon Butte and Elephant Head also contained this community type.

In most locations, the moderate vegetation series borders this group. The moderate series also occupies an adjacent location on the ordination.

The overstory (Table 10) is characterized by Libocedrus decurrens, Abies magnifica and Abies concolor, with all age classes represented. Among the vegetation units studied, it is unique in the absence of Pseudotsuga menziesii, which is the dominant overstory species of the older age classes for most of the natural area. The strong presence of Abies magnifica is also specific to this community type.

From Table ll, it can be seen that the shrub component is not extensive, averaging less than 5% cover. It is characterized by Ribes $\underline{\text { lacustre }}$ and Ribes viscosissimum, both of which occur only to

Figure 15. The darkened circles indicate the plots with an elevation of over 5,000 feet.

Table 10. Overstory species distribution of the high community type.

	Diameter at breast height									
	Under 5 cm .	$\begin{aligned} & 5- \\ & 10 \end{aligned}$	$\begin{aligned} & 10- \\ & 20 \end{aligned}$	$\begin{aligned} & 20- \\ & 30 \end{aligned}$	$\begin{aligned} & 30- \\ & 40 \end{aligned}$	$\begin{aligned} & 40- \\ & 50 \end{aligned}$	$\begin{aligned} & 50- \\ & 60 \end{aligned}$	$\begin{aligned} & 60- \\ & 70 \end{aligned}$	$\begin{aligned} & 70- \\ & 80 \end{aligned}$	$80 \text { G }$ over
Pseudotsuga										
menziesii										
abundance				*		*	*	*		. 2
consistency				*		*	*	*		. 2
Libocedrus										
decurrens										
abundance	2.1	1.0	. 7	1.1	. 8	. 9	. 4		1.5	
consistency	. 7	. 7	. 5	. 4	. 3	. 5	. 3	. 3	. 6	. 8
Abies										
magnifica										
abundance consistency	$\begin{array}{r} 1.3 \\ \hline \end{array}$	$.5$	$.4$. 3	$.4$. 3	. 2	. 4	. 9	3.1
Tsuga										
heterophylla ${ }^{\text {a }}$										
abundance	*	*	. 2	*	*	*	. 3		*	. 6
consistency	*	*	. 2	*	*	*	. 2		*	. 4
Abies										
abundance	5.8	3.5	1.8	2.2	. 6	. 5	. 8	. 9	1.5	2. 3
consistency	$\therefore 9$. 9	. 7	. 6	. 4	. 4	. 3	. 6	. 7	. 9
Pinus										
lambertiana										
abundance										
consistency										
Pinus										
monticola										
abundance										
consistency										
Taxus										
brevifolia										
abundance consistency										

Table 11. Distribution of the shrub species component in the five community types (consistency, abundance and percent cover).

	High			Moist			Moderate			Dry			Arct. / Cea.		
	con.	ab.	\% co.												
Ribes 1.	. 7	2.0	1.7				*	*	*	1	. . 4	. 7			
Ribes v .	. 5	1.3	1.7				. 1	. . 3	. 3	. 3	. 7	. 6			
Acer c.	. 3	. 5	. 6	. 7	2.5	14.6									
Corylus c.	. 3	. 3	. 6	. 9	2.7	6.0	. 7	1.5	2. 3	. 6	2. 2	1. 6	. 2	. 4	. 4
Rosa g.	. 5	1. 4	1. 3	. 7	1. 7	1.7	. 5	1.2	1. 4	. 4	1.2	1. 3			
Vac. mem.				1.0	2.7	3.4	. 4	1.0	1.0						
Cast. cry.				. 8	1.9	4.5	. 8	1. 9	3.1	. 6	1.6	5.6	. 6	1.6	2.8
Arcto. nev.							. 1	. 4	. 8				. 9	3.9	9.7
Cea. pro.				*	*	*	*	*	*				. 9	3.4	4.5
Garria f.							. 1	. 1	. 3	. 2	. 4	1.4	. 6	1.0	1.8

con $=$ consistency
$\mathrm{ab}=$ abundance
$\%$ co $=$ percent cover
limited extents in some of the dry and moderate stands. Acer circinatum, Corylus cornuta and Rosa gymnocarpa are also components of the shrub layer.

The understory is quite extensive, with cover values averaging well over 80%. There are several species that are quite specific in their distribution to this community type, such as Erigeron aliceae, Montia sibirica, Galium aparine and Osmorhiza chilensis, as well as some less abundant species (Table 12). Pteridium aquilinum, Smilacina sessilifolia, Vancouveria hexandra, Achlys triphylla and Vicia americana comprised the major component of the understory. Moist Unit

This community type is almost exclusively located in or near the bottoms of drainages, usually those containing running water throughout the year. From Figures 16 and 17 , it can also be seen that this moist end of the Y axis is also associated with the plots that contain the least slope and the deepest humus layers. These two factors tend to occur together in the study area, in that a majority of the plot locations were on slopes of 25 degrees or more. It would appear that the severity of the slopes in these locations is a major factor in preventing humus accumulation.

The overstory (Table 13) is characterized by mature Pseudotsuga menziesii, Pinus lambertiana and Pinus monticola, while all age

Table 12. Distribution of the understory species component in the five community types (consistency, abundance and percent cover).

	High			Moist			Moderate			Dry			Arc. / Cea.		
	con.	ab.	\% co.	con.	ab.	\% co.	con.	ab.	$\%$ co.	con.	ab.	\% co.	con.		\% co.
Erigeron 2.	. 5	1.5	1.3												
Montia s.	. 5	1.9	1.3												
Galium a.	. 7	2.2	1.7	*	*	*	. 1	. 3	. 4						
Osmer, ch.	. 7	2. 1	1.7	*	*	*									
Trillium 0.	. 4	. 8	1.0	. 7	1. 4	1.6									
Anemone d.	. 2	. 4	. 4	. 7	2. 1	1.9	. 3	. 8	. 7				*	*	*
Clint. un.	. 2	. 5	. 4	. 8	2. 3	2.0	. 2	. 5	. 5						
Pter. aq.	. 8	2. 4	3.2	. 1	. 3	. 3	. 2	. 6	. 8				*	*	*
Smil. se.	. 9	3.2	5.2	*	*	*	. 1	. 2	. 3						
Van. hex.	. 6	1.7	2.9	. 7	1.6	1.6	. 7	1.5	1.7	. 2	. 4	. 4			
Coll. he.	. 5	1.0	1.0				. 2	. 6	. 5	. 4	. 9	1.6	. 6	1.0	1.8
Achlys t.	. 6	2.3	4.0	. 9	3.2	4.6	. 9	3.0	3.2	. 4	1.3	2.1	. 2	. 5	. 5
Adeno. bi.	. 7	1.8	1.7	. 2	. 5	. 6	. 4	1.2	1.0	. 4	1.1	1.1	. 2	. 5	. 5
Arenaria m.	1.0	3.8	2.5	*	*	*	. 4	1.4	1.0	. 5	1.9	1.3	. 8	2. 8	2.1
Asarum c.	. 3	1.0	. 8	. 5	1.0	. 9	. 4	1.2	1.0	. 3	. 6	. 6	*	*	*
Circaea a.	. 8	4.7	1.9	. 3	1.0	. 7	. 2	. 8	. 6	. 4	1.6	1.1	. 3	. 8	. 6
Hier. al.	. 3	. 8	. 8	. 4	. 8	1.0	. 8	2.0	2.0	. 9	2.4	2.2	1.0	2.7	2.5
Pach. m.	. 3	. 5	. 6	1.0	2. 2	2.0	. 5	1.2	1.4	. 4	1.0	. 9	*	*	*
Sym. mo.	. 2	. 3	. 4	. 2	. 7	. 6	. 3	. 6	. 8	. 2	. 4	. 4			
Tri. 1.	. 9	2.3	1.9	. 9	2.5	2.2	. 9	2.7	2. 2	. 8	2. 0	1.9	. 8	2. 4	2. 3
Vicia 2.	. 8	2.4	3.8	. 4	1. 2	2.0	. 4	1. 3	1.9	. 4	1. 3	3.2	. 2	. 5	. 4
Vicia c.	. 4	1.0	1.0	*	*	*	. 1	. 4	. 4	. 4	1.4	1.2	*	*	*
Chim. um.	. 3	1.2	. 8	. 9	2.6	2.2	1.0	3.0	2. 4	. 9	2.7	3.2	. 9	2.8	2.8
Whipplea m.		. 4	1.3	. 8	2. 4	2.6	. 8	3.0	4.3	. 9	3.8	8.8	. 8	2.9	4.2
Ped. rac.				. 4	. 7	. 7	. 4	. 8	. 3	*	*	*			
Viola s.				. 7	2.0	1.7	. 2	. 5	. 5	. 2	. 2	. 3			
Berb. n.				. 9	3.0	2.6	. 8	2. 4	2.1	. 8	2.5	2.8	. 7	1.6	2.1
Linnaea b.				1.0	4.6	10.0	. 8	3.6	8.8				. 1	. 4	. 5
Lupinus a.							*	*	*	. 3	. 9	. 8	. 2	. 3	. 4

Figure 16. The darkened circles indicate the plots with a slope of less than 25 degrees.

Figure 17. The darkened circles indicate the plots with a humus layer of more than 1.5 inches.

Table 13. Overstory species distribution of the moist community type.

	Diameter at breast height									
	Under 5 cm .	$\begin{gathered} 5- \\ 10 \end{gathered}$	$\begin{aligned} & 10- \\ & 20 \end{aligned}$	$\begin{aligned} & 20- \\ & 30 \end{aligned}$	$\begin{aligned} & 30- \\ & 40 \end{aligned}$	$\begin{aligned} & 40- \\ & 50 \end{aligned}$	$\begin{aligned} & 50- \\ & 60 \end{aligned}$	$\begin{aligned} & 60- \\ & 70 \end{aligned}$	$\begin{aligned} & 70- \\ & 80 \end{aligned}$	$\begin{aligned} & 80 \varepsilon \\ & \text { over } \end{aligned}$
Pseudotsuga										
menziesii										
abundance	. 3	*	*		. 1	*	*	. 3	. 9	3.0
consistency	. 1	*	*		. 1	*	*	. 2	. 4	1.0
Libocedrus										
abundance	2.1	. 3	. 3	*	. 4	. 2	. 2	. 2	. 4	. 4
consistency	. 5	. 3	. 2	*	. 3	. 2	. 1	. 2	. 2	. 4
Abies										
magnifica										
abundance										
Tsuga										
heterophylla										
abundance	1.6	1. 3	1.1	. 4	. 6	. 8	. 4	. 4	. 5	1.2
consistency	. 5	. 4	. 6	. 4	. 2	. 5	. 3	. 3	. 4	. 7
Abies										
concolor										
abundance	8.3	4. 1	2.5	1. 4	1. 3	. 6	. 5	. 8	. 4	. 7
consistency	. 9	. 9	. 7	. 4	. 5	. 3	. 4	. 5	. 4	. 5
Pinus										
lambertiana										
abundance										. 4
										. 3
Pinus										
abundance			*		*				*	. 4
consistency			*		*				*	. 4
Taxus										
brevifolia										
abundance	2.2	1.5	. 9	. 5	*					
consistency	. 7	. 7	. 6	. 3	*					

classes of Abies concolor, Libocedrus decurrens, Tsuga heterophylla and Taxus brevifolia are found. Taxus brevifolia and Pinus monticola are quite specific to this community type. Pseudotsuga menziesii is the biggest component of the overstory, but shows very little ability to reproduce itself there, since younger age classes are almost completely absent. The significant presence of Tsuga heterophylla is, perhaps, the most apparent characteristic of the overstory. Although this species does occur in other community types, it has by far its greatest concentration in this series and is a definite indicator.

The shrub layer is quite extensive and is dominated by Acer circinatum, which has a distribution that is quite specific to this community type. Corylus cornuta, Castanopsis chrysophylla and Vaccinium membranaceum are also abundant there.

The understory of this group is quite extensive, often reaching 90% cover. There is also a wide variety of species, most of which are not restricted to this community type. The most important under story species is Linnaea borealis, appearing in all of the plots and accounting for an average of 10% of the understory cover. Some other important members of the understory are Achlys triphylla, Whipplea $\underline{\text { modesta }}$ Berberis nervosa and Pachystima myrsinites.

Moderate Unit

The moderate community type is the most common and accounts for a majority of the area under study. With the exception of the southeastern corner and the area occupied by the high elevation community type in the north, most of the rest of the study area is occupied by this community type. It is especially prevalent on the slopes of the major drainages, which contribute the most frequent feature of the land area.

The overstory is dominated by Pseudotsuga menziesii, Libocer drus decurrens and Abies concolor (Table 14). Abies magnifica, Tsuga $\underline{\text { hetefophylla }}$ and Pinus lambertiana are also present. Pseudotsuga menziesii is by far the most dominant old growth species, but its representation in younger age classes is much less. On the basis of this evidence, one could consider Pseudotsuga menziesii to be a late successional species, ultimately replaced by Libocedrus decurrens and Abies concolor.

The shrub layer is not extensive, and is dominated by Castanopsis chrysophylla and Corylus cornuta.

The species composition of the understory does not differ greatly from that found in the moist community type. However, neither the cover nor the variety within plots is as extensive as in the moist community. Linnaea borealis, Whipplea modesta, Achlys

Table 14. Overstory species distribution of the moderate community type.

	Diameter at breast height									
	Under 5 cm .	$\begin{aligned} & 5- \\ & 10 \end{aligned}$	$\begin{aligned} & 10- \\ & 20 \end{aligned}$	$\begin{aligned} & 20- \\ & 30 \end{aligned}$	$\begin{aligned} & 30- \\ & 40 \end{aligned}$	$\begin{aligned} & 40- \\ & 50 \end{aligned}$	$\begin{aligned} & 50- \\ & 60 \end{aligned}$	$\begin{aligned} & 60- \\ & 70 \end{aligned}$	$\begin{aligned} & 70- \\ & 80 \end{aligned}$	$80 \mathrm{~g}$ over
$\frac{\text { Pseudotsuga }}{\text { menziesii }}$										
abundance	1.6	1. 1	. 4	. 4	*	. 2	*	. 2	. 8	2.7
consistency	. 4	. 3	. 2	. 2	*	. 1	*	. 2	. 4	. 9
Libocedrus										
decurrens										
abundance	3.7	1.4	. 6	. 4	. 4	. 3	*	. 4	1.0	. 9
consistency	. 9	. 6	. 3	. 3	. 3	. 2	*	. 3	. 6	. 5
Abies										
$\underline{\text { magnifica }}$										
abundance	. 7	. 5	. 4	*	. 1		*	*	. 2	. 3
consistency	. 1	. 1	. 1	*	. 1		*	*	. 1	. 2
Tsuta										
heterophylla										
abundance	. 9	. 2	. 2	. 2	. 1	. 2	*	. 4	. 6	1.3
consistency	. 2	$\therefore 1$. 1	. 2	. 1	. 2	*	. 3	. 3	. 5
Abies										
abundance	10.0	6.3	3.2	2. 1	1.0	. 4	. 5	. 6	. 5	1.0
consistency	1.0	1.0	. 9	. 7	. 6	. 3	. 4	. 4	. 4	. 7
Pinus										
lambertiana										
abundance	. 8	*			*	*	*		*	. 9
consistency	. 3	*			*	*	*		*	. 5
Pinus										
monticola										
abundance consistency										
Taxus										
brevifolia										
abundance consistency										

triphylla, Chimaphila umbellata and Trientali\&s latifolia are the most representative species.

$\underline{\text { Dry Unit }}$

The dry community type is confined in its distribution to the southern end of the study area, where the elevation is lowest, and to the ridge running along the eastern border of the study area. Most of this area has a southwestern exposure, and becomes free of snow early in the year.

The overstory:is much the same as was found in the moderate community type (Table 15). Pseudotsuga menziesii again dominated the older age classes, but it is not reproducing nearly as well as is Abies concolor and Libocedrus decurrens. Abies magnifica is found only sparingly at some of the high elevation locations. Tsuga heterophylla is almost absent, and only a few large older Pinus lambertiana individuals are found.

The shrub layer is quite sparse, with Castanopsis chrysophylla being the most important species of this component. The understory also is not extensive. Several species found in the moderate and moist community types are not found in this unit. The best understory indicator is Whipplea modesta. Chimaphila umbellata, Berberis nervosa and Hieracium albiflorum are also found in abundance.

Table 15. Overstory species distribution of the dry community type.

	Diameter at breast height									
	Under 5 cm .	$\begin{aligned} & 5- \\ & 10 \end{aligned}$	$\begin{aligned} & 10- \\ & 20 \end{aligned}$	$\begin{aligned} & 20- \\ & 30 \end{aligned}$	$\begin{aligned} & 30- \\ & 40 \end{aligned}$	$\begin{aligned} & 40- \\ & 50 \end{aligned}$	$\begin{aligned} & 50- \\ & 60 \end{aligned}$	$\begin{aligned} & 60- \\ & 70 \end{aligned}$	$\begin{aligned} & 70- \\ & 80 \end{aligned}$	$80 \text { \& }$ over
Pseudotsuga										
menziesii										
abundance	2. 4	1.5	. 4	. 6	. 2	. 4	. 8	. 9	1. 1	2.3
consistency	. 4	. 4	. 1	. 3	. 1	. 2	. 3	. 6	. 5	. 8
Libocedrus										
decurrens										
abundance	5.1	2. 4	. 4	. 4	. 7	. 7	. 7	. 6	1.4	1.2
consistency	. 9	. 8	. 3	. 3	. 4	. 3	. 5	. 3	. 5	. 8
Abies										
magnifica										
abundance	. 6	. 2	*	*	*	. 1	. 1	. 3	. 1	. 1
consistency	. 3	. 1	*	*	*	. 1	. 1	. 1	. 1	. 1
Tsuga										
heterophylla										
abundance	*	. 2		. 1	*		. 2	. 1	. 2	1.4
consistency	*	. 1		. 1	*		. 1	. 1	. 2	. 4
Abies										
abundance	13.4	10.4	4.7	1.0	. 5	. 4	. 3	. 2	. 6	. 4
consistency	. 9	. 9	. 8	. 4	. 3	. 4	. 2	. 1	. 1	. 3
Pinus										
lambertiana										
abundance	1.9	. 6	*	*		*			*	. 8
consistency	. 3	. 1	*	*		*			*	. 4
Pinus										
monticola										
abundance										
Taxus										
brevifolia										
abundance consistency										

Arctostaphylos/Ceanothus Unit

This community type is widely distributed throughout the study area, but does not comprise a major component of the total area. This community type is commonly found along ridges. Rock outcroppings are often associated with this unit. However, plots were not placed on these outcroppings as they contain a distinct flora.

The overstory of this community type is open, and dominated by Pseudotsuga menziesii (Table 16). In contrast to the previously discussed units, Pseudotsuga menziesii is represented here by all age classes, and seems to be reproducing itself on such sites. This must be attributed, in part, to the generally more open nature of the forest canopy. Abies concolor and Libocedrus decurrens are also quite abundant. However, Abies concolor had few representatives in the older age classes. As in the dry community series, Pinus lambertiana is consistently present in the form of a few old large trees.

The shrub layer of this community type is quite distinct and extensive. It is dominated by Arctostaphylos nevadensis and Ceanothus prostratus, from which the group is named. Garrya fremontii and Castanopsis chrysophylla also comprised a major portion of this component.

Because of the extensive nature of the shrub layer, coupled with the fact that Ceanothus prostratus and Arctostaphylos nevadensis are

Table 16. Overstory species distribution of the Arct. / Cea. community type.

	Diameter at breast height									
	Under 5 cm .	$\begin{aligned} & 5- \\ & 10 \end{aligned}$	$\begin{aligned} & 10- \\ & 20 \end{aligned}$	$\begin{aligned} & 20- \\ & 30 \end{aligned}$	$\begin{aligned} & 30- \\ & 40 \end{aligned}$	$\begin{aligned} & 40- \\ & 50 \end{aligned}$	$\begin{aligned} & 50- \\ & 60 \end{aligned}$	$\begin{aligned} & 60- \\ & 70 \end{aligned}$	$\begin{aligned} & 70- \\ & 80 \end{aligned}$	$\begin{aligned} & 80 \mathrm{E} \\ & \text { over } \end{aligned}$
Pseudotsuga										
menziesii										
abundance	6.4	3.5	2. 2	. 8	. 3	. 3	. 5	. 7	1.3	2.6
consistency	. 8	. 8	. 4	. 4	. 3	. 1	. 3	. 3	. 4	. 8
Libocedrus										
decurrens										
abundance	3.8	1.3	1.0	. 2	*	. 6	. 3	. 6	. 9	. 5
consistency	. 8	. 6	. 3	. 2	*	. 5	. 1	. 4	. 6	. 3
Abies										
magnifica										
abundance	1.1	. 6	. 2		*	*	*	*		*
consistency	. 2	. 2	. 1		*	*	*	*		*
Tsuga										
heterophylla										
abundance	. 3	. 4			. 1		*	*	. 1	. 4
consistency	. 1	. 1			. 1		*	*	. 1	. 1
Abies										
concolor										
abundance	7.5	3.0	1.3	. 8	. 5	. 4	. 5	. 1	. 1	. 2
consistency	. 8	. 8	. 7	. 4	. 3	. 3	. 3	. 1	. 1	. 1
Pinus										
lambertiana										
abundance	1.8	. 2		. 1	. 1			*	. 3	1.3
	. 8	. 1			$\cdot 1$			*	. 3	. 8
Pinus										
monticola										
abundance consistency										
Taxus										
brevifolia										
abundance consistency										

very low in stature, the understory herbaceous layer is rather meager. Very seldom does this layer exceed 10% cover. The most common species of the understory are Whipplea modesta, Hieracium albiflorum, Arenaria macrophylla and Chimaphila umbellata.

DISCUSSION

This study is an attempt to characterize the vegetation of Abbott Creek Natural Area. The outcome resulted in the identification of five plant association units, based upon the presence or absence of species, and the relative cover represented by each.

The Technique

Initial efforts to classify vegetation into plant association units were influenced by the work of Braun-Blanquet (Poore, 1955). The general procedure involved the construction of tables similar to those in Tables : 11 and 12. They were the result of the laborious trial and error grouping of plots with one another, until a concensus of sub-sets of species was developed.

There are two major criticisms that might be presented with respect to the Braun-Blanquet technique (Braun-Blanquet, 1932) of association formation. First, it is quite easy to separate the vegetation if there is a great deal of diversity involved, i.e., several species that are found in only one of the associations. However, if this is not the case, it can be very difficult to separate out the associations that might exist. Another criticism regards the difficulty in determining criteria for separation of the vegetation into associations.

To try and illuminate these two difficulties, the classification
in this study was conducted by using an ordination technique to place plots on a two dimensional field. From the pattern of plots on the field, associations were delineated.

Ordination involves the placement of plots, or species, on a line defined by two end points. The position on the line of individuals or plots is determined by their relative similarity to the end points that define the line. To construct a two dimensional plane, plots representing two perpendicular ordinations, or axes, are selected. The original work on this technique of vegetation classification was done by Curtis and McIntosh (1951) and Brown and Curtis (1952). However, due to the infancy of computer technology when these studies we re conducted, the methods of selecting end points for the ordination met with some criticism (Orloci, 1966).

With the widespread use and availability of computers, it is now possible to move to a matrix of comparative values of all plots, from which techniques similar to those used in this study can be used to select end points on which to base ordinations (Beal, 1965; Loucks, 1966; Frydman and Whittaker, 1968; Knight and Loucks, 1969; Franklin, Dyrness and Moir, 1970). Once the two dimensions of the ordination are established and the plots are located on the ordination, the investigator can look for clusters of plots that might represent associations. However, it should always be kept in mind that the validity of the ordination distribution represented is dependent upon how well
the end points selected represent major trends in the actual vegetation. There is always danger involved when one reduces vegetation analysis to a series of numerical values, that some of what is seen represents a residual commodity which is the result of the numerical transfer never being able to truly represent the biological situation.

In this study, there is a second danger in that the investigator must decide which aspects of the vegetation should be used in making the initial comparisons of the plots from which the ordination is developed. Because certain species have wider ranges of distribution, or are more representative of a climax stage than others, there is a hierarchy in the choices available. In this study, no more than 50 characters can be selected, but ultimately the investigator must decide, subjectively, how many and which characters will be used.

The first choices will be those of greatest validity, and subsequent choices will decrease in importance down to the investigator's cutoff point.

It is therefore felt that programs such as SIMORD simplify the necessary manipulations of plots in assembling associations, if they exist.

The question of the selection of criteria by which associations are defined remains a difficult one. Ultimately the investigator must look at both the relative position of plots on the ordination, and the tables such as Tables 11 and 12 to determine whether or not distinct
units have been delineated, or whether the vegetation simply represents a vegetative continuum. This determination may not be obvious, but by using the ordination technique with the tables, the investigator is armed with a new tool that previous investigators following the traditional Braun-Blanquet: methods did not have.

Successional Patterns

It is difficult to analyze the successional patterns in this study area because a conscious attempt was made to sample only stands which contained a mature overstory. However, one intriguing successional problem does exist. By far the most abundant overstory species in the moist, moderate, dry, and Arctostaphylos/Ceanothus vegetation units is Pseudotsuga menziesii. Yet, due to the shade intolerance of this species (Bates, 1917; Hoffmann, 1920) only in very few open stands is it reproducing itself. Usually a study of the age classes of the trees reveals that Abies concolor and Libocedrus decurrens will eventually replace Pseudotsuga menziesii. Yet at no location in the study area did the author encounter stands dominated by old growth Abies concolor or Libocedrus decurrens. This would indicate that something has prevented the overstory from reaching this final stage of development. Several possibilities exist and are supported by observations in the study area.

At numerous locations over the entire study area, old fallen trees can be found which have opened large gaps in the forest canopy. Quite often, at these locations, younger age classes of Pseudotsuga $\underline{\text { menziesii }}$ are present. Abbott Creek Natural Area is also located in the worst forest fire climatic zone in southern Oregon, with a 300% greater fire potential than forested areas along the coast (Hayes and Hallin, 1959). There is evidence of fire at several locations, both in the form of fire scars on older trees, and in the existence of equal sized young Pseudotsuga menziesii trees over extensive areas. Again, fire could open the canopy or destroy the shrub layer enough to allow young Pseudotsuga menziesii saplings to establish themselves. A third possibility is that the canopy trees may become infected with insect parasites to such an extent that they die, which would again open the canopy and allow young Pseudotsuga menziesii to establish themselves. This was observed in two locations.

There seems to be a dynamic equilibrium in existence, which, as a result of these disturbances, maintains the Pseudotsuga menziesii as the dominant species of the overstory.

Vegetation Association Units

Five vegetation associations have resulted from this investigation of Abbott Creek Natural Area (Figure 18). The X axis of the

Figure 18. Map of study area with the locations of plots comprising the five plant associations designated.
ordination divides these units into two groups. The first is associated with the Abies magnifica var. shastensis zone (Dennis, 1959;

Whittaker, 1960; Franklin and Dyrness, 1969) and consists of the high vegetation unit. The second is associated with the Mixed-Conifer zone (Dennis, 1959; Waring, 1969; Franklin and Dyrness, 1969) and consists of the moist, moderate, dry and Arctostaphylos/Ceanothus vegetation units.

The Y axis tends to separate the four vegetation units associated with the Mixed-Conifer zone along a moisture gradient. A similar moisture gradient has been described in other Mixed-Conifer or Montane type forested areas of southwestern Oregon (Waring, 1969; Whittaker, 1960; West, 1966). These gradients have been designated as "topographic moisture gradients" with the more mesic sites being found in ravines and sheltered areas while the more xeric are found on open southwest facing slopes. The site locations along the gradient associated with the Y axis have a similar distribution.

An attempt has been made to correlate the vegetation units in this study with those found in similar studies of the Southern Cascades and adjacent areas in Oregon (Waring, 1969; Dennis, 1959; Applegate, 1939; Whittaker, 1960). However, the data is rather limited considering the extent and diversity of the flora.

The high elevation unit has similar characteristics to the Shasta Red Fir community type as described by Waring (1969), Franklin and

Dyrness (1969), and Dennis (1959). All contain Abies magnifica as a dominant indicator species. Typically the growing season is short, not beginning until July. Elevations for this association vary depending on the locations, but all are above 5000 feet. The Abbott Creek study area contains examples at the lowest elevations.
$\underline{\text { Ribes viscosissimum }}$ and Arctostaphylos patula are the two most dominant shrubs in the related studies. In the Abbott Creek area, Ribes viscosissimum is one of the more dominant species of the shrub layer, but Arctostaphylos patula is absent.

The understory at Abbott Creek appears to be denser, but contains species similar to those at Mt. Ashland (Dennis, 1959) and the Siskiyous (Waring, 1969; and Whittaker, 1960).

The moist vegetation unit shows a high similarity to Waring's (1969) Yew vegetation type. He describes this group as being associated with locations where water is available throughout the growing season, either through a sheltered topography where transpiration is low, or as a result of small streams. Acer circinatum, Cornus nuttallii and an overstudy dominated by Pseudotsuga menziesii are associated with this community type. In the Abbott Creek area, a similar situation exists in that Taxus brevifolia is found exclusively in the moist area, with Acer circinatum and Pseudotsuga menziesii dominating the understory and overstory, respectively.

It is difficult to separate the moderate and dry units when trying to compare them to descriptions of vegetation on Mt. Ashland or the Siskiyous. Many of the elements of Waring's White Fir and MixedConifer types are found in these two units. However, stands dominated by Abies concolor do not exist in the Abbott Creek area. The overstory of the moderate and dry units is dominated by Pseudotsuga menziesii, Libocedrus decurrens, Pinus lambertiana and Abies concolor. The same is true of Waring's and Franklin and Dyrness' Mixed-Conifer zones, except that Pinus ponderosa is also a major component in their designations. This is not the case at Abbott Creek, but seems to be true in locations just to the south and at lower elevations than occur in the natural area.

Castanopsis chrysophylla, Symphoricarpos mollis, Rubus ursinus, Rosa gymnocarpa, Adenocaulon bicolor, Corylus cornuta, and Berberis nervosa are common to the study areas of Waring, Franklin and Dyrness and Abbott Creek.

The Arctostaphylos/Ceanothus unit is described by Franklin and Dyrness as a plant association which occupies rocky openings in the Mixed-Conifer zone and which is dominated by Arctostaphylos nevadensis and Ceanothus prostratus. There also seems to be a correspondence between this association and Waring's Jeffrey Pine vegetation type. He describes it as occurring at various elevations with an overstory of Abies concolor, Pseudotsuga menziesii, or

Libocedrus decurrens. The common feature of these locations is an infertile, rocky, dry soil. The same description can be used for the Arctostaphylos/Ceanothus unit in Abbott Creek.

The above attempt to relate the vegetation units defined in this study to those defined in other studies (Waring, 1969; Dennis, 1959; Whittaker, 1960) is simply intended to show that there are vegetation associations of comparable composition in other locations in southern Oregon. However, the vegetation of Abbott Creek is quite indistinct, and such comparisons can only be made on a superficial basis which considers a few of the more prominent species. To my knowledge, there are no community vegetation studies on an area of similar composition to that of Abbott Creek.

Another aspect of this study that must be examined is the fact that during the course of the field work I began to assume that distinct vegetation associations exist. . This assumption supports a discrete school of plant associations (Daubenmire, 1942, 1943, 1953, 1966) as does all of the vegetation analysis work on communities in southwestern Oregon (Dennis, 1959; Whittaker, 1960; Waring, 1969; Franklin and Dyrness, 1969). It was the author's view that vegetation is distributed in associations, and associations were sought in the analysis. The author feels the association assumption was verified by the ordination procedure, in that discrete groups of plots were delineated from the overall distribution. He also feels that the
consistency, abundance, and cover values from Tables $10,11,12,13$, 14, 15 and 16 support this assumption.

However, if an investigator were to subscribe to a school of vegetation analysis which does not look for discrete associations and whose mental image of vegetation is that it is distributed along a continuum (Curtis and McIntosh, 1951 ; Brown and Curtis, 1952; Curtis, 1955; Bray and Curtis, 1959; McIntosh and Cottam, 1966; Swan, 1970), perhaps there could have been a different interpretation of the results. On the basis of the final ordination pattern, Figure 14, there is the possibility that the "topgraphic moisture gradient" defined along the Y axis could be interpreted as being associated with a vegetational continuum rather than four discrete vegetational association units.

This again supports the thesis that, ultimately, it is the judgement of the individual investigator which must be relied upon in making decisions concerning vegetation analysis. The techniques of ordination analysis and computer processing of data are simply tools to extend the analytical abilities of the investigator, but they cannot define the vegetation.

The major objectives of this study were to determine whether or not different vegetational associations exist in Abbott Creek Natural Area and to see how the computer program SIMORD (Dick-Peddie and Moir, 1970) can assist in the delineation of such communities if they exist.

The data were collected by use of a reconnaissance plot technique (Franklin, Dyrness and Moir, 1970) which afforded the investigator the opportunity to collect data from two to three times as many locations as would have been possible using the traditional construction techniques (Daubenmire, 1959).

Upon completion of the data collection, it was the author's opinion that there were distinct vegetation associations in the area. The plots were divided into high, moist, moderate, dry, Arctostaphylos/Ceanothus and odd groups. The plots which composed each of these groups were subjectively assigned, based upon a set of criteria which described each group by the presence of a series of species.

Verification of the composition and existence of the ve vetation associations was done, in part, by the use of the computer program SIMORD. This involved the selection of 50 characters of the vegetation, which were used in the construction of a matrix of similarity
values equating each plot to all others. From this matrix of similarity values, a two dimensional ordination was constructed. The relative position of the plots on this ordination equates the proximity of their vegetation composition.

After a series of plot re-classifications, it was determined that the five vegetation associations originally designated by the author did exist. These vegetational groups were associated on the ordination so that the high group was initially separated from the other groups on the first or X axis. The other groups separated on the Y axis along what appeared to be a moisture gradient, ranging from the moist to the Arctostaphylos/Ceanothus groups.
r
Further verification of the associations was accomplished by the construction of tables which depicted the vegetational composition of the overstory, shrub and understory of each association as having distinct characteristics. Associations of similar composition have also been found in other locations in southern Oregon (Waring, 1969; Whittaker, 1960; Dennis, 1959; Franklin and Dyrness, 1969).

BIB LIOGRAPHY

1. Applegate, Elmer. Plants of Crater Lake National Park. The American Midland Naturalist 22:225-314. 1939.
2. Bates, Carlos G. The role of light in natural and artificial reforestation. Journal of Forestry 15:233-239. 1917.
3. Beal, Edward. Ordination of some corticolous cryptogramic communities in south-central Wisconsin. Oikas 16:1-8. 1965.
4. Braun-Blanquet, J. Plant sociology, the study of plant communities. New York, McGraw-Hill Book Company, 1932.
5. Bray, J. R. and J. T. Curtis. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27:325-349. 1957.
6. Brown, R. T. and J. T. Curtis. The upland conifer-hardwood forest of southern Wisconsin. Ecological Monographs 22:217234. 1952.
7. Curtis, J. T. A prairie continum in Wisconsin. Ecology 36:558-566. 1955.
8. Curtis, J. T. and R. P. McIntosh. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32(3):476-496. 1951.
9. Daubenmire, R. F. An ecological study of the vegetation of southwestern Washington and adjacent Idaho. Ecological Monographs 12:53-79. 1942.
10.

$\overline{\text { Botanical Review }} 9: 325-393.1943$.
11. Classification of coniferous forests of eastern Washington and northern Idaho. Northwest Science 27:17-25. 1953.
12.

A canopy-coverage method of vegetation
analysis. Northwest Science 33:43-64. 1959.
13. Daubenmire, R. F. Vegetation: identification of typical communities. Science 151:291-298. 1966.
14. Dennis, La Rae June. A taxonomic study of the vascular flora of Ashland Peak, Jackson County, Oregon. Master's thesis, Corvallis, Oregon State University, 1959. 144 p.
15. Dick-Peddie, W. A. and W. H. Moir. Vegetation of the Organ Mountains, New Mexico. Colorado State University Range Science Department, 1970. 28 p., (Science Series no. 4.)
16. Franklin, J. F. Abbott Creek Research Natural Area. United States Forest Service, Forestry Sciences Laboratory, Corvallis, Oregon. 1971.
17. Franklin, J. F. and C. T. Dyrness. Vegetation of Oregon and Washington. Portland, Oregon, 1969. 216 p. (United States Department of Agriculture, Forest Service Research Paper. PNW-80)
18. Franklin, J. F., C. T. Dyrness and W. H. Moir. A reconnaissance method for forest site classification. Shinrin Roihi 12(1)1-14. 1970.
19. Frydmann, I. and R. H. Whittaker. Forest associations of southeast Lublin Province, Poland. Ecology 49:896-908. 1968.
20. Gleason, H. A. The individualistic concept of plant association. American Midland Naturalist 2l:92-110. 1939.
21. Hayes, G. L. and W. E. Hallin. Forest and forest-land problems of southwest Oregon. Portland, Oregon, 1959. 54 p. (United States Department of Agriculture, Forest Service Pacific Northwest Forest and Range Experiment Station)
22. Hoffman, J. V. The establishment of a Douglas fir forest. Ecology 1:49-53. 1920.
23. Knight, Dennis and Orie Loucks. A quantitative analysis of Wisconsin forest vegetation on the basis of plant function and gross morphology. Ecology 50:219-234. 1969.
24. Loucks, Orie. Ordination of forest communities by means of environmental scalers and phytosociological indices. Ecological Monographs 32:137-166. 1966.
25. McIntosh, R. P. and G. Cottam. A rebuttal to Daubenmire's criticism. Science 152:546-547. 1966.
26. Nichols, G. F. A working basis for ecological classification of plant communities. Ecology 4:1-23, 154-180. 1923.
27. Orloci, L. Geometric models in ecology I. The theory and application of some ordination methods. Journal of Ecology 54:193-215. 1966.
28. Peck, Morton E. A manual of the higher plants of Oregon. Second edition. Portland, Oregon, Binford and Mort, 1961. 936 p.
29. Peck, Dallas L. and Francis G. Wells. Geologic map of Oregon west of the l2lst meridian. 1961. (United States Geological Survey, Miscellaneous Geological Investigation Map, I-325)
30. Poore, M. E. The use of phytosociological methods in ecological investigations. Journal of Ecology 43:226-244. 1955.
31. Power, W. E. and G. H. Simonson. Oregon long range requirements for water. General soil map report with irrigable areas - Rogue Drainage Basin. Portland, Oregon, l969. 4 p. (State Water Resources Board, I-l5)
32. Swan, J.M.A. An examination of some ordination problems by use of simulated vegetational data, Ecology 51(1)89-102. 1970.
33. United States Department of Commerce. Weather Bureau. Climatic Summary of the United States Supplement for 19511960. Climatography of the United States, No. 86-31. 1961.
34. Waring, R. H. Forest plants of the eastern Siskiyous: Their environmental and vegetational distribution. Northwest Science 43(1):1-17. 1969 .
35. West, Neil E. Matrix cluster analysis of Montane forest vegetation of the Oregon Cascades. Ecology 47:975-980. 1966.
36. Whittaker, R. H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279-338. 1960.
37. Williams, Howell. The geology of Crater Lake National Park, Oregon. With a reconnaissance of the Cascade Range southward to Mount Shasta. Washington D. C., 1942, 162 p. (Carnegie Institute of Washington, Publication 540)

APPENDIX 1

The code used to transfer the data from field observations to 80 column computer cards is listed below by card and column.

CARD 1

Column		Code
1-3		Plot number (on all cards)
4		Card number (on all cards)
5-8		Elevation
9-10		Slope in degrees
11-12	Aspect	$01=$ NNN
		$02=$ NNE
		$03=\mathrm{NE}$
		$04=\mathrm{NEE}$
		$05=\mathrm{EEE}$
		$06=\mathrm{EES}$
		$07=\mathrm{ES}$
		$08=\mathrm{ESS}$
		$09=$ SSS
		$10=S S W$
		$11=S W$
		$12=S W W$
		$13=W W W$
		$14=W W N$
		15 = WN
		$16=\mathrm{WNN}$
13	Landform	1 = Bench
		2 = Ridgetop
		3 = Toe of slope
		4 = Stream terrace
		5 = Upper $1 / 3$ of slope
		$6=$ Middle $1 / 3$ of slope
		7 = Lower 1/3 of slope
14	Rock perce	$1=$ Few - $5=$ Many

Column

Code

15
Soil color $\quad l=$ Brown
$2=$ Light Brown
3 = Dark Brown
4 = Gray/Brown $5=$ Red/Brown

16
Humus depth $1=1 / 2$ inch $2=1$ inch $3=1-1 / 2$ inches $4=2$ inches

Rock
$1=$ Small rounded $2=$ Small angular 3 = Large rounded 4 = Large angular 5 = Large and small rounded 6 = Large and small angular

18
Largest tree $1=$ Douglas fir
2 = Incense cedar
3 = Red fir
4 = Western hemlock
$5=$ White fir
6 = Sugar pine
7 = White pine
8 = Ponderosa pine
Diameter of largest tree in inches
Take all 14 tree species in modules of three and categorize as follows:
(A) Module column number $1=0-10 \mathrm{~cm}$ dbh

$$
\begin{aligned}
& 1=\text { Rare }=4 \text { or less } \\
& 2=\text { Occasional }=5-9 \\
& 3=\text { Common }=10-24 \\
& 4=\text { Abundant }=25 \text { or more }
\end{aligned}
$$

(B) Module column number $2=10-70 \mathrm{~cm}$ dbh

$$
\begin{aligned}
& 1=1-2 \\
& 2=3-4 \\
& 3=4-6 \\
& 4=7-9 \\
& 5=10-12
\end{aligned}
$$

Column
21-62
(Cont.)

$$
\begin{aligned}
& 6=13-16 \\
& 7=17-21 \\
& 8=22-26 \\
& 9=27 \text { or more }
\end{aligned}
$$

(C) Module column number $3=70 \mathrm{~cm}$ dbh or more
$1=1$
$2=2$
$3=3$
$4=4$
$5=5$
$6=6$
$7=7$
$8=8$
9 = 9 or more

63-64

65-66
Percent shrub layer
Percent herb layer

67-80 and l-80 on future cards as far as necessary in modules of 2.
(A) Module column number $1=$ Abundance
$1=$ Rare - $6=$ Abundant
(B) Module column number $2=$ Coverage

$$
\begin{aligned}
& 1=0-5 \% \\
& 2=5-25 \% \\
& 3=25-45 \% \\
& 4=45-65 \% \\
& 5=65-85 \% \\
& 6=85-100 \%
\end{aligned}
$$

(Species names of all plants from Peck, 1961)
67-68 Acer circinatum
69-70 Achlys triphylla
71-72 Adenocaulon bicolor
73-74 Anemone deltoidea
75-76 Arctostaphylos nevadensis
77-78 Arctostaphylos patula
79-80 Arenaria macrophylla

$5-6$	Asarum caudatum
$7-8$	Berberis nervosa
$9-10$	Carex inops
$11-12$	Castanopsis chrysophylla
$13-14$	Ceanothus prostratus
$15-16$	Chimaphila umbellata
$17-18$	Circaea alpina
$19-20$	Clintonia uniflora
$21-22$	Collomia heterophylla
$23-24$	Corylus cornuta
$25-26$	Disporum hookeri
$27-28$	Erigeron aliceae
$29-30$	Fragaria californica
$31-32$	Galium aparine
$33-34$	Garrya fremontii
$35-36$	Goodyera oblongifolia
$37-38$	Hieracium albiflorum
$39-40$	Holodiscus discolor
$41-42$	Iris chrysophylla
$43-44$	Linnaea borealis
$45-46$	Lupinus andersonii
$47-48$	Melica subulata
$49-50$	Montia perfoliata
$51-52$	Montia sibirica
$53-54$	Osmorhiza chilensis
$55-56$	Pachystima myrsinites
$57-58$	Pedicularis racemosa
$59-60$	Polystichum munitum
$61-62$	Pteridium aquilinum
$63-64$	Pyrola peicta
$65-66$	Ribes lacustre
$67-68$	Ribes viscosissimum
$69-70$	Rosa gymnocarpa
$71-72$	Rubusparviflorus
$73-74$	Rubusursinus
$75-76$	Smilacina sessilifolia
$77-78$	Symphoricarpos mollis
$79-80$	Synthyris reniformis
7	

CARD 3

$5-6$	Trientali申s latifolia
$7-8$	Trillium ovatum

9-10	Vaccinium membranaceum
11-12	Vicia americana
13-14	Vicia californica
15-16	Viola sempervirens
17-18	Viola sheltonii
19-20	Whipplea modesta
21-22	Acer glabrum
23-24	Actaea arguta
25-26	Agastache urticifolia
27-28	Agoseris aurantiaca
29-30	Amelanchier florida
31-32	Antennaria racemosa
33-34	Apocynum androsaemifolium
35-36	Arnica cordifolia
37-38	Brodiaea pulchella
39-40	Calypso bulbosa
41-42	Castilleja sp.
43-44	Ceanothus integerrimus
45-46	Ceanothus velutinus
47-48	Cheilanthes siliquosa
49-50	Clarkia rhomboidea
51-52	Collinsia linearis
53-54	Collinsia parviflora
55-56	Collomia grandiflora
57-58	Collomia tinctoria
59-60	Convolvulus arvensis
61-62	Corallorhiza striata
63-64	Cornus glabrata
65-66	Cystopteris fragilis
67-68	Delphinium depauperatum
69-70	Delphinium scopulorum
71-72	Dicentra formosa
73-74	Eriophyllum lanatum
75-76	Erythronium oregonum
77-78	Festuca occidentalis
79-80	Gaultheria ovatifolia
	CARD 4
5-6	Gilia aggregata
7-8	Gilia capitata
9-10	Hackelia californica
11-12	Lathyrus nevadensis
13-14	Ligusticum apiifolium
15-16	Lillium washingtonianum

$17-18$	Lianthus ciliatus
$19-20$	Lotus micranthus
$21-22$	Lupinus latifolius
$23-24$	Madia gracilis
$25-26$	Marah oregana
$27-28$	Melica aristata
$29-30$	Melica hartfordii
$31-32$	Mertensia paniculata
$33-34$	Nemophila parviflora
$35-36$	Orthocarpus hispidus
$37-38$	Perideridia gairdneri
$39-40$	Phacelia leucophylla
$41-42$	Prunus emarginata
$43-44$	Pyrola bracteata
$45-46$	Pyrola dentata
$47-48$	Pyrola minor
$49-50$	Rhododendron macrophyllum
$51-52$	Ribes cereum
$53-54$	Ribes sanguineum
$55-56$	Rubus nivalis
$57-58$	Sedum spathulifolium
$59-60$	Silene campanulata
$61-62$	Smilacima racemosa
$63-64$	Sorbus sitchensis
$65-66$	Swertia umpquaensis
$67-68$	Trifolium longipes
$69-70$	Valeriana sitchensis
$71-72$	Vancouveria hexandra
$73-74$	Luina nardosmia
$75-76$	Berberis aquifolium
$77-78$	Unidentified (no. 125)
$79-80$	Unidentified (no. 129)
7	

Appendix 2 includes all the data from the 120 plots of the Abbott Creek study. The data are arranged on computer coding forms using the outline in Appendix 1.

RORTPAN CODING FORM

ERELOM
fortan cooing form

raseamm	Name COD M TCHECC	
ROLTINE	DATE	PAGE OF

(1才) fortran CODING FORM

-focram	Name ROD rrilTCHECL	
noutine	date	Page of 10

E

Enne

rcetran coding form

PrCGRAM	NAME ROD MAITCHEL	
goutine	EATE	PAGE OF 14

Eisman fortan coding form

frob						Nane R	ROS MITCH	E	
						oate			age of 15
Tisint				Forthan statenen					
				$\begin{aligned} & \therefore=\text { ONE } \\ & 1=A L P M A \end{aligned}$			$\begin{aligned} & \begin{array}{l} 2=\mathrm{Tmo} \\ \mathrm{r} \end{array} \mathrm{ALLPM} \end{aligned}$		SERIAL
Fin＇on	1－10．0	10，men							
43.14	029	1050314150	2425	53．4．1．			520		0
432		＋1－31	4．1．	31143.1	$3.1,3.1$		1.520		$11+4.11$
－ 333		． 52		21.13	3，1．${ }^{2}$	$41,21,3,1$			2114－14
S21．					21	31,1	以1．1山！		$2.11+1.1$
435				1	1.	上：1．．．31	2，1．1．1．		A，1，，，1，
				．	\ldots	1．1．1．1．	以1		
			1.1	ـ	1．1．1．1．1	1	1		
Af14	50030	453.114 .143	1			－11	－		
＜12	21f1	453.11 .5143	5233_{1}	2321．1－11	－1．．．．．．－		E2人，		51
K43		21,014	5：1．21， 3.1	－1． 4.1 .21	$3.1 \ldots \ldots+3,1$	．．alilu 21			21.1
444		2，014，11	$\ldots \ldots$	$3,1+\ldots \ldots$	－		211．．1		
445		1	－L． 31		111				3,1
					，	1．．．．．．．	．．．．．．．		
15\％	75028	9241.14646	1	1－1	1	－			
652	1121	21	$1.7341 .1+$	－lit dulla		－	＋6lo，		4.1
L535		21， 1.1411	41．．．．1．	23，3，	+1.1	，，－， 3,1	1．1．		
4－4			\ldots	－1．1．－1		［1．1	．1．1		
L55			\ldots	L．．．．．．．		2l1－1－11			
				بـ1．1．	－1－1				
－	1			1	1.1	［11111	1－11．1．1	，	
1，．．．．	，			－1．1．1．	－141	1．1．1．1．1．	1．11		

W2x.cic

A-2mat- =-vind
FHOGAN

OSL 1191

Racal
fortran cooing fcam

fortran cooing form

Ambid

Fricoan	NANE R.OO MITCHECL	
COUTNE	DATE	PAOE OR26

	$\begin{aligned} & O=\text { ZERO } \\ & O=\text { ALPHAO } \end{aligned}$							
- $21-10022$	1353146448	-111314-1	1735 ,			$1.340,3,13$		
$10 \leq 2.31$	1. 4.313 .1.	, 2, $1,4,1$	4,1322	2.1		21, 31, 3,		21- 21
2家	31.1 .4 .15 .5				+121-1.-1	21.		$2,1,2,1,1$
12.4					-1	+ـ1		
725.					14-1.1	[1.....-2	2,1	
				-1+1.1				
			1-1	-	-1-un			
71isobesil				-1-1.	1			
272313151	$\frac{4531,1,6-59}{3 i}$	$1.1+2,2143$	1.735.1.			E40, 313		41
$7733!$		L $3,2,21 \ldots, 21$	3,12,1,	2.14		21213.1		21
774	$4231.1+4.42$							
					\ldots			
7015								
101512027 1023121	2.534.6-4,	1122,4231	323,3	- . 14,		$1545,2.12$		
$\frac{122}{723} 3121$	$21 \leq 1$	Fi3,1...	1,1, 3,132		2.1	2, , $3,13,1$		21.
$\frac{7822}{4641}$	[23, + A 52				L.			
hes								
- 1								
-11			-		1			
-		-		-	1.1.1.1.	-1,		

osu 1119

EGM FCRTRAN CODING FORM

40
FORTRAN CODING FORM

OSU 1111

FORTRAN CODING FORM

Minvat?
FERTRAN CCDING FORM

osy
AR292 GEY B/CE

PGogram	WAME ROO MOITCHELC	
ROUTVE	DATE	PAGE of 33

FORTRAN CCDING FORM

FORTRAN COCING FORM

PROGRAM	NAME PQO rNITCRIES	
moutine	Date	Page -26

DSU 1111
A 2 2:2 REV. $=1$ ©

and
 FORTRAN CODING FORM

OSU 1111
AL2S2 EEV.1/AB

GBGMit
fortan cooing form.

fortran coeing form

[^0]: * A, "stand", as used in the following, is defined as a fairly uniform unit of vegetation, the species of which can be assumed to have had a common history of development.

