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DESIGN STRATEGIES FOR INTERFACE OF BUS ARCHITECTURES

1. INTRODUCTION

A bus, in the context of a computer system, is a group of signals
that communicate among devices and that typically connects multiple
devices in parallel. It is a communication channel which interconnects
a micro-processor to its support devices, main CPU board to add-on
boards and systems to systems. Physically it consists of a number of
electrical interconnections realized in a variety of forms depending on
the nature and proximity of the communicating devices.

Within a Printed Circuit Board, intercommunication between
integrated circuits over short distances (<50 Cm) is accomplished
over a bus or strip of micro lines; between Printed Circuit Boards,
interconnections over larger distances (<100 Cm) are made via edge
or indirect connectors to a backplane bus consisting of printed circuit
board tracks or multi-way ribbon cable. Between elements of the .

computer housed in separate enclosures, the interconnecting bus is a
multi-way cable.

The interconnections can be Serial, where information is
transferred one bit at a time, or parallel, where information is
transferred many bits at a time depending on the width of the bus. RS-
232 is a serial bus [2] and IEEE std. 488 (GPIB) [3] is a 8-bit parallel
bus. A point-to-point interconnection allows the exchange of
information between only two units. RS-232 and Centronics printer
cable are the examples of point-to-point interconnection. A multi
point interconnection allows the exchange of information among many
units on the same physical link. The Micro Channel and the NuBus are
multi point links. The data transfer rate is determined largely by the
number of interconnections and the transmission characteristics of
the bus.
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Buses can exist at several levels in microprocessor based
systems as shown in Figure 1.1. Most processors define their own
local, or CPU. bus structure with address and data paths and control
signals required for the peripherals designed for that processor. A
local bus is structured to optimize the processor-to-memory
bandwidth. It is highly processor dependent, tightly linked to its
processor, memory, and specific support peripherals. The
consequence of this close association is loss of flexibility. In a single
board system, this may be the only bus present. The buses of Intel
80x8x and Motorola 680x0 are the examples of local bus. [3]

In a multiboard system, a higher level bus is present ; the Back
plane bus also called the System bus. Unlike local buses, System buses
offer a general protocol, or transfer method, for system CPUs or I/O
subsystems to interchange data. This is accomplished by treating the
bus as a resource. To get control of the resource, a peripheral or
processor must request its use formally, in competition with others.
The system bus integrates hardware, cards and subsystems into one
smoothly running machine. These buses support the information
exchange over distances less than 100 Cm [3]. The Micro Channel,
NuBus, VMEbus, EISAbus, Multibus are such system buses.

At an even higher level are Inter System Buses. These buses
connect independent systems and operate over longer distances than
backplane buses. The information transfer over these buses is slower
compared to that on the system buses. One common example of such a
bus is the General Purpose Interface Bus (GPIB), also known as IEEE -

488. [27]
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1.1 Bus Architecture

There are four common classes of signals which are present in
all the bus architectures; address, data, control signals and power
lines.

The address and data buses are tri-stated signal lines. The
width of the address bus determines the addressing capability of the
system bus and the width of the data bus is one of the factors which
determines the speed of data transfer on the system bus. In the case
of multiplexed buses, the same signal lines are used to transmit both
the address and the data. The address is put on the address/data bus
and after the address is latched in the addressed peripheral, data is
put on the bus. The control bus consists of transaction control
signals, interrupts, bus request and acknowledge signals and
arbitration signals. In the case of Serial buses, where the information
is transferred one bit at a time, a single line is used for the transfer
of control signals, address, and the data. Each bus has its own
requirements to be met before a transaction is made, i.e. certain
signals should be in proper status before the address is put or
removed from the address bus and data is put or removed from the
data bus. Certain sequence of control bits should be transmitted
before the transmission of address or data in case of a serial link.
Thus each bus has its own protocol of transaction. The bus protocol
also defines the arbitration process, interrupt structure, and the
mechanical and electrical requirements. There is a considerable
difference between different bus protocols.

A peripheral device which initiates a transaction on a system
bus by addressing of another card or the processor on the main logic
board is a Bus Master. It acts as a commander in a transfer operation.
In a typical microprocessor system, the master modules are the CPU
and the DMA controllers. In a single master system bus architecture,
the master always has the control over the bus. Hence the master can
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transfer information whenever required. In case of multiple master
system buses, before the master generates any data transfer control
signals, it must first gain control of the bus. The master competes in
an arbitration contest to own the bus for the required transaction.

A bus slave is a device that responds to being addressed by
another card acting as a master. The slave does not compete in the
bus ownership contest. The slave cannot initiate a transaction. When
the slave wants a transaction to be done, it interrupts a master and
the interrupt routine of the master takes care of the requested
transaction. It acts as a responder in a transfer operation. The slave
modules in a typical computer system are memory and I/O
subsystems.

The arbitration protocol [1] is a set of rules used to indicate
which masters require the bus and to specify their priority when
more than one request is pending. These are the signals provided in
the protocol of a multi master system bus for the master devices of
the bus to compete for the bus ownership to initiate a transaction.
The arbitration contest is the core mechanism to resolve bus
ownership between one or more competing masters. There are two
basic categories of arbitration control schemes.

Centralized schemes, which use a special device (the
bus controller) to arbitrate between requests and
allocate the bus.
Decentralized schemes, in which all potential bus
masters have their own arbitration and allocation logic.

In case of a Centralized scheme the bus controller
communicates with the bus masters using two control signals ("bus
request" and "bus grant") as shown in Figure 1.2. Bus request is a
common wired-OR input to the bus controller which can be read and
asserted by any of the bus masters. Bus grant is an output from the
controller which propagates along a daisy-chain from the highest
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priority master through the other bus masters to the lowest priority
master. Masters may take control.of the bus only if they have made a
request and they sense that their incoming bus grant line has been
asserted. Masters not requesting use of the bus pass on the bus grant
signal along the daisy chain.

Much faster allocation times are possible with decentralized
schemes. On power-up one master is automatically given control of
the bus. When it is ready to hand over control to another master, it
asserts the bus available control signal (Figure 1.3). Masters that wish
to use the bus respond by placing their priority codes on the logically
wired-ORed bus priority lines. The master drives the most significant
priority line first. The next significant line is driven only if that
master's most significant bit of the priority code matches with the
most significant bit of the bus priority lines. Thus only the highest
priority master ends up driving all the bus priority lines. The priority
code is defined so that if a master reads the bus priority lines and
finds that the code it reads back is greater than its own priority
code, then some higher priority master is also requesting control of
the bus. If this is the case, it negates its own request by removing its
code from the bus priority lines. The process continues until only the
highest priority master is left asserting the priority lines. At the end
of this arbitration process, the highest priority master asserts the bus
accept control signal until the previous master has released the bus
available signal. It then releases the bus accept and takes control of
the bus.

The time taken by the arbitration process is known as the
arbitration interval. The length of the arbitration interval depends on
bus propagation delays and on the settling times of the arbitration
logic in each of the competing masters. The bus protocols specify a
fixed time period within which all masters must have completed
arbitration.
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The assignment of priorities is associated with the complex
problem of fairness. If a fixed priority scheme is adopted, the higher
priority masters may control the bus most of the time, and lower
priority masters may never gain control of the bus. A round-robin
priority scheme inevitably leads to a situation where the high priority
masters must wait for relatively unimportant bus transactions to be
completed. A variable priority scheme solves this problem to some
extent. The priority of a master might be increased every time it fails
in an attempt to gain control of the bus, or the priority of the current
master might be set to the lowest possible value once it has gained
control of the bus.

An interrupt is an asynchronous signal to indicate to the
master that one of the slaves on the bus desires to transfer some
information on the bus.

A transaction is the basic bus data transfer operation, which
begins with a start cycle and ends with an acknowledge cycle. Start
cycle, in general, may be asserting a start signal or putting the
address on the bus and activating the status signals of the transaction.
During an acknowledge cycle, the addressed module informs the
master that it has responded as required. A master device on the bus
can initialize the transaction by addressing another device on the bus.

In order to use the bus for a transaction, a master must first
have ownership of the bus. It obtains the ownership by requesting the
bus and waiting until the arbitration logic determines that the next
owner will be itself. Then, the master waits until the bus is idle, and
does a start cycle by addressing the desired address. The master
which initiated the transaction drives the status lines to indicate the
type of the transaction (read, write, block transfer). If it is a read
transaction, the addressed module determines that the address
refers to itself, then in some subsequent cycle puts the requested
data on the data bus and issues an acknowledgement. This completes
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a read transaction. In case of write transaction, after the start cycle
the master puts the data on the data bus. In the subsequent cycle, the
addressed slave module samples the data lines and then issues an
acknowledgement, thus completing the transaction. The bus
ownership may or may not pass to some other module.

A Mock transfer transaction is one in which a single address is
conveyed by the master and multiple data items from sequential
addresses are then communicated between the master and the slave.

Burst data transfer is a operation of read and write of multiple
data items done by a DMA controller. It requires special signals given
in the bus protocol to indicate the burst data transfer operation and
to indicate the final burst cycle.

Two types of system buses are of interest to this work. A host
system bus is the system bus for which an interface is to be designed.
An External system bus is a system bus to be interfaced to the host
system bus.

1.1.2 Characterizing System Buses : System buses can be
characterized as follows :

Width of the address bus : 16-bit, 20-bit, 24-bit, 32-bit. This
characteristic determines the addressing capability of the bus.
By number of the bits in the data bus: 8-bit, 16-bit, 32-bit.
This determines the data format and the speed of the bus.
Type of data transfer control : Synchronous or Asynchronous.
If a bus has a synchronous data transfer control, that means
the bus control signals change state (asserted or deasserted)
only at a specific edge of the clock provided in the bus
protocol. In case of asynchronous buses, no relationship exists
between the clock provided and the state change of the
signals.
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System Address/Data bus may be multiplexed or non
multiplexed.
Number and Type of interrupts : Edge triggered, Level
triggered, Fixed priority, Programmable priority etc.
Ability to handle multiple bus masters.
Type of bus allocation protocol (Arbitration) : Centralized,
Decentralized, etc.
Direct Memory Access support given in the bus protocol :

Burst data transfer capability, number of DMA channels etc.
Maximum data transfer rate. This is also called as the bus
bandwidth.
The configuration process of the cards on the bus. Some bus
architectures like Micro Channel and NuBus have special
configuration registers and ROM for the card configuration.
This eliminates the jumpers and switches from the system
board and cards. Also it permits installation of multiple
identical feature cards. [12] and [13]
Electrical and Mechanical characteristics. Voltage and
current specifications, Capacitive Loading of the bus lines, etc.
are some of the electrical characteristics specified in the bus
protocols. Number, layout, and spacing of lines; type of bus
connector; size of the card, etc. are some of the mechanical
characteristics specified.

Most computer systems have at least 3 levels of bus protocols,
Local bus, System bus and the Inter system bus, for communication
with different peripherals and I/O subsystems. Each bus has a
different set of rules and signals to be matched for data transfer. The
different buses should be interfaced properly to have an efficient
communication between the devices on different buses. A good
interface design allows extensive utilization of the facilities given in
each of the buses, uses a small amount of real estate and power, and
gives proper signals for the cards or the other buses to be interfaced.
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1.2 Literature Survey

Research work has been done by Thurber and co-workers [24]
to provide guide lines for the design of new bus protocols and to
provide the frame work for understanding the operation of all types
of existing buses. They identify a number of basic functions common
to all buses and suggest a systematic classification of the different
techniques that can be used to realize these functions. Michael Slater
has developed a method of defining and describing bus operation
which emphasizes the similarities in structure and control of a wide
range of buses [1]. This simplifies interpretation of the
manufacturer's bus specifications, which are all too often
inadequately explained and difficult to understand. Extending this
approach it is possible to develop the guide lines for the systematic
design of bus interfaces.

There are several kinds of bus interfaces : Components to Local
bus interface, Local bus to System bus interface, System bus to I/O
bus interface, System bus interface for the cards, Host system bus to
external bus interface. All the systems with more than one integrated
circuit need to have a components to local bus interface. In case of
single board computers this is the only kind of interface required.
Most of the present day computers, to support I/O subsystems, have
back plane buses on which I/O subsystems can be installed. So it is
necessary to have a local bus to system bus interface. The computer
system vendors take care of these two kind of interfaces [14]. The
chip sets for system bus interface for some popular system buses
have been designed by several vendors [15] and [16]. Present VLSI
technology makes it possible to design integrated, lowpower
interfaces.

Paul L. Borrill in his paper [26] says two or more buses are
necessary in a computer system to interconnect system modules cost
effectively. Super computers, for instance, often use VMEbus for I/O
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rather than their proprietary system bus. Thus the host system bus to
external system bus interface has a good commercial value. It enables
the cards and I/O subsystems designed for the external bus to be
used on the host system. Its utility is directly proportional to the
popularity and acceptance of the external bus in the computer
industry. A general block diagram of the interface between the two
systems on two different system buses is shown in Figure 1.4

Design work has been done on the interfaces like the GPIB
(IEEE 488 std.) interface for the Micro Channel [19], the Multibus
interface for the PC bus [4]. Roger Russ in his design paper discusses
a interface between the Unibus and the VERSAbus [25]. GPIB (IEEE
488 std.) interface card was designed for the Micro Channel using
available bus controller chipsets for both the buses. Due to this
interface the devices designed for the GPIB bus could be used on the
Micro Channel [19]. Multibus interface for the PC bus was designed to
take advantage of the PC environment by the devices designed for the
Multibus [4]. It was designed using the off the shelf integrated
circuits. Micro channel and the Nu Bus are the most popular system
bus architectures in the micro computer industry. Design done for
this thesis gives a Micro Channel slave interface to the Nu Bus.

1.3 Objective

The definition of the rules or protocols that specify how and in
what form the digital information should be transferred and the
design of the interfaces that control the flow of data to and from the
buses are fundamentally important to the construction and operation
of the entire computer. The interpretation of the manufacturer's
specifications and the design of logic to implement bus interfaces
remain two of the most time consuming and difficult problems facing
the Digital Systems Engineer[3]. This thesis addresses the problem
of implementation of the bus interfaces.
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The objective of this thesis is to develop a design procedure for
the bus interface design and to use this procedure to design a Micro
Channel interface to the Nu Bus architecture as shown in Figure 1.4.
The design procedure developed for this thesis discusses several
problems encountered while designing a interface between two
system buses and discusses several techniques for solving these
problems. Chapter two includes discussions about level of interface,
master and slave interface between the two buses, transparent and
non transparent interfaces, address mapping, data format interface,
signal synchronization, etc. Chapters three and four give a overview of
the Micro Channel and the Nu Bus protocols. The fifth chapter
discusses the differences between the Micro Channel and the Nu Bus
protocols and explains the design strategies used to design this
interface. Chapters six and seven have the descriptions of the Micro
Channel interface for the Nu Bus.

Since both, the Micro Channel and the NU bus architectures
are new and dissimilar bus architectures, developing an interface
would prove to be a challenging task. The interface would prove to be
vital in reducing the design time in the development of the I/O
subsystems for the NU bus.
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2.1 Introduction
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There can be several levels of buses in a computer system.
Each may have its own unique protocol. Hence a bus interface
between the local bus and the system bus is required for proper
communication between the local processor and the devices on the
system bus. Also the interface between the system bus and the
intersystem bus ensures efficient communication between the
devices on the two buses. Another aspect of the bus interface is the
need to provide several system bus interfaces to the host system bus.
The main advantages of this kind of interface are as follows.

Devices designed around one system bus can be used on
another system bus with little changes in the software and
hardware associated with the devices. This drastically

reduces the design time and cost.
Two systems designed around different bus architectures
can communicate and share resources

A bus interface is a front-end logic circuit that converts the
physical, electrical, and the functional characteristics of a device or
another bus into those defined in the host bus specification.

The bus interface can be of two types.
Master interface
Slave interface

The Master interface enables a master device designed for the
bus to be interfaced to the bus. i.e. the device can compete in the
arbitration contest to own the bus. This interface must provide a
proper interface to the device with all the signals of the bus as
shown Figure 2.1. A Master interface is necessary if two systems on
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the two different buses must communicate efficiently. This allows the
systems to share the resources like memory.

A Slave interface facilitates the interfacing of a slave device to
the system bus (Figure 2.2). As the slaves do not compete in the
arbitration contest, the arbitration signals can be neglected. This
results in a simple and cost effective design. Most of the cards
designed for any bus are designed to be the slaves on that bus. The
slave interface given between the two system buses facilitates the use
of slave cards designed for the external system bus to be used on the
host system bus.

2.2 Strategies Of Bus Interface Design

2.2.1 Transparency

The ideal bus interface is transparent to the host system. The
host should perceive no difference between an access to its own
internal memory or I/O space, and an access to memory or I/O space
that is resident on the external bus.

For every application a completely transparent interface won't
be possible. Examples include situations where the host bus is a
high- speed bus with no facility for slow data transfers, or when
interfacing a 8-bit data bus to a 32- bit data bus that does not provide
facilities for byte- wide data transfers. Neither will a transparent
interface be possible when the external bus has a memory or I/O
space that's larger than the host can support.

Nontransparent operations require some knowledge of the
external bus. Special facilities should be included in the design to
perform these operations. Such special facilities might consists of
software drivers and additional bus conversion logic to handle all
external bus communication. Even if it is possible to develop a



17

completely transparent interface for an application, the cost of the
necessary hardware and the inconvenience of any special handling
techniques may be prohibitive. The designer must be aware of the
tradeoffs which depend on the application as well as on the two
buses used.

2.2.2 Function of the Interface

The designer must understand the function the interface must
provide. He must decide whether the interface should be a master
interface or a slave interface. If a master interface is provided, the
masters of the external system bus can be interfaced to the host
system. All the signals of both the buses should be matched. The
design may become complex and expensive. In general, a slave
interface makes the design simpler and cost effective. The
arbitration signals need not be interfaced. The slave cards of the
external bus can be used on the host system. A survey has shown that
most of the cards designed for any bus are slave cards. Hence the
slave interface serves the purpose of using the cards of the external
bus on the host system.

2.2.3 Synchronization

In the design of bus interfaces, the major issue of concern is
synchronization. In many cases, the two buses are not synchronous
with each other. The time at which the signals of one bus become
active may not have any relationship with the clock signal of the
other. Also the problem of metastability must be considered.

The flipflops which are used for synchronization have certain
timing requirements on the inputs. The setup time of a flipflop is the
finite time for which a input should be stable before the clock edge
arrives. The hold time is the finite time for which a input should not
change state after the clock edge. If a signal does not satisfy these
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conditions the output of a flipflop may go into damped oscillations,
which may be hazardous for the system. This condition of the flipflop
is known as metastability.

There can be three combinations of two buses to be
interfaced: both synchronous, both asynchronous, and one
synchronous and another asynchronous. Several approaches are
present to achieve synchronization.

A separate clock signal can be chosen (depending on the speed
of the transfer) for the interface and the protocol signals of both the
buses can be synchronized with respect to this clock using flipflops.
Master-slave flipflops must be used to avoid metastability as shown in
Figure 2.3. Figures 2.4 and 2.5 show two conditions, one where the
input asynchronous signal satisfies the flipflop timing requirements
and the other where the input does not. This method of
synchronization can be employed for any kind of bus combination. All
the inputs to the interface must be synchronized with respect to the
clock of the interface. If both the buses are synchronous all the
outputs of the interface must be synchronized with respect to the
respective clocks. If both the buses are asynchronous the outputs to
the buses need not be synchronized. If one of the buses is
synchronous the outputs for that bus must be synchronized with
respect to its clock.

The clock of one of the buses can be used for the interface
design and the signals of the other bus can be synchronized with
respect to this clock using master-slave flipflops. This approach
reduces the overhead of synchronizing the signals of both the buses.
The input and output signals of the other bus need to be
synchronized with respect to its clock. If the other bus is a
asynchronous bus, only the inputs from this bus must be
synchronized with respect to the clock of the interface. This
method cannot be employed if both the buses are asynchronous. Also
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it is not the best scheme to be used when a faster transfer rate
between the two buses is required.

Address and data on the buses can be synchronized by using
tri-state drivers and enabling these drivers by proper control signals
which are activated in synchronous with the required clock as shown
in Figure 2.6.

2.2.4 Address Mapping

Depending on the application, the interface may have to
provide address mapping for memory or I/O addresses on the
external bus which are inaccessible to the host or those duplicate
addresses needed by the host for its other functions. This means
some kind of address mapping has to be provided to access those
addresses in the memory map of the external bus which are not
present or reserved in the memory map of the host system bus.
Depending on the address space there are three cases of interface.
The host system bus and external system bus can have the same
address bus width. The host system bus address width can be more
than that of the external system bus or viceversa. Also one of the
buses or both the buses may support a separate I/O space. In each
case the address mapping from one bus to the other can be done in
several ways.

As one possible solution, the problem of mapping can be left to
the card designer. The card designer can be asked to configure the
cards designed for the external bus in such a way that they map on to
the proper memory space in the memory map of the host system
bus. This method can be used to solve any mapping problem. Even if
this design requires a small change in the card hardware, it saves the
cost of hardware required for mapping in the interface and the
software drivers required to perform the mapping function.



20

If the host system bus and the external system bus, both have
the same address width and same memory map then the mapping is
not required. If the memory map is not the same then the address
interface must provide a mapping function.

As a general solution to address mapping, all of the memory on
the external system bus memory can be addressed by adding a
address-mapping-function register to the bus interface logic and
arranging for software routines to load high order address bits into
this register. This provides a means for the host system bus to
selectively access the external system bus address space in different
windows as shown in Figure 2.7. The example of interfacing a system
bus with 24-bit address to a system bus with 32-bit address is shown
in this figure. This allows the system bus with 24-bit address to
access 4 GBytes of 32-bit address space as 256, 16 MByte windows.

If the host system bus address width is less than that of the
external system bus then the address interface logic must provide a
means for the host system to access entire memory space of the
external system bus. The mapping can be provided as explained
above.

If the host system bus address width is more than that of the
external system bus then a dedicated block of the host system bus
memory space can be committed to the external system bus address
space and therefore only address translation required is a decoded
select signal for the interface as shown in Figure 2.8.

If both the buses support a separate I/O space then the
address interface for the I/O space should be designed in a similar
way as the address interface for the memory.

If the external system bus supports a special I/O space and the
host system bus does not, then the card designer can be asked to
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change the design to be a memory mapped I/O. Another solution for
this problem is to dedicate a specific block in the memory map of
the host system bus as the I/O block of the external system bus. In
the address interface this address block should be decoded and the
interface should issue proper I/O read or write commands to the
external system bus.

If the host system bus supports an I/O space and the external
system bus supports only memory mapped I/O, no interface needs to
be provided for I/O addresses.

2.2.5 Data Format

The difference in the data format of the two buses under
consideration should be studied carefully and any differences should
be taken care of.

If the two buses have the same data width then the two data
buses can be interfaced directly. If the external system bus data
width is smaller than that of the host system bus the external system
bus data lines can be interfaced to part of the data bus of the host
system bus. The host system bus configuration process must provide
a means to inform the host system about the byte lane usage of this
external data bus. If the external system bus data width is more than
that of the host system bus, then the configuration process of the
external bus must provide a means to inform the device on the
external system bus about the byte lane usage of the host system bus.
Interface does not do word conversions; it is the responsibility of the
devices on the buses.

Big endian (Figure 2.9) and the little endian (Figure 2.10)
representations of the words [21 is one of the problems to be solved
in case of 16 and 32-bit data bus interfaces. The big endian
representation of a word of data has its most significant byte of data
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on the data bits 0 to 7 and least significant byte of data on the data
bits 24 to 31. A little endian representation has its most significant
byte on data bits 24 to 31 and least significant byte on 0 to 7 data
bits. This creates problem in storing the data in the memory. The big
endian representation stores the most significant byte of data in
the lower memory address space, where as a little endian
representation stores the least significant byte of data in the in the
lower memory address space. If one of the buses is big endian and
the other one is the little endian the data lines should be properly
configured such that proper bytes are available to both the buses as
shown in Figure 2.11.

2.2.6 Multiplexed Buses

In case one of the buses has a multiplexed address/data bus
and the other has separate address and data buses then the
address/data interface must provide the function of multiplexing and
demultiplexing. The address must be put on and removed from the
address bus at proper time as explained in the bus specifications.
The interface must provide required control signals to achieve this
multiplexing and demultiplexing function and timing requirement.
Figure 2.12 shows a example of interfacing a multiplexed
address/data bus to a non multiplexed address/data bus.

2.2.7 Arbitration

The master interface must provide the interface for the
arbitration signals of the two buses under consideration.

If both the buses have a centralized or decentralized arbitration
protocols then the interface has to just pass the arbitration signals to
or from the host system bus. The logic has to pass the signals in
proper sequence and with correct logic levels as specified in the bus
protocols of the two buses as shown in Figure 2.13. If one of the bus
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protocols does not support the signals required by the arbitration
protocol of the other system bus then the arbitration controller must
generate those signals in correct sequence.

If the external system bus has a centralized arbitration scheme
and the host system bus has a decentralized arbitration scheme then
the arbitration control logic of the interface is complex. It has to be a
central arbitration control point for the external system bus and a
local arbitration control point for the host system bus as shown in
Figure 2.14. As a central control point it has to receive bus request
signals from the external system bus, pass this request to the host
system bus as a local control point, get the ownership of the host
system bus or pull-out from the contest, and pass this information to
the external system bus. The state machine approach is the standard
method used to implement this arbitration control logic of the
interface.

If the external system bus has a decentralized arbitration
scheme and the host system bus has a centralized scheme then a
similar design as explained above must be implemented. The
arbitration control logic must receive the bus requests from the
external system bus and pass it to the host system bus. The host
system bus central arbitration control point makes the decision to
give the bus ownership to this request or not. The interface
controller has to pass this information to the external system bus.

2.2.8 Bus Protocol

The bus interface between the two systems must provide all
protocol handling functions, such as signal timing and additional wait
states. The interface must interpret the control signals of the host
system bus and generate necessary control signals for the external
system bus. A state machine has to be designed to generate control
signals and to pass address/data between the external system bus
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and the host system bus in a proper sequence as described in the
transaction protocols of the two buses. This state machine can be
implemented using any one of the methods of implementation as
discussed in Section 2.2.10.

2.2.9 Interrupts

The host should be able to do interrupt servicing for both
systems in exactly the same manner. The interrupts must be
interfaced such that the interrupt active logic levels should be
matched. If the external system bus has edge triggered interrupts
and the host system has level triggered interrupts then the interface
logic has to recognize the edge triggered interrupt from a device on
the external system bus and interrupt the host system with a
interrupt signal of proper pulse width.

The external bus interrupts must be ORed together in to one
or more groups and connected to one or more of the host system bus
interrupts. If the external system bus interrupt logic requires an
acknowledgement then the controller must drive that signal when it
accepts the interrupt from a slave on the external system bus. If the
host system bus also supports a interrupt acknowledge signal then
this signal can be passed to the external system bus in correct
sequence and proper timing. The slave module on the external
system bus must be able to interrupt the host system in exactly the
same as a slave module on the host system bus. Figure 2.15 shows a
general interface for the interrupt structures of the two buses.

2.2.10 Implementation

The method of implementation is a critical decision to be
made while designing the bus interface.
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Bus support devices: The logic to implement particular parts of
the bus protocols is fabricated as one or more integrated circuits.
These are designed for a specific interface. The design of interfaces
based on bus support devices is relatively inflexible and expensive,
but it is the most efficient interface. Under the present
requirements where the speed of data transfer is a critical issue and
with well developed VLSI technology this solution appears to be the
best for the interface design.

Semicustom interface devices: The logic is implemented using
an array of uncommitted logic elements which has been fabricated on
a master slice. Interface is developed using a CAD package that takes
the random logic design, determines the required interconnections
pattern, automatically routes the necessary tracks. In this case the
faster development of the interface is possible. But this does waste
considerable chip area which in turn reduces the speed.

Field-programmable logic arrays: The interface is implemented
on one or more user- programmable AND/OR arrays. These

universal multi- input/multi-output logic circuits are programmed by
blowing on-chip fusible links. Some devices have clocked flipflops
connected to the inputs and outputs and can be used to implement
entire synchronous interface designs. As the PLA technology is
developing at a rapid speed, the development of a bus interface can
become faster and inexpensive.

Single-chip microcontrollers: A logic is realized in firmware
using a general-purpose, program controlled VLSI device-the single
chip microcontroller. The microcontroller has an instruction set
designed to facilitate I/O operations, and can be programmed to
implement a complete interface in one device. But this kind of
design results in slower bus conversion, which results in slower data
transfer rates.
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2.3 Design Algorithm

The interface between two system buses must have a
address/data interface and a interface controller. The address/data
interface depends on the address and data formats of the two buses
under consideration. It also depends on the strategies explained in
Sections 2.2.1, 2.2.2, 2.2.4, 2.2.5 and 2.2.6. The address/data
interface may provide some select signals if necessary. It must have

proper input control signals to control it's operation. Figure 2.16
shows a general block diagram of an address/data interface for the
case of one multiplexed bus and the other non multiplexed bus. The
address/data interface can be implemented using off the shelf
buffers, multiplexers, decoders and comparators or it can be

implemented as a custom VLSI component.

The interface controller must support all the control signals of
both the system buses and the control signals required for the
correct operation of the address/data interface. It must support read
and write transactions on both the buses. The control signals must be
driven in a proper sequence as defined in the protocols of the two
buses. A state machine must he designed to achieve this function.
The control signals for the address/data interface must be generated
according to the timing requirements defined in the bus protocols.
The controller must provide a proper interface for the interrupt
structures of the two buses as explained in the Section 2.2.9. The
inputs and the outputs of the controller must be synchronized with
respect to the respective clocks as explained in the Section 2.2.3.

Depending on the decision made about the function of the
interface (Section 2.2.2) the interface controller may have to provide
correct interface for the arbitration. signals of the two buses as
explained in Section 2.2.7. If a master interface between the two
buses is desired then a state machine must be designed to facilitate
the interface controller to go through the arbitration sequence of the
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two buses. Once this arbitration state machine gets the control of the
desired bus it must give the control to the state machine controlling
the transactions on the buses. After the transaction is over the
transaction control state machine must give the control to the
arbitration control state machine. Thus these two state machines
must work hand in hand (Figure 2.17) in case of master interface and
during the transactions between the masters of the two buses.

A general flow-chart of sequence of operations of a interface
controller is shown in Figure 2.18. The interface controller can be
implemented using any method discussed in the section 2.2.9. The
method to be used depends on the complexity, cost, design time
and data transfer rate of the two buses under consideration.

Proper decision should be made for each point listed
depending on the requirements and tradeoffs before the design
procedure begins. Good planning and proper design decisions result
in lesser design iterations and design time and lower cost, which are
the basic requirement of any design process.
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3. INTRODUCTION TO THE MICRO CHANNEL ARCHITECTURE

3.1 General Description

The Computers of today require a bus based architecture to
increase processing speed, to use coprocessing or multiprocessing
and to adapt to new peripherals. IBM, to fulfill these capabilities,
developed the Micro Channel, 32-bit System bus to be used in
Personnel System 2 higher end models. Micro Channel is used as
both local CPU bus and System bus in PS/2. Material for this section
is mostly derived from [12].

The Micro Channel is comprised of an Address bus, a Data bus,
a Transfer Control bus, an Arbitration bus, and other support signals.
The bus is asynchronous for Control and Data transfer between
memory, I/O devices, and the main processor.

The salient features of the Micro Channel are as follows :

An I/O Address width of 16-bits allows 8-, 16-, or 32- bit
transfers within an address space of 64K. A memory address
width of 24 and 32 bits allows 8-,16-, or 32-bit memory
transfers with in 16 MBytes and 4 GBytes ranges respectively.
Programmable Option Select feature that replaces hardware
jumpers and switches for system configuration and permits
installation of multiple identical feature cards. The definition
file of a card programs the POS registers during the power-up
sequence. Cards can be mapped anywhere in the memory.
This makes it possible to instal multiple identical feature
cards which can be mapped at different memory spaces.
Level sensitive interrupts with interrupt sharing on all levels.
This is to reduce the transient sensitivity of the interrupt
controller.
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A serial DMA protocol that supports eight DMA channels for 8
or 16- bit DMA transfers.
It has a central arbitration control point that allows upto15
devices to arbitrate for control of the Micro Channel. This
also allows burst data transfers.

The Channel supports all signal, power, and ground signals to
adapters. The PS/2 system board provides three types of channel
connectors:

16-bit
16-bit with video extension
32-bit

The interface designed for this thesis deals with the 32-bit bus.
The 32-bit channel is an extended 16-bit channel designed to
accommodate 32-bit addressing, and 32-bit data transfers. It has
107 signal lines, 44 power and ground lines, a separate audio ground
line, 21 reserved lines and four keyed positions in a dual 93-pin, 50-
mil card edge connector.

The Micro Channel can behave as an extended local bus of
Intel 80286, 80386 Microprocessors or as a System bus
independent of the processor. All logic signals are TTL-compatible.
A brief description of the relevant signal lines is given below.

3.2 Signal Description :

AO - A31: Address bits 0 through 31 : These lines are used to address
memory and I/O devices attached to the channel. These lines allow
access to upto 4 GBytes of memory. Figure 3.1 shows the memory
map of the Micro Channel. The lower 16 lines allow upto 64 KBytes
of I/O address space. The valid addresses generated by the
microprocessor are not latched and hence must be latched by the
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slaves using either the trailing edge of -ADL (Address Decode Latch)
signal or the leading edge of -CMD (Command) signal.

DO - D31 : Data bits 0 through 31 : These lines provide data bus bits
for the system microprocessor and slaves. It is made up of the high
byte and low byte. During read cycles, data is valid on these lines
after the leading edge but before the trailing edge of CMD, and must
remain valid until after the trailing of CMD. During write cycle, data
is valid throughout the period when CMD is active.

-ADL : -Address Decode Latch : This line, driven by the system
micro-processor, is provided as a convenient mechanism for the
slave to latch valid addresses and status bits. The addresses and the
status bits can be latched with the trailing edge of -ADL or the
leading edge of -CMD.

-CD DS 16 (n) : -Card Data Size 16 : This line is driven by 16-bit and
32-bit memory, I/O, or DMA slaves to provide a indication on the
channel of a 16-bit or 32-bit data port at the location addressed.

-DS 16 RTN : -Data Size 16 Return : This output signal is a negative
OR of the -CD DS 16 signals from each channel connector.

-SBHE : -System Byte High Enable : This line indicates and enables
transfer of data on the high byte of the data bus (D8 D15), and is
used with AO to distinguish between high byte (D8 D15) and low
byte (DO D7) transfers.

MADE 24 : Memory Address Enable 24 : This signal indicates when
an extended address is used on the bus. If memory cycle is in
progress, MADE- 24 inactive indicates an extended address space
greater than 16M is being presented; MADE 24 active indicates an
unextended address space less than or equal to 16M is being
presented.
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M/40 : Memory/-Input Output : This signal distinguishes a memory
cycle from an I/O cycle.

-SO, -Si : -Status bits 0 and 1 : These lines indicate the start of a
channel cycle and also define the type of channel cycle. When used
with M /IO, memory read/write operations are distinguished from
I/O read/write operations.

-CMD : -Command : This signal is used to define when data is valid on
the data bus. The trailing edge of this signal indicates the end of the
bus cycle.

-CD SPDBli (n) : -Card Selected Feedback : When a memory slave or
an I/O slave is addressed by the system microprocessor, this signal is
driven by the addressed slave as a positive acknowledgement of its
presence at the specified address. This signal line is unique to each
channel connector.

CD CHRDY (n) : Channel Ready : This normally active line is pulled
inactive by a memory or I/O slave to extend the time to complete a
channel operation. This line cannot be held inactive for more than
3.5gs. This line is unique to each channel connector.

ARBO - ARB3 : Arbitration Bus Priority Levels : These lines make up
the arbitration bus and are used by the participating entities to
present their priority levels for arbitration. Up to 16 levels of
priority are available.

ARB/-GNT : Arbitrate/-Grant : When high, this signal indicates that
an arbitration cycle is in progress. When low, this signal is the
acknowledgement from the central arbitration control point (CACP)
to the winning arbiter that channel control has been granted.
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-PREEMPT : -Preempt : This signal is used by bus entities to request
the control of the channel, through arbitration. When this signal is
activated an arbitration cycle is initiated.

-BURST : -Burst : This signal is driven by arbitrating participants to
indicate to the CACP the extended use of the channel when
transferring a block of data. This signal initiates a burst cycle.

-TC : -Terminal Count : This line provides a pulse on the channel
during a read or a write command to indicate that the terminal count
of the current DMA channel has been reached.

-IRQ 3 - 7, -IRQ 9 - 12, -IRQ 14 - 15 : -Interrupt Request : These
are the level sensitive interrupt lines of the channel used by the
slaves to request attention from the system microprocessor. These
lines have priorities attached to them.

-CD SETUP (n) : -Card Setup : This signal is driven by system board
logic to individually select channel connectors during system
configuration and error recovery procedures. Each slot has an
unique CDSETUP line. The system will generate a CDSETUP when
an I/O access is made to addresses 0100h-0107h.

-CHOI : -Channel Check : This line is used to indicate a serious error
on the system. It can be reset only by the error handler.

-CHRESET : Channel Reset : This signal is used by the system board
logic to reset or initialize all adapters upon power on.

3.3 Basic Transfer Cycle :

This Section provides a general description of the basic
transfer cycle of the Micro Channel.
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The address bus, MADE 24, M/-I0, and -REFRESH become
valid, beginning the cycle. The status signals and -ADL become active.
In response to an unlatched address decode, MADE 24, and M/40,
the adapter returns -CD SFDBK, -CD DS 16/32. The adapter also
drives CHRDY inactive if the cycle is to be extended. Write data
appears on the bus. -CMD becomes active, -ADL and status signals
become inactive. The address lines become invalid in preparation for
the next cycle. In response to an address change signals -CD SFDBK,
-CD DS 16/32 are set inactive by the adapter. The system holds this
state indefinitely until CD CHRDY is set active. The adapter places
the read data on the bus. -CMD goes inactive, ending the cycle.
Figure 3.2 shows the basic read/write cycle of the Micro Channel.

The Micro Channel allows multiple bus masters. The bus has
signal lines that allow different devices to contend for the ownership
of the bus. Devices wishing to drive the bus must submit to
arbitration. Arbitration starts when any device activates the
-PREEMPT line to request control the active master. The system
board has a circuit, the Central Arbitration Control Point (CACP),
which sets the ARB/-GNT line high to start a new arbitration cycle.
Each device contending for the bus puts its 4-bit arbitration level on
the ARBO - ARB3 lines. Based on a certain priority, one device wins
and drives the bus. The losing devices get of the bus and the CACP
makes ARB/-GNT low. The devices can also request a burst cycle for
huge data transfers of multiple words. The Micro Channel has a non-
maskable interrupt (NMI), which has the highest priority and is used
to handling error conditions on the bus.

Thus, the Micro Channel is an intelligent microcomputer bus
that allows automatic adapter setup, multiple bus masters, different
bus widths and a high data transfer rate.
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4. INTRODUCTION TO THE NUBUS ARCHITECTURE

4.1 General Description

The Nu Bus is a high performance (37.5 Megabytes per second)
32 bit Computer back plane bus which represents a distinctly
minimalist approach. It is a system bus, independent of the
Microprocessor Architecture. The Nu Bus architecture supports the
multiprocessor system. The Nu Bus architecture was originally
designed at MIT and developed further by Texas Instrument. The
Nu Bus specification is accepted and published by IEEE as P1196
specifications in December 1986. Material for this section is mostly
derived from [13].

The Nu Bus is synchronous (10MHz), multiplexed, multimaster
bus which provides a strictly fair arbitration mechanism. Nu Bus
signals can be grouped in to 4 classes based on the functions which
they perform : utility signals, data transfer signals, arbitration signals
and power.

The salient features of the Nu Bus architecture are :

High addressing capability. With 32-bit addressing the
memory map of the NuBus architectures extends to 4 GBytes.
Optimized for 32 bit transfers, but supports 8-bit and 16-bit
unjustified transfers.
High data transfer speed with a clock of 10 MHz. Block
transfers are available.
System architecture independence.
Simple protocol. I/O and interrupts are memory mapped and
Reads and Writes are the only operations used.
Small pin count. Address and data lines are multiplexed. Only
51 signals lines plus power and ground lines.
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Geographical addressing (ID lines) enables interface system
to be free of DIP switches and jumpers.
Distributed parallel arbitration ensures the fairness among
the contending masters.

The Nu Bus has 51 signal lines, 45 power and ground lines in a
single 96 pin DIN connector for all bus signals and power. All logic
signals are TTL compatible. A brief description of the signal lines is
given below.

4.2 Signal Descriptions :

4.2.1 Utility Signals :

Clock (CLK*), Reset (RESET*), power fail warning (PFW*), Non
Master Request (NMRQ*), and the card slot identification (ID
<3..0>*) are the utility signals provided in the NuBus protocol.

Clock (CLK *) : Synchronizes bus arbitration and data transfers. CLK*
has a duty cycle of 25%. Usually bus signals are changed on the rising
edge and sampled in the falling edge.

Card Slot Identification (ID <3...0>*) : These signals are binary
encoded to specify the physical location of each card.

Non Master Request (NMR*) : An asynchronous signal asserted by
slave boards to indicate a need for some service.

4.2.2 Bus Data Transaction Signals :

These signals are all three state lines, and include
address/data, control and parity lines.
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Address and Data (AD <31...0>*) : These lines are multiplexed to
carry a 32 bit byte address at the beginning of each transaction and
upto 32 bits of data later in the transaction. Address is valid when
the start signal is active, hence should be latched with the falling
edge of the clock* when the START* signal is active. Figure 4.1
shows the memory map of the NuBus. Data is valid when the slave
card asserts ACK* signal. hence should be latched by the falling edge
of the CLOCK* when a ACK* signal is active.

Transfer Mode (TM <1..0>*) : At the beginning of a transaction ,

these two lines indicate the type of the transaction being initiated.
Later in the transaction, the responding module uses them success
or failure. of the requested transaction. The transaction mode should
be sampled with the falling edge of the clock when START* signal is
active. The slave drives these signals during Acknowledgement cycle
where ACK* signal is active. Hence the status code is latched with
the falling edge of the clock where ACK* is active.

Start signal (START*) : This signal is asserted at the start of a
transaction, and also initiates an arbitration contest. Additionally,
when asserted in conjunction with the ACK* line, it denotes special
non-transaction cycles called attention cycles.

Transfer Acknowledge (ACK *) : The usual use of this signal is to
indicate the ending cycle of a transaction. It has a special use if
asserted during the same cycle with START*.

4.2.3 Arbitration System Signals :

The signals in this group are all open - collector lines, and are
used by the distributed arbitration logic to determine the next owner
of the bus.
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Bus Request (RQST *) : This line is asserted by modules to indicate
their desire to own the bus. The fair arbitration scheme guaranties
that all modules requesting the bus will obtain ownership within
some determinable maximum time.

Arbitration signals (ARB<3..0>*) : These 4 lines are bussed and binary
encoded in the same moment as the ID<3..0>* lines. During an
arbitration contest, contending modules compare these lines with
the binary value of their own ID <3..0>* lines, and drive ARB<3..0>*
lines according to the rules of the distributed arbitration logic. The
net effect of an arbitration contest is that, two cycles after starting a
contest, the ARB<3..0>* lines carry the binary encoded number of
the next bus owner.

4.2.4 Power lines :

Four voltages are defined for use by NuBus modules, +5V,
+12V, -12V and -5.2Volts.

4.3 Single Data Cycle Transactions :

A single data cycle transaction is a read transaction or a write
transaction in which only a single data value is transferred.

The master asserts START* and drives the AD*(31:0) lines
with the desired address and drives the TM*(1:0) lines with the
appropriate transfer mode to initiate the read or write transaction.
The Master ensures that ACK* is unasserted. The adapter samples
the AD*(31:0) and TM*(1:0) lines. The master stops driving the
AD*(31:0), TM*(1:0), and ACK* lines in case of read cycle. It drives
the data to be written onto the appropriate AD*(31:0) lines in case of
write cycle. It also drives START* unasserted and waits for the
acknowledge cycle. The addressed slave drives the requested data
onto the AD*(31:0) lines in case of read cycle, samples the AD*(31:0)
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lines to receive the data in case of write cycle. It also drives
appropriate transaction code on the TM*(1:0) lines and asserts
ACK*. The bus master and slave stop driving AD*(31:0), TM*(1:0),
and ACK* lines, thus ending the cycle. Figures 4.2 and 4.3 show the
read and write cycles of the Nu Bus.

The block transfer is a read or write transaction in which
multiple data values are transferred. Figures 4.4 and 4.5 show the
block transfer cycles of the Nu Bus.

Thus, the Nu Bus is a high performance, multiple master
system bus that allows different bus widths and physical slot
addressing with automatic configuration.
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Figure 4.2 : Write Cycle of the Nu Bus
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5. THE DESIGN OF MICRO CHANNEL INTERFACE FOR THE NU BUS
ARCHITECTURE

5.1 Introduction

With the introduction of the IBM PC in 1981, IBM set
standards in the area of personal computers. The original IBM PC has
been steadily upgraded to form a whole family of upward compatible
personal computers. These computers use expanded local buses like
PC bus or AT bus for communication with the I/O devices. These
buses are processor specific and are designed around the Intel
80x8x microprocessor architecture. They have problems
accommodating large memory expansions. The PC bus is limited to
one Megabyte of memory and the AT bus to 16 Megabytes.

Recent developments in the microprocessor industry have
resulted in the evolution of the powerful 32 bit microprocessors. To
take advantage of the power of these 32 bit microprocessors, to
maximize hardware subsystem to subsystem transfers and to adapt to
expanding processing rates, IBM developed a new I/O bus
architecture termed the Micro Channel. It also developed a new
family of personal computers, the Personal System 2 (PS/2) around
the Micro Channel. IBM, with its open architecture policy,
encourages other vendors to develop I/O subsystems around the
Micro Channel. The functional characteristics, timing diagrams,
electrical and mechanical specifications of the Micro Channel have
been released in elaborate detail. A survey shows many I/O
subsystems have already been devised for Micro Channel by IBM and
other board manufacturers.

Meanwhile Apple Computer, INC. developed Macintosh II
around IEEE 1196, Nu Bus a simple 32 bit system bus. Since then,
Macintosh II has captured a considerable share in the personal
computer market. Nu Bus was developed by MIT and Texas
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Instruments. This system bus is also designed to support the
capabilities of present-day faster microprocessors, large memory and
multiprocessing. A simple observation clearly shows the fact that
Macintosh II is most commonly used for desktop publishing, rather
than in control and engineering applications. The main reason for
this is, not many I/O subsystems have been designed around NuBus.

5.2 The Differences between the Micro Channel and the NuBus :

There are several differences between the communication
protocols of the Micro Channel and the NuBus. Micro Channel is both
a local bus and a system bus. As a local bus, it optimizes the host CPU
(Intel 80286 or 80386)-to-memory bandwidth, using special control
signals. It is also a system bus, in that it is treated as a system
resource. NuBus is a full system bus. It is independent of any
processor architecture. NuBus provides mechanisms for true
multiprocessing : Bus and Resource locks. Bus locking allows a
processor to lock a bus for exclusive access. With resource locking, a
shared resource, such as RAM on a card with its own local processor,
is locked so that the local processor can't access it. Micro channel
does not have direct provisions for bus or resource locking.

Micro Channel has an asynchronous communication protocol,
where as the NuBus uses a synchronous protocol. The Micro Channel
has a number of signals for coordinating asynchronous handshakes :
The signals -ADL, -CMD, CD CHRDY provide the basic bus handshake
edges. In contrast, the NuBus operations are relatively simple,
requiring no special signals. NuBus transactions are referenced to a
single, 10MHz clock signal. NuBus timing is more stringent than the
Micro Channel's. The signals and data should be sent and strobed
within 75 ns in the 100-ns clock cycle.

Address and data on the NuBus are multiplexed on 32 signal
lines. The Micro Channel provides 64 individual lines for a non-
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multiplexed address and data bus. The Micro Channel Architecture
provides for separate memory and I/O address spaces. It supports
4 GBytes of memory space and 64 KBytes of I/O space. The Nu Bus
provides for a single address space of 4 GBytes. Data can be
transferred on the Nu Bus as 8-bit bytes, 16-bit halfwords, or 32-bit
words. The Micro Channel can handle 8-bit, 16-bit, 24-bit, and 32-
bit data. On the Nu Bus, cards are given 1/16th of the total 4 GBytes
address space (256M bytes). Nu Bus allows up to 16 cards in a system
and each card is given 1/16th of the total 256M card address space
(16 MBytes per card). The card automatically assumes its proper
address by sampling 4 signals on the Nu Bus connector which provide
a card identification code.

The Micro Channel defines a number of discrete interrupts
that can be shared among the boards. The Nu Bus, on the other hand,
defines an interrupt per slot that is fed separately into the main logic
for processing. Both buses use decentralized scheme for arbitration.
The Nu Bus has fixed arbitration priority determined by the card's
slot ID, with 0 being the lowest priority and Fh being the highest. For
the Micro Channel, the arbitration level is stored on the card when it
is configured into the system. The highest priority a card can have is
level 0, and the lowest is Fh. The Micro Channel also has a Central
Arbitration Control Point, which is some logic on the main system
board that controls the start and winner of an arbitration contest.
Both buses ensure fairness by preventing a higher-priority-level card
from continuously withholding ownership of the bus from lower-
priority-level entities. Card logic prevents the card just serviced from
requesting bus ownership until all the pending requests are honored.

Both the Micro Channel and the Nu Bus define high-level
mechanisms to integrate cards or devices into the bus system. This
eliminates the need for jumpers or switches to set either a card's
interrupt level or its address space. The Micro Channel's
Programmable Option Select (POS) eliminates switches from the
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system board and cards by replacing them with programmable
registers. Automatic configuration routines store the POS data from
adapter description files into a battery-powered CMOS memory for
system configuration. The system loads the appropriate configuration
data from CMOS memory into the card POS registers. This data sets
cards arbitration level, the address range of the card's I/O ROM, and
the I/O address range. Cards that fail to configure properly are
disabled by the system. In case of Nu Bus, each card is required to
have a special declaration ROM that holds the card specific
configuration information. Information in the declaration ROM
includes byte lanes (which bytes of the Nu Bus data path are used), a
test pattern, a revision level, a ROM cyclic redundancy check for
validating the contents of the declaration ROM, and a resource
directory. The resource directory points to the device drivers
required for the operation of the card.

5.3 Strategies Used in the design of Micro Channel Interface for the
NuBus :

The objective of this design is to devise a Micro Channel
interface to the NuBus, so that the I/O subsystems designed for the
Micro channel can be used on the NuBus with little change in the
hardware and software. A model of the design is shown in Figure 5.1
This design would make it possible for the NuBus systems to take
advantage of strong hardware support which is available for the Micro
Channel. This interface gives a Micro Channel slave interface to the
NuBus.

As the two buses are dissimilar, completely transparent
interface design is complex and expensive. Hence a nontransparent
interface is designed.

As the NuBus is synchronous and the Micro Channel is
asynchronous the NuBus clock is used for synchronization. All the
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signals generated by the interface are synchronous with the Nu Bus
clock. The Micro Channel input signals are sampled with respect to
the Nu Bus clock using the master-slave flipflops as shown in
Figure 5.2

The problem of address mapping is taken care by restricting
the user to map the Micro Channel I/O cards in to the memory map
of the Nu Bus card slot in which the card is to be mounted. The cards
should decode all the 32 address lines. The device drivers of the
cards must be modified accordingly. This eliminates the need for an
address mapping mechanism for memory and I/O space. Figure 5.2
shows the address interface provided between these two buses.

The Micro Channel has non-multiplexed address/data buses
and the Nu Bus has a multiplexed and inverted address/data bus. The
address/data interface provides proper multiplexing function as
shown in Figure 5.3. The Nu Bus address/data information is
demultiplexed and inverted before putting on the Micro Channel
address and data bus and viceversa.The control signals for this
function are generated by the interface controller.

The data formats are similar on both the buses. Hence the data
lines of the two buses can be connected directly with proper tri-
stating.

A Micro Channel slave interface to the Nu Bus does not require
the arbitration signals to be interfaced on both the buses. All the
other signals on both the buses, which are necessary for slave read,
write, and interrupt protocol are interfaced. The Micro Channel
handshake signals and status signals are properly generated
depending on the Nu Bus Start signal and the transfer mode signals.
At the end of a transaction the Nu Bus Acknowledge and transfer
mode signals are driven as specified in the Nu Bus specifications.
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5.4 Goals for the Design :

A survey shows most of the cards designed for the Micro
Channel are designed as the slaves on the bus, which use other
masters to communicate on the bus. Hence this interface gives a
Micro Channel slave interface to the NuBus. The arbitration signals
need not be interfaced to design a slave interface.

As the two buses are dissimilar, completely transparent
interface design is complex and expensive. Hence a nontransparent
interface is designed.

The user must memory map the Micro Channel cards in the
memory map of the Micro Channel such that the cards respond to
the addresses which match with one of the available slot spaces of
the NuBus. This approach is adapted to avoid complex hardware and
software requirements of the address mapping.

The NuBus clock is used as the clock of the interface. This is a
100 ns clock. Hence the interface state machine goes through the
bus conversion fairly slow. By using a faster clock for the interface the
transfer rate between these two buses can be increased.

The NuBus does not have a programmable card configuration,
instead it has configuration ROM. The ROM is provided in the
interface and also the decoded control signals to address this ROM.
This ROM should be programmed with proper firmware [17]. The
POS registers of the Micro Channel should be implemented as ROM
on the card, except the -CHCK, the most significant bit of the POS
register 105. This bit is to be deasserted by the I/O device itself with
the rising edge of the -CMD signal of the Micro Channel.

The Micro Channel does not support the NuBus block transfers.
Special Hardware is designed in the interface to take care of this.
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Thus a facility which Micro Channel does not support is taken
advantage of. Some changes are required to be made in the Card
driver software.

The Address/Data interface and the Interface controller are
designed to implement this interface efficiently. Considering the
speeds of the two buses, it is necessary to implement the interface as
VLSI components. This reduces the real estate and power
consumption of the interface. Discussion of the VLSI aspects of the
design is not the objective of this thesis. The following chapters
describe the design in detail.
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6. ADDRESS / DATA INTERFACE

6.1 General Description

The Address / Data Interface is designed to work with the
Micro Channel to Nu Bus interface controller designed for this thesis.
It consists of bus transceiver circuits, D-Type flipflop latches and
control circuitry arranged for multiplexed transmission of address
and data on Nu Bus. A comparator has been added to detect when a
Nu Bus transfer cycle is requesting the local board. A decoder
decodes the address for the configuration ROM of the Nu Bus. The
block diagram of Address/Data interface is shown in Figure 6.1.

The -AEN, -DEN, and -ADEN inputs control the transceiver
functions. These signals are generated by the interface controller.
Three 32-bit i/o ports, A31-A0, D31-DO, and -AD31- -ADO provide
for address and data transfer. Address lines -A5- -AO are given as
output to feed as input to the Block Transfer logic of the Interface
Controller.

When a Nu Bus performs write cycle on a local board, address
information is saved on the rising edge of ACLK. During the last
portion of the Nu Bus write cycle, data information is saved on the
rising edge of the DCLK. The truth table for A(31:0) and D(31:0) is
shown in Figure 6.2. The interface controller generates the ACLK and
DCLK signals as required.

When a Nu Bus performs a read cycle, the address information
is saved on the rising edge of the ACLK. During the last portion of
the read cycle, data information is put on the Nu Bus by pulling -A/D
high and -ADEN low. In fact -A/D is tied high to always enable data
port D31-DO to be selected as input to the -AD31- -ADO, as the slave
local board does not drive the A31-A0 lines. The truth table for
AD*(31:0) is shown in Figure 6.3.
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The -IDEQ output is used to signal that the local board is being
requested by the NuBus. This output is fed into Micro Channel to
NuBus interface controller. -IDEQ goes active (low) when -AD31-
-AD28 are low and -AD27- -AD24 match -ID3- -IDO. -IDEQ stays valid
until the next ACLK occurs. The truth table for -IDEQ is shown in
Figure 6.4. The -ROMCS is the decoded Configuration ROM select
output.

6.2 Signal Descriptions :

The input and output signals to this Address/Data interface are
shown in Figure 6.5.

A31-A0, Address bus : This 32-bit i/o port is connected to the Micro
Channel address bus. When information is transferred between this
Micro Channel port and the NuBus port (-AD31- -ADO), the data is
inverted to conform to the Micro Channel and the NuBus
specifications.

-A5- -AO, Latched Address Lines : These latched Address lines are
provided to feed into the Interface Controller for Block transfer
control of the NuBus.

ACLK, Address Clock : This input saves the address portion of NuBus
read or write cycles. Address present at the -AD31- -ADO inputs is
clocked into the address register on the low to high transition of
ACLK.

-A/D, -Address/Data Select : This input controls the address/data
multiplexer. When -A/D is driven low, the Micro Channel port, A31-
AO is selected as input to the -AD31- -ADO outputs. When -A/D is
taken high, the Micro Channel data port A31-A0 is selected as input
to the -AD31- -ADO outputs.
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-AD31- -ADO, Address/Data port : This 32-bit active low i/o port
directly interfaces to the Nu Bus address/data lines. These lines are
multiplexed to carry address information at the beginning of a Nu Bus
cycle and data information later in the cycle.

-ADEN. Address/Data Output Enable : This active-low input enables
the -AD31- -ADO outputs. When -ADEN is taken high, the -AD31-
-ADO outputs are in the high-impedance state, allowing input from
the Nu Bus.

-AEN, Address Enable : This active-low input enables the local
address outputs, A31-A0, to place data onto the local board. When
-AEN is taken high, the A31-A0 outputs are in the high-impedance
state, allowing input from the local address bus.

D31-DO, Data Bus : This 32-bit i/o port is connected to the local
board's data bus. When information is transferred between this port
and the Nu Bus port (-AD31- -ADO), the data is inverted to conform to
Nu Bus specifications.

DCLK, Data Clock : This input saves the data portion of Nu Bus write
cycles. Data present at the -AD31- -ADO inputs is clocked into the
data register on the low to high transition of DCLK.

-DEN, Data Enable : This active-low input enables the local data port
outputs, D31-DO, to place data onto the local board. When -DEN is
taken high, the D31-DO outputs are in the high-impedance state,
allowing input from the local board.

-ID3- -IDO, Card Slot Identification : These four inputs accept binary-
coded location information for each Nu Bus slot position on the
backplane. These four lines are typically hard-wired logic levels
unique to each Nu Bus slot connector. For convenient
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implementation, the inputs have internal 10-kC2 pull-up resistors
that ensure the logic high level when the inputs are left open
circuited. The internal comparator uses these inputs to identify
when the local hardware card is being accessed.

-IDEQ, Identification Equal : This active-low output is used to signal
that the local board is being accessed by the Nu Bus. -IDEQ goes low
whenever -AD31- -AD28 are low and -AD27- -AD24 match -ID3- -IDO.
Since the internal comparator uses data from the address register,
the address register must be clocked before the local board samples
-IDEQ. -IDEQ is valid for the entire Nu Bus cycle after ACLK.

-ROMCS, ROM Select : This active-low output is the decoded
chipselect for the configuration ROM which resides at FsFF FFFF to
FsFF FE00 address. -ROMCS becomes active whenever the Nu Bus
system intends to read the configuration ROM. It is valid for
complete Nu Bus read cycle after ACLK.

When the Nu Bus master starts a transaction cycle the
address/data interface decodes the address and asserts -IDEQ if it is
addressed. If the address is for configuration ROM it asserts the
-ROMCS. In response to these signals the Interface Controller asserts
the ACLK signal which latches the address. In the next cycle if it is a
write transaction DCLK is asserted to latch the write data. In the
same cycle the address is driven on the address bus of the Micro
Channel by driving the signal -AEN. The Micro Channel data bus is
driven by the latched data if it is a write cycle by driving the signal
-DEN. -AEN is driven for two clock cycles as required by the Micro
Channel protocol. -DEN is driven till the end of the cycle. When the
Micro Channel slave reads the data on the data bus -DEN signal is
deasserted. In case of a read cycle the signal -ADEN is driven during
the Nu Bus ACK cycle, when the Micro Channel slave puts the data on
the Micro Channel data bus. -A/D is always driven high so that Micro
Channel data bus is always connected to the AD*(31:0) lines of the
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Nu Bus. The Interface Controller has to generate these control signals
in proper sequence for the address/data interface to function
properly.

The logic schematic of the Address/Data interface is shown in
Figure 6.6. This Address/Data interface is a generic address/data
interface which can be used for any address/data interface with little
changes.
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7. MICRO CHANNEL TO NU BUS INTERFACE CONTROLLER

7.1 Introduction

This interface controller is designed to offer a slave level Micro
Channel interface to the Nu Bus. The controller handles the Nu Bus
signalling protocol in compliance with ANSI/IEEE std. 1196 1987
and the Micro Channel signalling in compliance with the Technical
Reference Manual for Micro channel Architecture published by IBM.
This controller does not support Micro Channel masters to be
interfaced as masters on the Nu Bus. It supports Nu Bus block
transfers.

Data and address multiplexing, demultiplexing and buffering is
handled by the Address/Data Interface. The controller generates
necessary control signals for the proper operation of Address/Data
interface.

The Interface controller has a similar structure as explained in
Section 5.3 of Chapter 5. It interfaces the control signals of the
Micro Channel and the Nu Bus as defined in the protocols of these
two buses. It interfaces the interrupts of the two buses. It generates
the control signals required for the operation of the address/data
interface. Thus the controller designed here has a similar structure
as the general controller discussed earlier.

The controller recognizes the Nu Bus Start cycle and checks for
ROM read, Block transfer, read or write transactions and drives the
Micro Channel signals and the Address/Data control signals in
correct sequence and with proper timing. At the end of the
transaction it also drives the Nu Bus Transfer Mode signals and ACK*
signal. A general flowchart of the controller sequential machine is
shown in Figure 7.1. Figure 7.2 shows the detailed state diagram of
the state machine designed for this Interface Controller. Figure 7.3
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shows the state assignment table for the state machine. The state
table of the controller is shown in Figure 7.4. The state machine
which drives the different output signals of the Controller constitutes
the main block of the controller. The Random logic block drives the
Micro Channel outputs like -BE (3:0) and also provides some
decoded inputs to the State machine. The ROM serves the purpose of
the Configuration ROM of the Nu Bus. The Controller block diagram is
shown in Figure 7.5.

The Micro Channel to Nu Bus Interface controller is comprised
of three major signal groups. Micro Channel signals, Nu Bus signals,
Address/ Data Interface control signals. The Micro Channel signals
directly interface with the card designed for Micro Channel. The
Nu Bus signals provide interface with the Nu Bus. Address/Data
interface control provides the buffering signals required to multiplex
and demultiplex the Nu Bus address/data lines.

7.2 Signal Descriptions :

As previously explained, the input and output signals of the
Micro Channel to NuBus Interface Controller can be functionally
organized into three groups. The following paragraphs briefly
describe the controller signals in each group. The input and output
signals of the controller are shown in Figure 7.6.

7.2.1 Micro Channel signals :

-ADL : -Address Decode Latch : This is the Micro Channel signal
which provides the convenient mechanism for the slave to latch valid
address and status bits. This is driven active when the controller
recognizes a NuBus START cycle and -IDEQ is active.

-SHBE : -System Byte High Enable : This signal indicates and enables
transfer of data on the high byte of the data bus (D8 - D15), and is
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used with AO to distinguish between high byte (D8 D15) and low
byte (DO - D7) transfers. This is decoded from the Nu Bus signals
-TMO, -mu, AO, Al.

MADE 24 : Memory Address Enable 24 : This line indicates when an
extended address is used on the bus. MADE 24 inactive indicates an
extended address space greater than 16MBytes is being presented.
As in case of Nu Bus always a 32-bit address is presented, this signal
is forced inactive.

MI-10 : Memory/-Input Output : This signal distinguishes a memory
cycle from a I/O cycle. This signal is driven high during the read and
write cycles as Nu Bus does not have a separate I/O address space.

-SO, -S1 : -status bits 0 and 1 : These signals indicate the start of a
channel cycle and also define the type of the cycle. These signals are
derived from the Nu Bus status signals -TMO and -TM1.

-CMD : -Command : This signal is used to define when the data is
valid on the data bus. -CMD trailing edge indicates the end of the bus
cycle. It provides the slave the duration during which the data is valid
on the bus. It is driven active when the slave drives its CD CHRDY
signal high.

-CD SFDBIE (n) : -Card Selected Feedback : This is the Micro Channel
input to the controller which is driven by the addressed slave as a
positive acknowledgement of its presence at the address specified.

CD CHRDY (n) : Channel Ready : This line, normally active (ready), is
pulled inactive (not ready) by a slave to allow additional time to
complete a channel operation. If this signal is held inactive for 3.5
microseconds a try later code is put on status lines of the Nu Bus in
the ACK cycle.
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-IRQ 3 - 7, -IRQ 9 - 12, and -IRQ 14 -15 : -Interrupt Request : These
lines are used to signal the controller that an I/O slave requires
attention. These signals are inverted and ORed to form the -NMRQ
signal of the Nu Bus.

: -Channel Check : This line is used to indicate a serious
error which threatens continued operation of the system. It is driven
by the slave card.

OSC : Oscillator : This line is high speed clock with a frequency of
14.31818 MHz ± 0.01%. The high level (more than 2.3 volts) pulse
width and the low level pulse width (less than 0.8 volts) must not be
less than 20 nanoseconds each. It is derived from a crystal oscillator.

CHRESET : Channel Reset : This signal is generated by the -RESET
signal of the NuBus to reset or initialize the slave card.

-BEO -BE3 : -Byte Enable 0 through 3 : These signals indicate the
data transfers of 8-, 16-, 32-bits. They also indicate the NuBus block
transfer request. These are derived from the -TMO, -TM1, A0, Al
signals of the NuBus. Figures 7.7 and 7.8 show the truth table,
equations and the logic diagram of these signals.

-REFRESH : -Refresh : This signal is always driven high by the
controller.

XI and X2 : Clock Inputs : These pins are the inputs for the Crystal
Oscillator. A 14.31818 MHz crystal should be connected to these
pins. The Micro Channel clock is derived from these pins. The clock
generator diagram is shown in Figure 7.9
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7.2.2 Nu Bus Signals :

-ACK : Transfer acknowledge : This bidirectional I/O pin signals the
end of a transaction. It also signals attention cycles. Hence before a
start cycle is started -ACK signal is sampled in the controller.
Controller also drives this signal after driving the -CMD signal of the
Micro Channel.

CLK* : Clock : The NuBus clock signal is tied directly to the
controller. The data transactions are synchronized to this signal.

NMR9* : NonMaster Request : This asynchronous output is asserted
by the controller when one of the interrupt request lines of the
Micro Channel is asserted.

RESET* : Reset :This asynchronous input monitors NuBus RESET*
line. When active, it initializes the Controller and the Micro Channel
card.

START* : Start : This input pin is asserted at the start of a NuBus
transaction. Accordingly the controller begins the Micro Channel
transaction.

TMO* and TM1* : Transfer Mode Signals : At the beginning of a
transaction, these two lines indicate the type of transaction being
initiated. Accordingly the controller initiates the read or write
transaction or the block transfer transaction on the Micro Channel.
At the end of the transaction the controller drives these lines to
indicate success or failure of the requested transaction. Figure 7.10
shows the driving circuit for these signals.
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7.2.3 Address/Data Interface- Control Signals :

-ADEN : Output Enable : This active low output enables data or
address information to be placed onto the NuBus address/data bus.
-ADEN is asserted on the driving edge of the NuBus Clock signal
(CLK*) when the local board is the selected NuBus slave during an
acknowledge cycle and the current cycle is a read.

-A/D : Address/Data Select : This output controls the multiplexing
function of the address and data information onto the NuBus. When
low, address information is indicated. When high, data information is
indicated. In this design as the interface is a slave interface -A/D is
always driven high to connect the D31-DO data port to the NuBus
AD*31-AD*0 port.

ACME : Address Clock : This output loads NuBus address information
onto the Address/Data interface. During both read and write start
cycles, this output changes on the sample edge of the NuBus Clock
signal (CLK*).

DCLIC : Data Clock : This output loads NuBus data onto the address
data interface. This output changes on the sample edge of the NuBus
Clock (CLK*) when the local board is a selected NuBus slave and the
current cycle is the write cycle.

-AEN : Address Enable : This active low output signal enables address
information to be placed onto the Micro Channel address bus, when
selected as a NuBus slave, -AEN goes low first cycle after the START
cycle.

-DEN : Data Enable : This active low output enables data to be placed
onto the Micro channel data bus, when selected as NuBus slave and
the current cycle is the write cycle. This output remains active till
the -CMD output of the Micro Channel is active.
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-A(5:0) : Latched Address Lines : These are the inputs from the
Address/Data interface and are fed into the Block Transfer logic of
the controller.

The Interface Controller is designed to provide a Micro
Channel slave interface to the Nu Bus. The controller supports the
Nu Bus read and write transactions and the block transfers. It
provides all the necessary Micro Channel signals for different
transactions. The heart of the controller is a state machine. The state
machine always waits in a state where it expects a Start cycle. When
the -START signal is asserted, it checks for the -IDEQ signal from
the Address/Data interface. If the local card is the selected slave it
proceeds through its normal flow depending on the type of the
transaction as shown in Figure 7.2. The state machine can be
implemented using a standard PLA and the memory elements for the
state variables. The logic equations which define each signal are
listed in appendix A. Figures 7.11 and 7.12 show the timing diagram
of the interface controller. It can be seen that proper signals are
driven on both the buses, the Micro channel and the Nu Bus. The
timing diagram also shows that the controller takes minimum of 5
Nu Bus cycles to complete a transaction between the two buses.
Hence the fastest data transfer rate between these two buses that can
be acheived with this interface is 2 MBytes per second. The
controller supports the block transfers of the Nu Bus. The logic
necessary for this purpose is shown in Figure 7.13

The design forces some changes in the Micro Channel card
hardware. The POS registers on the cards should be implemented on
a ROM. The configuration is fixed. The Nu Bus does not Configure the
card. The card should be mapped on to the memory space of the
card slot in which it resides. The card enable bit in the POS register
102 should always be active. The -CHCK bit of POS register 105
should indicate error condition when a error occurs in the card, and
the card should reset that bit with rising edge of the signal -CMD
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after setting the -CHCK bit. The Nu Bus Configuration ROM is
provided on the interface. It should be properly programmed with
the correct firmware [17 [.

7.3 Conclusion :

This thesis discusses the design strategies for the design of a
interface between the two system buses. All the problems to be dealt
while designing a interface between two system buses are identified
for different combinations of the two buses and the solutions for
these problems are also discussed. These strategies can be used as
the guide lines for any interface design. With the design strategies
and a good example the thesis offers a systematic approach for the
interface design between the two system buses. This would make the
interface design problems less time consuming and efficient. This is
the most significant contribution this thesis makes to the world of
bus interface design.

It was a challenge to match the signals on two dessimilar buses.
The asynchronous property of the Micro Channel posed the problem
of synchronization, which was overcome by using master-slave
flipflops for synchronization with respect to the NuBus Clock signal.
The problem of interfacing multiplexed address/data on the NuBus
and the non-multiplexed address/data on the Micro Channel is
solved as explained in Chapter 2. The goals set for the design in
chapter 5 are met.

The design can be enhanced to be a Micro Channel Master
interface to the NuBus, in which case the two systems on the Micro
Channel and the NuBus can communicate and share resources. A
faster transfer rate between these two buses can be achieved by using
a faster clock for the interface and synchronizing signals of both the
buses with respect to this clock signal.
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READ
ROM

DRIVE ADDRESS
LINES AS REQUIRED

DO BLOCK
READ OR WRITE
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PUT DATA ON THE
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HOLD DATA ON THE MICROCHANNEL
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Figure 7.1 : General Flow Chart of Interface Controller
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Al BLOCK=L
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AEN, -MADE24, MI-10, -REFRESH,
STATUS SAME AS LAST STATE
-CMD, START COUNT, CD SPDI3KCIX
IF IM1 THEN -DEN
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-ACK IF -BLOCK + ENDBLOCK
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Figure 7.2 : State Diagram of the Interface Controller State Machine
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yz
wx

A I CB
G F E D

J L M

K N 0 H

State State Assignment

A 0 0 0 0
B 1 0 0 0
C 1 1 0 0
D 1 0 0 1.
E 1 1 0 1

F 0 1 0 1

G 0 0 0 1

H 1 0 1 0
I 0 1 0 0
J 0 0 1 1

K 0 0 1 0
L 0 1 1 1

M 1 0 1 1

N 0 1 1 0
0 1 1 1 0

Figure 7.3 : State Assignment
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Present

State

Inputs Next State Outputs

wxy z Wn Xn yn Zn

0 0 0 0 -START 0 0 0 0 DRIVE A5B

START 1 0 0 0 ACLKTMCLK, DRIVE A5B

1 0 0 0 -IDEQ 0 0 0 0
1DEQ.BLOCK-ROMCS 1 0 1 0

IDEQ.-BLOCK.TM1. 1 1 0 0

-ROMCS

IDEQ.-BLOCK.-TM1. 1 0 0 1

-ROMCS

IDEQ.ROMCS 0 1 1 0

1 1 0 0 1 1 0 1 -AEN,-MADE24,M/40,-REFR-

-SH,-ADL,-SO,S1,DCLK

1 0 0 1 1 1 0 1 AEN,- MADE24,M/ -IO,

-REFRESH,-ADL,S0,-S1

Figure 7.4 : State Table of the Interface Controller State Machine
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1 1 0 1 TM1 0 1 0 1 -AEN,-MADE24,M/40,-REFR-

-SH,-SO,S1,-DEN,-CMD,

START COUNT,CD SFDBKCL

-TM1 0 1 0 1 -AEN,-MADE24,M/40,-REFR-

-SH,S0,-S1,-DEN,-CMD,

START COUNT,CD SFDBKCL

0 1 0 1 -CD CHRDY.TM1 0 1 0 1 -CMD,-DEN,START COUNT

-CD CHRDY.-TM1 0 1 0 1 -CMD,START COUNT

CD CHRDY.-BLOCK. 0 0 0 0 -CMD,-ACK,-ADEN,TMDRIVE

-TM1

CD CHRDY.-BLOCK. 0 0 0 0 -CMD,-ACK,-DEN,TMDRIVE

TM1

CD CHRDY.BLOCK. 0 1 0 0 -CMD,-ADEN,TMDRIVE

-TM1.-A2OUT

CD CHRDY.BLOCK. 0 1 0 0 -CMD,-DEN,TMDRIVE

TM1.-A2OUT

CD CHRDY.BLOCK. 0 0 0 0 -CMD,-ACK,-ADEN,TMDRIVE

A2OUT.ENDBLOCK.

-TM1

Figure 7.4 : Continued
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CD CHRDY.BLOCK. 0 0 0 0 -CMD,-ACK,-DEN,TMDRIVE

A2OUT.ENDBLOCK.

TM1

CD CHRDY.BLOCK. 0 0 1 1 -CMD,-ADEN,TMDRIVE

A2OUT.-ENDBLOCK.

-TM1

CD CHRDY.BLOCK. 0 0 1 1 -CMD,-DEN,TMDRIVE

A2OUT.-ENDBLOCK.

TM1

1 0 1 0 -TM1 1 0 0 1 AOBLOCK=L,AIBLOCK=L,

A2BLOCK=L,DRIVEA2B

TM1 1 1 0 0 AOBLOCK=L,AIBLOCK=L,

A2BLOCK=L,DRIVEA2B

0 1 0 0 -Thl 1 0 0 1 AOBLOCK=L,AIBLOCK=L,

A2BLOCK=H,DRIVEA2B

TM1 1 1 0 0 AOBLOCK=L,AIBLOCK=L,

A2BLOCK=H,DRIVEA2B

0 0 1 1 4WORDS.-8WORDS. 0 0 1 0

-16WORDS

Figure 7.4 : Continued
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-4WORDS.8WORDS.

-16WORDS

-4WORDS.-8WORDS.

-16WORDS

0

1

1

0

1

1

1

1

0 0 1 0 1 0 1 0 A3BLOCK=H,DRIVEA3B

0 1 1 1 1 0 1 0 A3BLOCK=L,DRIVEA3B

A4BLOCK=H,DRIVEA4B

1 0 1 1 1 0 1 0 A3BLOCK=L,DRIVEA3B

A4BLOCK=L,DRIVEA4B

A5BLOCK=5,DRIVEA5B

0 1 1 0 1 1 1 0 -AEN

1 1 1 0 0 0 0 0 -ACK,TMDRIVE

Figure 7.4 : Continued
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MICRO CHANNEL
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*CLK
F/F
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RANDOM
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NU BUS
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ADDRESS/DATA
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ROM
DATA

Figure 7.5 : Block Diagram of the Interface Controller
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Figure 7.6 : Input/Output Signals of the Interface Controller
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TMO* Al AO -BE0 -BE1 -BE2 -BE3 Type of Cycle

L L L L HHHByte0
L L H H L HHBytel
L HL H H L HByrt2
L H H H H H L Byte3HL L L L L L Full WordHL HL L HH1/2Word0
H H L L L L L Block
H H H H H L L1/2Wordl

Note : TM1* = L Write Cycle.

TM1* = H Read cycle.

-BE0 = TMOL.AO + TMOL.A1 + MAO

-BE1 = TMOL-A0 + Al.A0

-BE2 = TMOL.-Al + TMOL.AO + -MAO

-BE3 = TMOL.AO + -Al.A0

Note : TMOL is Latched TMO.

Figure 7.7 : Truth Table and Equations for Micro Channel
signals -BE..
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-BEO

-BE 1,
-SHBE

BLOCK

-START

Figure 7.8 : Logic Diagrams
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Figure 7.9 : Clock Generator Circuit
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Figure 7.10: Logic Diagram of Transfer Mode Signal Driving Circuit
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..)
TMX < MODE )---------< STATUS )

ACLK, TMCLK___1(

-IDEQ --\
BLOCK(LOW)

-AEN

AX, -MADE at IVLI -10__________<
MICROCHANNEL ADD. >

-ADL \ /
-SO, -SI _______<

STATUS )
CD CHRDY

-CMD

-DEN

DX

-ACK

...-------< WRITE DATA >

Figure 7.11 : Write Cycle of the Interface
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----\

BLOCK(LOW)

-AEN

AX. -MADE &p.4 -R-.L2________<
MICROCHANNEL ADD.

-ADL

>

-SO, -SI
STATUS >

CD CHRDY

-CMD

DX

-ADEN

-ACK

-...-----.......-----< READ DATA >

Figure 7.12 : Read Cycle of the Interface
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Figure 7.13 : Logic Diagram of Block Transfer Logic
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APPENDIX A

Design Equations

Equations for Next State Variables :

Zn = w. -x. -y. -z. IDEQ. -BLOCK. -TM 1 .-ROMCS + -y(w.z + x.w) + -TM 1 .

z(w.-x.y + -w.x. -y) + -w. -x.y.z.-4WORDS + -w.x. -y.z.BLOCK.
A2out.-ENDBLOCK.CD CHRDY

Yn = w. -x. -y. -z .IDEQ (BLOCK + ROMCS) + -w.x. -y.z.BLOCK.A2out.
ENDBLOCK.CD CHRDY + -w.y + -x.y.z

Xn = w. -x.-y. -z.IDEQ(-BLOCK.TM 1 + ROMCS) + w.x. -y + w. -y.z +
w.x. -y.z(BLOCK.-A2out + -CD CHRDY)+ -z.TM1 (w.-x.y + -w.x) + -w.

-x.-y.z.-4WORDS.8WORDS.- 16WORDS + -w.x.y.-z

Wn = x.-y.-z + w.-x.z + -w.x.y + -x.y.-z + -w. -x. -y.-z. -START + w. -x.-y.
z.IDEQ.-ROMCS + -w.-x.-y.z. -4WORDS.-8WORDS. 16WORDS

Equations For Control Signals of Address/Data Interface :

ACLK = -w. -x. -y. -z. -START. CLK

-AEN = -(w.x.-y + w.-y.z + -w.x.y.-z)

DCLK = w.x.-y.-z

DEN = (w.x.-y.-z + -w.x. -y.z) .TM 1

ADEN = (-w.x. -y.z. CD CHRDY. -TM 1)

-A/D = HIGH
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Note : HIGH = Logic 1 = Vcc.

Equations For Nu Bus Signals :

ACK* = -(-w.x.-y.z.CD CHRDY(-BLOCK + A2out.ENDBLOCK) +
w.x.y.-z)

NMRQ*= -IRQ3.-IRQ4.-IRQ5.-ERQ6.-IRQ7.-IRQ9.-IRQ10.-IRQ11.
-IRQ12. -IRQ14.-IRQ15

TMO* = C5.C4 + C5.C3 + C5.C2 + CHCK

TM1* = C5.C4 + C5.C3 + C5.C2 + CD SFDBK + BLOCK

TMCLK = -w.-x.-y.-z.-START.CLK

TMDRIVE = -w.x.- y.z.CD CHRDY + w.x.y.-z

Equations For Micro Channel Signals :

MADE 24 = -(w.x.-y + w.-y.z)

M/-I0 = w.x.-y + w.-y.z

-REFRESH =-(w.x.-y + w.-y.z)

-SHBE = TMO.-A0 + ALM

ADL = -(w.-y(x.-z + -x.z).-CLK)

SO = -(w.x.-y.-z + w.x.-y.TM1)

S1 = -(w.-x.-y.z + w.-y.z.-TM1)
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-CMD = -(x.-y.z)

CHRESET = -RESET*

-BE0 = TMO.AO + TMO.A1 + ALA°

-BE1 = TMO.-A0 + A1.A0

-BE2 = TMO.AO + TMO.-A1 + -A1.A0

-BE3 = TMO.-A0 + -ALA°

CD SFDBK CLK = w.x.-y.z

START COUNT = w.x.-y.z + -w.x.-y.z.-CD CHRDY

Equations For Block Support Logic Signals:

AOblock = LOW

Alblock = LOW

A2block = -w.x.-y.-z

A3block = -w.-x.y.-z

A4block = -w.x.y.z

A3block = w.-x.y.z

DRIVEA2B = -w.x.-y.-z + w.-x.y.-z

DRIVEA3B = -w.-x.y.-z + -w.x.y.z + w.-x.y.z
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DRIVEA4B = -w.x.y.z + w.-x.y.z

DRIVEA2B = -w.-x.-y.-z + w.-x.y.z

MUXO = BLOCK

MUX1 = BLOCK

MUX2 = BLOCK

MUX3 = BLOCK.-A3.A2

MUX3 = BLOCK.-A4.A3.A2

MUX3 = BLOCK.-A5.A4.A3.A2

4WORDS = A2block.BLOCK(A3 + A4 + A5)

8WORDS = A2block.A3block.BLOCK(A4 + A5)

4WORDS = A2block.A3block.A4block.BLOCK.A5


