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Chapter 1 – Introduction

P
hysical reality is manifestly hierarchical. Objects emerging on one spatial scale

come together to shape new objects, interactions, and phenomena on larger scales.

The task of understanding the nature of a system in terms of the dynamics of its

microscopic constituents is a canonical problem in physics and engineering, and serves as a

cornerstone in both the top-down program of the 20th century and the bottom-up approach

of the 21st century in pursuit of universal physical laws [7]. Multiscale thinking and analysis

takes center stage in modern engineering as well, as systems of practical interest grow in

size, age, and complexity, and practices of design, prediction, and control, increasingly rely

on mathematical modeling and simulation.

A central concept in multiscale analysis is the idea of coarse-graining, where microscopic

degrees of freedom are aggregated into effective representations to render the dynamics of a

system more tractable mathematically and computationaly. The archetypical example for

efficient coarse-graining is the ideal gas law that results from modeling ∼ 1023 microscopic

degrees of freedom with the Boltzmann distribution [145]. A marvel of data compression,

the ideal gas law allows for heterogeneity in observables (particle positions and momenta),

but describes a system that is almost entirely void of microscopic structure. In other

words, save for their specific thermodynamic state, instances of the ideal gas are entirely

interchangeable. In contrast, spatially extended physical systems can embody microscopic

fluctuations due to variations in some structural aspect of their constituents. This work is an

exploration of situations where the unique aspects of the structure of microscale fluctuations

lead to measurable variation in macroscopic observables or dynamics.

I explore five problems of this sort as they arise in multiscale modeling of transport

phenomena in natural and designed environments (Figure 1.1). In each problem I study how

(i) a coarse-grained observable carries microscale information, and/or (ii) how the presence

of structure affects the nature of coarse-grained dynamics. In Chapters 2 and 4, I study

pore-scale transport in porous media, the focus being on understanding and computing the

effective diffusivity and permeability tensors from pore-scale information. The microscopic

feature of interest here is the morphology of impermeable phase interfaces. In Chapter 3,
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we explore anomalous reaction kinetics induced by incomplete mixing of reactants. The

microscopic structure of interest here is the initial distribution of mass in the system, and

the focus is on the rate of relaxation of coarse-grained kinetics to their asymptotic value

as a function of the degree of segregation in initial conditions. In Chapter 5, I develop a

multiscale model for the adhesion of rough soft interfaces. By treating an adhesive interface

as a collection of individual adhesive constituents, I explore how heterogeneities in length

and elasticity of these constituents can shape the potential energy function that describes

the adhesion of the interface. Finally, in the Appendix, I study the noise in the bulk pressure

drop measured across a confined porous medium that is subject to biofilm growth under

flow, and its implications for the predictability of biofilm-induced transformation of pore

spaces.

The nature of the microscale fluctuations in these different problems varies in significant

ways. In Chapters 2 and 4 microscale interfaces are stationary, in the sense that they do

not evolve over the timescales that transport takes place in; we are interested in the effects

of these structures on transport properties as stationary observables. Similarly in Chapter

5, save for deformations, the makeup of the cell surface is invariant over the time-scales

that an adhesion event take place. In contrast, in Chapter 3, the initial distribution of mass

dissipates over time. We are interested in how this initial structure affects the macroscopic

rates by promoting transience in rate constants and memory terms. In the Appendix, the

evolving structure of the pore space (due to biofilm growth) is the generator of noise.

In the remainder of this chapter, I will introduce each problem in greater detail.

1.1 shape processing in pore-scale diffusion

The physics of transport in porous media are deeply influenced by processes at the pore

scale. In Chapter 2, I explore the mathematics of how the effective diffusivity tensor of ho-

mogeneous porous media encodes the shape of a pore space. When the method of volume

averaging is used to derived the coarse-grained diffusion equation, the tensor is defined in

terms of a closure variable, i.e. an ancillary field variable that maps macroscopic gradient

information to microscale spatial fluctuations in the dynamical variable of interest. I discuss

a geometric interpretation of this vector field, and provide computations as well as visu-

alizations for a number of crystalline and random arrangements of particles with varying

anisotropies. I frame the study as a proposal that the closure variables of the method of
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Figure 1.1: Multiscale organization of transport phenomena in natural systems. A river
embodies many of the scenarios where structure and transport interact.

volume averaging can be understood as mechanism-specific processors of shape information.

1.2 kinetics of mixing-limited reactions

Chapter 3 deals with anomalous kinetics in a confined mixing-limited system, described by

the catalytic reaction B
A→C. Here we are focused on the rate of transformation of B in

instances where A and B are initially highly segregated and mix via diffusion. We set up the

problem as a special case of a general reactive transport model derived using the method

of volume averaging with local closure [125]. If the microscopic reaction is fast enough,

incomplete mixing at early times hinders the effective macroscale reaction. We describe

the non-classical progression of the reaction as a consequence of both (i) a preasymptotic

effective rate of reaction that is relaxing toward the classical value, and (ii) an external

source term. The latter indirectly measures the spatial correlations between A and B and

represents it as a macroscopic source term for B. We show that for highly segregated initial

conditions, this source term is not negligible at early times, and the effective rate of reaction



4

can remain pre-asymptotic over the global reaction timescale.

Our results suggest that the deviation from classical kinetics can be expressed as ξ ∼
Daδ `α, where ` is an appropriate microscopic diffusive length scale, and the Damköhler

number, Da, measures the relative timescales of diffusion and reaction. We estimate ` to be

on the order of a the mean equivalent diameter of coherent subdomains that are exclusively

occupied by one reactant at t = 0. Large clusters and fast reactions lead to the most

deviation from classical rates. We also observe that a local closure for the theory is valid for

bi-symmetric initial conditions. Configurations that induce persistent macroscopic fluxes

can cause instabilities in the local model and require a nonlocal treatment.

1.3 pore-scale flow and closure for Darcy’s law

Chapter 4 serves as the second half of a forthcoming monograph on upscaling the Stokes

equations to obtain Darcy’s law. The work is a reinterpretation of the application of volume

averaging to Darcy flow via the Stokeslet. The material presented in this chapter is the

computational component of the work that provides closure for Darcy’s law by resolving

the pore-scale velocity and pressure fields via high-fidelity direct numerical simulations.

The analysis is constructed around a representative elementary volume analysis for an

experimental dataset. We use periodically disorderd packings of monodisperse spheres as

models of the pore space, and study the structure of the velocity and pressure fields. We

also compute the permeability tensor for these structures, and compare the results to the

ones obtained for the experimental system. We discuss how the flow field varies for sample

of different sizes, and in response to confinement.

1.4 multiscale adhesion of rough soft interfaces

Chapter 5 deals with the adhesion of bacteria to mineral or synthetic surfaces. Cell sur-

faces are soft because they are deformable, and are rough because they are made up of

diverse constituents with different molecular structures and average lengths. The motion

of bacteria in fluid environments is affected by adhesion, especially in porous media where

cells are likely to encounter interfaces and surfaces frequently. In multiscale approaches to

modeling motion, bacteria are often thought of as individual particles that form an effective

macroscopic bond with surfaces. To represent this bond, it has been common to borrow
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chapter macroscale observable microscale (structural) fluctuations

2 effective diffusivity morphology of phase interfaces
3 bulk kinetics initial distribution of mass
4 permeability morphology of phase interfaces
5 potential energy function of adhesion polymer lengths and elasticities

appendix bulk pressure drop morphology of biofilm-fluid interfaces

potential energy functions originally developed to describe the motion of particulate matter

like suspended colloids.

Instead I explore constructing the potential energy function out of the smaller-scale mi-

cromechanics of surface polymers, the idea being that for complex surfaces adhesion can be

a consequence of a finite number of bonds between exposed macromolecules and mineral

surfaces. In this setting, heterogeneities in length (roughness) and in the mechanical proper-

ties of surface macromolecules can be encoded into the net potential energy function of the

surface. Our results show that length heterogeneities lead to the emergence of metastable

states in the potential function. We also find that nonlinear elasticity combined with length

heterogeneities can create a scenario where roughness is advantages for a cell that benefits

from being surface-bound.

1.5 biofilm-induced pressure fluctuations in confined porous

media

The Appendix originated from a 3D imaging study of biofilm growth under flow in model

bead pack columns [77] conducted in Dr. Dorthe Wildenschild’s lab. Biofilm was grown in

model porous media in these experiments over a span of ∼2 weeks, after which they were

interrupted and the columns imaged using a synchrotron-based x-ray microtomography

method. Continuous transducer readings of bulk pressure drop across these columns are

noisy and fluctuate on multiple timescales. We can understand this noise originating in

the coupled dynamics of flow and biofilm growth. I study the information content of these

signals in an attempt to answer (i) whether or not the point at which the experiment was

terminated was representative, and (ii) if biofilm-altered flow in porous media can access

states that are stochastic but still (macroscale) predictive in a meaningful way.



6

1.6 where does (persistent) structure come from?

The antecedent processes that generate the structures studied in this work are irrelevant,

but it behooves the discussion to briefly discuss some of them. Shapes and patterns in

nature generally have dynamical origins [172], and these dynamics are often transport-

related [131], but the dynamics that generate the shapes studied in this work can be ad

hoc. The morphological information discussed in Chapters 2 and 4 could be geological (as

in sand, rock, etc.), biological (as in fibrous materials) or even synthesized (as in topology-

optimized 3D printed media).

For the purposes of this work, these structures are quenched or ‘frozen in’. This as-

sumption preserves the linearity of the diffusion and Stokes equations. Conversely, the

morphological information in the Appendix originates in the ongoing interaction of flow

and cell growth, making it an inherently nonlinear (feedback-driven) process.

The structure of bacterial surfaces in Chapter 5 is believed to emerge out of the an

intricate dynamical system involved in the determination of polymer lengths. The problem

of O-antigen chain length control in gram-negative bacteria is particularly well-known and

currently studied in biophysics [90]. In this case, structure is an output of an adjacent

dynamical system. For the purposes of our study, we are assuming that the timescales

associated with the structural evolution of these surfaces are much longer than those of

adhesion events.

Finally the origins of structure can be arbitrary or even ad hoc. For instance, the

segregated initial distributions discussed in Chapter 3 could represent the accidental dump

of contaminants into a stagnant environment.
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Abstract

We study the relationship between the morphology of impermeable phase interfaces and

the effective diffusivity of porous media in the context of volume averaging. We show that

the effective diffusivity tensor is defined in terms of a microscale vector field that encodes

purely morphological information. We show that the vector field is globally shape-aware

and provide visualizations of its structure in a variety of 2D and 3D periodic models for

two-phase porous materials.

2.1 Introduction

A defining characteristic of transport in porous materials is the prevalence of phase interfaces

and the constraints that they impose on motion. The relationship between the information

contained in phase interfaces and effective transport properties of porous media has been of

theoretical and applied interest across the board. The transient inverse problem for passive

diffusion is particularly well-known [85] and fundamental to imaging applications [108].

The forward problem for diffusion with or without forced convection appears in design of

materials (e.g. for energy applications), and multiscale analysis of environmental systems

among others.

In the Fickian regime, diffusion through porous media is characterized by an effective

diffusivity, based on the notion that a coarse-grained (effective) flux, J∗, can be constructed

that describes the evolution of an associated coarse-grained scalar field, Ψ∗, as J∗ = D·∇Ψ∗,

where the tensor D carries the influence of microstructure.

The earliest computation of D for porous media is Maxwell’s solution for a periodic reg-

ular array of circular inclusions near infinite dilution [106], at the limit where one phase is

impermeable. Maxwell’s solution is now understood to be the Hashin-Shtrikman bound for

this particular problem [69]. Subsequent work on other geometries has shown that porosity

is a fairly accurate predictor of the diagonal components of D in ordered isotropic struc-

tures, but higher-order quantifiers of shape or spatial correlations are needed to describe

anisotropic or disordered media (e.g. [122]).

In this letter, we study D in a context where J∗ and Ψ∗ are interpreted as spatial averages

of microscale information. The tensor D is shown to be defined in terms of the gradient

of a microscale vector field that naturally arises in the theory and encodes morphological
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information. We study the topology of this vector field for a variety of structures. We

propose that the structure of this field (and its counterparts for other transport problems)

provides a natural approach to understanding how the morphology of the impermeable phase

affects the effective diffusivity of the conductive phase. We are particularly interested in

how this approach can be used in conjunction with recent work using global morphology

[107, 144].

2.2 Background

In this section we will briefly revisit the theoretical framework for developing the spatially

averaged diffusion equation, and derive the effective diffusivity tensor. The analysis is based

on the Neumann problem for the diffusion of a tracer in a percolating medium with reflecting

interfaces. For simplicity, we will restrict the analysis to two levels or operational scales,

but the study can be trivially extended to multi-level systems [30].

2.2.1 Setup for spatially-averaged diffusion

Consider the domain V enclosed by boundary ∂V that is defined as the union of impermeable

phase κ and conductive phase γ

V := Vγ ∪ Vκ, (2.1)

where the two phases are separated by the boundary Aγκ(≈ ∂Vγ). And consider the

piece-wise smooth scalar field ψ undergoing diffusion in Vγ as described by

∂ψ

∂t
= ∇ · (Dγ∇ψ)

− nγκ · Dγ∇ψ = 0 ∀r ∈ Aγκ
(2.2)

with arbitrary initial conditions and Dirichlet or Neumann conditions on ∂V. Diffusion

takes place in the γ-phase (i.e. pore space) over the length scale Lp on time scale T ∗ψ
(figure 2.1). Next, consider a spatial averaging operator defined using a weight function, w,

with compact support on Vγ and applied to ψ:
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Ls

impermeable
 phase, κ

permeable
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level II

level I

∂V

V

Figure 2.1: Schematic illustrating the setup for the diffusion problem in a hierarchical two-
phase medium. Level I, or the microscale, is characterized by the pore length scale Lp,
and Level II, or the macroscale, by the length scale L. Averaging is performed over a
support scale defined by the length scale Ls. The three length scales satisfy the relationship
Lp � Ls � L.

〈ψ〉 |(x,t) =

∫
r∈Vγ(x)

w(x− r)ψ(r, t) dV (r). (2.3)

The weight function is supported on the length scale Ls, chosen such that Lp � Ls to

ensure that averaging is performed on volumes that filter out small-scale fluctuations on

the order of Lp [134]. For simplicity, we will adopt the function w = 1/Vγ .

The action of (2.3) results in the coarse-grained field 〈ψ〉γ , where the superscript implies

averaging over the conductive phase.
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Figure 2.2: Schematic for the concept of a representative elementary volume (REV). The
REV is used to model the spatial fluctuations, ψ̃, around the averaged field 〈ψ〉γ . The REV
is defined on the length scale LREV � Lp. The vectors x and y locate the centroid of the
REV and arbitrary points inside the REV, respectively.

2.2.2 Perturbation analysis

Next we are interested in reformulating (2.2) in terms of an averaged scalar field and spatial

fluctuations around it. This involves implementing the following spatial decomposition [66]:

ψ(x, t) = 〈ψ〉γ |(x,t) + ψ̃(x, t), (2.4)

that is, at each point x ∈ V, the point-wise and averaged scalar fields are related via a

spatial fluctuation field ψ̃ also defined on Vγ .

Averaging of the Fickian diffusion problem using (2.3) has been outlined extensively in

the literature [185, 110, 195]. After the application of (2.4) and the interfacial boundary

conditions, the most general averaged form of (2.2) is

∂〈ψ〉γ

∂t
= ∇ ·

(
J〈ψ〉γ + Jφ +N〈ψ〉γ +N ψ̃

)
, (2.5)

where the nonlocal operator N acting on a scalar field ϕ is defined as:

Nϕ =
Dγ
Vγ

∫
Aγκ

nγκ ϕ dA. (2.6)

The contribution of the impermeable phase appears as two nonlocal surface fluxes and
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a convective flux. N〈ψ〉γ and N ψ̃ constitute/represent nonlocal diffusive fluxes for the

average and fluctuation fields, Jφ = (Dγ∇φ)〈ψ〉γ is a geometric convective flux that responds

to macroscopic porosity gradients, and J〈ψ〉γ = Dγ〈ψ〉γ a local diffusive flux. Nonlocal (or

macro-) diffusion characterizes memory-driven systems, e.g. media with (strong) long-range

disorder. Despite being representative, nonlocal models can be challenging to implement

in practice. It is also unclear if a coarse-grained model like (2.5) is optimal in the sense of

[189].

We are interested in problems where the evolution of 〈ψ〉γ is more or less driven by

local information. We can show that this is the case for media with negligible macroscopic

inhomogeneities. We can define this class of materials more precisely in terms of a series

of spatial quasi-stationarity conditions that can be shown to imply that the macrodiffusive

term N〈ψ〉γ is zero [185, 194].

One could argue that the term Jφ is likely to vanish too for media that are reasonably

homogeneous on the macroscale and averaged on a proper support scale. We will assume

this is the case. Since this term does not require closure, the structure of the forthcoming

analysis would not change should one decide to keep it. Homogenized models of transport

in macroscopic porosity gradients is the subject of ongoing research [24] and have found

interesting applications, for instance in maximizing the lifespan of materials that evolve

toward a non-percolating state [38, 39].

We are also interested in situations where a subset of V, or a so-called representative

elementary volume (REV), exists such that spatial fluctuations everywhere in V are very

similar and therefore interchangeable with those in this volume. An REV, when valid,

significantly reduces the number of causal microscale degrees of freedom in the problem by

(i) making smaller the domain over which a microscale solution is saught, and (ii) eliminating

the dependence of the microscale problem on external boundary conditions. The latter are

usually replaced with periodic boundary conditions (figure 2.2).

2.2.3 Localized closure

When these approximations are valid, the homogenized equation simplifies to [195, 185, 194]:
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∂ 〈ψ〉γ

∂t
=∇ ·

[
Dγ

(
∇〈ψ〉γ +

1

Vγ

∫
Aγκ

nγκ ψ̃ dA

)]
(2.7)

At this point, (2.7) requires closure for the nonlocal termN ψ̃. The functional form of the

spatial fluctuation field is a solution to the evolution equation that is found by subtracting

(2.7) from (2.2)

∂ψ̃

∂t
+∇ ·

[
Dγ
Vγ

∫
Aγκ

nγκ ψ̃ dA

]
= ∇ · (Dγ∇ψ̃) (2.8)

and the associated boundary conditions:

−nγκ · Dγ∇ψ̃ = nγκ · Dγ∇〈ψ〉γ︸ ︷︷ ︸
interfacial source

x ∈ Aγκ (2.9)

ψ̃(r + `i) = ψ̃(r) i = 1, 2, 3 (2.10)

〈ψ̃〉γ = 0 (2.11)

Note that (2.8) allows for time-dependent fluctuations. Often, on short time scales when

the initial conditions still dominate the problem, the time evolution of the fluctuations can-

not be neglected. Once the initial conditions have smoothed out sufficiently, we can consider

a temporal regime where 〈ψ〉γ evolves much more slowly than ψ̃, i.e. O(T ∗
ψ̃
/T ∗〈ψ〉γ ) � 1.

When this approximation is valid, the two scales are temporally separable, and the problem

for ψ̃ essentially stationary from the perspective of the evolution of 〈ψ〉γ . Passive diffusion

in homogeneous media has been shown to relax its initial state fairly quickly [110]. Tran-

sient closure problems are often essential to the macroscale behavior of problems where the

initial conditions can persist beyond early times, e.g. in mixing-limited reactive systems

[125].

It is equally desirable to justify the elimination of the nonlocal term in (2.8), however the

arguments for this are generally more or less intuition-based. Briefly, we can argue that local

evolution is likely much more strongly influenced by derivative than integral information.

The problem for ψ̃ has the following general solution in terms of the Green’s function
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G [195]:

ψ̃(y) =

−
∫

z∈Aγκ(y)

[nγκ(z)G(y; z) · Dγ∇z 〈ψ〉γ |z] dA(z). (2.12)

The spatial convolution of the interfacial source in (2.12) implies very close coupling

between the average and fluctuations, since ∇〈ψ〉γ has to be evaluated at every point in the

REV. Closure of (2.7) using (2.12) therefore results in a nonlocal equation. In the original

work on spatial averaging, the spatial fluctuations were posited to be linearly proportional

to the gradient source term (2.9)

ψ̃(y) = −bγ(y) · ∇ 〈ψ〉γ |x, (2.13)

where bγ is an auxiliary vector field commonly referred to as a closure variable [185],

and ∇〈ψ〉γ evaluated at the centroid of the averaging volume. In appendix 2.7 we show

that (2.13) is the leading order approximation to a series expansion of (2.12) around x, and

bγ is defined as

bγ(y) =

∫
z∈Aγκ(y)

nγκ(z) G(y; z) dA(z). (2.14)

Simplification of (2.12) to (2.13) is commonly referred to as the localization of the

spatial fluctuation field. In appendix 2.7, we show that (2.12) can be truncated after higher-

order terms, and that each term will have a corresponding closure variable. An example of

truncating (2.12) after two terms and the resulting 4th order homogenized diffusion equation

is given in [195].

2.2.4 Effective diffusivity

By combining (2.13) and (2.7), we can now show that the effective diffusivity tensor is

indirectly defined in terms of the microscale propagator, G, via the vector field bγ as

D = Dγ

(
I +

1

Vγ

∫
Aγκ(x)

nγκ(y)⊗ bγ(x + y) dA(y)

)
, (2.15)
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where bγ is the solution to the following problem:

∇2bγ = 0 (2.16)

−nγκ · ∇bγ = nγκ x ∈ Aγκ (2.17)

bγ(r + `i) = bγ(r) x ∈ Aγe (2.18)

〈bγ〉γ = 0. (2.19)

Since the problem for bγ is stationary, (2.15) describes the asymptotic effective diffusiv-

ity (D ≡ D∞). Recent results for dual-permeable systems (where both the γ and κ phases

are conductive) show that the rate of relaxation of the effective diffusivity to D∞ is par-

ticularly sensitive to the type of disorder present in the medium [121]. When computable,

the rate of relaxation of D to D∞ is a reliable indicator of whether or not the separation of

time scales assumption that was discussed above is valid.

The problem for bγ given by (2.16)-(2.19) has a very compelling structure. It describes

a manifold with zero constant curvature throughout Vγ and carries the unit normal vector

field that defines the γ-κ interface as a boundary source. In very simple terms, it describes

the assimilation of shape information from the interface into the domain Vγ as would take

place in a classical diffusive process. In this sense, we can think of the asymptotic effective

diffusivity tensor as carrying the lasting influence of microscale morphology on macroscale

diffusion.

2.2.5 Local effective diffusivity

Like the permeability tensor, the effective diffusivity tensor is constructed as a boundary

integral. In periodic REVs, we can obtain a definition for D in terms of a volume average

of bγ , by observing that

1

Vγ

∫
Aγκ

nγκ ⊗ bγ dA ≡
1

Vγ

∫
Aγκ∪Aγe

nγκ ⊗ bγ dA, (2.20)

and applying the divergence theorem to (2.20) to rewrite (2.15) as
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D = Dγ 〈I +∇⊗ bγ〉γ . (2.21)

We can interpret the kernel of the averaging operator in (2.21) as a local (pointwise)

effective diffusivity tensor

Dloc = Dγ (I +∇⊗ bγ) . (2.22)

2.2.6 Symmetry of D

The diffusion tensor for periodic systems must be symmetric. To demonstrate this, we show

in Appendix B that bγ is a Laplacian vector field; therefore, it is the gradient of a scalar

potential field, ϕ, such that bγ = ∇ϕ. Substituting this into Eq. (2.22), we find

Dloc = Dγ (I +∇⊗∇ϕ) (2.23)

Here, ∇⊗∇ϕ is the Hessian of ϕ

H(ϕ) = ∇⊗∇ϕ =


∂2ϕ
∂x2

∂2ϕ
∂x∂y

∂2ϕ
∂x∂z

∂2ϕ
∂y∂x

∂2ϕ
∂y2

∂2ϕ
∂y∂z

∂2ϕ
∂z∂x

∂2ϕ
∂z∂y

∂2ϕ
∂z2

 (2.24)

Because ϕ is a harmonic function, Tr(H(ϕ)) = 0.

Noting that ϕ is an smooth field with derivatives of all orders, then the order of derivation

in the mixed derivatives is commutable, and this matrix is symmetric. The idemfactor is

identically symmetric, so Eqs. (2.21) and (2.22) represent symmetric tensors.
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2.3 Methods

A number of unit cell geometries were studied, including crystalline arrangements of grains

with various shapes and aspect ratios, and random spatial placement of particles (aka the

Boolean model). System (2.16-2.19) was solved for each unit cell using a finite elements

method in the commercial package COMSOL Multiphysics R© 5.0. The solution was used

to compute the effective diffusivity tensor according to (2.15). Numerical convergence was

found to be sensitive to the spatial uniformity of the unit cells, so instances of the Boolean

model were chosen carefully to satisfy a baseline of symmetry. Convergence was studied

and ensured using the symmetry of the tensor as a guideline, and using standard grid con-

vergence analysis. Mesh refinement was implemented on the source boundaries to improve

convergence.

2.4 Results

2.4.1 isotropic crystalline structures

Figure 2.3 shows visualizations of the bγ vector field for isotropic 2D periodic unit cells.

Several aspects of the topology of this field are noteworthy: (i) for simple particle place-

ments (e.g. fcc, bcc, and sc), three types of fixed points are observed: sinks, saddles, and

source boundaries (sinks and saddles are distinguished by Poincaré indices of +1, and -1,

respectively). The presence of the latter is a direct consequence of the γ − κ boundary

condition in the problem for bγ ; (ii) in more complex cells (bidisperse arrays), often more

esoteric features are observed including regular periodic orbits; the radii of periodic orbits

in this case appear to be sensitive to the ratio of the radii of the particles. In the structure

studied here, saddles tend to occur on (or near) maximally constricted loci, and sinks on

(or near) minimally constricted loci. We can intuitively understand these points as either

redirecting and attracting the flow of shape information from the source boundaries. The

exact locations of these points tend to be strongly affected by polydispersity. The topology

of bγκ appears to be invariant at different porosities for axisymmetric isotropic structures.
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Figure 2.3: Topology of the bγ field for isotropic unit cells (left to right: monodisperse
face-centered cubic (fcc) disk array, bidisperse disk array, and monodisperse simple-cubic
ellipse array with orientation bias). In the visualizations, blue dots denote saddles, red dots
denote sinks, red curves denote attracting periodic orbits, and black curves denote source
boundaries.

2.4.2 anisotropic crystalline structures

In Figure 2.4A we have reproduced computations of the anisotropy ratio of the effective

diffusivity tensor in crystalline cells with grain anisotropy. The ratio, βD, is defined as the

ratio of the smallest to the largest eigenvalue:

βD =
max eig(D)

min eig(D)
(2.25)

In contrast with the isotropic cases, the topology of bγ varies at different porosities for

crystalline unit cells with grain anisotropy. Figure 2.4 shows an example where a sink trans-

forms into a saddle and two sinks via a first-order transition at an aspect-ratio-dependent

critical porosity. Interesting, this point corresponds to the inflection point in the anisotropy

index curve for this geometry. We observed the same feature in other instances of the model

with different grain aspect ratios and different crystalline placements.

2.5 Discussion

We can view pore-scale transport in porous media as a special case of a class of problems

where out-of-equilibrium dynamical systems exchange information. In the particular case

of two-phase media with time-invariant phase boundaries we can consider two dynamical

systems, one of which is in a deep quench state. The information instantiated by this
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Figure 2.4: Anisotropy, βD, of the effective diffusivity tensor for a set of 2D and 3D
anisotropic unit cells. The ratio is sensitive to the dimensionality and placement of ellipses
and ellipsoids. The case of a body-centered fully-oriented ellipse array has been highlighted.
The inflection point in the tensor anisotropy curve (marked by a vertical dashed line in A)
corresponds to a first-order transition in the topology of bγ (pre- and post-transition vector
fields are depicted in B and C, respectively).

quench state is stored in and represented by the morphology the phase boundaries. This

interpretation is partially supported for diffusion by recent results that diffusion in porous

media can be thought of as a special case of size-excluded diffusion in a binary mixture at

the limit where the diffusivity of one phase vanishes [23].

As such approaches to describing the effective diffusivity and permeability of porous

materials using tools from mathematical morphology show great promise [107, 144]. Much

like the vector field bγ , integral shape quantifiers (e.g. Minkowski functionals) encode

morphological information in a global fashion, by taking into account information from

all orders and therefore circumvent the limitations of truncated order correlation functions

[107]. Integral shape quantifiers also provide a more natural setting to study porous media

near the percolation threshold, than more simplistic statistical measures.

Closure variables of spatially-averaged transport equations can be considered as com-

plimentary to this program, a they embody how exactly the transfer of shape information

from the interfaces to the conductive phase takes place. The closure variable for diffusion is

a globally shape-aware vector field with units of length, that is shown to be conserved. We

have shown that the topology of this field is sensitive to the shape of the phase boundaries,

and that certain features of effective diffusivity tensor can be explained by navigating the

topological features of this field and their transitions at different porosities.
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2.5.1 Role of shape in transport

The preceding provides a platform for understanding and comparing how different transport

mechanisms in porous media process the morphology of the pore space. Thinking in terms

of Kac’s inverse spectral problem for bγ , we can anticipate morphologies that produce more

or less the same D. The same morphologies might generate different values for another

transport tensor T that is constructed using a different operator with a different spectrum.

One way to compare the relative sensitivities of D and T to morphological information

might be to study the eigenfunction spaces of the closure problems associated with each

transport mechanism.

2.6 Conclusions

In future work, the analysis presented here will be expanded to other transport phenomena,

particular creeping flow. We will also explore potential algorithmic analogs of the closure

variables that might be used to generate distance maps that mirror these field variables.
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Appendix

2.7 Localization of the closure problem

In order to simplify the solution given in (2.12), we can replace the gradient term in (2.12)

with its expansion around the centroid of an averaging window and carry the resulting

derivatives out of the integral [195]:

∇〈ψ〉γ |x+z = ∇〈ψ〉γ |x
+ z · ∇ ⊗∇〈ψ〉γ |x

+
1

2!
z⊗ z : ∇⊗∇⊗∇〈ψ〉γ |x

+...

(2.1)

Here it is assumed that the order of operations requires that outer products be completed

before contractions [1].

Combining Eq. (2.1) with Eq. (2.12) yields the following result (here, truncating at

second-order derivatives in ψ)

ψ̃(y) =

−Dγ
∫

z∈Aγκ(y)

G(y; z) nγκ(z) · ∇ 〈ψ〉γ |x dA(z)

−Dγ
∫

z∈Aγκ(y)

G(y; z)nγκ(z) · (z · ∇ ⊗∇〈ψ〉γ |x) dA(z)

The expansion allows us to rewrite (2.7) as follows where all quantities are conditioned

on the centroid x:
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∂ 〈ψ〉γ |x
∂t

= ∇ · (DγI · ∇ 〈ψ〉γ |x) +

∇ ·


Dγ
Vγ

∫
Aγκ

nγκ ⊗ bγ dA

 · ∇ 〈ψ〉γ |x
 +

∇ ·


Dγ
Vγ

∫
Aγκ

nγκ ⊗ Bγ dA

 : ∇∇〈ψ〉γ |x

 +

... (2.2)

The terms D0, D1, and D2 in (2.2) are the n-th order effective diffusivity tensors, and

the closure variables bγ ,and Bγ are defined by

bγ(y) =

∫
z∈Aγκ(y)

G(y; z)nγκ(z) dA(z)

Bγ(y) =

∫
z∈Aγκ(y)

G(y; z)nγκ(z)⊗ z dA(z) (2.3)

Assuming that the average concentration is a C∞ smooth field, the only choices that

maintain a positive-definite operator are (i) all terms of the expansion are kept, or (ii)

only terms leading to second-order derivatives in average concentration are kept. Thus, the

conventional parabolic coarse-grained diffusion equation is an approximation that results

from first-order localization of (2.7). In the following we will adopt the second of these two

options.

2.8 Conservation of bγ

In this appendix, the proof that the vector field b is conservative is developed. Note that,

by definition, b is harmonic everywhere in the domain x ∈ Vγ ; thus, it possesses derivatives

of all orders.

To start, we note that a vector field is conservative if it can be expressed in the form
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bγ = ∇ϕ (the choice to put a negative sign in front of the gradient is inconsistently applied;

here, we have adopted the conventional approach without the negative sign). Clearly ϕ

has derivatives of all orders. We consider bγ to be a known field, determined uniquely by

solving Eqs. (2.16)-(2.19). From this definition, we can make the following statements

−n · ∇ϕ =− n · bγ (2.1)

∇2ϕ =∇ · bγ (2.2)

In combination with the periodic boundary conditions and averaging constraint adopted for

the bγ , the necessary potential ϕ can apparently be constructed by solving the following

set of equations

∇2ϕ = ∇ · bγ , in Vγ (2.3)

−n · ∇ϕ = −n · bγ , at Aγκ (2.4)

∇ϕ(x + `i) = ∇ϕ(x + `i) (2.5)

〈∇ϕ〉γ = 0 (2.6)

The set of equations given by Eqs. (2.19)-(2.22) are linear, and provide sufficient information

to determine ϕ within an arbitary constant. Thus, these equations define the function φ,

such that bγ = ∇ϕ. This means that, by definition, bγ is a conservative vector field. All

conservative vector fields are irrotational; this is easily proved by noting

∇× bγ = ∇×∇ϕ = 0 (2.7)

where ∇×∇ϕ = 0 is an identity of vector calculus.

Now we show that, no only must bγ be a conservative field, but it must also be a Lapla-

cian vector field. A Laplacian vector field is defined as a vector field that is both irrotational

and divergence free. Although bγ must be irrotational, it has not been established that it

must also be divergence free. To prove this, we start by noting the vector identity

∇2b = ∇(∇ · bγ)−∇× (∇× b) (2.8)
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Noting that the field bγ is curl-free, and that ∇2bγ = 0, we have

∇(∇ · bγ) = 0 (2.9)

The only solution to this equation is

∇ · bγ = c0 (2.10)

where c0 is a constant. Integrating both sides of this, we find

∫
Vγ

∇ · bγdV =

∫
Vγ

c0dV (2.11)∫
Aγκ

nγκ · bγdV = c0Vγ (2.12)

Now noting that from the first boundary condition in Eqs. (2.19)-(2.22), we can write

− nγκ · ∇ ⊗ bγ · bγ = nγκ · bγ , at Aγκ (2.13)

The left-hand side of this can be manipulated as follows

−nγκ · ∇ ⊗ bγ · bγ = −nγκ · ∇(bγ · bγ)

= −2nγκ · ∇(bx + by + bz) (2.14)

Thus, the boundary condition now reads

− 2nγκ · ∇(bx + by + bz) = nγκ · bγ , at Aγκ (2.15)

Integrating both sides of this equation over the area Aγκ yields

− 2

∫
Aγκ

nγκ · ∇(bx + by + bz)dA =

∫
Aγκ

nγκ · bγdA (2.16)

Use of the divergence theorem (and accounting for the periodic conditions on bγ on Aγe)

yields
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− 2

∫
Aγκ

∇2(bx + by + bz)dA =

∫
Aγκ

nγκ · bγdA (2.17)

The right-hand side of this expression is identically zero, yielding∫
Aγκ

nγκ · bγdA = 0 (2.18)

Finally, comparing this result with the result given in Eq. (2.12), we find c0 = 0. Thus, from

Eq. ((2.10), we have that ∇ · bγ = 0. Because bγ is both divergence-free and irrotational,

then it must be Laplacian. Finally, we note then, that the potential function for bγ is now

given explicitly by

∇2ϕ = 0, in Vγ (2.19)

−n · ∇ϕ = −n · bγ , at Aγκ (2.20)

∇ϕ(x + `i) = ∇ϕ(x + `i) (2.21)

〈∇ϕ〉γ = 0 (2.22)
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Abstract

The process of mixing and reaction is a challenging problem to understand mathematically.

Although there have been successes in describing the effective properties of mixing and

reaction under a number of regimes, process descriptions for early times have been chal-

lenging for cases where the structure of the initial conditions are highly segregated. In this

paper, we use the method of volume averaging to develop a rigorous theory for diffusive

mixing with reactions from initial to asymptotic times under highly segregated initial con-

ditions in a bounded domain. One key feature that arises in this development is that the

functional form of the averaged differential mass balance equations is not, in general, scale

invariant. Upon upscaling, an additional source term arises that helps to account for the

initial configuration of the reacting chemical species. In this development, we derive the the

macroscopic parameters (a macroscale source term and an effectiveness factor modifying the

reaction rate) defined in the macroscale diffusion-reaction equation, and provide example

applications for several initial configurations.

3.1 Introduction

The study of diffusion-reaction equations has a long history that spans several disciplines;

early works on the topic have been published in physics[157, 178, 160, 31], chemistry[173, 35],

engineering[20, 41, 42, 40, 166, 74], and biology [137, 138, 171]. The literature for diffusion-

reaction equations is large, especially for the case of nonlinear diffusion and reactions[36, 92].

Most of the recent literature has been focused on the understanding of anomalous kinetics

in bi-molecular reactions. Kinetics are considered anomalous when, because of transport

limitations, the apparent rate of reaction depends upon time[93]. The primary effort to

date has been focused on the search for scaling laws (usually power law functions of time)

in unbounded domains, and these efforts have uncovered several interesting regimes as the

systems evolve toward their asymptotic limits[126, 167, 86, 149, 94, 201, 16, 44]. The initial

conditions for much of this work has, historically, been specified by uncorrelated random

fields, in part because such conditions lead to more anomalous behavior[103]. Initial condi-

tions in which there are spatial correlations (but still specified as random fields) have also

been investigated[47, 129, 142]. A handful of studies have examined, either purposefully or

because of computational limits, the influence of bounded (including periodically-bounded)
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systems. These studies have illustrated that bounded systems behave differently from un-

bounded ones, and the effects of the boundaries as system-specific, although ultimately such

systems decay according to classical (non-anomalous) kinetics[142].

It has been well recognized that no single exponent on time will describe the concentra-

tion (density) decay in diffusion-reaction equations for all time[5, 142]. Early time behavior

has been particularly difficult to elucidate. The results that do exist for early time behavior

are primarily focused on the motion and width of the front when reactants are separated

at a discrete interface[59, 70, 95, 99, 161, 162, 163, 168]. In the engineering literature

on diffusion-reaction equations, anomalous kinetics are characterized by the effectiveness

factor, which is defined as the ratio of the observed reaction rate to the the classical (i.e.,

non-transport-limited) reaction rate[166]. Although this parameter provides no information

about the exponents for scaling in time, it is nevertheless a useful concept to describe the

effective rate of reaction in the regimes where no simple scaling law is expected to exist.

In this paper, we develop a time- and space- local effective theory of diffusive mixing for

the general class of second-order catalytic reactions of the form B
A→C, via the method of

volume averaging with closure. We are interested in how the initial condition configuration

influences the evolution of the effective rate of reaction. Thus, we specifically examine initial

conditions where the characteristic dimensions of the initial cluster sizes of the reactants is a

large fraction of the domain size (rather than, for example, random uncorrelated, or fractal

initial conditions[142]). The resulting macroscale model incorporates an effective reaction

rate, and a memory term that accounts for pre-asymptotic mixing effects by inhibiting the

reaction at early times. Both parameters arise naturally in the localized theory, and are

unambiguously linked to the smaller scales via a set of transient closure problems. The most

striking feature of our model is that it shows that the functional form of the coarse-grained

diffusion-reaction equation is not, in general, scale invariant. A new source term arises in

the upscaled equation that represents the influence of the initial condition. This term is

exponentially decaying in time, but the rate of this decay is strongly dependent upon the

configuration of the initial condition. Scale invariance has conventionally been assumed

to hold for reaction-diffusion systems[94]; thus, the development of a non-scale-invariant

macroscale equation is a novel feature of our work.
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3.2 Microscale balance equations

Our starting point is a set of mass balances for the two species. In this model, species A is

a conservative catalyst; species B is transformed in the presence of species A to a product,

i.e., B
A→C (species C is not tracked in this work). Note, this system is similar to the

conventional nonlinear A+B → C reaction after appropriate transformation[142].

We particularly focus on a system that represents chemical species distributed in either

a single fluid phase or a homogeneous porous medium (i.e. one where the pore scale has

been coarsened so that no internal boundaries are resolved). In either case, the subscript γ

indicates the fluid phase. The system is multiscale; thus, we think of the system as being

characterized by a macroscale length, L (in this case, representing the domain size), and a

microscale length (in this case, a measure of the diffusion length of the system). Specific

metrics for the microscale length will be discussed in additional detail in the material that

follows; intuitively, one can think of this length as being the average separation between

species A and B in the initial configuration (Fig. 3.1).

For a domain V 0 with external boundary A 0
γe (Fig. 3.1), the reactive transport equa-

tions for species A and B can be written as (in terms of molar concentrations)

Species A

∂cAγ
∂t

= ∇ · (DAγ · ∇cAγ) for x ∈ in V 0 (3.1)

−nγκ · (DAγ · ∇cAγ) = FA(x, t) for x ∈ A 0
γe (3.2)

cAγ(x, 0) = ϕA(x) for x ∈ in V 0 (3.3)

Species B

∂cBγ
∂t

= ∇ · (DBγ · ∇cBγ) (3.4)

− k0BγcAγcBγ for x ∈ in V 0

−nγκ · (DBγ · ∇cBγ) = FB(x, t) for x ∈ A 0
γe (3.5)

cAγ(x, 0) = ϕB(x) for x ∈ in V 0 (3.6)
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Figure 3.1: A multiscale representation of the initial condition for a diffusion-reaction
system. The two chemical species are denoted by the green (species A) and blue (species
B) colors. The system is characterized by two characteristic lengths: the macroscale length,
L, and the microscale length `. A third length is defined by the support scale of the averaging
volume, r0. A separation of length scales is assumed, such that `� r0 � L.
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Note that here there is a factor of the porosity, εγ embedded in the reaction rate such that

k0Bγ = k′Bγ/εγ , where k′Bγ is the intrinsic reaction rate. When there is no solid phase present,

then k0Bγ = k′Bγ . Although in principle, a balance equation for chemical species C could also

be written, because the net rate of generation of this species is the same as the reduction

of species B we have chosen not to explicitly track species C. If one were interested in the

particular spatial distribution of chemical species C, a set of balance equations like those

above would have to be specified.

Although the flux at the external boundaries (FA and FB) may be non-zero, maintaining

these non-zero boundary conditions adds significant complexity to the analysis without

adding much in the way of additional insight. Although these terms can certainly be

maintained in the analysis, we have chosen here to set the boundary flux terms to zero

(FA = FB = 0) for the remainder of the analysis. For determinism, we will also impose the

condition that the macroscale fluxes, i.e., 〈FA〉γ = 〈FB〉γ = 0, are also zero. This represents

the case where either (1) the boundaries are sufficiently distant from the initial condition

that no significant mass fluxes are occur at the boundary for the time scale of interest, or

(2) the boundaries are impermeable. The first of these approximations is made frequently

in regard to chemical transport in porous media. The case where the boundary fluxes are

non-zero are easily accommodated in an obvious way.

One advantage to this particular reaction-diffusion system is that it is linear, and an

explicit analytical solution is possible. The solution to Eqs. (3.1)-(3.6) with, FA = FB = 0

and with box car type initial conditions is developed in Appendix 3.8.

3.3 Averaging

A (linear) multiscale system is defined as one where there exist hierarchical structure con-

taining disorganized complexity [153, 181]. Such systems are complex from the perspective

that an enormous amount of information is required to perfectly describe the microscale

state of the system. However, much of this information is redundant, and can be eliminated

by taking the appropriate statistics of the system. As an example, the system illustrated in

Fig. 3.1 is multiscale. Although in principle it may be possible to solve the diffusion-reaction

equations at the microscale everywhere within the domain V 0, generally this computation

is impractical. Even if the computation were possible, the result would contain more infor-

mation than is conventinally desired; in other words, some sort of aggregation would have
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to be conducted to make the result useful.

In this paper, we use volume averages to coarse-grain (or upscale or aggregate) the system

behavior. The underlying assumption in this approach is that there exists volumes that are

sufficiently large compared to the microscale characteristic length, ` that the fluctuations

within these volumes can be well represented by a statistical description; in other words,

the volumes are in some sense representative (or, frequently, a representative elementary

volume, abbreviated by REV; we will adopt this acronym in the material below). For any

such volume, the intrinsic volume average for a scalar field property ψγ is defined over the

region V (x) by

〈ψγ〉γ |(x,t) =

∫
r∈V (x)

w(x− r)ψγ(r, t)dV (r) (3.7)

Here, w is a weighting function that is compact in V . For the remainder of this work, we

take w to be a boxcar-type weighting function, although none of the results depend on this

particular choice. Upon averaging the microscale mass balance equations, the result is

Species A

∂ 〈cAγ〉γ |(x,t)
∂t

= ∇ ·
(
DAγ · ∇ 〈cAγ〉γ |(x,t)

)
for x ∈ in V 0 (3.8)

−nγκ(x)·
(
DAγ · ∇ 〈cAγ〉γ |(x,t)

)
= 0 for x ∈ in A 0

γe (3.9)

〈cAγ〉γ |(x,0) = 〈ϕA〉γ |x for x ∈ in V 0 (3.10)

Species B

∂ 〈cBγ〉γ |(x,t)
∂t

= ∇ ·
(
DBγ · ∇ 〈cBγ〉γ |(x,t)

)
− k0Bγ 〈cAγ〉γ |(x,t) 〈cBγ〉

γ |(x,t)
− k0Bγ 〈c̃Aγ c̃Bγ〉γ |(x,t) for x ∈ in V 0 (3.11)

(3.12)
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−nγκ(x)·
(
DBγ · ∇ 〈cBγ〉γ |(x,t)

)
= 0 for x ∈ in A 0

γe (3.13)

〈cBγ〉γ |(x,0) = 〈ϕB〉γ |x for x ∈ in V 0 (3.14)

Note that the average equation for species A requires no closure; the averaged equation has

no unclosed deviations. For development of the balance equation for species B, we have

used the spatial decompositions [65]

cAγ(x, t) = 〈cAγ〉γ |(x,t) + c̃Aγ(x, t) (3.15)

cBγ(x, t) = 〈cBγ〉γ |(x,t) + c̃Bγ(x, t) (3.16)

In subsequent presentation, the explicit functional dependence of such quantities will be

dropped unless it is needed for clarity.

In Eq. (3.11), there are two terms requiring closure: c̃Aγ , and c̃Bγ . In the averaging pro-

cess, we have removed averages from within averages. This approximation can be justified

by the length-scale constraint[184] r0 � L. We have also made the explicit assumption that

〈c̃Aγ〉γ � 〈cAγ〉γ and 〈c̃Bγ〉γ � 〈cBγ〉γ , so that these terms may be neglected in the average

balance. This restriction will generally be valid; it is true identically when the averaging

volume can be treated as having no-flux boundaries (as in the examples presented in §3.6).

3.4 Deviation equations

To complete the upscaling processes we need a set of ancillary problems to model the mi-

croscale deviation terms in the ‘unclosed’ model given by Eq. (3.11). We start by subtracting

the averaged equations from the point equations [Eqs. (3.1)-(3.6)]
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Species A

∂c̃Aγ
∂t

= ∇ · (DAγ · ∇c̃Aγ)

for x ∈ in V 0 (3.17)

−nγκ · (DAγ · ∇c̃Aγ) = nγκ · (DAγ · ∇〈cAγ〉γ)

for x ∈ in A 0
γe (3.18)

c̃Aγ = ϕ̃A︸︷︷︸
source

for x ∈ in V 0 (3.19)

Species B

∂c̃Bγ
∂t
−∇ · (DBγ · ∇c̃Bγ)

+ k0Bγ c̃Bγ〈cAγ〉γ + k0Bγ c̃Aγ c̃Bγ

− k0Bγ〈c̃Aγ c̃Bγ〉γ

= − k0Bγ c̃Aγ〈cBγ〉γ︸ ︷︷ ︸
source

for x ∈ in V 0 (3.20)

−nγκ · (DBγ · ∇c̃Bγ) = nγκ · (DBγ · ∇〈cBγ〉γ)

for x ∈ in A 0
γe (3.21)

c̃Bγ = ϕ̃B︸︷︷︸
source

for x ∈ in V 0 (3.22)

Here, we have adopted the following notation: ϕ̃A(x) = ϕA− 〈cAγ〉γ |(x,0), and ϕ̃B(x) =

ϕB(x)− 〈cBγ〉γ |(x,0).

3.4.1 Localization of the closure problems

The closure problems above are linear but nonlocal (in space) diffusion-reaction equations.

The solutions and properties of such problems is an active area of research [9]. However,

it can be shown that solutions exist, that the solutions depend continuously on the initial

conditions, and that the nonlocal equations converge to the local ones as the nonlocal terms

become small enough [32, 60, 76, 8]. Much less information is available about the properties
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of even linear nonlocal equations in the presence of boundaries, although they are frequently

solved numerically [55]. Fortunately, for this particular set of equations, we can make some

very compelling arguments indicating that the integral terms are negligible for the purposes

of the closure problems.

To make these arguments, we start by developing some estimates for the order-of-

magnitude of various terms in the equations. First, we define the following statistical

measure for the concentration deviation fields

〈c̃Aγ c̃Aγ〉γ = σ2A(c̃Aγ) (3.23)

〈c̃Bγ c̃Bγ〉γ = σ2B(c̃Bγ) (3.24)

〈c̃Aγ c̃Bγ〉γ = covAB(c̃Aγ c̃Bγ) (3.25)

where σ2A and σ2B are the concentration variances, and covAB is the concentration covari-

ance. Then, we make the following estimates for the concentration averages and deviations

appearing in the balance equations

‖c̃Aγ‖ = σA (3.26)

‖c̃Bγ‖ = σB (3.27)

‖c̃Aγ c̃Bγ‖ = covAB (3.28)

‖〈cAγ〉γ‖ ∼ O(‖c̃Aγ‖) = σA (3.29)

‖〈cBγ〉γ‖ ∼ O(‖c̃Bγ‖) = σB (3.30)

For the purposes of the closure problem only, we would like to assume

k0Bγ〈c̃Aγ c̃Bγ〉γ � k0Bγ〈cBγ〉γ c̃Aγ + k0Bγ〈cAγ〉γ c̃Bγ (3.31)

Using the order-of-magnitude estimates above, this requires

covAB
σ2A + σ2B

� 1 (3.32)
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Because initially we assume that the two species are unmixed, this inequality must be true

at early times. However, one expects the cross variance to increase in time, so it is unclear

if this restriction is met for all time. One can develop an evolution equation for the product

c̃Aγ c̃Bγ , which is frequently done [46, 87, 101]. Although this shows that the evolution

of c̃Aγ c̃Bγ depends upon the scalar dissipation rate, this in itself is not entirely helpful

because one does not know the scalar dissipation rate a priori either. Additionally, the

expression for c̃Aγ c̃Bγ exhibits the typical hierarchy problem for nonlinear equations; thus,

it is not technically possible to close and expression for this product without significant

approximations. In order to validate the inequality given by (3.32), we compute σA, σB,

and covAB from direct numerical simulation. This computation is reported in Appendix

3.9; the results suggest that the approximation is a reasonable one.

3.4.2 Treatment of boundary terms

Although the initial-boundary-value problem defined by Eqs. (3.17)-(3.22) apply everywhere

in the fluid phase of the domain V 0, as discussed above, we hope to solve these closures over

a much smaller domain that we consider to be representative in a statistical sense. The idea

of the existence of a statistically representative volume is central to almost all approaches

for coarse-graining[104, 13, 113, 184, 190].

One of the most significant questions about closure for a representative region is what

conditions one should impose at the boundary of any such REV. Referring back to Fig. (3.1),

it is apparent that the boundary Aγe is embedded in the large domain V 0. In principle, if

we knew the value of 〈cAγ〉γ everywhere on Aγe, then we would be able to solve the balance

equations for the deviations, given by Eq. (3.17)-(3.22), exactly. This, however, would

require that the macroscale problem be coupled to the microscale problem; in addition, one

would potentially have to solve a different microscale problem for each patch, V (x), that

is required to fully tesselate the domain V 0. This process, although providing a method to

decompose the solution of the domain V 0 into a sequence of smaller (but coupled) problems,

would not reduce the amount of information required to specify the problem.

Typically, for problems of this type, the the approach is to solve the problem for only the

REV (the domain V (x)); when referring to the closure process, the REV is often referred

to as a unit cell. To do so dramatically reduces the size of the problem that needs to be

solved. However, it requires that something sensible is done to approximate the bound-
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Figure 3.2: A representation of a mirror-image arrangement of unit cells.

ary conditions at the boundary, Aγe(x). Usually, the approach is to replace the original

boundary conditions with some form of periodic condition. The implications for adopting

such conditions has been extensively discussed elsewhere[113, 191, 195]. In this particular

case, we adopt the approach of using mirror-image periodic cells [113] (Fig. 3.2). For the

diffusion operator, such an organization of the unit cells results in zero flux boundaries due

to the symmetry of the resulting problem. Adopting this set of approximations yields the

following set of localized closure problems.

Species A (localized)

∂c̃Aγ
∂t
−∇ · (DAγ · ∇r c̃Aγ) = 0 for r ∈ in V (x) (3.33)

−nγκ · (DAγ · ∇r c̃Aγ) = 0 for r ∈ in Aγe(x) (3.34)

c̃Aγ = ϕ̃A(r)︸ ︷︷ ︸
source

for r ∈ in V (x) (3.35)
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Species B (localized)

∂c̃Bγ
∂t
−∇ · (DBγ · ∇r c̃Bγ) + k0Bγ c̃Bγ〈cAγ〉γ

+k0Bγ c̃Aγ c̃Bγ = − k0Bγ c̃Aγ〈cBγ〉γ︸ ︷︷ ︸
source

for r ∈ in V (x) (3.36)

−nγκ · (DBγ · ∇r c̃Bγ) = 0 for r ∈ in Aγe(x) (3.37)

c̃Bγ = ϕ̃B(r)︸ ︷︷ ︸
source

for r ∈ in V (x) (3.38)

Note that here we have adopted r to be the independent spatial variable in these equations

(Fig. 3.2); hence, the symbol ∇r is the gradient with respect to the independent varialble r.

The variable x locates the centroid of the unit cell V (x), and the variable w is a variable

of integration.

3.4.3 Integral solutions to the closure problem

The two simplified closure problems above are local and linear parabolic equations. The

solution to the problem for species A is completely independent from that for species B,

and is a classical solution that can be represented in integral form by (cf. Polyanin [133,

§0.8.1])

c̃Aγ(r, t) =

∫
w∈Aγκ(x)

GA(r,w, t, 0) ϕ̃A(w) dV (w)︸ ︷︷ ︸
initial condition source

(3.39)

where GA(r,w, t, τ) is the Greens function for this problem. For species A, the solution

for the deviation equations is a function of only the initial condition, and it takes the

form[184, 195, 193]

c̃Aγ(r, t) = ΦA(r, t) (3.40)

where

ΦAγ(r, t) =

∫
w∈Aγκ(x)

GA(r,w, t, 0) ϕ̃A(w) dV (w) (3.41)
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Note that ΦA is an exponentially-decaying function of time (this can be easily seen by

attempting a conventional separation of variables solutions for c̃Aγ). At early times, the

magnitude of this function can be significant. In the macroscale equation, it and can create

(apparent) deviations from Fickian behavior (especially in the second moment), even though

the spreading process is a Fickian one.

The solution for species B is somewhat more complicated, but substituting the solution

for c̃Aγ helps simplify things a little.

∂c̃Bγ
∂t
−∇r · (DBγ · ∇r c̃Bγ) + k0Bγ〈cAγ〉γ c̃Bγ + k0BγΦAγ c̃Bγ

= − k0BγΦAγ〈cBγ〉γ︸ ︷︷ ︸
source

for r ∈ in Aγe(x) (3.42)

−nγκ ·DBγ · ∇r c̃Bγ = 0

for r ∈ in V (x) (3.43)

c̃Bγ = ϕ̃B(r)︸ ︷︷ ︸
source

for r ∈ in V (x) (3.44)

This problem is, as before, linear (in c̃Bγ) with well-defined source terms. In terms of the

macroscopic variables, the sources are proportional to 〈cBγ〉γ , and ϕ̃B. The integral solution

is given by

c̃Bγ(r, t) =

−
∫ τ=t

τ=0

∫
w∈V (x)

k0Bγ ΦAγ(w, τ)

×GB(r,w, t, τ) 〈cBγ〉γ |(y,τ) dA(w)dτ

+

∫
w∈Aγκ(r)

GB(r,w, t, 0) ϕ̃B(w) dV (w)︸ ︷︷ ︸
initial condition source

(3.45)

We have already imposed the length-scale constraints `/L� 1, which allows us to remove

average quantities from spatial integrals. At this juncture, we also impose the condition
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that our solution be time-local. In short, this assumption requires that the characteristic

time for changes in the averaged concentration, 〈cBγ〉γ are much longer than those for the

remaining terms in the first integral on the right-hand side of Eq. (3.45), so that it can

be removed from under the integral. This approximation is a version of the quasi-steady

approximation, and it is described in additional detail in Wood [193] and Wood and Valdés-

Parada [195]. If we adopt this assumption, then we can define a localized solution of the

form

c̃Bγ(r, t) = fBγ(r, t) 〈cBγ〉γ |(r,t) + ΦB(r, t) (3.46)

where

fBγ(r, t) = −
∫ τ=t

τ=0

∫
w∈V (x)

k0Bγ ΦAγ(w, τ)

×GB(r,w, t, τ) dA(w) dτ (3.47)

ΦBγ =

∫
w∈Aγκ(r)

GB(r,w, t, 0) ϕ̃B(w) dV (w) (3.48)

Examining Eq. (3.45) shows that the problem for c̃Bγ is coupled to that for c̃Aγ through

ΦAγ . Thus, any initial configurations that force the solution for species A to have long char-

acteristic time scales (compared to the characteristic time scale for 〈cBγ〉γ) will invalidate

the assumption of time local behavior.

It is difficult to determine under exactly what conditions the time-local approximation

will be valid. Because the assumption involves the details of a convolution, conventional

order-of-magnitude estimates are likely to be far too severe to be useful [183]. We propose

using constraints based on the spatial moments of the quantities involved. As a rough

constraint, we require that the first three spatial moments of species A (the zeroth, first,

and second) should at least be quasi-stationary in time (i.e., they relax much faster than

the characteristic time for 〈cBγ〉γ). To meet this requirement, we impose that the initial

conditions must be such that: (1) the center of mass of c̃Aγ does not move significantly

during the evolution, and (2) the principle axes of the second spatial moment for c̃Aγ do not

rotate during the evolution. If either of these two conditions were to occur, it would suggest
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that the characteristic times were not separated, and no localized form would be possi-

ble. Together, these requirements are met by initial conditions that are (approximately)

bisymmetric. In the remainder of the analysis, we will impose this condition.

3.5 Closed problem

With the formal solution for the concentration deviations given above, we can return to the

averaged equations to close them by eliminating the deviation quantities. For species A, no

closure is required, so the upscaled result is

Species A

∂〈cAγ〉γ

∂t
= ∇ · (DAγ · ∇〈cAγ〉γ)

for x ∈ in V 0

−nγκ · (DAγ · ∇〈cAγ〉γ) = 0 for x ∈ in A 0
γe (3.49)

〈cAγ〉γ |(x,0) = 〈ϕA〉γ for x ∈ in A 0
γe (3.50)

The development of the closed form of the balance equation for species B is reasonably

straight forward. Substituting Eqs. (3.40)-(3.46) into Eq. (3.20), we find

Species B

∂〈cBγ〉γ

∂t
= ∇ · (D∗B · ∇〈cBγ〉γ)

− k∗B〈cAγ〉γ〈cBγ〉γ − s∗B
for x ∈ in V 0 (3.51)

−nγκ · (DBγ · ∇〈cBγ〉γ) = 0 for x ∈ in A 0
γe (3.52)

〈cBγ〉γ |(x,0) = 〈ϕB〉γ for x ∈ in V 0 (3.53)
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Here, the effective parameters are given by

k∗B(x, t) =k0Bγ

(
1 +
〈fBγΦAγ〉γ

〈cAγ〉γ

)
(3.54)

s∗B(x, t) =k0Bγ〈ΦAγΦBγ〉γ (3.55)

In these expressions, k∗B is the effective rate of reaction that applies to the averaged

diffusion-reaction equations, and s∗B is a source term that represents the influence of the

initial configuration on the dynamics of the averaged diffusion-reaction equations. Because

the term s∗B is not present in the microscale diffusion-reaction equations, this term creates

an upscaled diffusion-reaction equation that has a mathematical form that is inherently dif-

ferent from the microscale equation (i.e., it makes the macroscale diffusion-reaction equation

non-scale-invariant).

The expression for k∗B can also be used to define the classical effectiveness factor

ηB(x, t) =
k∗B
k0B

=

(
1 +
〈fBγΦAγ〉γ

〈cAγ〉γ

)
(3.56)

With this definition, the balance equation for species B can be put in a form that is closer

to the traditional form used in chemical engineering

∂〈cBγ〉γ

∂t
= ∇ · (D∗B · ∇〈cBγ〉γ)

− ηBk0B〈cAγ〉γ〈cBγ〉γ − s∗B (3.57)

Note that, unlike the case for species A, the averaged mass balance of species B is not scale

invariant. The upscaled balance equation takes a different mathematical form than does

the microscale mass balance (i.e., there is no term equivalent to s∗B in Eq. (3.5)). This is

a source term that accounts for the initial microscale configuration of the two species, and

this term should be important at early times for some configurations of initial conditions.

This term is an exponentially decreasing function of time, so the scale invariance disappears

asymptotically. However, the time required for the source term to decay (and return the

equation to its scale invariant form) depends strongly upon the structure of the initial

condition.
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The development of the closed forms for the equations is now complete. However, in

practice the effective parameters k∗B and s∗B must also be predicted by solving the microscale

closure problems. Although in principle, these effective parameters can be found by finding

the appropriate Green’s functions (an example of this is provided in Appendix 3.8), it is

generally simpler to find the solutions to the closure problems numerically. This is described

in the next section through the development of an example application.

3.6 Examples of computing the effective parameters

If we consider a problem for a closed domain, where we average over the entire domain, we

achieve a situation where there are no macroscopic gradients. The resulting problem takes

a particularly simple form that makes the effect of the initial conditions particularly easy

to examine.

The macroscale balance equations for this problem are

Species A

∂〈cAγ〉γ

∂t
= 0 (3.58)

I.C. 2 〈cAγ〉γ |(x,0) = 〈ϕA〉γ (3.59)

Species A is a conserved catalyst; hence, in a closed system, it starts with a particular

average concentration, and it stays at that concentration. Hence, the solution can be

obtained by direct integration of Eq. (3.59), and the result is

〈cAγ〉γ |(x,t) = 〈ϕA〉γ (3.60)

The balance equation for species B is also simplified, but it does still contain effective

parameters for which ancillary closure problems need to be solved. The simplified problem

for species B is
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Species B

∂〈cBγ〉γ

∂t
= −k∗B〈cAγ〉γ〈cBγ〉γ − s∗B (3.61)

I.C. 2 〈cBγ〉γ |(x,0) = 〈ϕB〉γ (3.62)

Although the macroscopic spatial information has been averaged out of this equation, there

is still microscopic spatial information encoded in the effective parameters k∗B and s∗B. These

effective parameters are defined by

k∗B =k0Bγ

(
1 +
〈fBγΦAγ〉γ

〈cAγ〉γ

)
(3.63)

s∗B =k0Bγ〈ΦAγΦBγ〉γ (3.64)

For this particular problem, the average value of species A is known; for this example, we

will assume explicitly that 〈cAγ〉γ = 1. Thus, we need only to solve closure problems for

the functions ΦAγ , ΦBγ , and fBγ . As mentioned in the previous section, the easiest way

to do this is not necessarily to solve for the Green’s functions (although this can be done

for some cases, as illustrated in Appendix 3.8), but actually to solve the closure problems

numerically. To do this, we substitute Eqs. (3.40) and (3.46) into the balance equations for

c̃Aγ and c̃Aγ . The result is a set of three linearly independent closure problems (one from

the balance for c̃Aγ , and two for the balance for c̃Bγ . These three closure problems is given

by

Species A closure for ΦAγ

∂ΦAγ

∂t
−∇r · (DAγ · ∇rΦAγ) = 0 for r ∈ in V (x) (3.65)

−nγκ · (DAγ · ∇rΦAγ) = 0 for r ∈ in Aγe(x) (3.66)

ΦAγ = ϕ̃A for r ∈ in V (x) (3.67)
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Species B closure for ΦBγ (assuming 〈cAγ〉γ = 1)

∂ΦBγ

∂t
−∇r · (DBγ · ∇rΦBγ)

+k0BγΦAγΦBγ + k0Bγ · 1 · ΦBγ

= 0 for r ∈ in V (x) (3.68)

−nγκ · (DBγ · ∇rΦBγ) = 0 for r ∈ in Aγe(x) (3.69)

ΦBγ(x, 0) = ϕ̃B(x) for r ∈ in V (x) (3.70)

Species B closure for fBγ (assuming 〈cAγ〉γ = 1)

∂fBγ
∂t
−∇r · (DBγ · ∇rfBγ)

+ k0BγΦAγfBγ + k0Bγ · 1 · fBγ
= − k0BγΦAγ︸ ︷︷ ︸

source

for r ∈ in V (x) (3.71)

−nγκ · (DBγ · ∇rfBγ) = 0 for r ∈ in Aγe(x) (3.72)

fBγ(x, 0) = 0 for r ∈ in V (x) (3.73)

To compute the effective parameters k∗B and s∗B, we solved the system of coupled partial

differential equations defined by equations (3.65) through (3.73) for different instances of

initial distributions of species A and B on a square (2-dimensional) domain. Note that, even

though this set of equations is coupled, they are separable, so that the coupling can be han-

dled by solving the equations in sequence in one pass (i.e., no iteration among the equations

is necessary). The resulting concentration histories computed via the upscaled model (3.61)

were then compared with direct numerical simulations of the original microscale problem

(Eqs 3.1 through 3.6). We assumed isotropic diffusivity tensors (DAγ = DAγI,DBγ = DBγI)

for all species. Here we solve the diffusion-reaction equations directly [142] rather than as

a lattice gas as is often done in diffusion-reaction studies.

For plotting purposes, we have defined the following dimensionless variables
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〈cBγ〉∗ = 〈cBγ〉γ/cB0 (3.74)

τA = `2REV /DAγ (3.75)

τB = `2REV /DBγ (3.76)

τ = 1
2(τA + τB) (3.77)

τR = 1/(k0Bγ〈cAγ〉γ) (3.78)

t∗ = t/τ (3.79)

Da = τB/τR = k0Bγ`
2
REV 〈cAγ〉γ/DBγ (3.80)

ŝB = s∗B/k
0
Bγ (3.81)

ηB = k∗B/k
0
Bγ (3.82)

where 〈cBγ〉∗ is the dimensionless averaged concentration for species B, τ is the characteris-

tic diffusion time, t∗ is the dimensionless time, Da is the Damköhler number measuring the

ratio of the diffusion time scale to the reaction time scale, ŝB is the nondimensional source

term, and ηB is the nondimensional effective reaction rate term (the effectiveness factor).

Four different cases were examined. For three of these cases, the structure of the initial

condition was changed to create increasingly segregated systems (Fig. 3.3, left column). For

the fourth case (Fig. 3.4, left side), the initial condition was both highly segregated and

the reacting species were separated by regions that contain zero concentration of either A

or B. For this case, we expect to see some delay in the reaction while the two chemical

species diffuse through the zero concentration regions to create contact. In all cases, the

characteristic size associated with the initial condition is within an order of magnitude of the

domain size, so we we expect none of the nonclassical time scalings (such as Ovchinnikov-

Zeldovich behavior[126]) observed for large, random systems[11]. We do, however, expect

to see substantial deviations from classical kinetics for early times.

The physical parameters for the simulations are specified in Table 3.1. Note that al-

though for these simulations the diffusion coefficient for species A and B are equal, this is

not a requirement of the approach. The characteristic length adopted was the side length

of the unit cell, `REV . Ideally, this length should perhaps be related to the characteristic

length for diffusion; however, convenient metrics for such a length are generally not known,

even for cases where the initial condition is specified. We will investigate the characteristic
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Table 3.1: Parameters used in the simulations

Parameter Value Definition

`REV 0.01 m =2 r0, Length of a unit cell side

∆x 1 × 10−5 m Grid spacing, x−direction

∆y 1 × 10−5 m Grid spacing, y−direction

cA0 1 mol/m3 Initial concentration of species A

cB0
1
2

mol/m3 Initial concentration of species B

DAγ 5 × 10−10 m2/s Molecular diffusivity, species A

DBγ 5 × 10−10 m2/s Molecular diffusivity, species B

k0Bγ 5 × 10−6 m3/(s·mol) Intrinsic reaction rate, Da = 1

k0Bγ 5 × 10−5 m3/(s·mol) Intrinsic reaction rate, Da = 10

k0Bγ 5 × 10−4 m3/(s·mol) Intrinsic reaction rate, Da = 100

diffusion length further in §3.6.1. For now, we simply note that the characteristic length

`REV , although conventional, is larger than a diffusion length based on the configuration of

the system might be. Thus, the characteristic time for diffusion, τ , is potentially somewhat

smaller than what a more physically-based length scale would predict.

To ensure that convergence was reached in the numerical computations, a grid refinement

study was performed for Case 3 at the highest Damköhler number. Spatial grid resolutions

in the set ∆x/`REV = {0.1, 0.05, 0.033, 0.02}, and temporal grid resolutions in the set

∆t/τ = {5×10−5, 1.0×10−4, 1.5×10−4} were studied. The finest resolution (∆x/`REV =

0.02 and ∆t/τ = 5.0× 10−5) was used as the base case, compared with which the coupled

PDE solver showed first-order convergence for ∆t/τ < 1.5×10−4. The maximum point-wise

percent relative errors (i.e. L∞ norms of percent relative errors) converged toward values

< 2%, for the concentration of species B. All the numerical results reported in this study

were obtained using this base case resolution. All computations were performed using the

finite elements package COMSOL Multiphysics 4.4.
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Case 3 –    = 0.50

/ REV
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(Eqs. (60)-(66))
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(Eqs. (60)-(66))
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(Eqs. (60)-(66))
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Analytical Solution
(Eqs. (A5) and (A14))

B

B
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Figure 3.3: Cases 1-3. (Left) The configuration of the initial condition. (Center) The
(normalized) effective reaction rate and source terms. (Right) Comparison of the upscaled
model (blue lines with filled circles), the asymptotic model (ηB = 1, ŝB = 0), and direct
numerical simulations (DNS) (black solid lines). These results are for Da = 100.
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Results and Discussion

Our focus has been on the influence of the initial configuration on the effective rate of

reaction for a set of diffusion-reaction equations in a bounded domain. Equations (3.49)-

(3.55) represent the coarse-grained balance equations and associated effective parameters

for the system. As previously pointed out by Sancho et al. [142], the bounded case is

fundamentally different from the unbounded one in that no additional segregation of species

occur as the system evolves. Such spontaneous segregation has been seen in unbounded

nonlinear reaction-diffusion systems with random (including correlated) initial conditions

[102, 126].

One of the more interesting features of our analysis is that the upscaled diffusion-reaction

equation is not scale invariant. The upscaled equation contains a source term (s∗B) that does

not have a corresponding term in the microscale equations. Although this term decreases

exponentially with time, at early times it can be important in the behavior of the system.

We are aware of no other results to date for which this particular kind of scale invariance–

arising strictly from the initial condition–has been reported in the literature.

3.6.1 Influence of the initial condition structure

In the center column of Figs. 3.3 and 3.4, the effectiveness factor, ηB, and the source term,

ŝB, are plotted as a function of the nondimensional time. In each of Cases 1-3, half of

the region is initially filled with species A, and the other half with species B; thus, the

total volumes filled with species A and B are equal (although the total mass of species A

is twice that of B). However, as can be observed in the plots for the effective parameters

ŝB and ηB, the particular configuration of the initial condition dramatically changes the

dynamic behavior of the system as it evolves in time. This is perhaps best illustrated

through examination of the plots for the effectiveness factor (a number between zero and

one), which modulates the effective rate of reaction. In all cases, the effectiveness factor

starts at a value near unity, decreases to a minimum at around τ = 0.02, and then recovers

asymptotically to unity again. Similar behavior for the effective rate of reaction has been

observed for the classical (nonlinear) bi-molecular reaction case with initially separated

reactants [163].

It is difficult to generate a universal characteristic length that might optimally represent
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AB

Case 4 –  = 0.33

(Eqs. (60)-(66))

Model

/
REV

B

Figure 3.4: Case 4. (Left) The configuration of the initial condition. (Center) The (normal-
ized) effective reaction rate and source terms. (Right) Comparison of the upscaled model
(blue lines with filled circles), the asymptotic model (ηB = 1, ŝB = 0), and direct numerical
simulations (DNS) (black solid lines). These results are for Da = 100.

the influence of the initial condition on the diffusion process. For isotropic systems, a length

that measures the characteristic “cluster” size of each of the reactants (and spaces devoid of

reactants for Case 4) is a reasonable one that has physical content. To give some indication of

the average cluster size for each chemical species in each initial configuration, we performed

the following sequence to segment the image.

1. First, the structure of the initial condition was segmented into circular clusters (using

ImageJ[143]) representing the local size of contiguous chemical species. The result

of this process was a collection of Ne circles. Because species A and B are initially

completely segregated, the radius of each circle provides in this segmentation provide

information about how far the species have to diffuse before they are completely mixed.

Note that this algorithm sequentially segments the largest circles that are completely

contained in the contiguous domain (as opposed to, for example, the smallest circles

that completely contain the contiguous domain). Thus, the algorithm will sometimes

segment a single contiguous region into a large circular region, plus several small

circular regions near the boundary (e.g., as in Case 2 in Fig. 3.6). Such a segmentation

is still consistent with the physics of diffusion in an isotropic medium.

2. The circular segmentation provides information about the local size of clusters, but

it is not space filling. Thus, as a second step, we created a Voronoi tessellation of

the circles into Ne polygons (using the C++ library Voro++), with area given by
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An, (n = 1 . . . Ne); examples of the tessellations are illustrated in Fig. 3.6. The result

of this step was that the image was broken into regions, where the sum of the areas

of each region was equal to the original area of the unit cell. This step was important

to achieve a consistent scheme for weighting when determining the average diffusion

distance (discussed below). It was also important as a method to consistently associate

an area for systems where the the initial condition of species A and B do not fill the

domain (e.g., as in Case 2 in Fig. 3.6).

3. An average length, Λn was associated with the clusters by assuming that they were

nearly circular. Thus the length was specified by

Λn =

∣∣∣∣∣
√
An
π

∣∣∣∣∣ (3.83)

Note: This result did not always provide the radius of the original cluster. Where

there were clusters separated by zero-concentration regions (e.g., Case 4 illustrated in

Fig. 3.6(b), the resulting value provided a more accurate distance of how far individual

species would have to diffuse before being mixed.

4. For the final step, the characteristic microscale diffusion length, `, was then determined

by taking the arithmetic average.

` =
1

Ne

Ne∑
n=1

Λn (3.84)

This value gives a measure of the average diffusion distance for a particular initial

configuration.

The characteristic length for each initial condition is given above the figures in the left-

hand column of Figs. 3.3 and 3.4. It is interesting to note that this metric does correlate

with the increasing time scale of the transient effects observed in the center column of

Fig. 3.3. This matches our intuition about the diffusion and mixing processes. Structures

that have characteristic lengths that are large compared to the domain size will take a

substantial fraction of the diffusive time scale to become mixed. For the particular ini-

tial conditions examined here, the average cluster size appears to correlate well with the

increasing transience in the system.
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Case 1 Case 2

Figure 3.5: An example segmentation and Voronoi tessellation for cases 1 and 2.

To push this analysis a little farther, one might hope that a relationship between the

characteristic lengths, `, and the effectiveness factor could be found. In preparation for

this, we propose that the effectiveness factor curves be characterized by the complimentary

function

η′B(ηB, t) = 1− ηB(t) (3.85)

This function is a curve that starts at zero, becomes strictly positive (and less than unity)

to some maximum, and then decreases asymptotically back to zero. To provide a measure

of the characteristic time for this function, we chose the zeroth and first moments

Aη′B =

∫ τ→∞

τ=0
[1− ηB(τ)]dτ (3.86)

t̄η′B =
1

Aη′B

∫ τ→∞

τ=0
τ [1− ηB(τ)]dτ (3.87)

Note that with these definitions, t̄η′B provides a characteristic time scale for the transient

part of the process as influenced by the initial configuration. Although the characteristic

time of η′B is an important metric, it does not provide any information about the magnitude

of the effectiveness factor (i.e., two curves with very different magnitudes in η′B may still

have the same value of t̄η′B ). To characterize this, we picked the L∞ norm
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Figure 3.6: The functions ηB and η′B for Case 3. The parameters Aη′B , t̄η′B , and η′B,max are
illustrated to aid interpretation.

η′B,max = max(η′B) (3.88)

Thus, a metric representing both the magnitude, η′B,max and characteristic time, t̄η′B for a

particular curve η′B(t) is given by the product t̄η′Bη
′
B,max. One can think of the product

t̄η′Bη
′
B,max as a measure of how important the effectiveness factor is in the upscaled diffusion-

reaction equation. A summary of the data for Aη′B , t̄η′B , η′B,max, and ` are provided in Table

3.2.

In Fig. 3.7 we have plotted t̄η′Bη
′
B,max versus the normalized cluster size for each of the

four cases and at Da = 1, 10, and 100 on a log-log scale. The figure does show that there

is a relationship between these variables, and that generally increasing the cluster size also

increases the product t̄η′B,max. For these data, we fit (heuristically) a power law of the form

t̄η′Bη
′
B,max = βDaδ

(
`

`REV

)α
(3.89)

to the data, while requiring that the value of α and β be the identical for all three values of

Da. The best-fit results (r2 = 0.76) suggested that a single power-law exponent, α = 1.72,

and scale factor given by βDaδ with β = 0.00127 and δ = 0.67136. Although the total

number of data used to generate this figure is somewhat limited, it does suggest that cluster

size and the product t̄η′Bη
′
B,max may be useful variables for predicting a priori the behavior
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Table 3.2: Parameters associated with the geometry and reaction properties of the four
initial configuration cases.

Case Da Aη′
B

(s) t̄ (s) η′B,max ` (m)

1 1 4.40 10220 0.0266 0.0010

10 35.80 8880 0.0029

100 136.48 4720 0.0266

2 1 21.03 5700 0.0029 0.0017

10 187.31 5220 0.0277

100 1000.00 3820 0.1958

3 1 75.52 8320 0.0061 0.0050

10 640.00 7880 0.0551

100 3040.00 6080 0.3478

4 1 35.61 3980 0.0068 0.0033

10 300.00 3800 0.0630

100 1480.00 2296 0.3856

of systems for which the clusters are nearly isotropic. For this relationship to be useful, one

should solve the closure problem for at least once for the initial configuration of interest (as

described above) at a particular value of Da. Then, these data can be rescaled to represent

the results for other values of Da by using the heuristic relationship specified above. Note

that, at this point these results are quite heuristic, and only allow constraining the product

of t̄η′Bη
′
B,max, i.e., we do not know these values independently. However, even this constraint

is potentially a useful one. Additional research will have to be conducted to determine if

such a power law holds for a wider array of initial configurations and Damköhler numbers.
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Figure 3.7: The correlation between the product t̄η′B,max (approximate measure of deviation
from classical kinetics) and the normalized characteristic length, ` (approximate measure
of initial spatial segregation).

3.6.2 Reaction delay case

As mentioned above, Case 4 encapsulates slightly different physics than the first three cases.

Here, because there are regions of zero concentration initially, an early-time regime forms

where diffusion is the sole microscale process. Mixing and reaction take place only after

some initial spreading, and when the concentration fronts make contact. This delay is

evident in Fig. 3.4, and is properly incorporated in the upscaled model for species B (3.61)

via the memory term s∗B.

To understand why this behavior exists, we can recall that s∗B is the covariance of ΦAγ

and ΦBγ ; these two variables encode the influence of the initial configurations the deviation

quantities c̃Aγ and c̃Bγ . In Case 4, these quantities are maximally correlated initially– in

part, because much of the domain initially contains neither species A nor B, so c̃Aγ = 2c̃Bγ

there. The two species deviations co-vary at least until the sharp distributions of species A

and B relax into larger clusters. This effect leads to a large value of s∗B and strong inhibition

of reaction at early times.
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Figure 3.8: Asymptotic behavior of the system for the four initial conditions at Da = 1, 10,
and 100. Note that in each of the four cases, the late-time reaction rate is exponential with
identical constants; this is consistent with classical kinetics. The early-time dynamics of
each curve, however, is greatly modified by the initial conditions as Da increases.

3.6.3 Long time behavior

In Fig. 3.8, we have plotted the concentration versus time histories for each value of Da

and for all four initial conditions. These results show some interesting behavior that can

be summarized as follows. First, the degree of deviation from non-classical rate behavior is

greater with increasing values of Da.

Secondly, it appears that at large enough times, the effective reaction rate becomes

identical regardless of the initial condition structure. We show in Appendix 3.8 that the

concentration must decay exponentially at long times. Such a return to classical kinetic

behavior at long times for bounded systems has been noted previously[142].

Finally, we note that as the value of Da increases, the configuration of the initial condi-

tion has a larger impact on the complete time history of the averaged concentration. Thus

in Fig. 3.8 at Da = 100, even though each system converges to the same effective reaction
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rate, the time history for each average concentration can be distinctly different. The curves

continue to be non-overlapping, even down to concentrations as low as 1 part in 1000). This

means that, for any fixed time interval, the total concentration of species B transformed is

dependent strongly upon its initial configuration.

3.7 Summary and Conclusions

In this work we have studied a set of coupled diffusion-reaction equations in a finite domain

subject to highly segregated initial conditions. Our primary focus has been on elucidating

the early-time kinetics of mixing-limited systems. Our main findings are that (1) early-time

reaction kinetics are highly dependent upon the initial configurations of the reactants in a

non-trivial fashion, and (2) the spatially-averaged evolution laws for the decaying species is

not scale-invariant.

We find that the deviations from classical kinetics (as measured by the effectiveness

factor) are directly proportional to the degree of segregation in the initial conditions (as

measured by a mean cluster size or an effective diffusion length). Generally, the larger the

cluster size of the initial conditions are, the larger the early-time deviations from classical

kinetics become.

A predicted in previous studies for bounded systems[142], we observe a return to classical

kinetics at late times. Interestingly, for high Damköhler numbers, the concentration histories

for different initial conditions may have very different time trajectories. This deviation

suggests that, although the influence of initial conditions over the effective rates of reaction

relaxes, the trajectories of the system for different initial conditions can remain separated.

The ‘crossover’ from early-time (anomalous) to late-time (classical) kinetics is naturally

accounted for in the present framework as both regimes are described by the same coarse-

grained evolution laws.
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Appendix

3.8 Solution to the diffusion-reaction problem

3.8.1 Solution

The solution for the problem for species A is given by

cAγ(x, y, t) =

∫ ξ=L

ξ=0

∫ η=L

η=0
ϕA(ξ, η) GA(x, y, ξ, η, t) dη dξ (3.90)

where the Green’s function, GA, for the problem is well known [27, 133]

GA(x, y, ξ, η, t) =

1

Lx

[
1 + 2

∞∑
n=1

exp

(
−π

2n2Dt

L2
x

)
cos

(
nπx

Lx

)
cos

(
nπξ

Lx

)]

× 1

Ly

[
1 + 2

∞∑
m=1

exp

(
−π

2m2Dt

L2
y

)
cos

(
mπy

Ly

)
cos

(
mπη

Ly

)]
(3.91)

For the case of a 2-dimensional boxcar initial distribution (similar to Case 3 with side

lengths ∆Ax and ∆Ay), the initial condition is

ϕA(x, y) =cA0B(x, xA0,∆Ax)B(y, yA0,∆Ay) (3.92)

where

B(ξ, ξ0,∆) = H[ξ − ξ0]−H[ξ − ξ0 −∆] (3.93)

and H is the Heaviside distribution.



59

The integrations are straightforward. The result is

cAγ(x, y, t) = cA0

×

[
∆Ax

Lx
+ 2

∞∑
n=1

exp

(
−π

2n2Dt

L2
x

)
ΓAn cos

(
nπx

Lx

)]

×

[
∆Ay

Ly
+ 2

∞∑
m=1

exp

(
−π

2m2Dt

L2
y

)
ΓAm cos

(
mπy

Ly

)]
(3.94)

where the Fourier coefficients for the boxcar distribution are given by

ΓAn =
1

nπ

(
sin

[
nπ(xA0 + ∆Ax)

Lx

]
− sin

[
nπxA0
Lx

])
(3.95)

ΓAm =
1

mπ

(
sin

[
mπ(yA0 + ∆Ay)

Ly

]
− sin

[
mπyA0
Ly

])
(3.96)

The solution for species B is somewhat more difficult to obtain, but the solution is helped

by the transformation

cBγ(x, y, t) = w(x, y, t)exp

(
−
∫ τ=t

τ=0
k0BcAγ(x, y, τ) dτ

)
(3.97)

Substituting this into Eqs. (3.5)-(3.6) yields the simplified set of equations (for FB = 0)

∂w

∂t
= ∇r · (DBγ · ∇rw) for r ∈ in V (x) (3.98)

−nγκ · (DBγ · ∇rcBγ) = 0 for r ∈ in Aγe(x) (3.99)

w(x, 0) = ϕB(x) for r ∈ in V (x) (3.100)

The solution for w, then, is of exactly the same form as the solution for species A.

w(x, y, t) =

∫ ξ=L

ξ=0

∫ η=L

η=0
ϕB(ξ, η) GB(x, y, ξ, η, t) dη dξ (3.101)
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or, upon inverting the transformation

cBγ(x, y, t) = exp

(
−
∫ τ=t

τ=0
k0BcAγ(x, y, τ) dτ

)
∫ ξ=L

ξ=0

∫ η=L

η=0
ϕB(ξ, η)GB(x, y, ξ, η, t)dη dξ (3.102)

Assuming a second 2-dimensional boxcar function as initial condition for species B of

the form

ϕB(x, y) =cB0B(x, xB0,∆Bx)B(y, yB0,∆By) (3.103)

then the final solution can be written

cBγ(x, y, t) = cB0

×

[
∆Bx

Lx
+ 2

∞∑
n=1

exp

(
−π

2n2Dt

L2
x

)
ΓBn cos

(
nπx

Lx

)]

×

[
∆By

Ly
+ 2

∞∑
m=1

exp

(
−π

2m2Dt

L2
y

)
ΓBm cos

(
mπy

Ly

)]
× exp

[
−k0BΦA(x, y, t;xA0, yA0)

]
(3.104)

Here, ΓBn, ΓBm, and ΦA are given by

ΓBn =
1

nπ

(
sin

[
nπ(xB0 + ∆Bx)

Lx

]
− sin

[
nπxB0

Lx

])
(3.105)

ΓBm =
1

mπ

(
sin

[
mπ(yB0 + ∆By)

Ly

]
− sin

[
mπyB0

Ly

])
(3.106)
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ΦA(x, y, t;x0, y0) = cA0
∆Ax∆Ayt

LxLy

+
2cA0∆Ax

Lx

∞∑
m=1

L2
y

π2m2D

[
1− exp

(
−π

2m2Dt

L2
y

)]
×ΓAm cos

(
mπy

Ly

)
+

2cA0∆Ay

Ly

∞∑
n=1

L2
x

π2n2D

[
1− exp

(
−π

2n2Dt

L2
x

)]
×ΓAn cos

(
nπx

Lx

)
+ 4cA0

∞∑
n=1

∞∑
m=1

1

π2D
[
n2

L2
x

+ m2

L2
y

]
×
[
1− exp

(
−π2Dt

[
n2

L2
x

+
m2

L2
y

])]
× ΓAn cos

(
nπx

Lx

)
ΓAm cos

(
mπy

Ly

)
(3.107)

The averaged concentration for species B can then be found by a double quadrature

〈cBγ〉γ =
1

LxLy

∫ x=Lx

x=0

∫ x=Ly

y=0
cBγ(x, y, t) dy dx (3.108)

Although it may be possible to determine this integral analytically using term-by-term

integration, the effort required to do this would be substantial because of the numbers

of terms involved. Alternatively, one could compute the integration using a numerical

quadrature scheme; we have adopted this latter approach.

3.8.2 Early-time behavior

Determining the early-time behavior of the spatially-averaged diffusion-reaction equations

is a challenging task. For this work, we have the advantage of an analytical solution, which
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makes further analysis less difficult. To start, we first develop an estimate for the solution

for species A that is more amenable to analysis of time behavior. Using a Jacobi-type

method of images identity (c.f., Dym and McKean [52], p. 68), one can show

cAγ =

∫ Lx

0

∫ Ly

0

[
1

2
ϑ3

(
− 1

2Lxπ(x− ξ), Exp
[
−π2Dt
Lx2

])
+

1

2
ϑ3

(
− 1

2Lxπ(x+ ξ), Exp
[
−π2Dt
Lx2

])]

×

[
1

2
ϑ3

(
− 1

2Lyπ(y − η), Exp
[
−π2Dt
Ly2

])
+

1

2
ϑ3

(
− 1

2Lyπ(y + η), Exp
[
−π2Dt
Ly2

])]
×cB0B(x, xB0,∆Bx)B(y, yB0,∆By) dη dξ (3.109)

where ϑ3 is the Jacobi theta function of type 3. Carrying out this integration, the solution

can be put in the form

cAγ(x, y, t) =cA0Ψ(x, t;xA0,∆Ax, Lx)Ψ(y, t; yA0,∆Ay, Ly) (3.110)

where

Ψ(w, t;wA0,∆Aw, Lw) =
∞∑

n=−∞
− 2Lwn− w + wA0

2 |2Lwn− w + wA0|

×erf

(
|2Lwn− w + wA0|√

4Dt

)
+

1

2
erf

(
2Lwn− w + wA0 + ∆Aw√

4Dt

)
−1

2
erf

(
2Lwn− w − (wA0 + ∆Aw)√

4Dt

)
+

1

2
erf

(
2Lwn− w − wA0√

4Dt

)
(3.111)
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This solution is a function whose functional dependence on time goes as the error function

of t−
1
2 . Recalling that

erf

(
t−

1
2

)
=

2√
π

(
t−

1
2 − 1

3 t
−3
2 + . . .

)
(3.112)

it is clear that the solution for species A involves no simple powers of time for small t. From

Eq. (3.104), it is easy to find the following relationship

〈cBγ exp
[
k0BΦA(x, y, t;xA0, yA0)

]
〉γ = cB0

∆Bx

Lx

∆By

Ly
(3.113)

Because the right-hand side of this expression is a constant, we must have that the time

component of the behavior of cBγ is proportional to

cBγ ∝ exp
[
−k0BΦA(x, y, t;xA0, yA0)

]
(3.114)

In other words, the time dependence of species B is an exponential function of the time

integral of species A. It must have multiple time scales, then, each proportional to t−n
1
2

(where n is an odd integer greater than 1). Thus, there is no simple power law time exponent

for the spatially averaged concentration 〈cBγ〉γ ; it must be represented by a sum of powers

of time. This result has also been noted by Sancho et al. [142] for a slightly more general

reaction.

3.8.3 Late-time behavior

In the late-time limit, and examination of Eq. (3.94) shows that cAγ tends to the value

〈cAγ〉γt→∞ = cA0∆Ax∆Ay/(LxLy) (3.115)

which represents the concentration formed by spreading the initial mass of species A

evenly over the domain. Because 〈cAγ〉γ is essentially constant, one can spatially average

Eq. (3.104) to immediately determine

〈cBγ〉γt→∞ ∝ cB0
∆Bx∆By

LxLy
exp[−k0B〈cAγ〉γ∞t] (3.116)
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This is equivalent to the classical kinetics for a fully-mixed system.

In between these two regimes, no simple scaling law exists for the behavior of the time

exponents. However, the effectiveness factor can be used to describe the state of the system.

This is described in the main body of the paper.

3.9 Validation of the inequality given by Eq. 3.32

In this appendix, we compute the quantity

covAB
σ2A + σ2B

� 1 (3.117)

expressed as (3.32) in the main body of the paper. In Fig. 3.9, we have plotted this

quantity as a function of time for the four initial condition cases considered. In each case,

the inequality is met, but the degree to which the “much less than” criterion is met is

somewhat subjective. In any event, for the late-time behavior the inequality is clearly

valid. For intermediate times, the case for validity is not as strong; however, coupled with

the correspondence between the direct numerical simulations and the upscaled model, the

validity of the assumption appears to be warranted. In early-time applications to initial

conditions that have structure distinctly different from those presented here, the validity of

the assumption should be checked by at least an approximation of the quantities needed to

compute (3.32).
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4.1 Preface

Proposed in analogy with Fourier’s and Ohm’s law, in Darcy’s law the rate of fluid flow

across a porous medium is linearly proportional to a net driving force (the sum of bulk

pressure drop and body forces)

〈v〉γ =
K

µ
· (∇〈p〉γ + Fb) (4.1)

Since its conception as an empirical relationship, Darcy’s law has found great utility

in the Earth sciences to describe the macroscopic motion of creeping flow across porous

media. Eq 4.1 introduces the notion of permeability as an effective property of a porous

medium. In the original work of Henry Darcy and since, permeability has been treated as an

experimental observable. Elucidation of K typically involves measuring the pressure drop

across a sample at predetermined flowrates in a regime where the linearity of Eq 4.1 holds.

There has also been interest in predicting K from a set of simple morphological quantifiers

of porous media, such as porosity (φ) and specific surface area (S) among others [14], and

more recently via computation.

Since its introduction, derivation of Eq 4.1 as a effective theory from microscopic physics

has inspired much theoretical work. One can show that Darcy’s law is equivalent to the

volume-averaged form of the Stokes equations in macroscale homogeneous two-phase media

[182]. The multiscale analysis starts with the microscale problem stated as
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0 = µ∇2vγ −∇pγ + fb (4.2)

∇ · vγ = 0 (4.3)

vγ = 0 in Aγκ, (4.4)

and appropriate external boundary conditions. The volume averaging approach to the

derivation of Darcy’s law poses the computation of K as a closure problem for Eq 4.1, where

the tensor is defined as

K =

[
φ

Vγ

∫
Aγκ

nγκ · (bpI +∇⊗ Bv)dA

]−1
(4.5)

Bv and bp are the closure variables associated with permeability, and are defined analo-

gously to the closure variable to diffusion (see Chapter 2). The full statement of the closure

problem for an REV as Whitaker [182] would write it is

−∇bp +∇2Bv =
1

Vγ

∫
Vγ

[∇bp +∇2Bv]dV, (4.6)

∇ · Bv = 0, (4.7)

B.C.1 Bv = −I in Aγκ (4.8)

B.C.1 Bv(r + `i) = Bv(r) bp(r + `i) = bp(r) i = 1, 2, 3, (4.9)

〈bp〉γ = 〈Bv〉γ = 0 (4.10)

The structure of (4.6 - 4.10) is very similar to the original problem. We can also

appreciate the similarity with the closure problem for diffusion. Here too, the only source is a

boundary constraint, with the subtle differences that (i) Bv is divergence-free as guaranteed

by the ∇bp term which acts similar to a Lagrange multiplier, and (ii) local curvature of Bv

is stabilized by nonlocal information as expressed by integral term. In principle, (4.6 - 4.10)

can be solved directly to compute K, but for reasons that we will outline in the proceeding,

we are interested in performing direct numerical simulations of the microscale velocity and

pressure fields first.
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4.2 Goals for this study

In the present study, we are interested in direct numerical simulation of a Newtonian fluid

in the creeping flow regime in triply-periodic monodisperse sphere packings. Our goals for

the work are two-fold: (i) First, we are interested in treating the simulations as computa-

tional closures for the method of volume averaging. The main goal here is to compute the

permeability tensor with high fidelity and study its behavior as a function of sample size.

(ii) Second, we are interested in cross-examining the simulations with an experimental case

that was previously reported on by our group [192]. Very briefly, this is a mildly laminar

(Re ≈ 3.2) unidirectional flow in a packing of 78 spheres that are confined to walls on the

sides. The associated velocity field has been imaged using Particle Image Velocimetry (PIV)

and cross-validated with direct numerical simulations.

4.3 Simulation of fluid flow in porous media

Numerical solutions of the Navier-Stokes equations in porous structures have received a

great deal of attention in the past two decades. Various fundamental aspects of the problem

including the statistics of the velocity field [105, 82, 43] and its correlation to the structure

of the solid [151], the turbulent transition [72], and anomalous scalar transport induced

by the heterogeneities of the velocity field [17] have been explored. The problem also

finds immediate application in computing the permeability of natural and synthetic porous

materials, which is the main focus of the present study.

Previous works span a wide range of flow regimes from viscous-dominated [176, 156,

152, 192], to inertial [58, 73, 15] and turbulent. Different simulation paradigms including

Lattice-Boltzmann methods [73, 176], and finite-volume methods [17, 112, 57, 75] have

been explored. Siena et al. [152] recently compared three diverse simulation platforms

for Darcy flow and found them to be consistent with each other. The geometrical setups

studied also come in a wide variety that includes periodic crystalline arrays of mono- [73]

and bidisperse particles [15], random arrangements of obstacles [51], synthetic correlated

structures [75, 151], and x-ray microtomographic reconstructions of rock [68, 156, 198], bone

[37], and fibrous materials [111].
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4.3.1 The fictitious domain method

The simulations in this study were performed via an immersed boundary (IB) implemen-

tation using the fictitious domain method (FDM). The IB is a robust approach to fully

resolving the Navier-Stokes equations in domains with arbitrary boundaries, e.g. flow in

porous materials, and particle-laden flows. In IB methods, the solid phase is modeled as

an analogous fluid that undergoes rigid body motion [147, 10]. The particular FDM im-

plementation used here has been outlined in detail in [58, 154]. Very briefly, the force

necessary to cancel local fluid velocities and impose stationarity (or rigid body motion) in

the solid phase is computed and added to the momentum balances as an external source.

To do so, the solver uses a superlattice of Lagrangian material points. At each timestep,

the force necessary to cancel motion at loci that correspond to the solid is calculated on

the superlattice by interpolating the regular grid. This interpolation step is critical to the

accuracy of the solver, so the three-point delta function proposed by Roma et al. [140] was

used here. This function has continuous first derivatives, and can be shown to converge to

a sharp representation of the γ − κ interface as the spatial grid is refined.

4.4 Computation of the permeability tensor

4.4.1 Solver validation and setup

Prior to the study we assessed the solver using as the series solution of Zick and Homsy

[200] for drag in simple cubic arrays, where the drag coefficient is defined as

Cd =
fd

3πNµD〈v〉
(4.11)

We found very good agreement between the simulations and the analytical solution

(Figure 4.1A). The results are obtained for flow driven by a volumetric body force, and

Re < 10−4. Following [192] we made sure that a baseline grid refinement of ∆/D ≥ 50 was

met. To match the analytical solution, we made sure the time step ∆t was at least two

orders of magnitude smaller than the time scale tv ∼ ∆x2/ν associated with viscous forces.

Next, we performed an REV analysis on periodically disordered sphere packings. These

are structures that are generated by packing spheres in containers with periodic instead of

wall conditions. Our main goal here was to match the permeability reported by Wood et al.
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Figure 4.1: (A) Drag coefficient (4.11) as a function of solid volume fraction 1−φ in a simple-
cubic array of spheres. (B) Comparison of the permeability obtained for the experimental
system in [192] (dashed horizontal line), and direct simulations using the fictitious domain
method in different REV sizes. Here κ ≡ Kξξ for flow in the ξ-direction.

[192] for a measured velocity field, so we parametrized the problem using values that match

this particular experimental setup. We studied flow in the regime Re ∼ 1. The results of

computations for the component of the permeability tensor that corresponds to mean flow

reproduced in Figure 4.1B show excellent agreement between the numerical simulations and

the experiments.

4.4.2 Permeability from volume averaging

One way to compute K via volume-averaging is to solve the closure problem over an REV

defined by the system (4.6 - 4.10). Although this approach is conceptually appealing and

potentially interesting from the point of view that Chapter 2 was developed, solving for the

tensor field Bv tends to be arduous. Instead, we recall the definition of K in terms of the

spatial fluctuations, p̃γ , and ṽγ . To avoid having to invert matrices on the fly, we also use

the following relationship between K and the net traction vector H:

H = −µ K−1mva · 〈v〉γ , (4.12)
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Figure 4.2: (A) Schematic illustrating the setup for calculating the spatial pressure fluctua-
tions, p̃. (B) Test of the linearity of pressure drop along the flow direction in a simple cubic
array of 3 spheres with periodic side boundaries.

and finally derive the relationship

H =
1

Vγ

∫
Aγκ

nγκ · (−p̃γ I + µ∇⊗ ṽ) dA. (4.13)
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Eq 4.13 gives us a direct means to compute the volume averaging permeability tensor

using the microscale velocity and pressure fields in an REV via the decompositions:

ṽ = v− 〈v〉γ (4.14)

p̃ = p− 〈p〉γ . (4.15)

A key emphasis of the forthcoming monograph is the proper way to compute the pressure

fluctuations, p̃γ . Here we have to take into account the physical fact that the average

pressure varies along the direction of the macroscopic pressure gradient. As a result, at

each point in the REV a new value of 〈pγ〉γ has to be computed using the proper averaging

window (Figure 4.2). A desirable simplification is to assume that the average pressure

declines linearly along the macroscopic gradient. In the following section, we will confirm

this for our system.

4.4.3 Rolling average pressure

We recall the definition of the superficial averaging operator acting on the pressure field, pγ

as

〈pγ〉|x =

∫
r∈Vγ(x)

w(x− r) pγ(r) dV (r) (4.16)

Similar to Chapter 2, for simplicity we use the boxcar function w = 1/Vγ . In periodic

arrays of particles, this particular choice has been shown to potentially introduce wave-like

interference in the averaged field. To suppress these perturbations, Quintard and Whitaker

[134] propose a top-hat function that averages information over two periods of an array.

To test whether or not this is necessary in our system, we computed the averaged pressure

along the direction of the vector ∇〈pγ〉γ using the boxcar function, in a 3-period 3D sc array

of spheres with periodic side boundaries (Figure 4.2B). The results presented in Figure 4.2C

show that the pressure field is linear to a good approximation. This results in significant

simplification of one-the-fly computations since the average pressure field need be obtained

for one time step only, once the flow is fully-developed.



74

Figure 4.3: Streamwise velocity components normalized by their superficial average value
for (a) simple-cubic case of [200], (b) a triply periodic monodisperse sphere packing with
8 particles, and (c) a triply periodic monodisperse sphere packing with 40 particles. Note
that to improve the visualization, we have allowed the color scheme to vary between the
subfigures.

4.4.4 Flow in confined and triply-periodic REVs

Figures 4.3 and 4.4 show the streamwise components of the velocity field, and computations

of the velocity distribution functions (the histogram of velocity components normalized by

the superficial velocity), for the four cases studied here (the experimental case of [192], a

simple-cubic array of spheres, and the 8- and 40-sphere periodic REVs). Given the simplicity

of monodisperse granular materials, it is not surprising that we converge to the experimental

permeabilities even for small REVs, but we must note though that the structure of the flow

varies significantly as larger structures are sampled, and a wider distribution of velocities

become accessible.

A transition from a periodic simple-cubic cell to periodically disordered packings of 40

spheres corresponds to (i) a more spread-out velocity distribution, and (ii) more prominent

(and symmetric) transverse velocity components. The presence of randomness also appears

to contribute to a more smooth transition from small to large velocities, as opposed to

the mild bimodality observed in crystalline arrangements (see Chapter 3 in [58]). We can

understand this as a consequence of extensive channeling when openings in a pore space line

up to permit unobstructed flow. Figure 4.4 shows that significant channeling takes place

in all 4 corners of the REV in single sphere case, but as the number of particles increases,

channeling is more localized and distributed slightly more randomly throughout space.
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Confinement appears to constrain the transverse components of the velocity field as

evident by the reduced variance, and prominent asymmetry of the histograms in Figure 4.4.

We observe a similar asymmetry in the transverse velocity components of the 8-sphere case,

which implies finite anisotropy effects in these structures [96]. Smaller REVs also exhibit

inter-sample fluctuations as evident in the variance in permeabilities computed using the

8-sphere samples in Figure 4.1B.
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Figure 4.4: Confined vs periodic vdfs in monodisperse packings of spheres with φ = 0.44.
Confinement biases the transverse components of the velocity field in favor of the streamwise
component. The transverse vdfs are more symmetric in comparison for the periodic REVs.
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Abstract

Bacterial surfaces are complex structures with non-trivial adhesive properties. The physics

of bacterial adhesion deviates from that of ideal colloids due to cell-surface roughness and

because of the mechanical properties of the polymers covering the cell surface. In the

present study, we develop a simple multiscale model for the interplay between the potential

energy functions that characterize the cell surface biopolymers and their interaction with

the extracellular environment. We then use the model to study a discrete network of

bonds in the presence of significant length heterogeneities in cell-surface polymers. The

model we present is able to generate force curves (both approach and retraction) that

closely resemble those measured experimentally. Our results show that even small-length-

scale heterogeneities can lead to macroscopically nonlinear behavior that is qualitatively

and quantitatively different from the homogeneous case. We also report on the energetic

consequences of such structural heterogeneity.

5.1 Introduction

Surface heterogeneity created by biopolymers is a characteristic feature of bacteria. Lipopolysac-

charides, a host of extracellular polysaccharides, and various proteinaceous structures like

pili and fimbriae are among the macromolecules that constitute the surface of bacterial

cells[48, 6, 175, 177, 155]. It has been suggested that physical heterogeneity on biological

surfaces generally leads to an improvement in adhesion [12], and some bacteria have spe-

cialized tools that allow them to modulate the spatial heterogeneity of surface structures

in response to external stimuli [91, 100, 180]. As one would expect, the effects of these

variations lead to measurable changes in adhesion at the cell scale [159].

Heterogeneity partly explains why colloid models, such as the classical DLVO theory,

have been largely unsuccessful in characterizing bacterial adhesion[130, 174, 84, 114]. Al-

though the presence of surface heterogeneity is well established (illustrations of representa-

tive surface heterogeneities are given in Figure 5.1), it is a challenging problem to determine

how such heterogeneity influences the interaction between the cell and a substratum. A cen-

tral difficulty in addressing the problem is the presence of different kinds of heterogeneity

on cell surfaces. One could formulate related but conceptually very different questions de-

pending on whether heterogeneity in electric charge or surface roughness is of interest. In
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the present study we are concerned with the latter.

In order to answer questions about surface roughness, we first need a framework that

resolves the effects of macromolecular deformations on adhesion. Bacterial surfaces may

contain surface features that are 10’s to 100’s of nanometers in length; the deformations

of these features occur over distances that are much larger than the characteristic lengths

of the bonds they form with an external substratum [53]. The ubiquity of these features

suggests that they should be treated directly as the interacting feature in the adhesion

process. In fact, such approaches have been explored already for adhesion via bacterial

pili[18].

A typical bacterial adhesion event (as resolved by an AFM measurement for instance) is

illustrated in Figure 5.2. During the approach phase of the measurement, often only repul-

sive forces are seen. However, upon reversal of the process, one usually observes significant

attractive forces as the polymers are stretched and eventually pull out of the potential energy

well holding them to the surface; this is often observed as a series of discrete detachment

events that give the retraction curve a ‘rugged’ appearance. Upon a complete cycle of such

an experiment on bacterial surfaces, significant hysteresis if frequently observed in the force

curves between approach (usually repulsive) and extension (usually attractive)[175],[115] .

Current approaches to modeling bacterial adhesion treat the approach and retraction

phases as separate processes. The former is commonly studied using modified DLVO theory

with additional contributions borrowed from steric polymer brush models[26, 45], where

uniformity of surfaces is an often unstated assumption. And the latter is modeled using

polymer elasticity theories. Most frequently some variation of the worm-like chain (WLC),

or the freely-jointed chain (FJC) is adopted[4, 19]. Either component of this framework has

essentially no predictive or explanatory value for the other.

We adopt a somewhat different approach here. Our primary goal is to develop a frame-

work where both adhesion and detachment can be modeled as a single integrated process.

We propose a two-scale model that interprets adhesion as the result of an ensemble of dis-

crete bonds between a substratum and a spatially heterogeneous, mechanically compliant

polymer brush. There are two elements to this approach that are novel.

There are several elements to our approach that are novel. First, we explicitly represent

processes at two distinctly different scales: (1) the nanoscale molecular adhesion events of

the cell surface structures to the substratum (length scale I in Figure 5.1), and (2) the sub-

micron-scale subsequent deformation of the polymer molecules (length scale II in Figure
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Figure 5.1: Surface roughness on bactera. (A) An SEM image of Burkholderia cepacia
showing polymers on the order of 50 nm on the surface. (B) An AFM image of an 0.8 µm
by 0.8 µm area of a single cell of Escherichia coli JM109 (SF815A) imaged at the nanoscale
(data from Amro et al.[6]). (C) Length distribution for the data associated with Figure 1B.
(D) A quantile-quantile analysis shows that surface features are approximately normally
distributed, but show some evidence of the distribution being short-tailed.

5.1). The first of these two processes is what binds the tips of the polymer molecules to

the substrate. The second process represents the large-scale deformation of the polymer

molecules that can occur specifically because their tips are bound to the surface. These two

process scales are not independent. For example, the state of stress in the polymer molecule

can determine if the polymer tip is able to escape its bond with the surface. The explicit

representation of these two interacting process scales is novel in applications to bacterial



81

adhesion.

Second, we directly account for the presence of spatial heterogeneity in the polymer

lengths on the cell surface. This is important for capturing both the overall behavior

of the adhesion process, as well as representing the discrete rupture events that occur

during detachment. The importance of bacterial surface heterogeneity has only begun to

be formally recognized [130], and very few studies have tried to represent these effects.

The framework we implement here is general because one can substitute whatever func-

tional form is appropriate for the cell polymer molecules. Thus, we do not promote a

particular constitutive theory for describing the mechanics of the deformations of macro-

molecules. Instead, we develop a modeling approach that is capable of representing the

essential physics of hysteretic force-distance curves without being overly complex.

5.2 Model

We represent the force between bacterial surface polymers and a substratum as the sum of

individual adhesion events over the polymer molecules. For each polymer molecule, we as-

sume that there are three contributions to the overall potential energy function as described

above: (1) the nanoscale adhesion process; (2) subsequent sub-micron deformations of the

macromolecules, and (3) the influence of external (e.g., electrostatic) fields.

Our modeling approach is similar in many ways to the approach used in the molecular-

dynamical finitely-extensible-nonlinear-elastic (FENE) models developed for describing the

properties of polymers [197, 109]. Such bead-spring models are inherently multiscale in

that the characteristic lengths associated with bead interactions can be orders of magnitude

smaller than the characteristic length scale for the springs.

In contrast to these models, however, we adopt two significant simplifications. First,

we do not consider polymer-polymer interactions as is done in molecular-dynamical-FENE

models of polymers; this is not an uncommon assumption in modeling dilute polymers[2].

Secondly, we do not explicitly consider thermal fluctuations or particular conformations of

the polymers (e.g., polymers with a tilt angle) because these effects are embedded already

in the particular polymer chain model adopted.

With these simplifications, we develop a simplified spring-bead model for the system as

follows. For a system that consists of Np deformable polymer chains each with a polymer

molecule tip (bead) that bonds to the substratum, we write the potential energy function
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Figure 5.2: Schematic representation of the two-scale interaction between the cell surface
polymers and a substratum (AFM sphere probe) on approach and retraction. The process of
adhesion is characterized by highly local short-range forces between the part(s) of polymer
molecules that come in contact with the probe, and longer-range forces arising due to the
compression or extension of the chains. Figure adapted from Ginn et al.[62]

for the ith polymer molecule as

UT,i(r) = Ubead,i(r) + Uchain,i(r) + Uexternal,i(r) (5.1)

where Ubead,i represents the interaction potential energy function between the bead and sub-

state surface, and Uchain,i represents the potential energy function of the polymer molecule.

At the molecular level, cellular adhesion to a substratum is often thought to be dom-

inated by hydrogen bonds[98, 84, 150] thus, it is reasonable to represent the polymer tip-

substratum potential, Ubead,i, by a Lennard-Jones (L-J) 6−12 function[56]. Note that we are

not necessarily suggesting that our choices of potential functions apply to all polymers and

bonds; these are convenient empirical functional forms that capture the essential physics of
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the adhesion event, and such forms are frequently used to represent parts of the adhesion

phenomena at cell surfaces[80, 124]

Ubead(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(5.2)

Here ε is the depth of the potential well, σ is the finite distance at which the inter-particle

potential is zero, and r is the distance between the polymer tip (bead) and the substrate.

The potential function for the polymer molecule deformation, Uchain,i, can be as simple

or complex as is reasonable for describing the deformation of the polymer, and can include

polymer-polymer interactions. Although the contributions of enthalpic (e.g., bending) and

entropic (thermal motion) forces are common to nearly all polymer models, the particular

kind of polymer network, density of the network, and amount of deformation lead to tremen-

dous variety in the models that predict polymer molecule force as a function of deformation.

In this work we provide examples of the simplest kinds of models; more complex models

can be adopted if there is sufficient knowledge about the particular system of interest to do

so.

This model corresponds roughly to the following processes, illustrated in Figure 5.2. (A)

The end of a single polymer chain (bead) is attracted into the L-J potential well (plus any

external field potentials) to create adhesion of the bead and stretching of the chain. (B)

Further approach leads eventually to chain compression and increasing repulsion. (C) On

retraction, the polymer molecules remain trapped in the potential energy well, but begin to

relax toward their equilibrium state. (D) Upon further retraction, the polymer molecules

are stretched until either (1) the chain potential energy surpasses the maximum potential

energy of the trapped bead (i.e. the depth of the potential well, ε) and the bead escapes

the L-J well (D), or (2) the chain is ruptured. In the following material, we account for the

first of these two options. The second option (chain rupture) is not discussed, but would

be straightforward to incorporate in the model should conditions warrant it.

5.2.1 General force balance

In Figure 5.3 we have outlined the geometry of our system. The total separation between

the substratum and the cell membrane (from which the cell surface features extend) is

specified by the distance ξ, which is the independent variable in this analysis. The distance
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Figure 5.3: (A) Geometrical setup of the problem defined by eq 5.6. The polymer base is
assumed to be stationary. (B) A force balance for the bead-polymer system in a state of
attraction toward the substratum (i.e. chain extension).

between the polymer tips and the substratum is given by r(ξ), and this distance depends

on the interaction between the L-J and chain forces.

For each polymer chain, the total force created by the potential energy function, UT,i,

is the negative of the gradient of the potential function. Thus, the total force balance on

each polymer is given by

∂(meff ,ivi)

∂t
= −

∂Ubead,i
∂r

−
∂Uchain,i

∂r
−
∂Uexternal,i

∂r
(5.3)

For the remainder of this work, our primary focus is on the physics of the polymers; thus, we

will not consider contributions from the external potential field (Uexternal,i = 0); inclusion

of this term if necessary is straightforward. We consider deflections only in the direction

perpendicular to the substratum (which we label the r−direction). Computing the two
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primary forces individually gives the results

Fbead,i(r(ξ)) = −∂Ubead(r(ξ))
∂r

= 24ε

(
σ6

r7(ξ)
− 2σ12

r13(ξ)

)
(5.4)

and for the (yet unspecified) force associated with the polymer chain

Fchain,i(r(ξ)) = −
∂ Uchain,i

∂r
(5.5)

If we impose the approximation that the reconfiguration timescales for the polymers

in response to changes in the distance r, are significantly smaller than the timescales that

characterize the motion of the substratum, then then we can consider the process to be

quasi-steady-state. If one were interested in the viscoelastic properties of the process, then

this approximation would be invalid. However, it is a good starting point for the more

general consideration of an adhesion cycle. Under these conditions, we have the balance

Fbead,i(r(ξ)) + Fchain,i(r(ξ)) = 0 (5.6)

Therefore, the forces on the polymer tips are equal (but with opposite sign) to the forces

within the polymer molecule. With an appropriate model for Fchain,i, eq 5.6 is sufficient to

determine Fchain,i for each polymer. To determine the total force acting on the surface, it

is necessary only to sum over all Np polymer molecules

Fadh(ξ) =

Np∑
i=1

Fchain,i(r(ξ)) (5.7)

In the next two sections, particular models (linear and nonlinear) for Fchain,i are discussed.

5.2.2 Linear elastic model

Extension and compression of polymeric structures can involve a purely mechanical (en-

thalpic) response, a purely entropic response, or a combination of the two[22]. Regardless

of source, some of the first statistical analyses of polymer chains and groups of chains led

to linear (Hookean) spring laws for the deformation behavior[97, 141], and linear springs

interacting with L-J potentials continue to be used to derive the mechanical properties of
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polymers [67]. Given that linear behavior is the limiting behavior of almost all known poly-

mer force laws, it is not unreasonable to begin the investigation of particular polymer chain

forces with the linear one. In this case, the force in the coarse-grained molecule is linearly

proportional to the deformation from its equilibrium (zero force) length, `eq. For simplicity,

we will drop the subscript “i” bellow.

Fchain = kchain(`eq − [ξ − r(ξ)]) (5.8)

where kchain is the effective linear spring constant[22]. Equation 5.8 returns a force in

the positive direction when the chain in compressed, and in the negative direction upon

extension. Now the total force balance (Figure 5.3B) on one polymer is given by

kchain(`eq − [ξ − r(ξ)]) + 24ε

(
σ6

r7(ξ)
− 2σ12

r13(ξ)

)
= 0 (5.9)

In this expression, all of the parameters are known except the value of r(ξ). Although it is

not possible to explicitly solve this equation for r(ξ), it implicitly provides the value which

can be determined by simple root finding. Once the value of r(ξ) has been determined,

the force in the chain (which is equal to the L-J force on the bead but with opposite sign)

can be found by substituting this value into eq 5.8. A complete force-distance curve can

be developed for every separation distance of interest for one polymer-bond complex by

repeating this process for each value of ξ. Repeating this process for all chains then allows

one to develop the information needed to find the total force function through eq 5.7.

5.2.3 Nonlinear elastic model

At large values of compression or extension, the stress in polymers generally behaves non-

linearly with distance. To represent these nonlinear effects, we have adopted the WLC

approximation proposed by Broedersz and MacKintosh[22], which applies to semi-flexible

polymers. We chose this model in because it provides the correct linear response in the

low-deformation regime, and because it allows for some rigidity in the cell surface features.

An additional linear spring term[199, 19, 61] has been added to represent nonspecific en-

thalpic contributions from mechanical deformation of the cell surface structures. The force

function for the polymer molecule is
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Fchain =kchain(`eq − [ξ − r(ξ)])

+
9kT`p
`2c

[(
1− `eq − [ξ − r(ξ)]

`c − `eq

)−2
− 1− 1

3

[ξ − r(ξ)]− `eq
`c − `eq

]
(5.10)

and the total force balance on a particular polymer molecule takes the form

kchain(`eq − [ξ − r(ξ)])

+
9kT`p
`2c

[(
1− `eq − [ξ − r(ξ)]

`c − `eq

)−2
− 1− 1

3

[ξ − r(ξ)]− `eq
`c − `eq

]

+24ε

(
σ6

r7(ξ)
− 2σ12

r13(ξ)

)
= 0 (5.11)

Here, `c is the contour length of the polymer, `p is the persistence length, `eq is the zero-

force equilibrium length, k is the Boltzmann constant, and T is the absolute temperature.

The model assumes that `c ≤ `p, to ensure that the structures have stiffness [22].

As with the linear case, we can find the values of r(ξ) for this force balance by simple

root finding methods. We can calculate a force-distance profile using the polymer force

function using eq 5.10 after determining a set of ξ and r(ξ) pairs.

In the analysis that follows, we will characterize force-distance profiles using the adhesion

energy, E∗, defined as the area under the retraction curve [54], and Fmax defined as the

maximum adhesive force in the retraction curve reached before detachment.

5.3 Simulations

Because we have multiple spatial scales in the phenomena of interest, and because of the

nonlinearity involved in these phenomena, we rely on simple numerical simulations to com-
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Figure 5.4: The landscape for a single polymer molecule. Maximum forces generated by the
L-J potential obtained via a parametric sweep of ε and σ in eq 5.4 (background contours).
Superimposed are the proposed energy scales of intermolecular hydrogen bonds[78, 83]
(inclined hatches), bounds for (experimentally obtained) bacterial single-molecule specific
forces [25] (dotted region), hydrogen bond strengths statistically inferred from AFM mea-
surements on L. monocytogenes[64] (blue squares) and E. coli[3] (triangle) fitted to eq 5.4,
and the parametrization used in the present study (crosses). The labeled contour lines mark
the upper bound and mean of the measurements complied by Busscher et al.[25].

pute the force-distance relationships. We use a straightforward procedure where (1) ξ is

fixed at increments along the direction of the interaction; (2) for each ξ, a numerical solu-

tion for an individual polymer molecule-bond system (eqs 5.9 or 5.11) is computed using

a bisection method; and (3) the macroscale force is constructed by summing up individual

contributions. We find that when the model parameters satisfy certain scale constraints, the

force balances can have two stable solutions corresponding to the approach and retraction

curves[116]. This observation confirms that eq 5.6 is self-contained in the sense that it can

describe a complete hysteretic approach-retraction cycle.

5.3.1 Parametrization

The multiscale approach to simulating a cell surface requires information about the nanoscale

processes and the macroscale statistical structure of the brush. There is, however, great

variance in the values reported for the magnitude and length scales of the nanoscale adhe-
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sion forces and polymer brush thickness among different studies. Given these uncertainties,

we find it more informative to first examine the ranges reported in the literature in our

parametrization rather than to attempt to replicate specific experiments. In addition, to

get representative results, we imposed order-of-magnitude constraints on some of the pa-

rameters. For instance, we find heuristically that the solutions to the linear chain model of

eq 5.9 are hysteretic when 8ε/kchainσ
2 � 1; we also find that normally-distributed rough-

ness only becomes consequential when the bond length and the standard deviation in chain

length satisfy σ/s`eq � 1.

In setting the L-J parameters we refer to the list of single-bond molecular recognition

forces compiled by Busscher et al. [25], which occupies a range between 0.032 nN to 0.257

nN, with a mean of 0.095 nN. This interval overlaps with estimates obtained via statistical

analysis of AFM force spectra [64, 3, 187]. Figure 5.4 is a graphical representation of these

bounds superimposed on values obtained from eq 5.4 (via a simple parametric sweep within

the typical energy scales of hydrogen bonds [78, 83]). We generally adhere to these bounds

and use Figure 5.4 as a rubric for tuning the molecular bonds. In our simulations we consider

one bond per polymer molecule for simplicity.

To infer the statistics of `eq we refer to the average brush thickness computed using

AFM data. Studies on E. coli [3, 159], Listeria monocytogenes [128, 64], and Pseudomonas

aeruginosa [79] have obtained mean brush thicknesses, µ`eq , within a range between 2 nm

to 212.4 nm, with mean-normalized standard deviations (s`eq/µ`eq) in the range of 0.15 to

0.59 (these bounds are representative but not necessarily exhaustive). Alternatively, we

can deduce the surface roughness (defined as the standard deviation in equilbrium chain

lengths) from topographical data. We used the data from Amro et al.[6] to compute the

statistics of the polymer molecules reported for strains of E. coli. We found that the surface

features are normally distributed, with roughness on the orders 9.4 ± 1.9 nm and 18.2 ±
5.0 nm (Figure 5.1C), consistent with other studies on E. coli [3].

In our simulations, we have studied ensembles of statistically generated brushes with

a mean `eq of 20 nm. To generate heterogeneous surfaces, we sample distributions with

preset means and variances. To facilitate comparison with homogeneous surfaces, we fix

the first and second moments of samples drawn from the generator distribution (regardless

of sample size), but allow the higher-order moments to fluctuate. It is important to note

that for both the homogeneous and heterogeneous polymer brushes, the average polymer

length is the same. In the results that follow, we focus primarily on normally distributed
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roughness but also present one sample calculation for a surface described by multi-modal

distributions.

Finally to construct the brushes, we sample a range of numbers of polymers involved, Np,

for representing the interaction of a surface with a bacterial polymer surface. This range

overlaps with statistically inferred values reported by Gordesli and Abu-Lail [64], values

derived from inverse modeling using the steric model of Butt et al. [128], and the more

conservative estimates by Busscher et al. [25]. The parameter kchain is treated as a general

degree of freedom that tunes the energy and length scales of the interaction, and is constant

for all chains in a given simulation (details below). Table 5.1 summarizes the parameters

used in the present study.

Table 5.1: Ranges of parameters used in the simulations
Parameter Range Units

ε 1 - 10 kT

σ 0.1 - 0.6 nm

kchain 0.0002 - 0.02 N·m−1

`eq ∼ 20† nm

`c ∼ 100† nm

`p ∼ 300† nm

Np 100 -

s`eq 0 - 5 nm

T 298 K

†These ratios are kept constant in the statistically generated surfaces

5.4 Results

Before discussing the brush simulations, it is helpful to examine the behavior of individual

polymer molecule-bond complexes. The model systems of eq 5.9 and eq 5.11 admit hysteretic

solutions when the strain energy imposed on the chain can generate deformations that are

larger than the L-J bond length (σ). A simple perturbation analysis on the rigidity of the

chain shows that we can generally find a polymer in two states with respect to a given

bond: (1) stiff : this is when the chain deformations are very small (‖∆`‖/σ ≤ 1), and the

retraction curve traces the approach curve exactly (i.e. no hysteresis); or, (2) compliant :
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Figure 5.5: Sample force-distance profiles for linear (A and B) and nonlinear (C and D)
models with different generator distributions for `eq (insets). Bond strengths are tuned to
ε = 5 kT and σ = 0.5 nm. Linear chains are constructed with kchain = 0.01 N/m, and
nonlinear chains with kchain = 0.0002 N/m and the values of `eq, `c, and `p as reported in
Table-5.1. s`eq/`eq = 3, and Np = 100 in all simulations.

the chain has enough spatial degrees of freedom to allow for deformations on the order

‖∆`‖/σ � 1, and the retraction curve begins to deviate from the approach curve[117]. This

characterization helps us define an upper bound for chain rigidity by constraining the range

of kchain in eq 5.9, and the combinations of kchain, `eq, `c, and `p in eq 5.11 to the compliant

regime[118],[119]. For our simulations, we generally observe that `p ≥ `c > `eq, and that

there is a strong correlation between triplets of `eq, `c, and `p for heterogeneous surfaces.

Figure 5.5 shows example force curves for both the linear (A and B) and nonlinear
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(C and D) models, for two very simple scenarios: (1) surfaces with no roughness, and

(2) surfaces with normally-distributed roughness. These examples contain most of the

observed differences between homogeneous (A and C) and heterogeneous (B and D) brushes.

On approach, the homogeneous brush creates a jump-into-contact event with a length-

scale on the order of σ. The normally-distributed brush forms a longer-range force that

emerges from the accumulation of out-of-phase contributions from chains of different lengths

during compression. In retraction, the homogeneous brush creates a sharp step discontinuity

upon detachment, but the heterogeneous brush goes through numerous smaller detachment

events, creating a ‘rugged’ and spread-out macroscale force-distance curve.

Figure 5.5 demonstrates that the linear and nonlinear models show similar physical

behavior, but differ in the magnitude and length scales of the forces they generate. Another

key difference between the two is the asymmetry of elasticity in the nonlinear chain model

(forces and deformations on retraction are much larger than on approach). This effect has

been observed in measured force-distance profiles previously compared [63, 54].

In Figure 5.6 we present two sample profiles of adhesion energy (E∗) versus distance

for the linear and nonlinear cases. We observe a ∼70% decrease in adhesion energy for a

linear-elastic brush made up of 100 normally-distributed polymers, compared with a uniform

brush. Interestingly, we observe negligible sensitivity to roughness in adhesion energy for

a nonlinear-elastic surface with the same standard deviation in polymer length. It is clear

that the presence of nonlinearities influence the overall energy distribution in ways that are

not necessarily intuitive.

Figure 5.7 illustrates one attempt to simulate an force-distance profile obtained exper-

imentally for a bacterium of S. epidermidis[33]. In this figure, we have adopted a multi-

modal distribution for `eq (illustrated in the inset) to represent three different populations of

polymers on the surface of S. epidermidis; the model results appear in Figure 5.7A. In Fig-

ure 5.7B, we have plotted the observed AFM measurements generated by Chen et al. [33].

5.5 Discussion

5.5.1 Adhesion as a multiscale process

Under proper length and energy constraints, a simple but carefully-constructed setup of

two interacting potential functions reproduces the general features of a typical hysteretic
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Figure 5.6: Sample adhesion energy profiles for the linear (A) and nonlinear (B) models,
describing Np = 100 chains. Linear brushes are constructed using ε = 5 kT, σ = 0.5 nm, and
kchain = 0.01 N/m. Nonlinear brushes are constructed using the same bond strength, kchain
= 0.002 N/m, and the values of `eq, `c, and `p as reported in Table-5.1. While decreased
by heterogeneity in the linear brush, the total adhesion energy stored in a nonlinear brush
remains largely unaffected even for large standard deviations in `eq (note the difference in
length and energy scales in the two plots).

force-distance curve (e.g. Figure 5.5B, D). Despite its simplicity, the quasi-steady-state

solution to our model describes both the approach and retraction processes; previously,

multiple mutually-independent models were generally used to interpret the two parts of the

cycle[128, 132].

In the proposed framework, we can understand hysteresis as a multiscale phenomenon.

Our model yields results that can be interpreted on two distinct levels (1) on the molecu-

lar level, hysteresis is a consequence of a single polymer’s compliance to the force exerted

by the small-scale bond; (2) on the macroscale, hysteresis is also a consequence of how

molecular-level contributions scale; when roughness is present this scaling is governed by

how synchronously the cell surface structures engage with the substrate. In our proposed

model, the geometry of contact itself dynamically adapts to the interactions it helps mod-

ulate. Consistent with this picture, considering a “soft” charged layer in calculating the

surface potentials of electrostatic forces on bacteria has improved the predictions of the
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Figure 5.7: (a) An example of the force-distance curve for a trimodal brush (parameters
are the same as in Figure 5.5). (b) An example of an AFM measurement on S. epidermidis
reproduced from Chen et al. [33]. We observe significant qualitative similarities between
our modeled results and observations, and the role of surface roughness is consistent with
the discussion of adhesion properties provided by the authors [33].

DLVO theory [64, 123, 21, 71].

Because the approach and retraction processes are coupled in the present framework,

the mechanism for detachment is escape from the potential energy well of the molecular

bonds. Our approach relaxes the assumption that detachment is possible only via phys-

ically breaking the polymers responsible for adhesion. We can account for non-rupturing

detachment events for cases where the detachment force is less than the rupturing force

for the polymers of interest, and trivially expand the model to allow for chain breaking for

cases where molecular-scale adhesion is strong.

5.5.2 Model performance

The ability for our model to reproduce the kinds of approach and retraction curves seen

experimentally is illustrated in Figure 5.7. Although the computation presented in Fig-

ure 5.7A is largely intended only to show that one can qualitatively and quantitatively

match experimental data, the model is not entirely heuristic. It is known that the sur-

face of S. epidermidis has a wide variety of biomolecules involved in adhesion, including
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polysaccharides, and a host of specific protein adhesins[139]. The work by Chen et al.[33],

suggests that there must be cell surface structures with differing properties to explain their

data; our analysis is consistent with their suggestion. Although our model is not a unique

explanation of the data (for instance, we did not consider differences in bond strengths,

which undoubtably occur when different molecules are involved), it does suggest that sur-

face roughness created by structures of differing lengths may be part of the appropriate

model for adhesion of this species. The rapid increase of Fadh as ξ → 0 in Figure 5.7B can

be attributed to contributions such as the turgor pressure, relative rigidity of the lipid bi-

layer, relative incompressibility of the periplasmic space; these phenomena are not included

in the model.

Overall, we see that our model can provide a good representation of the observations in

terms of length scales, maximum forces, and the shape of the force-distance profile. This is

a unique result in terms of models for bacterial adhesion and detachment.

5.5.3 Surface roughness

Roughness has been incorporated into some studies of bacterial adhesion [3] using a ‘rough’

formulation of the van der Waals force in DLVO theory[136, 135]. The reduction in peak

adhesion force observed in this work is phenomenologically consistent with these reports,

as well as the reduced adhesion between rough abiotic surfaces on a range of scales [88, 89].

However, because macroscale deformations due to mechanical compliance (characteristic of

bacterial surfaces) are usually not accounted for, the role of roughness in shaping the length

scales of macroscale interactions is often ignored.

Our results show that the nature of initial bonding on compliant heterogeneous surfaces

can be quite different from homogeneous surfaces, even though the two share the same

molecular bonding mechanisms. Figures 5.5B, and 5.5D illustrate that roughness transforms

the spontaneous jump-into-contact events seen in Figure 5.5A and Figure 5.5C into longer-

range apparently repulsive interactions. On a compliant heterogeneous surface, new bonds

form sequentially only after longer polymer molecules have been sufficiently deformed, and

therefore cost energy. This suggests that at least some of the (potentially repulsive) force

experienced on approach could be explained by structural heterogeneities only, without

having to resort to (exotic) long-range interactions [114]. Note that this effect is unique to

heterogeneous (rough) surfaces, and can be qualitatively distinguished from steric repulsion



96

(also present in homogeneous systems).

The effects of heterogeneity on the length scales of interactions and its importance in

interpreting force measurements are perhaps more evident in the retraction portion of the

adhesion cycle. Figures 5.5B and 5.5D also demonstrate that surface roughness increases the

length scales of the force curve on retraction, while significantly decreasing the magnitude

of Fmax compared with a homogeneous surface. Thus, if Fmax were the sole metric used

(via an appropriate model) to elicit a structural or energetic property of the surface, failing

to account for roughness could lead to incorrect inferences (e.g. bond strength or grafting

density could be significantly underestimated).

It is interesting to note that surface roughness creates an apparent tradeoff between

the maximum force that can be sustained during detachment versus the total length scale

over which some adhesive force still remains upon deformation. For both the linear and

nonlinear cases, the heterogeneous surfaces can withstand larger total deflections before

becoming detached than can the homogeneous surfaces.

These observations suggest that for a system that satisfies the scale constraints stud-

ied here, length heterogeneities are of fundamental importance, and should be explicitly

accounted for in modeling. There are conceptual parallels between this property of rough

surfaces and similar deviation from effective descriptions observed for surfaces with charge

heterogeneities. For example, the motion of colloids with charge heterogeneities is not al-

ways properly captured by the effective surface charge density or zeta potential [49, 81],

and deviations from the classical colloid filtration theory are frequently observed [169, 170].

Similarly, when length-scale heterogeneities are present, homogenization of bacterial sur-

faces without explicitly accounting for heterogeneity might lead to the loss of essential

physics that are detrimental to adhesion. .

5.5.4 The role of roughness in the biology of adhesion

Unlike colloids, the structure of the exterior of living cells is the consequence of extensive

information processing, and is therefore complex. This complexity is characterized by vari-

ous different types of heterogeneities. Roughness, defined as the variation in a characteristic

measure of length of the polymers that make up the surface, is particularly ubiquitous. An

interesting aspect of bacteria is how their surfaces, and surface roughness, are responsive

to external stimuli. In gram-negative bacteria, for example, co-expression of short (A-
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band: hydrophobic, electroneutral) and long (B-band: hydrophobic, negatively-charged)

LPS chains has been found to impart the cell surface some control in expressing states with

different overall hydrophobicities in response to changes in ionic strength [148]. The genetic

circuits responsible for modulating these surface modalities are rather well-understood [196].

An interesting question here is whether or not this type of ‘regulated’ roughness could

lead to adhesion enhancement, and therefore be a feature that affects selection under partic-

ular environmental conditions. In the multiscale framework adopted here, roughness might

appear to hinder adhesion at first glance if one considers only the maximum adhesion force,

Fmax. But a closer examination reveals that there is a trade-off between the reduction

in Fmax and the corresponding increase in the characteristic length scale of the adhesion

process (i.e., the maximum distance in which polymer molecules are still adhered is larger

for the heterogeneous case). Such an increase could potentially boost a cell’s ability to stay

adhered when there are environmental perturbations tending to cause detachment.

Adhesion energy is relatively less sensitive to roughness. For the the linear model here

is a small energy penalty for rough versus smooth surfaces. Interestingly, however, the

total adhesion energy for heterogeneous bacterial surfaces that exhibit nonlinear elasticity

is far less sensitive to roughness. In fact, a small increase in total energy was observed for

the rough versus smooth case in our computations. These observations hint at the possible

existence of states where roughness could lead to enhancements in adhesiveness. Our results

suggest that surface roughness may have significance in the ecological context by providing

cells with properties that might make them more competitive under some environmental

conditions.

5.6 Conclusion

This study serves as a first step in the validation of the concept of bacterial adhesion as

a multiscale process. As such even very simple potential energy functions for the different

components of the system can capture the essential features of experimental observations.

The framework introduced here represents a shift of focus from increasing the phenomeno-

logical complexity of models that are constrained to a single scale, to one which instead

implements basic physical phenomena within a multiscale framework. Using this framework

we argue that some of the complexities of bacterial adhesion can be explicitly attributed

to scale effects and structural heterogeneities without having to invoke explanations that
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involve exotic long-range interactions.

In this work, we have assumed that roughness is a normally distributed variable, which

is a simple but physically reasonable first step. We have also focused on systems where the

molecular bond potential function is more or less invariant, and almost all of the hetero-

geneity can be found in the lengths of the polymer molecules[120]. In subsequent studies

the proposed model should be expanded to include (1) variations in bond strength and

chemical characteristics, and (2) more fully characterized polymer molecule length distribu-

tions on bacteria (e.g., Whitfield et al. [186]). Additionally, the ideal that bacterial surface

heterogeneity may confer ecological advantages is an interesting idea that is only hinted at

by our results. However, the idea is an important one, and this idea should be explored

more fully.



99

Table 5.2: List of Symbols
Fadh Adhesion force; force-distance trace for a brush

Fchain,i Adhesion force of the i-th polymer; force-distance trace for a single polymer
Fmax Peak adhesion force in the retraction curve
E∗ Total adhesion energy for a brush (defined as the area under the retraction curve)
Uchain,i Polymer chain potential energy function
Ubead,i Bond potential energy function
Uexternal,i Per chain external potential energy field contribution (e.g. electrostatic, etc.)
UT,i Total potential energy of a chain-bond complex
Np Number of polymers
ε Bond energy parameter for the Lennard-Jones potential
σ Bond length parameter for the Lennard-Jones potential
kchain,i Spring constant for the i-th chain
`(ξ) Length of the i-th chain at a given ξ
`eq Equilibrium length of the i-th chain

`c Contour length of the i-th chain
`p Persistence length of the i-th chain
meff ,i Mass associated with a an individual polymer
vi Velocity associated a polymer chain in the ξ-direction
r Distance between the probe and the bond-forming part of the chain
ξ Total distance between the probe and graft base
s`eq Standard deviation of an `eq set
µ`eq Mean of an `eq set
T Temperature
k Boltzmann’s constant
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Abstract

Biofilm growth in 3D porous media under a constant flow rate generates fluctuations

in the bulk pressure drop measured across the system. These fluctuations emerge

out of the dynamic co-evolution of the pore-space geometry and the flow field, and

in response to cycles of growth and decay in established surface-associated colonies.

The inherent nonlinear nature of the process raises the question of whether or not

the dynamics are predictable from the point of view of a macroscale observer with

no access to pore-scale information. In this short paper, we explore this question via

a symbolic analysis of pressure drop data by measuring the entropy rate (a measure

of the persistent generation of uncertainty in a time series), and excess entropy (a

measure of the length of the sample required to reach a maximally predictable state in

the time series). Analysis of experiments conducted at three flowrates show bounded

excess entropies and vanishing entropy rates, suggesting that the fluctuations in pres-

sure are predictable and self-contained over the time scales that the experiments were

conducted over.

.1 Background

The reciprocal effects of hydrodynamics and biofilm growth in tortuous geometries

has attracted a great deal of attention from the biomedical and porous media research

communities. The formation of biofilm streamers, connected cell-matrix agglomer-

ations that could span many characteristic pore lengths, in such media can lead to

catastrophic flow disruptions that are detrimental to the study of a wide range of

designed and natural systems [50].

Bioclogging occurs over multiple time scales in porous media, making it a complex

process even in morphologically simple and homogeneous media. Cells undergo cycles

of growth and death, and the spatial distribution of biofilms undergoes configurational

changes that are linked to the efficiency of solute transport, and shear. In a recent

experimental study in 3D model systems, we observed that these pore-scale processes

create fluctuations in bulk pressure drops on multiple time-scales (ranging from <1

hr to ∼2 days). Even at very small flowrates, the pressure signal is complex despite
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the simplicity of the flow field itself.

We expect the temporal ordering of the processes that generate these fluctuations

to be different in different hydrodynamic regimes. For instance, at lower flowrates

growth can be oxygen-limited but more local, so catastrophic clogging events could

be more common - in higher flowrates sloughing is more prevalent so clogging and

pressure build-ups occur over longer time scales. The imaging work uncovered that

this is in a sense a difference in mechanisms: although the processes are the same, the

way they manifest over time is different: lower flowrate columns clogg locally but fast,

and then transition into an oxygen/nutrient-limited state. In contrast, higher flowrate

columns clogg globally (small erosions are more frequent on shorter timescales and

big pressure depression happen over longer scales).

The emergence of these fluctuations raises a number of questions, including (i) how

long does the pressure drop signal need to be to be representative of the pore-scale

dynamics? (ii) will the dynamics access stable states by optimizing the morphology

of the biofilm-fluid interface, or is there an irreducible level of stochasticity involved

in the process?

The framework of computational mechanics [146] and information-theoretic anal-

ysis are particularly well-suited to answer these types of questions. Computational

mechanics and information theory have been applied to several notoriously complex

physical systems that operate in a regime that is chaotic but not random. Examples

include 2D Turbulence [29, 28], Geomagnetisms [34], atmospheric turbulence [127],

disordered condensed matter [179].

.2 Flow experiments

The details of the flow experiments can be found in [77]. A schematic of the setup

is reproduced in Figure 8A. Briefly, biofilm was allowed to develop under constant

flowrate conditions in tubular flow reactors filled with spherical beads to simulate a

porous medium. Growth was promoted over a 2 week period and the bulk pressure

drop across the columns measured continuously. A total of 6 columns were studied,

two at each flowrate; and 3 total flow regimes were studied that correspond to initial

Re of 0.1, 1.0, and 10. A snapshot of a biofilm-altered column is reproduced in
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Figure 8: Schematic of the flow experiments (A), and a sample of the imaged biofilm (B).
In (B), biofilm=blue, and grains=gray.

Figure 8B.

This particular experimental design creates a semi-constrained tubular flow that

is especially responsive to temporal variations in porosity and flow field reorientation.

In this setting, we can expect the bulk pressure drop fluctuations to be not entirely

random, but directly related to pore-scale processes that affect the global dynamics

of the flow. In this constant flowrate setting, the pressure drop pressure serves as an

indicator of the continuous rearrangements of the velocity field.

.3 Time series analysis

We first performed a spectral analysis via a fast Fourier transform. Figure 9 shows the

scaling of power spectral densities in different flow regimes. Color of noise, defined by

the exponent λ is a reliable characterizer of dynamics in noisy systems. Most natural

system tend to operate optimally near λ = 1, or pink noise. Closely correlated systems

operate near λ = 2, or Brownian dynamics. Figure 10A illustrates that a transition

from creeping flow to mildly laminar flow corresponds to a transition from Brownian
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Figure 9: spectral analysis

scaling to pink noise in our system.

Next, we were interested in measuring the crypticity of the signal; this is a measure

of the amount of irreducible uncertainty in a time series. In other words, it measures

how much we would still not know about a signal even if we sample an infinite string

from it. If this parameter is nonzero for the biofilm data, it would imply that pore-

scale bioclogging is essentially stochastic, and to some extend unpredictable.

To perform the analysis, we first tested the time series data for stationarity.

This was done via the Augmented Dickey-Fuller (ADF) test, which rejected non-

stationarity for all the experimental samples. Next, we needed to isolate the gradual

accumulation of biomass in the system and the associated ramping of the pressure

drop. We are only interested in the fluctuations. Detrending was done using a simple

Hanning filter.

Symbolic data analysis time series data to be alphabetized by dividing the am-

plitudes into a finite number of bins, n, and assigning the values contained in each

bin to a unique letter. Each point in a binned time series is a member of the set

(alphabet) Sn = {s1, s2, ..., sn}. The time series can then be expressed as a string

of letters drawn from S . This string S can be divided into two halves
←−
S , and

−→
S ,

where S =
←−
S ∪
−→
S .

Next we are interested in constructing words, blocks of L consecutive letters. The

Shannon entropy of blocks of L letters can then be computed as
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H(L) ≡ −
∑
s1∈S

...
∑
sL∈S

Pr(s1, ..., sL)log(Pr(s1, ..., sL)) (12)

As L→∞ the Shannon entropy diverges. A more stable measure of information

called entropy rate or metric entropy is defined as

hµ ≡ lim
L→∞

H(L)

L
. (13)

Entropy rate is the entropy associated with a symbol if all the preceding symbols

are known. In other words, how predictive we can be if we have perfect memory. Now

we understand that hµ is an asymptotic value. We can study the growth toward this

value by a simple difference equation

hµ(L) ≡ H(L)−H(L− 1), L = 1, 2, ... (14)

The quantity hµ(L) is referred to as block entropy, and helps us define the notion

of convergence to entropy rate more concretely. It also helps us define the following

metric

E ≡
∞∑
L=1

[hµ(L)− hµ] =
∞∑
L=1

[H(L)− hµL], (15)

that is referred to as excess entropy. E has a very intuitive interpretation: it

describes the length of the string that we must record for the signal to be maximally

predictable.

In Figure 10B,C we have reproduced the computations of hµ(L) and E for the

detrended pressure drop time series for an alphabet size of 6. The results clearly

show that hµ → 0, implying that the pressure fluctuations follow repeating motifs

at all flowrates. In addition, the excess entropy is remarkably consistent among

different samples and flowrates. These observations support the notion that despite

the difference in the dynamics at different flowrates (as measured by λ), all time series

become predictable within the time span of the experiments.
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Figure 10: (A) Scaling of the power spectral density, S(f), of the pressure drop time series
at different loading Reynold’s numbers. Pressure fluctuations show a smooth transition
from near-Brownian scaling at Re=0.1 to pink noise scaling at Re = 10. (B) Block entropy
and entropy rates for the 6 columns - all samples have vanishing entropy rates. (C) Excess
entropies associated with (B) as a function of loading Reynolds number.

.4 Conclusions

Vanishing entropy rates suggest that the pressure fluctuations induced by biofilm

growth in confined porous media had been adequately sampled. The results highlight

the potential for information-theoretic investigation of transport phenomena with a

chaotic component. The results also suggest that the coupled biofilm growth - flow

system can relax toward stable asymptotic states, where fluctuations are still present

in the system, but statistically predictable. The excess entropy E can be transformed

into a time scale that represents the initial establishment of biofilm in porous media.
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