
AN ABSTRACT OF THE THESIS OF

Darwin Sitomiul for the degree of Doctor of Philosophy in

Industrial and Manufacturing Engineering presented on October

16, 1991.

Title: Design and Implementation of a Heuristic-based

Decision Support System for Nurse Scheduling

Abstract approved:

Redacted for Privacy

Sabah Randhawa

A decision support system (DSS) for nurse scheduling in

hospitals is developed and implemented on microcomputer. The

system includes algorithms and databases for developing weekly

work and shift patterns and combining these into working

schedules for nurses for a specified time horizon, and

interface modules for the user to interact with the system.

The system combines heuristic modeling with decision analysis

concepts to generate nurse schedules. A heuristic best-first

search technique is used in implementing pattern generation

and screening process to satisfy both nurses and hospital's

objectives.

Emphasis in the design of the DSS has been on

computational efficiency and user acceptability. The system is

flexible so that it can be implemented in different hospital

environments, and incorporates a wide range of hospital and

nurses' objectives.

Design and Implementation of a Heuristic-based
Decision Support System for Nurse Scheduling

by

Darwin Sitompul

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of
Doctor of Philosophy

Completed October 16, 1991

Commencement June 1992

APPROVED:

Redacted for Privacy
Associate Professor of Industrial and Manufacturing
Engineering in charge of major

Redacted for Privacy

Heaa or aepartment or industrial and Manufacturing Engineering

Redacted for Privacy

Dean of Graduate School

Date thesis is presented October 16, 1991

Typed by Darwin Sitompul for Darwin Sitompul

ACKNOWLEDGEMENTS

I would like to acknowledge my appreciation to many

individuals who have been helpful to me for completing this

work and have made my stay at Oregon State University a

fruitful learning experience.

I am most thankful to my major professor, Dr. Sabah

Randhawa. Without his continuous support, guidance and

encouragement this thesis would not have been possible.

Thanks are also given to all my committee members, Dr.

Robert R. Safford, Dr. Rasaratnam Logen Logendran, Dr. John

Sessions, Dr. Eugene A. Abrassart and Dr. David Birkes for

their support, suggestion, and guidance regarding my thesis.

Special thanks are also extended to Mr. Jim Beecroft of

Good Samaritan Hospital, Corvallis, Oregon for his

assistance during the research.

I also want to express my appreciation to my family. My

mother passed away four years ago when this work was about

to begin, and my father passed away four months ago when

this work was about to complete. They wanted so much to see

me finish this work. I have been deeply obliged to them for

completing this work, which now I do.

p,
Sewage Allah menerima mereka di tempat yang sebaik-baiknya, Amin.

And finally, I want to express my deep appreciation and

thanks to my wife Jenny, and my two children, Dany and Dyta,

for their support, help, encouragement and sacrifice.

My study at Oregon State University was funded by PIU-

ADB-USU, Medan, Indonesia and Proyek Pengembangan Perguruan

Tinggi Bantuan Luar Negeri Bank Dunia XXI, Departemen

Pendidikan dan Kebudayaan Republik Indonesia.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 Nurse Scheduling 2

1.1.1 Problem 2

1.1.2 Scheduling Practices 5
1.2 Research Objectives 8
1.3 Methodology 8
1.4 Scope 8
1.5 Contribution of this thesis 9
1.6 Potential benefits of the research 9

CHAPTER 2 LITERATURE REVIEW 12
2.1 Scheduling Objectives 12
2.2 Scheduling Approaches 15

2.2.1 Cyclical Scheduling 15
2.2.2 Non-Cyclical Scheduling 17
2.2.3 Optimizing Solution Techniques 17
2.2.4 Heuristic Techniques 17

2.3 Heuristic Approach for Cyclical Scheduling 18
2.4 Heuristic Approach for Non-cyclical

Scheduling 19
2.5 Optimizing Approach for Cyclical Scheduling 20
2.6 Optimizing Approach for Non-cyclical

Scheduling 20
2.7 Discussion 23
2.8 Use of Artificial Intelligence in Nurse

Scheduling 25
2.9 Decision Support Ssystems 27
2.10 Conclusions 29

CHAPTER 3 CONCEPTUAL FRAMEWORK AND OVERALL SYSTEM
DESCRIPTION 31

3.1 The Conceptual Model 31
3.2 Schedule Generation Process 34
3.3 Screening Process. 37
3.4 Matching Process 39

CHAPTER 4 PATTERN GENERATOR AND PATTERN BASE 42
4.1 General Procedure 42
4.2 Work Pattern Generation 47

4.2.1 Evaluation Function 51
4.3 Shift Pattern Generation 55
4.4 Combining Work and Shift Patterns 56
4.5 Generating Reports 61

CHAPTER 5 IMPLEMENTATION AND SYSTEM EVALUATION . 62
5.1 Implementation 63

5.1.1 User Interface 63
5.1.2 Pattern Generation 66
5.1.3 Penalty Cost Calculation 71

5.1.4 Sorting the patterns 73
5.2 System Evaluation 74

CHAPTER 6 CONCLUSIONS 82
6.1 Suggestions for future research 84

REFERENCES 85

FURTHER READING 92

APPENDIX A USER GUIDE AND EXTENSION AND MODIFICATION
FOR NURSE SCHEDULING PROGRAM 100

APPENDIX B SOURCE CODE OF UNIT FOR WORK PATTERN
GENERATION 115

APPENDIX C SOURCE CODE OF UNIT FOR CALCULATING PENALTY
COST 117

APPENDIX D SOURCE CODE OF UNIT FOR SORTING WORK PATTERN 128

APPENDIX E SOURCE CODE OF MAIN PROGRAM 131

LIST OF FIGURES

Figure Page

3.1 Nurse Scheduling DSS 32

3.2 Schedule Generation Process 35

3.3 Example of a set of two-week schedule patterns 38

4.1 General Algorithm for Pattern Generation 43

4.2 An example of a 4-week work pattern 44

4.3 Example of Shift Patterns 46

4.4 An example of a complete schedule of 4-week period
with 2:1:1 shift policy for one nurse 47

4.5 General Algorithm of Work Pattern Generation 48

4.6 Best-first Search Algorithm for Pattern Generation
(4-week period) 52

4.7 Flowchart of Matching Work and Shift Patterns 57

4.8 Matching Shift and Work Patterns 60

4.9 Example of Nurse Schedules 60

4.10 Staff Requirement Report 62

5.1 Flowchart for User Interface 65

5.2 Algorithm for Generating 4-week Schedules 70

5.3 Pseudocode for Penalty Cost Calculation for
Weekend 72

5.4 Pseudocode for Insertion Technique 74

LIST OF TABLES

Table

Classification of Scheduling Techniques

Page

2.1 16

4.1 Example of Penalty Costs 55

4.2 Example of Some Work Patterns with Penalty Cost 58

4.3 Example of Shift Patterns 59

4.4 Combination of Shift and Work Patterns 59

5.1 Statistics for 4-week Schedules 76

5.2 Statistics for 8-week Schedules 77

5.3 Statistics for 12-week Schedules 78

5.4 Statistics for m=1000 n=300, 4-week schedule 80

LIST OF APPENDIX FIGURES

Figure Page

A1.1 Initial Screen 100

A1.2 Welcome Screen 101

A1.3 Introduction Screen 102

A1.4 Choice of Length of Schedule Period 102

A1.5 Default Penalty Cost Built-in the Program 103

A1.6 Entering Maximum Penalty Cost (Case of Default
Penalty Cost) 104

A1.7 Example of Customizing Penalty Costs 104

A1.8 Shift Policy Ratio 106

A1.9 Choosing to Define Your Own Shift Policy Ratio 106

A1.10 Entering Your Own Shift Policy Ratio 107

A1.11 Example of Schedules Displayed on the Screen 108

A1.12 First Part of 4-week Report 109

A1.13 Last Part of 4-week Report 110

A1.14 Example of Save and Print Choices 110

A1.15 Last Chance to Generate Another Set of Patterns 111

DESIGN AND IMPLEMENTATION OF A HEURISTIC-BASED
DECISION SUPPORT SYSTEM FOR NURSE SCHEDULING

CHAPTER 1
INTRODUCTION

The problem of manpower scheduling exists in almost all

industries including manufacturing, service and transporta-

tion. Each industry has its own specific manpower scheduling

problems. These problems are a function of the type of the

industry and services provided. For example, the objectives

and constraints of scheduling telephone operators may not be

the same as that of hospital nurses, or airline crews.

However, some general characteristics are common in manpower

scheduling problems. These include:

1. The operation usually exceeds the normal 8 working

hours per day and 5 working days a week. In some industries,

once a process is started, it must be continued until complet-

ed, and the time needed to complete the process may exceed the

normal working hours. Some operations work 24 hours around the

clock, 7 days a week (e.g. telephone operators, nurses and

police), with more than one shift every day.

2. Demand for services tends to fluctuate over the course

of the day, and over the day of the week, as for example in

telephone service, fire department, ambulance and nurses in

hospitals. This means that the number of employees needed for

each shift also varies.

3. There are some regulations that must be followed

(e.g., labor and state laws) due to the specific nature of the

2

operations and physical limitations of humans. People cannot

work continuously for more than a certain length of time;

individuals need rest, sleep, days off, recreation, etc., and

human effort cannot be inventoried.

All these characteristics, plus several other cons-

traints, such as cost, special preference of the employees,

differences in skill of the employees (which causes differenc-

es in labor costs), differences in skill needed to perform a

certain job or service, and emergency requests, make the

problem of manpower scheduling complicated, difficult,

frustrating and time consuming [Howell, 1966; Henderson and

Berry, 1976; and Smith and Wiggins, 1977].

1.1 Nurse Scheduling

1.1.1 Problem

Scheduling nurses in hospitals is a problem that has

attracted the attention of many researchers. Ballantyne [1979]

points out that personnel costs make up approximately 70

percent of the hospital expenses, and most of those expenses

are attributable to the nurses. In other words, nursing cost

is the largest single cost element in the hospital [Maier-

Rothe and Wolfe, 1973; Ahuja and Sheppard, 1975; Kao and

Queyranne, 1985; and Smith-Daniels, Schweikhart, and Smith-

3

Daniels, 1988]. Warner [1976], and Warner, Holloway and

Grazier [1984] estimated that nursing personnel accounts for

about one-third of the hospital budget. Professor Karyn Holm

of University of Illinois, Chicago, estimated that this figure

is now approximately 25 percent, due to the improvement of

technology and management method [Arbeiter, 1988b], but is

still the largest single cost element in the hospital.

Smith-Daniels, Schweikhart, and Smith-Daniels [1988]

point out that health care expenditures in the United States

have rapidly increased from 5 percent of 1965 GNP to a level

of nearly 11 percent of 1986 GNP. Therefore, in order to

minimize costs while still keeping a high quality of services,

scheduling nurses is critical to the hospital.

Nursing shortage in the United States is also still an

important consideration. Many hospitals are forced to hire

foreign nurses [Arbeiter, 1988a] and marketing companies to

help them in doing nurse recruitment [Perry, 1989]. Boston and

Karzel [1987] wrote that in December 1986, the American

Organization of Nurse Executives reported the national vacancy

rate for RNs was 13.6 percent, nearly double the rate in 1985.

Perry [1989] shows that based on a survey by ECS, a Fort Lee,

New Jersey-based firm, the nurse vacancy rate in 1988 is 10.5

percent nationally. Although this rate is slightly lower than

1986 rates, ECS forecasts that the rate will increase till the

year 2000.

Besides the high percentage of nursing shortage, hospi-

4

tals also face the high rates of nurse turnover. According to

Perry [1989], American Hospital Association (AHA) reported

th'at the turnover rate is 20 percent nationally, and in some

hospitals more than half of the nursing staff quits each year.

Arbeiter [1988b] points out that better pay, flexible schedul-

ing, greater control over practices, sufficient staffing,

recognition, respect, and tuition reimbursement are several

factors that affect the recruitment strategy. The author shows

some reports of successful hospitals practicing flexible

schedules for nurses, in keeping the turnover rate low.

These facts indicate that a better method of scheduling

nurses will be a significant contribution to solving the

problem. With a good schedule, nurses can work efficiently and

the turnover rate can be reduced. Better schedules can benefit

hospitals because it will reduce the operation costs. Adequate

staffing because of a good schedule can improve and guarantee

high quality service. An easy and computerized schedule can

free nursing personnel who otherwise have to spend time making

manual schedules to give more attention to the patient care

instead of doing administrative work.

Although the main objective of scheduling nurses in

hospital can be simply stated as provision of adequate

staffing to meet patient needs at all times [Frances, 1966],

this objective is very difficult to accomplish. This is

because there are other related hospital and nurse's objec-

tives linked directly or indirectly to the main objective,

5

with each objective having its own constraints.

The complexity and difficulty in nurse scheduling is due

to several reasons including the possible conflict of the

hospital and nurse's objectives, the different levels of

nurses, and the different requirements of individual nurses.

Livengood [1965] asserts that adequate scheduling is not

wholly a mathematical problem, it is a human one as well.

Morale of the nursing staff often depends on equitable sharing

of working time and acceptable shift rotation policies. A

planned schedule is preferred by the nurses because they like

to be able to plan their days off ahead of time for personal

and family activities.

It is also claimed that a planned schedule will benefit

the hospital as well. The administrator, head nurse, or other

individuals responsible for work schedules can see the exact

needs for personnel in advance, and the part time nurse can

also know when their services are needed [Livengood, 1965].

1.1.2 Scheduling Practices

Livengood [1965] describes three basic steps for schedul-

ing nurses:

1. Determining actual work load for nursing personnel

for each division and each shift within the divi-

sion.

2. Developing a staff pattern to answer the work load

6

requirements.

3. Establishing the work schedules.

In general, there are three basic scheduling arrangements

[Livengood, 1965]:

1. Straight shift - each nurse or team works straight

day, evening, or night shift.

2. Rotating shift - each nurse or team works a certain

period on the day shift, then similarly on the

other two shifts.

3. Alternating shift - each nurse or team alternates

between two shifts.

Some hospitals use a combination of these three arrangements

[Livengood, 1965].

In most hospitals, scheduling is usually done on a ward

basis by a head nurse due to the particular specialization of

the nurses on a ward and the fact that the number of nurses

needed to work a particular shift will often vary from day to

day [Rosenbloom and Goertzen, 1987]. This task, until now, is

mostly performed manually [Ozkarahan, 1987]. Mathematical

models, heuristic methods and some other approaches have been

proposed and applied to the nurse scheduling problem. Comput-

ers have been used to help the scheduler to generate schedule.

Sitompul and Randhawa [1990] point out that in general there

are four categories of nurse scheduling models which are a

7

combination of scheduling arrangement (cyclic and non-cyclic) ,

and solution methodology (optimization and heuristic) .

In spite of the fact that many models have already been

proposed to this problem, ranging from completely decentral-

ized and manual to centralized computer controlled, no one

method is widely accepted. Warner [1976] showed that from 13

cyclical scheduling systems surveyed, only one had survived

over one year. Rosenbloom and Goertzen [1987] point out that

the previous approaches have not been widely implemented due

to two primary reasons:

1. Some models need enormous amount of computer re-

sources, therefore they are impractical for use on

a ward basis.

2. Some other models are problem specific, therefore

inflexible. Any change in the system may result in

the method being scrapped.

Ozkarahan and Bailey [1988] also conclude that the

present nurse scheduling models do not suffice the need. They

argue that some models previously presented have neglected

many constraints to obtain practical solutions; others are

very inflexible and user interaction is almost impossible. The

other problem they found was that none of the previous

approaches considered integration of the time of day, and day

of week problems.

8

1.2 Research Objectives

There were two objectives of this research. The first

objective was to develop a new structure of decision support

system (DSS) framework for nurse scheduling in hospitals; the

second objective was to develop and implement a new heuristic

procedure of generating schedules for nurses under the

proposed DSS framework.

1.3 Methodology

The research was implemented in two steps. The first step

consisted of developing the framework for the new DSS model;

in the second step, a new heuristic procedure of generating

schedules for nurses that considers both the nurses and

hospital requirements was developed, implemented and validat-

ed.

1.4 Scope

The research assumes that the hospital will have a

specified operating policy concerning the proportion of nurses

working in different shifts. One example of shift assignment

is a 3:2:1 policy, meaning that the number of nurses working

in the day shift is three times the number of nurses working

in the night shift, and the number of nurses working in the

9

evening shift is twice as much as the number of nurses working

in the night shift. It is also assumed that a shift is

assigned for a full one week period, meaning that the shift

change can occur only at the beginning of the week and remains

unchanged during the week.

This thesis limits the scope to full time nurses only.

However, some suggestions for using this model for part time

nurses are provided at the end of the thesis.

1.5 Contribution of this thesis

The contributions of this thesis are as follows:

1. The development of a Decision Support System framework

for solving the nurse scheduling problem in hospitals

that can be applied in different hospital environments.

2. The development and implementation of a microcomputer-

based heuristic system for solving the multiple objec-

tives nurse scheduling problem. The model incorporates a

wide range of hospital and nurses' objectives, and

represents a computationally attractive alternative to

solving this complex problem.

1.6 Potential benefits of the research

The research will result in several potential benefits:

1. The use of heuristic methods will eliminate the need to

10

use more complex mathematical or other analytical models.

Nurse schedules for up to 12 week scheduling periods can

be generated in a very short computational time using a

microcomputer.

2. The microcomputer implementation of the heuristic model

is an important consideration. This will enhance the

usefulness of the model even for small hospitals due to

the smaller hardware cost associated with the personal

computer. The model also has the potential of being used

in hospitals in developing countries which otherwise have

to do nurse scheduling manually because they cannot

afford mainframe or minicomputers.

3. The use of this model will promote "objectivity" in

developing nurse schedules, thus eliminating the personal

bias of nurse administrator that may be introduced in

scheduling. This has often resulted in nurses' dissatis-

faction with schedules generated by the hospital's staff.

4. The relative ease of use of the model and the use of

computer will free nurses from doing administrative jobs

such as filling the job pattern request which is used by

some hospital for scheduling nurses. The flexibility of

the model and the ability of the model in handling

hospital and nurse constraints will reduce complaints

from both hospital and nurses. This will result in

reduction of nurse turn over rate, and eventually will

reduce costs and increase quality of health care.

11

5. The DSS framework and heuristic implementation can be

modified to be used for manpower scheduling in other

application areas.

The next chapter provides a comprehensive literature

review of nurse scheduling in hospital. Chapter 3 describes

the conceptual framework of the model. Chapter 4 describes the

pattern generation procedure and the concept of the best-first

search method used in the model. Chapter 5 discusses implemen-

tation and evaluation issues; finally Chapter 6 presents

conclusions of this research and provides some suggestions for

further research.

12

CHAPTER 2
LITERATURE REVIEW

Manpower scheduling presents a considerable problem in

most organizations. Manpower scheduling problems also have

some distinct characteristics. First, the demand tends to

fluctuate widely, particularly over the short term, and may

occur seven days a week. Second, human effort cannot be

inventoried. Whereas in manufacturing, production requirements

can be balanced by building inventories of materials, a nurse

cannot perform a service before the demand occurs. The third

attribute is that customer convenience is critical in hospi-

tals. In addition to these three general attributes, there may

be constraints that are specifically imposed by the system or

the system environment, such as hospital personnel policies

and nursing staff preferences for distribution of days off.

All these characteristics make the manpower scheduling problem

difficult to model and solve.

2.1 Scheduling Objectives

The objective of manpower scheduling in hospitals is to

develop a systematic procedure for allocating nurses to work

shifts and work days to ensure continuous high quality

service. Most of the research in hospital operations has

focused on scheduling nurses, since the amount paid in nursing

staff salaries is the largest single component in the hospital

13

budget (Maier-Rothe and Wolfe, 1973; Ahuja and Sheppard, 1975;

and Ballantyne, 1979), and because nurse scheduling directly

affects the quality of patient care.

The nurse scheduling problem may be considered a multi-

stage problem, even though most of the reported research has

treated it as a single-stage decision problem. The stages

involved are: (1) determining a set of feasible schedules that

satisfy the system constraints for a specified time horizon,

(2) selection of the best schedule in terms of cost, coverage

and/or other criteria, (3) fine tuning the schedule to

accommodate changes in staffing levels and variations in

patient demand, and (4) making specific shift assignments.

The objectives in nurse scheduling are multiple. These

include: use minimum staffing to avoid wasted manpower,

provide adequate patient care, ensure continuity in service,

and satisfy organizational scheduling policies such as work

patterns. The problems is further complicated by such factors

as:

- The patient demand varies 24 hours a day, seven

days a week, and difficult to forecast. Thus, for

example, the number of personnel needed on a par-

ticular shift may vary from day to day.

- The allocation decision must consider overall

staffing levels, and qualifications and specializa-

tion of nurses available.

- Individual patients have different nursing care re-

14

quirements. These requirements, for example, depend

on the acuity of illness of the patient. A variable

mix of personnel is required to satisfy this diver-

sity of nursing-care demand.

- Organizational structure and characteristics need

to be satisfied. These include minimum required

coverage, days-off policies and work patterns,

admission policies, communication systems, and

information and structural design of the units.

- Abnormal demand for service and unpredictable

absenteeism.

- Requests from personnel including vacation, work

stretch and work patterns.

Additionally, some of these considerations may be in conflict

with others, such as employee requests and the need to balance

work load.

Different criteria have been proposed for evaluating

scheduling methodologies in hospitals. The more important

criteria are (Warner, 1976c):

- Coverage, or the extent to which a schedule meets

the minimum coverage requirements, and provides

balanced coverage.

- Quality, or the perceived value of the schedule to

the nurses in terms of work-stretch length, days

off, weekends, equalization of rotation, etc.

15

- Flexibility, or the extent to which the scheduling

system can adapt to changes in staffing level

environment.

- Cost, in terms of resources consumed in making the

scheduling decision.

2.2 Scheduling Approaches

The scheduling research in health care systems may be

classified based on the type of scheduling and the scheduling

procedure used. There are basically two types of scheduling -

cyclical and non-cyclical, and two types of solution tech-

niques - optimizing and heuristic. Some of the available

scheduling models have been classified according to this

schema (see Table 2.1). The names in Table 2.1 refer to the

references for this thesis. Some scheduling models (for

example, Arthur and Ravindran, 1981) use more than one

approach for modelling different components of the problem,

and may thus be classified into more than one cell of Table

2.1. However, Table 2.1 is based on the primary methodology

used by the authors.

2.2.1 Cyclical Scheduling

In cyclical scheduling, each nurse work pattern is

repeated in a cycle of "n" weeks indefinitely into the future.

16

The major advantage of this technique is that the schedules

are easily generated on a consistent policy basis, and a new

schedule needs to be produced only when there is a change in

staffing requirements.

Type
of

Scheduling

Scheduling Procedure

Heuristic Optimizing

Cyclical Ahuja and Sheppard (1975)
Alivizatos (1981)
Arnold and Mills (1983)
Frances (1966)
Howell (1966)
Maier-Rothe and Wolfe (1973)
Megeath (1978)
Morrish and O'Connor (1970)
Murray (1971)
Smith (1976)

Rosenbloom and Goertzen
(1987)

Non-Cyclical Arthur and Ravindran (1981)
Jelinek, Zinn and Brya (1973)
Smith and Wiggins (1977)

Abernathy et al. (1973)
Miller, Pierskalla and Rath (1976)
Musa and Saxena (1984)
Ozkarahan (1987a, 1987b)
Ozkarahan and Bailey (1988)
Rothstein (1973)
Tobon Perez (1984)
Warner (1976a, 1976b, and 1976c)
Warner and Prawda (1972)

able Z1 Classification of u mg Techniques

The major disadvantage of cyclical scheduling is that even

though it guarantees a certain minimum coverage, it lacks

flexibility in dealing with supply and demand fluctuations,

and in meeting individual needs for nurses.

17

2.2.2 Non-Cyclical Scheduling

Non-cyclical scheduling generates a new schedule for each

scheduling period with available resources and policies that

attempt to satisfy a given set of constraints. The biggest

advantage of non-cyclical scheduling is flexibility. However,

it is time-consuming, and typically produces unstable and

suboptimal schedules.

2.2.3 Optimising Solution Techniques

These techniques employ a structure in which some

objective function is optimized subject to a set of con-

straints.

2.2.4 Heuristic Techniques

A heuristic procedure finds a good solution, but one that

is not guaranteed to be the best solution. These techniques

avoid the excessive cost of using an optimizing approach. Most

of the heuristic models start off by generating an initial

schedule to satisfy predicted workload, and then refine the

initial schedule to satisfy hospital policy constraints and

accommodate individual work preferences.

As shown in Table 2.1, most of the heuristic models have

focused on solving the cyclical scheduling problem whereas the

18

optimizing models have attempted to solve the non-cyclical

problem. A brief discussion of the models available in each of

the four cells in Table 1 follows.

2.3 Heuristic Approach for Cyclical Scheduling

Howell (1966) outlined the steps necessary to develop a

cyclical schedule and then presented examples of how a working

pattern can be developed based on this procedure. Howell's

method is a step-by-step procedure for accommodating the work

patterns and individual preferences of nurses given a certain

service level.

Maier-Rothe and Wolfe (1973) developed a cyclical

scheduling procedure that assigns different types of nurses to

each unit based on average patient care requirements, hospital

personnel policies, and nursing staff preferences.

Ahuja and Sheppard (1975) described a scheduling system

that consists of four components: work pattern selector that

selects work patterns to be repeated indefinitely for a group

of nurses; work schedule assembler that converts the work

patterns into work schedules for different nurse types and

accommodates operating constraints; work schedule projector

that allows the user to project the work schedule for a unit

(or individual) over a predetermined period of time; and work

load allocator that assigns nurses to units based on work load

index. A work load index representing the direct and indirect

19

care required for a unit is computed for each unit daily.

Comparing available and required staffing levels drives the

reallocation decision.

Smith (1976) demonstrated the use of an interactive algo-

rithm to help a scheduler focus on the tradeoffs necessary to

produce an acceptable cyclical rotational schedule. The

algorithm starts off by determining the number of full-time

personnel equivalents required, develops an initial schedule,

and then successively refines it to accommodate precedence

violations, work stretches, split vacation days, and some

other considerations.

Use of heuristic in cyclic scheduling has also been

reported by Megeath (1978), Morrish and O'Connor (1970),

Frances (1966), Arnold and Mills (1983) and Murray (1971). The

overall concept remains the same: an initial schedule is

developed and then refined based on hospital and nurse

requirements.

2.4 Heuristic Approach for Non-cyclical Scheduling

Smith and Wiggins (1977) developed a computer-based

system for non-cyclical scheduling to generate monthly

schedules for several nurse categories. The system considers

individual preferences for shifts and days off, includes

part-time employees, accommodates special request for days off

or particular shift assignments, and provides an interface for

20

scheduling clerks to make final adjustments to computer-

generated schedules. Jelinek, Zinn and Brya (1973) also

described a computer-based scheduling system that predicts

workload on daily basis for each patient unit and schedules

personnel to match the forecasted demand subject to hospital

policy constraints.

2.5 Optimizing Approach for Cyclical Scheduling

Rosenbloom and Goertzen (1987) presented an integer

programming (IP) based three-stage algorithm for cyclic nurse

scheduling. In the first stage, a set of possible schedules is

generated. This set of schedules is then screened against

labor and work-pattern constraints. In stage two, the result-

ing subset of possible schedules are formulated as an integer

program. The objective function in IP is to minimize the

maximum daily coverage constraints. In the third and final

stage of the scheduling algorithm, the solution from IP is

converted into work patterns for each individual nurse.

2.6 Optimizing Approach for Non-cyclical Scheduling

Various optimization approaches have been used for non-

cyclical scheduling. These include integer programming

(Rothstein, 1973 and Tobon Perez, 1984), goal programming

(Ozkarahan, 1987a, 1987b; Ozkarahan and Bailey, 1988; Musa and

21

Saxena, 1984; and Arthur and Ravindran, 1981), stochastic

programming (Abernathy, et al., 1973), and non-linear program-

ming (Warner, 1976b, 1976c; and Warner and Prawda, 1972). All

these approaches except the goal programming approach attempt

to optimize an objective function subject to a set of con-

straints.

The Rothstein (1973) model was specifically formulated

for manpower allocation in the housekeeping operations of

hospitals. The objective function for this model maximizes the

number of weekly assignments with consecutively paired days

off. Due to the nature of the constraints formulated in the

model, the integer requirement on the variables was dropped.

Then the integer program was reduced to a continuous linear

program.

Tobon Perez (1984) formulated the scheduling problem as

a zero-one IP problem. The objective function consists of two

components. The primary objective reflects the quality of

nursing care. The secondary objective reflects the nurses'

combined satisfaction with a particular schedule. A heuristic

approach is used to solve the resulting formulation. The

primary objective is optimized first. If this optimization

results in alternative optimal solutions, then the secondary

objective is considered.

Abernathy, et al. (1973) formulated the nurse scheduling

problem as a stochastic programming problem. They developed a

non-iterative solution procedure for the formulation that

22

considers alternative operating procedures and source crite-

ria, and allows for the inclusion of statistically dependent

demand. Warner (1976b and 1976c) described a nurse-scheduling

system formulated as a multiple-choice programming problem

whose objective function quantifies preferences of individual

nursing personnel concerning length of work stretch, rotation

patterns and request for days off. The constraints provide for

minimum numbers of nurses from each skill class to be assigned

to each day and shift of a four- or six-week scheduling

pattern. Warner and Prawda (1972) developed a mixed-integer

quadratic programming formulation for the problem, but

suggested that due to the complexity of the non-linear

formulation, a linear programming formulation with post-

optimality analysis may be substituted as the solution

approach. Miller, Pierskalla and Roth (1976) formulated the

nurse scheduling problem as a trade-off between staffing

coverage and individual preferences. The problem was then

solved using a cyclic coordinate descent algorithm that seeks

a near-optimal solution.

The optimizing approach that has received the most

attention recently is goal programming. The techniques

discussed so far attempt to optimize one criterion only. In

goal programming, all the objectives are assigned target

levels for achievements and a relative priority for achieving

these goals. Goal programming attempts to find an optimal

solution that comes as close as possible to the targets in the

23

order of specified priorities.

The Arthur and Ravindran (1981) goal programming formula-

tion used the following set of goals: minimum staffing

requirements, desired staffing requirements, nurse preferenc-

es, and nurse special requests. The constraints corresponding

to each goal are generated and added to the problem, and zero-

one goal programming is used to solve the resulting problem

for assigning days on and off to nurses. A heuristic procedure

is then used to assign specific shifts to nurses.

Musa and Saxena (1984) use zero-one goal programming to

schedule eleven nurses in one unit for the day shift over a

two-week period. The goals represent the scheduling policies

of the hospital and nurse preferences for weekends.

Ozkarahan (1986 and 1987a) and Ozkarahan and Bailey

(1988) use goal programming as the key underlying mathematical

model for a proposed nurse-scheduling decision support system.

The objectives of this model are to maximize utilization of

full-time staff, minimize understaffing and overstaffing

costs, minimize payroll costs, and minimize part-time staff

costs.

2.7 Discussion

The solution to the staffing problem requires consider-

ation of many interrelated factors, including those dealing

with organizational structure and characteristics, qualifica-

24

tions of personnel, and overall staffing levels. The problem

is further complicated by the diversity of working preferenc-

es. What is needed is a system for scheduling nurses that is

able to operate from the perspective of the entire hospital;

that is, it accounts for patient needs and requirements,

hospital policies, particular circumstances of each nursing

unit, and preferences of individual nurses.

Most of the optimization approaches consider only a small

subset of constraints. The authors generally impose their own

priority structure on their models, or they use suboptimal

heuristics. The mathematical models are inflexible, they fail

to accommodate the dynamics involved in scheduling, and user

interaction is insufficient. In addition, mathematical models

that do include a large number of objectives and constraints

to represent a real-time operation require large computational

resources, which further limit their use in a dynamic deci-

sion-making environment.

Much of the heuristic work related to nurse scheduling

has been concerned with cyclic scheduling. Cyclical schedules

are easily generated, but they are rigid in the face of

variation in demand. Several computerized nurse scheduling

systems have been developed (Murray, 1971; Ballantyne, 1979;

Blau and Sear, 1983; Veranth and Cheson, 1984; and Flanders

and Lutgen, 1984). These systems are generally computer

versions of scheduling heuristic, including the traditional

approach where the head nurses works out a new schedule for

25

each scheduling period in a trial-and-error fashion.

Scheduling is a component of the nurse management system

that include staffing, scheduling, and budgeting, where

staffing refers to the mix (number and skill level) of nurses

required for each unit to satisfy daily and shift demand, and

scheduling refers to nurse allocation. Even though these three

decisions deal with problems having distinct time dimensions,

they are highly interdependent. Most researchers have concen-

trated on the scheduling problem. Where multiple decisions

have been analyzed, they have been treated separately. The use

of different solution approaches for each of the three

decisions makes it easy to analyze each decision independent

of the other two components. However, such solution approaches

may lead to suboptimal results.

2.8 Use of Artificial Intelligence in Nurse Scheduling

Lukman (1986) used an artificial intelligence (AI)

methodology to investigate the nurse scheduling problem. The

AI-based computer system uses an abstraction of human schedu-

lers' knowledge and information in formulating the schedule

and monitoring its execution. The reasoning processes that are

used in scheduling are abstracted into a series of decision

rules of the form:

IF condition satisfied THEN action.

An example of such a rule is:

26

IF a nurse worked last weekend,

THEN she is entitled to have this weekend off.

The computer system consists of three programs. The

schedule program generates unit-schedules. The tasks included

in this component are nurses' requests, continuity of previous

schedules, minimum coverage level, and the working pattern of

nurses. The tasks are processed sequentially and all possible

schedules are generated. The merge program merges all unit-

schedules to form an overall schedule. Finally, the mainte-

nance program updates daily staffing.

The use of a decision-rule structure allows the inclusion

of qualitative considerations that are difficult to quantify

mathematically. However, Lukman's model does not use strategic

planning to predict or to determine the number of required

personnel from existing or past data. Also, the model does not

include any mechanism to identify or generate new rules or to

modify existing rules in order to improve the schedule's

quality.

There are some additional issues that need to be ad-

dressed if the rule-based concept is to be effectively used

for nurse scheduling. First, procedures need to be developed

to resolve the conflict that may arise if the rules are

derived from multiple experts. Second, with rules generated at

a specific hospital location, there is the question of the

validity of the system in a different setting. Developing a

rule-based system that can be used in a variety of hospital

27

environments would require including scheduling knowledge from

experts at different hospitals in developing the decision

rules, and extensive validation tests.

2.9 Decision Support Systems

Most of the research reported on nurse scheduling has

tackled isolated elements of nurse scheduling problem.

However, in order to be effective, nurse scheduling requires

a comprehensive methodology encompassing all of the elements

of the problem. One approach to developing a user-interactive,

integrated approach to nurse scheduling is that of decision

support system (DSS). This approach has been proposed by Nutt

(1984), Ozkarahan (1987b), Ozkarahan and Bailey (1988), Tobon

Perez (1984), and Bell, Hay and Liang (1986). A DSS focuses on

supporting decision making and shifts attention from the

operational level toward the issues of managerial problem-

solving. The nurse-scheduling problem has components that can

be structured, and others that require subjective assessments.

The key characteristics of DSS for nurse scheduling include:

- A tendency to aim at less well-structured problem

- An attempt to combine the use of models or analytic

techniques with database access and retrieval

functions

- A focus on features which make the DSS easy to use

in an interactive mode

28

- Flexibility and adaptability to accommodate changes

in the environment and the decision making approach

of the user

Such a DSS would draw upon the benefits of the previously

proposed approaches, such as the optimizing characteristics of

mathematical programming models, the speed of certain heuris-

tic, and the representation procedures of artificial intelli-

gence. The specifics of the nurse-scheduling problem are often

undefined at the outset, whereas the use of analytic models

requires a rather rigid structure to be determined beforehand.

The rigid framework in which the algorithm resides cannot be

altered easily to match the user's changing perception of the

problem. In addition, the information requirements of analyti-

cal models often far exceed the user's patience for entering

data. This can be a problem even if the model is sufficiently

good representation of the system, whether it is analytic or

heuristic. It is envisioned that a decision support system

would (1) include both nurses' and hospitals' objectives, (2)

contain a "model base" for solving specific problems, (3)

modify the results from these solutions to accommodate

changing requirements of individual and environment, (4)

integrate the subcomponents into a system decision-making

tool, and (5) provide some measure of utility of the solution

generated. Such a system would immensely enhance the decision-

making effectiveness and, ultimately, the quality of hospital

operation.

29

2.10 Conclusions

The objective of nurse scheduling is to develop a

systematic procedure for allocating nurses to work-shifts and

work-days to ensure high-quality service. Several approaches

have been proposed to accomplish this objective, including

mathematical programming, heuristic, and artificial intelli-

gence concepts. The use of these approaches has been effective

in modelling specific components of the nurse scheduling

problem. However, the resulting models have seen limited use

because of the complexity and information intensive nature of

nurse scheduling. It may be possible to utilize the concepts

of decision support systems to combine analytic and heuristic

approaches with information-based techniques in order to

develop more adaptable and flexible nurse scheduling systems.

One way to reduce the size of the integer problem in the

nurse scheduling model is to first generate some possible pat-

terns and then screen the patterns against some common con-

straints. With this method, several infeasible patterns can be

thrown away so that the size of mathematical formulation

becomes smaller. This method has been proposed and used by

Rosenbloom and Goertzen [1987].

Rosenbloom and Goertzen [1987] in their algorithm first

generate a possible pattern based on a heuristic rule. This

pattern is then screened in two phases. In the first phase,

which they call as static elimination procedure, the pattern

30

is screened against some constraints such as the maximum

consecutive days off. The second phase, which is called the

dynamic elimination procedure, the screening process continues

to check the possibility that a pattern can be combined with

another pattern without violation of any constraint.

31

CHAPTER 3
CONCEPTUAL FRAMEWORK AND OVERALL SYSTEM DESCRIPTION

This research has two objectives. The first objective is

to develop a conceptual framework for a microcomputer-based d-

ecision support system (DSS) that can be used by management of

hospitals for scheduling nurses. The DSS will be interactive,

easy to use and user friendly, so that it can be effectively

used by a non-programmer user. For the purpose of building the

DSS framework, some methods that have been proposed earlier to

handle individual aspects of the scheduling problem, will be

modified and integrated.

The second objective of this study is to implement the

schedule generation component of proposed DSS. An heuristic

approach is used for the schedule generation and schedule

assignment.

3.1 The Conceptual Model

The conceptual framework of the proposed DSS model is

shown in Figure 3.1. The model consists of several important

components as described below:

1. Pattern Generator. This program generates work

and shifts patterns needed for developing the

schedules. Work pattern is a combination of '0' and

'1' showing the nurses' daily work routine. The

32

PATTERN BASE

_,__,----

PATTERN
GENERATOR -->

SCHEDULE BASE

SCHEDULE
GENERATOR &
ANALYZER

NURSE
DATABASE

USER
INTERFACE

SCHEDULE
PROCESSOR

1

1

USER

INDIVIDUAL
SCHEDULES

Figure 3.1 Nurse Scheduling DSS

digit '0' represents day-off, while digit '1' means day-

on. For example, a one-week work pattern can be repre-

sented as '1111100' which means that the nurse works from

Monday to Friday (the first five days) and has Saturday

and Sunday off (the sixth and seventh day). Shift

33

pattern, is a combination of the shift for each week.

Here, letters 'D', 'E' and 'N' are used to represents

day, evening and night shifts, respectively. For example,

for a 4-week schedule, the pattern DDEN means that the

nurse works in day shift in the first and second weeks,

evening shift in the third week, and night shift in the

fourth week.

2. Schedule Generator and Analyzer. This program combines

the shift and work patterns to form the schedule. This

program will also handle the modification and extension

of patterns. Once patterns have been generated, they can

be modified, extended, and revised. For example, 4-week

patterns can be extended to 8-week or 12-week planning

horizon.

3. Schedule Processor. This program assigns sched-

ules to the nurses.

4. Pattern Base. Pattern base is the database where

the work and shift patterns are stored.

5. Schedule Base. This is the database which con-

tains ready-to-use schedules.

6. Nurse Database. This database contains the

necessary information pertaining to the nurses. The

process of assigning schedule to nurses involves

matching the schedule with the nurse database.

7. User Interface. This is a front-end program to

aid the user in using the system.

34

The system devel:Ted in this research focuses on pattern and

schedule generator, and associated data bases. The specific

assignment of nurses to schedules (Schedule Processor) is not

addressed here since this phase is hospital-specific.

3.2 Schedule Generation Process

The schedule generation process is shown in Figure 3.2

and is as follows:

1. Generate sets of work patterns in terms of n-tuple

binary (n can be 7, 14, 21, 28 and so on, depending

on the schedule period), so that different schedule

lengths can be covered.

For example, a pattern of four-week period of

schedule can be represented as:

MUWTFSSMUWTFSSMTWTFSSMTWTFSS
1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0

where 1 represents working day while 0 represents

day off.

2. Generate shift patterns in term of D-E-N combina-

tion, where D stands for day shift, E for evening

shifts and N for night shift. Example of four-week

shifts pattern is:

DDNE

35

ANAL 12
Re MORT

BASCO ON
STAFF

NICOL. I BEMENT

Figure 3-2 Schedule Generation Process

36

that is, the nurse works in the day shift for the

first two weeks, night shift in the third week, and

evening shift on the fourth week.

3. The work pattern and shift pattern are then com-

bined to form a complete scheduling pattern as

follows:

Day : MTWTFSS
Week : 1 D: 1 1 1 1 1 0 0
Week : 2 D: 1 1 1 1 1 0 0
Week : 3 N: 1 1 1 1 1 0 0
Week : 4 E: 1 1 1 1 1 0 0

4. Modification and extension. If necessary, the

patterns or the schedules can be modified or ex-

tended so that the length of schedule can be ex-

tended and the variation and number of schedules

can be increased.

5. Generate scheduling reports and evaluate the sched-

ule against the staffing requirements. If the

deviation between the generated schedule and staff-

ing requirements is beyond acceptable limits, then

an alternative schedule can be evaluated. If all

schedules in the schedule base have higher than

acceptable deviations, then the system can back-

37

track to the pattern base, and generate a new set

of patterns.

6. Schedule assignment. If an acceptable schedule is

identified, then it is combined with nurse data

(from the nurse database) to assign a specific

working schedule to each nurse.

3.3 Screening Process.

During the process of pattern generation (work and shift

patterns) all patterns are screened against a set of common

constraints to obtain feasible scheduling patterns. To

illustrate, consider a two-week planning period. The number of

different patterns that can be formed for a two-week period

are 16384 (214). However, because of constraints, this number

can be significantly reduced. For example, consider a

specific nurse that is scheduled to work 5 days a week and

Friday and Saturday before the two-week period begins, has the

"middle" weekend off and then must work the "end" weekend.

Then there are 25 possible patterns that can be assigned to

the nurse (Figure 3.3). This set of patterns can be further

reduced if other constraints were to be considered. The

screening method that is used in this research is a heuristic

search technique called the best-first heuristic mechanism

(Rich and Knight, 1991). The performance measure used by this

38

heuristic is the penalty cost, that is, the cost associated

with the violation of the constraint. In other

Pattern
Number

Previous
Week
F S SMUWTFSSMUWTFSS

Next
Week

1. 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1
2. 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1
3. 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1
4. 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1
5. 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1
6. 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1
7. 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1
8. 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1
9. 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1

10. 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1
11. 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1
12. 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1
13. 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1
14. 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1
15. 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1
16. 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1
17. 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1
18. 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1
19. 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1
20. 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1
21. 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1
22. 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1
23. 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1
24. 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1
25. 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1

Figure 3.3 Example of a set of two-week schedule patterns

words, the penalty cost measures the degree of dissatisfaction

with the schedule. Examples of constraints include avoidance

of [Warner, Holloway and Grazier, 1984]:

- a single day on

39

- a single day off

- a stretch of 6 working days

- a stretch of 7 working days

- a stretch of 8 working days

- a stretch of 6 days that includes a 3-day weekend

- a stretch of 7 days that includes a 3-day weekend

- a stretch of 8 days that includes a 3-day weekend

Each of these constraints (undesirable situations) have

different penalty costs associated with them. The result from

this screening process is stored in a "pattern base" that con-

tains several set of feasible patterns. Feasible patterns are

patterns that have total penalty cost less than or equal to

maximum penalty cost which is set by the hospital.

3.4 Matching Process.

To form the schedules, work patterns must be matched with

the shift patterns. There are two different matching process-

es:

1. Matching to generate schedules. In this process,

work patterns are combined or matched with the

shift patterns. Combining these two patterns can be

done randomly or using any other method. Pattern

base allows the user to develop a large base of

40

patterns. To illustrate, consider four-week work

and shift patterns. If the number of patterns

generated during the generation and screening

process is, say, 1000 each, then random ordering of

these patterns results in a very large set of

scheduling patterns. The first set of 1000 randomly

ordered work pattern can be combined with the first

set of 1000 randomly ordered shift patterns to form

1000 schedule patterns. Then, either work patterns

or shift patterns can be randomly reordered to get

a new set of 1000 schedule patterns. This process

can be repeated multiple times depending on the

number of scheduling patterns desired and the

acceptability requirements for the patterns.

The schedule patterns can be extended to obtain

patterns for longer planning periods. For example,

using the four-week patterns, eight-week or twelve-

week patterns can be easily generated by simply

combining the four-week pattern with itself or any

reordered set. This ability makes the system more

flexible and powerful.

The schedules generated by this method are

saved in the Schedule Base.

2. Nurse assignment, or the process of assigning the

schedules to the nurses. The process of schedule

41

assignment is carried out by matching the schedules

from the schedule base with the nurse database.

Here again, the schedule base provides flexibility

and extendibility due to the large number of sched-

ules that can be mixed and matched. The pattern and

schedule bases represent data bases that are de-

signed to provide the scheduler with a large set of

alternatives, thus eliminating the need to generate

schedules every time a new schedule is needed.

Also, these two supporting databases can reduce the

screening process resulting in a reduction of

computer time and memory requirements. In other

words, if the model does not give feasible solu-

tion, the scheduler does not need to start from the

beginning; they just need to pick another set of

patterns from the pattern base.

42

CHAPTER 4
PATTERN GENERATOR AND PATTERN BASE

The pattern generator produces work and shift patterns

that cover all possible schedules with different shifts. It is

assumed that the hospital will have a specific operating

policy concerning the proportion of nurses working in differ-

ent shifts. One example is a 3:2:1 policy, meaning that the

number of nurses work in the day shift is three times the

number of nurses working in the night shift, and the number of

nurses work in the evening shift is twice as much as the

number of nurses work in the night shift. Other examples of

nurses' working policies include 4:1:1, 4:2:1 and 1:1:1. The

ratio of number of nurses working in the three shifts and the

length of schedule period are management specified parameters.

Examples of the length of the schedule are 4-week, 8-week or

12-week; this length represents the time for which the

schedule is to be generated.

This chapter first describes the general algorithm for

pattern generation; each major components of this algorithm

are then explained in detail.

4.1 General Procedure

The general steps in the pattern generation are shown in

the flowchart of Figure 4-1.

43

DETEIG4 I NE
SH I FT

POI I CY

GENERATE WOW
PATTERN IN

TERMS OF N X
7 IMATIzt IX OF

BINARY DIGIT

PATTERN
SCREENI NG

GEM: MATE
POW I SLE

91I FT
PATTERNS FOR
N-WEEC PER 100

PATTERN
SCREENI NG

COLO I NE SORE
PATTERN I TN
91I FT PATTERN

SAVE PATTERNS

Figure 4-1 General Algorithm for Pattern
Generation

The process of pattern generation begins with generating

the work patterns. A work pattern is a daily pattern that must

be followed by a nurse. The pattern shows whether a nurse will

work on a particular day or not.

An example of the work pattern schedule of a nurse for a

4-week period is shown in Figure 4-2, where 1 represents the

44

day when the nurse works and 0 represents the day off.

SMUWTFSSMUWTFSSMUWTFSSMUWTFS
1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-2. An example of a 4-week work pattern

The number of possible work patterns that can be generat-

ed is very large. For example, for a 12-week period there will

be 284 different patterns. However, some of these patterns are

not feasible. The number of work patterns can be significantly

reduced if they are screened against constraints before

combining them with the shift-patterns. The constraints that

will be considered in the screening process include:

1. Minimize working on 6 consecutive days.

2. Minimize working on 7 consecutive days.

3. Avoid working on 8 consecutive days.

4. Minimize single days off and on.

5. A maximum of 4 days off.

6. Minimize working on weekend.

7. Minimize split weekends.

Following the work pattern generation is the process of

generating possible shift-patterns for a specified hospital

policy. A shift-pattern is a pattern showing the shift that a

nurse must work in a particular week during a certain period

45

(the schedule period). For n-week period with k shifts, the

number of possible shift-pattern can be calculated as

n n!
N = k n2 . . . nk

_

nk
i=1

For example, for 12-week period with three shifts a day and a

3:2:1 ratio of working policy, the number of possible combina-

tions will be as many as

N
6! 421'2! -13860

This is also a very large number. Therefore, given a specific

hospital policy, the first task is to generate possible shift

patterns for that policy followed by randomly selecting some

of these shift patterns and combining them with work patterns.

In this model, the length of schedule period can be specified

as either 4-week, 8-week or 12-week period.

Like work patterns, shift patterns need to be screened

against policy constraints. These include:

1. Pattern with 4 consecutive night-shift must be

eliminated.

46

2. Pattern with 4 consecutive evening shift must be

eliminated.

3. For a 4-week period, pattern with three night-

shifts must be eliminated.

4. For a 4-week period, pattern with three evening

shifts must be eliminated.

Example of shift patterns, assuming a scheduling period of 4

weeks and ratio of nurses working in day, evening and night

shift to be 2:1:1, are shown in Figure 4-3.

Shift Patterns

DDNE
DDEN
DNEN

DDEE
DEDN
EDND
DDDE
DDDN
DDED
DDND
DDED,
NDDD

Figure 4-3 Example of Shift Patterns

The combination of the work patterns and the shift

patterns is therefore a complete schedule for the hospitals.

An example of a complete schedule for one nurse for 4-week

period and shift policy of 2:1:1 is shown in Figure 4-4. In

this schedule, the nurse works two weeks in the day shift, one

47

week in the evening shift and one week in the night shift.

Schedule No. : 1

Day : MTWTFSS
Week : 1 D: 1 1 1 1 1 0 0
Week : 2 D: 1 1 1 1 1 0 0
Week : 3 N: 0 1 1 1 1 1 0
Week : 4 E: 1 1 1 1 1 0 0

Figure 4-4. An example of a complete schedule of 4-week period
with 2:1:1 shift policy for one nurse

4.2 Work Pattern Generation

The first step in pattern generation is the generation of

work patterns. This pattern is an array with (7 x n) elements

or slots. Each element is symbolized by a 'zero' or a Zone,

representing day-off and day-on. For 4-week period there will

be an array of 28 (7 x 4) slots which will be filled with

either zero or one, while for 12-week period the number of

slots will be 84 (7 x 12). For a specified planning period, m

working patterns are required, where m is the number of nurses

who will be working during this scheduling period.

The procedure for generating work patterns is shown in

Figure 4-5. The process starts off by first generating a set

of one-week work patterns. The one-week work patterns are then

combined with themselves to generate two-week patterns. These

two-week patterns are combined with the previous one-week

48

GENERATE
'1 -WEEK WORK

PATTERN
CSET- 1)

COMBINE
SET-1 WITH
THE SAME

SET TO FORM
SET- 2

COMBINE
SET -2 WITH
SET- 1 TO

FORM SET- 3

COMBINE
SET -3 WITH
SET- 1 TO

FORM SET-4

COMBINE
SET -11 WITH
SET- 1 TO

FORM SET -12

12 -WEEK WORK
PATTERNS

STOP

ONE -WEEK PATTERNS

TWO-WEEK PATTERNS

THREE-WEEK PATTERNS

FOUR-WEEK PATTERNS

TWELVE-WEEK PATTERNS

Figure 4-5 General Algorithm of
Work Pattern Generation

49

patterns to create three-week patterns, and so forth. This

method, without any screening procedure will create a very

large number of patterns. The longer the length of the

schedule, the larger the number of possible patterns that can

be generated. Even if the system starts with seven one-week

patterns, for 4-week period there will be 74 = 2401 different

possible patterns and for 12 week there will be more than one

billion possible patterns.

Therefore, to make the method more efficient, the pattern

generation process is combined with the pattern screening pro-

cess using the best-first heuristic technique. Only patterns

that pass the screening process are stored in the database to

be combined with the shift patterns.

In the best-first search algorithm application used in

this research, after a set of one-week work patterns have been

generated, a penalty cost is calculated for every pattern in

the set. Penalty cost is a cost associated with the violation

of constraints. The more the constraints violated, the higher

the penalty cost. The penalty costs associated with con-

straints are different from each other, reflecting the

relative importance of constraints to hospital administration

and/or nurses.

After calculating the penalty cost, the program sorts the

patterns in ascending order of penalty cost; thus the pattern

at the top of the queue is the minimum cost pattern. This

pattern then forms the basis for generating two-week patterns.

50

The method consists of combining the minimum cost pattern with

the previous set of one-week patterns resulting in a set of

two week patterns. After the two-week patterns have been

generated, the penalty costs associated with these patterns

are calculated. The two-week patterns are again sorted based

on the least penalty cost.

The process continues until patterns with the desired

length of period have been generated. At this stage, a subset

of patterns whose penalty costs are less than or equal to the

maximum penalty cost is selected as a feasible set. The

maximum penalty cost is set by the administrator as a function

of objectives and constraints. The number of patterns in the

feasible set have to exceed the number of nurses (since one

work pattern is required for each nurse or nurse group). If

the number of feasible patterns is less than the number needed

by the hospital, the process backtracks to the previous step

to pick the pattern with the second minimum penalty cost. The

process of generating additional patterns is the same, that

is, by combining that pattern with the previous set of the

one-week patterns. If even after this stage not enough

feasible patterns have been generated, the process continues

by backtracking to the previous stage to pick the third

minimum penalty cost pattern. This iterative process continues

until all available patterns in the previous stage are

exhausted. If still more patterns are required the process

then backtracks one more level. This process continues until

51

enough pattern have been generated or no more feasible

patterns can be generated. Figure 4-6 shows the flowchart for

the best first algorithm for a four-week period.

4.2.1 Evaluation Function

The evaluation function in the best-first search proce-

dure is used to direct the search process. Here, the evalua-

tion function is the penalty cost which depends on the adverse

effect of a constraints on nurse's or hospital's objectives.

Before the process of pattern generating begins, all con-

straints from hospital and nurses must be listed and associat-

ed penalty costs specified. It is not possible to provide an

exhaustive set of these constraints. As mentioned before,

every environment has its own policies and objectives. A

representative set of constraints are outlined below; the

design of the DSS is such that the system can be modified to

fit a specific environment.

To minimize cost, the hospital objective is to minimize

the number of nurses working in a particular shift on a

particular day. However, it is also important to the hospital

to have adequate number of nurses working in every shift to

cover the patient's needs. The constraints usually imposed by

the hospital are:

1. Minimum number of nurses work in every shift.

52

Figure 4-6 Best-First Search Algorithm for Pattern Generation (4-week period)

53

2. Minimum number of nurses work during weekend.

3. The number of nurses work in every shift must meet

the staff requirements (assumed to be already

determined).

4. Every nurse must work 5 days a week, or 40 hours a

week during the day shift.

5. The maximum number of consecutive work days to be

six.

6. The maximum number of consecutive days off to be

four, including weekends.

7. Every nurse to work in evening shifts at least 1/3

of the time and in night shifts at least 1/6 of the

time (depending on the policy of the hospital and

the prediction of the ratio of number of nurses

required to work every shift. Usually the number of

nurses needed for evening and night shift is lower

than the day shift, and the Saturday and Sunday

requirements are 20 to 30 percent lower than week-

day requirement (Ozkarahan, 1987]).

8. All absenteeism caused by sickness and any other

reason must be covered, but the number of floating

nurse must be minimized.

Nurses also have some requirements, preferences and

limitations. Some constraints are imposed by the federal and

state laws and labor organizations; others are imposed by

physical limitations. Typical constraints for nurses are:

54

1. Every nurse must have a chance to have weekend off

(in some cases every other weekend off or 3 week-

ends off every month).

2. Every nurse must have at least two consecutive days

off before shift change in order to let the nurses

to adjust to the new schedule.

3. The maximum number of days that a nurse can work

consecutively be 6 days.

4. Single day on or off must be minimized.

5. Every nurse must be allowed to have some preferred

days off (birthday, anniversary, etc.).

6. Every nurse must be allowed not to work during

holidays (christmas, thanksgiving, etc.), if so

desired.

7. The number of weekend working days for every nurse

be the same.

8. Every nurse have the same number of evening and

night shifts.

Each of the constraint is assigned a penalty cost,

representing the loss to the hospital or the nurses if that

constraint is violated. An example set of penalty costs is

shown in Table 4-1.

55

CONSTRAINTS Penalty Cost

1. Minimize # of 4 zero in sequence 10

2. Minimize # of 3 zero in sequence 5

3. Minimize # of 6 one in sequence 10

4. Minimize # of 7 one in sequence 30

5. Minimize # of 8+ one in sequence 40

6. Minimize # of on/off pattern 10

7. Minimize # of non-weekend off :

a. Fri-Sat combination 5

b. Sun-Mon combination 5

c. Mon-Tue, Tue-Wed, Wed-Thu,
Thu-Fri

10

8. Minimize single zero 10

9. Minimize single zero 10

10. Minimize working on weekend 10

Table 4-1. Example of Penalty Cost

4.3 Shift Pattern Generation

In generating shift patterns, it is assumed here that

nurses work the same shift each week; shift change only occurs

at the beginning of the week and remains the same throughout

that week. The number of shifts in each shift pattern equals

the schedule length.

The generation of shift patterns starts off by generating

D, E and N patterns based on shift policy chosen by the user.

For example, for 1000 schedules, and 4-week period, 4000 shift

patterns will be created. If the shift ratio is 4:3:1, for

56

example, then 2000 D's will be generated together with 1500

E's and 500 N's. A shift pattern base is created to save these

patterns. Then, these patterns will be reordered randomly, and

the new order set will be saved into a different pattern base.

Following this step, 4-week shift patterns are generated by

random selection of four shift patterns to form a 4-week shift

pattern. Then, screening process is carried out to eliminate

infeasible patterns. The schedule base is generated by picking

patterns from this set repeatedly until the number of patterns

in the schedule base is the same as the number of required

work patterns.

4.4 Combining Work and Shift Patterns

To form a complete schedule, the work patterns are

combined with shift patterns. The combination process is

essentially a matching process. The process, shown in Figure

4-7, consists of:

1. Pick one work pattern from pattern base.

2. Pick one shift pattern from pattern base.

3. Assign the first character (D, E or N) of the shift

pattern to the first seven digits of the work pattern;

this represents the work assignment for the first week.

The second character of the shift pattern is then

assigned to the second seven digit set in the work

pattern for second week assignment. The process continues

57

ASS I GN4 F I R ST LET-1-ER
CIF SI--I I F-r PA.:I-TEI=1V TO

F I RS -r SEN/EN 0 I G I 1"WORK RATTERN

Figure 4-7 Flowchart of Matching Work and
Shift Patterns

58

until a seven week set from the work pattern is assigned

to each character (shift) of the shift pattern. This

completes the work schedule for one nurse.

4. The assignment process is repeated until at least

one work schedule is generated (by combining a

unique work pattern and a unique shift pattern) for

each nurse.

To illustrate this process, consider generating schedules

for a four-week scheduling period. Table 4.2 shows seven work

patterns and associated penalty costs computed based on the

values given in Table 4-1. These seven work patterns are

1111100111110011111001111100 PCost = 0
1111100111110011111001111001 PCost = 5
1111100111110011111000111110 PCost = 10
1111100111110011111001110011 PCost = 10
1111100111110011111001100111 PCost = 10
1111100111110011111001110110 PCost = 15
1111100111110011111001101110 PCost = 15

Table 4-2 Example of Some Work Patterns with Penalty Cost

combined with seven shift patterns. Table 4.3 shows some

randomly generated shift patterns from where the first seven

patterns have been selected to be combined with work patterns

(Table 4.4). The procedure for accomplishing this is shown in

Figure 4-8, and work schedules resulting from this combination

are shown in Figure 4.9.

59

Shift Patterns

DDNE
DDEN
DNEN
DEND
DDEE
DEDN
EDND
DDDE
DDDN
DDED
DDND
DDED
NDDD

Table 4-3 Example of Shift Patterns

Shift Pattern Work Pattern

DDNE 1111100111110011111001111100

DDEN 1111100111110011111001111001

DNEN 1111100111110011111000111110

DEND 1111100111110011111001110011

DDEE 1111100111110011111001100111

DEDN 1111100111110011111001110110

EDND 1111100111110011111001101110
Table 4- . Combination of Shift and Work Patterns

60

Pattern No: 1 : 1111100111110011111001111100
Shift : D D N E
Pattern No: 2 : 1111100111110011111001111001
Shift : D D E N
Pattern No: 3 : 1111100111110011111000111110
Shift : D N E N
Pattern No: 4 : 1111100111110011111001110011
Shift : D E N D
Pattern No: 5 : 1111100111110011111001100111
Shift : D D E E
Pattern No: 6 : 1111100111110011111001110110
Shift : D E D N
Pattern No: 7 : 1111100111110011111001101110
Shift : E D N D

Figure 4-8 Matching Shift and Work Patterns

Schedule No. : 1 Schedule No. : 5

Day : MTWTFSS Day : MTWTFSS
Week : 1 0: 1 1 1 1 1 0 0 Week : 1 D: 1 1 1 1 1 0 0
Week : 2 0: 1 1 1 1 1 0 0 Week : 2 D: 1 1 1 1 1 0 0
Week : 3 N: 0 1 1 1 1 1 0 Week : 3 E: 1 1 1 0 0 1 1

Week : 4 E: 1 1 1 1 1 0 0 Week : 4 E: 1 1 1 0 1 1 0

Schedule No. : 2 Schedule No. : 6

Day : MTWTFSS Day : MTWTFSS
Week : 1 D: 1 1 1 1 1 0 0 Week : 1 D: 1 1 1 1 1 0 0
Week : 2 D: 1 1 1 1 1 0 0 Week : 2 E: 1 1 1 1 1 0 0
Week : 3 E: 1 1 1 1 0 0 1 Week : 3 D: 1 1 1 1 0 0 1
Week : 4 N: 1 0 0 1 1 1 1 Week : 4 N: 1 0 1 1 1 0 1

== === ==

Schedule No. : 3 Schedule No. : 7

Day : MTWTFSS Day : MTWTFSS
Week : 1 D: 1 1 1 1 1 0 0 Week : 1 E: 1 1 1 1 1 0 0
Week : 2 N: 1 1 1 1 1 0 0 Week : 2 0: 1 1 1 1 1 0 0
Week : 3 E: 1 1 0 0 1 1 1 Week : 3 N: 1 1 0 0 1 1 1

Week : 4 N: 1 1 1 0 1 1 0 Week : 4 D: 1 0 0 1 1 1 1
==

Schedule No. : 4

Day : MTWTFSS

Week : 1 D: 1 1 1 1 1 0 0
Week : 2 E: 1 1 1 1 1 0 0
Week : 3 N: 1 1 1 0 0 1 1

Week : 4 D: 0 1 1 1 1 1 0
=== ==-=.-=_== =

Figure 4-9 Example of Nurse Schedules

61

4.5 Generating Reports

Once a feasible set of work patterns have been identi-

fied, the system can be used to print the work schedule

identified. This report could be used by the administrator to

evaluate whether the schedule generated meets the staff

requirement of the hospital or not. If the requirements are

not satisfied, the administrator can try another schedule by

simply picking another set of work and shift patterns from the

pattern base and forming the new schedule. This process can be

repeated until a desirable set of work schedules is obtained.

The reports generated by the system consist of individual work

schedules (Figure 4.9) and staff summary report (Figure 4.10)

which shows the number of nurses that will be working in each

shift on each day of the scheduling period and the deviations

from the ideal shift assignment. The actual ratio in Figure

4.10 is based on the generated schedules; the ideal ratio is

computed based on the specified shift policy.

62

STAFF LIST REPORT:

Day : Day-Shift Evening-Shift Night-Shift

Monday 1 351 256 235
Tuesday 2 406 298 276
Wednesday 3 399 295 264
Thursday 4 378 279 248
Friday 5 300 218 208
Saturday 6 104 76 78
Sunday 7 142 98 91
Monday 8 350 237 215
Tuesday 9 418 274 238
Wednesday 10 379 244 206
Thursday 11 332 227 194
Friday 12 288 220 168
Saturday 13 219 164 126
Sunday 14 229 144 128
Monday 15 328 225 209
Tuesday 16 362 258 232
Wednesday 17 340 234 219
Thursday 18 329 229 192
Friday 19 295 223 191
Saturday 20 257 184 164
Sunday 21 234 152 143
Monday 22 311 194 168
Tuesday 23 330 232 186
Wednesday 24 314 245 186
Thursday 25 337 227 194
Friday 26 328 234 209
Saturday 27 295 238 191
Sunday 28 250 180 151

Total 8605 6085 5310
Average 307.321 217.321 189.643
Ratio Actual 0.430 0.304 0.265
Ratio Ideal 0.445 0.333 0.222
=====---- ===== ==== =

Figure 4-10 Staff Requirement Report

63

CHAPTER 5
IMPLEMENTATION AND SYSTEM EVALUATION

5.1 Implementation

The nurse scheduling system was developed in Pascal using

Borland's Turbo Pascal Professional Version 6.0 compiler

[Borland International, 1990]. The system was implemented on

an Intel 80386-based IBM Compatible Personal Computer and an

Intel 80286-based IBM PS/2 System 50-Z (microchannel). Pascal

was selected as the language for the program because it is a

modular and very structured language; it is easy to modify,

extend and expand the program.

The program basically consists of three main parts, the

user interface, the pattern generator, and the schedule

generator and analyzer. The main program models the user

interface. The procedures and units represent the pattern

generation (work and shift patterns) including the search

algorithm, and the schedule generator. The results of the

program are stored in pattern and schedule bases. The program

use and input screens along with extension and modification

guide are described in Appendix A. The complete computer code

for the program is provided in Appendix B, C, D and E.

5.1.1 User Interface

The user interface section interacts with the user to

64

obtain specification of the following parameter (Figure 5.1):

1. Length of the scheduling period (4-week, 8-week or 12-

week).

2. Penalty cost values for constraints. Some default values

are built in the program based on some references and

discussion with nurse manager at Good Samaritan hospital

in Corvallis, Oregon. These values are displayed along

with each constraint. The user has the choice of specify-

ing new values or running the program with the default

values provided.

3. Number of patterns to be generated. For flexibility, it

is suggested that this number be greater than that of

nurses.

4. Maximum Penalty cost. The maximum penalty cost is the

total penalty cost that can be tolerated. This value must

be decided by the administrator. The guide for selection

is simple: select the worst constraint or scenario that

still can be tolerated and set the total penalty cost of

that constraint or scenario as the maximum penalty cost.

5. Shift Policy Ratio. There are nine shift policy ratios

built in the program. These policies are the most common

policies selected from references and discussion with the

nurse manager at Good Samaritan hospital in Corvallis,

Oregon. However, the program also allows the user to

specify different policies, if desired.

65

Figure 5.1 Flowchart for user inter-
face

66

6. Number of schedules to be selected from the schedule

base. After the work and shift patterns have been

generated, the user may select any number of these

schedules, the maximum being the number of patterns

generated. If this set of schedules does not satisfy the

user need, then he can select a different set without

having to generate another set of patterns. Generating

another set is also allowed, if the current set of

patterns does not satisfy the user.

The interface section also allows the user to display the

schedules and staff list report on the monitor before saving

or printing the schedules. This allows the user to evaluate

the schedules before using them.

5.1.2 Pattern Generation

The pattern generator creates work and shift patterns and

screens them against constraints. The algorithm of generating

and screening process has been described in the previous

chapter. However, certain implementation consideration will be

discussed here.

The problems encountered in the implementation of pure

best-first search algorithm are associated with the limita-

tions of the microcomputer. In the best-first search algo-

rithm, as the length of scheduling period increases, the

67

number of patterns to be generated also increases. This means

that the screening process will require more computer memory

and time. For example, starting with 21 one-week patterns, a

12 week scheduling period requires 2112 patterns at the lowest

level of the search tree. Bringing these patterns to computer

memory is a big problem, because even if the variable is

defined as a "character" variable, it will take at least 1

byte for every pattern, and this means that the entire set of

patterns will require at least 21u bytes (or more than 7

million gigabytes of memory). A computer with DOS operating

system can only have 640 kb conventional memory and even with

DOS extender program, the highest capacity of personal

computer today is 32 megabyte.

If swapping data from memory to disk is considered, the

problem is the tracking of data. The penalty cost calculation

and the sorting process needs all data to be accessed. Hence

it is not possible to implement a swapping procedure for this

size of data because the processing time will be too long.

The second problem encountered in the search method was

the problem of schedule variation. The term schedule variation

means that schedules should have variations among each other

for every week segment otherwise nurses will end up with

similar schedules. This problem occurs because of the nature

of the search method. The search method starts with the best

first week pattern, then continues to the best first and

second week combination, and so on for the scheduling period.

68

The process of backtracking starts off from the last week

backwards. Thus, if the number of patterns needed are ful-

filled by backtracking to the second week, for example, then

all schedules will have the same pattern for the first week.

This problem must be avoided to provide variability in

schedules. In this research, increased variability is intro-

duced through:

1. Limiting the length of schedule period in the best-first

search. This also reduces computer processing time. In

addition, given a specific scheduling period, greater the

number of patterns generated, higher the variability.

2. Using a random schedule selection process so that the

schedule variation will be higher.

After several trials, it was found that the length of

four-week schedule period is the best choice for starting

point of the algorithm implementation. For example, 1000

patterns generated with a maximum penalty cost of 40 have all

four week variations. Therefore, the base length of schedule

period is chosen to be four weeks. For longer scheduling

periods, schedules are formed by randomly combining the four-

week patterns.

There are two constraints that are generally considered

important in most hospitals. These are the requirement that

every nurse must work five days a week and that the maximum

number of consecutive days off for a nurse be four. These

69

constraints can be used to start off the pattern generation

process. Thus the first week patterns will consist of five l's

and two 0's. This results in 21 different one-week patterns

each with five l's and two 0's meaning that every nurse will

work five days a week. This also will guarantee that the

maximum consecutive days-off that a nurse can have will be

four days. The best-first algorithm uses these 21 one-week

patterns as the starting point. The starting pattern base can

be expanded by adding more combinations of one-week patterns

and relaxing the above two constraints.

The algorithm for generating the four-week scheduling

patterns is shown in Figure 5.2. This subprogram starts off by

implementing the best-first search algorithm for generating

four-week work patterns. The program then re-arranges the work

patterns randomly (and save this new arrangement to a differ-

ent file). For eight-week or twelve-week scheduling period,

the four-week work patterns are combined accordingly.

The program also generates shift patterns according to

the hospital shift policy. The process of generating shift

patterns starts off by generating the number of D's, E's and

N's based on the hospital policy ratio. These patterns are

then rearranged randomly and screen against some constraints.

The primary constraints used in the screening process are:

1. For four-week scheduling period, pattern that has all

evening and night shifts is eliminated.

2. For four-week scheduling period, pattern that has three

70

PICK OP OP
WORK PATTERNS
NSSOSO FROM

NEW
ARRANGEMENT

Figure 5.2 Algorithm for generating 4-week schedules

71

evening or night shifts is eliminated.

For scheduling period of eight or twelve weeks, the four-

week shift patterns were also combined to form patterns of

required length. Based on user specification of number of

schedules desired, the program combines the work and shift

schedules to form the required number of schedules. As

mentioned previously, the 8- and 12-week schedules are based

on the 4-week patterns. For example, to form 8-week scheduling

period, a set of 4-week patterns are first generated. Two

different random order of these patterns are then saved in

different files. Patterns from these files are combined to

form 8-week patterns. The same procedure is also carried out

for shift patterns, and the work and shift patterns then are

combined to form the required schedules.

5.1.3 Penalty Cost Calculation

An important component of the best-first search algorithm

is the penalty cost calculation procedure. The penalty cost is

used as a heuristic function for the search method. The

penalty cost calculation is carried out by reading the

patterns one by one and locating the position of the character

to check if a certain condition is met or not. For example, to

calculate penalty cost of working in weekend for one-week

pattern, the program checks if digits 6 and 7 of the pattern

are both "1". If they are, then the pattern is assigned a

72

specific penalty cost. If digit 6 is "1" and digit 7 is "0",

a different penalty cost is assigned. Similarly if 6 is "0"

and 7 is "1" then a third penalty cost is assigned (which may

or may not be the same as the penalty cost for "1" and "0").

The pseudo code for this process is shown in Figure 5.3

procedure pcostweekend;
for i := 1 to NumberOfPatterns do
begin
if digit 6 and digit 7 equal '1' then

penalty cost := WeekendPenaltyCost;
else
if digit 6 equal '1' and digit 7 equal '0' then

penalty cost := PenaltyCostOfSaturdayOnSundayOff;
else
if digit 6 equal '0' and digit 7 equal '1' then
penaltycost := PenaltyCostOfSaturdayOffSundayOn;

end if
end;

end;

Figure 5.3 Pseudocode for penalty cost calculation for
weekend.

A different procedure is required if the constraint is to

check for a single day on or off in the pattern. This checking

requires comparing a digit with its following and previous

digits. If both the following and previous digits are differ-

ent from the digit being checked, then it implies single-on or

single-off day (depending on the digit character).

The procedure for checking two-week, three-week and four

week patterns are slightly different from the one-week

patterns. In these patterns, more works must be carried out.

For example, weekend constraints for two-week patterns must

73

check for digits 6 and 7, and digits 13 and 14. For three-week

patterns, checking for weekend's constraints includes digits

6, 7, 13, 14, 20 and 21; and for four-week patterns, this

includes digits 6,7,13,14,20,21, 27 and 28.

Similarly, checking single day on or off in multiple week

patterns is also different from one-week patterns. For one-

week patterns, checking starts from digit 2 and goes up to

digit 6, while for two-week patterns it starts from digit 2 up

to digit 13, for three-week patterns the checking begins from

digit 2 and ends at digit 20, and for the four-week patterns,

this process starts from digit 2 up until digit 27. A slightly

different matching process is also required to calculate

penalty cost for working on 6, 7 or 8 consecutive days, and

for having 3 or 4 consecutive days off.

The sum of penalty costs associated with each constraint

represents the total penalty cost for the pattern. This value

is used as the heuristic function for the search method.

5.1.4 Sorting the patterns

An important aspect of the best-first search technique is

the sorting of the patterns based on the penalty cost associ-

ated with each pattern. In this program, the sorting algorithm

used is "the straight insertion technique" [Rugg and Feldman,

1989], or simply referred to as "the insertion technique"

[Sedgewick, 1988]. This method is very simple but flexible

74

enough to accommodate big programs. The pseudocode for this

method is shown in Figure 5.4 [Sedgewick, 1988].

procedure insertion;
var i,j,v : integer;
begin
for i := 2 to N do

begin
v := a[i]; j := i;
while a[j-1] > v do

begin a[j] := a[j-1] ; j := j - 1 end;
a[j] := v
end

end;

Figure 5.4 Pseudocode for insertion technique

5.2 System Evaluation

Two approaches were used to evaluate the computer model:

1. Evaluation by one of the nurse scheduling managers at

Good Samaritan Hospital, Corvallis, Oregon. Direct

utilization of the program at Good Samaritan Hospital was

not possible due to the nature of its operations. The

hospital has a relatively small full-time nurse force and

a large part-time pool of nurses. It thus focuses on

allocation (currently using a data base system) rather

than work schedules generation and assignment. However,

the expertise of the scheduling manager was used to:

(a) Evaluate the constraints included in the model and

75

the penalty costs. Even though the rating system

used at Good Samaritan Hospital is different, the

penalty cost values initially specified in the

program (based on studies reported in literature)

were close to their values. The set of constraints

and the associated penalty values currently in the

program have been revised after discussions and

feedback from this scheduling manager.

(b) Evaluate the program features and output reports. A

series of meetings were arranged during the project

duration. The suggestions provided by the manager

in the initial meetings were incorporated in the

program. After the system development was complet-

ed, the manager reviewed the output. Feedback on

the utility of the program was very positive.

2. The results for statistical evaluation of the program

under different combinations of length of schedule and

shift policy ratio are shown in Tables 5.1 through 5.3.

The tables show the mean, standard deviation, minimum and

maximum of the actual ratio values of the nurse staffing

coverage. The ideal ratios of the staffing coverage or

the shift policy ratios are also included in the tables.

The tables show that the actual ratios are close to

the shift policy ratio specified by the hospital. The

tables also show that the minimum and maximum values of

the total deviation, that is, the sum of understaffing

76

Length of Schedule: 4 weeks.
Number of runs : 50; Maximum Penalty Cost : 40
Patterns generated : 1000
Schedules selected every run : 1000

Shift Policy Ratio 3:2:1

Mean StdDev Min Max Ideal

Day 0.47746 0.007281 0.465 0.493 0.50000
Evening 0.30480 0.005821 0.287 0.318 0.33333
Night 0.21776 0.005369 0.207 0.229 0.16667
Total Deviation 0.080 0.125

Shift Policy Ratio 2:1:1

Mean StdDev Min Max Ideal

Day 0.47282 0.006405 0.455 0.486 0.50000
Evening 0.24896 0.005337 0.238 0.262 0.25000
Night 0.27822 0.005920 0.264 0.294 0.25000
Total Deviation 0.032 0.090

Shift Policy Ratio 4:3:1

Mean StdDev Min Max Ideal

Day 0.49692 0.009239 0.475 0.513 0.50000
Evening 0.32796 0.005437 0.319 0.343 0.37500
Night 0.17520 0.006280 0.162 0.194 0.12500
Total Deviation 0.073 0.138

Shift Policy Ratio 3:2:2

Mean StdDev Min Max Ideal

Day 0.42586 0.008285 0.404 0.443 0.42900
Evening 0.27010 0.006534 0.258 0.289 0.28600
Night 0.30414 0.006824 0.290 0.317 0.28500
Total Deviation 0.021 0.065

Shift Policy Ratio 4:3:2

Mean StdDev Min Max Ideal

Day 0.42148 0.007094 0.407 0.436 0.44500
Evening 0.30420 0.004919 0.294 0.314 0.33333
Night 0.27456 0.005193 0.266 0.287 0.22222
Total Deviation 0.087 0.130

Table 5.1 Statistics for 4 -Meek schedules

77

Length of Schedule: 8 weeks.
Number of runs : 50; Maximum Penalty Cost : 40
Patterns generated : 1000
Schedules selected every run : 1000

Shift Policy Ratio 3:2:1

Mean StdDev Min Max Ideal

Day 0.48232 0.006984 0.470 0.501 0.50000
Evening 0.30220 0.006542 0.288 0.314 0.33333
Night 0.21548 0.005360 0.205 0.233 0.16667
Total Deviation 0.076 0.132

Shift Policy Ratio 2:1:1

Mean StdDev Min Max Ideal

Day 0.47920 0.008219 0.452 0.497 0.50000
Evening 0.25060 0.006406 0.236 0.269 0.25000
Night 0.27036 0.005959 0.260 0.288 0.25000
Total Deviation 0.022 0.096

Shift Policy Ratio 4:3:1

Mean StdDev Min Max Ideal

Day 0.49676 0.008123 0.480 0.515 0.50000
Evening 0.32714 0.005967 0.310 0.338 0.37500
Night 0.17614 0.006597 0.163 0.191 0.12500
Total Deviation 0.082 0.132

Shift Policy Ratio 3:2:2

Mean StdDev Min Max Ideal

Day 0.41680 0.006309 0.400 0.436 0.42900
Evening 0.27292 0.005336 0.263 0.287 0.28600
Night 0.31034 0.005884 0.301 0.325 0.28500
Total Deviation 0.032 0.080

Shift Policy Ratio 4:3:2

Mean StdDev Min Max Ideal

Day 0.43152 0.007870 0.415 0.448 0.44500
Evening 0.29882 0.006443 0.284 0.315 0.33333
Night 0.26980 0.006521 0.255 0.283 0.22222
Total Deviation 0.065 0.122

Table 5.2 Statistics for 8 -week schedules

78

Length of Schedule: 12 weeks.
Number of runs : 50; Maximum Penalty Cost : 40
Patterns generated : 1000
Schedules selected every run : 1000

Shift Policy Ratio 3:2:1

Mean StdDev Min Max Ideal

Day 0.47392 0.010336 0.451 0.500 0.50000
Evening 0.30536 0.007318 0.292 0.321 0.33333
Night 0.22076 0.008014 0.202 0.241 0.16667
Total Deviation 0.070 0.148

Shift Policy Ratio 2:1:1

Mean StdDev Min Max Ideal

Day 0.47660 0.009031 0.455 0.494 0.50000
Evening 0.25006 0.006857 0.233 0.265 0.25000
Night 0.27316 0.007569 0.258 0.297 0.25000
Total Deviation 0.022 0.095

Shift Policy Ratio 4:3:1

Mean StdDev Min Max Ideal

Day 0.49306 0.008712 0.471 0.519 0.50000
Evening 0.32724 0.007254 0.313 0.342 0.37500
Night 0.17974 0.007451 0.157 0.196 0.12500
Total Deviation 0.082 0.142

Shift Policy Ratio 3:2:2

Mean StdDev Min Max Ideal

Day 0.41400 0.008065 0.395 0.428 0.42900
Evening 0.28084 0.006842 0.268 0.295 0.28600
Night 0.30516 0.007273 0.285 0.322 0.28500
Total Deviation 0.007 0.074

Shift Policy Ratio 4:3:2

Mean StdDev Min Max Ideal

Day 0.42884 0.009091 0.411 0.447 0.44500
Evening 0.30392 0.007180 0.290 0.322 0.33333
Night 0.26732 0.008620 0.239 0.292 0.22222
Total Deviation 0.034 0.140

Table 5.3 Statistics for 12-week schedules

79

(negative deviation) and overstaffing (positive devia-

tion) in terms of shift ratio for all scenarios is

relatively small.

TotalDeviation = abs[actual ratio-ideal ratio]dw_mft
+ abs[actual ratio-ideal ratio]

er nming Milft
+ abs [actual ratio-ideal ratio] ughtmift

The statistics on Tables 5.1, 5.2 and 5.3 were

collected by running the program for 15 scenarios (three

different length of schedules and five different shift

policies). For every scenario, 1000 patterns were

generated, and from these patterns every time 1000

schedules were picked (drawing with replacement). The

number of runs for every scenario is 50. This procedure

was used because of the following considerations.

1. After the patterns (both work and shift patterns) are

generated, they are reordered randomly to avoid bias

during the selection of the patterns. This bias may occur

because of the nature of the search method that is used

in the process of screening work patterns which guarantee

that the first pattern generated will be the best, the

second one will be the second best, and so on.

2. The more the patterns generated (up to a certain

limit), the better the variation of the patterns, and,

the better the coverage. But, for the nurse, the less the

patterns generated, the better the patterns. Therefore,

80

in the choice of the number of patterns generated (m)

there is a trade-off between penalty cost and coverage.

For large m the hospital schedule is laikely to be closer

to the ideal coverage but large m also allows individual

schedules with higher penalty costs and takes more

computing time.

Therefore, the evaluation was carried out by

selecting n schedules from the m patterns at random with

replacement. Each run of the program produces a list that

can be regarded as independent of the lists produced by

other runs so that it is possible to claim that the

universe of possible runs includes all feasible lists.

Table 5.4 shows the results of generating 1000 (m)

patterns, and then with 50 runs selecting 300 (n)

schedules at random with replacement.

Length of Schedule : 4-week
Shift Policy Ratio : 4:3:1
Number of runs : 50
Patterns generated : 1000
Schedules selected at each run : 300
Maximum Penalty Cost : 40

Day
Evening
Night
Total Deviation

Mean StdDev Range Ideal
Min Max Ratio

0.48986 0.014479 0.455 0.525 0.50000
0.32776 0.010422 0.298 0.351 0.37500
0.18232 0.009833 0.163 0.205 0.12500

0.080 0.160

Table 5.4 Statistics for n=1000 n=300, 4-week schedule

81

From the table we can see that the total deviation is

0.080. If the number of schedules selected are 1000, this

number is 0.073. These numbers are relatively small, and

all of those schedules have penalty cost less than or

equal to maximum penalty cost. The probability that this

best schedule set (the best set from 50 runs) contains

the top 10 % of the feasible schedules is 0.995 (which is

(1-(1-0.1)5° = 0.995)).

82

CHAPTER 6

CONCLUSIONS

The research developed a decision support system frame-

work for nurse scheduling in hospitals. It then used a

heuristic approach to develop schedules for nurses. The

approach provides an effective solution to the complex,

multiple objective nurse scheduling problem. The implementa-

tion is flexible in that it can model a number of operating

scenarios and accommodate wide range of hospital and nurses

constraints. The heuristic approach is computationally

efficient, and overcomes the computational problems

with use of analytic-based techniques such as Integer

ming and Goal Programming.

The program is flexible to expand and modify. Constraints

can be added with minimal effort. The choices of different

shift policy ratios are provided in order to enable the user

to select schedules for different level of nurses. For

example, a user can select shift policy ratio of 3:2:1 for

Registered Nurses (RN), 3:3:2 for Licensed Practical Nurses

(LPN) and 1:1:1 for Nurse Aides (NA) for the same period of

schedules. Also, the possibility to select different set of

schedules from the same set of patterns will enable the user

to select different portion of the schedules for different

level of nurses. For example, a user can generate 1000

reported

Program-

83

patterns with 3:2:1 shift policy ratio, then use 150 of them

for RN, 350 for LPN and 500 for NA with actual ratio close to

the ideal ratio.

The accuracy (defined in terms of deviations of actual

shift allocation to ideal shift policy ratio) increases as

number of pattern generated increases. It is therefore

recommended that the user generates a large set of patterns

and pick the number of schedules close to the number of

patterns generated to get better staff allocation. For the

implemented model the computational time is small. For

example, 1000 four-week patterns with a maximum penalty cost

of 40 are generated in less then 2 minutes on a 386-based

machine.

Once the schedules have been selected, they can be saved

for further use. Therefore, the model can be used both for

hospital with cyclical or non-cyclical scheduling approach.

The work schedules can be modified using any simple text

editor or word processing. The schedules can be easily linked

to or imported from a database or spreadsheet program for

maintenance purposes, such as changes needed for a specific or

emergency request.

The use of personal computer enables small- and medium-

size hospitals to implement computerized scheduling without

incurring high costs associated with computer hardware,

software and maintenance. The program is easy to install and

use, and does not require special training for its use.

84

Implementation of the program on the personal computer will

also enable hospitals in developing countries to start doing

computerized nurse scheduling because of the relatively

inexpensive cost and easy to use nature of personal computers.

6.1 Suggestions for future research

For added flexibility and capability, more constraints

can be added to the model, such as the requirement that every

nurse must take some proportion of weekend off. More complex

hospital environments can be treated with slight modifications

of the model. The inclusion of part time or other contract

nurses will enhance the utility of the system.

The component of DSS not implemented in this research is

nurse allocation. Nurse allocation is interactive in nature

and may require changes in work patterns for some nurses. A

"real time" component can be added to the system developed in

this research by extending it to nurse allocation, or this

system can be linked to an existing allocation package (like

the one used at Good Samaritan Hospital in Corvallis, Oregon).

Finally, a number of characteristics in personnel

scheduling are common across industries. As such the DSS

framework and the implemented heuristic can be extended to

similar areas of manpower scheduling with some modifications.

85

REFERENCES

Abernathy, William J., Nicholas Baloff, and John C.
Hershey, "The Nurse Staffing Problem: Issues and
Prospects", Sloan Management Review, Fall 1971, pp.
87-99.

Abernathy, William J., Nicholas Baloff, John C.
Hershey, and Sten Wandel, "A Three-Stage Manpower
Planning and Scheduling Model - A Service-Sector
Example", Operations Research, Vol. 22, 1973, pp.
693-711.

Ahuja, H. and Sheppard, R., "Computerized Nurse
Scheduling", Industrial Engineering, Vol. 7, No.
10, October 1975, pp. 24-29.

Alivizatos, Margaret Sinclair, "A New Concept in
Scheduling for Nurses", Supervisor Nurse, February
1981, pp. 20-22.

Arbeiter, Jean S., "The Facts About Foreign
Nurses", RN, September 1988, pp.56-63.

Arbeiter, Jean, "What Smart Hospitals Do to Retain
Nurses", RN, November 1988, pp. 22-25.

Arnold, Barbara and Mary Etta Mills, "Core-12:
Implementation of Flexible Scheduling", The Journal
of Nursing Administration, July-August 1983, pp. 9-
14.

Arthur, Jeffrey L., and A. Ravindran, "A Multiple
Objective Nurse Scheduling Model," AIIE
Transactions, Vol. 13, No.1, March 1981, pp. 55-60.

Ballantyne, Donna J., "A Computerized Scheduling
System with Centralized Staffing", Journal of
Nursing Administration, March 1979, pp. 38-45.

Bechtold, Stephen E., and Michael J. Showalter,
"Simple Manpower Scheduling Methods for Managers",
Production and Inventory Management, Third Quarter,
1985, pp. 116-133.

Bell, Peter C., Hay, Genevieve, Liang, Y., "Visual
Interactive Decision Support Systems for Workforce
(Nurse) Scheduling", INFOR, Vol. 24, No. 2, May
1986, pp. 134-145.

86

Berger, Marie Streng, et al. (eds.), Management for
Nurses A Multidisciplinary Approach, second
edition, The C. V. Mosby Company, 1980.

Blau, Roger A., and Alan M. Sear, " Nurse
Scheduling with a Microcomputer", Journal of
Ambulatory Care Management, Vol. 6, No. 3, August
1983, pp. 1-13.

Boldy, Duncan, Operational Research Applied to
Health Services, St. Martin's Press, New York.

Borland International, Turbo Pascal 6.0 Library
Reference, Borland International, Inc., 1990.

Borland International, Turbo Pascal 6.0
Programmer's Guide, Borland International, Inc.,
1990.

Borland International, Turbo Pascal 6.0 User's
Guide, Borland International, Inc., 1990.

Boston, Carol Maier and Sarah Karzel, "Will the
Nursing Shortage Lead to Liability Suits?",
Hospitals, November 20, 1987, pp. 64-67.

Bowlin, Thomas Howard, A Model for Analysis of
Personnel Scheduling in Nonstationary Hospital
Systems, Ph.D Dissertation, University of Missouri-
Columbia, 1978.

Cavaiola, Lawrence J., and John P. Young, "An
Integrated System for Patient Assessment and
Classification and Nurse Staff Allocation for Long
Term Care Facilities", Health Services Research,
Vol. 15, Vol. 15, 1980, pp. 281-306.

Emra, Karin L., "Does the Nursing Shortage Change
the Rules?", RN, October 1988, pp. 30-34.

Flanders, John and Timothy Lutgen, "The Development
of a Microcomputer-based Nurse Management System",
Proceedings Annual Symposium on Computer
Applications in Medical Care 8th, 1984, IEEE, pp.
618-621.

Frances, Mary Ann, "Implementing a Program of
Cyclical Scheduling of Nursing Personnel",
Hospitals, Vol. 40, July 16, 1966, pp. 108-125.

87

Henderson, Willie B., and William L. Berry,
"Heuristic Methods for Telephone Operator Shift
Scheduling: An Experimental Analysis", Management
Science, Vol. 22, No. 12, August 1976, pp. 1372-
1380.

Howell, J.P., "Cyclical Scheduling of Nursing
Personnel", Hospitals, Vol. 40, Jan. 1966, pp. 77-
85.

Jelinek, Richard C., Tim K. Zinn, and James R.
Brya, " Tell the Computer How Sick the Patients are
and It Will Tell How Many Nurses They Need", Modern
Hospital, December 1973, pp. 81-88.

Kao, Edward P.C., and Maurice Queyranne, "Budgeting
Costs of Nursing in a Hospital", Management
Science, Vol. 31, No. 5, May 1985, pp. 608-621.

Kao, Edward P.C., and Grace G. Tung, "Aggregate
Nursing Requirement Planning in a Public Health
Care Delivery System", Socio-Economic Planning
Science, Vol. 15, 1981, pp. 119-127.

Kaplan, Robert S., "Analysis and Control of Nurse
Staffing", Health Sevices Research, Vol. 10, Fall
1975, pp. 278-296.

Koelling, Charles Patrick, Computer-Aided Personnel
Scheduling, Ph.D Dissertation, Arizona State
University, 1982.

Koelling, Patrick C. and James E. Bailey, "A
Multiple Criteria Decision Aid for Personnel
Scheduling," IIE Transactions, Vol. 16., No.4,
December 1984, pp. 299-307.

Koelling, Patrick C. and James E. Bailey, "Multi-
Objective Personnel Scheduling," 1982 Annual
Industrial Engineering Conference Proceedings, IIE,
pp. 481-487.

Livengood, Lindsay, "Planned Shifts Save Nurses and
Dollars", The Modern Hospital, Vol. 104, No. 2,
February 1965, pp. 101-104 & 170.

Lukman, Deborah, An Hierarchical Approach in
Schedule Formulation and Maintenance Under
Uncertainty, Ph.D Dissertation, University of
Pittsburgh, 1986.

88

Maier-Rothe, Christoph and Harry B. Wolfe,
"Cyclical Scheduling and Allocation of Nursing
Staff", Socio-Economic Planning Science, Vol. 7,
1973, pp. 471-487.

Marriner, Ann, Guide to Nursing Management, The
C.V. Mosby Company, 1980.

McGillick, Kathleen, "Modifying Schedules Makes
Jobs More Satisfying", Nursing Management, December
1983, pp. 53-55.

Megeath, Joe D., "Successful Hospital Personnel
Scheduling", Interfaces, Vol. 8, No. 2, February
1978, pp. 55-59.

Miller, H.E., W.P. Pierskalla and G.J. Rath, "Nurse
Scheduling Using Mathematical Programming,"
Operations Research, Vol. 24, No.5, September-
October, 1976.

Morrish, Arthur R., and Anna R. O'Connor, "Cyclic
Scheduling", Hospitals, Vol. 44, February 1970, pp.
66-71.

Murray, Donald J., "Computer Makes the Schedules
for Nurses", Modern Hospital, December 1971, pp.
104-105.

Musa, A.A., and U. Saxena, "Scheduling Nurses Using
Goal Programming Techniques", IIE Transactions.
Vol. 16, No. 3, September 1984, pp. 216-221.

Nutt, Paul C., "Decision-Modelling Methods Used to
Design Decision Support Systems for Staffing"
Medical Care, Vol. 22, No. 11, 1984, pp. 1002-1013.

Ozkarahan, Irem. A Flexible Nurse Scheduling
Support System, Ph.D. Dissertation, Arizona State
University, 1987.

Ozkarahan, Irem, "A Flexible Nurse Scheduling
Support System", 11th Symposium on Computer
Applications in Medical Care. Washington D.C..
November 1-4. 1987. IEEE Computer Society Press,
pp. 387-392.

Ozkarahan, I. and Bailey, JE., "Goal Programming
Model Subsystem of a Flexible Nurse Scheduling
Support System", IIE Transactions, Vol. 20, No. 3,
1988, pp. 306-316.

89

Perry, Linda, "Hospitals Go to Market for Nurses",
Modern Health Care, April 7, 1989, pp. 24-31.

Rich, Elaine and Kevin Knight, Artificial
Intelligence, second edition, McGraw-Hill, Inc.
1991.

Rosenbloom, E.
Scheduling",
Research, Vol.

Rothstein, M.,
Programming",
4, April 1972,

S., and N.F. Goertzen, "Cyclic Nurse
European Journal of Operational
31, No. 1, July 1987, pp. 19-23.

"Scheduling Manpower by Mathematical
Industrial Engineering, Vol. 4, No.
pp. 29-33.

Rothstein, Marvin, "Hospital Manpower Shift
Scheduling by Mathematical Programming", Health
Services Research, Spring 1973, pp-60-66.

Rugg, Tom and Phil Feldman, Turbo Pascal
Programmers's Toolkit, Que Corporation, 1989.

Sedgewick, Robert, Algorithms, second edition,
Addison-Wesley Publishing Company, Inc., 1988.

Shuman, Larry J., R. Dixon Speas, Jr., and John P.
Young (eds), Operations Research in Health Care, A
critical Analysis, The John Hopkins University
Press, 1975.

Sinuany-Stern, Zilla, and Yehuda Teomi, "Multi-
Objective Scheduling Plans for Security Guards,"
Journal of Operational Research Society, Vol. 37,
No.1, 1986, pp. 67-77.

Sitompul, Darwin, and Randhawa, Sabah U., "Nurse
Scheduling: A State-Of-The-Art Review", submitted
to Journal of the Society for Health Systems, Vol.
2, No. 1, Spring, 1990, pp 62-72.

Smith, L. Douglas, "The Application of an
Interactive Algorithm to develop Cyclical
Rotational Schedules for Nursing Personnel," INFOR,
Vol. 14, No.1, February 1976.

Smith, L. Douglas and A. Wiggins, "A Computer-based
Nurse Scheduling System," Computer & Operations
Research, Vol. 4, 1977, pp. 195-212.

90

Smith-Daniels, Vicki L., Sharon B. Schweikhart, and
Dwight E. Smith-Daniels, "Capacity Management in
Health Care Services: Review an Future Research
Directions", DecisionS ciences, Vol. 19, 1988, pp.
889-919

Spitzer, Murray, "The Computer Art of Schedule
Making", Datamation, April 1969, pp. 84-86.

Starr, M.K., and M. Zeleny (Eds), Multiple Criteria
Decision Making, TIMS Studies in the Management
Sciences, Vol. 6, North-Holland Publishing, 1977.

Steuer, Ralph E., "Multiple Objective Linear
Programming with Interval Criterion Weights",
Management Science, Vol. 23, No. 3, November 1976,
pp. 305-316.

Steuer, R.E., and M.J. Wallance Jr., "A linear
multiple objective programming model for manpower
selection and allocations decisions", in Charner,
A. et al., ed., Management Science Approaches to
Management Planning and Organization Design, TIMS
Studies in Management Science, Vol. 8., 1978, pp.
193-208.

Tibrewala, R., D. Philippe and J. Browne, " Optimal
Scheduling of Two Consecutive Idle Periods",
Management Science, Vol. 19, No. 1, September 1972,
pp. 71-75.

Tobon Perez, Maria Victoria, An Integrated
Methodology to Solve Staffing, Scheduling and
Budgeting Problems in a Nursing Department, Ph.D
Dissertation, University of Pittsburgh, 1984.

Trivedi, Vandankumar M., "A Mixed-Integer Goal
Programming Model for Nursing Service Budgeting",
OperationsR esearch, Vol. 29, No. 5, September-
October 1981, pp. 1019-1034.

Trivedi, Vandankumar M., and D. Michael Warner, "A
Branch and Bound Method for allocation of Float
Nurses", Management Science, Vol. 22, No. 9, May
1976, pp. 972-981.

Veranth, Martha M. and Christine Cheson,
"Computerized Staffing and Scheduling of PRN
Nursing Personnel", Proceedings-Annual Symposium on
Computer Applications in Medical Care 8th, 1984,
IEEE, pp. 712-717.

91

Warner, D. Michael, "Nurse Staffing, Scheduling,
and Reallocation in the Hospital", Hospital and
Health Services Administration, Vol. 21, No. 3,
1976, pp. 77-90.

Warner, D. Michael, "Scheduling Nursing Personnel
According to Nursing Preference: A Mathematical
Programming Approach", Operations Research, Vol.
24, No. 5, September-October 1976, pp. 842-856.

Warner, D. Michael, "Computer-Aided System for
Nurse Scheduling", in Cost Control in Hospitals
(John R. Griffith, Walton M. Hancock and Fred C.
Munson, Eds.), Health Administration Press, The
University of Michigan, Ann Arbor, 1976.

Warner, D. Michael, Don C. Holloway, and Kyle L.
Grazier, Decision Making and Control for Health
Administration, second edition, Health
Administration Press, 1984.

Warner, D. Michael and Juan Prawda, "A Mathematical
Programming Model for Scheduling Nursing Personnel
in a Hospital", Management Science, Vol.19, No. 4,
December, Part I, 1972, pp. 411-422.

White, Harold C., and Michael N. Wolfe, "Nursing
Administration and Personnel Administration", The
Journal of Nursing Administration, July-August
1983, pp. 15-19.

Wilson, E.J.G., and R.J. Willis, "Scheduling of
Telephone Betting Operators - A Case. Study",
Journal of the Operational Research Society, Vol.
34, No. 10, Oct. 1983, pp. 991-998.

92

FURTHER READING

Arabeyre, J.P., J. Fearnley, F.C. Steiger and W.
Teather, "The Airline Crew Scheduling Problem: A
Survey", Transportation Science, Vol.3, 1969, pp.
140-163.

Austin, Larry M., and
Surrogate Cutting Plane
Programming", Computers
Vol. 12, No.3, 1985, pp.

Parvis Ghandforoush, "A
Algorithm for All-Integer
and Operations Research,
241-250.

Baker, Edward Keefer, III, Efficient Heuristic
Solutions for the Airline Crew Scheduling Problem,
Ph.D Dissertation, University of Maryland, 1979.

Baker, Edward K., Lawrence
F.Finnegan and Ronny J. Ponder ,
Solutions to an Airline Crew
AIIE Transactions, June 1979,

D. Bodin, William
"Efficient Heuristic
Scheduling Problem,"
pp. 190-196.

Bailey, James, and John Field, "Personnel
Scheduling with Flexshift Models", journal of
Operations Management, Vol. 5, No. 3, May 1985, pp.
327-338.

Bailey, J., "Integrated Days Off and Shift
Personnel Scheduling", Computers & Industrial
Engineering, Vol. 9, No. 4, 1985, pp. 395-404.

Baker, Kenneth R., "Scheduling A Full-time
Workforce to Meet Cyclic Staffing Requirements",
Management Science, Vol. 20, No. 12, August 1974,
pp. 1561-1568.

Baker, Kenneth R., "Workforce Allocation in
Cyclical Scheduling Problems: A Survey",
Operational Research Ouarterly, Vol. 27, No.1,
1976, pp. 155-167.

Baker, K.R., R.N. Burns and M.W. Carter, "Staff
Scheduling with Day Off and Workstretch
Constraints," AIIE Transactions, December, 1980.

Baker, Kenneth R., and Michael J. Magazine,
"Workforce Scheduling with Cyclic Demands and Day-
off Constraints," Management Science, Vol. 24, No.
2, October 1977, pp.161-167.

93

Ball, Michael, Lawrence Bodin and Robert Dial, "A
Matching Based Heuristic for Scheduling Mass
Transit Crews and Vehicles", Transportation
Science, Vol. 17, No. 1, February 1983, pp. 4-31.

Ball, Michael and Anito Roberts, "A Graph
Partitioning Approach to Airline Crew Scheduling",
Transportation Science, Vol. 19, No. 2, May 1985,
pp. 107-126.

Bartholdi III, John J., James B. Orlin, and H.
Donald Ratliff, "Cyclic Scheduling via Integer
Programs with Circular Ones", Operations Research,
Vol. 28, No. 5, September-October 1980, pp. 1074-
1085.

Bonczek, Robert H., Clyde W. Holsapple, and Andrew
B. Whinston, "The Evolving Roles of Models an
Decision Support Systems", Decision Sciences, Vol.
11, No. 2, 1980, pp. 337-356.

Brownell, William S., "Scheduling of Work Forces
Required in Continuous Operations under Alternative
Labor Policies", Management Science, Vol. 22, No.
5, January 1976, pp. 597-605.

Budnick, Frank S., Dennis McLeavey and Richard
Mojena, Principles of Operations Research for
Management, Second Edition, Richard D. Irwin, 1988.

Buffa, Elwood S., "An Integrated Work Shift
Scheduling System", Decision Sciences, Vol. 7,
1976, pp. 620-630.

Bunch, Howard McRaven, "Comparison of the
Construction Planning and Manpower Schedules for
Building the PD214 General Mobilization Ship in a
U.S. Shipyard and in a Japanese Shipyard", Journal
of Ship Production, Vol. 3, No. 1, February 1987,
pp. 25-36.

Burns,R.N., "Manpower Scheduling with Variable
Demands and Alternate Weekends Off, "INFOR, Vol.16,
No.2, June, 1978.

Burns, R.N. and G.J. Koop, "A Modular Approach to
Optimal Multiple-shift Manpower Scheduling,"
Operations Research, Vol. 35, No.1, January-
February 1987, pp. 100-110.

Burns, R.N and M.W. Carter, "Work Force Size and
Single Shift Schedules with Variable Demands",

94

Management Science, Vol 31, No. 5, May 1985, pp.
599-607.

Cavalier, Tom M. and M. Jeya Chandra, "A Heuristic
Algorithm for Assigning Crews Among Bases in an
Airlift Operation", Journal of Operational Research
Society, Vol. 37, No. 4., 1986, pp. 381-386.

Clark, Gordon M., "Multiple Objective Decision
Making," In 1986 International Industrial
Engineering Conference Proceedings, IIE, 1986, pp.
304-309.

Cochrane, James L. and Milan Zeleny (Eds.),
Multiple Criteria Decision Makina, University of
South Carolina Press, 1973.

Collura, John and Paul McOwen, "Management
Information Systems for Small, Fixed-Route, Fixed-
Schedule Operators", Transportation Research Record
994, 1984, pp. 71-75.

Dantzig, G.B., "A Comment on Eddie's "Traffic
Delays at Tool Booths", Operations Research, Vol.
2, No. 3, 1954, pp. 339-341.

deVries, Guus, "Nursing Workload Measurement as
Management Information", European Journal of
Operational Research, Vol. 29, No. 2, May 1987, pp.
199-208.

Edgecumbe, Robert H., "The CASH Approach to
Hospital Management Engineering", Hospitals, Vol.
39, March 16, 1965, pp. 70-74.

Edie, L.C., "Traffic Delays at Toll Booths,"
Journal of Operational Research Society of America,
Vol.2, No. 2, 1954, pp. 107-139.

Evans, J.P., and Steuer, R.E., "A Revised Simplex
Method for Linear Multiple Objective Programming",
Mathematical Proaramming, Vol. 5, No. 1, 1973.

Evans, James R., "A Microcomputer-Based Decision
Support System for Scheduling Umpires in the
American Baseball League", Interfaces, Vol. 18,
No.6, November-December, 1988, pp. 42-51.

Field, John Martin, Integrated Personnel Scheduling
with Flexshift Models, Ph.D. Dissertation, Arizona
State University, 1983.

95

Gabbani, Diaa and Michael Magazine, "An Interactive
Heuristic Approach for Multi-Objective Integer-
Programming Problems", Journal of Operational
Research Society, Vol. 37, No.3, 1986, pp. 285-291.

Ganti, Andrew R. and Emil J. Nagy, "Hospital
Decision Support Systems to Optimize Staffing,
Service Intensity and Quality", in Proceedings of
the 10th Annual Conference on Computers &
Industrial Engineering, Computers & Industrial
Engineering, Vol. 15, Nos. 1-4, 1988, pp. 272-276.

Garner, Tim, "Security Staffing in Virginia's Adult
Prisons", 1986 International Industrial Engineering
Conference Proceedings, pp. 461-463.

Giovannetti, Phyllis, "Understanding Patient
Classification Systems", Journal of Nursing
Administration, February 1979, pp. 4-9.

Gilbert, Kenneth C. and Ruth Bisgrove Hofstra, "An
Algorithm for a Class of Three-Dimensional
Assignment Problems Arising in Scheduling
Applications", IIE Transactions. March 1987, pp.
29-33.

Haessler, Robert W., and F. Brian Talbot, "A 0-1
Model for Solving the Corrugator Trim Problem",
Management Science, Vol. 29, No. 2, February 1983,
pp. 200-209.

Henderson, Willie B., and William L. Berry,
"Heuristic Methods for Telephone Operator Shift
Scheduling: An Experimental Analysis", Management
Science, Vol. 22, No. 12, August 1976, pp. 1372-
1380.

Henderson, Willie B., and William L. Berry,
"Determining Optimal Shift Schedules for Telephone
Traffic Exchange Operators", Decision Sciences,
Vol. 8, 1977, pp. 239-255.

Hershey, John C., William J. Abernathy, and
Nicholas Baloff, "Comparison of Nurse Allocation
Policies - A Monte Carlo Model", Decision Sciences,
Vol. 5, 1974, pp. 58-72.

Hershey, John, William Pierskalla and Sten Wandel,
"Nurse Staffing Management," in Boldy, Duncan,
Operational Research Applied to Health Services,
St. Martin's Press, 1981, pp. 189- 220.

96

Hershey, John C., Elliot N. Weiss, and Morris A.
Cohen, "A Stochastic Service Network Model with
Application to Hospital Facilities", Operations
Research, Vol. 29, No.1, January- February 1981,
pp. 1-22.

Holloran, Thomas J., and Byrn, Judson E., "United
Airlines Station Manpower Planning System",
Interfaces, Vol. 16, No. 1, January-February 1986,
pp. 39-50.

Holt, Charles C., Franco Modligiani and Herbert A.
Simon, "A Linear Decision Rule For Production and
Employment Scheduling," Management Science, Vol. 2,
No. 1, October 1955, pp. 1-30.

Hwang, Ching-Lai and A.S.M. Masud, Multiple
Objective Decision Making - Methods and
Applications : A State-of-the-Art Survey, Springer-
Verlag, 1979.

Hwang, Ching-Lai and Kwangsun Yoon, Multiple
Attribute Decision Making - Methods and
Applications: A State-of-the-Art Survey, Springer-
Verlag, 1981.

Hwang, C.L., S.R. Paidy, K.Yoon and A.S.M.
Masud,"Mathematical Programming with Multiple
Objectives: A Tutorial,"Computers & Operations
Research, Vol. 7, 1980, pp. 5-31.

Ignizio, James P., Linear Programming in Single &
Multiple Objective Systems, Prentice Hall Inc.,
1982.

Ignizio, James P., "A Review of Goal Programming: A
Tool for Multiobjective Analysis", Journal of
Operational Research Society, Vol. 29, No. 11,
1978, pp. 1109-1119.

Iskander, Wafik H. and Jar Chou, "Manpower
Scheduling for Unbalanced Production Lines," In
1985 Annual International Industrial Engineering
Conference Proceedings, IIE, 1985, pp. 546-552.

Jackson, Richard H.F., and Albert W. T. Jones
(ed.), "Real-time Optimization in Automated
Manufacturing Facilities", National Bureau of
Standards, Special Publication 724, 1986, pp. 109-
126.

97

Kamiyama, Angelica, Rotating Manpower Schedules:
Algorithmic Developments and Applications, Ph.D
Dissertation, Rensselaer Polytechnique Institute,
1984.

Keith, Elbridge Gerry, "Operator Scheduling", AIIE,
Transactions, March1979, pp. 185-189.

Kim, Chung Young, Manpower Scheduling Involving
Both Delayable and Non-delayaOle Jobs, Ph.D
Dissertation, Arizona State University, 1983.

Kirsch, Kenneth Copeland, Management Policies for
Scheduling Patients in an Emergency Room: A
Computer Simulation Approach, Ph.D. Dissertation,
Northwestern University, 1980.

Koop, Gerald Jacob, Optimal Multiple Shift Manpower
Scheduling: Models and Algorithms, Ph.D
Dissertation, University of Waterloo (Canada),
1984.

Koop, Gerald J., "Multiple Shift Workforce Lower
Bounds", Management Science, Vol. 34, No. 10,
October 1988, pp. 1221-1230.

Kornbluth, J.S.H., "A Survey of Goal Programming",
OMEGA, Vol.1, No. 2, 1973, pp. 193 -205.

Kuhn, H.W., and A.W. Tucker,"Nonlinear
programming," in J. Neyman (Ed.), proceeding of the
2-nd Berkeley Symposium of Mathematical Statistics
and Probability, University of California Press,
1951, pp. 481-491.

Lauer, Joachim, Manpower Scheduling to Accommodate
Absenteeism on Assembly Lines, Ph.D Dissertation,
Illinois Institute of Technology, 1980.

Lawrence, K.D., Gary R. Reeves and Sheila M.
Lawrence,"A Multiple Objective Shift Allocation
Model," IIE Transactions, Vol.16, No. 4, December,
1984, pp. 323-328.

Lee, Sang M., Goal Programming for Decision
Analysis, First Edition, Auerbach Publishers Inc.,
1972.

Levary, Reuven R., "A Zero-One Stochastic
Programming Model for Personnel Scheduling Solved
by a Sequential Simulation Procedure", Simulation,

98

Vol. 43, No. 5, November 1984, pp. 247-250.

Liebman, Judith S., John P. Young, and Mandell
Bellmore, "Allocation of Nursing Personnel in an
Extended Care Facilities", Health Services
Research, Vol. 7, Fall 1972, pp. 209-220.

Lowerre, James M., "Work Stretch Properties for the
Scheduling of Continuous Operations Under
Alternative Labor Policies", Management Science,
Vol. 23, No. 9, May 1977, pp. 963-971.

Lowerre, James M., "On Personnel Budgeting for
Continuous Operations (with Emphasis on
Hospitals)", Decision Sciences, Vol. 10, 1979, pp.
126-135.

Lyons, Joseph P. and John P. Young, "A Staff
Allocation Model for Mental Health Facilities",
Health Services Research, Vol. 11, Spring 1976, pp.
53-68.

Mabert, Vincent A. and Alan R. Raedels, "The Detail
Scheduling of a Part-time Work Force: A Case Study
of Teller Staffing", Decision Sciences, Vol. 8,
1977, pp. 109-120.

Monroe, G., "Scheduling Manpower for Service
Operations," Industrial Engineering, August 1970,
pp.10-17.

Morris, James G., and Michael J. Showalter, "Simple
Approaches to Shift, Days-Off and Tour Scheduling
Problems", Management Science, Vol. 29, No. 8,
August 1983, pp. 942-950.

Ozan, Turgut M., Availed Mathematical Programming
for Production and Engineering Management,
Prentice-Hall, 1986.

Ravindran, A., Don T. Phillips, and James J.
Solberg, Operations Research. Principles and
Practice, second edition, John Wiley & Sons, 1987.

Reeves, Gary R. and Lori S. Franz, "A Simplified
Interactive Multiple Objective Linear Programming
Procedure, Computer & Operations Research, Vol.
12, No.6, 1985, pp. 589-601.

Roberts, S.M., and L.F. Escudero, "Scheduling of
Plant Maintenance Scheduling", Journal of
Optimization Theory and Applications, Vol. 39, No.

99

3, March 1983, pp. 323-343.

Rubin, Jerrold, "A Technique for the Solution of
Massive Set Covering Problems, with Application to
Airline Crew Scheduling", Transportation Science,
Vol. 7, 1973, pp. 34-48.

Roberts, S.M., and L.F. Escudero, "Minimum Problem-
Size Formulation for the Scheduling of Plant
Maintenance Personnel", Journal of Optimization
Theory and Applications, Vol. 39, No. 3, March
1983, pp. 345-362.

Saatgioglu, Omer, "A Multi-attribute Assignment
Goal-programming Model with Incentives", Journal of
Operational Research Society, Vol. 38, No. 4, 1987,
pp. 361-365.

Segal, M., "The Operator-Scheduling Problem: A
Network-Flow Approach", Operations Research, Vol.
22., 1974, pp. 808-823.

Sellar, Thomas V., "The 4/40: Does it Raise
Personnel Costs?, Hospitals, Vol. 47, September 1,
1973, pp. 94-101.

Shepardson, Fred, and Roy E. Marsten, "A Lagrangean
Relaxation Algorithm for The Two Duty Period
Scheduling Problem", Management Science, Vol. 26,
No. 3, March 1980, pp. 274-281.

Sherali, Hanif D. and Minerva Rios, "An Air Force
Crew Allocation and Scheduling Problem", Journal of
Operational Research Society, Vol. 35, No.2, 1984,
pp. 91-103.

Showalter, M.J., L.J. Krajewski and L.P. Ritzman,
"Manpower Allocation in U.S. Postal Facilities: A
Heuristic Approach," Computer & Operations
Research, Vol. 4, 1977, pp. 257-269.

APPENDICES

100

APPENDIX A
USER GUIDE AND EXTENSION AND MODIFICATION

FOR NURSE SCHEDULING PROGRAM

The nurse scheduling program is easy to use. The program

can be invoked by typing :

nurse

follows by pressing <Enter> key. The initial screen (Figure

A1.1) will appear containing the name of the program and the

programmer. You may press any key to get out of this screen.

Decision Support System

for

Developed by

Riartuitt

Supervised by
Sabah Pandhawa, PhD

0 k:.?.; U31 SlUi 13 y

Figure A1.1 Initial Screen

101

The first screen following the initial screen is a

welcome screen which briefly describes the use of the program.

Figure A1.2 shows this welcome screen.

Welcome...

This program generates schedules for nurses
in hospital using a heuristic method called
'Best-First Search Technique'.

The program provides three options for the length
of schedule period and several options for
the hospital shift policies, but you may define
specific hospital shift policy to be used by
the program.

The program will try to satisfy both nurses and
hospital requirements by minimizing the penalty
costs of the nurses' and hospital's constraints.

You may select to either use the default penalty
costs built in the program, or to assign your
own penalty costs reflecting the specific work
environment.

Press <Enter> to continue...

Figure A1.2 Welcome Screen

After you finish reading this welcome message, you may press

<Enter> key to continue, and the introduction screen as in

Figure A1.3 will appear. This screen briefly describes what

you can do with the program. After reading this message, you

may press <Enter> key to continue, or, if you decide to

terminate or quit the program, you may press <Esc> key. If you

decide to continue by pressing the <Enter> key, you will be

shown the next screen (Figure A1.4). This step allows you to

select the length of schedule period. You may enter 1 for

four-week schedule, 2 for eight-week schedule, or 3 for

twelve-week schedule. At this stage, you may also quit

102

You will first be asked to specify the number of
patterns you want to generate. It is recommended
that for flexibility you specify this number to be
greater than the number of schedules required.

Once the program generates a set of patterns,
it will provide you with several set of schedules
from which you may select the number you need.

You may view the schedules and the staff list
report before you decide to pick and save schedules
or to discard the schedules and generate another
set

If you think that the patterns you have generated
do not satisfy your needs, you may generate
another pattern set.

Good Luck...

Press any key to continue or <Esc> to terminate ...

Figure A1.3 Introduction Screen

LENGTH OF SCHEDULE :

1. Four-week.
2. Eight-week.
3. Twelve-week.
4. Exit

Select 1, 2 or 3 (4 for exit) :

Figure A1.4 Choice of Length of Schedule Period

the program by entering 4.

If you choose 1, or 2, or 3, the next screen will be the

screen that shows you the constraints with their associated

default penalty costs built-in the program (Figure A1.5). The

penalty costs for this set of constraints can be modified if

so desired.

103

To choose default penalty costs, you may enter Y or y. If

you prefer to define your own penalty costs, select N or n.

If you choose to use default penalty cost, then the

program will ask you the maximum penalty cost that

Default Values of Penalty Costs:

Penalty Cost for having 3 consecutive days off := 5
Penalty Cost for having 4 consecutive days off := 10
Penalty Cost for working 6 consecutive days := 10
Penalty Cost for working 7 consecutive days := 30
Penalty Cost for working 8 consecutive days := 40
Penalty Cost for having single day off := 10
Penalty Cost for having single day on := 10
Penalty Cost for working on Saturday, Sunday off := 5
Penalty Cost for working on Sunday, Saturday off := 5
Penalty Cost for working on Week End := 10

MAXIMUM PENALTY COST can be set equal to the highest
value of penalty cost. The higher the maximum penalty
cost the less strict the schedules.

Use default value for Penalty Costs? (Y/N):

Figure A1.5 Default Penalty Cost Built in the Program

you can still tolerate. The program also give you guidelines

on selecting the maximum penalty cost. Figure A1.6 shows this

process.

If you choose not to use the default penalty costs and

enter N or n, then you will be allowed to define your own

penalty costs. The screen (Figure A1.7) also displays penalty

costs values. You may then enter the penalty costs one by one

as shown in Figure A1.7.

104

Default Values of Penalty Costs:

Penalty Cost for having 3 consecutive days off := 5

Penalty Cost for having 4 consecutive days off := 10
Penalty Cost for working 6 consecutive days := 10
Penalty Cost for working 7 consecutive days := 30
Penalty Cost for working 8 consecutive days := 40
Penalty Cost for having single day off := 10
Penalty Cost for having single day on := 10
Penalty Cost for working on Saturday, Sunday off := 5

Penalty Cost for working on Sunday, Saturday off := 5
Penalty Cost for working on Week End := 10

MAXIMUM PENALTY COST can be set equal to the highest
value of penalty cost. The higher the maximum penalty
cost the less strict the schedules.

Use default value for Penalty Costs? (Y/N): y

Enter maximum penalty cost: 40

Figure A1.6 Entering Maximum Penalty Cost (Case of Default
Penalty Costs)

Penalty Cost for having 3 consecutive days off := 5;
Penalty Cost for having 4 consecutive days off := 10;
Penalty Cost for working 6 consecutive days :=. 10;
Penalty Cost for working 7 consecutive days := 30;
Penalty Cost for working 8 consecutive days := 40;
Penalty Cost for having single day off := 10;
Penalty Cost for having single day on := 10;
Penalty Cost for working on Saturday, Sunday off := 5;
Penalty Cost for working on Sunday, Saturday off := 5;
Penalty Cost for working on Week End := 10;)

Enter Penalty Cost for having 3 consecutive days off : 10
Enter Penalty Cost for having 4 consecutive days off : 20
Enter Penalty Cost for working 6 consecutive days : 10
Enter Penalty Cost for working 7 consecutive days : 60
Enter Penalty Cost for working 8 consecutive days : 100
Enter Penalty Cost for having single day off : 5
Enter Penalty Cost for having single day on : 5
Enter Penalty Cost for working on Saturday, Sunday off : 5
Enter Penalty Cost for working on Sunday, Saturday off : 5
Enter Penalty Cost for working on Week End : 50

Enter maximum penalty cost: 100

Figure A1.7 Example of Customizing Penalty Costs

105

Following this step, the program will ask for the number

of patterns you want to generate. You may enter the number as

required, e.g., 1000. Please note that with this number of

patterns, you may generate unlimited number of different

schedules. The screen will show:

Enter number of patterns to be generated:

The program will then create feasible patterns as many as you

require. This process takes very little time. For example, for

1000 patterns with default penalty costs and maximum penalty

cost of 40, it will take less than 2 minutes on an Intel 386

based computer (average 1 minute and 25 seconds).

After generating the patterns, program will ask you to

select shift policy ratio (Figure A1.8). There are 9 ratios

built-in the program; in addition, you may define your own

shift policy ratios. If you decide to use one of the ratios

provided by the program, just enter the number corresponding

to it.

If you choose to define your own shift policy ratio, then

you may type 10 and press the <Enter> key (Figure A1.9). Then

you will be asked to enter the day, evening and night shift

policy ratio, respectively. Example is shown in Figure A1.10

(assuming your shift policy ratio is 5:2:1).

106

Select Shift Policy:

1. Shift Policy 1:1:1
2. Shift Policy 2:1:1
3. Shift Policy 2:2:1
4. Shift Policy 3:2:1
5. Shift Policy 3:2:2
6. Shift Policy 3:3:1
7. Shift Policy 3:3:2
8. Shift Policy 4:3:1
9. Shift Policy 4:3:2

10. Other

Choose the number and press <Enter> :

Figure A1.8 Shift Policy Ratio

Select Shift Policy:

1. Shift Policy 1:1:1
2. Shift Policy 2:1:1
3. Shift Policy 2:2:1
4. Shift Policy 3:2:1
5. Shift Policy 3:2:2
6. Shift Policy 3:3:1
7. Shift Policy 3:3:2
8. Shift Policy 4:3:1
9. Shift Policy 4:3:2

10. Other

Choose the number and press <Enter> : 10

Figure A1.9 Choosing to Define Your Own Shift Policy Ratio

107

Select Shift Policy:

Day Ratio 5

Evening Ratio : 2

Night Ratio 1

Figure A1.10 Entering Your Own Shift Policy Ratio

In either case, the program next asks for the number of

schedules you want to generate. The maximum number of

schedules that you can pick will also be shown. This number

will be equal to the number of pattern you asked the program

to generate. The screen will show (assuming you enter 1000 as

the number of patterns you want to generate):

Enter number of schedules to be selected (Maximum = 1000):

After you enter the required number, the program will ask

you if you want to display the schedules on the screen:

Display schedules on the screen? (YIN)

You may choose not to display by entering N or n. If you want

to see the schedule, then you may type Y or y. The schedule

appear on the screen as shown in Figure A1.11.

108

Schedule No. : 1

Day : MTWTFSS
Week : 1 E: 1 1 1 1 1 0 0
Week : 2 E: 1 1 1 1 1 0 0
Week : 3 D: 1 1 0 0 1 1 1
Week : 4 N: 1 1 0 1 1 1 0

Schedule No. : 2

Day : MTWTFSS
Week : 1 D: 1 1 0 0 1 1 1
Week : 2 N: 1 1 0 1 1 1 0

Week : 3 D: 1 1 1 1 1 0 0
Week : 4 D: 1 1 1 1 1 0 0

Press any key to continue or <Esc> to cancel viewing ...

Figure A1.11 Example of Schedules Displayed on the Screen

For your convenience, the program will display two

schedules at a times for four-week period, and one schedules

at a times for eight and twelve week period. You may press any

key to continue viewing the schedules until all the schedules

are shown. However, if you want to cancel the viewing process,

you simply press <Esc> key.

The next step will be generating the Staff List or Staff

Requirement Report. This takes a negligible amount of time.

The program will ask if you want to see the report. This

report is necessary to evaluate the schedule. The report shows

some statistics that you can use to compare the shift policy

ratio and the actual ratio given by the schedules generated.

The program shows:

Display Staff List Report? (Y/N)

109

and you may press Y or y, or N or n. If you select to enter Y

or y, then the report will be shown on the screen. You may

need to press <Enter> key several times to see the entire

report. An example is shown in Figure A1.12 and A1.13.

After viewing the report you will be given a choice to

save the schedules. The program will ask:

Save the schedules? (Y/N)

If you think that the schedules are good enough, then you may

save them. You will then be asked to select either to save the

Staff List Report or not, and either to print the schedules,

and/or the Staff List Report. If you do, just enter Y or y,

STAFF LIST REPORT:

Day : Day-Shift Evening-Shift Night-Shift

Monday 1 23 30 36
Tuesday 2 27 34 38
Wednesday 3 25 33 38
Thursday 4 23 32 38
Friday 5 18 26 27
Saturday 6 7 5 5
Sunday 7 12 10 13
Monday 8 30 28 31
Tuesday 9 34 30 30
Wednesday 10 33 23 29
Thursday 11 27 21 23
Friday 12 23 15 23
Saturday 13 13 15 15
Sunday 14 20 23 14
Monday 15 27 23 25
Tuesday 16 28 30 28
Wednesday 17 24 28 26

Press <Enter> to continue ...

Figure A1.12 First Part of 4-week Report

110

Sunday 14 20 23 14
Monday 15 27 23 25
Tuesday 16 28 30 28
Wednesday 17 24 28 26

Press <Enter> to continue ...

Thursday 18 20 29 25
Friday 19 21 25 18
Saturday 20 21 24 16
Sunday 21 19 21 22
Monday 22 20 21 25
Tuesday 23 21 23 27
Wednesday 24 23 22 28
Thursday 25 27 24 28
Friday 26 24 26 30
Saturday 27 21 20 28
Sunday 28 19 19 24

Total 630 660 710
Average 22.500 23.571 25.357
Ratio Actual 0.315 0.330 0.355
Ratio Ideal 0.333 0.333 0.333

Press <Enter> to continue ...

Figure A1.13 Last Part of 4-week Report

and the program will execute the appropriate commands.

You may save the schedules and can still generate another

set of schedules by answering the appropriate set of

questions. If for example you do not want to save or print the

schedules and the report, you may answer all enquiries with N

or n, as shown in Figure A1.14.

Save the schedules? (Y/N) n

Save Staff List Report? (Y/N)

Print the schedules? (Y/N) n

Print StaffListReport? (Y/N)

Figure A1.14 Examples of Save and Print Choice

Then, you may select another set of schedules by answering Y

111

or y to this question:

Select another set of schedules? (Y/N)

Then the screen as in Figure A1.8 will be shown, and you may

continue the process as described above.

If you decide to enter N or n then Figure A1.15 will be

shown on the screen. If you want to generate another set of

patterns, you may answer with Y or y, and the program will

repeat starting from Figure A1.4. If you decide not to

generate another patterns, then you may answer with N or n,

and the program will terminate.

If the patterns generated do not satisfy the
staff requirement, the program can generate
another patterns and schedules.

Generate another patterns? (Y/N)

Figure A1.15 Last Chance to Generate Another Set of Patterns

Extension and Modification

To extend and modify the program, user needs to be able

to program in Pascal language, preferably using Borland Turbo

Pascal Version 6.0.

The program consists of several files:

1. NURSE.PAS: the main program source code.

112

2. PATGEN.PAS: the unit source code to generate work

patterns.

3. PNTCOST.PAS: the unit source code to calculate penalty

costs.

4. SORTPAT.PAS: the unit source code to sort work patterns

based on penalty costs.

5. PATGEN.TPU: the unit resulted by compiling PATGEN.PAS.

6. PNTCOST.TPU: the unit resulted by compiling PCOST.PAS

7. SORTPAT.TPU: the unit resulted by compiling SORTPAT.PAS

8. GRAPH.TPU: the unit needed to generate initial screen.

9. CRT.TPU: the unit needed to handle DOS commands in the

program.

10. BASE.DAT: the file to store work patterns.

11. SCHDBAS.DAT: the work pattern base for 4-week patterns to

be used to generate schedules.

12. SCHDBAS1.DAT: the first randomly reordered work patterns.

13. SCHDBAS2.DAT: the second randomly reordered work

patterns.

14. SCHD8WK.DAT: the work patterns base for 8-week schedule

period.

15. SCHD12WK.DAT: the work patterns base for 12-week schedule

period.

16. SHIFPAT.DAT: the shift patterns base.

17. NEWSHIFT.DAT: the randomly reordered shift patterns (4-

week).

18. SHIFBASE.DAT: the first randomly reordered shift patterns.

113

19. SH2BASE.DAT: the second randomly reordered shift

patterns.

20. SH3BASE.DAT: the third randomly reordered shift patterns.

21. SH8BASE.DAT: the shift patterns base for 8-week schedule

period.

22. SH12BASE.DAT: the shift patterns base for 12-week

schedule period.

23. SCHEDULE.DAT: the schedule base for 4-week period.

24. BASE8.DAT: the schedule base for 8-week period.

25. BASE12.DAT: the schedule base for 12-week period.

26. STAF4.DAT: the Staff List Report for 4-week period.

27. STAF8.DAT: the Staff List Report for 8-week period.

28. STAF12.DAT: the Staff List Report for 12-week period.

29. Several files with .BGI extension which are needed for

the program to adjust to different graphics card of the

computer. The program will self-detect the card of the

computer you are using.

The first modification that can be carried out is whether

the user want to have the new pattern and schedule bases

appended to the old bases or not. The default program will

overwrite the old patterns and schedule bases every time the

user run the program. If you want the new data will be

appended to the old one, simply change the command of

preparation of the required files from rewrite to append and

recompile the program.

114

To add new work pattern, just modify the constants of

work pattern which is OneWeekPattern in unit PATGEN.PAS, then

recompile the unit and the program. Please note that if you

modify the work pattern, you should modify the size of the

array accordingly.

To add new constraints, modify the unit PATGEN.PAS and

PNTCOST.PAS. Please note that if you modify the constraint,

you may need to add algorithm to calculate the penalty costs

accordingly.

If you want to modify the default value of penalty costs

and shift policy simply change the value in the unit

PNTCOST.PAS (for penalty costs) and main program for the shift

policy ratio.

The result of the program will be in ASCII text mode,

therefore it can be imported from any text editor,

spreadsheet, or database software, as for example, if changes

needed in the daily use of the program and/or to assigning

schedules to the nurses' database.

APPENDIX B
SOURCE CODE OF UNIT FOR WORK PATTERN GENERATION

Unit Patten;

interface

Type

OneWeek = string[7];
TwoWeek = string[14];
ThreeWeek = string[21];
FourWeek = string[28];
TwoWeekPat = Array [1..21] of TwoWeek;
ThreeWeekPat = Array [1..21] of ThreeWeek;
FourWeekPat = Array [1..21] of FourWeek;

const

var

115

OneWeekPattern : Array [1..21] of OneWeek =
(' 1111100' , '1111001' , '1110011' , '1100111' , '1001111' ,
'0011111', '1110101', '1101101', '1011101', '0111101',
'1101011','1011011','0111011','1010111','0110111',
'0101111','1111010','1110110','1101110','1011110',
'0111110');

(NOTES:
[This OneWeekPattern can be expanded to include all possible combina-}
(nation of one-week patterns only by changing the size of the array)

(and adding the new patterns.

TwoWeekPattern
ThreeWeekPattern
FourWeekPattern

j, k, 1, m, q, r, s

: TwoWeekPat;
: ThreeWeekPat;
: FourWeekPat;
: integer;

Procedure TwoWeekPatternGeneration(var TwoWeekPattern : TwoWeekPat;
q : integer);

Procedure ThreeWeekPatternGeneration(var ThreeWeekPattern : ThreeWeekPat;
r : integer);

Procedure FourWeekPatternGeneration(var FourWeekPattern : FourWeekPat;
s : integer);

implementation

Procedure TwoWeekPatternGeneration(var TwoWeekPattern
: TwoWeekPat;

q : integer);

begin

k := 1;

(for i:=1 to 21 do begin)
for j := 1 to 21 do begin

TwoWeekPattern [k] := OneWeekPattern[q] + OneWeekPattern[j];
(writeln('TwoWeekPattern ',k,' is ',TwoWeekPattern [k]);)
k := k + 1;

end;
end; (******************TwoWeekPatternGeneration*********************)

116

(***)

Procedure ThreeWeekPatternGeneration(var ThreeWeekPattern : ThreeWeekPat;
r : integer);

begin

1 := 1;

(TwoWeekPatternGeneration(TwoWeekPattern);}

(for i := 1 to 21 do begin)
for j := 1 to 21 do begin

ThreeWeekPattern[1] := TwoWeekPattern[r] + OneWeekPattern[j];
(writeln('ThreeWeekPattern ',1,' is ', ThreeWeekPattern[1]);)
1 := 1 + 1;

end;

end; (*****************ThreeWeekPatternGeneration********************1

(***)

Procedure FourWeekPatternGeneration(var FourWeekPattern : FourWeekPat;
s : integer);

begin

in := 1;

(ThreeWeekPatternGeneration(ThreeWeekPattern);)
(for i := 1 to 21 do begin}

for j := 1 to 21 do begin
FourWeekPattern[m] := ThreeWeekPattern[s] + OneWeekPattern[j]:
(writeln('FourWeekPattern ',m,' is ',FourWeekPattern[m]);}
m := m + 1;

end;

end; (*****************FourWeekPatternGeneration*********************)
end. (Of Unit PatGen}
(***)

117

APPENDIX C
SOURCE CODE OF THE UNIT FOR CALCULATING

PENALTY COST

Unit PntCost;

interface

type
TotalPCost = Array [1..21] of integer;

var
PenaltyCost,
TotalPenaltyCostO,
TotalPenaltyCostl,
TotalPenaltyCost2,
TotalPenaltyCost3,
TotalPenaltyCost4,
TotalPenaltyCost5,
TotalPenaltyCost6,
TotalPenaltyCost7,
TotalPenaltyCost8,
TotalPenaltyCost9,
TotalPenaltyCostlO,
TotalPenaltyCost11,
TotalPenaltyCostl2,
TotalPenaltyCostl3,
TotalPenaltyCostl4,
TotalPenaltyCost15 : Integer;
PenaltyCost3Zero,
PenaltyCost4Zero,
PenaltyCost6One,
PenaltyCost7One,
PenaltyCost8One,
PenaltyCostSingle0,
PenaltyCostSingle1,
PenaltyCostSatOnSunOff,
PenaltyCostSatOffSunOn,
PenaltyCostWEndOn : Integer;
i,j,k,l,m,n : Integer;

Procedure Initialize;
Procedure DefaultPCost;
Procedure CustomizePCost;
Procedure OneWeekPenaltyCost(var TotalPenaltyCost : TotalPCost);
Procedure TwoWeekPenaltyCost(var TotalPenaltyCost : TotalPCost);
Procedure ThreeWeekPenaltyCost(var TotalPenaltyCost: TotalPcost);
Procedure FourWeekPenaltyCost(var TotalPenaltyCost: TotalPcost);

Implementation

Uses Crt, Patten;

Procedure Initialize; { Initialization of Penalty Cost

{ This initialization is needed to calculate Penalty Cost for every
{ pattern. Everytime the penalty cost must be initialize to zero,
{ otherwise the Penalty Cost will be accumulated.

118

begin

TotalPenaltyCostO :=
TotalPenaltyCostl :=
TotalPenaltyCost2 :=
TotalPenaltyCost3 :=
TotalPenaltyCost4 :=
TotalPenaltyCost5 :=
TotalPenaltyCost6 :=
TotalPenaltyCost7 :=
TotalPenaltyCost8 :=
TotalPenaltyCost9 :=
TotalPenaltyCostlO :=
TotalPenaltyCostll :=
TotalPenaltyCostl2 :=
TotalPenaltyCostl3 :=
TotalPenaltyCostl4 :=
TotalPenaltyCostl5 :=

end;

(***)

Procedure DefaultPCost; This procedure give a default value for
(Penalty Costs

begin

PenaltyCost3Zero := 5;
PenaltyCost4Zero := 10;
PenaltyCost6One := 10;
PenaltyCost7One := 30;
PenaltyCost8One := 40;
PenaltyCostSingle0 := 10;
PenaltyCostSinglel := 10;
PenaltyCostSatOnSunOff := 5;
PenaltyCostSatOffSunOn := 5;
PenaltyCostWEndOn := 10;

end; { ****** Default Penalty Cost ******)

(***)

Procedure CustomizePCost; (This procedure give the user a chance to
assign the value of Penalty Cost by him/her-)

(self.
1

begin

ClrScr;

Writeln;
Writeln ('Enter Penalty Cost for every cases :');
Writeln;
Writeln('(Example :');
Writeln;
Writeln('Penalty Cost for having 3 consecutive days off := 5;');
Writeln('Penalty Cost for having 4 consecutive days off := 10;');
Writeln('Penalty Cost for working 6 consecutive days := 10;');
Writeln('Penalty Cost for working 7 consecutive days := 30;');
Writeln('Penalty Cost for working 8 consecutive days := 40;');
Writeln('Penalty Cost for having single day off := 10;');
Writeln('Penalty Cost for having single day on := 10;');
Writeln('Penalty Cost for working on Saturday, Sunday off := 5;');
Writeln('Penalty Cost for working on Sunday, Saturday off := 5;');

119

Writeln('Penalty Cost for working on Week End := 10;)');
Writeln;
Writeln;
Write('Enter Penalty Cost for having 3 consecutive days off : ');
Readln (PenaltyCost3Zero);
Write('Enter Penalty Cost for having 4 consecutive days off

: ');
Readln (PenaltyCost4Zero);
Write('Enter Penalty Cost for working 6 consecutive days

: ');
Readln (PenaltyCost6One);
Write('Enter Penalty Cost for working 7 consecutive days

: ');
Readln (PenaltyCost7One);
Write('Enter Penalty Cost for working 8 consecutive days

: ');
Readln (PenaltyCost8One);
Write('Enter Penalty Cost for having single day off : ');
Readln (PenaltyCostSingle0);
Write('Enter Penalty Cost for having single day on : ');
Readln (PenaltyCostSinglel);
Write('Enter Penalty Cost for working on Saturday, Sunday off : ');
Readln (PenaltyCostSatOnSunOff);
Write('Enter Penalty Cost for working on Sunday, Saturday off : ');
Readln (PenaltyCostSatOffSunOn);
Write('Enter Penalty Cost for working on Week End : ');
Readln (PenaltyCostWEndOn);

end; (******* Customize Penalty Cost ******)

Procedure OneWeekPenaltyCost(var TotalPenaltyCost : TotalPCost);

begin

for i := 1 to 21 do begin

Initialize;

{Penalty Cost for working on WeekEnd)

if (OneWeekPattern[i,6] '1') and (OneWeekPattern[i,7] = '1')
then TotalPenaltyCostl := PenaltyCostWEndOn;

if (OneWeekPattern[i,6] = '1') and (OneWeekPattern[i,7] = '0')
then TotalPenaltyCost2 := PenaltyCostSatOnSunOff;

for m := 2 to 6 do begin
if (OneWeekPattern [i,m] = '0') and

(OneWeekPattern [i,m) <> OneWeekPattern [i,m+1]) and
(OneWeekPattern [1,m-1] <> OneWeekPattern [i,m]) then
PenaltyCost PenaltyCostSingle0

else
PenaltyCost := 0;

TotalPenaltyCost3 := TotalPenaltyCost3 + PenaltyCost;
end;

for n := 2 to 6 do begin
if (OneWeekPattern [i,n] = '1') and

(OneWeekPattern [i,n] <> OneWeekPattern [i,n+1]) and
(OneWeekPattern [i,n-l] <> OneWeekPattern [i,n]) then
PenaltyCost := PenaltyCostSinglel

else
PenaltyCost := 0;

TotalPenaltyCost4 := TotalPenaltyCost4 + PenaltyCost;
end;

TotalPenaltyCost[i] := TotalPenaltyCostl + TotalPenaltyCost2
+ TotalPenaltyCost3 + TotalPenaltyCost4;

120

(writeln ('OneWeekPattern ',i,' Cost = ',TotalPenaltyCost[i]:3);)
end;
end; (************OneWeekPenaltyCost**************************************)

(***)

Procedure TwoWeekPenaltyCost(var TotalPenaltyCost : TotalPCost);

begin

(TwoWeekPatternGeneration(TwoWeekPattern);)

for i := 1 to 21 do begin

Initialize;

(Penalty Cost for working on WeekEnd)

if (TwoWeekPattern[i,6] = '1') and (TwoWeekPattern[i,7]
then TotalPenaltyCost4 := PenaltyCostWEndOn;

= '1')

if (TwoWeekPattern[i,131='1') and (TwoWeekPattern[i,14)
then TotalPenaltyCost5 := PenaltyCostWEndOn;

= '1')

if (TwoWeekPattern[i,61 = '1') and (TwoWeekPattern[i,71 =
then TotalPenaltyCost7 := PenaltyCostSatOnSunOff;

'0')

if (TwoWeekPattern[i,13)='1') and (TwoWeekPattern[i,14]
then TotalPenaltyCost8 := PenaltyCostSatOnSunOff;

= '0')

if (TwoWeekPattern[i,6] = '0') and (TwoWeekPattern[i,7]
then TotalPenaltyCost10 := PenaltyCostSatOffSunOn;

= '1')

if (TwoWeekPattern[i,13]='0') and (TwoWeekPattern[i,14]
then TotalPenaltyCostll := PenaltyCostSatOffSunOn;

= '1')

(Penalty Cost for single day on or off)

for m := 2 to 13 do begin
if (TwoWeekPattern [i,ml = '0') and

(TwoWeekPattern [i,m] <> TwoWeekPattern [i,m+1]) and
(TwoWeekPattern [i,m-1] <> TwoWeekPattern (i,m]) then
PenaltyCost := PenaltyCostSingle0

else
PenaltyCost := 0;

TotalPenaltyCost2 := TotalPenaltyCost2 + PenaltyCost;
end;

for n := 2 to 13 do begin
if (TwoWeekPattern [i,n] = '1') and

(TwoWeekPattern [i,n] <> TwoWeekPattern [i,n +l]) and
(TwoWeekPattern [i,n-1] <> TwoWeekPattern [i,n]) then
PenaltyCost := PenaltyCostSinglel

else
PenaltyCost 0;

TotalPenaltyCost3 := TotalPenaltyCost3 + PenaltyCost;
end;

(Penalty Cost for eight or more consecutive days on)

j := 1;
while j <= 14 do begin

if (Twoweekpattern li,j1='1') and
(TwoWeekPattern[i,j]=TwoWeekPattern[i,(j+1)]) and

121

(TwoWeekPattern[i,j]=TwoWeekPattern[i,(j+2)]) and
(TwoWeekPattern[i,j]=TwoWeekPattern[i,(j+3)]) and
(TwoWeekPattern[i,j]=TwoWeekPattern[i,(j+4)]) and
(TwoWeekPattern[i,j]=TwoWeekPattern(i,(j+5))) and
(TwoWeekPattern[i,j]=TwoWeekPattern[i,(j+6)]) and
(TwoWeekPattern[i,j]=TwoWeekPattern[i,(j+7)]) then
begin PenaltyCost := PenaltyCost8One; j := j + 8; end
else
begin PenaltyCost := 0; j := j + 1; end;
TotalPenaltyCostl := TotalPenaltyCostl + PenaltyCost;
end;

{Penalty Cost for seven consecutive days on)

if TotalPenaltyCostl = 0 then begin
j := 1;
while j <= 14 do begin

if (TwoWeekPattern (i,j] ='1') and
(TwoWeekPattern [i,j]=TwoWeekPattern(i,(j+1)]) and
(TwoWeekPattern(i,j]=TwoWeekPattern[i,(j+2)]) and
(TwoWeekPattern(i,j]=TwoWeekPattern[i,(j+3)]) and
(TwoWeekPattern(i,j]=TwoWeekPattern[i,(j+4)]) and
(TwoWeekPattern(i,j)=TwoWeekPattern[i,(j+5)]) and
(TwoWeekPattern(i,j)=TwoWeekPattern(i,(1+6)]) then
begin

PenaltyCost := PenaltyCost7One;
j := j + 7;

end
else
begin PenaltyCost :=0; j := j + 1; end;
TotalPenaltyCostl := TotalPenaltyCostl + PenaltyCost;

end;
end;

(Penalty Cost for six consecutive days on)

if TotalPenaltyCostl = 0 then begin
j := 1;
while j <= 14 do begin

if (TwoWeekPattern (i,j1='1') and
(TwoWeekPattern [i,j]=TwoWeekPattern[i,(j+1)]) and
(TwoWeekPattern(i,j)=TwoWeekPattern[i,(j+2)]) and
(TwoWeekPattern(i,j]=TwoWeekPattern(i,(1+3)]) and
(TwoWeekPatternli,j1=TwoWeekPattern(i,(j+4)]) and
(TwoWeekPattern[i,j]=TwoWeekPattern(i,(j+5)]) then
begin PenaltyCost := PenaltyCost6One; j := j + 6; end
else
begin PenaltyCost := 0; j := j + 1; end;
TotalPenaltyCostl := TotalPenaltyCostl + PenaltyCost;

end;
end;

(Penalty Cost for four consecutive days off)

j := 1;
while j <= 14 do begin
if (TwoWeekPattern [i,j] = '0') and

(TwoWeekPattern (i,j] = TwoWeekPattern [i, j+1]) and
(TwoWeekPattern (i,j] = TwoWeekPattern j+2]) and
(TwoWeekPattern (i,j] = TwoWeekPattern [i, j+3]) then
begin PenaltyCost := PenaltyCost4Zero; j := j + 4; end
else

122

begin PenaltyCost := 0; J := j + 1; end;
TotalPenaltyCostO := TotalPenaltyCostO + PenaltyCost;
end;

{Penalty Cost for three consecutive days off)

if TotalPenaltyCostO = 0 then begin
j := 1;
while j <= 14 do begin
if (TwoWeekPattern [i,j] = '0') and

(TwoWeekPattern [i,j] = TwoWeekPattern [i, j+11) and
(TwoWeekPattern [i,j] = TwoWeekPattern [i, j+2]1 then
begin PenaltyCost := PenaltyCost3Zero; j := j + 3; end
else
begin PenaltyCost := 0; J := j + 1; end;

TotalPenaltyCostO := TotalPenaltyCostO + PenaltyCost;
end;
end;

TotalPenaltyCost[i] := (TotalPenaltyCostO TotalPenaltyCost1
+ TotalPenaltyCost2 + TotalPenaltyCost3
+ TotalPenaltyCost4 + TotalPenaltyCost5
+ TotalPenaltyCost6 + TotalPenaltyCost7
+ TotalPenaltyCost8 + TotalPenaltyCost9
+ TotalPenaltyCostlO + TotalPenaltyCostll
+ TotalPenaltyCostl2);

{writeln ('TwoWeekPattern ',i,' Cost = ',TotalPenaltyCost[i]:3);)
end;

end; (********************TwoWeekPenaltyCost******************************)

(***)

Procedure ThreeWeekPenaltyCost(var TotalPenaltyCost: TotalPcost);

begin

{ThreeWeekPatternGeneration(ThreeWeekPattern);}

for i := 1 to 21 do begin {ThreeWeekPattern Penalty Cost Calculation)

Initialize;

{Penalty Cost for working on WeekEnd}

if (ThreeWeekPattern[i,6] = '1') and (ThreeWeekPattern[i,7] = '1')
then TotalPenaltyCost4 := PenaltyCostWEndOn;

if (ThreeWeekPattern[i,13]='1') and (ThreeWeekPattern[i,141 = '1')
then TotalPenaltyCost5 := PenaltyCostWEndOn;

if (ThreeWeekPattern[i,20] ='1') and (ThreeWeekPattern[i,21] ='1')
then TotalPenaltyCost6 := PenaltyCostWEndOn;

if (ThreeWeekPattern[i,6] = '1') and (ThreeWeekPattern[i,71 = '0')
then TotalPenaltyCost7 := PenaltyCostSatOnSunOff;

if (ThreeWeekPattern[i,131='1') and (ThreeWeekPattern[i,14] = '0')
then TotalPenaltyCost8 := PenaltyCostSatOnSunOff;

if (ThreeWeekPatternii,201='1') and (ThreeWeekPattern[i,21]='0')
then TotalPenaltyCost9 := PenaltyCostSatOnSunOff;

if (ThreeWeekPattern[i,6] = '0') and (ThreeWeekPattern[i,71 = '1')
then TotalPenaltyCostlO := PenaltyCostSatOffSunOn;

if (ThreeWeekPattern[i,13]='0') and (ThreeWeekPattern(i,14] = '1')
then TotalPenaltyCost11 := PenaltyCostSatOffSunOn;

123

if (ThreeWeekPattern[i,20] ='0') and (ThreeWeekPattern[i,21]='1')
then TotalPenaltyCostl2 := PenaltyCostSatOffSunOn;

[Penalty Cost for Single day on or off)

for m := 2 to 20 do begin
if (ThreeWeekPattern [i,m] = '0') and

(ThreeweekPattern [i,m] <> ThreeWeekPattern [i,m+1]) and
(ThreeWeekPattern [i,m-1] <> ThreeWeekPattern [i,m]) then
PenaltyCost := PenaltyCostSingle0

else
PenaltyCost := 0;

TotalPenaltyCost2 := TotalPenaltyCost2 + PenaltyCost;
end;

for n := 2 to 20 do begin
if (ThreeWeekPattern [i,n] = '1') and

(ThreeWeekPattern [i,n] <> ThreeWeekPattern [i,n+1]) and
(ThreeWeekPattern [i,n -l] <> ThreeWeekPattern [i,n]) then
PenaltyCost := PenaltyCostSinglel

else
PenaltyCost := 0;

TotalPenaltyCost3 := TotalPenaltyCost3 + PenaltyCost;
end;

(Penalty Cost for working on eight or more consecutive days)

j := 1;
while j <= 21 do begin

if (ThreeWeekPattern [i,j] ='1') and
(ThreeWeekPattern [i,j]=ThreeWeekPattern[i.,(j+1)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+2)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i.,(j+3)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+4)]) and
(ThreeWeekPattern[i,3]=ThreeWeekPattern[i,(j+5)]) and
(ThreeWeekPattern[i,j1=ThreeWeekPattern[i,(j+6)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+7)]) then
begin PenaltyCost := PenaltyCost8One; j := j + 8; end

else
begin PenaltyCost := 0; j := j + 1; end;
TotalPenaltyCostl := TotalPenaltyCostl + PenaltyCost;

end;

(Penalty Cost for working on seven consecutive days)

if TotalPenaltyCostl = 0 then begin
j := 1;
while j <= 21 do begin

if (ThreeweekPattern [i,j]='1') and
(ThreeWeekPattern [i,j]=ThreeWeekPattern[i,(j+1)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+2)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+3)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+4)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+5)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+6)]) then
begin PenaltyCost := PenaltyCost7One; j := j + 7; end
else
begin PenaltyCost :=0; j := j + 1; end;
TotalPenaltyCostl := TotalPenaltyCostl + PenaltyCost;
end;

end;

(Penalty Cost for working on six consecutive days)

124

if TotalPenaltyCostl = 0 then begin
j := 1;
while j <= 21 do begin

if (ThreeWeekPattern [i,j]='1') and
(ThreeWeekPattern [i,j]=ThreeWeekPattern[i,(j+1)1) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+2)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+3)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+4)]) and
(ThreeWeekPattern[i,j]=ThreeWeekPattern[i,(j+5)]) then
begin PenaltyCost := PenaltyCost6One; j := j + 6; end
else
begin PenaltyCost :=0; j := j + 1; end;
TotalPenaltyCostl := TotalPenaltyCostl + PenaltyCost;
end;

end;

{Penalty Cost for four consecutive days off)

j := 1;
while j <= 21 do begin

if (ThreeWeekPattern [i,j] = '0') and
(ThreeWeekPattern [i,j] = ThreeWeekPattern [i, j+1]) and
(ThreeWeekPattern [i,j] = ThreeWeekPattern [i, j+2]) and
(ThreeWeekPattern [i,j) = ThreeWeekPattern [i, j+31) then

begin PenaltyCost := PenaltyCost4Zero; j := j + 4; end
else

begin PenaltyCost := 0; J := j + 1; end;
TotalPenaltyCostO := TotalPenaltyCostO + PenaltyCost;

end;

{Penalty Cost for three consecutive days off)

if TotalPenaltyCostO = 0 then begin
j := 1;
while j <= 21 do begin

if (ThreeWeekPattern [i,j] = '0') and
(ThreeWeekPattern [i,j] = ThreeWeekPattern [i, j+11) and
(ThreeWeekPattern [i,j] = ThreeWeekPattern [i, j+2]) then
begin PenaltyCost := PenaltyCost3Zero; j := j + 3; end

else
begin PenaltyCost := 0; J := j + 1; end;

TotalPenaltyCostO := TotalPenaltyCostO + PenaltyCost;
end;

end;
TotalPenaltyCost[i] := (TotalPenaltyCostO + TotalPenaltyCostl

+ TotalPenaltyCost2 + TotalPenaltyCost3
+ TotalPenaltyCost4 + TotalPenaltyCost5
+ TotalPenaltyCost6 + TotalPenaltyCost7
+ TotalPenaltyCost8 + TotalPenaltyCost9
+ TotalPenaltyCostlO + TotalPenaltyCostll
+ TotalPenaltyCost12);

{writeln ('ThreeWeekPattern ',i,' Cost = ',TotalPenaltyCost[i]:4);)
end;
end; {******************ThreeWeekPenaltyCost******************************)

(***W*****************************)

Procedure FourWeekPenaltyCost(var TotalPenaltyCost: TotalPcost);

begin

{FourWeekPatternGeneration(FourWeekPattern);}

for i := 1 to 21 do begin (FourWeekPattern Penalty Cost Calculation)

125

Initialize;
(Penalty Cost for working on WeekEnd)

if (FourWeekPattern[i,6] . '1') and (FourWeekPattern[i,7] = '1')
then TotalPenaltyCost4 := PenaltyCostWEndOn;

if (FourWeekPattern[i,13]='1') and (FourWeekPattern[i,14] = '1')
then TotalPenaltyCost5 := PenaltyCostWEndOn;

if (FourWeekPattern[i,20]='1') and (FourWeekPattern[i,21]='1')
then TotalPenaltyCost6 := PenaltyCostWEndOn;

if (FourWeekPattern[i,27]='1') and (FourWeekPattern[i,28)='1')
then TotalPenaltyCostl3 := PenaltyCostWEndOn;

if (FourWeekPattern[i,6] = '1') and (FourWeekPattern[i,7] = '0')
then TotalPenaltyCost7 := PenaltyCostSatOnSunOff;

if (FourWeekPattern[i,13)='1') and (FourWeekPattern[i,14] '0')
then TotalPenaltyCost8 := PenaltyCostSatOnSunOff;

if (FourWeekPattern[i,20]='1') and (FourWeekPattern[i,21]='0')
then TotalPenaltyCost9 := PenaltyCostSatOnSunOff;

if (FourWeekPattern[i,27] ='1') and (FourWeekPattern[i,28] ='0')
then TotalPenaltyCostl4 := PenaltyCostSatOnSunOff;

if (FourWeekPattern[i,6] = '0') and (FourWeekPattern[i,7] = '1')
then TotalPenaltyCostlO := PenaltyCostSatOffSunOn;

if (FourWeekPattern[i,13] ='0') and (FourWeekPattern[i,14] = '1')
then TotalPenaltyCostll := PenaltyCostSatOffSunOn;

if (FourWeekPattern[i,20]='0') and (FourWeekPattern[i,21]='1')
then TotalPenaltyCostl2 := PenaltyCostSatOffSunOn;

if (FourWeekPattern[i,27]='0') and (FourWeekPattern[i,28] ='1')
then TotalPenaltyCostl5 := PenaltyCostSatOffSunOn;

{Penalty Cost for Single day on or off)

for m := 2 to 27 do begin
if (FourWeekPattern [i,m] = '0') and

(FourWeekPattern [i,m] <> FourWeekPattern [i,m+1]) and
(FourWeekPattern [i,m-1) <> FourWeekPattern [i,m]) then
PenaltyCost := PenaltyCostSingle0

else
PenaltyCost := 0;

TotalPenaltyCost2 := TotalPenaltyCost2 + PenaltyCost;
end;

for n := 2 to 27 do begin
if (FourWeekPattern [i,n] = '1') and

(FourWeekPattern [i,n] <> FourWeekPattern [i,n+1]) and
(FourWeekPattern [i,n -1] <> FourWeekPattern [i,n]) then
PenaltyCost := PenaltyCostSinglel

else
PenaltyCost := 0;

TotalPenaltyCost3 := TotalPenaltyCost3 + PenaltyCost;
end;

{Penalty Cost for working on eight or more consecutive days)

j := 1;
while j <= 28 do begin

if (FourWeekPattern [i,j] =-'1') and
(FourWeekPattern [i,j]=FourWeekPattern[i,(j+1)]) and
(FourWeekPattern[i,j)=FourWeekPattern[i,(j+2)]) and
(FourWeekPattern[i,j]=FourWeekPattern[i,(j+3)]) and
(FourWeekPattern(i,j1=FourWeekPattern[i,(j +4)]) and

126

(FourWeekPattern[i,j] =FourWeekPattern[i,(j+5)]) and
(FourWeekPattern[i,j]=FourWeekPattern[i,(j+6)]) and
(FourWeekPattern[i,j]=FourWeekPattern[i,(j+7)]) then
begin PenaltyCost := PenaltyCost8One; j := j + 8; end

else
begin PenaltyCost := 0; j := j + 1; end;
TotalPenaltyCostl := TotalPenaltyCostl + PenaltyCost;

end;

(Penalty Cost for working on seven consecutive days)

if TotalPenaltyCostl = 0 then begin
j := 1;
while j <= 28 do begin

if (FourWeekPattern [i,j]='1') and
(FourWeekPattern [i,j]=FourWeekPattern[i,(j+1)]) and
(FourWeekPattern[i,j]=FourWeekPattern[i,(j+2)]) and
(FourWeekPattern[i,j]=FourWeekPattern[i,(j+3)]) and
(FourWeekPattern[i,j]=FourWeekPattern[i,(j+4)]) and
(FourWeekPattern[i,j]=FourWeekPattern[i,(j+5)]) and
(FourWeekPattern[i,j] =FourWeekPattern[i,(j+6)]) then
begin PenaltyCost := PenaltyCost7One; j := j + 7; end
else
begin PenaltyCost := 0; j := j + 1; end;
TotalPenaltyCostl := TotalPenaltyCostl + PenaltyCost;
end;

end;

(Penalty Cost for working on six consecutive days)

if TotalPenaltyCostl = 0 then begin
j := 1;
while j <= 28 do begin

if (FourWeekPattern li,j1='1') and
(FourWeekPattern [i,j]=FourWeekPattern[i,(j+1)]) and
(FourWeekPattern[i,j1=FourWeekPattern[i,(j+2)]) and
(FourWeekPattern[i,j]=FourWeekPattern[i,(j+3)]) and
(FourWeekPattern[i,j]=FourWeekPattern[i,(j+4)]) and
(FourWeekPatternli,j)=FourWeekPattern[i,(j+5)]) then
begin PenaltyCost := PenaltyCost6One; j := j + 6; end
else
begin PenaltyCost :=0; j := j + 1; end;
TotalPenaltyCostl := TotalPenaltyCostl + PenaltyCost;
end;

end;

(Penalty Cost for four consecutive days off)

j := 1;
while j <= 28 do begin

if (FourWeekPattern [i,j] = '0') and
(FourWeekPattern [i,j] = FourWeekPattern [i, j+1]) and
(FourWeekPattern [i,j] = FourWeekPattern [i, j+2]) and
(FourWeekPattern (i,j] = FourWeekPattern [i, j+3]) then

begin PenaltyCost := PenaltyCost4Zero; j := j + 4; end
else

begin PenaltyCost := 0; J := j + 1; end;
TotalPenaltyCostO := TotalPenaltyCostO + PenaltyCost;

end;

[Penalty Cost for three consecutive days off]

if TotalPenaltyCostO = 0 then begin
j := 1;
while j <= 28 do begin

127

if (FourWeekPattern [i,j] = '0') and
(FourWeekPattern [i,j] = FourWeekPattern [i, j+1]) and
(FourWeekPattern [i,j] = FourWeekPattern [i, j+2]) then
begin PenaltyCost := PenaltyCost3Zero; j := j + 3; end

else
begin PenaltyCost := 0; J := j + 1; end;
TotalPenaltyCostO := TotalPenaltyCostO + PenaltyCost;

end;
end;
TotalPenaltyCost[i] := (TotalPenaltyCostO + TotalPenaltyCost1

+ TotalPenaltyCost2 + TotalPenaltyCost3
+ TotalPenaltyCost4 + TotalPenaltyCost5
+ TotalPenaltyCost6 + TotalPenaltyCost7
+ TotalPenaltyCost8 + TotalPenaltyCost9
+ TotalPenaltyCostlO + TotalPenaltyCostll
+ TotalPenaltyCostl2 + TotalPenaltyCostl3
+ TotalPenaltyCostl4 + TotalPenaltyCostl5);

(writeln ('FourWeekPattern ',i,' Cost = ',TotalPenaltyCost[i]:4);)
end;
end; {********************FourWeekPenaltyCost*****************************}

(***)

end. (Of Unit PntCost}
(***)

APPENDIX D
SOURCE CODE OF UNIT FOR SORTING WORK PATTERN

Unit SortPat;

interface

uses PntCost, PatGen;

Procedure SortPatternl (var NumArray : TotalPCost;

Start, Count : Integer);

Procedure SortPattern2 (var NumArray : TotalPCost;
var Pattern : TwoWeekPat;
Start, Count : Integer);

Procedure SortPattern3 (var NumArray : TotalPCost;
var Pattern : ThreeWeekPat;
Start, Count : Integer);

Procedure SortPattern4 (var NumArray : TotalPCost;
var Pattern : FourWeekPat;

implementation
Start, Count : Integer);

Procedure SortPatternl (var NumArray : TotalPCost;

var
Start, Count : Integer);

J,K : integer;
ThisValue : integer;
ThisPattern : OneWeek;

begin
if Count <= 1 then exit;

128

for j := (Start + 1) to Count do
begin

ThisValue := NumArray[J];
ThisPattern := OneWeekPattern[J];
K := J 1;

while (ThisValue < NumArray [K]) and
(K>0) do
begin

NumArray[K + 1] := NumArray [K];
OneWeekPattern[K + 1] := OneWeekPattern [K];
K := K 1

end;
NumArray[K + 1] := ThisValue;
OneWeekPattern[K + 1] := ThisPattern;

end;
end; (*******************SortOneWeekPattern*******************************)

(***)

Procedure SortPattern2 (var NumArray : TotalPCost;
var Pattern : TwoWeekPat;

var

129

Start, Count : Integer);

J,K : integer;
ThisValue : integer;
ThisPattern : TwoWeek;

begin

end;

if Count <= 1 then exit;

for j := (Start + 1) to Count do
begin

ThisValue := NumArray[J];
ThisPattern := Pattern[J];
K := J 1;

while (ThisValue < NumArray [K]) and
(K>0) do
begin

NumArray[K + 1] := NumArray [K];
Pattern[K + 1) := Pattern [K);
K := K 1

end;
NumArray[K + 1] := ThisValue;
Pattern[K + 1] := ThisPattern;

end;
(.*******************sortTwoweekpattern******************************)

(***)

Procedure SortPattern3 (var NumArray : TotalPCost;
var Pattern : ThreeWeekPat;
Start, Count : Integer);

var

J,K : integer;
ThisValue : integer;
ThisPattern : ThreeWeek;

begin
if Count <= 1 then exit;

for I := (Start + 1) to Count do
begin

ThisValue := NumArray[J];
ThisPattern := Pattern[J];
K := J 1;

while (ThisValue < NumArray [K]) and
(K>0) do
begin

NumArray[K + 1] := NumArray [K];
Pattern[K + 1] := Pattern [K];
K := K 1

end;
NumArray[K + 1] := ThisValue;
Pattern[K + 1] := ThisPattern;

end;

end; (********************SortThreeWeekPattern****************************)

(***)

Procedure SortPattern4 (var NumArray : TotalPCost;
var Pattern : FourWeekPat;
Start, Count : Integer);

var

J,K : integer;
ThisValue : integer;
ThisPattern : FourWeek;

begin
if Count <= 1 then exit;

130

for j := (Start + 1) to Count do
begin

ThisValue := NumArray[J];
ThisPattern := Pattern[J];
K := J 1;

while (ThisValue < NumArray [K]) and
(K>0) do
begin

NumArray[K + 1] := NumArray (K);
Pattern[K + 1] := Pattern [K];
K := K 1

end;
NumArray[K + 1] := ThisValue;
Pattern[K + 1] := ThisPattern;

end;
end; (**************************SortFourWeekPattern***********************)
end. [Of Unit SortPat)

(***)

APPENDIX E
SOURCE CODE OF MAIN PROGRAM

Program NurseScheduling;
{$M 65520,0,655360}

Uses Crt, Graph, Patgen, PntCost, SortPat;

{ This program generate schedules for nurses in the hospital.
{ The program first generate working patterns, then screen the patterns
{ based on the constraints invoke by hospital and nurses, using
{ 'Heuristic Best-First Search Technique.
{ The patterns will then be combined with the shift patterns to form
{ complete schedules for nurses.

Var

GraphDriver, GraphMode : Integer;
xMax, yMax : Integer;

SeeSchedule,
SaveSchedule,
ViewReport,
SaveReport,
DefaultValue,
UserAnswer,
PickAgain,
PrintSchedule4,
PrintSchedule8,
PrintSchedulel2,
PrintReport4,
PrintReport8,
PrintReportl2,
DisplayBStaff,
Display12Staff,
EightWeek
PatternBase,
Schedulel,
SchedOut,
SchedOutTwo,
SchedOutThree,
ShiftBase,
EightWeekBase,
Eight Base,
TwelveBase,
TwelveWeekBase,
ShiftBasel,
ShiftBase2,
ShiftBase3,
ShiftSecondBase,
ShiftThirdBase,
ShiftEWBase,
Shiftl2WBase,
StafList4,
StafList8,
StafList12,
Print4Schedule,
Printl2Schedule,
PrintStaff4,
PrintStaff8,

: Char;

131

PrintStaff12,
PrintEight : Text;
ScheduleNum : Integer;

ShiftPat
Shift
ShiftPattern
FourWkPattern,
ShPattern,
NewPattern,
NewShift
i,j,k,l,m,n,
p,q,r,s
xl, x2, x3

: Array[1..10000] of Char;
: Array [1..10000] of Char;
: Array [1..5000] of String[4];

: String;

: integer;
: integer; (Shift Ratio:

(x1 : Day shift proportion
(x2 : Evening Shift proportion
(x3 : Night Shift proportion

DayRatio, EveRatio,
NiteRatio : real; (Ideal distribution of nurse based on

(shift policy

TotalPenaltyCost : TotalPcost;

NOfPat,
Num0fPat,
NumOfShift,
MaxPcost,
LengthOfSchedule : integer;

132

(***..

Procedure CreatePattern;

begin

Assign (PatternBase,'BASE.DAT'); (Prepare a file for Pattern Base)
Rewrite (PatternBase);

NOfPat := 1; (Initialize counter to check how many patterns have been)
(generated)

OneWeekPenaltyCost(TotalPenaltyCost);
SortPatternl(TotalPenaltyCost, 1, 21);

q := 1;
repeat (*********************Twoweekpattern***********************)

TwoWeekPatternGeneration(TwoWeekPattern,q);
TwoWeekPenaltyCost(TotalPenaltyCost);
SortPattern2(TotalPenaltyCost, TwoWeekPattern, 1, 21);

r := 1;
repeat (*********************ThreeWeekPattern**********************)

ThreeWeekPatternGeneration(ThreeWeekPattern,r);
ThreeWeekPenaltyCost(TotalPenaltyCost);
SortPattern3(TotalPenaltyCost, ThreeWeekPattern, 1, 21);

s := 1;
repeat (*********************Fourweekpattern***********************)

FourWeekPatternGeneration(FourWeekPattern,$);
FourWeekPenaltyCost(TotalPenaltyCost);
SortPattern4(TotalPenaltyCost, FourWeekPattern, 1, 21);

133

for i := 1 to 21 do
if TotalPenaltyCost[i] <= MaxPCost then begin
writeln(PatternBase, FourWeekPattern[i]);

NOfPat := NOfPat + 1;
end;

s := s + 1;
until (NOfPat >= NumOfPat) or (s = 21);

(*********************ponrweekpattern***********************)

r := r + 1;
until (NOfPat >= NumOfPat) or (r = 21);

(*********************Threeweekpattern**********************)

q := q + 1;
until (NOfPat >= NumOfPat) or (q = 21);

(*********************Twoweekpattern***********************)

Close (PatternBase);

end; (************* Procedure CreatePattern **************

(**)

Procedure PickFourWeekPattern;

type
FWP = String[28];

var
Start,
Sched,
Count : integer;
FourWkPat : Array [1..1000] of FWP;

begin

Randomize;
Assign(SchedOut,'SCHDBAS.DAT');
Rewrite(SchedOut);

Reset (PatternBase);

For Start := 1 to NumOfPat do
Readln (PatternBase, FourWkPat [Start]);

For Sched := 1 to ScheduleNum do

begin

Count := Random (NumOfPat);
If Count = 0 then

Count := Count + 1;
Writeln (SchedOut, FourWkPat [Count));

end;
Close(SchedOut);
Close(PatternBase);

end; {Procedure PickFourWeekPattern}

(***)

134

Procedure PickSecondPattern;

type
FWP = String[28];

var
Start,
Sched,
Count : integer;
FourWkPat : Array [1..1000] of FWP;

begin

Randomize;
Assign(SchedOutTwo,'SCHDBAS1.DAT');
Rewrite(SchedOutTwo);

Reset (PatternBase);

For Start := 1 to Num0fPat do
Readln (PatternBase, FourWkPat (Start]);

For Sched := 1 to ScheduleNum do

begin

Count := Random (Num0fPat);
If Count = 0 then

Count := Count + 1;

Writeln (SchedOutTwo, FourWkPat [Count]);

end;
Close(SchedOutTwo);
Close(PatternBase);

end; [Procedure PickSecondPattern)

(***********************W***)

Procedure PickThirdPattern;

type
FWP = String[28];

var
Start,
Sched,
Count : integer;
FourWkPat : Array [1..1000] of FWP;

begin

Randomize;
Assign(SchedOutThree,'SCHDBAS2.DAT');
Rewrite(SchedOutThree);

Reset (PatternBase);

For Start := 1 to Num0fPat do
Readln (PatternBase, FourWkPat [Start]);

For Sched := 1 to ScheduleNum do

begin

Count := Random (Num0fPat);
If Count = 0 then

Count := Count + 1;
Writeln (SchedOutThree, FourWkPat [Count]);

135

end;
Close(SchedOutThree);
Close(PatternBase);

end; {Procedure PickThirdPattern}

(***)

Procedure EightWeekPattern;
{$M 65520,0,655360)

{Type

Var

FWP = String[28];)

FourWkPat : String[28];
FWP : String[28];
EightWkPat : Strinat56];
MaxSched,
jj,kk,ll : integer;

begin

PickSecondPattern;

Assign (EightWeekBase, 'SCHDBWK.DAT');
Rewrite(EightWeekBase);

Reset (SchedOut);
Reset (SchedOutTwo);

While Not Eof (SchedOut) or Not Eof (SchedOutTwo) do

begin
readln(SchedOut, FourWkPat);
readln(SchedOutTwo,FWP);
EightWkPat := FourWkPat + FWP;
Writeln (EightWeekBase,EightWkPat);

end;

Close(SchedOut);
Close(SchedOutTwo);
Close(EightWeekBase);

end; {Procedure EightWeek Pattern)

Procedure TwelveWeekPattern;
{$M 65520,0,655360)

(Type

Var

FWP = String[281;}

FourWkPat : String[28];
FWP : String[28];

136

FWP2 : String{281;
TwelveWkPat : String{841;
MaxSched,
jj,kk,11 : integer;

begin

PickSecondPattern;
PickThirdPattern;

Assign (TwelveWeekBase, 'SCHD12WK.DAT');
Rewrite(TwelveWeekBase);

Reset (SchedOut);
Reset (SchedOutTwo);
Reset (SchedOutThree);

While Not Eof (SchedOut) or Not Eof (SchedOutTwo) or
Not Eof (SchedOutThree) do

begin
readln(SchedOut, FourWkPat);
readln(SchedOutTwo,FWP);
readln(SchedOutThree,FWP2);
TwelveWkPat := FourWkPat + FWP + FWP2;
Writeln (TwelveWeekBase,TwelveWkPat);

end;

Close(SchedOut);
Close(SchedOutTwo);
Close(SChedOutThree);
Close(TwelveWeekBase);

end; (Procedure TwelveWeekPattern)

[***)

Procedure CreateShiftBase;

var

ShiftRatio : integer;
xl, x2, x3 : integer; {Shift Ratio)

{x1 : Day shift proportion)
{x2 : Evening Shift proportion)
{x3 : Night Shift proportion)

Procedure ShiftPolicy; (This procedure give the user the opportunity
{to select the shift policy for the hospital
{There are 5 policies listed here, but can
(be extended if necessary.

var
Proportion : real;
TotalRatio : real;
rl,r2,r3 : real;

begin

ClrScr;
writeln;
writeln('

writeln;
writeln;
writeln;

Select Shift Policy: ');

137

writeln;
writeln(1. Shift Policy 1:1:1 ');
writeln(' 2. Shift Policy 2:1:1 ');
writeln(' 3. Shift Policy 2:2:1 ');
writeln(' 4. Shift Policy 3:2:1 ');
writeln(' 5. Shift Policy 3:2:2 ');
writeln(' 6. Shift Policy 3:3:1 ');
writeln(' 7. Shift Policy 3:3:2 ');
writeln(' 8. Shift Policy 4:3:1 ');
writeln(' 9. Shift Policy 4:3:2 ');
writeln(' 10. Other ');
writeln;
writeln;
writeln;
writeln;
write(' Choose the number and press <Enter> : ');
readln(ShiftRatio);

NumOfShift := 4 * Num0fPat;

Case ShiftRatio of

1: begin
xl := Round ((1/3) * NumOfShift);
x2 := Round ((1/3) * NumOfShift);
x3 := (NumOfShift (xl + x2));
DayRatio := 0.333;
EveRatio := 0.333;
NiteRatio := 0.333;

end;
2: begin

xl := Round ((2/4) * NumofShift);
x2 := Round ((1/4) * NumofShift);
x3 := (NumOfShift (xl + x2));
DayRatio := 0.500;
EveRatio := 0.250;
NiteRatio := 0.250;

end;
3: begin

x1 := Round ((2/5) * NumOfShift);
x2 := Round ((2/5) * NumOfShift);
x3 := (NumOfShift (xl + x2));
DayRatio := 0.400;
EveRatio := 0.400;
NiteRatio := 0.200;

end;
4: begin

xl := Round ((3/6) * NumOfShift);
x2 := Round ((2/6) * NumOfShift);
x3 := (NumOfShift (xl + x2));
DayRatio := 0.500;
EveRatio := 0.333;
NiteRatio := 0.167;

end;
5: begin

xl := Round ((3/7) * NumOfShift);
x2 := Round ((2/7) * NumOfShift);
x3 := (NumOfShift (xl + x2));
DayRatio := 0.429;
EveRatio := 0.286;
NiteRatio := 0.285;

end;
6: begin

x1 := Round ((3/7) * NumOfShift);
x2 := Round ((3/7) * NumOfShift);

138

x3 := (NumOfShift (xl + x2));
DayRatio := 0.429;
EveRatio := 0.429;
NiteRatio := 0.142;

end;
7: begin

xl := Round ((3/8) * NumOfShift);
x2 := Round ((3/8) * NumOfShift);
x3 := (NumOfShift (xl + x2));
DayRatio := 0.375;
EveRatio := 0.375;
NiteRatio := 0.250;

end;
8: begin

xl := Round ((4/8) * NumOfShift);
x2 := Round ((3/8) * NumOfShift);
x3 := (NumOfShift (xl + x2));
DayRatio := 0.500;
EveRatio := 0.375;
NiteRatio := 0.125;

end;
9: begin

xl := Round ((4/9) * NumOfShift);
x2 := Round ((3/9) * NumOfShift);
x3 := (NumOfShift (xl + x2));
DayRatio := 0.445;
EveRatio := 0.333;
NiteRatio := 0.222;

end;
10: begin

ClrScr;
writeln;
writeln(' Select Shift Policy: ');
writeln;
writeln;
write(' Day Ratio ');
readln(rl);
writeln;
write(' Evening Ratio : ');
readln(r2);
writeln;
write(' Night Ratio ');
readln(r3);
TotalRatio := rl + r2 + r3;
Proportion := 1/TotalRatio;

xl := Round ((r1/TotalRatio) * NumOfShift);
x2 := Round ((r2/TotalRatio) * NumOfShift);
x3 := (NumOfShift (xl + x2));
DayRatio := (r1 * Proportion);
EveRatio := (r2 * Proportion);
NiteRatio := (r3 * Proportion);

end;
else
writeln (' Error in entry, try again !');

end; (of Case)

end;fof Procedure ShiftPolicy)

begin

139

Assign (ShiftBase1,'SHIFPAT.DAT');
Rewrite(ShiftBase1);

{NumOfShift := 4 * NumOfPat;)

ShiftPolicy;

for i := 1 to x1 do
begin
ShiftPat[i] := 'D';
writeln(ShiftBase1, ShiftPat[i]);
end;

for i:= (xl + 1) to (x1 + x2) do
begin
ShiftPat[i] := 'E';
writeln(ShiftBase1, ShiftPat[i]);
end;

for i := (x1 + x2 + 1) to (xi + x2 + x3) do
begin
ShiftPat[i] := 'N';
writeln(ShiftBasel, ShiftPat[i]);
end;

Close(ShiftBasel);

end; (Procedure CreateShiftBase}

C***)

Procedure ReOrderShift;

var
ShiftPat2 : Array [1..10000] of char;

begin

Assign(ShiftBase2, 'NEWSHIFT.DAT');
Rewrite(ShiftBase2);

Reset(ShiftBasel);

Randomize;

for i := 1 to Num0fShift do
begin

k := random(Num0fShift);
if k=0 then k := k + 1;
readln(ShiftBase1,ShiftPat[k]);
ShiftPat2[i] := ShiftPat[k];
writeln(ShiftBase2, ShiftPat2[i]);

end;

Close(ShiftBase1);
Close(ShiftBase2);

end; (Procedure ReOrderShift)

{***}

Procedure CreateShift;

begin

Assign(ShiftBase3,'SHIFBASE.DAT');
Rewrite(ShiftBase3);

140

Reset(ShiftBase2);

Randomize;
i := 0;

repeat

for j := 1 to 4 do
begin

k := random(NumOfShift);
if k = 0 then k := k + 1;
Shift[j] := ShiftPat[k];

end;

If Not
(((Shift[1] = 'E') and
((Shift[1] = Shift[2]) and (Shift[1] = Shift[3]) and
(Shift[1] = Shift[4]))) or
((Shift[1] = 'E') and
((Shift[1] = Shift[2]) and (Shift[1] = Shift[3]))) or
((Shift[1] = 'E') and
((Shift[1] = Shift[3]) and (Shift[1] = Shift[4]))) or
((Shift[1] = 'E') and
((Shift[1] = Shift[2]) and (Shift[1] = Shift[4]))) or
((Shift[2] = 'E') and
((Shift[2] = Shift[3]) and (Shift[2] = Shift[4]))) or
((Shift[1] = 'N') and
((Shift[1] = Shift[2]) and (Shift[1] = Shift[3])) and
((Shift[1] = Shift[4]))) or
((Shift[1] = 'N') and
((Shift[1] = Shift[2]) and (Shift[1] = Shift[3]))) or
((Shift[1] = 'N') and
((Shift[1] = Shift[3]) and (Shift[1] = Shift[4]))) or
((Shift[1] = 'N') and
((Shift[1] = Shift[2]) and (Shift[1] = Shift[4]))) or
((Shift[2] = 'N') and
((Shift[2] = Shift[3]) and (Shift[2] = Shift[4])))) then

begin
ShiftPattern[i] := Shift[1] + Shift[2] + Shift[3] + Shift[4];
writeln(ShiftBase3, ShiftPattern[i]);
i := i + 1;

end;

Until i = NumOfPat;

Close(ShiftBase2);
Close(ShiftBase3);

end; { Procedure CreateShift)

(***)

Procedure CreateSecondShift;

Var
ii,jj,kk
SecondShift

begin

(CreateShiftBase;
ReOrderShift;
CreateShift;)

: integer;
: Array [1..50001 of String[4];

Assign (ShiftSecondBase,'SH2BASE.DAT');

141

Rewrite(ShiftSecondBase);

Reset (ShiftBase3);

For ii := 1 to Num0fPat do
Readln(ShiftBase3, ShiftPattern [ii]);

Randomize;

For kk := 1 to NumOfPat do
begin

jj := Random (Num0fPat);
If jj = 0 then

jj := jj + 1;
SecondShift[kk) := ShiftPattern[jj];
Writeln(ShiftSecondBase, SecondShift[kk]);

end;

Close(ShiftSecondBase);
Close(ShiftBase3);

end; (Procedure CreateSecondShift)

(***)

Procedure CreateThirdShift;

Var
ii,jj,kk : integer;
SecondShift,
ThirdShift : Array [1..1000] of String[4];

begin

Assign (ShiftThirdBase,'SH3BASE.DAT');
Rewrite(ShiftThirdBase);

Reset(ShiftSecondBase);

For ii := 1 to Num0fPat do
Readln(ShiftSecondBase, SecondShift [ii]);

Randomize;

For kk := 1 to Num0fPat do
begin

jj := Random (Num0fPat);
If jj = 0 then

jj := jj + 1;
ThirdShift[kk] := SecondShift[jj];
Writeln(ShiftThirdBase, ThirdShift [kk]);

end;

C1ose(ShiftSecondBase);
Close(ShiftThirdBase);

end; (Procedure CreateThirdShift)

(***)

Procedure Create8WeekShift;

Var
Shift4 : String[4];
Shift4Too: String[4];

142

Shift8 : String[8];

begin

Assign(Shift8WBase,'SH8BASE.DAT');
Rewrite(Shift8WBase);

Reset(ShiftBase3);
Reset(ShiftSecondBase);

While Not Eof (ShiftBase3) and Not Eof(ShiftSecondBase) do

begin
readln(ShiftBase3,Shift4);
readln(ShiftSecondBase,Shift4Too);
Shift8 := Shift4 + Shift4Too;
Writeln(Shift8WBase,Shift8);

end;

Close(Shift8WBase);
Close(ShiftBase3);
Close(ShiftSecondBase);

end; (Procedure Create8WeekShift)

(*****************************#***)

Procedure Createl2WeekShift;

Var
Shift4 : String[4];
Shift4Too: String[4];
Shift4Three : String[4];
Shiftl2 : String(12];

begin

Assign(Shiftl2WBase,'SH12BASE.DAT');
Rewrite(Shiftl2WBase);

Reset(ShiftBase3);
Reset(ShiftSecondBase);
Reset(ShiftThirdBase);

While Not Eof (ShiftBase3) and Not Eof(ShiftSecondBase) and
Not Eof (ShiftThirdBase) do

begin
readln(ShiftBase3,Shift4);
readln(ShiftSecondBase,Shift4Too);
readln(ShiftThirdBase,Shift4Three);
Shiftl2 := Shift4 + Shift4Too + Shift4Three;
Writeln(Shiftl2WBase,Shift12);

end;

Close(Shift12WBase);
Close(ShiftBase3);
Close(ShiftSecondBase);
Close(ShiftThirdBase);

end; (Procedure Createl2WeekShift)

(***}

143

Procedure ScreenView;

Type

Var

FWPT = String[28];
SPat = String[4];

FWeekPat : Array [1..1000] of FWPT;
SPT : Array [1..1000] of SPat;
jj, kk,
11, s : integer;

begin

Reset (SchedOut);
Reset (ShiftBase3);

i := 0;
for jj := 1 to ScheduleNum do

begin
writeln;
writeln('
writeln('

Schedule No. : ',jj:4);

m := 1;
readln(SchedOut, FWeekPat[jj]);
readln(ShiftBase3, SPT[jj]);
writeln(' Day :

' MTWTFSS');
writeln('

'),
for kk := 1 to 4 do begin

write(' Week : ',kk,
',SPT[jj,kk],': ');

for 11 := 1 to 7 do begin
write(FWeekPat[jj,m],");
m := m + 1;

end;
writeln;
end;

writeln('
'),

i := i + 1;
if i = 2 then
begin
i := 0;
writeln;

writeln('Press any key to continue or <Esc> to cancel viewing ... ');

if ReadKey = #27 then Exit
else
ClrScr;

end;
end; {for jj)

Close(SchedOut);
Close(ShiftBase3);

end; (Procedure ScreenView)

(***)

Procedure PrintSchedule;

Type

Var

FWPT = String[28];
SPat = String[4];

FWeekPat : Array [1..1000] of FWPT;
SPT : Array [1..1000] of SPat;
jj, kk,
11, s : integer;

begin

Assign(Print4Schedule, 'LPT1');
Rewrite(Print4Schedule);

Reset (SchedOut);
Reset (ShiftBase3);

for jj := 1 to ScheduleNum do
begin

writeln(Print4Schedule);
writeln(Print4Schedule,

writeln(Print4Schedule,

');
m := 1;
readln(SchedOut, FWeekPat[jj]);
readln(ShiftBase3, SPT(jj]);
writeln(Print4Schedule,

MTWTFSS');
writeln(Print4Schedule,

Schedule No. : ',jj:4);

Day :

');
for kk := 1 to 4 do begin

write(Print4Schedule,
Week : ',kk,

' ,SPT[jj,kkl,': ');
for 11 := 1 to 7 do begin

write(Print4Schedule,FWeekPat[jj,m],");
m := m + 1;

end;
writeln(Print4Schedule);
end;

writeln(Print4Schedule,

') ;

end; (for jj)

Close(SchedOut);
Close(ShiftBase3);
Close(Print4Schedule);

end; (Procedure Print4Schedule)

144

(***)

Procedure SaveTheSchedule;

Type

FWPT = String[28];

Var

SPat = String[4];

FWeekPat : Array [1..1000] of FWPT;
SPT : Array [1..1000] of SPat;
jj, kk,
11 : integer;

begin

Reset (SchedOut);
Reset (ShiftBase3);

Assign (Schedulel, 'SCHEDULE.DAT');
Rewrite (Schedulel);

for jj := 1 to ScheduleNum do
begin

writeln(Schedulel);
writeln(Schedulel,'Schedule No. : ',jj:4);
writeln(Schedulel,'
m := 1;
readln(SchedOut, FWeekPat(ii1);
readln(ShiftBase3, SPT[jj]);

' ;

145

writeln(Schedulel,'Day : M T W T F S S');
writeln(Schedulel,' ');

for kk := 1 to 4 do begin
write(Schedulel,'Week : ',kk,' ,SPT[33,kk],': ');

for 11 :=1 to 7 do begin
write(Schedulel,FWeekPat[jj,m],");
m := m + 1;

end;
writeln(Schedulel);
end;

writeln(Schedulel,' ');
end; (for j)

Close (SchedOut);
Close (ShiftBase3);
Close(Schedulel);
end; (Procedure SaveTheSchedule}

(***)

Procedure ViewEightSchedule;

Type

Var

SPat = String[4];

EWB : Text;
EightWkPat : Char;
Shift8 : Char;
jj,kk,ll : integer;

begin

(Assign (EightBase, 'BASE8.DAT');)
(Rewrite (EightBase);}

Reset(EightWeekBase);
Reset(Shift8WBase);

:= 0;

While Not Eof(EightWeekBase) do
begin
for jj := 1 to ScheduleNum do begin

writeln;
writeln('
writeln('
writeln('
writeln('

146

Schedule No. : ',jj:4);

Day : M T W T F S S ');
');

While Not Eoln(EightWeekBase) do
begin

for kk := 1 to 8 do begin
read(Shift8WBase,Shift8);
write(' Week : ',kk,' ,Shift8);
write(' ');

for 11 := 1 to 7 do begin
read(EightWeekBase, EightWkPat);
write(EightWkPat,");

end;
writeln;
end;

end;
Readln(EightWeekBase);
Readln(Shift8WBase);
writeln(' ');
i := i + 1;
if i = 1 then
begin
i := 0;
writeln;

writeln('Press any key to continue or <Esc> to cancel viewing ... ');

if ReadKey = #27 then Exit
else
ClrScr;

end;
end;

end;

Close (EightWeekBase);
Close(Shift8WBase);

end; (Procedure ViewEightSchedule)

(***)

Procedure PrintEightSchedule;

Type

Var

SPat = String[41;

EWB : Text;
EightWkPat : Char;
Shifts : Char;

jj,kk,11 : integer;

begin

Assign (PrintEight, 'LPT1');
Rewrite (PrintEight);

Reset(EightWeekBase);
Reset(Shift8WBase);

i : 0;

While Not Eof(EightWeekBase) do
begin
for jj := 1 to ScheduleNum do begin

writeln(PrintEight);
writeln(PrintEight,'
writeln(PrintEight,'

'),

writeln(PrintEight,'
' MTWTFSS');

writeln(PrintEight,'
'),

147

Schedule No. : ',jj:4);

Day

While Not Eoln(EightWeekBase) do
begin

for kk := 1 to B do begin
read(Shift8WBase,Shift8);
write(PrintEight,' Week :

kk,' ,Shift8);
write(PrintEight,' ');

for 11 := 1 to 7 do begin
read(EightWeekBase, EightWkPat);
write(PrintEight,EightWkPat,");

end;
writeln(PrintEight);
end;

end;

Readln(EightWeekBase);
Readln(Shift8WBase);
writeln(PrintEight,'

'),
end;

end;

Close (EightWeekBase);
Close(Shift8WBase);

end; (Procedure PrintEightSchedule)

(***)

Procedure SaveEightSchedule;

Type

Var

SPat = String[4];

EWB : Text;

148

EightWkPat : Char;
Shift8 : Char;
jj,kk,11 : integer;

begin

Assign (EightBase, 'BASE8.DAT');
Rewrite (EightBase);

Reset(EightWeekBase);
Reset(Shift8WBase);

While Not Eof(EightWeekBase) do
begin
for jj := 1 to ScheduleNum do begin

writeln(EightBase);
writeln(EightBase,'Schedule No. :

writeln(EightBase,'
writeln(EightBase,'Day :

writeln(EightBase,'

jj:4);

');
MTWTFSS');

');

While Not Eoln(EightWeekBase) do
begin

for kk := 1 to 8 do begin
read(Shift8WBase,Shift8);
write(EightBase,'Week : ',kk,' ,Shift8);
write(EightBase,' ');

for 11 := 1 to 7 do begin
read(EightWeekBase, EightWkPat);
write(EightBase,EightWkPat,");

end;
writeln(EightBase);
end;

end;
Readln(EightWeekBase);
Readln(Shift8WBase);
writeln(EightBase,' ');
end;

end;

Close (EightWeekBase);
Close(Shift8WBase);
Close(EightBase);

end; (Procedure SaveEightSchedule)

(***)

Procedure ViewTwelveSchedule;

Type

Var

SPat = String[4];

TWB : Text;
TwelveWkPat : Char;

Shiftl2
jj,kk,11

: Char;
: integer;

begin

Assign (TWB,'SCHD12WK.DAT');

Reset(TWB);

Reset(Shiftl2WBase);
i := 0;

While Not Eof(TWB) do
begin
for jj := 1 to ScheduleNum do begin

writeln;
writeln('
writeln('
writeln('
writeln('

Schedule No. : ',jj:6);

Day :

149

');
MTWTFSS');

');

While Not Eoln(TWB) do
begin

for kk := 1 to 12 do begin
read(Shiftl2WBase,Shiftl2);
write(' Week : ',kk:2,",Shift12);
write(' ');

for 11 := 1 to 7 do begin
read(TWB, TwelveWkPat);
write(TwelveWkPat,");

end;
writeln;
end;

end;
Readln(TWB);
Readln(Shiftl2WBase);
writeln(' ');
i := i + 1;
if i = 1 then
begin
i := 0;
writeln;

writeln('Press any key to continue or <Esc> to cancel viewing ... ');

if ReadKey = #27 then Exit
else
ClrScr;

end;
end;

end;

Close (TWB);
Close(Shiftl2WBase);

end; (Procedure ViewTwelveSchedule)

(***)

Procedure PrintTwelveSchedule;

Type

SPat = String[4];

Var

TWB : Text;
TwelveWkPat : Char;

Shiftl2 : Char;
jj,kk,ll : integer;

begin

Assign(Printl2Schedule, 'LPT1');
Rewrite(Printl2Schedule);

Assign (TWB,'SCHD12WK.DAT');

Reset(TWB);

Reset(Shiftl2WBase);

While Not Eof(TWB) do
begin
for jj := 1 to ScheduleNum do begin

writeln(Printl2Schedule);
writeln(Printl2Schedule,'
writeln(Printl2Schedule,'
writeln(Printl2Schedule,'
writeln(Printl2Schedule,'

Schedule No. : ',jj:4);

Day :

150

');

MTWTFSS');
');

While Not Eoln(TWB) do
begin

for kk := 1 to 12 do begin
read(Shiftl2WBase,Shift12);
write(Printl2Schedule,' Week : ',kk:2,",Shift12);
write(Printl2Schedule,' ');

for 11 := 1 to 7 do begin
read(TWB, TwelveWkPat);
write(Printl2Schedule,TwelveWkPat,");

end;
writeln(Printl2Schedule);
end;

end;
Readln(TWB);
Readln(Shiftl2WBase);
writeln(Printl2Schedule,' ');
end;

end;

Close (TWB);
Close(Shiftl2WBase);
Close(Printl2Schedule);

end; (Procedure PrintTwelveSchedule)

(***)

Procedure SaveTwelveSchedule;

Type

Var

SPat = String(4];

TWB : Text;

151

TwelveWkPat : Char;

Shiftl2
jj,kk,11

begin

Char;
: integer;

Assign (TwelveBase, 'BASE12.DAT');
Rewrite (TwelveBase);

Assign (TWB,'SCHD12WK.DAT');

Reset(TWB);

Reset(Shiftl2WBase);

While Not Eof(TWB) do
begin
for jj := 1 to ScheduleNum do begin

writeln(TwelveBase);
writeln(TwelveBase,'Schedule No. : ',jj:4);
writeln(TwelveBase,' ');
writeln(TwelveBase,'Day : MTWTFSS');
writeln(TwelveBase,' ');

While Not Eoln(TWB) do
begin

for kk := 1 to 12 do begin
read(Shiftl2WBase,Shift12);
write(TwelveBase,'Week : ',kk:2,",Shift12);
write(TwelveBase,' ');

for 11 := 1 to 7 do begin
read(TWB, TwelveWkPat);
write(TwelveBase, TwelveWkPat,");

end;
writeln(TwelveBase);
end;

end;
Readln(TWB);
Readln(Shiftl2WBase);
writeln(TwelveBase,' ');
end;

end;

Close (TWB);
Close(Shiftl2WBase);
Close(TwelveBase);

end; (Procedure SaveTwelveSchedule
)

(***)

Procedure ViewStaffList4Week;

Var
CountD,
CountE,
CountN
Shift4,

: Array(1..28] of Longint;

Pattern4 : Char;
i,j,k,l : integer;
TotalD, TotalE, TotalN : Longint;
AveD, AveE, AveN : real;

RatioD, RatioE, RatioN : real;

Procedure InitCount;
var

m : integer;
begin

for m := 1 to
begin

28 do

CountD[m] := 0;
CountE[m] := 0;

CountN[m] := 0;
end;

end;

begin

InitCount;

Reset(SchedOut);
Reset(ShiftBase3);

While Not Eof(SchedOut) and Not Eof(ShiftBase3) do
begin

j := 1;
While Not Eoln(ShiftBase3) do
begin

read(ShiftBase3,Shift4);
for i:=j to j + 6 do
begin

read(Schedout, Pattern4);
if (Shift4 = 'D') and (Pattern4 = '1') then

CountD[i] := CountD[i] + 1
else
if (Shift4 = 'E') and (Pattern4 = '1') then

CountE[i] := CountE[i] + 1
else
if (Shift4 = 'N') and (Pattern4 = '1') then

CountN[i] := CountN[i] + 1;
end;
j := j + 7;

end;
readin (ShiftBase3);
readin (SchedOut);
end;

Close(SchedOut);
Close(ShiftBase3);

writeln(' STAFF LIST REPORT:
writeln('
writeln;
writeln('

writeln(' Day
Evening-Shift','

writeln('
');

152

',' Day-Shift',
Night-Shift');

TotalD := 0;
TotalE := 0;
TotalN := 0;
k := 0;
for 1 := 1 to 28 do
begin

if (1=1) or (1=8) or (1=15) or (1=22) then
write(' Monday ');

end;

if (1=2) or (1=9) or (1=16) or (1=23) then
write(' Tuesday ');
if (1=3) or (1=10) or (1=17) or (1=24) then
write(' Wednesday');
if (1=4) or (1=11) or (1=18) or (1=25) then
write(' Thursday ');
if (1=5) or (1=12) or (1=19) or (1=26) then
write(' Friday ');
if (1=6) or (1=13) or (1=20) or (1=27) then
write(' Saturday ');
if (1=7) or (1=14) or (1=21) or (1=28) then
write(' Sunday ');

writeln(', ',1:2,' ',CountD[1]:8,'
',CountN[1]:8);

TotalD := TotalD + CountD[1];
TotalE := TotalE + CountE[1];
TotalN := TotalN + CountN[1];
k := k + 1;
if k = 17 then
begin
writeln('Press <Enter> to continue ... ');
readln;
end

',CountE[1]:8,

AveD := (TotalD / 28);
AveE := (TotalE / 28);
AveN := (TotalN / 28);
RatioD := (TotalD) / (TotalD + TotalE + TotalN);
RatioE := (TotalE) / (TotalD + TotalE + TotalN);
RatioN := (TotalN) / (TotalD + TotalE + TotalN);

writeln('

153

');
writeln(' Total " ',TotalD:8,' ',TotalE:8,

',TotalN:8);
writeln(' Average ',' ',AveD:8:3,' ',AveE:8:3,

,AveN:8:3);
writeln(' Ratio Actual ',' ',RatioD:8:3,'

RatioE:8:3,' ',RatioN:8:3);
writeln(' Ratio Ideal ',' ',DayRatio:8:3,'

EveRatio:8:3,' ',NiteRatio:8:3);

writeln('
'),

writeln('Press <Enter> to continue ... ');
readln;
ClrScr;

end; (*********Procedure ViewStaffList4Week*******************************)

(***)

Procedure PrintStaffList4Week;

Var
CountD,
CountE,
CountN
Shift4,
Pattern4

: Array[1..28] of Longint;

Char;

i,j,k,l : integer;
TotalD, TotalE, TotalN : Longint;
AveD, AveE, AveN : real;
RatioD, RatioE, RatioN : real;

Procedure InitCount;
var

m : integer;
begin

for m := 1 to 28 do
begin

CountD[m] := 0;
CountE[m] := 0;
CountN[m] := 0;

end;
end;

begin

InitCount;

Assign(PrintStaff4,'LPT1');
Rewrite(PrintStaff4);

Reset(SchedOut);
Reset(ShiftBase3);

While Not Eof(SchedOut) and Not Eof(ShiftBase3) do
begin

j := 1;
While Not Eoln(ShiftBase3) do
begin

read(ShiftBase3,Shift4);
for i:=j to j + 6 do
begin

read(Schedout, Pattern4);
if (Shift4 = 'D') and (Pattern4 = '1') then

CountD[i] := CountD[i] + 1
else
if (Shift4 = 'E') and (Pattern4 = '1') then

CountE[i] := CountE[i] + 1
else
if (Shift4 = 'N') and (Pattern4 = '1') then

CountN[i] CountN[i] + 1;
end;
j := j + 7;

end;
readln (ShiftBase3);
readln (SchedOut);
end;

Close(SchedOut);
Close(ShiftBase3);

writeln(PrintStaff4,'
writeln(PrintStaff4,'
writeln(PrintStaff4);
writeln(PrintStaff4,'

writeln(PrintStaff4,'

writeln(PrintStaff4,'

STAFF LIST REPORT:

154

');

');
Day :

Evening-Shift','
',' Day-Shift',

Night-Shift');

TotalD := 0;
TotalE := 0;

') ;

TotalN := 0;

for 1 := 1 to 28 do
begin

if (1=1) or (1=8) or (1=15) or (1=22) then
write(PrintStaff4,' Monday ');
if (1=2) or (1=9) or (1=16) or (1=23) then
write(PrintStaff4,' Tuesday ');
if (1=3) or (1=10) or (1=17) or (1=24) then
write(PrintStaff4,' Wednesday');
if (1=4) or (1=11) or (1=18) or (1=25) then
write(PrintStaff4,' Thursday ');
if (1=5) or (1=12) or (1=19) or (1=26) then
write(PrintStaff4,' Friday ');
if (1=6) or (1=13) or (1=20) or (1=27) then
write(PrintStaff4,' Saturday ');
if (1=7) or (1=14) or (1=21) or (1=28) then
write(PrintStaff4,' Sunday ');

end;

writeln(PrintStaff4,'

155

',1:2,' ',CountD[1]:8,
',CountE[1]:8,' ',CountN[1]:8);

TotalD := TotalD + CountD[1];
TotalE := TotalE + CountE[1];
TotalN := TotalN + CountN[1];

AveD := (TotalD / 28);
AveE := (TotalE / 28);
AveN := (TotalN / 28);
RatioD := (TotalD) / (TotalD + TotalE + TotalN);
RatioE := (TotalE) / (TotalD + TotalE + TotalN);
RatioN := (TotalN) / (TotalD + TotalE + TotalN);

writeln(PrintStaff4,'

writeln(PrintStaff4,' Total ',' ',TotalD:8,
',TotalE:8,' ',TotalN:8);

writeln(PrintStaff4,' Average',' ',AveD:8:3,
AveE:8:3,' ',AveN:8:3);

writeln(PrintStaff4,' Ratio Actual ',' ',RatioD:8:3,
',RatioE:8:3,' ',RatioN:8:3);

writeln(PrintStaff4,' Ratio Ideal ',' ',DayRatio:8:3,
',EveRatio:8:3,' ',NiteRatio:8:3);

writeln(PrintStaff4,'
;

end; (*********Procedure PrintStaffList4Week******************************)

(***)

Procedure StaffList4Week;

Var
CountD,
CountE,
CountN
Shift4,

: Array[1..281 of Longint;

Pattern4 : Char;
i,j,k,1 : integer;
TotalD, TotalE, TotalN : Longint;

156

AveD, AveE, AveN : real;
RatioD, RatioE, RatioN : real;

Procedure InitCount;
var

m : integer;
begin

for m := 1 to
begin

28 do

CountD[m] := 0;
CountE[m] := 0;
CountN[m] := 0;

end;
end;

begin

InitCount;

Reset(SchedOut);
Reset(ShiftBase3);

While Not Eof(SchedOut) and Not Eof(ShiftBase3) do
begin

j := 1;
While Not Eoln(ShiftBase3) do
begin

read(ShiftBase3,Shift4);
for i:=j to j + 6 do
begin

read(Schedout, Pattern4);
if (Shift4 = 'D') and (Pattern4 = '1') then

CountD[i] := CountD[i] + 1
else
if (Shift4 = 'E') and (Pattern4 = '1') then

CountE[i] := CountE[i] + 1
else
if (Shift4 = 'N') and (Pattern4 = '1') then

CountN[i] := CountN[i] + 1;
end;
j := j + 7;

end;
readln (ShiftBase3);
readln (SchedOut);
end;

Close(SchedOut);
Close(ShiftBase3);

Assign(StafList4,'STAF4.DAT');
Rewrite(StafList4);

writeln(StafList4,'
writeln(StafList4,'
writeln(StafList4);
writeln(StafList4,

STAFF LIST REPORT: ');
');

'),
writeln(StafList4,' Day :

Evening-Shift','
writeln(StafList4,

',' Day-Shift',
Night-Shift');

')

TotalD := 0;
TotalE := 0;

TotalN := 0;

for 1 := 1 to 28 do
begin

if (1=1) or (1=8) or (1=15) or (1=22) then
write(StafList4,'Monday ');
if (1=2) or (1=9) or (1=16) or (1=23) then
write(Staflist4,'Tuesday ');
if (1=3) or (1=10) or (1 =17) or (1 =24) then
write(StafList4,'Wednesday');
if (1=4) or (1=11) or (1=18) or (1=25) then
write(StafList4,'Thursday ');
if (1=5) or (1=12) or (1=19) or (1=26) then
write(Staflist4,'Friday ');
if (1=6) or (1=13) or (1=20) or (1=27) then
write(StafList4,'Saturday ');
if (1=7) or (1 =14) or (1=21) or (1=28) then

end;

write(StafList4,'Sunday ');

writeln (StafList4,
,1:2,' ',CountD[1]:8,' ',CountE[1]:8,

',CountN[1]:8);

TotalD := TotalD + CountD[1];
TotalE := TotalE + CountE[1];
TotalN := TotalN + CountN[1];

AveD := (TotalD / 28);
AveE := (TotalE / 28);
AveN := (TotalN / 28);
RatioD (TotalD) / (TotalD + TotalE + TotalN);
RatioE := (TotalE) / (TotalD + TotalE + TotalN);
RatioN := (TotalN) / (TotalD + TotalE + TotalN);

writeln(StafList4,

') ;
writeln(StafList4,

Total ',' ',TotalD:8,'
',TotalN:8);

writeln(StafList4,
Average','

',AveN:8:3);
writeln(StafList4,

Ratio Actual ',' ',RatioD:8:3,'
',RatioN:8:3);

writeln(StafList4,
Ratio Ideal ',' ',DayRatio:8:3,'

EveRatio:8:3,' ',NiteRatio:8:3);

writeln(StafList4,

157

',TotalE:8,

',AveE:8:3,

',RatioE:8:3,

')
Close(StafList4);

end; (*********Procedure StaffList4Week***********************************)

(***)

Procedure ViewStaffList8Week;

Var
CountD,

CountE,
CountN
Shift 8,

: Array[1..56] of Longint;

Pattern8 : Char;
i,j,k,l : integer;
TotalD, TotalE, TotalN : Longint;
AveD, AveE, AveN : real;
RatioD, RatioE, RatioN : real;

Procedure InitCount;
var

m : integer;
begin

for m := 1 to 56 do
begin

CountD(m] := 0;
CountE[m] := 0;
CountN[m] := 0;

end;
end;

begin

InitCount;

Reset(EightWeekBase);
Reset(Shift8WBase);

While Not Eof(EightWeekBase) and Not Eof(Shift8WBase) do
begin

j := 1;
While Not Eoln(Shift8WBase) do
begin

read(Shift8WBase,Shift8);
for i:=j to j + 6 do
begin

read(EightWeekBase, Pattern8);
if (Shift8 = 'D') and (Pattern8 = '1') then

CountD[i] := CountD[i] + 1
else
if (Shift8 = 'E') and (Pattern8 = '1') then

CountE[i] := CountE[i] + 1

else
if (Shift8 = 'N') and (Pattern8 = '1') then

CountN[i] := CountN[i] + 1;
end;
j := j + 7;

end;
readln (Shift8WBase);
readln (EightWeekBase);
end;

Close(EightWeekBase);
Close(Shift8WBase);

writeln(' STAFF LIST REPORT: ');
writeln(' ');
writeln;
writeln('

' '),
writeln(' Day : ',' Day-Shift',

' ',' Evening-Shift',' ',' Night-Shift');
writeln('

158

159

TotalD := 0;
TotalE := 0;
TotalN := 0;

k := 0;
for 1 := 1 to 56 do
begin

if (1=1) or (1=8) or (1=15)
or (1=50) then
write(' Monday ');

or (1=22) or (1=29) or (1=36) or (1=43)

if (1=2) or (1=9) or (1=16) or
or (1=51) then
write(' Tuesday ');

(1=23) or (1=30) or (1=37) or (1=44)

if (1=3) or (1=10) or (1=17) or
or (1=52) then
write(' Wednesday');

(1=24) or (1=31) or (1=38) or (1=45)

if (1=4) or (1=11) or (1=18)
or (1=53) then
write(' Thursday ');

or (1=25) or (1=32) or (1=39) or (1=46)

if (1=5) or (1=12) or (1=19)
or (1=54) then
write(' Friday ');

or (1=26) or (1=33) or (1=40) or (1=47)

if (1=6) or (1=13) or (1=20)
or (1=55) then
write(' Saturday ');

or (1=27) or (1=34) or (1=41) or (1=48)

if (1=7) or (1=14) or (1=21)
or (1=56) then
write(' Sunday ');

or (1=28) or (1=35) or (1=42) or (1=49)

end;

writeln (' ',1:2,' ',CountD[1]:8,'
',CountN[1]:8);

TotalD := TotalD + CountD[1];
TotalE := TotalE + CountE[1];
TotalN := TotalN + CountN[1];

k := k + 1;
if k = 17 then
begin
k := 0;
writeln('Press <Enter> to continue ... ');
readln;
end

AveD := (TotalD / 56);
AveE := (TotalE / 56);
AveN := (TotalN / 56);
RatioD := (TotalD) / (TotalD + TotalE + TotalN);
RatioE := (TotalE) / (TotalD + TotalE + TotalN);
RatioN := (TotalN) / (TotalD + TotalE + TotalN);

writeln('

writeln('

writeln('

',CountE[1]:8,

');
Total ','

',TotalN:8);
Average','

,AveN:8:3);

',TotalD:8,' ',TotalE:8,

',AveD:8:3,' ',AveE:8:3,

writeln(' Ratio Actual ',' ',RatioD:8:3,'
RatioE:8:3,' ',RatioN:8:3);

writeln(' Ratio Ideal ',' ',DayRatio:8:3,'
EveRatio:8:3,' ',NiteRatio:8:3);

writeln('

writeln('Press <Enter> to continue .

readln;
ClrScr;

160

'1;

end; { * * * * * * ** *Procedure ViewStaffList8Week*******************************)

(***}

Procedure PrintStaffList8Week;

Var
CountD,
CountE,
CountN
Shift8,

: Array[1..56] of Longint;

Pattern8 : Char;
i,j,k,l : integer;
TotalD, TotalE, TotalN : Longint;
AveD, AveE, AveN : real;
RatioD, RatioE, RatioN : real;

Procedure InitCount;
var

m : inteaer;
begin

for m := 1 to 56 do
begin

CountD[m] := 0;
CountE[m] := 0;
CountN[m] := 0;

end;
end;

begin

InitCount;

Assign(PrintStaff8,'LPT1');
Rewrite(PrintStaff8);

Reset(EightWeekBase);
Reset(Shift9WBase);

While Not Eof(EightWeekBase) and Not Eof(Shift8WBase) do
begin

j := 1;
While Not Eoln(Shift5WBase) do
begin

read(Shift8WBase,Shift8);
for i:=j to j + 6 do
begin

read(EightWeekBase, Pattern8);
if (Shift8 = 'D') and (Pattern8 = '1') then

CountD[i] := CountD[i] + 1
else
if (Shift8 = 'E') and (Pattern8 = '1') then

CountE[i] := CountE[i] + 1
else
if (Shift8 = 'N') and (Pattern8 = '1') then

CountN[i] := CountN[i] + 1;
end;
j := j + 7;

end;

161

readln (Shift8WBase);
readln (EightWeekBase);
end;

Close(EightWeekBase);
Close(Shift8WBase);

writeln(PrintStaff8,'
writeln(PrintStaff8,'

STAFF LIST REPORT: ;
');

writeln(PrintStaff8);
writeln(PrintStaff8,'

');
writeln(PrintStaff8,' Day :

Evening-Shift','
',' Day-Shift',

Night-Shift');
writeln(PrintStaff8,'

TotalD
TotalE
TotalN

for 1
begin

') ;

:= 0;
:= 0;
:= 0;

:= 1 to 56 do

if (1=1) or (1=8) or (1=15) or (1=22) or (1=29)
or (1=50) then
write(PrintStaff8,' Monday ');

or (1=36) or (1=43)

if (1=2) or (1=9) or (1=16) or (1=23) or (1=30)
or (1=51) then
write(PrintStaff8,' Tuesday ');

or (1=37) or (1=44)

if (1=3) or (1=10) or (1=17) or (1=24) or (1=31)
or (1=52) then
write(PrintStaff8,' Wednesday');

or (1=38) or (1=45)

if (1=4) or (1=11) or (1=18) or (1=25) or (1=32)
or (1=53) then
write(PrintStaff8,' Thursday ');

or (1=39) or (1=46)

if (1=5) or (1=12) or (1=19) or (1=26) or (1=33)
or (1=54) then
write(PrintStaff8,' Friday ');

or (1=40) or (1=47)

if (1=6) or (1=13) or (1=20) or (1=27) or (1=34)
or (1=55) then
write(PrintStaff8,' Saturday ');

or (1=41) or (1=48)

if (1=7) or (1=14) or (1=21) or (1=28) or (1=35)
or (1=56) then

or (1=42) or (1=49)

end;

write(PrintStaff8,' Sunday ');

writeln (PrintStaffB,' ',1:2,' ',Count10[11:8,'
CountE[1]:8,' ',CountN[1]:8);

TotalD := TotalD + CountD[1];
TotalE := TotalE + CountE[1];
TotalN := TotalN + CountN[1];

AveD := (TotalD / 56);
AveE := (TotalE / 56);
AveN := (TotalN / 56);
RatioD := (TotalD) / (TotalD + TotalE + TotalN);
RatioE := (TotalE) / (TotalD + TotalE + TotalN);
RatioN := (TotalN) / (TotalD + TotalE + TotalN);

writeln(PrintStaff8,'

writeln(PrintStaff8,' Total ','
',TotalE:8,'

');

',TotalD:8,
',TotalN:8);

writeln(PrintStaff8,'

writeln(PrintStaff8,'

writeln(PrintStaff8,'

writeln(PrintStaff8,'

writeln(PrintStaff8);

Average','
',AveE:8:3,'

Ratio Actual ','
',RatioE:8:3,'

Ratio Ideal ','
',EveRatio:8:3,'

') ;

162

',AveD:8:3,
',AveN:8:3);

',RatioD:8:3,
',RatioN:8:3);

',DayRatio:8:3,
',NiteRatio:8:3);

end; (*********Procedure PrintStaffList8Week******************************)

(***)

Procedure StaffList8Week;

Var
CountD,
CountE,
CountN
Shift8,

: Array[1..56] of Longint;

Pattern8 : Char;
i,j,k,l : integer;
TotalD, TotalE, TotalN : Longint;
AveD, AveE, AveN : real;
RatioD, RatioE, RatioN : real;

Procedure InitCount;
var

m : integer;
begin

for m := 1 to 56 do
begin

CountD[m] := 0;
CountE[m] := 0;
CountN[m] := 0;

end;
end;

begin

InitCount;

Reset(EightWeekBase);
Reset(Shift8WBase);

While Not Eof(EightWeekBase) and Not Eof(Shift8WBase) do
begin

j := 1;
While Not Eoln(Shift8WBase) do
begin

read(Shift8WBase,Shift8);
for i:=j to j + 6 do
begin

read(EightWeekBase, Pattern8);
if (Shift8 = 'D') and (Pattern8 = '1') then

CountE[i] := CountD[i] + 1
else
if (Shift8 = 'E') and (Pattern8 = '1') then

CountE[i] := CountE[i] + 1
else
if (Shift8 = 'N') and (Pattern8 = '1') then

CountN[i] := CountN[i] + 1;
end;
j := j + 7;

end;
readln (Shift8WBase);
readln (EightweekBase);
end;

Close(EightWeekBase);
Close(Shift8WBase);

Assign(StafList8,'STAF8.DAT');
Rewrite(StafList8);

writeln(StafList8,'
writeln(StafList8,'
writeln;
writeln(StafList8,

STAFF LIST REPORT:
');

'),
writeln(StafList8,' Day : ',' Day-Shift',

163

Evening-Shift',' Night-Shift');
writeln(StafList8,

') ,

TotalD := 0;
TotalE := 0;
TotalN := 0;

for 1 := 1 to 56 do
begin

if (1=1) or (1=8) or (1=15) or (1=22) or
or (1=50) then
write(StafList8,' Monday ');

if (1=2) or (1=9) or (1=16) or (1=23) or
or (1=51) then
write(Staflist8,' Tuesday ');

if (1=3) or (1=10) or (1=17) or (1=24) or
or (1=52) then
write(StafList8,' Wednesday');

if (1=4) or (1=11) or (1=18) or (1=25) or
or (1=53) then
write(StafList8,' Thursday ');

if (1=5) or (1=12) or (1=19) or (1=26) or
or (1=54) then
write(Staflist8,' Friday ');

if (1=6) or (1=13) or (1=20) or (1=27) or
or (1=55) then
write(StafList8,' Saturday ');

if (1=7) or (1=14) or (1=21) or (1=28) or
or (1=56) then
write(StafList8,' Sunday ');

(1=29)

(1=30)

(1=31)

(1=32)

(1=33)

(1=34)

(1=35)

or

or

or

or

or

or

or

(1=36)

(1=37)

(1=38)

(1=39)

(1=40)

(1=41)

(1=42)

or

or

or

or

or

or

or

(1=43)

(1=44)

(1=45)

(1=46)

(1=47)

(1=48)

(1=49)

end;

writeln (StafList8,
',1:2,' ',CountD[1]:8,'

',CountN[1]:8);

TotalD := TotalD + CountD[1];
TotalE := TotalE + CountE[1];
TotalN := TotalN + CountN[1];

AveD := (TotalD / 56);

',CountE[1]:8,

AveE := (TotalE / 56);
AveN := (TotalN / 56);
RatioD := (TotalD) / (TotalD + TotalE + TotalN);
RatioE := (TotalE) / (TotalD + TotalE + TotalN);
RatioN := (TotalN) / (TotalD + TotalE + TotalN);

writeln(StafList8,

') ;
writeln(StafList8,

Total ','

',TotalN:B);
writeln(StafList8,

Average','
',AveN:8:3);

writeln(StafList8,
Ratio Actual ','

',RatioN:8:3);
writeln(StafList8,

Ratio Ideal ','
EveRatio:8:3,'

writeln(StafList8,

',TotalD:8,'

',AveD:8:3,'

',RatioD:8:3,'

',DayRatio:8:3,'
',NiteRatio:8:3);

164

',TotalE:8,

',AveE:8:3,

',RatioE:8:3,

Close(StafList8);

end; (*********Procedure StaffList8Week***********************************)

(***)

Procedure ViewStaffListl2Week;

Var
CountD,
CountE,
CountN : Array[1..84] of Longint;
Shift12,
Patternl2 : Char;
i,j,k,l : integer;
TotalD, TotalE, TotalN : Longint;
AveD, AveE, AveN : real;
RatioD, RatioE, RatioN : real;

Procedure InitCount;
var

m : integer;
begin

for m := 1 to 84 do
begin

CountD[m] := 0;
CountE[m] := 0;
CountN[m] := 0;

end;
end;

begin

InitCount;

Reset(TwelveWeekBase);
Reset(Shiftl2WBase);

While Not Eof TwelveWeekBase) and Not Eof(Shiftl2WBase) do
begin

j := 1;
While Nor Eoln(Shiftl2WBase) do
begin

read(Shiftl2WBase,Shift12);
for i:=j to j + 6 do
begin

read(TwelveWeekBase, Patternl2);
if (Shiftl2 = 'D') and (Patternl2 = '1') then

CountD[i] := CountD[i] + 1
else
if (Shiftl2 = 'E') and (Patternl2 = '1') then

CountE(i] := CountE[i] + 1
else
if (Shiftl2 = 'N') and (Patternl2 = '1') then

CountD[i] := CountN(i] + 1;
end;
j := j + 7;

end;
readln (Shiftl2WBase);
readln (TwelveWeekBase);
end;

Close(TwelveWeekBase);
Close(Shiftl2WBase);

writeln(' STAFF LIST REPORT: ');
writeln(' ');
writeln;
writeln('

'),
writeln(' Day : ,' Day-Shift',

Evening-Shift',' Night-Shift');
writeln('

'),

TotalD :=

TotalE :=

TotalN :=

0;
0;

0;

165

k := 0;
for 1 := 1 to 84 do
begin

if (1=1) or (1=8) or (1=15) or (1=22) or (1=29) or (1=36) or (1=43)
or (1=50) or (1=57) or (1=64) or (1=71) or (1=78) then
write(' Monday ');

if (1=2) or (1=9) or (1=16) or (1=23) or (1=30) or (1=37) or (1=44)
or (1=51) or (1=58) or (1=65) or (1=72) or (1=79) then
write(' Tuesday ');

if (1=3) or (1=10) or (1=17) or (1=24) or (1=31) or (1=38) or (1=45)
or (1=52) or (1=59) or (1=66) or (1=73) or (1=80) then
write(' Wednesday');

if (1=4) cr (1=11) or (1=18) or (1=25) or (1=32) or (1=39) or (1=46)
or (1=53) or (1=60) or (1=67) or (1=74) or (1=81) then
write(' Thursday ');

if (1=5) or (1=12) or (1=19) or (1=26) or (1=33) or (1=40) or (1=47)
or (1=54) or (1=61) or (1=68) or (1=75) or (1=82) then
write(' Friday ');

if (1=6) cr (1=13) or (1=20) or (1=27) or (1=34) or (1=41) or (1=48)
or (1=55) or (1=62) or (1=69) or (1=76) or (1=83) then
write(' Saturday ');

if (1=7) or (1=14) or (1=21) or (1=28) or (1=35) or (1=42) or (1=49)
or (1=56) or (1=63) or (1=70) or (1=77) or (1=84) then

end;

write(' Sunday ');

writeln (' 1:2,' ',CountD[1]:8,'
',CountN[1]:8);

TotalD := TotalD + CountD[1];
TotalE := TotalE + CountE[1];
TotalN := TotalN + CountN[1];

k := k + 1;
if k = 17 then
begin
k := 0;
writeln('Press <Enter> to continue ... ');
readln;
end;

AveD := (TotalD / 84);
AveE := (TotalE / 84);
AveN := (TotalN / 84);
RatioD := (TotalD) / (TotalD + TotalE + TotalN);
RatioE := (TotalE) I (TotalD + TotalE + TotalN);
RatioN := (TotalN) / (TotalD + TotalE + TotalN);

writeln('

writeln('

',CountE[1]:8,

'),
Total ','

',TotalN:8);
writeln(' Average','

',AveN:8:3);
writeln(' Ratio Actual ',' ',RatioD:8:3,'

RatioE:8:3, ',RatioN:8:3);
writeln(' Ratio Ideal ',' ',DayRatio:8:3,'

EveRatio:8:3,' ',NiteRatio:8:3);

',TotalD:B,' ',TotalE:B,

',AveD:8:3,' ',AveE:8:3,

writeln('

writeln;
writeln('Press <Enter> to continue ...
readln;
ClrScr;

166

) ;

end; (*********Procedure ViewStaffListl2Week******************************)

(***)

Procedure PrintStaffListl2Week;

Var
CountD,
CountE,
CountN
Shiftl2,

: Array[1..84] of Longint;

Patternl2 : Char;
i,j,k,l : integer;
TotalD, TotalE, TotalN : Longint;
AveD, AveE, AveN : real;
RatioD, RatioE, RatioN : real;

Procedure InitCount;
var

m : integer;
begin

167

for m := 1 to 84 do
begin

CountD[m] := 0;
CountE[m] := 0;
CountN[m] := 0;

end;
end;

begin

InitCount;

Reset(TwelveWeekBase);
Reset(Shiftl2WBase);

While Not Eof(TwelveWeekBase) and Not Eof(Shiftl2WBase) do
begin

j := 1;
While Not Eoln(Shiftl2WBase) do
begin

read(Shift12WBase,Shift12);
for i:=j to j + 6 do
begin

read(TwelveWeekBase, Patternl2);
if (Shiftl2 = 'D') and (Patternl2 = '1') then

CountD[i] := CountD[i] + 1
else
if (Shiftl2 = 'E') and (Patternl2 = '1') then

CountD[i) := CountD[i) + 1
else
if (Shiftl2 = 'N') and (Patternl2 = '1') then

CountN[i] := CountN[i] + 1;
end;
j := j + 7;

end;
readln (Shiftl2WBase);
readln (TwelveWeekBase);
end;

Close(TwelveWeekBase);
Close(Shiftl2WBase);

Assign(PrintStaff12,'LPT1');
Rewrite(PrintStaffl2);

writeln(PrintStaff12,'
writeln(PrintStaff12,'
writeln(PrintStaff12);
writeln(PrintStaff12,

STAFF LIST REPORT: ,);
');

');
writeln(PrintStaff12,' Day :

Evening-Shift','
writeln(PrintStaff12,

Day-Shift',
Night-Shift');

') ;

TotalD := 0;
TotalE := 0;
TotalN := 0;

for 1 := 1 to 84 do
begin

if (1=1) or (1=8) or (1=15) or (1=22) or (1=29) or (1=36) or (1=43)
or (1=50) or (1=57) or (1=64) or (1=71) or (1=78) then

end;

168

write(PrintStaffl2,' Monday ');
if (1=2) or (1=9) or (1=16) or (1=23) or (1=30) or (1=37) or (1=44)

or (1=51) or (1=58) or (1 =65) or (1=72) or (1=79) then
write(PrintStaffl2,' Tuesday ');

if (1=3) or (1=10) or (1=17) or (1=24) or (1=31) or (1=38) or (1=45)
or (1=52) or (1=59) or (1=66) or (1=73) or (1=80) then
write(PrintStaffl2,' Wednesday');

if (1=4) or (1=11) or (1=18) or (1=25) or (1=32) or (1=39) or (1=46)
or (1=53) or (1=60) or (1=67) or (1=74) or (1=81) then
write(PrintStaffl2,' Thursday ');

if (1=5) or (1=12) or (1=19) or (1=26) or (1=33) or (1=40) or (1=47)
or (1=54) or (1=61) or (1=68) or (1=75) or (1=82) then
write(PrintStaffl2,' Friday ');

if (1=6) or (1=13) or (1=20) or (1=27) or (1=34) or (1=41) or (1=48)
or (1=55) or (1=62) or (1=69) or (1=76) or (1=83) then
write(PrintStaffl2,' Saturday ');

if (1=7) or (1=14) or (1=21) or (1=28) or (1=35) or (1 =42) or (1=49)
or (1=56) or (1=63) or (1=70) or (1=77) or (1=84) then
write(PrintStaffl2,' Sunday ');

writeln (PrintStaffl2,
',1:2, ',CountD[1]:8,'

',CountN[1]:8);

TotalD := TotalD + CountD[1];
TotalE := TotalE + CountE[1];
TotalN := TotalN + CountN[1];

AveD := (TotalD / 84);
AveE := (TotalE / 84);
AveN := (TotalN / 84);
RatioD := (TotalD) / (TotalD + TotalE + TotalN);
RatioE := (TotalE) / (TotalD + TotalE + TotalN);
RatioN := (TotalN) / (TotalD + TotalE + TotalN);

writeln(PrintStaff12,'

writeln(PrintStaff12,'

writeln(PrintStaff12,'

writeln(PrintStaff12,'

writeln(PrintStaff12,'

writeln(PrintStaff12,'

',CountE[1]:8,

Total "
',TotalE:8,'

Average','
',AveE:8:3,'

Ratio Actual ','
',RatioE:8:3,'

Ratio Ideal ','
',EveRatio:8:3,'

') ;

',TotalD:8,
',TotalN:8);

',AveN:8:3);
',RatioD:8:3,

',RatioN:8:3);
',DayRatio:8:3,

',NiteRatio:8:3);

Close(PrintStaffl2);

end; (*********Procedure PrintStaffListl2Week*****************************)

(***)

Procedure StaffListl2Week;

Var
CountD,

169

CountE,
CountN
Shift12,

: Array[1..84] of Longint;

Patternl2 : Char;
i,j,k,1 : integer;
TotalD, TotalE, TotalN : Longint;
AveD, AveE, AveN : real;
RatioD, RatioE, RatioN : real;

Procedure InitCount;
var

m : integer;
begin

for m := 1 to 84 do
begin

CountN[m] := 0;
CountE[m] := 0;
CountN[m] := 0;

end;
end;

begin

InitCount;

Reset(TwelveWeekBase);
Reset(Shiftl2WBase);

While Not Eof(TwelveWeekBase) and Not Eof(Shiftl2WBase) do
begin

j := 1;
While Not Eoln(Shiftl2WBase) do
begin

read(Shiftl2WBase,Shift12);
for i:=j to j + 6 do
begin

read(TwelveweekBase, Patternl2);
if (Shiftl2 = 'D') and (Patternl2 = '1') then

CountD(i] := CountD[i] + 1
else
if (Shiftl2 = 'E') and (Patternl2 = '1') then

CountE[i] := CountE[i] + 1
else
if (Shiftl2 = 'N') and (Patternl2 = '1') then

CountN[i] := CountN[i] + 1;
end;
j = j + 7;

end;
readln (Shiftl2WBase);
readln (TwelveweekBase);
end;

Close(TwelveWeekBase);
Close(Shift12WBase);

Assign(StafList12,'STAF12.DAT');
Rewrite(StafListl2);

writeln(StafListl2,'
writeln(StafListl2,'
writeln(StafListl2);
writeln(StafListl2,

STAFF LIST REPORT: ');
');

'),
writeln(StafListl2,' Day : Day-Shift',

170

','Evening-Shift',' ','Night-Shift');
writeln(StafListl2,

')

TotalD := 0;
TotalE := 0;
TotalN := 0;

for 1 := 1 to 84 do
begin

if (1=1) or (1=8) or (1=15) or (1=22) or (1=29) or (1=36) or (1=43)
or (1=50) or (1=57) or (1=64) or (1=71) or (1=78) then
write(StafListl2,' Monday

if (1=2) or (1=9) or (1=16) or (1=23) or (1=30) or (1=37) or (1=44)
or (1=51) or (1=58) or (1=65) or (1=72) or (1=79) then
write(Staflistl2,' Tuesday ');

if (1=3) or (1=10) or (1=17) or (1=24) or (1=31) or (1=38) or (1=45)
or (1=52) or (1=59) or (1=66) or (1=73) or (1=80) then
write(StafListl2,' Wednesday');

if (1=4) or (1=11) or (1=18) or (1=25) or (1=32) or (1=39) or (1=46)
or (1=53) or (1=60) or (1=67) or (1=74) or (1=81) then
write(StafListl2,' Thursday ');

if (1=5) or (1=12) or (1=19) or (1=26) or (1=33) or (1=40) or (1=47)
or (1=54) or (1=61) or (1=68) or (1=75) or (1=82) then
write(Staflistl2,' Friday ');

if (1=6) or (1=13) or (1=20) or (1=27) or (1=34) or (1=41) or (1=48)
or (1=55) or (1=62) or (1=69) or (1=76) or (1=83) then
write(StafListl2,' Saturday ');

if (1=7) or (1=14) or (1=21) or (1=28) or (1=35) or (1=42) or (1=49)
or (1=56) or (1=63) or (1=70) or (1=77) or (1=84) then
write(StafListl2,' Sunday ');

end;

writeln (StafList12,
',1:2,' ',CountD[1]:8,'

',CountN[1]:8);

TotalD := TotalD + CountD[1];
TotalE := TotalE + CountE[1];
TotalN := TotalN + CountN[1];

AveD := (TotalD / 84);
AveE := (TotalE / 84);
AveN := (TotalN / 84);
RatioD := (TotalD) / (TotalD + TotalE + TotalN);
RatioE := (TotalE) / (TotalD + TotalE + TotalN);
RatioN := (TotalN) (TotalD + TotalE + TotalN);

writeln(StafListl2,'

',CountE[1]:8,

writeln(StafListl2,' Total , ,

TotalE:8,'
writeln(StafListl2,' Average','

',TotalD:8,'
',TotalN:8);

',AveD:8:3,'
AveE:8:3,' ',AveN:8:3);

writeln(StafListl2,' Ratio Actual ',' ',RatioD:8:3,
',RatioE:8:3,' ',RatioN:8:3);

writeln(StafListl2,' Ratio Ideal ',' ',DayRatio:8:3,
',EveRatio:8:3,' ',NiteRatio:8:3);

writeln(StafListl2,'

171

Close(StafListl2);

end; (*********Procedure StaffListl2Week**********************************)

(***)

Procedure Length4; { Generating Four-Week Schedules }

begin

ClrScr;

{ User can choose either to use default value for Penalty Cost or
{ to customize them.

Writeln;
Writeln(' Default Values of Penalty Costs: ');
Writeln;
Writeln;
Writeln(' Penalty Cost for having 3 consecutive days off := 5 ');
Writeln(' Penalty Cost for having 4 consecutive days off := 10 ');
Writeln(' Penalty Cost for working 6 consecutive days := 10 ');
Writeln(' Penalty Cost for working 7 consecutive days := 30 ');
Writeln(' Penalty Cost for working 8 consecutive days := 40 ');
Writeln(' Penalty Cost for having single day off := 10 ');
Writeln(' Penalty Cost for having single day on := 10 ');
Writeln(' Penalty Cost for working on Saturday, Sunday off := 5 ');
Writeln(' Penalty Cost for working on Sunday, Saturday off := 5 ');
Writeln(' Penalty Cost for working on Week End := 10 ');
Writeln;
Writeln;
Writeln(' MAXIMUM PENALTY COST can be set equal to the highest ');
Writeln(' value of penalty cost. The higher the maximum penalty ');
Writeln(' cost the less strict the schedules. ');
Writeln;
Write(' Use default value for Penalty Costs? (Y/N): ');
Readln(DefaultValue);

if (DefaultValue = 'Y') or (DefaultValue = 'y') then
DefaultPCost

else
CustomizePCost;

{ Then, user will be asked the maximum Penalty Cost that can be tolerated }

Writeln;
Write(' Enter maximum penalty cost:
Readln (MaxPCost);

') ;

{ User will be asked how many pattern s/he wants to generate

ClrScr;
Writeln;
Write(' Enter number of patterns to be generated: ');
Readln (NumOfPat);
{Num0fPat := 1000;)

CreatePattern;
CreateShiftBase;
ReorderShift;

repeat

172

ClrScr;
Writeln;
Write(' Enter number of schedules to be selected',

' (Maximum = ',Num0fPat:4,'): ');

Readln(ScheduleNum);

PickFourWeekPattern;
CreateShift;

ClrScr;

Writeln;
Write(' Display schedules on the screen? (Y/N)
Readln (SeeSchedule);

If (SeeSchedule = 'Y') or (SeeSchedule = 'y') then
begin ClrScr; ScreenView; end;

ClrScr;
Writeln;
Write(' Display Staff List Report? (Y/N)
Readln(ViewReport);

If (ViewReport = 'Y') or (ViewReport = 'y') then
ViewStaffList4Week;

Writeln;
Write(' Save the schedules? (Y/N)
Readln (SaveSchedule);

') ;

If (SaveSchedule = 'Y') or (SaveSchedule = 'y') then
SaveTheSchedule;

Writeln;
Write(' Save Staff List Report? (Y/N)
Readln(SaveReport);

') ;

If (SaveReport = 'Y') or (SaveReport = 'y') then
StaffList4Week;

Writeln;
Write(' Print the schedules? (Y/N)
Readln(PrintSchedule4);

' ;

If (PrintSchedule4 = 'Y') or (PrintSchedule4 = 'y') then
PrintSchedule;

Writeln;
Write(' Print StaffListReport? (Y/N)
Readln(PrintReport4);

') ;

If (PrintReport4 = 'Y') or (PrintReport4 = 'y') then
PrintStaffList4Week;

Writeln;
Write(' Select another set of schedules? (Y/N)
Readln(PickAgain);

until (PickAgain = 'N') or (PickAgain = 'n');
end; (Procedure Length4)

(***W*****************************)

Procedure Length8;

173

begin

ClrScr;

{ User can choose either to use default value for Penalty Cost or
{ to customize them.

Writeln;
Writeln(' Default Values of Penalty Costs: ');
Writeln;
Writeln;
Writeln(' Penalty Cost for having 3 consecutive days off := 5 ');
Writeln(' Penalty Cost for having 4 consecutive days off := 10 ');
Writeln(' Penalty Cost for working 6 consecutive days := 10 ');
Writeln(' Penalty Cost for working 7 consecutive days := 30 ');
Writeln(' Penalty Cost for working 8 consecutive days := 40 ');
Writeln(' Penalty Cost for having single day off := 10 ');
Writeln(' Penalty Cost for having single day on := 10 ');
Writeln(' Penalty Cost for working on Saturday, Sunday off := 5 ');
Writeln(' Penalty Cost for working on Sunday, Saturday off := 5 ');
Writeln(' Penalty Cost for working on Week End := 10 ');
Writeln;
Writeln;
Writeln(' MAXIMUM PENALTY COST can be set equal to the highest ');
Writeln(' value of penalty cost. The higher the maximum penalty ');
Writeln(' cost the less strict the schedules. ');
Writeln;
Write(' Use default value for Penalty Costs? (Y/N): ');
Readln(DefaultValue);

if (DefaultValue = 'Y') or (DefaultValue = 'y') then
DefaultPCost

else
CustomizePCost;

{ Then, user will be asked the maximum Penalty Cost that can be tolerated }

Writeln;
Write(' Enter maximum penalty cost:
Readln (MaxPCost);

) ;

{ User will be asked how many pattern s/he wants to generate

ClrScr;
Writeln;
Write(' Enter number of patterns to be generated: ');
Readln (Num0fPat);

CreatePattern;
CreateShiftBase;
ReorderShift;

repeat

ClrScr;
Writeln;
Write(' Enter number of schedules to be selected:

' (Maximum = ',Num0fPat:4,'): ');

Readln(ScheduleNum);

PickFourWeekPattern;
CreateShift;
EightWeekPattern;
CreateSecondShift;

Create8WeekShift;

ClrScr;
Writeln;
Write(' Display schedules on the screen? (Y/N) ');
Readln (SeeSchedule);

If (SeeSchedule = 'Y') or (SeeSchedule = 'y') then
begin ClrScr; ViewEightSchedule; end;

ClrScr;
Writeln;
Write(' Display Staff List Report on screen? (Y/N) ');
Readln (Display8Staff);

If (Display8Staff = 'Y') or (Display8Staff = 'y') then
ViewStaffList8Week;

Writeln;
Write(' Save the schedules ? (Y/N) ');
Readln (SaveSchedule);

If (SaveSchedule = 'Y') or (SaveSchedule = 'y') then
SaveEightSchedule;

Writeln;
Write(' Save Staff List Report? (Y/N)
Readln(SaveReport);

') ;

If (SaveReport = 'Y') or (SaveReport = 'y') then
StaffList8Week;

Writeln;
Write(' Print the schedules? (Y/N)
Readln(PrintSchedule8);

') ;

If (PrintSchedule8 = 'Y') or (PrintSchedule8 = 'y') then
PrintEightSchedule;

Writeln;
Write(' Print Staff List Report? (Y/N)
Readln(PrintReport8);

If (PrintReport8 = 'Y') or (PrintReport8 = 'y') then
PrintStaffList8Week;

Writeln;
Write(' Select another set of schedules? (Y/N)
Readln(PickAgain);

') ;

174

until (PickAgain = 'N') or (PickAgain = 'n');

end; { Procedure Length8)

(***)

Procedure Lengthl2;

begin

ClrScr;

{ User can choose either to use default value for Penalty Cost or
{ to customize them.

175

Writeln;
Writeln(' Default Values of Penalty Costs: ');

Writeln;
Writeln;
Writeln(' Penalty Cost for having 3 consecutive days off := 5 ');

Writeln(' Penalty Cost for having 4 consecutive days off := 10 ');

Writeln(' Penalty Cost for working 6 consecutive days := 10 ');

Writeln(' Penalty Cost for working 7 consecutive days := 30 ');

Writeln(' Penalty Cost for working 8 consecutive days := 40 ');

Writeln(' Penalty Cost for having single day off := 10 ');

Writeln(' Penalty Cost for having single day on := 10 ');

Writeln(' Penalty Cost for working on Saturday, Sunday off 5 ');

Writeln(' Penalty Cost for working on Sunday, Saturday off := 5 ');

Writeln(' Penalty Cost for working on Week End := 10 ');

Writeln;
Writeln;
Writeln(' MAXIMUM PENALTY COST can be set equal to the highest ');

Writeln(' value of penalty cost. The higher the maximum penalty ');

Writeln(' cost the less strict the schedules. ');

Writeln;
Write(' Use default value for Penalty Costs? (Y/N): ');

Readln(DefaultValue);

if (DefaultValue = 'Y') or (DefaultValue = 'y') then
DefaultPCost

else
CustomizePCost;

(Then, user will be asked the maximum Penalty Cost that can be tolerated)

Writeln;
Write(' Enter maximum penalty cost:
Readln (MaxPCost);

') ;

(User will be asked how many pattern s/he wants to generate)

ClrScr;
Writeln;
Write(' Enter number of patterns to be generated: ');
Readln (Num0fPat);

CreatePattern;
CreateShiftBase;
ReorderShift;

repeat

ClrScr;
Writeln;
Write(' Enter number of schedules to be selected:

' (Maximum = ',Num0fPat:4,'): ');

Readln(ScheduleNum);

PickFourWeekPattern;
EightWeekPattern;
TwelveWeekPattern;
CreateShift;
CreateSecondShift;
CreateThirdShift;
Create8WeekShift;
Createl2WeekShift;

ClrScr;

Writeln;
Write(' Display schedules on the screen? (Y/N) ');
Readln (SeeSchedule);

If (SeeSchedule = 'Y') or (SeeSchedule = 'y') then
begin ClrScr; ViewTwelveSchedule; end;

ClrScr;
Writeln;
Write(' Display Staff List Report on screen? (Y/N) ');
Readln (Displayl2Staff);

If (Displayl2Staff = 'Y') or (Displayl2Staff = 'y') then
ViewStaffListl2Week;

Writeln;
Write(' Save the schedules ? (Y/N) ');
Readln (SaveSchedule);

If (SaveSchedule = 'Y') or (SaveSchedule = 'y') then
SaveTwelveSchedule;

Writeln;
Write(' Save Staff List Report? (Y/N)
Readln(SaveReport);

') ;

If (SaveReport = 'Y') or (SaveReport = 'y') then
StaffListl2Week;

Writeln;
Write(' Print the schedules? (Y/N)
Readln(PrintSchedule12);

') ;

If (PrintSchedulel2 = 'Y') or (PrintSchedulel2 = 'y') then
PrintTwelveSchedule;

Writeln;
Write(' Print Staff List Report? (Y/N)
Readln(PrintReport12);

) ;

If (PrintReportl2 = 'Y') or (PrintReport12 = 'y') then
PrintStaffListl2Week;

Writeln;
Write(' Select another set of schedules? (Y/N)
Readln(PickAgain);

') ;

176

until (PickAgain = 'N') or (PickAgain = 'n');

end; (Procedure Lengthl2

(***)

Procedure ThesisTitle;

VAR

GraphDriver, GraphMode : Integer;
xMax, yMax : Integer;

BEGIN

GraphDriver := Detect;
InitGraph(graphDriver, graphMode, ");

177

SetBkColor(Blue);

SetColor(White);
SetLineStyle(SolidLn, 0, NormWidth);
xMax := GetMaxX; yMax := GetMaxY;
Rectangle(0,0, xMax, yMax);
Rectangle(3,3, (xMax-3), (yMax-3));
SetColor(Red);
SetFillStyle(SolidFill, Yellow);

SetTextStyle(SansSerifFont, HorizDir, 2);
MoveTo(198, 50);
SetColor(LightRed);
OutText('Decision Support System');

MoveTo(300, 80);
OutText('for');

MoveTo(45, 125);
SetColor(White);
SetTextStyle(TriplexFont, HorizDir, 7);
OutText('Nurse Scheduling');

SetTextStyle(SansSerifFont, HorizDir, 2);
MoveTo(250,210);
OutText('Developed by');

MoveTo(198,235);
SetColor(Yellow);
SetTextStyle(GothicFont, HorizDir,4);
OutText('Darwin Sitompul');

SetTextStyle(SansSerifFont, HorizDir, 2);
MoveTo(244,325);
OutText('Supervised by');

SetColor(White);
MoveTo(206,350);
OutText('Sabah Randhawa, PhD');

SetColor(LightRed);
MoveTo(197,400);
OutText('Oregon State University');

REPEAT UNTIL KeyPressed;
CloseGraph

END;

begin (** *Main Program *)

ThesisTitle;

If (ReadKey = #13) or KeyPressed then

begin
TextBackground(1);
TextColor(14);
end
else
TextBackground(1);
TextColor(14);

ClrScr;

178

writeln(' ');

writeln(' Welcome... ');

writeln(' ');

writeln(' This program generates schedules for nurses ');

writeln(' in hospital using a heuristic method called ');

writeln(' 'Best-First Search Technique'. ');

writeln(' ');

writeln(' The program provides three options for the length ');

writeln(' of schedule period and several options for ');

writeln(' the hospital shift policies, but you may define ');

writeln(' specific hospital shift policy to be used by ');

writeln(' the program. ');

writeln(' ');

writeln(' The program will try to satisfy both nurses and ');

writeln(' hospital requirements by minimizing the penalty ');

writeln(' costs of the nurses" and hospital"s constraints. ');

writeln(' ');

writeln(' You may select to either use the default penalty ');

writeln(' costs built in the program, or to assign your ');
writeln(' own penalty costs reflecting the specific work ');

writeln(' environment. ');

writeln(' ');
writeln('Press <Enter> to continue... ');

readln;
ClrScr;
writeln(' ');

writeln(' ');

writeln(' You will first be asked to specify the number of ');

writeln(' patterns you want to generate. It is recommended ');

writeln(' that for flexibility you specify this number to be ');

writeln(' greater than the number of schedules required. ');

writeln;
writeln(' Once the program generates a set of patterns, ');

writeln(' it will provide you with several set of schedules ');

writeln(' from which you may select the number you need. ');

writeln(' ');

writeln(' You may view the schedules and the staff list ');

writeln(' report before you decide to pick and save schedules ');

writeln(' or to discard the schedules and generate another ');

writeln(' set. ');
writeln;
writeln(' If you think that the patterns you have generated ');

writeln(' do not satisfy your needs, you may generate ');
writeln(' another pattern set. ');
writeln;
writeln(' Good Luck... ');
writeln;
writeln('Press any key to continue or <Esc> to terminate ... ');

if ReadKey = #27 then Exit
else
ClrScr;

(UserQuits := False;)

repeat

ClrScr;

writeln('
writeln('
writeln('
writeln('
writeln('
writeln('

');
;

');
');
');

179

writeln('
writeln('
writeln('

LENGTH OF SCHEDULE : ') ;
') ;
') ;

writeln(' 1. Four-week. ') ;

writeln(' 2. Eight-week. ') ;

writeln(' 3. Twelve-week. ') ;

writeln('
writeln('

4. Exit ') ;
') ;

write('
readln(LengthOfSchedule);

Select 1, 2 or 3 (4 for exit) : ');

(UserQuits := False;}
Case LengthOfSchedule of

1: Length4;
2: Length8;
3: Lengthl2;
4: Exit;

else

writeln('Error, try again! ');

end; (of Case)
ClrScr;
writeln;
writeln('
writeln('
writeln('
writeln;
writeln;
writeln;
write('

If the patterns generated do not satisfy the
staff requirement, the program can generate
another patterns and schedules.

Generate another patterns? (Y/N) ');

readln(UserAnswer);

until (UserAnswer = 'N') or (UserAnswer = 'n');

end.

');
');
');

