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Thermodynamic properties of systems are often investigated computationally.
Traditionally, thermal physics simulations are limited by their very small energy
ranges and slow convergence. Broad histogram algorithms are a class of Monte Carlo
algorithms that can explore an entire energy (and temperature) range in one ther-
mal physics simulation: potentially saving months of compute time. In this paper,
we investigate broad histogram methods designed inside (SAD, TMI, and TOE) and
outside (Wang-Landau, Transition Matrix Monte Carlo, Wang Landau Transition
Matrix Monte Carlo, and Stochastic Approximation Monte Carlo) of the Roundy re-
search group. The square well potential of thermodynamics serves as the algorithm
testing platform. This thesis covers the motivation and theory behind each histogram
method. We then investigate algorithm performance on two sets of system configura-
tions by analyzing their uncertainty and error when computing each system’s entropy
over time.

Overall, three algorithms developed in group, SAD, TMI, and TOE consistently
converged to low errors. In addition, SAD, TMI, and TOE were straightforward to
prepare for simulation, as there aren’t any user defined parameters. Wang-Landau
Transition Matrix Monte Carlo (WLTMMC) converged to low error and low uncer-
tainty rapidly, but required a predefined energy range. This research demonstrates
that the popular Wang-Landau algorithm (while collecting lots of independent sam-
ples) may not work well for all systems and could take longer to correct system
properties.
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1 Introduction

Computational physics serves as a bridge between theory and experiment. Computer
simulation allows for investigation of multiple theoretical approaches, without the
cost of experimentation. As such, equilibrium properties of thermodynamic systems
are often calculated computationally. Thermodynamic problems are usually either
investigated through brute force molecular dynamics, or stochastic Monte Carlo ap-
proaches.

Monte Carlo methods are often used in this computation, since results at lower
energies are statistically difficult to obtain through standard molecular dynamics sim-
ulations. However, conventional Monte Carlo algorithms are limited in thermodynam-
ics by their small energy ranges. Broad histogram (sometimes called ‘flat histogram’
or ‘multicanonical’) methods are a class of Monte Carlo algorithms which combat
this problem. Broad histogram algorithms are able to explore every desired energy
of a system. Theoretically, running a single broad histogram simulation should be
faster than running multiple canonical Monte Carlo simulations. However, in prac-
tice, broad histogram simulations are still very slow to converge to correct results, so
an efficient algorithm could save immense compute time [1].

Traditionally, most broad histogram algorithms are first developed to analyze the
Ising model. Since the Ising model is one of the most simple systems to simulate, it
could hide algorithm inefficiencies. In addition, comparatively little has been done
to study broad histogram efficiency on fluids. In this paper, we apply several broad
histogram algorithms to the square well fluid of thermodynamics. We test several
algorithms on two different system configurations: differing in number of atoms, den-
sity, and energy range. The algorithms are compared by computing system entropy
and uncertainty as functions of compute time. We then highlight the characteristics
of each algorithm that are potentially advantageous in simulation.

1.1 The Square Well Fluid

The square well potential is used in thermodynamics because of its relative simplicity
[2] when compared to other potentials (Lennard Jones, Yukawa, etc). Rather than
a continuous potential, the square well fluid only has two possible energy states per
atom, as in Figure 1. The square well fluid is the most straightforward model to
incorporate attraction, which is a requirement for a phase transition between gas and
liquid states. Theoretically, the behavior of the square well fluid is well understood.

Figure 1 shows the potential as a function of r, where r is the radial distance
between two atoms in the fluid. The potential is infinite within the radius of each
atom, σ, ensuring that no two atoms will overlap. The lack of possible overlap between
atoms categorizes the square-well as a ‘hard-sphere’ potential (the other potentials
listed above are ‘soft-sphere’ potentials: allowing overlap). Between σ and λσ exists
the only attractive region of the potential, of magnitude ε. Beyond λσ, the potential
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Figure 1: The square well potential as a function of distance between atoms

is zero, which dictates that distant atoms will not feel one another’s effects. The
square well potential can be mathematically expressed as a piecewise function:

Vsw(r) =


∞ r ≤ σ

−ε σ < r < λσ

0 r ≥ λσ

(1)

If the potential is applied to multiple atoms, then the total potential energy (E)
of the system is expressed as a summation over each atom (i and j):

E =
∑
i<j

Vsw(ri − rj) (2)

Throughout this paper (and in simulation) the kinetic energy contribution from
the ideal gas formulation is ignored, as its contribution is trivial and is easy to solve for
analytically if necessary. This paper will also use dimensionless units for simplicity,
with energy E/ε, temperature kBT/ε, distances r/σ, and density (in terms of a filling
fraction, η).

Other models may be more accurate to real-world fluid behavior, but the square
well is generally much easier to compute, debug, and comprehend.

1.2 Monte Carlo Simulation

Monte Carlo [3] methods, named after the famed casinos of Monaco, utilize random
number generation to solve problems that are either difficult or impossible to solve
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through conventional calculation. Monte Carlo methods apply operations repetitively
to continuously generate statistics, rather than obtaining direct results. The longer
the simulation is run, the more accurate statistics generated. If run for long enough,
a well-written Monte Carlo algorithm should always compute the correct answer
for a problem. In physical computing, Monte Carlo simulation is a complement to
molecular dynamics: where the physical trajectories of atoms are tracked and directly
computed for every interaction.

In our research, Monte Carlo algorithms are used to determine the movement of
atoms. Each atom is either moved or held steady, ultimately depending on the number
that is generated. Monte Carlo allows each simulation to pursue arrangements of
atoms that are physically unlikely, while equally worth exploring and understanding.
For instance, molecular dynamics simulations have difficulty in exploring low energy
configurations, as they are statistically unlikely. In the study of fluids, the lower
energies are associated with liquid states. This means that a molecular dynamics
simulation could take large amounts of time to obtain data on liquids. However, a
Monte Carlo simulation can obtain statistics on these liquid states much more often.

A Monte Carlo algorithm’s biasing toward certain energies is accomplished by
introducing a weighting function, w(Xs), where X is an arbitrary system property
that depends on a system state, s. The weight function can be used to determine the
probability of accepting a change (referred to in this text as a move) in a simulation:

Pm(si → sf ) = min

(
w(Xf )

w(Xi)
, 1

)
(3)

In equation (3), si and sf represent the initial and final states, respectively. If the
weights (weight function) favor the final configuration, Xf over the initial configura-
tion Xi, then w(Xf ) > w(Xi). If this is the case, the move will always be accepted.
If the reverse is true, (w(Xi) > w(Xf )) then the move will be accepted according to
the ratio of the two weights. This type of simulation is called Metropolis-Hastings
Monte Carlo [4]. In our simulations, the log of the weights, ln(w) is stored to reduce
floating point data storage and roundoff error.

A conventional weighting function used by physicists in a canonical Monte Carlo
simulation relies on a particular temperature, T0 and the Boltzmann factor:

w(x) = e
− E

kBT0 (4)

However, since the weights are chosen at a particular temperature, the simulation is
limited in the ranges of energies allowed at that temperature. Individual canonical
Monte Carlo [5] simulations may leave significant energies of interest unexplored,
as shown by the energy histogram in Figure 2. To thoroughly explore an energy
range, multiple canonical Monte Carlo simulations must be run, which is inherently
inefficient[1] when considering real-world time.
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Figure 2: An energy histogram from a simulation calculated with several canonical,
fixed temperature simulations (shown in dark blue, orange, green, red, and purple)
and one broad histogram simulation (SAD, in cyan). Note the superior energy range
of SAD when compared to the canonical simulations.

1.3 Broad Histograms

Broad histogram methods are a class of Monte Carlo simulations used to calculate the
thermodynamic properties of a system. At each algorithm’s core, Monte Carlo simula-
tion is used. Like standard Metropolis-Hastings Monte Carlo, broad histogram meth-
ods use a biasing system to spend compute time at energies with limited statistics.
Broad histogram algorithms output data continuously, while gradually converging to
the correct result. Broad histogram algorithms generate statistics at every energy
within a desired range: differing from their canonical Monte Carlo counterparts.

For many situations, gathering data at a wide range of energies for a system is
advantageous. Still, results are often remarkably slow in converging to high accuracy.
Simulations can take days, weeks, or longer when accurately computing a system
property for all energies. Compute time varies with system properties, such as the
particle number and density. Individual broad histogram methods balance efficiency
and accuracy differently.
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2 Theory

In this section, the theory behind each algorithm will be summarized. Each of the
tested algorithms can be classified into one of three groups: weighted, transition
matrix, or hybrid. In thermal physics simulation, one typical property of interest
is an algorithm’s density of states (DOS), as other properties are easily calculated
from the DOS. The density of states contains much of the useful information about a
thermodynamic system. Though each type of algorithm aims to accomplish the same
task —finding a correct density of states for a system— they bias and calculate in
different ways.

2.1 Weighted Algorithms

Each of the weighted algorithms listed here are generally tied back to the Wang and
Landau Algorithm (Wang-Landau) developed in 2001. Rather than using a transition
matrix (as discussed in the next section) to store probabilities, Wang-Landau looks at
the weights taken from the energy histogram. Each of these algorithms adjust their
weights after every move in order to sample every energy with equal number (achieve
a flat histogram). Weighted algorithms are often simpler and easier to program than
their transition matrix or hybrid counterparts. The three weighted algorithms tested
are Wang-Landau, SAMC (Stochastic Approximation Monte Carlo), and the Roundy
group’s SAD (Dynamic Stochastic Approximation).

The weighted algorithms calculate a system’s density of states (D) by taking the
inverse of the weight function:

D(x) ∝ 1

w(x)
(5)

Each of the above are functions of a particular state, x.

2.1.1 Wang-Landau

Wang-Landau, designed as a random-walk in energy space, is an established method
that has been in use since the early 2000’s [6]. Originally developed for the Ising
model, Wang-Landau has been recently applied to fluids. Wang-Landau is known to
be exceptionally fast in certain configurations. Wang-Landau modifies the weights, w
throughout the simulation. After each move (k), Wang-Landau decreases the weights
on a particular energy by a factor, which we call the Wang-Landau factor, eγ. For the
original Wang-Landau method, gamma begins as 1 and decreases by 1/2 after each
flatness criteria is met (we still refer to it as gamma for reasons that become apparent
when looking at SAMC and SAD). The log of the weights are updated according to
the equation below:

log(w(E)k+1) = log(w(E)k)− γ (6)
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This equation describing the weights is the log of the relationship mentioned in the
original paper (this also applies to the update factor, which is referred to in the
paper as fk). The weights decreasing every time an energy is reached ensures that
compute time is still spent at energies that are statistically unlikely. Since the weights
are continuously modified, Wang-Landau should therefore eventually achieve a flat
histogram. Wang-Landau biases the system to spend time at all energies equally
rather than just the statistically most likely. Once the histogram reaches a desired
level of flatness, the histogram is reset and the Wang-Landau factor is decreased by
a set amount. The process is repeated until a cutoff is reached (which I will call the
Wang-Landau cutoff, c).

Wang-Landau is designed to explore energy states very quickly and gather infor-
mation. However, Wang-Landau has some significant drawbacks. Wang-Landau is
not guaranteed to converge for all systems. It has been previously demonstrated to
gather poor statistics in certain configurations. Perhaps its biggest downside lies in its
input parameters. Prior to running a thermodynamic simulation with Wang-Landau,
one must input the energy range. If a particular simulation is running for the first
time, the energy range is not often known beforehand.

2.1.2 SAMC

Stochastic Approximation Monte Carlo (SAMC) is a recent algorithm developed by
Liang [7] that improves Wang-Landau. The creators of SAMC wanted to design
an algorithm that behaved similarly to Wang-Landau, but could be guaranteed to
converge. SAMC also does not require the energy range as an input. The Wang-
Landau factor is replaced by an SA factor, γSA. The SA factor is continuously
adjusted throughout the simulation, rather than a factor that decreases when flatness
is achieved. Other than these modifications, SAMC is essentially Wang-Landau. The
SA factor depends on two variables, t and t0:

γSA =
t0

max(t0, t)
(7)

The t corresponds to the total number of moves achieved by the simulation. The t0
is an arbitrary constant selected before the simulation is run. In theory, t0 should
roughly correspond to the total number of moves required to explore every energy.
With a correct value of t0, the simulation should converge to the correct result, with
a rate of statistical error proportional to the square root of moves. However, t0 can
be impossible to predict, as shown in Liang’s original paper. Moreover, an incorrect
value of t0 can negate convergence of the density of states. This could potentially
make SAMC inconvenient to use, as one does not often know beforehand the total
number of moves required to explore every energy of the system.
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2.1.3 SAD

Comparable to SAMC, SAD utilizes the same formula to adjust the histogram weights.
However, guessing a proper t0 parameter with SAMC has proven to be nontrivial in
the past [7]. SAD (Dynamic Stochastic Approximation) is currently under develop-
ment in the Roundy research group. With SAD, we consider that the gamma factor
effectively represents a change in the log of the density of states. Since the log of the
density of states is the entropy (ignoring the Boltzmann constant), γ is interpreted
as a change of entropy. The total change in entropy that a occurs throughout a
simulation can be expressed as:

∆S =
1

3

Emax − Emin

Tmin

(8)

where Emax is the maximum entropy state and Emin is the minimum energy reached
at a given compute time in the simulation. The one third factor arises from the
geometric ratio in areas above and below a density of states (versus energy) curve.
Since we want gamma to represent a small change in the entropy at a point during
the simulation (essentially a time derivative of entropy), we can divide by the number
of moves (t) and multiply by the total number of energies.

γSAD =
1

3

NE

t

Emax − Emin

Tmin

(9)

The SA factor changes throughout the simulation as new energies are reached. As the
simulation progresses, γSAD tends to decrease by dynamic adjustment. This should
guarantee eventual convergence to the correct DOS of the simulation, which is not
guaranteed in practice by standard SAMC if an incorrect t0 is chosen.

2.2 Transition Matrix Algorithms

Transition matrix algorithms store the probabilities of accepting or rejecting moves
in a large, normalized matrix. Each of the transition matrix (TM) algorithms have
their roots with TMMC, Transition Matrix Monte Carlo. The three TM algorithms
we have tested are TMMC, TMI (Transition Matrix Initialization), and TOE (Tran-
sitions Optimized Ensemble). From this matrix, different system properties can be
calculated. A significant difference between TM algorithms and weighted algorithms
is the former’s direct calculation of the density of states, rather than relying on the
energy histogram. In practice, probabilities are first stored in a collections matrix
first and then later normalized into the true transition matrix.

In our research, the columns and rows represent different energy configurations
of the square-well fluid that we are investigating. Mathematically, I refer to the
transition matrix as T , with the ith and jth entry being Tij. Tij represents the
probability that the system will transition from energy Ej to energy Ei after an atom

7



is moved. The size of T is the greatest possible energy transition, from the maximum
entropy state to the minimum important (arbitrary) energy.

Calculating the density of states from this transition matrix is straightforward,
as the matrix must have an eigenvalue of one, since the total probability of moving
from one energy state to another must be 1. If we represent the transition matrix as
an operator, then we can write the following eigenvector-eigenvalue equation, with D
again as the density of states

TD = D (10)

Therefore, solving for the density of states for a transition matrix approach is equiv-
alent to finding the eigenvectors of T. Solving for these eigenvectors is typically done
via Gauss-Jordan elimination. Different TM algorithms approach this process in a
variety of ways.

2.2.1 TMMC

TMMC (Transition Matrix Monte Carlo) was originally developed by Fitzgerald [8]
to guarantee convergence of results rather than the weighted histogram methods.

TMMC consists of two main steps, where the first is identical to the standard
Metropolis Monte Carlo technique. First, the probability of accepting a particular
move is determined, as shown in equation (3):

pa = min

[
1,
Tk→k+1

Tk+1→k

]
(11)

Here, k denotes the current iteration of the transition matrix (before the upcoming
move). The final step records each of these probabilities in a transition matrix as
described above.

2.2.2 TMI

TMI (Transition Matrix Initialization) is a TM algorithm developed in our group.
Though similar to the original TMMC, TMI instead starts at high energies and sys-
tematically works its way down to ensure convergence. TMI checks itself throughout a
simulation. TMI has two conditions that are met at each energy, before the algorithm
works its way down.

1. The density of states must be decreasing at Ei relative to Ei−1

2. The relationship between the density of states at Ei and Ei−1 must be smaller
than a set number of round trips (a measure of uncertainty that will be detailed
in the methods section and the TOE subsection). This is expressed mathemat-
ically as follows, with N representing the pessimistic samples:

D(Ei)

D(Ei−1)
<

1√
Ni

(12)
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If the two conditions are met at energy Ei, the weight array is set as

lnw(Ei) = lnD(Ei) (13)

If the two conditions are not met at the energy Ei, then the weights at lower energies
are set according to a tangent line, with slope βtan.

βtan =
lnD(Ei−2)− lnD(Ei−1)

Ei−2 − Ei−1
(14)

The slope of this line should always be positive, as lnD(Ei−1) > lnD(Ei−2). Ei−1
and Ei−2 are both converged to their correct values here. Previous iterations of TMI
used different slopes for β. TMI3 (as seen in the results below) denotes the third
iteration of TMI algorithm. The tangent line is implemented to aggressively push the
algorithm to explore the lower energies. Using the tangent line slope, the weights are
set at and below Ei as:

lnw(Ei) = lnw(Ei−1)− βtan(Ei−1 − Ei−2) (15)

To determine when the algorithm has sufficiently sampled the energy range set prior
to the simulation, the following check is applied:

ln
D(Ei)

D(Ei−1)
>
Ei−1 − Ei
kBTmin

(16)

If the condition is met, then the weights are set to the canonical weights at all lower
energies.

2.2.3 TOE

TOE (Transitions Optimized Ensemble) is another TM algorithm developed in our
group. TOE builds off of the optimized ensemble approach developed by Trebst[9].
TOE differs from the other algorithms tested by not necessarily pushing for a flat
histogram. Instead, TOE is designed to eliminate uncertainty as fast as possible, by
maximizing the number of round trips (defined in section 3.4).

An optimized ensemble approach treats a simulation as a system of ‘walkers’
moving up and down throughout an energy range. As a walker move up and down
through energy space, the walker eventually reaches the maximum energy E+ (in our
case, the max entropy state, as explained in the methods section), as well as the
lowest energy known to it, E−. If the walker more recently encounters the highest
energy, the walker is considered ‘down-moving’; if the reverse is true, the walker is
‘up-moving’. The density of walkers (nw) at a given energy is a combination of the
number of up and down moving walkers:

9



nw = nup + ndown (17)

Trebst’s optimized ensemble maximizes the number of independent samples by
relating nw to the histogram diffusivity α:

nopt ∝
1√
α

(18)

α(E) = 〈(Ef − Ei)2〉 − 〈Ef − Ei〉2 (19)

Ef and Ei are the final and initial energies when considering an algorithm move, as
described in the the background. Nopt is the ‘optimal’ density of walkers to maximize
round trips.

TOE is similar to the optimized ensemble approach above, but instead, the his-
togram diffusivity is calculated from the transition matrix rather than a histogram:

α(E) = |T (Ef − Ei)2 − (T (Ef − Ei))2| (20)

TOE also applies the same checks and method as TMI, working its way from high
to low energies.

2.3 Hybrid Algorithms

Hybrid algorithms are a recent development, attempting to merge the benefits of both
weighted and transition matrix algorithms [10]. The only hybrid algorithm that I test
is Wang-Landau Transition Matrix Monte Carlo, or WLTMMC.

2.3.1 WLTMMC

As its name suggests, WLTMMC is a hybrid between Wang-Landau and TMMC.
WLTMMC is designed to take advantage of Wang-Landau’s ability to rapidly explore
an energy range, while utilizing TMMC’s guaranteed convergence. Wang-Landau
is run up until a desired cutoff (level of histogram flatness) and then switched to
TMMC for convergence[10]. However, the Wang-Landau portion is a bit different, as
the data is stored in both a histogram and the transition matrix (like a transition
matrix algorithm). The density of states is calculated via the transition matrix, rather
than the histogram.

The original (vanilla) Wang-Landau typically relies on a cutoff value of approxi-
mately 10−10. For WLTMMC, this cutoff is traditionally much smaller, on the order
of 10−4 (however, previous papers have been vague on the exact cutoff criteria). This
is done to mitigate the possible errors of Wang-Landau, as TMMC is guaranteed to
converge to correct results. Wang-Landau eventually reaches a ‘statistical plateau’
such that running for higher flatness doesn’t directly translate to correct results.
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3 Methods

This first part of this section will explain the parameters and simulation techniques
used to generate comparison data. The second half of the methods section explains
how and why the algorithms are compared.

3.1 Simulating and Bookkeeping

The atoms are initialized uniformly in a three dimensional cubic grid, with length
specified by the number of atoms, the size of atoms, and the desired filling fraction.
Periodic boundary conditions are employed at each wall to better approximate the
fluid given only finite atoms. Each atom is assigned the potential as described above
in Figure 1. An atom is randomly selected from the grid and is then assigned a
translation distance given by a Gaussian distribution. The move is instantly rejected
if the spheres overlap (which is theoretically justified, as the potential between two
atoms would be infinite (1)). The change in energy is calculated and then the move
is either accepted or rejected according to the particular simulation method. The
process is repeated until the end conditions are reached.

Throughout the duration of a simulation, the transition matrix and energy his-
togram data sets are continuously stored, recorded, and altered. In addition, rather
than directly focusing on the raw density of states, each broad histogram method
utilizes the log of the density of states. This is because the density of states values
are often exceptionally large (sometimes as large as e300) and floating point numbers
are difficult to store and perform operations on. The data output is stored as text
files, which can require large amounts of storage. To combat this problem, the ex-
tracted data (in the form of a density of states value) is only recorded in a text file
every half hour. The output half hour time scale was somewhat arbitrarily chosen,
but shouldn’t aid one algorithm over another. The calculations shown in the results
section below utilize the data from these text files.

3.2 Simulation Parameters

3.2.1 Energy Range

Each algorithm is confined to an energy range, from the minimum important energy
(Emin) to the max entropy state, (Emax). The majority of our algorithms calculate
this range throughout the simulation: with Emax being calculated at the beginning
and Emin calculated consistently. The max entropy state corresponds to the energy
limit as T →∞. As in Equation (4), as T →∞, w(x) approaches one. For energies
above the max entropy state, the weights are also set to one. This means that
the energies above the max entropy state are very rarely sampled, which effectively
confines the simulation below Emax.
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The minimum important energy is the cutoff for which lower energies play an
insignificant part in computing system properties [11]. The minimum important en-
ergy depends on a parameter, Tmin, or the minimum temperature. Though broad
histogram algorithms allow for an infinite range of temperatures explored, we gener-
ally choose a Tmin such that the transition between gaseous and liquid states occurs,
but not so low that immense time scales are required for good statistics. The value
of the temperature for which the transition occurs is usually found by previous sim-
ulation. Emin can be expressed as:

Emin =
1

kBTmin
(21)

Here, the minimum important energy depends directly on the density of states. As
the density of states is not known beforehand, calculation of the minimum important
energy uses the most recent density of states calculation of the simulation.

In addition to the minimum temperature parameter, WL and WLTMMC require
a directly specified energy range (in the form of an Emax and Emin). For this input,
TMI is run for sufficiently long to determine the energy range before running WL or
WLTMMC.

3.2.2 End Conditions

To decide if a simulation has finished, we require that a given number of round trips
(as discussed in section 4.3) are reached at a minimum important energy (correspond-
ing to the specified minimum temperature). Many Monte Carlo simulations run for
a desired number of moves or iterations, rather than a number of round trips. As
described below, a specified number of round trips as a cutoff criteria reveals the
uncertainty. Often, this is more useful as one does not often know how many itera-
tions to run for, but one can decide on a desired level of uncertainty to attain. For
comparison purposes, the simulations run for a near infinite amount of time (and
theoretically, obtain better statistics as they progress). Infinite runtime simulations
are useful as they can provide information on every algorithm at any desired number
of moves.

Each algorithm is compared to a ‘golden’ standard for a particular filling fraction
and number of atoms. The golden standard is an simulation that has run for much
longer than the other simulations when compared move by move. In this paper, I use
TMI as the golden standard, as it has been previously demonstrated to converge to
the correct results in group. For our method of comparison, we have chosen to look
at the entropy error and the uncertainty as functions of compute time (or number of
moves).
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3.3 Entropy and Normalization

The entropy (S) is related to the density of states (Ω) through the Boltzmann inter-
pretation of entropy (neglecting the additive constant rising from using the density
of states, rather than direct multiplicity):

S = kB ln Ω (22)

In this paper, D is used instead of Ω for clarity. Previous research has used the entropy
as a means of comparing algorithms [10]. The entropy is useful to calculate as it is a
common thermodynamic property of interest. The entropy is also straightforward to
infer from the density of states, which in turn is easily found from the histogram or
transition matrix (in equations (10) and (5)). In our simulations, the constant kB is
ignored, as it isn’t needed for comparison.

For this paper, both the maximum and average entropy error are found for each
algorithm, over all simulation moves (k).

Smaxerror(k) = max(Sgolden(Ei)− Smethod(Ei)), for all Ei (23)

Savgerror(k) =
Smethod(Ei)− Sgolden(Ei)

Emax − Emin
, for all Ei (24)

Since different algorithms may shift the entropy by an arbitrary constant, the error
needs to be normalized to allow for common comparison between algorithms. The
normalization is done through the simple linear algebra technique of setting the av-
erage entropy for different algorithms (across the same system) equal to one another:

norm factor = mean(lnDmethod(E))−mean(lnDgolden(E)) (25)

In practice, the errors are then rewritten in terms of the density of states, alongside
the normalization factor:

Smaxerror(k) = max(lnDmethod(Ei)− lnDgolden(Ei)− norm factor), for all Ei (26)

Savgerror(k) =
lnDmethod(Ei)− lnDgolden(Ei)

Emax − Emin
− norm factor, for all Ei (27)

Here, Emax and Emin refer to the max entropy state and minimum important
energy, respectively.

3.4 Uncertainty and Round Trips

We computationally determine the uncertainty from round trips. One round trip
(sometimes referred to as a pessimistic sample [11]) occurs when the simulation
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reaches a particular energy, samples all of the energies up until the maximum en-
ergy state and then returns to the particular energy. This definition of a measure of
uncertainty was first suggested by Trebst in his optimized ensemble paper [9]. One
round trip represents one statistically independent sample of an energy.

Round trips have also been used previously in group as a minimum criteria to
dictate when a simulation should end. Round trips are computed for every energy in
between the minimum energy of interest and the maximum energy state. The round
trips are related to the uncertainty through Poisson statistics:

σ ≈ 1√
N

(28)

where N is the number of round trips at that energy. In theory, an efficient algo-
rithm should obtain more round trips at an energy over time than a slow algorithm.
However, many round trips may not necessarily imply low error.

4 Results and Discussion

4.1 Entropy Error

The error in entropy is calculated throughout the entirety of the simulation (as mea-
sured in moves). Figures 3 and 5 show the average entropy error across all energies
for both test systems; Figures 4 and 6 show the maximum error across all energies
for both test systems. In both simulations, the golden standard used for comparison
is a TMI calculation that has run for approximately 1013 moves. Note that each plot
has logarithmically scaled axes.

For the 50 atom simulation (Figure 3), there is a definite distinction between
methods that do and do not converge to a reasonably correct (average error less than
roughly 10%) result within 1013 moves. TMI and TOE converge somewhat more
slowly than the 105 (referring to SAMC’s t0 parameter) SAMC and SAD, but slightly
faster than the 10−10 cutoff WLTMMC and 104 SAMC. The 103 SAMC and Wang-
Landau seem as if they won’t converge to the correct entropy at any number of moves.
WLTMMC with a 10−4 cutoff and TMMC don’t appear to completely converge to a
correct result here, but may with more moves.

Between the weighted algorithms, Wang-Landau looks especially poor, as it achieves
higher entropy error before slowly coming down. SAD converges similarly to the 105

SAMC, agreeing with the theory that SAD ‘chooses’ the t0 to match the best version
of SAMC. The maximum error plot behaves similarly to the average error plot. There
is roughly a factor of ten difference between the average error and the maximum error
at any move.

For the 500 atom simulation, there are similar behaviors. There is another distinct
difference between methods that converge and those that do not. Here, both varieties
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of WLTMMC appear to converge to the correct result, alongside TOE and TMI. SAD
and TMMC appear to be gradually converging, though not as rapidly as the other
methods. Again, two different SAMC runs (103 and 104) appear to be unlikely to
converge in any reasonable amount of time. Wang-Landau also appears worse than
the 50 atom simulation and does not converge.

Figure 9 below shows the weight adjustment factor, γ for each of the three weighted
methods. Though not a direct comparison of error or uncertainty, this graph helps
visualize the differences between SAMC, SAD, and Wang-Landau. Wang-Landau
rapidly lowers the adjustment factor, which yields inadequate statistics when averaged
over all energies in a range. SAD and SAMC take a more gradual approach to lowering
γ. For the algorithms that converge in the 500 atom simulation (106 and 105 SAMC
and SAD), the weights are more slowly adjusted than their counterparts. The energy
range needs to be sufficiently sampled before adjusting γ to yield accurate results.
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Figure 3: Average entropy error for a 50 atom, 0.2 filling fraction simulation. The
red line is provided as a reference, with a slope of 1√
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. TMI is used as the golden

standard
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Figure 6: The maximum error attained for a 500 atom, 0.3 filling fraction simulation.
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Landau, SAD, and four versions of SAMC. The system tested was the 500 atom
configuration from above.
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4.2 Uncertainty
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Figure 8: The number of round trips plotted as a function of moves for the energy
200 (E/ε) for the 50 atom simulation. Note that the axes are not logarithmically
scaled.
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Figures 8 and 9 show the number of round trips attained by each method for both
simulations at a particular energy. The energy chosen for both was somewhat ar-
bitrary, but I chose an energy near the minimum important energy for both cases.
This was done because the lower energies are often more difficult for an algorithm to
explore and there are generally less round trips at lower energies than higher ones.
However, this could also give TOE a slight advantage, as it is designed to generate
lots of round trips at the lowest energies.

For Figures 8 and 9, a higher slope represents a more rapid loss in uncertainty at
the particular energy in question. Though it may be a bit difficult to see (as it doesn’t
run for as many moves), Wang-Landau initially has an extremely rapid gain in the
number of round trips. Other weighted algorithms tend to share this characteristic
(though not as drastic) before gradually lowering the slope. WLTMMC and the
transition matrix methods obtain round trips linearly with moves. TMI,TOE, and
TMMC gather round trip data linearly, but often after a flat period where the energy
is not reached. WLTMMC has the best of both worlds, as the Wang-Landau portion
rapidly generates round trips at the start of the simulation, with TMMC taking over
shortly after. As expected, the rate at which round trips does not indicate an accurate
method for computing system properties.

4.3 Qualitative Assessment and Other Notes

Each of the algorithms that require an input parameter (other than the arbitrary
minimum temperature) could present an obstacle for simulating other systems. For
instance, Wang-Landau and WLTMMC need a predefined energy range. One does
not often know the energy range under investigation: often, a Monte Carlo simulation
is used to calculate it. This was a particular nuisance for the square well fluid, as
another simulation (TMI) had to run for sufficiently long to calculate the energy
range, which was then used to start WL or WLTMMC. Effectively, two simulations
had to be run whenever using WL or WLTMMC. Depending on the user’s computer
setup, this could potentially double the real-world time for simulation, which is not
reflected in our moves (compute time) above.

Another input parameter that presented issues was SAMC’s t0. Choosing a wrong
value would cause a simulation to obtain drastically wrong data. However, unlike the
Wang-Landau and WLTMMC parameter, the ill-effect of this parameter was shown
in our data (Figures 3-6). In practice, if one were to investigate a thermodynamic
system with SAMC, multiple simulations (of different t0s) would have to be run to
find the correct parameter. Like Wang-Landau, this raises the real-world time for
simulation.

Finally, our data doesn’t reflect the actual process of implementing the broad
histogram algorithms. Often, people investigating thermal physics systems simulate
with canonical Monte Carlo, due to its straightforward and intuitive application. If
a switch to a broad histogram algorithm were desired, the investigator would have to
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rewrite their simulation code accordingly. Between weighted and transition matrix
algorithms, there is a significant difference in the level of implementation difficulty.
Weighted algorithms are similar to the canonical Monte Carlo, as they directly utilize
histogram counts rather than direct probabilities of moves. Writing effective code to
bookkeep a transition matrix can be difficult and time consuming. System properties
(especially as calculated via the density of states) may be simpler to identify when
using a weighted algorithm (compare the process of using Equations 5 and 10). Tran-
sition matrices may also be inherently more difficult to understand and implement;
therefore, investigators may be more hesitant to utilize them.

4.4 The TMMC Bug and Disclaimer

Very late in the process of writing this paper, a significant bug was found in the Monte
Carlo code that could have impacted WLTMMC and TMMC. This bug was likely
introduced in between some of the algorithm runs. The runs that could have possibly
been affected were both TMMC runs and both WLTMMC runs with a 10−4 cutoff.
Due to the time required to simulate each configuration (roughly 30 days for the 50
atom, 60+ for the 500 atom), I haven’t yet been able to produce new TMMC and
WLTMMC runs that prove the bug’s impact on the errors, histograms, and round
trips data above. Though TMMC and WLTMMC appeared to function fine, their
associated data should be interpreted with a side of caution.

5 Conclusion

We compared broad histogram Monte Carlo algorithm efficiency and efficacy when
computing the entropy of the square well fluid of thermodynamics. Two systems of 50
and 500 atoms were simulated by several broad histogram methods: Wang-Landau,
SAMC, SAD, TMMC, WLTMMC, TMI, and TOE. The error and uncertainty when
computing the system’s entropy were computed as a function of time.

Regarding the weighted algorithms, only SAD was able to converge properly,
regardless of the input parameter. Wang-Landau took significant compute time on
the fifty atom simulation to converge, which is slightly alarming given its established
use. Out of the transition matrix algorithms, TOE and TMI achieved fairly high
accuracy and low uncertainty when run for sufficiently long. TOE and TMI may be
faster or slower than SAD, depending on the system. Though the data showed that
TMMC could take a long time to converge, a late bug was found, so the results for
TMMC (and WLTMMC) should be taken with caution. The sole hybrid algorithm,
WLTMMC was able to converge to low error and low uncertainty quickly, albeit with
the requirement of specifying the energy range beforehand. Overall, this research
shows that the popular Wang-Landau algorithm may not converge to the correct
density of states quickly for all systems.
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5.1 Future Work

As mentioned in the introduction, broad histogram algorithms have been traditionally
tested on the Ising model. A natural step (that is currently a work in progress) is
applying each of the algorithms tested to the Ising model for further confirmation of
our results.

As the goal of this research was to study broad histogram efficiency on a particular
fluid potential, other potentials could be further tested. One such example is the fully
repulsive WCA (Weeks-Chandler-Anderson) potential [12]. The WCA potential is a
reasonably accurate description for fluids such as liquid argon. As the WCA potential
represents a continuous energy distribution as a function of distance, it potentially
represents a more difficult problem than the square well potential. As investigating
a true, continuous distribution is not computationally feasible, the distribution must
be divided into smaller bins (known as ‘binning’). It is relatively unknown how each
algorithm’s performance will scale with the size of these energy bins and thus it
provides an area of intrigue. The WCA potential is particularly chosen (rather than
other continuous potentials) because of other Roundy group members researching it.
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