
ABSTRACT OF THE THESIS OF

Tong Liu for the degree of Doctor of Philosophy in Electrical and Computer

Engineering presented on March 2. 2001.

Title: PERFORMANCE IMPROVEMENT WITH LOGIC-LEVEL SPECULATION

Abstract approved:

Shih-Lien Lu

Current superscalar microprocessors' performance depends on its frequency and the

number of useful instructions that can be processed per cycle (IPC). Higher frequency

is achieved with process advancement, new circuit techniques, and microarchitectural

improvement. Number of instructions processed per cycle depends mainly on

microarchitecture techniques that exploit parallelism both spatially and temporally.

Most techniques employed to exploit parallelism spatially tend to increase circuit

complexity and may affect the frequency thus offset the performance gain intended.

Finer pipeline stages exploit parallelism temporally but may suffer reduced efficiency

when there are dependencies and hazards in the long pipeline. Careful balancing

between frequency and useful number of instructions processed per cycle is one of the

important microprocessor design tradeoffs. In this thesis we propose a method called

approximation to reduce the logic delay of a pipe-stage. The basic idea of

approximation is to implement the logic function partially instead of fully. Most of

the time the partial implementation gives the correct result as if the function is

implemented fully but with fewer gates delay allowing a higher pipeline frequency.

Redacted for Privacy

We apply this method on three logic blocks. Simulation results show that this method

provides some performance improvement for a wide-issue superscalar if these stages

are finely pipelined.

© Copyright by Tong Liu

March 2, 2001
All Right Reserved

PERFORMANCE IMPROVEMENT WITH LOGIC-LEVEL
SPECULATION

by

Tong Liu

A THESIS

Submitted to

Oregon State University

In partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented March 2, 2001

Commencement June 2001

Doctor of Philosophy thesis of Tong Liu presented on March 2, 2001

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Head of Department of E1ectricaLa1d Computer Engineering

Dean of

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Tong Liu, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

1

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor Professor Shih-Lien

Lu. His contribution to this thesis has been not only through his advice, patience,

many hours of detailed discussion, but also through his continuous encouragement and

support during the course of this research.

I wish to thank Professor Lung-Kee Chen, Andreas Weisshaar, Alexandre

Tenca and Vivek De for been my committee members. I appreciate the entire

electrical engineering faculty for their wisdom.

Finally, I would like to give special thanks to my parents, my brother Jiang and

my wife Xinyue for their love and sacrifice in all aspect of my life in USA.

TABLE OF CONTENTS

11

PAGE

1. PROBLEM DEFINITION AND CONTRIBUTION ... 1

2. BACKGROUND OF MICROPROCESSOR AND CURRENT TREND 6

2.1 PERFORMANCE MEASUREMENT ... 6

2.2 TECHNOLOGY DESCRIPTION .. 7

2.3 MICROARCHITECTURE EVOLUTION .. 9

2.4 CURRENT TREND AND CHALLENGES .. 12

2.4.1 IMPROVEING THE FREQUENCY THE PIPELINE APPROACH.... 12
2.4.2 THE INSTRUCTION SUPPLY CHALLENGES 13
2.4.3 EFFICIENT EXECUTION ... 14

3. BASELINE DESIGN ... 17

3.1 ADDER .. 17

3.2 REGISTER RENAME LOGIC .. 21

3.3 INSTRUCTION ISSUE LOGIC .. 25

4. LOGIC LEVEL SPECULATION TO SPEEDUP CRITICAL LOGIC................... 28

4.1 ADDER .. 29

4.2 RENAME LOGIC .. 32

4.3ISSUELOGIC .. 33

4.4 HARDWARE IMPLEMENTATION AND RECOVERY 34

4.4.1 IMPLEMENTATION COST .. 34
4.4.2 RECOVERY COST .. 35

5. THEORETICAL PERFORMANCE STUDY .. 38

6. SIMULATION RESULT ... 46

111

TABLE OF CONTENTS (Continued)

6.1 SIMULATOR IMPLEMENTATION .. 46

6.2 SIMULATION WITH VARIOUS MICROARCHITECTURE 47

6.3 SIMULATION WITH TYPICAL MICROARCHITECTURE 53

7. CONCLUSION .. 56

REFERENCES ... 57

APPENDIX.. 61

LIST OF FIGURES

FIGURE

lv

PAGE

1.1 Dependent and independent instructions pipeline execution 4

3.1 Four bits complete carry-lookahead tree adder .. 20

3.2 Rename CAM and priority logic .. 22

3.3 Four bits priority encoding logic .. 24

3.4 Issue selection logic .. 26

4.1 Prediction rate vs. # of bit look-ahead for 16, 32 and 64-bit adder........................ 31

4.2 An example approximation adder design with k=4 .. 32

5.1 Speedup by speculative execution vs. PR and DR (FR=0.5) 42

5.2 Speedup by speculative execution vs. PR and DR (FR=0.8) 42

5.3 Speedup by speculative execution vs. PR and DR (FR=0.95) 43

5.4 Speedup by speculative execution vs. PB and DR (PR=0.85, FR=0.8) 43

5.5 Speedup by speculative execution vs. PB and PR (DR=0.85, FR=0.8) 44

6.1 Speedup by logic level speculation of rename logic .. 49

6.2 Percent of approximation accuracy for rename logic ... 49

6.3 Speedup by logic level speculation of issue logic .. 50

6.4 Percent of accuracy for the approximation issue logic ... 50

6.5 Speedup by logic level speculation with approximation adder 5.1

6.6 Percent of accuracy for approximation adder ... 51

LIST OF TABLES

TABLE

V

PAGE

5.1 Symbol used in performance study .. 39

6.1 Common parameters of base simulator .. 48

6.2 Parameters of four cases of base simulator .. 48

6.3 Performance speedup vs. writeback width, dependency rate 53

6.4 Performance speedup vs. prediction rate (FR=4) ... 54

PERFORMANCE IMPROVEMENT WITH LOGIC-LEVEL
SPECULATION

1. PROBLEM DEFINITION AND CONTRIBUTION

Microprocessors have gone through lots of changes during last decades,

however, the basic computational model has not changed much. A program consists of

instructions and data. The instructions are encoded in a specific Instruction Set

Architecture (ISA). The computational model is still a single stream sequential model

operating on the architecture states (memory and registers). The metrics to

characterize a microprocessor includes:

Frequency: the rate in which the internal clock ticks.

Performance: the time it takes to complete a certain piece of work.

Power: how much energy per time-unit it consumes

Area (cost): the size of the chip and its manufacturing cost

Complexity: a qualitative measurement indicating the time/effort to develop a

processor and to verify it produces correct result.

In this thesis, we discuss only the performance of a microprocessor. The

performance of microprocessor has been accelerating rapidly in recent years. This gain

has been achieved through two fronts. On one front, microarchitecture innovations

have been able to take advantage of the increase number of devices to process more

useful instructions per cycle (IPC). Superscalar is the predominant scheme used. A

superscalar processor issues multiple instructions and execution them with multiple

2

identical function unit. It employs dynamic scheduling techniques and executes

instructions out of the original program order. The main goal of superscalar is to

exploit as much instruction level parallelism as possible in a program. On the other

front, the miniaturization of devices improves layout density and makes the circuits

run faster since electrons and holes need only to travel shorter distance. Clever circuit

techniques have also been invented to further speed up the logic. Together with finer

pipestages, modern microprocessor has accelerated its clock frequency greatly in

recent years.

However, it is believed more complexity is necessary to continue the

exploitation of larger instruction level parallelism. This complexity increase tends to

cause more circuit delay in the critical path of the pipeline, thus limiting the clock

frequency to go up further. The current approach is to allow logic structures with long

delays to spread over multiple pipe-stages resulting in logic structures that complete

the computation in single pipe-stage previously to take more than one cycle time. The

employment of finer pipeline stages increases pipeline latencies and imposes higher

penalty due to branch miss-prediction and other miss-speculation. Moreover, other

instructions that depend on the results of these multi-staged functional blocks will

have to wait until they finish in order to move forward in the pipeline. In [1], the

impact of data dependencies and branch penalty on pipeline performance is discussed.

Since these two factors draw back the performance gain of increasing pipeline stages,

there is an optimal number of pipe stages that a microprocessor will achieve maximum

performance. If increase or decrease the pipe stage number from the optimal one, the

performance will be degraded. This means that only increasing number of pipe stages

3

and clock frequency doesn't necessarily improve performance. Figure 1.1 illustrates

the effect of executing consecutive dependent instructions. Suppose the execution

delay is long enough so that it has to be expanded into two consecutive pipestages. In

(a), all four instructions are independent, so they can be fully pipelined regardless of

the delay of previous instruction. In (b), any instruction is dependent on it previous

instruction. Bubbles have to be asserted in the pipeline while waiting for resolving the

dependencies. The instruction per cycle (IPC) in (b) is only half of that in (a), so as the

performance. Therefore, these long delay logic structures may become the

performance bottleneck of microprocessors as clock frequency continues to rise in the

future. Thus, one of the essential challenges in achieving higher performance in future

microprocessors is the ability to increase IPC without compromising the ever-

increasing clock frequency.

Much work has been devoted to finding methods to increase IPC. One possible

approach is to increase the width of the superscalar processor [2-7]. Another approach

considered by many researchers is multi-threading [8-13]. Both methods tend to

increase the size of the structures used internally such as instruction window and re-

order-buffer. Larger size means longer delay and may affect the growth in clock

frequency. Work done by Cotofana and Vassiliadis [14] identified the delay

complexity of issue logic in a superscalar processor to be a function of issue width.

Work by Palacharla et. al. [15, 16] concluded that possible clock limiting structures in

a superscalar processor include, register rename logic and issue logic. Also as the

machine data and address width increases (currently moving from 32 to 64 bits), we

believe adder may also become a bottleneck limiting the increase in frequency because

4

many groups reporting the design of high performance microprocessors include their

adder circuits in their papers [17-19]. In one of the work, adder circuit is specified as

having the second longest delay path in the microprocessor [20]. This suggests that

adders may limit the frequency of a microprocessor if we want to have finer pipeline

stages in the future.

I

IFID EXEX M
ID EX EX M W
IF ID EX EX M W

(a) Pipeline with Independent Instructions

I

IFIID EX EX M
[1D EXEXMW

IFID EXEXMW
IF IDI EX EX MIWI

(b) Pipeline with Dependent Instructions

Figure 1.1 Dependent and independent instructions pipeline execution

In this thesis, we propose to use logic level "prediction" to "speculate" the

output of critical logic blocks. The approach calls for a simpler and faster circuit

implementation to approximate the original complex function. We termed this

technique approximation. An approximation circuit should be designed so that it

produces the correct result most of the time. Since it is not 100% correct all the time it

does require a way to verify the correctness of the approximation. A duplicated logic

block, which implements the true function and samples the output at the original worst

case delay frequency is used for verification. Results from the approximation block

and verification block are compared to determine if the approximated result used to

advance the pipeline is correct or not. When the comparison result is negative we kill

that instruction and use the correct result to continue. The recovery mechanism is

similar to what is reported in [21].

In the following section, we review the background of microprocessor and

current trend. In chapter 3 we describe the baseline microarchitecture and circuit

design of the critical logic block we want to speed up. Chapter 4 describes the

application of approximation method on three potential speed path and the recovery

method. In chapter 5 some theoretical analysis is done to evaluate the important

factors that impact the performance. We then show the experimental result performed

through a modified SimpleScalar [22] tool set in section chapter 6. The last chapter

draws conclusion.

2. BACKGROUND OF MICROPROCESSOR AND CURRENT TREND

2.1 PERFORMANCE MEASUREMENT

Microprocessor's performance continue to be a key factor for it success in the

market place. Fven though software compatibility drives the users to favor certain

ISA, without adequate performance at first place, user will tend to switch quickly. It is

the job of the microarchitecture, the logic and the circuit to process the instruction

stream quickly to achieve the best performance. The performance of a microprocessor

is measured by the time it takes to complete a program. It includes the following three

factors: (a) Number of instructions in a program (b) Number of clock cycles taken by

one instruction (c) Clock cycle time. It can be described by the following equation:

Time (Seconds) to execute a program = Instructions/Program x

Clock cycle/Instruction x Seconds/Clock cycle. (2.1)

In order to improve performance, we need to decrease the product of the three

items at right hand side of the above equation. The number of instructions in a

program depends on the instruction set architecture. For a specific instruction set on a

specific program, the performance can be expressed by re-writing the above equation

in a reverse way:

Performance = Instructions/Cycle (IPC) x Clock Frequency (2.2)

Since different processors have some advantages of higher performance when

running its favorite program, Benchmark programs are the ones to make fair

comparisons. One of the popular benchmarks is the SPEC processor benchmark [23],

which uses primarily real applications. The SPECint and SPECfp, which targets on

7

integer and floating point performance, are now becoming standard of measuring

today's microprocessors.

2.2 TECHNOLOGY DESCRIPTION

The microprocessor revolution owes its fast growth to a combination of several

technologies.

Process technology. The key to smaller and faster devices that consume less

and less power.

Circuit. Faster and more efficient building blocks.

Microarchitecture. Logic to execute more instructions per cycle at an

increasing frequency.

Architecture and compilers. More efficient ways to translate a task into

machine instructions.

CAD tools. Allow designers to study design trade-offs quickly.

Process Technology is the fuel that has moved the entire VLSI industry and the

key to its growth. A new process generation is released every 2-3 years. A process

technology is usually identified by the length of MOS gate, measured in microns (106

meters, denoted as u or p.).

Every new process generation brings huge relative improvement in all relevant

vectors. Process technology scales by a factor of around 0.7 all physical dimensions of

device and wire (including those vertical to the surface) and all voltages pertaining the

devices. With such scaling, typical improvement figures are:

1.4-1 .5X faster transistors.

like:

8

2X smaller transistors.

1 .35X lower operating voltage.

3X lower switching power

Theoretically, with the above figures, one could expect potential improvements

"Ideal Shrink": use the same # of transistors to gain 1.5X performance, 2X

smaller die and 2X less power.

"Ideal New Generation": use 2X the # of transistors to gain 3X performance

with no increase in die size and power.

Process technology is the single most important technology that drives the

processor industry. Growing 1000X in frequency (from 1 MHz to 1 GHz) and

integration (from -1OK to -1OM devices) in 25 years was not possible without process

technology improvements.

New and useful circuits constructed with a small number of devices are still

being invented. These circuits either provide a better performance or operate with less

power while implementing a logic function. New logic families are occasionally

invented and provide a new methodology to realize logic functions more effectively.

Microarchitecture attempts to increase both IPC and frequency. A simple

frequency boost applied to an existing microarchitecture can reduce IPC, and thus

does not achieve the expected performance increase. Microarchitecture techniques,

such as caches, branch prediction and out of order execution, increases IPC. Other

microarchitecture ideas, most notably pipelining, help to increase frequency beyond

the increase provided by process technology.

9

Modern Instruction Set Architecture (ISA) and good optimizing compiler can

reduce significantly the number of dynamic instructions needed to execute a given

program. Furthermore, being aware of the underlying microarchitecture they lead to

higher IPC for code generated for the target microarchitecture.

Design tools help designers to tune circuits for performance. It also helps

designers to explore much more design space than possible by hand. It enables the

designer to manage the complexity growth required for performance boost.

2.3 MICROARCHITECTURE EVOLUTION

Microprocessor performance depends on its frequency and IPC. Frequency

increase is achieved with process, circuit, and microarchitectural improvements. New

process technology reduces gate delay time, thus frequency, by '-1 .5X.

Microarchtitecture affects frequency by reducing the length of work done at each

clock cycle.

The early general-purpose microprocessor was non-pipeline, single issue and in-

order architecture. It basically takes one instruction at a time, and won't start the next

instruction until the previous one finishes. Later, with higher integration capability of

VLSI technology, latches and flip-flops can be placed to separate different steps of the

microprocessor logic. There are five basic steps for each instruction to go through a

microprocessor: Fetch, Decode, Execution, Memory access, Write back. For a pipeline

processor, each step of one instruction can be overlapped with other steps of its

neighboring instructions.

10

Pipelining is a very effective technique. We see a clear trend of increasing the

number of pipe stages and reducing the amount of work per stage. Employing many

pipe stages is sometimes termed deep pipelining or super-pipelining. However, there

are problems with indefinitely increasing pipe stages:

Latch/Flip-flop timing overhead. The latch or flip-flop themselves consume

time, and also with setup/hold time and clock skew, the overhead could be large

enough that there is no design space left for useful logic.

Performance of a pipelined machine depends on the slowest stage of the pipe.

Good balancing of the overall work is becoming more difficult as the number of pipe

stages increase.

Interdependencies among instructions result in wasted cycles, causing

performance to scale less than linearly with number of pipe stages.

For a given partition of pipeline stages, the frequency of the processor depends

on the time it takes the logic to perform the longest stage. Logic and circuit

optimizations as well as new process technology help to accelerate the execution of

the logic within each stage, thus reducing the cycle time and increasing frequency

without increasing the number of pipe stages.

Although the pipeline structure allows frequency to scale linearly with the

number of stages, the performance does not. With longer pipes, the portion of wasted

cycles, termed pipe-stalls, becomes bigger. Main reasons for stalls are resource

constraints, data dependencies, memory dependencies and control dependencies.

Resource constrains happens when an instruction needs a resource (e.g.,

execution unit) that is currently used by another instruction in the same cycle.

11

Data dependency occurs when a result of one instruction is needed as a source

to another instruction. The new instruction has to wait unit it sources are available,

even if there is a free execution unit. Data dependencies occur frequently in multiple-

cycle operations such as complex integer and floating point instructions.

Memory delay is a special case of data dependencies, sometimes termed as

load-to-use delay. At very short cycle time, even accessing fast memory takes several

cycles. Accessing slower memory may take tens of hundreds of cycles. Memory

delays are mentioned specifically due to their adverse impact on performance.

Changing the control flow of the program may cause a pipe stall as well. A

branch instruction changes the address from which the next instructions are fetched.

This address is known only at later stages of the pipeline, causing a control flow stall.

The performance can be further improved by allowing multiple non-dependent

instruction to execute by multiple execution units. This is the idea of superscalar

processor. Widening the pipeline makes it possible to execute more than one

instruction per cycle, but there is no guarantee that any given sequence of instructions

can take advantage of this capability. Instructions are not independent of one another,

but are interrelated; these interrelationships prevent some instructions from occupying

the same pipeline stage. Furthermore, the processor's mechanisms for decoding and

executing instructions can make a big difference in its ability to discover instructions

that can be executed at the same time.

Overall, the reasons for stalling a pipeline (resource conflict, data dependencies,

memory dependencies and control dependencies), also apply to blocking the

performance of superscalar machine. The processors described so far execute

12

instructions in-order. That is, instructions are executed in the program order. In an in-

order processing, if an instruction cannot continue, the entire machine stalls. For

example, a cache miss delays all following instructions even if they do not need the

results of the stalled load instruction. A major breakthrough in boosting IPC is the

introduction of the Out-of-Order execution, where instruction execution order depends

on data flow, not on program order. That is, an instruction can execute if its sources

are available, even if previous instructions are still waiting. The effect of super scalar

and out-of-order execution is shown in the following example:

Out-of-order processing hides stalls. For example, while waiting for a cache

miss the processor can execute newer instructions, as long as they are independent on

the load instructions. A super-scalar out-of-order processor can achieve much higher

IPC than in-order one. Out-of-order execution involves dependency analysis and

instruction scheduling. Therefore, it takes longer time (more pipe stages) to process an

instruction. Out-of-order processor can overcome the performance loss by instruction

interdependencies and resource conflict by re-arranging the execution order. However,

with longer pipe, an out-of-order machine suffers more from branch mis-predictions

and the hardware is more complex.

2.4 CURRENT TREND AND CHALLENGES

2.4.1 IMPROVEING THE FREQUENCY THE PIPELINE APPROACH

Process technology and microarchitecture innovations enabled 2X frequency

increase every process generation. As the process improves, the speed increases and

13

the average amount of work being executed between pipeline stages decreases.

Reducing stage length is achieved by improving design techniques and by increasing

the number of stages in the pipe. While in-order processors used 4-5 pipe stages, a

modem out-of-order processor use over 10 pip estages, and with frequencies over 1

GHz, we can expect close to 100 pipeline stages. Improvement in the frequency does

not always improve the performance of the processor. Performance increase rate is

less than linear mainly because deep pipelining does not reduce the time wasted due to

each cache misses and branch mis-prediction flushes. In order to keep the performance

growth, our main challenge is to increase the frequency much faster than the reduction

in the IPC.

2.4.2 THE INSTRUCTION SUPPLY CHALLENGES

The instruction supply is responsible for feeding the instruction into the parallel

execution pipes. The rate of instructions which are entered the execution pipe, depends

on average number of bytes fetched from memory, and the rate of useful instructions

in that stream. The fetch rate depends on quality of the memory subsystem. The

number of useful instruction in the instruction stream depends on the ISA and the

Branches. The ISA determines the average length of a single instruction, the branch

instructions determine how many of them are useful. Unused instructions result from

(1) Control flow change within a block of fetched instructions, making the rest of the

block unused, and (2) Branch predictor provides a wrong prediction discarding all the

instructions in the wrong path. On average, a branch occurs every 4-5 instructions,

limiting the instruction fetch bandwidth to basic block at a time. In order to increase

14

the effective fetch bandwidth, the compiler can optimize the code to produce larger

basic blocks, special structure of caches can be used and in the future, maybe "non-

sequential" fetching techniques need to be developed.

The decoder is the next stage in the front-end. RISC architectures, using fixed

length instructions, can easily decode instructions in parallel. Parallel decoding is a

major challenge for CISC architecture, such as 1A32, that use variable length

instruction. Some implementations use speculative decoders to decode from several

potential instructions addresses, later discarding the wrong one, other store additional

information in the instruction cache to ease decoding 21 time around. Some 1A32

implementations translate the 1A32 instructions into an internal representation,

allowing the internal part of the processor to work on simple instructions at high

frequency, similarly to RISC processors [24].

2.4.3 EFFICIENT EXECUTION

The front-end stages of the pipeline prepare the instructions in either instruction

window or reservation stations. The execution subsystem schedules and executes these

instructions. All modern microprocessors use multiple execution pipes to increase

parallelism. Performance gain is limited by the amount of parallelism found in the

instruction window. The parallelism in today's system is limited by the data

dependencies in the program.

Studies show that, in theory, high level of parallelism is achievable. In practice,

however, this parallelism is not realized, even when enlarging the number of execution

pipes. More parallelism requires higher fetch bandwidth, bigger instruction window,

15

and wider dependency tracker and scheduler. Enlarging such structures involves

polynomial complexity for less than a linear performance gain (e.g., scheduling

complexity is in the order of O of the scheduling window). VLIW (Very Large

Instruction Width) architectures such as 1A64 EPIC and IBM avoid some of this

complexity by using the compiler to schedule instructions.

Two hardware techniques have been very popular recently to solve the data

dependencies in program: Value prediction [10, 21] and Instruction reuse [25]. These

techniques are based on the fact that there is significant result redundancy in program

[25-27], i.e., many instructions perform the same computation and, hence, produce the

same result over and over again. Both techniques attempt to reduce the execution time

of programs by alleviating the dataflow constraints. They use the redundancy in

programs to determine, speculatively (Value Prediction) or non-speculatively

(Instruction Reuse), the results of instructions without actually executing them. The

advantage of doing so is that instructions do not have to wait for their source

instructions to execute first; they can execute sooner using the results obtained by the

above two techniques, thus, relaxing the dataflow constraint. The implementation of

both techniques is to use a hardware table. Value prediction method is more efficient

to catch redundancy in a program than Instruction reuse. However, since value

prediction is a speculative technique, extra verification logic is needed to check the

result. If a prediction is correct, the pipeline will continue without delay, and its

dependent instructions can execute earlier that they would have otherwise. On the

other hand, if a prediction is found to be wrong, all its dependent instructions need to

re-execute with correct input value, and the pipeline is delayed by the latency of

16

verifying the prediction. Both technique collapses true dependencies by allowing

dependent instructions, that would have executed sequentially, to execute in parallel.

17

3. BASELINE DESIGN

In this thesis, we try to speed up some critical logic in superscalar processor in

order to increase the frequency without compromising IPC. The logic structures we

have considered are adder, issue logic and register rename logic. Adder circuit delay is

not related to issue width. However address calculation done by integer adders is the

key operation for instruction fetch, branch prediction and data supply from memory

[28]. Moreover, we are observing a trend in the growth of datapath width. Currently

we are in transition from 32 bits to 64 bits. Designing very fast large adders has been a

constant research topic [29, 30]. We believe adder may become a cycle limiter also in

the future. The latter two are key structures used to exploit ILP in a wide-issue

superscalar microprocessor and generally considered as single cycle function logic

that are proved to be difficult to pipeline inside. We called these structures cycle

limiter. In order to see the performance improvement of our work, a baseline

microarchitecture is needed to compare with. There are different ways to implement

an out-of-order issue microarchitecture. Our baseline superscalar uses a centralized

issue window structure. It basically combines the reorder buffer and instruction

window together, and can provide precise interrupt [2, 15 and 31]. We briefly describe

the three structures used in our baseline machine in the following sections.

3.1 ADDER

Many instructions contain add. Load, store and branch use adder for address

calculation. Arithmetic instructions use adder for add, subtract, multiply and divide.

18

Adder is one of the key performance structures used in function units. There are many

different kinds of adders. Due to performance requirement, most of the current high

performance processors employ one of the known parallel adders [32].

An n-bit adder is just a combination circuit. It can be written by a logic formula

whose form is a sum of products and can be computed by a circuit with two levels of

logic. The formula for the ith sum can be written as

Si = ab1#c1# + a#b1c# + a#b#c + abc (3.1)

where c1 is both the carry-in to the ith adder and the carry-out from the (i-1)-st adder.

a1 and b1 are the two inputs at ith bit.

Since c1 is the only term that depends on previous inputs, we introduce the

following formula to calculate c1.

p1 = a1 + b1 , gj = a1b1 , c1 = g1-i + pjicj.i (3.2)

where p1 and g1 are called propagation and generation term for ith bit respectively. If

g1- is true, then c1 is certainly true, so a carry is generated. Thus g is for generate. If p

is true, then if c1 is true, it is propagated to c1. If we re-write the above equation

recursively, then

c = gi-i + Pi-1 gi-2 + pj.1pj2gi3 + ... + Pi-IPi-2 ...pigo + Pi-lPi-2 ... pilpoco (3.3)

An adder that computes carries using equation (3.3) is called a carry-lookahead

adder, or CLA. A CLA requires one logic level to form p and g, two levels to form the

carries, and two for the sum, for a grand total of five logic levels. However, a carry-

lookahead adder on n bits requires a fan-in of n+l at the OR gate as well as at the

rightmost AND gate. Also, the Pn-1 signal must drive n AND gates. In addition, the

19

rather irregular structure and many long wires in above design makes it impractical to

build a full carry-lookahead adder when n is large.

However, we can build up p's and g's in steps to reduce fan-in. By defining the

group propagation and generation term P and G, for any j with i <j, j+1 <k, we have

the recursive relations

Gjk=GJ1,k + P+l,kGj, Pk=PPj+1,k, ck1=Gk + PkC, s1 = a1
A b1 A (3.4)

Equation (3.4) says that a carry is generated out of the block consisting of bits i

through k inclusive if it is generated in the high-order part of the block (j+1, k) or if it

is generated in the low-order part of the block (i,j) and then propagated through the

high part. These equations will also hold for i j <k if we set G11 = g1 and P = p.

A four bits CLA is shown in Figure 3.1. At the top of the diagram, input

numbers a3a2a1a0 and b3b2b1b0 are converted to p's ad g's using cells of type A. The

various P's and G's are generated b combining cells of type B in a binary-tree

structure. By feeding cO in at the bottom of this tree, all the carry bits come out at the

top. Each cell must know a pair of (P,G) values in order to do the conversion, and the

value it needs is written inside the cells. There is a one-to-one correspondence

between cells, and the value of (P,G) needed by the carry-generating cells is exactly

the value known by the corresponding (P,G) generating cells.

There are different kinds of parallel adders besides Carry Look Ahead (CLA):

Brent-Kung Adder (BKA), Kogge-Stone Adder (KSA) and Cany Select Adder (CSA),

They all have comparable asymptotic performance when they are implemented in

CMOS with either static or dynamic circuits [33]. That is, their critical path delay is

asymptotically proportional to log (N), where N is the number of bits of the adder.

20

The cost complexity of parallel adders approaches N2 when fan-in and fan-out of gates

used are fixed.

TVV I*-G
B

gtt.

Figure 3.1 Four bits complete carry-lookahead tree adder

21

3.2 REGISTER RENAME LOGIC

Register renaming eliminates storage conflicts (anti- and output dependencies)

for registers. When an instruction is decoded, its destination register is assigned to a

physical register (renamed). Usually the number of physical registers is greater than

the number of architectural or logical registers. When a later instruction refers to a

previously renamed destination register (with its logical binding), it must be able to

traverse the renaming and obtains the value stored inside the corresponding physical

register or just the tag of the physical register if the value has not yet been produced.

Thus, the register rename logic is used to translate logical register designators into

physical register designators. Logically, this is accomplished by accessing a mapping

table with the logical register designator as the index. From [15, 16], there are two

different implementations: RAM and CAM. In the RAM scheme, the number of

entries (i.e., rows) in the mapping table is equal to the number of logical registers and

is independent of the number of physical registers. However the mapping table's entry

length (i.e., columns) of the RAM scheme depends on the number of checkpoints

needs to be stored. As we issue more instructions per cycle we need to predict over

nested branches that will increase the width of the mapping table. The CAM scheme,

on the other hand, has fixed table width but requires a larger number of entries. We

use the CAM structure in our baseline machine. A block diagram of the renaming

logic is shown in Figure 3.2 (in this figure the horizontal entries are rows, R is a

logical register, and P is a physical register). It consists of a set of physical registers, a

mapping table and a priority encoding logic block. The number of entries in the

mapping table is equal to the number of physical registers. When a decoded

22

instruction enters into the rename logic, its destination register is assigned a new entry

in the physical register and the corresponding physical register is stored with the

logical register binding. The same decoded instruction's source registers binding will

be used to lookup the mapping table associatively. Since it is possible that a logical

Rk

I
Physical register

Most recent Match

Priority logic

Multiple matches

Rename CAM

ER3TR5TR2 RTR[RJ

P0P1P2 . . . Pn

Figure 3.2 Rename CAM and priority logic

register can match multiple physical registers due to earlier instructions specify

the same destination registers, the result from this associative lookup is channeled into

the priority encoding logic. The priority encoder converts the multiple ones into a

single active line to be used to access the physical register. The critical path of register

rename using this scheme is the time for mapping table lookup and the priority

encoding logic when multiple matches are found. The delay will be longer as we

23

increase the number of physical registers. In the worst case, when the matched entry is

at the head of the mapping table, N-bit adder-like ripple structure will be formed

through the entire priority encoder. Let m stand for the ith mapping table has a content

that maps the upcoming logical register, and Si means the mapping is selected as the

latest. Also assume the upcoming logical register index is 1, and the content of ith

mapping table is i. So we get

Si s-i# 5i-2# ... l# s0# m1, m1 = 1 xnor i (3.5)

If we compare the terms in above equation to those of an adder, 1 and Ii correspond to

the two adder inputs ai and bi, s# Si2# ... 5i# 5# corresponds to carry term ci.

A carry look ahead structure arallel-prefix) can be used to make it

associatively parallel, and the delay will be in the order of log (N), where N is number

of physical registers. Similar to CLA we discussed before, we can generate the priority

chain by steps. We can construct two types of block A and B. Block A has two inputs

mm and sin, two outputs m0 and mm means there is a local match and it sends out

a request m0 to be considered as the latest match, means the request has be granted

from upper level of priority logic so the block sends out a grant signal 50ut to select the

local match as the latest match. The logic in block A are

5out = 5j,, m0U = m1 (3.6)

Block B has two input request mmno and mi from adjacent two bits. The block sends

out a request m0 to upper level. If the upper level grant the request, it sends in Sin and

the block give grant as s0o and s0ibased on the priority of the two input requests. If

we assume bit 0 has higher priority, the logic in block B is

s00 = m10 Sin, 5outi = mini souto# sin, mout = minominl (3.7)

24

A four bits parallel priority encoding logic is shown in Figure 3.3. Assume bit 0 has

higher priority, s1,, at the bottom block is hardwired to logic "1".

For a wide issue superscalar machine, generally multiple instruction will be

renamed at the same time. Thus the comparing and priority logic will also include the

earlier instructions in the current rename group.

It
A

f

B

St L m

Figure 3.3 Four bits priority encoding logic

25

3.3 INSTRUCTION ISSUE LOGIC

The issue logic contains three different parts, and all of them are speed critical

{14, 15, 16]. When an instruction is finished from the functional unit, it will write back

data to its destination register. The status of its dependent instructions will be updated

by the write back instruction. This is done by broadcasting the tag associated with the

result register to all the instructions in the issue window. The broadcasting tag will

compare the tag of each source operand of the instructions in the window. If there is a

match, that particular operand is marked ready. If all of the operands are marked

ready, the instruction is ready to issue. This hardware is usually referred to as the

wakeup logic. If multiple dependent instructions are ready to issue, there may be

contentions on issue bandwidth and functional unit. A selection logic is needed to

arbitrate which ready instruction to be issued first. Every ready instruction raises a

request signal to the selection logic, if the request is accepted, the ready instruction

receives a grant signal, and it is issued to the functional unit. There are different kinds

of selection policy, and oldest-first policy, which grant instruction occurs earliest in

program order first, is one of most popular policies. In a superscalar machine, since

out-of-order issued instructions usually retire in-order, this policy is very necessary

because issuing earlier instruction first can resolve dependencies quicker and

committing earlier instruction first can leave space in the instruction window for

newly decoded instructions. The basic structure of the selection logic is shown in

Figure 3.4. When a ready instruction is granted to issue, write back data of the

instruction it depends on will be bypassed from output of the corresponding functional

unit to the source register. The delay of wakeup-selection-bypass logic increases with

26

increasing issue window size. The selection logic will start to check the request of

instructions from earliest to latest in program order, which is the order of RUTJ [34]

from head to tail. In the worst case, when the only request is from tail of RUU, an

adder like ripple carry will be formed through all entries of RUU. Let r1 stand for the

request from a waken instruction resides in ith RUU location, and s means the request

is the oldest. So we get

Si = sii# 52# ... 51# so# r1

DQrrH
t14JtJjWcD

(5

(D

Issue Win

t314i

(D

Priority Logic

Figure 3.4 Issue selection logic

(3.8)

27

This is the similar structure as in rename logic. A carry look ahead structure can

be used to make this process parallel and the delay is the order of log (N), where N is

the window size. For wakeup and bypass logic, the RC delay dominates the circuit

speed. Circuit simulation shows that RC delay is more sensitive to window size than

logic gate level [15]. For the multiple issue case, the delay analysis will be similar.

28

4. LOGIC LEVEL SPECULATION TO SPEEDUP CRITICAL LOGIC

Previous study [35] shows that for random input data, the average carry length

of a CLA is only 1/3 of its maximum carry chain. Moreover, other works have shown

that there is redundancy exits in programs [25-27], i.e., many instructions perform the

same computation with the same or similar input data pattern repeatedly. This could

be used for adder output speculation. For example, in address calculation, one of the

input to the adder is static. Moreover the other operand is usually incrementing with a

regular stride. Therefore the actual adder delay is much shorter than the worst case

maximum delay. We use the approximation technique described in the introduction

section by generating part of the whole carry chain. As for the register renaming logic,

we believe that the renaming will mostly happen among instructions close to each

other, so we employ the approximation method described previously and use a simpler

priority encoding logic. For issue logic, we again use the approximation method. We

only select among a small group of instructions close to the head of instruction queue

to issue, because these instructions are relatively older ones and should be issued and

retired earlier. This results in simpler and faster selection logic. Due to this selection

strategy, the wakeup and bypass logic can be prioritized to work on the corresponding

instructions closer to the head of instruction queue first, and work on rest of the

instructions later. Because of the approximation techniques, the total pipestages of the

machine are shorter, the dependency chain will be resolved faster, and results in higher

IPC. As other prediction methods, logic level speculation is not 100% accurate. If the

prediction is wrong, the false speculated instruction has to be re-issued and re-

29

executed. This will cause more resource contention, and the dependency chain will be

resolved even slower than the baseline structure. If the prediction accuracy goes down

to a certain point, the speculatively architecture will perform worse than the baseline

architecture. So we can only work on the logic structure whose behavior is highly

predictable. If the prediction accuracy is high enough to overcome the replay penalty

of false speculation, a performance improvement is expected. Also the wrongly

speculated instruction output will trigger its dependent instructions to start execution

and produce more false results. These false results will trigger their own dependent

instructions to execute, and cause a chain reaction resulting in large overhead and

overall performance loss. Therefore it is important to stop the write-back of the

speculative instructions as soon as the false prediction is detected. We describe the

details of our design and analysis used in the following sections.

4.1 ADDER

The critical path of an adder is its full carry chain. Current microprocessors all

use some type of parallel adders that generate all carries through a tree structure first

and then consume the results of the chain to provide the sums. For an N-bit adder, we

denote the individual bits of the two input operands as a1, b1 and intermediate carries as

c1 (i=O, 1, ..., N-i). Each intermediate carry signal - c1 depends on all its previous

input bits. i.e.,

c1 = f(a11, b1.1, a2, b2, ..., a0, b0) (4.1)

Thus, in order to generate the correct final result, we must consider all input bits

(look ahead all inputs) to obtain the final carry out. However in real programs, inputs

30

to the adder are not completely random and the effective carry chain is much shorter

for most cases. That means we can build a faster adder with much short carry chain to

approximate the result. We propose an approximated design which considers only the

previous k inputs (lookahead k-bits) instead of all previous input bits for the current

carry bit. i.e.,

c1 = f(a-i, bk-i, ai-2, b2, ..., al-k, bi.i) where 0< k < i+1 and aj, b= 0 ifj<0 (4.2)

We have discussed previously that the delay cost of calculating the full carry

chain length of N bits using a parallel adder structure is proportional to log (N).

Therefore, if we let k = our new approximation adder only need half of the delay

(log'./ '/2 log N). We can also derive the probability of having a correct result with

only k previous inputs considered assuming random inputs. We will go through the

detail derivation in the Appendix. The prediction rate of an N-bit adder with k bits

carry chain is:

N-k-IP(N,k)= (l--) (4.3)

Figure 4.1 illustrates this relationship between prediction rate of add and the

prediction carry chain length (look-ahead length - k) graphical. For example, a 64-bit

approximation adder with 8-bit (8) look-ahead gives correct result 95% of the

time assuming random input data. An example design with k = 4 is shown in Figure

4.2.

31

Approximation Adder
1.000

0.900
>

0.800

0.700 16-bifl.......
32-bit

0.600 A 64-bitU__________
0.500

a-

0.400

0.300

4 5 6 7 8 9 10

k-bit ahead

Figure 4.1 Prediction rate vs. # of bit look-ahead for 16, 32 and 64-bit adder

32

s a b1 pi-i gj_1 P1-2 Pi-2 Pi- Pi- P1-4 P1-4

4 bits carry chain

p g1 c

Block A Block C

Figure 4.2. An example approximation adder design with k=4

4.2 RENAME LOGIC

As mentioned previously, the critical path of the register rename logic is the

delay of the associative lookup and the priority logic when multiple matches are

found. By experimenting with benchmarks, we found that dependent instructions may

have spatial locality. In other words, they are most likely to be close to each other.

Thus, we propose to use a smaller CAM to implement the mapping table. The CAM

table basically contains a portion of the whole map. When a new instruction enters the

rename logic, its destination binding is assigned a new physical binding. The mapping

table is updated if the table is not full. Otherwise the oldest one is dropped to leave

33

room for the newly renamed destination binding. At the same time the source bindings

are used to lookup the partial CAM. If there is no physical mapping found in the small

CAM but the mapping does exist in the full CAM, A mis-speculation occurs. Since the

number of inputs to the priority encoder is equal to the number of entries in the

smaller CAM, the delay for the rename logic is also smaller. In order to double the

speed, we propose to use a much smaller CAM table containing only the latest,J

number of instruction's register mapping table in it, where N is the window size.

Because of the locality property of register dependency, we hope to get most of the

reading operation from the rename logic correctly. Beside the faster (approximation)

renaming logic, we still keep a regular full CAM and the associated full length priority

encoder. It will be used to recover the mis-speculation and provide the correct

renaming result in the next cycle.

4.3 ISSUE LOGIC

We use the same idea as rename logic by targeting the issue logic on the

earliest JçT entries (N window size), so that the issue logic only needs to consider

waking up, selecting and bypassing data to instructions within entries to the head

of RUU. Since the wakeup and bypass delay are RC dominated, and RC delay is more

sensitive to the window size, we will have more than twice speed up in these two

logics. So the total speculative issue logic delay will be less than half of the issue logic

in baseline microarchitecture if only ../,V entries are considered. There is no replayed

needed for the approximated issue logic since there is no false result generated.

34

However, some issue bandwidth or functional units may be wasted because there may

not be enough ready instructions in Ji number of entries (N = window size).

4.4 HARDWARE IMPLEMENTATION AND RECOVERY

4.4.1 IMPLEMENTATION COST

Our new microarchitecture uses the speculative adder, rename and issue logic as

described previously. A duplicated normal adder and rename logic is also included in the

machine being sampled at a slower frequency. The size of the above mentioned logic-level

speculation logic for rename and issue is smaller than the original logic used in the baseline

machine, since the speculative window size is scaled down (in our case the size is the square

root of the original size). For 64 bits priority encoding logic, the total cost of hardware is

64*A + 64*(l/2 + 1/4 + 1/8 + ... + l/64)*B. For 8 bits speculative priority logic, the cost is

8*A + 8*(l/2 + 1/4 + l/8)*B, only 1/8 of the normal hardware. For an N-bit adder with k-bit

carry look-ahead, a total of N k-bit adders are needed. When k is large, the new design may

have a significantly large area. Fortunately, from our benchmark experiment, 4 bits of carry

look-ahead can achieve an average of 85% prediction rate for 64 bits adder (random inputs

give only 40% accuracy), this is due to the redundancy in program data. The total cost of

hardware for 64 bits adder is 64*A + 64*(1/2 + 1/4 + 1/8 + ... + 1/64)*B. For 64 bits

approximation adder with 4 bits predictor, the total cost of hardware is 64*A + 64*(1/2 +

1/2)*B. Even though the two cases have the same total number of gates, the normal adder has

long routings from LSB to MSB. On the other hand, for speculative adder, each piece of small

carry chain only has local wire routings, so the device size can be very small and layout can be

rather compact. In sub-micro technology, most function units are routing limited, the area

35

saving for speculative adder could be an order of magnitude. Thus, in general, our duplicated

hardware used to speculate is smaller in size than the checking hardware. This is different

from DIVA processor proposed by Austin [36], which requires an almost identical hardware

as the checker. Both approaches speculate on circuit timing and both can avoid metastability.

The other cost of hardware is that the verification adder and rename priority logic needs to be

duplicated in order to match the slower verification frequency to faster execution frequency.

So the overall extra cost for approximation adder and priority rename logic is 100%. Since in

baseline microarchitecture, the adder and rename logic account for less than 1% of the total

gates and area, the increase of area and power for approximation method is relatively small.

4.4.2 RECOVERY COST

After the verification logic finished, the result is compared with corresponding

"speculative result". If they match, no other action is required. Otherwise instructions,

which generate a false result, will be issued again and write back with the correct

result from verification logic. We assume that it takes an extra cycle for the slow

(original) logic to finish and verify the speculative result. Also, as soon as the false

speculation is known, the write back of the speculative instruction is stopped so that it

won't trigger the next dependent instructions. For issue speculation, there won't be

any false result generated, so no replay is needed.

The issue mechanism in the superscalar microarchitecture is event triggered.

This means an instruction will check the readiness of all of the source registers and

decide to send a request to issue only when new data is written to any of the source

registers. This can happen in two cases:

36

I. In rename stage, if all source register data are available, either in physical

register it matched with, or direct from architectural register file, then the

instruction is ready to issue immediately.

II. In write back stage, when an instruction finishes execute and write back data, its

dependent instructions will be waked up, instructions with all source data available

are ready to issue.

We now discuss the detail on how the newly proposed microarchitecture handles

speculation and recovery. In our design, RUTJ has the same content as baseline

microarchitecture except every entry has flags showing the bogus speculation, one per

each source register. We call it value prediction flag (VPF). Initially all VPFs are

reset. The VPF of a register will be set when the verification logic finds out that the

speculation done on the corresponding instruction before is wrong, or that register is

written back by an earlier instruction whose VPF has been set. The VPF will be

cleared when the corresponding register is written back by an earlier instruction whose

VPF is cleared. VPF will gate the write back of the instructions so that they won't

contaminate its dependents. Because it takes one extra pipestage for the verification

logic to figure out the result of the speculation, VPF will be updated one cycle later

than the speculation stage. If an instruction's write back stage is immediately

following it speculation stage, it will trigger its dependent instruction to issue because

VPF hasn't been set yet. However, after the dependent instruction issues, its VPF will

be assigned and its write back will be stopped if false speculation happens. Since

updating VPF for the dependent instructions can be done in parallel with their

executions, it won't degrade the performance. We didn't use speculative adder for

37

branch instruction. The reason is that branch will be resolved in the next cycle

immediately after the adder calculates the address, and before VPF of the branch

instruction is assigned. The false speculation of adder will cause spurious branch mis-

predictions. In other words, a correctly predicted branch will be considered mis-

predicted because the adder that is used to calculate target address and to verif' the

branch prediction is wrong. The penalty of recovering from spurious branch mis-

predictions will be higher than the benefits we get from the speculation of add. For

rename speculation, because it happens at the front end of the machine pipeline, the

VPF of the false speculated instruction would be set before the branch is resolved. So

no spurious branch miss-predictions will happen.

38

5. THEORETICAL PERFORMANCE STUDY

Research done by Emma and Davidson et. al. [1] shows that as the number of

pipestage is increased, data dependencies and branches monotonically degrade the

pipeline performance (in terms of clock cycles per instruction). The longer the pipeline

is, the more cycles of penalty the data dependency and branch mis-prediction will

cause. However, increasing the pipeline length will increase clock frequency

monotonically. These two opposite factors will decide the optimal pipeline length

based on specific technology.

In this thesis, we want to study the impact of logic-level data speculation on how

it improves the performance by overcoming the effect of data dependencies on long

pipelines. As we have presented in the previous chapter, the key idea of this method is

to reduce the pipeline length by speculating the result of long delay functional

structures. The baseline model and speculative model runs at the same frequency. In

order to keep the same frequency, the execution time of a functional unit in the

baseline machine must be broken up and requires 2 stages. However the logic

speculation approach allows the same functional unit to run faster and uses only one

stage or one cycle but with replay penalty. It is obvious that under same frequency, the

model with shorter pipeline will suffer less from data dependency and branch mis-

predictions. However, the wrongly speculated result will be replayed so that more

functional unit write back bus bandwidth will be occupied and draw back the

performance gain. Table 5.1 lists the symbol used in our performance comparison.

39

PR Prediction rate of the speculative logic
DR data dependency rate for the instructions, i.e.

the probability that data dependency exists
between 2 adjacent instructions

FR functional unit write back bus occupancy rate
P8 overall branch miss rate, i.e. the probability

that an arbitrarily selected instruction is a
branch and the branch prediction is wrong

CDS11 Stalled cycle corresponding to DR
Stalled cycle corresponding to PB

Table 5.1 Symbol used in performance study

Notice that the overall branch miss rate is the product of branch miss rate and

branch frequency. Since our goal is to evaluate data dependency, the branch prediction

factor can be simplified as one term. Also we assume only in-order issue and commit.

The reason for in-order assumption is because out-of-order machine is fairly

complicated structure for theoretical analysis. And we can see in later chapter that the

theoretical result does match the simulation result performed on the out-of-order

microarchitecture.

Since we assume the same frequency for both models, the performance depends

mainly on cycle per instruction (CPI). The general formula for CPI with data

dependency and branch penalty is

CPI = 1 + DR * CD11 + PB * (5.1)

Assume C811 is 3 cycles in either model for simplicity, and CDS11 is 1. For

baseline pipestage structure, we get

CPI = 1 + DR + PB * 3 (5.2)

DJ

For pipeline structure with speculative functions, there are four extreme cases

considering data dependency and prediction rate factors,

(a) all instructions are independent and the prediction rate is 100%

(b) all instructions are independent and the prediction rate is 0

(c) all instructions are dependent and the prediction rate is 100%

(d) all instructions are dependent and the prediction rate is 0

For case (a) and (c), when all predictions are correct, there is no data

dependency penalty.

For case (b), the verification logic will re-issue the instruction in the next cycle.

This means extra write back slot for the re-issued instruction. While the impact of

extra write back slot on the performance is complicated, we can approximate the

relationship by following method: If the functional unit write back bus bandwidth

occupancy rate (FR) is 100% for the original instructions, the extra instruction will

always stalled one cycle. If the occupancy rate is 50% for the original instruction, the

extra instruction will not be stalled and CPI will be the same as that of fully pipelined

machine. For linear approximation, a straight line between this two point will be the

function ofCDI1 vs. FR, so we get

CDstaIl (FR) = 2 * FR 1 (5.3)

For case (d), the analysis is similar to case (b). The difference is that since all

instructions are dependent, the pipeline will be stalled for one cycle even when there is

no limitation on write back bandwidth. This means when FR is 50%, the pipeline will

be one cycle, and when FR is 100%, the pipeline will be stalled two cycles. By

applying linear approximation, we get,

41

CDstaIl (FR) = 2 * FR (5.4)

Combine all the cases together with branch prediction term, we get

CPI=1+(2*FRl)*(1DR)*(1PR)+2*FR*DR*(1 PR)+PB*3 (5.5)

Let the speedup be the ratio of baseline CPI and speculative CPI. Figure 5.1, 5.2,

5.3 show the speedup when FR is 0.5, 0.8 and 0.95. These figures also assume PB =

0.05, which means small branch mis-prediction impact. From the diagram, we can see

that speedup rate increases with dependency rate and prediction rate monotonically.

When functional unit occupation rate is high, the speculative performance is more

likely to be sacrificed since replay instructions cause more penalties in write back

bandwidth. For the case where FR is more than 50% in figure 5.2 and 5.3, when

prediction rate or dependency rate is low enough, the speculative microarchitecture

performance is even lower than that of the baseline processor. In an extreme case,

when dependency rate is 0, the speedup increases with prediction rate, but maximum

speedup rate is 1, means there is no speedup even with perfect prediction. If the

prediction is not perfect, then performance actually decreases. The result shows that

the speculative method only benefits the performance where there is high instruction

dependency rate. In another extreme case when prediction rate is 0, the speedup

increases with dependency rate but always lower than 1. This means some minimum

prediction rate is required for the performance improvement in speculation method.

42

2

14

1.2

05
Dependency

0.6 0.8

Prediction rate

Figure 5.1 Speedup by speculative execution vs. PR and DR (FR=O.5)

2

18
_: --

1.6

14

:

a12
Cl)

08

06

05
Dependency rate

0 0 0.2 0.4 0.6 0.8

Prediction rate

Figure 5.2 Speedup by speculative execution vs. PR and DR (FR=O.8)

1

43

DeP;Y rate
0 02

0.6
0.8

Prediction rate

Figure 5.3 Speedup by speculative execution vs. PR and DR (FR=O.95)

-S__I

1.8

1.6

1.4

0)

0)1.2 -

08 - -- ::
0.8

0.6 - - - 0.5
0.4

0.2
Branch miss rate 0 0

Dependency rate

Figure 5.4 Speedup by speculative execution vs. PB and DR (PR=O.85, FR=O.8)

44

-4---.-

Branch miss rate
0 0 Prediction rate

Figure 5.5 Speedup by speculative execution vs. PB and PR (DR=0.85, FR=0.8)

Figure 5.4 shows the impact of overall branch mis-prediction rate and

dependency rate to the performance when data prediction rate is high (0.85) and write

back occupancy rate is medium (0.8). At the lower data dependency rate side when the

speculative performance is low, the performance speedup increases when PB increases.

While at the higher data dependency rate side, when the speculative speedup is high,

the speedup decreases when PB increases. In the first case, data speculation suffers

more on replay penalty than speculation performance gain due to lack of dependent

instructions. In the second case, the baseline model suffers more on dependency stall

penalty than performance gain from not replaying wrongly speculated instruction.

Higher PB causes more performance loss on both models at the same rate and thus

neutralizes the performance loss by data dependency stall or data speculation penalty.

45

So the overall branch mis-prediction rate is in favor of the worse case model affected

by dependency rate. Figure 5.5 shows the relationship of speedup in terms of PB and

PR. For the same reason, the overall branch mis-prediction rate will neutralize the

impact by data prediction rate. This analysis means good branch prediction rate is

important for data speculation speedup to take effect.

I

46

6. SIMULATION RESULT

We use SimpleScalar [22] tool set to compare the performance of our

speculative microarchitecture with the baseline machine. Assume both models run

with the same frequency. In the baseline machine, in order to keep up the frequency

the cycle limiter logic blocks all take 2 cycles. While in the new speculative machine

with approximation circuits, these same logic blocks take only 1 cycle. However the

speculative machine will need to replay when the result is incorrectly generated and

incur miss speculation (replay) penalty. Independent simulation experiment is

performed for each of the above mentioned cycle limit logic rename logic, issue

logic and adder, with the assumption that only one of them is the main performance

limiter.

6.1 SIMULATOR IMPLEMENTATION

Simplescalar tool set is a C platform that implements instruction trace

simulation for superscalar in-order/out-of-order microarchitecture. It uses several sub-

routings to simulate the basic stages of microprocessor: ruu_fetchO for instruction

fetch (IF); ruu_dispatchO for instruction decode and register rename (ID); ruu_issue()

for scheduling and execution (EX); lsrefresh() for memory access (M);

ruuwritebackO for instruction writeback (W); ruu commit() for instruction commit.

Since we want to simulate the effect of speculative rename logic, adder and issue

logic, sub-routing ruu_dispatchO, ruu_issueO and ruu_writeback() need to be

modified. In ruu_dispatchO, a smaller rename table is constructed and takes one cycle

47

to finish. A duplicated verification table is also build to validate the result in the next

cycle. If the result is correct, the program goes on, otherwise, it asserts the VPF flag.

In ruuissueO, it checks that if an instruction has its entire source register data

available and assigns a functional unit to it. If there are more ready to issue instruction

that number of functional unit or writeback bandwidth, the priority logic will pick the

oldest instruction to issue first. A smaller priority encoding logic is construct to look

for instructions close to head side of RUTJ. We also set the speculative adder latency

to be one cycle. In ruu_wirtebackO, a written back instruction will search for its

dependent instructions and wake the up. If the written back instruction has its VPF set,

all its waken up instruction will set their VPF. If the former one proved to be wrong, it

will be re-issued, so with all its dependent ones, and the re-issued written back

instruction will clear its VPF since it is verified to be correct.

6.2 SIMULATION WITH VARIOUS MICROARCHITECTURE

We run eight integer benchmarks from the spec95 suite, using the reference

input database. First, we set the RUTJ window size = 64, issue width = 4, integer adder

number = 4, integer multiplier number = 1, and run 2 billion instructions for each

benchmark. Then by shuffling the parameters: window size of 16, 32, issue width of 8,

integer adder number of 8 and integer multiplier number of 2, we run each benchmark

for 500 million instructions. These parameters are listed in Table 6.1 and 6.2. The

speedup results and speculation accuracy are summarized in Figure 6.1-6.6. The

speedup is basically the ratio of IPC with baseline machine normalized to one. Bars

labeled HM in all figures are the harmonic mean over all the benchmarks simulated.

48

Instruction fetch 4 inst. per cycle
Instruction cache 16K byte, Direct mapped, 32 byte line, 6 cycle miss

latency
Branch Predictor Bimodel, 2048 BTB entries with 2 bit saturating

counter
Issue mechanism Out-of-order issue, commit at 4 operations per

cycles, load may execute when all prior store
addresses are known

Functional units 2 load/store, 4 fp adders, 1 fp M1JLIDIV
FU latency load/store 1/1, mt ALU ui, mt MUL 3/1, mt DIV
(total/issue) 29/19, fp adder 2/1, fp MUL 4/1, fp DIV 12/12, fp

SQRT 24/24
Data cache 16K byte, 4 way set associate, 32 byte line, 6 cycle

miss latency

Table 6.1 Common parameters of base simulator

Issue
width

RUTI,
LSQ
size

Functional units
(Integer)

Spec
window

Spec
carry
chain

Inst.
Count
million

14R64 4 64, 64 ALU=4,MUL=1 8 4 2000
18R64 8 64, 64 ALU=8,MUL=2 8 4 500
14R32 4 32,32 ALU=4,MUL=1 4 4 500
14R16 4 16, 16 ALU=4,MUL=1 4 4 500

Table 6.2 Parameters of four cases of base simulator

49

1.4

1.2

I

0.8
Speedup

0.6

0.4

0.2

0

C.)

0
0 =
C) C)

Benchmarks

O 14R64

18R64

0 14R32

O 14R16

Figure. 6.1 Speedup by logic-level speculation of rename logic

100
90
80
70

Percent 60
prediction 50
accuracy 40

30
20
10

0
0
0

0 =
C) C)a

Benchmarks

014R64
18R64
D14R32

014R16

Figure 6.2 Percent of approximation accuracy for rename logic

50

I

Speedup 0

0

0

0

o
0) a'

Benchmarks

o 14R64

18R64
D14R32
o 14R16

Figure 6.3 Speedup by logic level speculation of issue logic

5fl

4
4
3

Percent 3
prediction 2
accuracy 2

I
I

0 =
0) a'

Benchmarks

o 14R64

18R64
D14R32

D14R16

Figure 6.4 Percent of accuracy for the approximation issue logic

1.:

Speedup 0.1

o.

0.:

0 = a'
Benchmarks

D l4R64

U18R64

D14R32

14R16

Figure 6.5 Speedup by logic level speculation with approximation adder

100
90
80
70

Percent 60
prediction 50
accuracy 40

30
20
10

0

0
0

0 = =
C)

0.

Benchmarks

D14R64

18R64
D14R32

014R16

Figure 6.6 Percent of accuracy for approximation adder

52

From these diagrams, we can see that logic-level speculation method described

does improve the overall performance of the new microarchitecture. For adder and

rename logic, high prediction rate is also achieved. For adder speculation, the

performance improvement is less than the other two speculations. This is because

addition completes close to the back end of the machine, it is more likely to pollute the

dependent instructions by false write back and cause more penalties. By reducing

window size, the adder speculation performance relative to the baseline machine

increased. This is because smaller number of independent instructions is available in a

smaller issue window. So the speculation is more important and efficient to resolve

dependencies. On the other hand, increasing issue width and number of function units

degrades the relative performance, since wider issue width, larger window size and

more functional units potentially cause larger instruction level parallelism, and the

mis-speculation penalty will overcome the performance gain by resolving dependency

chain. However, for rename and issue speculation, the speculative window size will

change to match the baseline window size so that to achieve the circuit speedup of

twice fast. This will compromise the relationship between relative performance and

window size, issue width and functional unit. For case 18R64, which means wide

issue, large window and more functional unit, the relative performance of ijpeg

degrades a lot in issue and add speculation. The predication accuracy of issue

speculation means the percentage of ready instructions in speculation window over the

total ready instructions. It is as low as 24% for ijpeg, causing huge waste of execution

bandwidth. Since ijpeg is a computational intensive program, it is full of independent

data processing instructions, which means there are fewer dependencies than other

53

benchmarks. This explains the low performance gain with issue and adder logic-level

speculation.

6.3 SIMULATION WITH TYPICAL MICROARCHITECTURE

We can also do the simulation by varying one parameter at a time in a typical

wide issue microarchitecture. With the same common parameter in Table 6.1, and

setting RUU window size = 64, issue width = 8. For the functional unit (FU) factor,

we try to keep the same number of integer adder and make it unlimited but limit the

writeback bandwidth. So the number of integer adder is set to 8. We consider three

functional unit writeback bandwidth (FR) situations: (a) Extremely lack of FR -- 2; (b)

moderately lack of FR -- 4; (c) Unlimited FR -- 8. Both in-order and out-of-order

cases are simulated in order to correspond to our theoretical study in chapter 5. Three

benchmarks (gcc, compress95 and ijpeg) are picked for the study. Instruction count is

50 million per each program. Table 6.3 and 6.4 show the simulation result.

Benchmark Writeback bandwidth Dependency
rate

Prediction
rate

2 4 8

Performance speedup

gcc 1.0 1.01 1.05 22% 88%
compress95 1.02 1.07 1.08 40% 90%
ijpeg 0.96 1.0 1.04 9% 96%

Table 6.3 Performance speedup vs. writeback width, dependency rate

54

Benchmark Prediction
rate

Performance
speedup

Writeback
width

Dependency
rate

gcc 67% 0.985 4 22%

79% 1.0
88% 1.018

Compress95 64% 0.967 4 40%
77% 1.0
89% 1.076

ijpeg 83% 0.89 4 9%
92% 0.98
97% 1.0

Table 6.4 Performance speedup vs. prediction rate (FR=4)

In Table 6.3, the performance speedup of all three benchmarks increase with

the increase of writeback bandwidth (FR). When FR=2, the bandwidth is very limited,

we can see that speculation doesn't have much benefit. For ijpeg, the speculative

performance is even worse than that of baseline machine. When FR=8, the bandwidth

is high, so all three programs see 4% to 8% performance boost over baseline. The

speculative performance is also related to data dependency rate. ijpeg has the lowest

data dependent rate, so its relative performance speedup is less than the other two

benchmarks, and can be worse than baseline with limited writeback width.

Compress95 has the highest data dependent rate, so as the highest relative speedup.

In Table 6.4, we can see clearly that when prediction rate increase, the relative

speedup also increase for all three benchmarks. When prediction rate is low enough,

the speculative performance can even be worse than that of baseline machine.

55

From above analysis, we can see that the experimental result match what we

have predicted in theoretical analysis in Chapter 5.

7. CONCLUSION

In this thesis, we first try to identify' some possible cycle limiters in a superscalar

microprocessor, namely adder, rename logic and issue logic and analyze their speed

path. Then we propose a logic level speculation method approximation to speedup

these critical logic blocks. For adder, carry chain is generated by a subset of the input

data. For rename and issue logic, we only target on a subset of instructions in the issue

window. For adder and rename logic, the corresponding verification logic must be

duplicated to detect the correctness of speculation. In case of false speculation, the

instruction will be replayed. Our simulation of SPEC95 benchmarks with different

window size, issue width and number of function units shows performance

improvement for this newly proposed microarchitecture over the baseline machine.

Our conclusion is that logic level speculation method is a potential way to speedup

some cycle limiting logic structures and achieve better performance in wide issue

superscalar microprocessor. Approximation method works better on programs with

more dependencies than that with high ILP originally. The extra hardware cost both

for duplicated logic blocks and verification logic is somewhat limited.

In the future, we can use approximation method on x86 instruction decoding,

integer adder data bypassing or any potential circuit speed path in microprocessor

design.

57

REFERENCES

[1] Philip G Emma and Edward S. Davidson, "Characterization of Branch and
Data Dependencies in Programs for Evaluating Pipeline Performance, " IEEE
Transactions on Computers, VOL. C-36, NO. 7, July 1987

[2] James E. Smith, and Gurindar S. Sohi, "The Microarchitecture of
Superscalar Processors," in Proceedings of the IEEE, Volume: 83 12, Dec. 1995, pp.
1609 1624.

[3] P. Michaud, A. Seznec, and S. Jourdan, "Exploring instruction-fetch
bandwidth requirement in wide-issue superscalar processors," in Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques, 1999,
pp.2-10.

[4] S. Dutta, and M. Franklin, "Control flow prediction schemes for wide-issue
superscalar processors," IEEE Transactions on Parallel and Distributed Systems,
Volume: 104, April 1999, pp. 346 359.

[5] Sangyeun Cho; Pen-Chung Yew; Gyungho Lee, "Decoupling local variable
accesses in a wide-issue superscalar processor," in Proceedings of the 26th
International Symposium on Computer Architecture, 1999, pp. 100-110.

[6] J. Farrell and T. C. Fischer, "Issue Logic for a 600-MHz Out-of-Order
Execution Microprocessor," IEEE J. of Solid State Circuits, Vol. 33, No. 5, May 1998,
pp. 707-712.

[7] S. J Patel, D. H. Friendly and Y. N. Patt, "Evaluation of design options for
the trace cache fetch mechanism," IEEE Transactions on Computers, Volume: 48 2,
Feb. 1999, pp.193 -204

[8] D. M. Tulisen, S. J. Eggers, and H. M. Levy, "Simultaneous multithreading:
Maximizing on-chip parallelism," in Proceedings of 22nd Annual International
Symposium Computer Architecture, 1995, pp. 392 403.

[9] C. B. Zilles, J. S. Emer and G. S. Sohi, "The use of multithreading for
exception handling," in Proceedings of 32nd Annual International Symposium on
Microarchitecture, 1999, pp. 219 229.

[10] P. Marcuello, J. Tubella, and A. Gonzalez, "Value prediction for
speculative multithreaded architectures," in Proceedings of 32nd Annual International
Symposium on Microarchitecture, 1999, pp. 230 236.

58

[11] S. Wallace, D. M. Tulisen and B. Calder, "Instruction recycling on a
multiple-path processor," in Proceedings of Fifth International Symposium On High-
Performance Computer Architecture, 1999, pp. 44 53.

[12] J. -M. Parcerisa, and A. Gonzalez, "The synergy of multithreading and
access/execute decoupling," in Proceedings of Fifth International Symposium On
High-Performance Computer Architecture, 1999, pp. 59 63.

[13] H. Akkary, and M. A. Driscoll, "A dynamic multithreading processor," in
Proceedings of 31st Annual International Symposium on Microarchitecture, 1998, pp.
226 236.

[14] S. Cotofana, and S. Vassiliadis, "On the Design Complexity of the Issue
Logic of Superscalar Machines," in Proceedings of the 24th Euromicro Conference,
1998, pp. 277 284.

[15] Subbarao Palacharla, Norman P. Jouppi, J. E. Smith, "Complexity-
Effective Superscalar Processors," in Proceedings of the 24th mt. Symp. on Computer
Architecture, June 1997.

[16] Subbarao Palacharla, Norman P. Jouppi, J. E. Smith, "Quantifying the
Complexity of Superscalar Processors," Technical Report CS-TR-96-1328, University
of Wisconsin-Madison, November 1996.

[17] R. Bechade et. al., "A 32b 66 MHz 1.8 W microprocessor," in Digest of
Technical Papers of the 41st IEEE International Solid-State Circuits Conference,
1994, pp. 208 209.

[18] D. Dobberpuhl et. al., "A 200 MHz 64 b dual-issue CMOS
microprocessor," in Digest of Technical Papers of the 39th IEEE International Solid-
State Circuits Conference, 1992, pp. 106 -107, 256.

[19] H. Sanchez et. al., "A 200 MHz 2.5 V 4 W superscalar RISC
microprocessor," in Digest of Technical Papers of the 4311 IEEE International Solid-
State Circuits Conference, 1996, pp. 218 -219, 448.

[20] T. Fischer, and D. Leibholz, "Design tradeoffs in stall-control circuits for
600 MHz instruction queues," ," in Digest of Technical Papers of the 45th IEEE
International Solid-State Circuits Conference, 1998, pp. 232 -233, 442.

[21] M. H. Lipasti, and J. P.Shen, "Exceeding the dataflow limit via value
prediction," in Proceedings of the 29th Annual IEEE/ACM International Symposium
on Microarchitecture, 1996, pp. 226 237.

59

[22] D. C. Burger and T. M. Austin, "The SimpleScalar Tool Set, Version 2.0,"
University of Wisconsin Computer Science Technical Report #1342, June 1997.

[23] SPEC. "SPEC Benchmark Suite Release 1.0," Santa Clara, Calif., October
2, 1989.

[24] Geppert, L.; Perry, T.S. "Transmeta's magic show [microprocessor chips]"
IEEE Spectrum, Volume

[25] Avinash Sodani and Gurindar S. Sohi, "Dynamic Instruction Reuse,"
Proceedings of the 24th International Symposium on Computer Architecture (ISCA),
June, 1997.

[26] Avinash Sodani and Gurindar S. Sohi, "An Empirical Analysis of
Instruction Repetition," in Proc. of 8th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-VIlI), Oct
1998.

[27] Avinash Sodani and Gurindar S. Sohi, "Understanding the Differences
between Value Prediction and Instruction Reuse," in Proceedings of 31st International
Symposium on Microarchitecture (MICRO-3 1), Nov-Dec 1998.

[28] Y. Shintani et. al., "A Performance and Cost Analysis of Applying
Superscalar method to Mainframe Computers," IEEE Trans. On Computers, Vol. 44,
No. 7, July 1995, pp. 891-902

[29] Wei Hwang; Gristede, G.; Sanda, P.; Wang, S.Y.; Heidel, D.F,
"Implementation of a Self-resetting CMOS 64-bit Parallel Adder with Enhanced
Testability," IEEE Journal of Solid-State Circuits, Volume: 34 8, Aug. 1999, pp. 1108
1117.

[30] L. A. Lev et. al., "A 64-b microprocessor with multimedia support ," IEEE
Journal of Solid-State Circuits, Volume: 30 11 , Nov. 1995 , pp. 1227 -1238.

[31] Mike Johnson, Superscalar Microprocessor Design. Prentice Hall Series in
Innovative Technology. 1991.

[32] C. Nagendra, M.J. Irwin, and R.M. Owens, "Area-time-power tradeoffs in
parallel adders," Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on Volume: 43 10 , Oct. 1996 , pp. 689 702.

[33] T. Lynch, and E. Swartzlander, "The redundant cell adder," in
Proceedings. of the 10th IEEE Symposium on Computer Arithmetic, 1991, pp. 165
170.

60

[34] G. Sohi, "Instruction Issue Logic for High Performance, Interruptible,
Multiple Functional Unit, Pipelined Computers," IEEE T. on Computers, Vol. 39, No.
3, March 1990, pp.349-359.

[35] R. Ramachandran and S. L. Lu, "Carry Logic," Wiley Encyclopedia of
Electrical and Electronics Engineering, Edited by John G. Webster, 1999.

[36] T. M. Austin, "DIVA: a reliable substrate for deep submicron
microarchitecture design," in Proceedings of the 32nd Annual International
Symposium on Microarchitecture, 1999, pp. 196 207.

61

APPENDIX

62

PREDICTION RATE FOR APPROXIMATION ADDER

Theory: For N bits adder with k bits carry generator (predictor), the prediction
rate is (1 1/2k+2)N.k.1

For N bits adder with k bits carry generator (predictor), for each bit i, assume
inputs are a1, b1 and carry in c1, (i = 0, 1,2, ..., N-i)

= a1 xor b xor c

Notation:
Pk(ci Y), the probability of carry c1 is correct with k bit predictor
Pk(ci N) = 1 - P'(c Y), the probability of carry c1 is wrong with k bit predictor
P(c1=c), the probability of carry c1 equal c without prediction
pk(c+i Y1c1 Y), the probability of carry c1i is correct with k bit predictor when

carry c1-1-1 is correct with its own k bit predictor

Since s is correct if and only if c1 is correct with k bit predictor

pk(5. Y) = pk(c Y)

Their probabilities are equal.

Lemma i. pk(c N) (1/2k) * pk(cl) (1)

Proof:

Let k=2,
(c3 Y) => a2b2 = (00101) OR

(01110) AND
(aibi = (00111) OR

(01110) AND ci=0)

(c3 N) => a2b2 (01110) AND
(aibi = (01110) AND ci=1)

So P2(c3 N) = (1/2) * (1/2) * P(ci=1)

Lemma 2. P(c1..k=l) (1/4) + (1/2) * P(cik..1l) (2)

Proof:

(c3=1) => a2b2 = (11) OR (01110) AND c2 =1

63

So P(c31) (1/4) + (1/2) * P(c2=1)

Lemma 3. pk(c Y) = 1
112k+1 + 1/21+1 (3)

Proof:

From (2), and also P(co=1)=0, which means no carry at bit 0,
We can get
P(c..k=l) (1/4) * (1 +1/2 + 1/4 + ... 1/214(4)

- l/2)

insert into (1)

Pk(c N) (1/2k+1) *
(1

l/2ik)

> Pk(c Y) 1 - Pk(c N)

= 1 1/21

Lemma 4. P(c1-1-i Y1c1 Y) = 1
(1/2k) *

(1/4) (4)

Proof:

Let k=3,

c5 = f(a4,b4,a3,b3,a2,b2)
C4 = f(a3,b3,a2,b2,ai,bi)

(c5 Y) => a4b4 (00101) OR
(01110) AND

(a3b3 = (00111) OR

(01110) AND

(a2b2 = (00111) OR
(01110) AND c2=0)

(c4 Y) => a3b3 = (00101) OR
(01110) AND

(a2b2 = (00111) OR
(01110) AND

(aibi = (00111) OR
(01110) AND ci=0)

P3(cs N) = (1/2) * (1/2) * (1/2) * P(c2=1)
P3(c5 N1c4 Y) = (1/2) * (1/2) * (1/2) * P3(c2=1 Ic4 Y)

64

The only condition that satisfy (c2=1) AND (c4 Y) is when (aibi=1 1)
So P3(c2=1 Ic4 Y) = P(a1bi=1 1)= 1/4

So P3(c5 N1c4 Y) = (1/2) * (1/4)
=> P(c1--i Yc1 Y) = 1 P3(c5 N1c4 Y)

= 1
(1/2k) * (1/4)

4

Starting from any bit i, the probability of c1, c1+1, c of the N bits adder are
all predicted correctly with k bits predictor is

pkj) = Pk(c Y) * P(c1-4-i Yc1 Y) * P(c2 YJc1+1 Y) * * P(cNl YIcN2 Y)

Since it is always predicted correctly for bit starting from k and below, the total
prediction probability is

pk) = pkk+l) insert (3) and (4)

pkj) = (1 (l/2k)*(l/4))N-k-2 * (1
1/2k+1 1/2k+2)

= (1
1/2k+2)Nk1

