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Feedback in Multiple Antenna Wireless Communication Systems

Chapter 1 – Introduction

1.1 Background

Wireless communication systems with multiple transmit antennas and multiple receive

antennas have been shown, by Telatar, Foschini and Gan [1,2], to provide high spectrum

efficiency under independent and identically distributed (i.i.d.) Rayleigh flat-fading be-

tween all transmit and receive antenna pairs with channel state information (CSI) at

the receiver. This information-theoretic foundation of multiple-input multiple-output

(MIMO) wireless systems indicates how much information can be reliably delivered over

a MIMO wireless link. The earlier work to explore high throughput/high data rate of

MIMO systems is the Bell Laboratories Layered Space Time (BLAST) architecture [4,5].

BLAST is a spatial multiplexing scheme. In its layered structure, the input data stream

is demultiplexed into substreams, coded independently using one-dimensional coding,

and sent over different transmit antennas simultaneously. The received signal from each

substream can be separated by nulling according to a zero-forcing (ZF) or minimum

mean-square-error (MMSE) criterion and successive interference cancellation (SIC).

Multiple antennas can be used not only to increase the system capacity but also to

lower the probability of error via diversity combining. In [7] the multiplexing gain r is

defined as r = lim
SNR→∞

R(SNR)/ log SNR, whereR(SNR) is the information rate delivered
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over the link. The diversity gain d is defined as d = − lim
SNR→∞

logPe(SNR)/ log SNR,

where Pe(SNR) is the probability of codeword error. Both R(SNR) and Pe(SNR) are a

function of the signal-to-noise ratio (SNR). With a block fading model [3,6], the channel

coefficients hold constant for a block of T symbol intervals and change independently in

the next block and hold another T symbol intervals. When the channel is perfectly known

at the receiver but not known at the transmitter, the optimal diversity gain achievable

by any coding scheme of block length T with T ≥ M +N − 1 in a MIMO system with

M transmit antennas and N receive antennas is given by the piecewise-linear function

connecting the points (k, d∗(k)) with k = 0, ...,min(M,N), where d∗(k) = (M−k)(N−k)

[7], which implies: (1) The maximum diversity gain is MN and maximum multiplexing

gain is min(M,N); and (2) A system may increase multiplexing gain at the expense of

diversity gain or vice versa.

For any fixed-rate transmission, in a system with one transmit antenna and N receive

antennas a maximum diversity gain N is achieved when the receiver uses maximum ratio

combining (MRC) technique [8], where the signals from the received antenna elements

are weighted such that SNR of their sum is maximized. The MRC technique so far has

been used exclusively for applications to achieve full receive diversity. As more emerging

wireless services continue to emerge, more and more applications may require diversity

at the transmitter or at both the transmitter and the receiver to combat fading. One

of such applications is the cellular wireless system, where base stations in the cellular

cells are normally equipped with multiple antennas and mobile stations (e.g., cell phones)

may have fewer antennas due to its small size. The downlink, the transmission from base

stations to mobile stations, needs to explore transmit diversity to improve the downlink

quality. For a system with M transmit antennas, when CSI is available only at the

receiver, space-time coding has been designed to explore full transmit diversity advan-
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tage [10–13]. Space-time trellis code (STTC) is one type of space-time codes. In STTC

scheme, the data stream is trellis encoded into M substreams, which are transmitted

over M transmit antennas. The received signals are decoded using maximum-likelihood

(ML) sequence estimation via the Viterbi algorithm. STTCs could provide full diversity

gain, but a major disadvantage for STTC is that ML decoding complexity grows expo-

nentially with the diversity level and transmission rate [14], which could be a challenge

for real time decoding. An attractive alternative is space-time block codes (STBC) with

good diversity gain but with linear receiver complexity. One important class of STBC

codes is the orthogonal STBC. The well known Alamouti code [10], a special case of

orthogonal space time block code (OSTBC) designed for two transmit antenna systems,

has the advantage of full rate (full rate means that one symbol is transmitted per sym-

bol time) and full diversity, and also enjoys simple ML decoding on a symbol-by-symbol

basis. This scheme is generalized to an arbitrary number of transmit antennas in [12].

The optimal ML decoder for this class of codes is a simple linear receiver followed by

decoupled ML detection, a single-dimensional ML detection (i.e., each of symbols in the

code matrix can be detected independently [15]). This linear receiver can be viewed as

a matched filter (MF) that uses the knowledge of the channel matrix to maximize the

SNR for each data symbol. Unfortunately, OSTBCs with full rate of complex symbols

do not exist when the number of transmit antennas M > 2, although full diversity can

be achieved [12]. In order to increase the transmission rate in STBCs, Quasi-orthogonal

STBC (QOSTBC) is proposed in [16] for systems with four transmit antennas. This

code loses full diversity but remains to have the transmission rate of one. In order to

achieve full diversity in QOSTBC, constellation rotation is proposed [17] in QOSTBC

code structure but transmission rate is still not greater than one. Further rate im-

provement in STBC is to use group-wise STBC structure [18,19,82] where the transmit
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antennas are divided into several groups with each group of transmit antennas transmit-

ting its own STBC codeword independently; thus the total transmission rate is simply

the sum of the individual transmission rates from all groups. Since the group-wise STBC

code structure is no longer orthogonal, the interference between groups is inevitable.

Space-time coding essentially explores transmit diversity in an open-loop system

with multiple transmit antennas, where CSI is not available at the transmitter. When

full CSI is available at both the transmit and receive sides to form a closed-loop sys-

tem, the optimal linear precoders and decoders can be used to explore diversity gain

and/or multiplexing gain in MIMO systems and are shown to have significant perfor-

mance improvement over the open-loop systems [22–26]. In linear transmit precoding

of beamforming or spatial multiplexing, the transmitted symbol or symbol vector is

premultiplied by a beamforming vector or precoding matrix that adapts to CSI to com-

bat channel ill-conditioning. In beamforming, one data stream is transmitted along the

strongest channel eigenmode and is shown to have a diversity order MN in a MIMO

system with M transmit antennas and N receive antennas assuming all MN channel

coefficients are i.i.d. Rayleigh faded [20, 21]. Spatial multiplexing mode supports m

data streams on the first m largest channel eigenmodes (m ≤ min(M,N)). The design

criterion for spatial multiplexing could be multiple [22–24], for example, minimizing the

mean-square errors, maximizing capacity, etc.

Linear precoding for beamforming and spatial multiplexing requires CSI at the trans-

mitter. For time division duplexing (TDD) wireless systems, the transmitter can acquire

the forward-link CSI using training signals embedded in the reverse-link data stream

by reciprocal property of the channel. For frequency division duplexing (FDD) wireless

systems, however, the forward and reverse links are separated in frequency. Thus the

channels for the forward and reverse links could be highly uncorrelated. How does the
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transmitter acquire forward-link CSI in FDD wireless systems in order to do adaptive

transmission? CSI feedback schemes provide one solution. However, in practical situ-

ations, the amount of feedback from the receiver to the transmitter should be kept as

small as possible to minimize transmission overhead. In this sense, the assumption of

full channel knowledge at the transmitter is not realistic because feedback of full CSI

needs infinite bandwidth within finite time. To address this issue, limited feedback must

be explored to obtain satisfactory performance [27, 28]. CSI must be quantized before

feedback. Grassmannian line packing and subspace packing have been shown to provide

excellent performance in quantized beamforming [28–30, 80, 81] and quantized unitary

precoding [31, 32], respectively. A finite set of precoding vectors for beamforming (also

called beamformers) or unitary precoding matrices for multiple beamforming (also called

unitary precoders) known as codebook, is generated in Grassmann manifold according to

the predefined distance metrics. Each beamformer or unitary precoder in the codebook

is called a codeword. The codebook is known to both the transmitter and the receiver.

The receiver selects the optimal codeword from the codebook with a selection criterion

based on the current CSI at the receiver, and reports the index of the optimal codeword

to the transmitter over a limited feedback channel. In addition to beamforming and uni-

tary precoding with limited feedback, there exist many other limited feedback schemes

for MIMO systems with different design objectives, such as transmit antenna subset se-

lection [33], quantized covariance feedback [34,35], non-unitary precoding [37], transmit

antenna grouping/shuffling [38] and angle feedback [39–41]. The limited-feedback trans-

mit antenna shuffling scheme [82] and the angle feedback scheme have a low complexity

and are attractive in terms of hardware implementation.

Coherent reception requires CSI at the receiver. For non-coherent communications,

the receiver does not need CSI but ML decoding must be performed [6]; the complexity
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of ML could be very high, which limits its application. In coherent reception, the receiver

needs to learn CSI before data detection. In a fading environment, the radio waves from

the transmitter are reflected by numerous surrounding objects, and the reflected replicas

with different magnitudes and phases are added either constructively or destructively at

the receiver, resulting in fading. Imperfect channel estimate could result in degradation

of system performance [42–48,109] compared with perfect CSI at the receiver. There are

two common types of channel estimation techniques: blind channel estimation [49–57]

and training-based (i.e., pilot-aided) channel estimation1 [61–78]. Blind channel esti-

mation has the advantage of no training overhead; however it relies on the stochastic

property of the transmitted data, and requires observing a large amount of data to ob-

tain reliable channel estimate. This is clearly a disadvantage in a time-varying fading

environment. Training-based approaches use pilot signals to perform channel estimation.

They are widely used in the commercial wireless systems, for example, global system for

mobile communications (GSM), wireless local area networks (WLAN) designed accord-

ing to IEEE 802.11 standard, local and metropolitan area networks designed according

to IEEE 802.16 standard. Although training-based channel estimation sacrifices some

power and bandwidth for pilot signals, it can be optimal in terms of approaching the

channel capacity when SNR is sufficiently high, provided that the number of trans-

mit antennas is optimized [84]. Optimal training design in non-selective (flat in both

time and frequency), block Rayleigh-fading channels for MIMO systems is considered

in [84] and optimal training design for OFDM systems over frequency-selective, block

Rayleigh-fading channels is considered in [105], both aiming at maximizing the open-loop

achievable rate (the channel capacity lower bound).

1We classify semi-blind channel estimation ( see [58–60]) as pilot aided channel estimation since it is
not purely blind.
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1.2 Objective and Thesis Outline

In this thesis, we focus on multiple antenna wireless systems with CSI feedback.

Through CSI feedback, a closed-loop system is constructed. many problems related to

the closed-loop systems are studied and presented in this thesis, which is outlined as

follows.

In Chapter 2, we study the problem of binary index assignment for beamforming

codewords in a noisy feedback channel. Beamforming in FDD wireless systems requires

CSI at the transmitter through a limited-rate feedback channel. With limited-rate feed-

back, a common codebook containing a finite set of beamforming vectors is shared at

both the transmitter and the receiver. Each codeword is assigned a binary index to repre-

sent a beamforming vector. The receiver selects the best beamforming vector and sends

its binary index to the transmitter. The transmitter applies the beamforming vector in-

dicated by the feedback index for beamforming. All previous work assumes an error-free

feedback channel for performance evaluation. But in a noisy feedback channel, feedback

errors are inevitable in the feedback indices. They lead to incorrect beamforming vectors

to be applied at the transmitter and thus degrade beamforming performance causing a

loss of full diversity. In this chapter, we present two index-assignment algorithms that

minimize the impact of feedback errors. The first algorithm requires exhaustive search

to find the best binary index mapping. When the codebook size is large, the complexity

of the algorithm becomes prohibitive. We thus propose a group-based index assign-

ment (GIA) that has a low complexity while still performs better than random index

assignments.

Chapter 3 still focuses on limited-feedback beamforming systems. The receiver de-

termines the best codeword from the beamforming codebook and sends its index to the
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transmitter. For mobile stations with limited computational power, exhaustive code-

word search for large-size codebooks becomes impractical, especially for OFDM systems

where multiple subcarriers or subcarrier groups must select their own beamforming vec-

tors. We propose an algorithm to reduce codeword-selection complexity with negligible

performance loss, reducing codeword-search time. The proposed algorithm provides a

codeword ordering mechanism based on group-wise chordal distance. It achieves better

performance than existing complexity-reduction algorithms. Simulations validate the

effectiveness of the proposed algorithm.

In Chapter 4, we compare angle feedback scheme and transmit antenna shuffling

feedback scheme for double space-time transmit diversity (DSTTD) systems with four

transmit antennas and at least two receive antennas. Transmit antenna shuffling feedback

scheme is used for spatial multiplexing with low complexity. Angle feedback scheme has

been shown to suppress the interference in QOSTBC [40] and DSTTD [41] with four

transmit antennas. It is of interest to compare these two schemes with limited feedback.

We show that (a) when an MMSE equalizer or a ZF equalizer is applied, minimizing

the mean-square-error of the detected symbols is equivalent to minimizing the sum of

the squared amplitude of the off-diagonal (interference) terms, which is proposed by

existing work; (b) it is sufficient to perform rotation on only one transmit antenna,

which can be arbitrarily chosen in advance; and (c) a DSTTD system with 1-bit of

angle feedback does not provide better performance than the same system with 1-bit of

transmit antenna shuffling. We also present a simplified general result about the selection

of antenna shuffling matrix from six permutation matrices to facilitate our arguments.

In simulation, we observe that antenna shuffling outperforms angle feedback.

In Chapter 5, we consider training design for a closed-loop MIMO system in i.i.d.

Rayleigh flat-fading channels. The channel follows block-fading model with a block of
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T symbol intervals. Channel coefficients remain constant within a block and take an

independent value in the next block. Each fading block is partitioned into two phases,

a training phase and a data transmission phase. After training, the transmitter con-

trols the data transmit power based on feedback of channel information to maximize

a lower bound on the closed-loop system capacity. We first consider power allocation

between the training phase and the data transmission phase when all fading blocks are

assigned the same power so that only spatial power control is performed (i.e., no fad-

ing power control is applied), and show that the optimal percentage of the power used

for data transmission is the same as that in open-loop systems. Second, we consider

power allocation between the training phase and the data transmission phase when the

transmitter varies data power to adapt to fading using both spatial and fading power

control. We show that the optimal percentage of the average power per block used for

data transmission asymptotically converges to its open-loop counterpart.

In Chapter 6, we derive the optimal diversity-multiplexing tradeoff (DMT) of mul-

tiple beamforming systems with M transmit antennas and N receive antennas. We

assume that only the right singular vectors of channel matrix corresponding to the first

K (K ≤ min{M,N}) largest singular values are available at the transmitter. The

resulting optimal DMT provides a performance limit for limited feedback unitary pre-

coding [32]. We show that multiple beamforming with singular vector information at the

transmitter does not increase the diversity gain when compared with the fundamental

DMT of MIMO channel with CSI at the receiver (CSIR) [7]. Compared with full CSIT

without coding over channel eigenmodes and time [118], the optimal DMT of multiple

beamforming is still better owing to coding over both eigenmodes and time.

Chapter 7 gives the conclusions of this thesis and the direction of the future work.
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Chapter 2 – Index Assignment for Beamforming with Limited-Rate

Imperfect Feedback

2.1 Introduction

Wireless systems with multiple transmit antennas could use beamforming for reli-

able communications by exploring spatial diversity, which is effective to combat fading.

Beamforming requires CSI at the transmitter, which is typically obtained through limited

feedback from the receiver in an FDD system where the property of channel reciprocity

usually does not hold. Due to the finite rate of the feedback, CSI must be quantized

into a finite beamforming vecotr set, called a codebook, which is shared at both the

transmitter and the receiver. Beamforming with limited-rate feedback has been studied

extensively [30,79–81]. The Grassmannian line packing technique in beamforming vector

quantization has been shown to have excellent performance [79,80]. In this limited-rate

feedback scheme, the receiver selects the best beamformer vector based on the instanta-

neous CSI and sends its index to the transmitter.

Existing work on Grassmannian beamforming assumes an error-free feedback chan-

nel. In this case, the indices can be arbitrarily assigned to the sets of beamforming

vectors without incurring performance loss. In practice, the indices could be corrupted

by feedback errors, causing the transmitter to apply the undesired beamforming vectors.

In this chapter we propose two algorithms to optimize the index assignment so that when

feedback is not error-free, the performance degradation of beamforming is minimized.

We will compare the performance of the proposed scheme with that of the scheme used

in [82].
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2.2 System Model

Consider a wireless system with Mt transmit antennas and Mr receive antennas. We

assume that one data stream is transmitted using beamforming and the receiver uses

maximum ratio combining (MRC). The received signal is expressed as

y = cHHwx+ cHn (2.1)

where x ∈ C is the transmitted symbol with average symbol energy Es = E[|x|2], y is

the observation after MRC, c is the Mr × 1 MRC weight vector, n is the Mr × 1 noise

vector whose elements are i.i.d., circularly symmetric, complex Gaussian noise samples

with mean zero and variance N0, w is the Mt × 1 beamforming vector, and H is the

Mr ×Mt channel matrix whose entries, hij , 1 ≤ i ≤ Mr, 1 ≤ j ≤ Mt, are circularly

symmetric, complex Gaussian random variables with mean zero and unit variance. The

beamforming vector w satisfies ‖w‖ = 1 (‖ · ‖ denotes L2 norm) to ensure that the total

signal power allocated among Mt transmit antennas is normalized. The MRC vector c

has the form

c = aHw (2.2)

to maximize the received SNR, where a is a scalar that is typically chosen as a =

1/‖Hw‖, so that ‖c‖ = 1. After MRC, the instantaneous received SNR is

γ = (Es/N0)‖Hw‖2.

The optimal beamforming vector w that maximizes the instantaneous SNR is ex-
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pressed as

w∗ = argmax
‖w‖=1

‖Hw‖ (2.3)

which turns out to be the right singular vector corresponding to the largest singular

value of the channel matrix H [83]. When H has i.i.d. entries and the channel obeys

the block-fading law [84], the optimal beamforming vector is uniformly distributed on

the unit hypersphere ΩMt [79]. For systems with limited-rate feedback, it is impossible

to send the optimal beamforming vector in (2.3) for each channel realization. A feasible

solution is to partition the unit hypersphere ΩMt into N non-overlaying and exhaustive

Voronoi regions, each of which is represented by a vector wi, 0 ≤ i ≤ N − 1. Thus there

are N such vectors, which form a beamforming codebookW = {w0,w1, · · · ,wN−1} that

is shared by both the transmitter and the receiver. Let B be the number of feedback

bits required for each channel realization. Obviously B = ⌈log2(N)⌉, where ⌈x⌉ denotes

the smallest integer that is not less than x. Each codeword is a B-bit index, which

represents the beamforming vector in the codebook W for the corresponding Voronoi

region. For each channel realization, the receiver chooses one vector from the codebook

that maximizes the metric given in (2.3), and sends the corresponding index to the

transmitter. The transmitter applies the beamforming vector indicated by the received

index for beamforming.
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2.3 Index Assignment

2.3.1 Near-optimum Index Assignment

When feedback is error-free, the index-vector mapping can be chosen arbitrarily; oth-

erwise, different index-vector mappings could result in different performance. We use the

term “good codebook” as the codebook that not only has the best beamforming vector

set, but also the optimized index-vector mapping to minimize performance degradation

due to feedback errors. While the construction of the best vector set of a codebook has

been well studied [79,80,85], optimization of index assignment has not been addressed.

We focus on case where N ≥ Mt and assume that N = 2B for simplicity. N < Mt

is undesirable because the codebook with size of N < Mt can not have full transmit

diversity order of Mt [79, 90].

The bit errors in the feedback index might cause the transmitter to apply the in-

correct beamforming vector, thus reducing the instantaneous SNR at the receiver. For

example, let bi = [bi1, · · · , biB ] be the index for vector wi, and bj = [bj1, · · · , bjB] for

wj . If the receiver sends bi, but the transmitter receives bj, the performance will de-

grade as a result of incorrectly applying the weight vector wj. However, assuming that

the index bits have an equal probability to be in error, the probabilities of receiving

index bj given the desired index bi, P (bj |bi), will be different for different values of j

when the error rate is not unrealistically high (e.g., not greater than 10−2). For exam-

ple, P ([1, · · · , 1]|[0, · · · , 0]) ≪ P ([0, · · · , 0, 1]|[0, · · · , 0]). Thus SNR degradation will be

minimized if indices with higher transition probabilities are assigned to beamforming

vectors that have a larger square magnitude of mutual inner products. This ensures that

the degradation in the instantaneous received SNR due to occasional index-bit errors is



14

Figure 2.1: Illustration of index assignment in a real three dimensional unit hypersphere
(ball). θ2 < θ3.

minimized. This is illustrated in Fig. 2.1, where wopt is the ideal beamforming vector

and w1 is best quantized beamforming vector. If the index of w1 changes its value due

to feedback errors when it is received by the transmitter, the transmitter receives an

erroneous index which represents the beamforming vector other than w1. We wish the

beamforming vector indicated by the corrupted index be w2, not w3, since w2 is closer

to wopt than w3, and w2 can provide a better received SNR than w3. Our proposed

index assignment algorithm is described below.

We line up the beamforming vectors in a codebook in an arbitrary but fixed se-

quence in the form [w0,w1, ...wN−1] without assigning indices. We then pick an in-

dex sequence from the N ! possible permutations in the form [I0, I1, ..., IN−1] to match

[w0,w1, ...wN−1], that is, Ik represents wk, where each Ik is a B-bit index. The best
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index-vector mapping is the one which maximizes the following target function:

C =
N−1
∑

i=0

P (Ii)
N−1
∑

j=0
j 6=i

PIiIj |w
H
i wj |

2
(2.4)

where P (Ii) is the probability that the receiver sends Ii for feedback and PIiIj is the

transition probability from Ii to Ij .

There exists a class of codebooks, named equiangular frame (EF) codebooks [86–88],

which have the property that the absolute values of the inner product of any pair of

distinct vectors in the codebook are identical. For EF codebooks, (2.4) becomes constant;

thus there is no need to optimize index-vector mapping. However, it is shown in [87] that

equiangular vector sets do not exist for N > M2
t . Additionally, EF codebooks work well

only when the channel is modeled as quasi-static [84] and H has i.i.d. entries. When

the channel is correlated in spatial and/or temporal domains, EF codebooks are far from

being optimal [81,89,91].

We consider the most commonly accepted scenario that H has i.i.d. entries and the

channel fading can be modeled as quasi-static. Under these conditions, we have P (I0) =

P (I1) = · · · = P (IN−1) = 1/N . Additionally, under normal operation conditions the bit

error rate (BER) of the feedback channel pe would not be too high (e.g., not higher than

10−2). Hence the probability that two or more index bits are in error will be much smaller

than the probability that one index bit is in error. We can thus ignore the O(p2e) terms

in (2.4). Applying the symmetry property between PIiIj |w
H
i wj |

2
and PIjIi |w

H
j wi|

2
and

after some mathematical manipulations, we rewrite (2.4) as

C =
N−1
∑

i=0

N−1
∑

j>i

I(dIiIj)|w
H
i wj |

2
(2.5)
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where dIiIj is the Hamming distance between index Ii and index Ij , I(dIiIj) = 1 if

dIiIj = 1 and I(dIiIj ) = 0 otherwise. With (2.5), we can search for the optimized index

numerically.

2.3.2 Group Index Assignment Scheme

When N is large, the computational load of exhaustive search becomes prohibitive. We

propose a group-based index assignment (GIA) method that has a reduced search load

and still outperforms random index assignment. The GIA method starts with a smaller-

size good codebook of size Np (Np < N but is made as large as possible) with optimized

index-vector mapping, named the parent codebook expressed asCp = [c0, c1, · · · , cNp−1].

Any larger codebook with size N , named a child codebook, is partitioned into Np non-

overlapping groups. The partitioning procedure is given as

1. Initialize i = 0.

2. With j = [i]NP
, where [·]NP

denotes modulo-NP operation, select a beamforming

vector from the child codebook that has the largest magnitude of inner product

with vector cj and add it in the j-th group. A new child codebook with a reduced-

size is then formed by removing this vector from the current child codebook.

3. Let i = i+ 1. If i < N , repeat step 2); otherwise the partition process ends.

We assume that N = 2B and Np = 2B
′
, where B′ and B are positive integers and

B′ < B. When B and/or B′ are not integers, the extension is straightforward. After the

partition, there are 2B
′
groups, each of which has 2B−B′

beamforming vectors. For the

j-th group, 0 ≤ j ≤ NP −1, we copy the index of cj as the B
′ most significant bits of the

index of each beamforming vector within this group. For the rest B−B′ unassigned index
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bits, we perform random index-vector mapping for simplicity; additional performance

improvement due to further optimization within the group is negligible. The reason is

that if we consider that there is one bit of error and ignore cases when there are two

and more bit errors in each feedback index, then the possibility to take wrong indices in

adjacent groups is B′/B and the possibility to take the other indices within same group

1 − B′/B. The performance degradation by taking indices in adjacent groups is much

larger than the performance improvement by the index optimization within the same

group so that the effect by performing index optimization within groups is negligible.

The resulting index for each beamforming vector in the child codebook has B′ most

significant bits to indicate which group it belongs to, and B − B′ least significant bits

for index mapping within the group.

2.4 Diversity Order

For a quantized MIMO beamforming system with Mt transmit antennas and Mr

receive antennas, if the elements of H are i.i.d., circularly symmetric, complex Gaussian

random variables with zero mean and unit variance, then the maximum diversity order

is MtMr [90], if N ≥Mt. Next, we show that when there exist feedback errors, the same

system can only provide a diversity order Mr with a fixed date rate.

Proof. The diversity order is defined by d = − lim
SNR→∞

logPe(SNR)/ log SNR, where SNR

is the forward channel SNR and Pe(SNR) is the forward channel symbol error rate (SER)

averaged over fading. The SER can be expressed as

Pe(SNR) =
N−1
∑

i=0

N−1
∑

j=0

[

Pe,wj
(SNR)|Ii

]

· PIiIj · P (Ii), (2.6)
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where P (Ii) and PIiIj are defined in (2.4);
[

Pe,wj
(SNR)|Ii

]

is SER when the transmitter

uses the deterministic beamforming vector wj averaged only on channel realizations that

generate feedback index Ii. Define Pmin = min
0≤i,j≤N−1

PIiIj and Pmax = max
0≤i,j≤N−1

PIiIj .

When the feedback channel is not error free, 0 < Pmin ≤ Pmax < 1. Substituting Pmin

and Pmax into (2.6), we have the following inequality

Pmax

N−1
∑

j=0

Pe,wj
(SNR) ≥ Pe(SNR) ≥ Pmin

N−1
∑

j=0

Pe,wj
(SNR) (2.7)

where Pe,wj
(SNR) is SER averaged over all possible channel realizations when the trans-

mitter uses the deterministic beamforming vector wj . Note that ∀j, 0 ≤ j ≤ N−1, when

the transmitter useswj for deterministic transmission, theMr×1 vectorHwj (the equiv-

alent channel) has the same distribution as column vector h, where h is Mr × 1 vector

with i.i.d., circularly symmetric, complex Gaussian random variables with zero mean and

unit variance. Since the distributions ofHwi andHwj are the same (0 ≤ i 6= j ≤ N−1),

no matter which deterministic beamforming vector is applied, the system model (2.1)

reduces to

y = cHhx+ cHn (2.8)

which represents a single-input multiple-output (SIMO) system with one transmit an-

tenna and Mr receive antennas using MRC receiver. Define Po(SNR) as the probability

of error of (2.8), we have

Pe,wi
(SNR) = Pe,wj

(SNR) = Po(SNR) (2.9)

holds for 1 ≤ i, j ≤ N − 1. It is well known that with MRC this SIMO system has a
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diversity order of Mr [8], that is

Mr = − lim
SNR→∞

logPo(SNR)

log SNR
, ∀ j. (2.10)

Combining (2.7), (2.9) and (2.10), we have

d = − lim
SNR→∞

logPe(SNR)

log SNR
≤ − lim

SNR→∞

log
[

N · Pmin · Po(SNR)
]

log SNR
=Mr. (2.11)

d = − lim
SNR→∞

log Pe(SNR)

log SNR
≥ − lim

SNR→∞

log
[

N · Pmax · Po(SNR)
]

log SNR
=Mr. (2.12)

Combining (2.11) and (2.12), we have d =Mr.

2.5 Simulation Results

We simulate the performance of two codebooks from [82] with different index assign-

ment strategies. The simulations assume uncoded binary phase-shift keying modulation

and perfect knowledge of H to the receiver. We use BER to denote the average bit error

rate of information bits and FBER to denote the feedback channel BER. BER is aver-

aged over 2×104 channel realizations. For each channel realization BER is calculated by

considering all possible received indices and the corresponding probabilities of receiving

them.

Simulation 1: The system has two transmit antennas and one receive antenna and

applies codebook V (2, 1, 3) from Table 298m in [82] with 3-bit feedback. Fig. 2.2 shows

the BER performance with different index assignments. The curve labeled ‘perfect feed-

back’ is obtained assuming that the transmitter has perfect knowledge of the channel

coefficients. The case of ‘3-bit feedback without feedback error’ means that the indices
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Perfect feedback
3 bit feedback, w/o  feedback errors
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3 bit feedback, 802.16e index

Figure 2.2: BER performance of various schemes (3-bit feedback, FBER=10−2, and
(Mt,Mr)=(2, 1)).

are always received correctly by the transmitter. The optimized index assignment is

obtained by applying the proposed method to maximize the target function in (2.5).

The proposed scheme is found to achieve nearly the same performance as the case of no

feedback errors when FBER is at 10−2. At a BER of 10−4, the proposed scheme achieves

a gain of about 2 dB over the scheme in [82], and more at BER values below 10−4. The

original index assignment and proposed index assignment are shown in Table 2.1.

Simulation 2: The system has three transmit antennas and one receive antenna,

and applies codebook V (3, 1, 6) from Table 298u in [82] with 6-bit feedback. Since

the computational load to determine the optimal index sequences for 6-bit codebook is

prohibitively high, we use the proposed GIA method. We adopt the 3-bit codebook from
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Table 2.1: Index assignment for codebook V(2,1,3) from table 298m in [82].

Codeword
Index assignments
802.16e Proposed

[1,0] 000 000

[0.7940, -0.5801+j0.1818] 001 110

[0.7940, 0.0576+j0.6051] 010 100

[0.7941, -0.2978-j0.5298] 011 010

[0.7941, 0.6038+j0.0689] 100 001

[0.3289, 0.6614+j0.6740] 101 101

[0.5112, 0.4754-j0.7160] 110 011

[0.3289, -0.8779-j0.3481] 111 111

[79] as the parent codebook. It is easy to verify that |wH
i wj| = 0.5 for 0 ≤ i 6= j ≤ 7. It

is an EF codebook, and thus we can randomly select an index sequence to maximize (2.5)

and then follow the procedure given in Section 2.3.2 to complete the index assignment.

Fig. 2.3 shows the performance of various index assignment schemes at different FBERs

for this scenario. Comparison with the scheme adopted in [82]: at FBER of 10−2, the

proposed GIA scheme achieves a gain of about 3 dB at BER of 10−3; at FBER 10−3,

the gain is about 1.8 dB at BER of 10−4; at FBER=10−4, the gain is about 0.75 dB at

BER of 10−5.

Note that although the improvement in performance decreases as the FBER reduces,

there is no penalty implementing the codebook optimized using the proposed exhaustive-

search-based and GIA methods for any scenarios.
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Figure 2.3: BER of various schemes (6-bit feedback, (Mt,Mr) = (3, 1)).

2.6 Conclusion

We have presented two index-assignment methods, an exhaustive-search based al-

gorithm and the GIA scheme, to improve beamforming performance in the presence of

feedback errors. When the complexity of exhaustive search becomes prohibitively high,

the GIA scheme can be applied. The improved codebooks outperform the codebooks

adopted in [82]. The gain over the schemes in [82] decreases when the feedback channel

BER decreases; once the optimization is complete, however, there is no penalty imple-

menting the codebook obtained using the proposed methods.
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Chapter 3 – Reduced-Complexity Codeword Selection for MISO

Wireless Systems with Limited Feedback

3.1 Introduction

Beamforming in wireless systems with multiple transmit antennas can significantly

improve link quality through diversity gains. Optimal beamforming requires the trans-

mitter to have perfect CSI. In FDD wireless systems, a commonly used method to acquire

CSI at the transmitter is to use a low-rate feedback channel to send CSI from the re-

ceiver. Because of the limited bandwidth of the feedback channel, obtaining full CSI at

the transmitter is impossible; thus limited-rate feedback in beamforming has been exten-

sively studied [79–81]. Among the various schemes, Grassmannian line packaging (GLP)

in beamforming vector quantization has been shown to have excellent performance.

The beamforming codebook design criterion [79] requires that the minimal chordal

distance between any pair of codewords be as large as possible. Existing codebook design

methods can be broadly classified into two categories: non-structural codebook construc-

tion and structural codebook construction. Non-structural codebook construction uses a

vector quantization (VQ) approach (Lloyd algorithm, for example) to generate the code-

book from randomly generated training sets. The number of training sets must be large

enough to closely match the channel distribution. Since the codebook is refined by using

the different training sets, the codewords generated by Lloyd algorithm have no special

structrues except for the unit norm to keep the total transmit power across all transmit

antennas constant. Structural codebook construction does not require training sets; it

systematically generates the codebooks by certain procedures [79, 92]. The codebooks
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generated from structural codebook construction may have elements of all codewords

with equal modulus [92] to impose the constraint of equal average transmit power on

each transmit antenna. Also, their performance in term of chordal distance measure is

in general inferior to that generated by Lloyd algorithm [93]. Compared with codebooks

generated by Lloyd algorithm, however, they need less memory for codebook storage.

In limited-rate feedback beamforming systems, one common codebook containing

quantized beamformers (i.e., codewords) is shared by the transmitter and the receiver.

After channel estimation, the receiver selects the best codeword to maximize the in-

stantaneous received SNR and then feeds back its index to the transmitter. When the

codebook size is large, exhaustive search of codewords at the receiver becomes imprac-

tical for mobile stations (MS) that have limited computational power. This is especially

true for OFDM systems since codeword selection and feedback might be required for

each subcarrier or subcarrier group.

A complexity-reduction technique for codeword selection called order and bound al-

gorithm is proposed in [92] for MIMO wireless systems. This algorithm is effective in

reducing complexity when Nr is not much smaller than Nt, where Nt and Nr are the

number of transmit antennas and the number of receive antennas, respectively. Simula-

tions in [92] show that for a system with Nt = 4 and Nr = 5, the complexity is reduced

by 68% when the number of feedback bits is Nb = 7; when the number of feedback bits is

Nb = 12, complexity is reduced by 80%. But this algorithm has limitations. First, in the

downlink of a typical wireless system where the receiver has fewer number of antennas

than the transmitter, especially for multiple-input single-output (MISO) systems, this

algorithm is not effective in reducing complexity; it actually increases search complex-

ity due to Cholesky decomposition. Second, its ordering mechanism could be further

improved.
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This chapter focuses on reducing the codeword-search complexity in MISO wireless

systems, for which the order and bound algorithm in [92] is not effective. Motivated

by the codeword partitioning method used in group index assignment in Chapter 2, we

propose a new algorithm to expedite the codeword-selection process. The new algorithm

is a codeword ordering algorithm. It allows one to search only a portion of the code-

book rather than the whole codebook, thus reducing the codeword-selection complexity.

Because the proposed codeword-search algorithm only searches a certain portion of code-

book, there is a small probability to miss the best codeword, which causes a performance

loss. But this performance loss (compared with exhaustive search) can be controlled to

a negligible level by adjusting the size of search portion of the codebook. We also find

that by replacing the ordering algorithm in [92] with the proposed ordering algorithm,

its codeword-selection complexity can be further reduced without performance loss, and

if a small performance loss is allowed, complexity reduction with our proposed ordering

algorithm becomes even more significant.

We will introduce the system model in Section 3.2. The details of the proposed

codeword-selection algorithm are described in Section 3.3. Simulation results and dis-

cussion are given in Section 3.4, which is followed by conclusions in Section 3.5.

3.2 System Model

Consider a MISO wireless system with Nt transmit antennas and one receive antenna.

The channel coefficients between each transmit antenna and the receive antenna are

modeled as i.i.d., circularly symmetric, complex Gaussian random variable with zero

mean and unit variance. The Nt channel coefficients are written in a column vector as

h = [h1, h2, · · · , hNt ]
T . For beamforming, an Nt× 1 beamforming vector w is applied at
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the transmitter. With beamforming at the transmitter, the received signal y is expressed

as

y = hTwx+ n (3.1)

where x ∈ C is the transmitted symbol with average symbol energy Es = E[|x|2] and n, a

circularly symmetric, complex Gaussian random variable, is the noise sample with mean

zero and variance N0. The beamforming vector w satisfies ‖w‖ = 1 (‖ · ‖ denotes L2

norm) to ensure that the total signal power allocated among the Nt transmit antennas

is a constant. The instantaneous received SNR is γ = (Es/N0)|h
Tw|2.

The optimal beamforming vector w that maximizes the instantaneous SNR is ex-

pressed as

wopt = argmax
‖w‖=1

|hTw| (3.2)

and wopt is given by h∗/‖h‖. We have

hT = ‖h‖wH
opt (3.3)

When h has i.i.d. entries and the channel obeys the block-fading model [84], the optimal

beamforming vector is uniformly distributed on the unit hypersphere ΩMt [79]. For

systems with limited-rate feedback, it is impossible to send the optimal beamforming

vector in (3.2) for each channel realization. A feasible solution is to partition the unit

hypersphere ΩNt into N non-overlapping Voronoi regions, each of which is represented by

a vector wi, 0 ≤ i ≤ N − 1. Thus there are N such vectors, which form a beamforming

codebook W = {w0,w1, · · · ,wN−1} that is known to both the transmitter and the

receiver. Let B be the number of feedback bits required for each channel realization.

Obviously, B = ⌈log2(N)⌉, where ⌈a⌉ denotes the smallest integer that is not less than
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a. In practice, N = 2B . Each codeword is a B-bit index, which represents a quantized

beamforming vector in the codebook W .

The optimal beamforming codebook design criterion is to minimize the distortion

metric

Eh

[

min
w∈W

(

|hTwopt|
2 − |hTw|2

)

]

. (3.4)

This is equivalent to maximizing

Eh

(

max
w∈W

|hTw|2
)

by observing in (3.4) that |hTwopt|
2 = ‖h‖2 is independent of codebook W and its

expectation over channel realization h is a constant.

It is shown in [79] that maximizing the minimum of chordal distance among all pairs

of two distinct codewords effectively reduces the distortion in (3.4). Chordal distance is

defined by

dc(wk,wl) =
√

1− |wH
k wl|2, 0 ≤ k < l ≤ N − 1. (3.5)

This leads to the Grassmannian beamforming criterion, which requires that the code-

words {wi}
N−1
i=0 in the codebook W maximize the following quantity:

min
0≤k<l≤N−1

√

1− |wH
k wl|2. (3.6)

Once the codebook W is generated, it is shared by both the transmitter and the

receiver. The receiver selects the best codeword from the codebook W to maximize the
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instantaneous received SNR

γ = max
0≤i≤N−1

(Es/N0)|h
Twi|

2 (3.7)

and sends its index to the transmitter, usually through a dedicated, low-rate channel.

The transmitter applies the quantized beamforming vector indicated by the received

index for beamforming.

3.3 Codeword Selection

For each channel realization of h, the index of the best codeword to reach (3.7) is

β = arg max
0≤i≤N−1

|hTwi|
2 = arg max

0≤i≤N−1
|wH

optwi|. (3.8)

The last step is derived using (3.3). When the codebook size is small, an exhaustive

search for the index β is feasible. When the codebook size is large, however, exhaustive

search could become impractical for mobile devices that have limited computational

power. The order and bound algorithm in [92] effectively reduces the codeword-selection

complexity when Nr ≥ Nt. When Nr is much smaller than Nt, however, especially in a

MISO system this algorithm becomes ineffective. In the rest of this chapter, we develop

a codeword-selection algorithm for MISO systems.

Our proposed codeword-selection algorithm is a new ordering algorithm. We first

select a well-designed codebook with size of NP , where NP ≪ N , as the pilot codebook.

For simplicity of discussion, we call the codewords in the pilot codebook pilot codewords.

We partition the codewords in the beamforming codebook W into NP non-overlapping

groups with each group related to one pilot codeword according to chordal distance. The
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partition process makes sure that in each group the codewords from the beamforming

codebook W have the smallest chordal distance to its own pilot codeword than to any

other pilot codewords1. After this partition, the codewords within each group are ar-

ranged in ascending order according to the chordal distance to its own pilot codeword to

form a row vector. There are a total of NP row vectors corresponding to the NP groups

of beamforming codewords. This partition process is completed off-line.

For each channel realization, after the receiver acquires the channel coefficients, the

ideal beamforming vector wopt can be obtained, and then the receiver does real time

codeword searching. Before codeword searching, our algorithm first computes the chordal

distance between wopt and each pilot codeword, and sorts the NP pilot codewords in

ascending order based on the computed chordal distance. The NP row vectors are

concatenated one by one in the same order as the sorted pilot codewords to form a

long row vector. This process is called the codeword ordering process which needs to

be done for each channel realization. In the proposed codeword-selection algorithm,

after codeword ordering process searching of the codewords starts from the left of the

concatenated vector to its right and terminates when K, the predetermined number of

codewords being searched, is reached. In Section 3.4, we will provide simulation results to

show that even though only a small number of codewords are searched, the performance

can quickly approach that with exhaustive search.

The proposed algorithm is built upon the fact that if wopt has a smaller chordal

distance to some pilot codewords than to the rest, the best codeword is very likely to

have the same distance property because the best codeword is the closest one to wopt in

chordal distance among all codewords, see (3.8). The groups corresponding to the pilot

1Note that the number of codewords in each group might not be the same due to non-uniform alloca-
tion of codewords (from both pilot codebook and target codebook) generated by practical quantization
methods on the surface of the unit hypersphere.
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codewords that have a small chordal distance to wopt could contain the global optimal

beamformer with a high probability.

Next, we discuss two important aspects related to the proposed ordering algorithm.

1. What is the optimal size of the pilot codebook?

First, we consider complexity reduction for two extreme cases: (a) when NP = 1

and (b) when NP = N . For case (a), there is only one large group−the beamformer

codebook. The exhaustive search must be conducted. Although the ordering

algorithm in [92] could be used, in simulation we find that K must be very close

to N in order to achieve an acceptable performance. Thus, the complexity is

virtually not reduced. For case (b), let the pilot codebook be the beamforming

codebook itself for simplicity. Ordering of pilot codewords needs to check every

pilot codeword, i.e., every beamformer in the beamforming codebook. This is

an exhaustive search approach; therefore, complexity is not reduced for this case

either. From these two extreme cases, we conclude that NP should take a value

between 1 and N . We suggest that NP takes the value 2⌊B/2⌋, where B = log2N

and ⌊a⌋ denotes the maximum integer not greater than a.

2. How is the pilot codebook generated?

The pilot codebook could be any appropriately selected codebooks. In order to

minimize the memory required for storage, the pilot codebooks should be gener-

ated by using a structured construction method that will minimize the memory

requirement [92].
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3.3.1 Fixed Search Length

When the proposed algorithm searches only the first K beamformers in the ordered

beamforming codebook for any channel realizations, the complexity reduction compared

with the exhaustive search is given by

R = 1− (K +NP )/N (3.9)

where NP represents the computation needed to calculate the chordal distance between

wopt and all pilot codewords.

3.3.2 Adjustable Search Length

In order to further reduce the codeword search complexity, the search length could

be adjusted, instead of taking the fixed value K. For any given pilot codebook, the

smallest distance between wopt and the pilot codewords, denoted by d∗c , is in the range

of [0, dmax], where dmax is the upper bound of d∗c and is determined by the specific pilot

codebook. Let us denote µ0 = 0 and µM = dmax. We partition the interval [0, dmax] into

M smaller intervals such that [0, dmax] = [µ0, µ1)∪ [µ1, µ2)∪ · · · ∪ [µM−1, µM ], where µi,

1 ≤ i ≤ M − 1, are predefined thresholds. We limit the search length as follows: when

d∗c is in the range [µj , µj+1), the codeword search length is set to Kj , 0 ≤ j ≤ M − 2;

when d∗c is in the range [µM−1, µM ], the codeword search length is set to KM−1. Let

K0 < K1 < · · · < KM−1 = K. The values of M , µi, 1 ≤ i ≤ M − 1, and Kj ,

0 ≤ j ≤ M − 1, mainly depend on the size of the beamforming codebook and the size

of the pilot codebook. Although there are no close-form solutions, suboptimal solutions

can be obtained by using simulations.
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3.4 Simulation and Discussion

In this section, we provide simulations to evaluate the performance of the proposed al-

gorithm. We adopt BPSK modulation. The uncoded BER performance is averaged over

105 independent channel realizations for each simulated SNR value. We use the number

of floating point operations (FLOPS) to measure the algorithm complexity as in [92],

but we only count real multiplications2 and omit addition/subtraction operations since

multiplications in general need much more computations than additions/subtractions.

The system in the simulations has four transmit antennas, Nt = 4. The exhaustive

search is conducted according to (3.8) for MISO systems.

Simulation 1: In this simulation, we compare the exhaustive search and order and

bound algorithm in [92]. A MISO system with Nt = 4 and the number of feedback

bits ranging from 3 to 7 is evaluated. The results are shown in Fig. 3.1. The number

of feedback bits is capped at 7 because increasing it to over 7 drastically increases the

size of the codebook but does not significantly gain further in performance. Practical

systems rarely use more than 7 feedback bits3. Notice that the complexity of the order

and bound algorithm is much higher than that of the exhaustive search in MISO systems.

This is because Cholesky decomposition in [92] increases the number of variables from

Nt × 1 in h to Nt(Nt + 1)/2 in an Nt × Nt upper triangular matrix. Although the

bounding technique is applied, search complexity is not effectively reduced. Compared

with exhaustive search, the complexity of the order and bound algorithm is 51% and

34% higher at 6 and 7 feedback bits, respectively.

Simulation 2: Fig. 3.2 shows the effectiveness of the proposed ordering algorithm

2One complex multiplication includes four real multiplications.
3In [82, 94, 95], the beamforming codebooks for 4 transmit antennas are provided up to 6 feedback

bits only.
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Figure 3.1: Complexity of the order and bound algorithm in [92] and exhaustive search
in a MISO system with (Nt, Nr) = (4, 1).

in reducing the search complexity with a performance comparable to that of exhaustive

search. In this simulation, a 7-bit beamforming codebook is used and a 3-bit codebook

is selected as the pilot codebook, i.e., NP = 8. Both the beamforming codebook and

the pilot codebook are generated by the genetic algorithm in [92] to reduce the memory

storage. The search length is fixed at K = 24. The performance loss of the proposed

ordering algorithm is within 0.1 dB of exhaustive search in the simulated SNR range,

and the codeword-search complexity reduces by 75% compared with exhaustive search.

In order to maintain the same low performance loss of 0.1 dB for the order and bound
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Figure 3.2: Performance comparison: the proposed algorithm, the order and bound
algorithm and the exhaustive search for a 7-bit beamforming codebook, (Nt, Nr) = (4, 1).

algorithm proposed in [92], we have to search at least 102 codewords and the complexity

increases by 13% compared with exhaustive search. This shows that the order and bound

algorithm does not work in MISO systems in term of complexity reduction. If only the

first 24 codewords are searched by the order and bound algorithm, as shown in the figure,

about 1.7 dB of SNR loss is observed.

In Fig. 3.3, we simulate a beamforming codebook with 6 bits of feedback. The same

pilot codebook as used in Fig. 3.2 is used. With K = 24, the performance loss of our

proposed ordering algorithm is within 0.05 dB of exhaustive search and its complexity is

reduced by 50%, while the order and bound algorithm in [92] has a performance loss of
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Figure 3.3: Performance comparison: proposed algorithm, order and bound algorithm
in [92] and exhaustive search for a 6-bit beamforming codebook, (Nt, Nr) = (4, 1).

Table 3.1: Performance comparison. Data collected from Fig. 3.2 and Fig. 3.3.

(Nt, Nr) = (4, 1) Np N K complexity degradation

proposed ordering 8 (3bits) 128 (7 bits) 24 -75% 0.1dB

order and bound N/A 128 (7 bits) 102 13% 0.1dB

order and bound N/A 128 (7 bits) 24 -59% 1.7dB

proposed ordering 8 (3bits) 64 (6 bits) 24 -50% 0.05dB

order and bound N/A 64 (6 bits) 24 N/A 0.8dB

proposed ordering 8 (3bits) 64 (6 bits) 18 -59% 0.1dB

about 0.8 dB withK = 24. If a performance loss of 0.1 dB is allowed, the codeword search

length K can be further reduced to 18 for our proposed algorithm and the complexity is
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reduced by 59%. Performence comparison results are summerized in Table 3.1.
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6 bit codebook (generated by genetic algorithm) with K=64
6 bit codebook in [6] (generated by Lloyd algorithm) with K=24
6 bit codebook in [6] (generated by Lloyd algorithm) with K=64

Figure 3.4: Performance comparison: the proposed ordering algorithm and exhaustive
search for two 6-bit beamforming codebooks. one in [94] generated by Lloyd algorithm
and the other generated by genetic algorithm in [92], (Nt, Nr) = (4, 1) .

Simulation 3: Our proposed algorithm is not sensitive to the codebook construction

methods since it only depends on the chordal distance. In Fig. 3.4, we simulate the pro-

posed algorithm using the 6-bit codebook in [94], which is generated by Lloyd algorithm.

The 3-bit pilot codebook from Simulation 2 is used as the pilot codebook in this simula-

tion. In general, codebooks generated by Lloyd algorithm have better performance than

those generated by the genetic algorithm because genetic algorithm proposed in [92] has

modulus constraint on entries of codewords which assures the average transmit powers

on all transmit antennas are the same. On the contrary, Lloyd algorithm does not have
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modulus constraint on the codewords and it allows the average transmit power on each

transmit antenna to be different. Thus, the codebooks generated by the genetic algo-

rithm provide quantized equal gain transmission while the codebooks generated by the

Lloyd algorithm provide quantized maximum ratio transmission. When the transmitter

has full channel knowledge, i.e., B = ∞ in the feedback channel, the performance of

maximum ratio transmission is better than that of equal gain transmission. When the

feedback channel is a low-rate channel, since both types of codebooks are generated ac-

cording to the Grassmanian beamforming criterion in (3.6), the performance difference

is typically small or even diminishes [79]. We observe that the performance of the code-

book in [94] is around 0.3 dB better than that of the codebook generated by the genetic

algorithm, both with exhaustive search, i.e., K = 64. In order to assess the effectiveness

of the proposed algorithm, we let K = 24. The performance of the former codebook

with the reduced-complexity search using our proposed ordering algorithm (with 50%

complexity reduction) still has a gain of about 0.2 dB over the performance of the latter

with exhaustive search.

Simulation 4: Fig. 3.5 shows the performance of the proposed algorithm with ad-

justed search length. The beamforming codebook and the pilot codebook are the same

with the ones used for Fig. 3.3. We partition the interval [0, dmax] into four subintervals

with thresholds µ1 = 0.3162, µ2 = 0.4472, µ3 = 0.6325. The codeword search lengths

are K0 = 4, K1 = 8, K2 = 16, and K3 = K = 24. It is observed that the performance

of the adjusted search length algorithm is virtually the same with the performance of

fixed search length algorithm (with K = 24), but the former one has 57% in complexity

reduction while the latter one has 50%. In this simulation, the number of subinter-

vals and thresholds are not optimized. If they are further optimized, more reduction in

complexity will be obtained.
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Figure 3.5: Performance of the proposed algorithm with adjusted search length,
(Nt, Nr) = (4, 1).

Simulation 5: Although our algorithm is proposed for MISO systems, through simu-

lations, we find that the proposed ordering algorithm still works well in MIMO systems.

Combining the proposed ordering algorithm with the bounding algorithm in [92] to form

a modified order and bound algorithm, we can achieve better performance in complexity

reduction than the original order and bound algorithm. In Fig. 3.6, a MIMO system

with Nt = 4, Nr = 5 is considered. A 7-bit beamforming codebook is adopted and a 3-bit

pilot codebook is used for the modified order and bound algorithm. When K = 128,

that is, an exhaustive search is performed4, the original order and bound algorithm and

4In MIMO case, the exhaustive search needs to compute ‖Hwi‖ for 0 ≤ i ≤ N − 1 rather than (3.8),
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Figure 3.6: Performance comparison between the modified order and bound algorithm
and original order and bound algorithm in [92] in a MIMO system with (Nt, Nr) = (4, 5).
A 7-bit beamforming codebook is adopted.

our modified order and bound algorithm reduce the search complexity by 71% and 74%,

respectively. When K = 24, the search complexity reduces by 90% for both algorithms.

But at BER of 10−6, the modified order and bound algorithm has less than 0.15 dB

of SNR degradation while the original order and bound algorithm has about 1 dB of

SNR degradation. In order to limit the performance loss of the original order and bound

algorithm within 0.15 dB, the corresponding search length K must be increased to 96

and the search complexity is only reduced by 74% as shown in Fig. 3.7. Performence

comparison results are summerized in Table 3.2.

where H is an Nr ×Nt channel matrix.
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Figure 3.7: Re-plot of Fig. 3.6 with K = 96 in original order and bound algorithm.

Table 3.2: Performance comparison. Data collected from Fig. 3.6 and Fig. 3.7. O&B is
the abbreviation of order and bound algorithm.

(Nt, Nr) = (4, 5) Np N K complexity degradation

modified O&B 8 (3 bits) 128 (7 bits) 128 -74% 0 dB

original O&B N/A 128 (7 bits) 128 -71% 0 dB

modified O&B 8 (3 bits) 128 (7 bits) 24 -90% 0.15dB @ 10−6

original O&B N/A 128 (7 bits) 24 -90% 1.0dB @ 10−6

original O&B N/A 128 (7 bits) 96 -74% 0.15dB @ 10−6

3.5 Conclusion

A complexity-reduction algorithm at the receivers for codeword search in MISO

beamforming systems is proposed and analyzed in this chapter. The proposed algo-
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rithm effectively reduces the computational complexity and still maintains comparable

performance while the order and bound algorithm proposed in [92] does not work due

to Choleskey decomposition in addition to the fact that the codeword sequence is not

properly ordered. We introduce a pilot codebook to partition the beamforming code-

book into NP smaller groups and line up the groups to form a search sequence. The

proposed ordering algorithm allows one to search only a small portion of the beamform-

ing codebook and still provides a performance that is very close to the performance of

the exhaustive search algorithm. Although our ordering algorithm is proposed for MISO

beamforming systems, when combined with the bounding algorithm in [92], the modified

order and bound algorithm still works well for MIMO beamforming systems. When the

search length is reduced, a comparable performance and significant complexity reduction

are still observed in MIMO beamforming systems.
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Chapter 4 – On Angle Feedback and Antenna Shuffling in Double

Space-Time Transmit Diversity Systems

4.1 Introduction

Systems employing OSTBC coding scheme can explore full transmit and receive

diversity when there is no CSI at the transmitter and the symbols in code matrix can

be decoded symbol-by-symbol using ML decoding with linear complexity. Full rate

(rate one) OSTBCs with complex symbols, however, do not exist when the number of

transmit antennas is greater than two [12]. In order to increase the transmission rate,

DSTTD systems have been studied for high data rate transmission [41, 82, 97–99]. Due

to feedback, a closed-loop DSTTD system has much better performance than the one

without feedback.

In WiMAX 802.16e [82], transmit antenna shuffling scheme is adopted to improve

the system performance in a DSTTD system with four transmit antennas. Recently,

the angle feedback scheme is proposed [39–41]. It is shown that for QOSTBC with four

transmit antennas the feedback of the exact angle information can be used to achieve

full diversity [39,40]. For DSTTD systems with four transmit antennas, the angle feed-

back scheme is proposed in [41] to suppress interference caused by the non-orthogonal

structure of quadratic product of the effective channel, where a rotation factor c = ejθ,

which is controlled by the receiver through feedback, is applied to the transmit symbols

transmitted by the second transmit antenna.

Because rotating the symbols transmitted by the transmit antennas is equivalent

to rotating the channel coefficients, we can consider the effective channel coefficients
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obtained by multiplying the channel coefficients with the rotation factor c. Note that

angle rotation can be applied to all transmit antennas. Consider a DSTTD system with

four transmit antennas. The natural questions are: 1) If a scheme with four rotation

factors applied to four transmit antennas is used, will it perform better than the scheme

with the rotation applied to only one transmit antenna which is proposed in [41] with

linear receivers? 2) To what extent will linear receivers suppress interference as proposed

in [41]? In this chapter, we first answer these two questions that will help us further

understand angle feedback scheme, and then we compare angle feedback scheme with

transmit antenna shuffling scheme since both schemes are feedback scheme for DSTTD

systems with four transmit antennas and no comparison has been made before. We show

that with linear equalizers the transmit antenna shuffling scheme outperforms the angle

feedback scheme.

4.2 Angle Feedback versus Transmit Antenna Shuffling

4.2.1 Angle Feedback

Consider a four-transmit-antenna system that employs angle feedback. An example

system with two receive antennas is shown in Fig. 4.1.

In angle feedback scheme, four transmit antennas are divided into two groups with

each group containing two transmit antennas. Each group of antennas are driven by

its own Alamouti OSTBC encoder. We provide four angle rotation factors c1 = ejθ1 ,

c2 = ejθ2 , c3 = ejθ3 and c4 = ejθ4 and apply rotation factor ci to the symbols transmitted

by the ith transmit antenna, 1 ≤ i ≤ 4. Since |ci| = 1, the transmit power of each

transmit antenna is unchanged. Combine two Alamouti code matrices to form a 4 × 2



44

Figure 4.1: Angle feedback scheme [41] of a DSTTD system with four transmit antennas
and two receive antennas. Four angle rotation factors, ci = ejθi(1 ≤ i ≤ 4), are used. ci
is applied to the symbols transmitted by the ith transmit antenna.

code matrix

X =







c1x1 c2x2 c3x3 c4x4

c1x
∗
2 −c2x

∗
1 c3x

∗
4 −c4x3∗







T

. (4.1)

where column dimension represents transmit symbol intervals and row dimension rep-

resents transmit antennas. Since there are four symbols in a code matrix which is

transmitted over two successive time intervals. In order to decode transmitted symbols

in a code matrix, at least two receive antennas are needed, i.e., Nr ≥ 2, where Nr is

the number of receive antennas. Let’s assume that channel coefficients are perfectly

known at the receiver and remain constant during one code matrix. The received signal
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R ∈ CNr×2 can be expressed as

R = H̄X +N (4.2)

where

R = [r1 r2 · · · rNr ]
T (4.3)

rj = [rj,1 rj,2]
T (4.4)

N = [n1 n2 · · · nNr ]
T (4.5)

nj = [nj,1 nj,2]
T (4.6)

H̄ = [h1 h2 · · · hNr ]
T (4.7)

hj = [h1j h2j g1j g2j ]
T (4.8)

and rj,k and nj,k are, respectively, the received signal and circularly symmetric, complex

Gaussian noise at the jth receive antenna at the kth time interval (k=1,2). E(|nj,k|
2) =

σ2 and E[nj,kn
∗
i,l] = 0 ∀i 6= j or l 6= k. h1j and h2j are the channel coefficients from the

first and the second transmit antennas (the first group) to the jth receive antenna. g1j

and g2j are the channel coefficients from the third and the fourth transmit antennas (the

second group) to the jth receive antenna. In order to decode the transmitted symbols,

we rewrite (4.2) into a more convenient format given by

r = Hx+ n (4.9)
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where

x = [x1 x2 x3 x4]
T (4.10)

H = [H1 H2 · · · HNr ]
T (4.11)

r = [r̄1 r̄2 · · · r̄Nr ]
T (4.12)

n = [n̄1 n̄2 · · · n̄Nr ]
T (4.13)

r̄j = [rj,1 r∗j,2] (4.14)

n̄j = [nj,1 n∗j,2] (4.15)

and the effective channel matrix, Hj, from the transmitter to the jth receive antenna is

Hj =







c1h1j c2h2j c3g1j c4g2j

−c∗2h
∗
2j c∗1h

∗
1j −c∗4g

∗
2j c∗3g

∗
1j







T

, (4.16)

E[nnH ] = σ2I since n̄j and nj have the same distribution. With the notation c =

[c1, c2, c3, c4], the quadratic channel product in [41, eq. (5)] becomes

HHH =







ρI2 U

UH µI2









47

where I2 is the 2× 2 identify matrix and

ρ =
2
∑

i=1

Nr
∑

j=1

|hij |
2 , (4.17)

µ =

2
∑

i=1

Nr
∑

j=1

|gij |
2 , (4.18)

U =







δ1(c) δ2(c)

−δ∗2(c) δ∗1(c)






, (4.19)

δ1(c) = c∗1c3

Nr
∑

j=1

h∗1jg1j + c2c
∗
4

Nr
∑

j=1

h2jg
∗
2j , (4.20)

δ2(c) = c∗1c4

Nr
∑

j=1

h∗1jg2j − c2c
∗
3

Nr
∑

j=1

h2jg
∗
1j (4.21)

and ρ and µ are independent of ci, 1 ≤ i ≤ 4. Let η = |δ1(c)|
2 + |δ2(c)|

2. Matrix U

satisfies the following relationship:

UHU = (|δ1(c)|
2 + |δ2(c)|

2)I2 = ηI2, (4.22)

In [41], the interference suppression criterion is to minimize η. The following lemma

relates minimization of MSE of a ZF or MMSE equalizer to minimization of η. This

connection is not explored in [41].

Lemma 1 When a ZF or MMSE equalizer is applied at the receiver, minimizing the

MSE of the detected symbols is equivalent to minimizing η.

Proof. Applying an MMSE equalizer to the received signal r in (4.9), the estimate of
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the transmitted symbol vector is expressed as

x̂MMSE =

(

HHH +
1

ζ
I4

)−1

HHr (4.23)

where ζ
∆
= Es/σ

2 is defined as SNR, Es is the average transmit symbol energy. Using

matrix inversion lemma [83, 0.7.3] for partitioned matrices 1, we obtain the MSE of the

MMSE equalizer as

E
[

‖x̂MMSE − x‖2
]

= σ2tr

(

[

HHH +
1

ζ
I4

]−1
)

=
σ2 [2(ρ+ µ) + 4/ζ]

1/ζ2 + (ρ+ µ)/ζ + ρµ− η
. (4.24)

For a ZF equalizer, we have

x̂ZF = (HHH)−1HHr. (4.25)

The MSE of the ZF equalizer is expressed as

E
[

‖x̂ZF − x‖2
]

= σ2tr
(

[

HHH
]−1
)

=
2(ρ+ µ)σ2

ρµ− η
. (4.26)

Our goal is to minimize the MSE with an appropriate rotation vector c. Since ζ, σ2, ρ,

1Let a (m + n) × (m + n) matrix M be partitioned into a block form: M =
[

A B
C D

]

, where A ∈

Cm×m, B ∈ Cm×n, C ∈ Cn×m and D ∈ Cn×n. Assume all relevant matrix inversions exist, then

M
−1 =

[

(A−BD
−1

C)−1
A

−1
B(CA

−1
B −D)−1

(CA
−1

B −D)−1
CA

−1 (D −CA
−1

B)−1

]

.
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and µ are independent of c, we have

argmin
c

E
[

‖x̂− x‖2
]

= argmin
c

η

for both MMSE and ZF equalizers.

Lemma 1 shows that we cannot further minimize the MSE of a ZF or MMSE equalizer

if η is minimized.

Note that η is a function of c and can be written as

η = |δ1(c)|
2 + |δ2(c)|

2

= δ1(c)δ1(c)
∗ + δ2(c)δ2(c)

∗

= α · c+ α∗ · c∗ + ξ

= 2ℜ{α · c}+ ξ

where α and ξ are

α = (

Nr
∑

l=1

h1lg
∗
1l)

Nr
∑

j=1

(h2jg
∗
2j)− (

Nr
∑

l=1

h1lg
∗
2l)(

Nr
∑

j=1

h2jg
∗
1j)

ξ = (

Nr
∑

l=1

h∗2lg2l)

Nr
∑

j=1

(h2jg
∗
2j) + (

Nr
∑

l=1

h1lg
∗
1l)(

Nr
∑

j=1

h∗1jg1j)

+ (

Nr
∑

l=1

h1lg
∗
2l)

Nr
∑

j=1

(h∗1jg2j) + (

Nr
∑

l=1

h∗2lg1l)(

Nr
∑

j=1

h2jg
∗
1j)

and

c = c1c2c
∗
3c

∗
4 = ej(θ1+θ2−θ3−θ4). (4.27)
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Note that ξ and η are nonnegative and real, and ξ does not change with c. The solution

for c that minimizes η, equivalent to minimizing ℜ{α · c}, is expressed as [41]

c = ej(π−ψ) (4.28)

where ψ is the phase of α. The resulting minimum of η is given as η = ξ − 2 |α|.

From (4.27), we observe that the optimum rotation angle of c can be realized by any θi,

i ∈ {1, 2, 3, 4}, with θj = 0, 1 ≤ j 6= i ≤ 4. We have proved next lemma.

Lemma 2 With a ZF or MMSE equalizer, it is sufficient to perform rotation on only

one transmit antenna rather on four transmit antennas to suppress interference. When

the ith transmit antenna (1 ≤ i ≤ 4) is selected for rotation, the optimum rotation angle

is θi = (−1)⌈i/2⌉(ψ−π), where ⌈·⌉ represents the ceiling function, and ∀ j, 1 ≤ j 6= i ≤ 4,

θj = 0.

Lemma 2 shows that in terms of interference suppression, angle rotation performed

on only one transmit antenna can have the same performance as rotation on all transmit

antennas; thus we will rotate the data transmitted by the second antenna as in [41]

for performance comparison. When the feedback channel is rate limited, the quantized

angle needs to be fed back from the receiver to the transmitter. Since the optimum

feedback angle θ is distributed in [0, 2π], for B bits of feedback, the codebook is CB =

[c0, · · · , cm, · · · , c2B−1] = [1, ejπ/2
B−1

, · · · , ejmπ/2
B−1

, · · · , ej(2
B−1)π/2B−1

] [41]. The best

index to be fed back is

I = arg min
m∈{0,··· ,2B−1}

ℜ{α · cm} . (4.29)
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4.2.2 Transmit Antenna Shuffling

Transmit antenna shuffling (permutation) in the DSTTD system with four transmit

antennas has been adopted in WiMAX [82] for high data rate transmission. The DSTTD

system with four transmit antennas and two receive antennas is illustrated in Fig. 4.2.

The four outputs of two Alamouti encoders go through shuffling matrix and then drive

the physical antennas. For simplicity of notation, we treat hij and gij in (4.2), i = 1, 2

and 1 ≤ j ≤ Nr, as logical channels, and denote ~kj as the physical channel between the

kth (1 ≤ k ≤ 4) transmit antenna and the jth receive antenna. The mapping between

physical channels and logical channels is expressed as [82]

[h1j h2j g1j g2j ] = [~1j ~2j ~3j ~4j ]W (4.30)

where W is the permutation matrix and W ∈ SW = {W 1,W 2,W 3,W 4,W 5,W 6}

with W 1 = [i1, i2, i3, i4], W 2 = [i1, i2, i4, i3], W 3 = [i1, i3, i2, i4], W 4 = [i1, i3, i4, i2],

W 5 = [i1, i4, i2, i3] and W 6 = [i1, i4, i3, i2]. ik is a 4× 1 vector having only one non-zero

element in the kth position with value of one.

In this section, we first generalize the permutation matrix selection criterion from

Nr = 2 [99, Property 1 ] to Nr ≥ 2 using a ZF or MMSE equalizer. This helps facilitate

permutation matrix selection. Using (4.17) we can verify that permutations change the

values of ρ and µ but do not change the sum of ρ and µ. Note there are no angle

rotations in transmit antenna shuffling scheme, so ci takes value of one. In order to

minimize the MSE of MMSE and ZF equalizers in (4.24) and (4.26), we must maximize

ρµ − η using one of the six permutation matrices in SW . A simple permutation matrix

selection criterion for Nr = 2 is given in [99]. We generalize the matrix selection criterion
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Figure 4.2: Transmit antenna shuffling scheme in WiMAX [82] of a DSTTD system with
four transmit antennas and two receive antennas.

to cases of Nr ≥ 2 through the next lemma.

Lemma 3 In order to minimize MSE of received symbols, the permutation matrix se-

lection criterion for Nr ≥ 2 for the DSTTD systems with a ZF or MMSE equalizer is

expressed as

argmax
W∈SW

(ρµ− η) = argmin
W∈SW

M
∑

m=1

|Γm|
2 (4.31)

where

Γm = det













h1ℓm(1) h2ℓm(1)

h1ℓm(2) h2ℓm(2)












+ det













g1ℓm(1) g2ℓm(1)

g1ℓm(2) g2ℓm(2)












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and M =





Nr

2



= Nr !
2(Nr−2)! is the number of sets of combination with each set containing

two receive antenna indices. 1 × 2 vector ℓm = [ℓm(1) ℓm(2)] denotes the mth set with

indices 1 ≤ ℓm(1) < ℓm(2) ≤ Nr, 1 ≤ m ≤M .

Proof. With some mathematical manipulations, we have

ρµ− η =

M
∑

m=1

(ρmµm − ηm), (4.32)

where

ρm =

2
∑

i=1

2
∑

k=1

∣

∣hiℓm(k)

∣

∣

2
, (4.33)

µm =

2
∑

i=1

2
∑

k=1

∣

∣giℓm(k)

∣

∣

2
, (4.34)

ηm = |δ1,m|
2 + |δ2,m|

2 , (4.35)

with

δ1,m =

2
∑

k=1

(h∗1ℓm(k)g1ℓm(k) + h2ℓm(k)g
∗
2ℓm(k)), (4.36)

δ2,m =
2
∑

k=1

(h∗1ℓm(k)g2ℓm(k) − h2ℓm(k)g
∗
1ℓm(k)). (4.37)

We can show that

ρmµm − ηm = Λm − |Γm|
2 (4.38)
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with

Λm =

4
∑

i=1

4
∑

j=1,j 6=i

|~iℓm(1)~jℓm(2)|
2−

2ℜ







4
∑

i=1



~
∗
iℓm(1)~iℓm(2)

4
∑

j=i+1

~jℓm(1)~
∗
jℓm(2)











. (4.39)

Since Λm is independent of W , we have (4.31). A more detailed proof is provided in

Appendix A

When Nr = 2, the right-hand side of (4.31) has only one term, which can be written

as argmin
W∈SW

|Γ1|. This has the same form as in [99, Property 1 ], a special case of lemma 3.

Next, we show that the 1-bit angle feedback scheme in [41] is a special case of transmit

antenna shuffling. For angle feedback, we assume that a 1-bit angle feedback is applied

to the second antenna with c = ±1. We have [h1j h2j g1j g2j ] = [~1j c~2j ~3j ~4j ] and

h2j could be either ~2j or −~2j . |Γm(c)| is expressed as

|Γm(c = 1)| =

∣

∣

∣

∣

∣

∣

∣

det













~1ℓm(1) ~2ℓm(1)

~1ℓm(2) ~2ℓm(2)












+ det













~3ℓm(1) ~4ℓm(1)

~3ℓm(2) ~4ℓm(2)













∣

∣

∣

∣

∣

∣

∣

. (4.40a)

|Γm(c = −1)| =

∣

∣

∣

∣

∣

∣

∣

det













~1ℓm(1) ~2ℓm(1)

~1ℓm(2) ~2ℓm(2)












− det













~3ℓm(1) ~4ℓm(1)

~3ℓm(2) ~4ℓm(2)













∣

∣

∣

∣

∣

∣

∣

. (4.40b)

For transmit antenna shuffling, we select shuffling matrices W 1 and W 2 for 1-bit

feedback. We have

|Γm(W = W 1)| = |Γm(c = 1)| , (4.41a)

|Γm(W = W 2)| = |Γm(c = −1)| . (4.41b)
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(4.41a) is easy to verify. (4.41b) can be verified as follows: When c = −1 (applied to

second transmit antenna), we have

|Γm(c = −1)| =

∣

∣

∣

∣

∣

∣

∣

det













~1ℓm(1) −~2ℓm(1)

~1ℓm(2) −~2ℓm(2)












+ det













~3ℓm(1) ~4ℓm(1)

~3ℓm(2) ~4ℓm(2)













∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

det













~1ℓm(1) ~2ℓm(1)

~1ℓm(2) ~2ℓm(2)












− det













~3ℓm(1) ~4ℓm(1)

~3ℓm(2) ~4ℓm(2)













∣

∣

∣

∣

∣

∣

∣

a
=

∣

∣

∣

∣

∣

∣

∣

det













~1ℓm(1) ~2ℓm(1)

~1ℓm(2) ~2ℓm(2)












+ det













~4ℓm(1) ~3ℓm(1)

~4ℓm(2) ~3ℓm(2)













∣

∣

∣

∣

∣

∣

∣

= |Γm(W = W 2)| .

Equality (a) follows the fact that the det of matrix changes sign when two columns are

swapped.

From the proof of lemma 3, we have ρµ− η =
∑M

m=1(Λm − |Γm|
2) and Λm does not

change value with c = ±1, W 1, and W 2. Considering (4.41a) and (4.41b), we have

(ρµ − η)|c=1 = (ρµ− η)|W=W 1 , (4.42a)

(ρµ − η)|c=−1 = (ρµ− η)|W=W 2 . (4.42b)

It can be verified that no matter on which transmit antenna the 1-bit rotation factor

c = ±1 is applied, (4.42a) and (4.42b) are always valid. Since ρ and µ are invariant

with c = ±1 or W = W 1/W 2, η|c=1 = η|W=W 1 and η|c=−1 = η|W=W 2 . From (4.24)

and (4.26), we have angle rotation with c = −1 (1) and transmit antenna shuffling with

W = W 2 (W 1) have the same MSE. This means selection of c = −1 (1) and selection

of W = W 2 (W 1) have to be in pair under the same channel realization.
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With one-to-one mapping selections for any channel realization H , let us further

consider the BER performance of both schemes with 1-bit feedback. We only need to

consider angle rotation c = −1 and shuffling matrix W = W 2 since angle feedback

system with c = 1 and transmit antenna shuffling system with W = W 1 are exactly

the same, thus have the same BER with a ZF or MMSE equalizer. Define η|c=−1 =

η|W=W 2 = η̄ and Π = HHH . The post-processing SNR of kth (1 ≤ k ≤ 4) data stream

x̂k of ZF and MMSE equalizers can be expressed as [33]

γZFk =
ζ

[Π]−1
k,k

,

γMMSE
k =

ζ

[(Π+ 1
ζ I4)−1]k,k

− 1.

Using matrix inversion lemma for partitioned matrices we can verify that for any channel

realization H resulting in c = −1 and W = W 2, the following equalities always hold:

[Π−1]k,k|c=−1 = [Π−1]k,k|W=W 2 = (ρ− η̄/µ)−1, k = 1, 2 (4.43)

[Π−1]k,k|c=−1 = [Π−1]k,k|W=W 2 = (µ − η̄/ρ)−1, k = 3, 4 (4.44)

[(Π+
1

ζ
I4)

−1]k,k|c=−1 = [(Π+
1

ζ
I4)

−1]k,k|W=W 2

=















[ρ+ 1/ζ − η̄/(µ + 1/ζ)]−1, k = 1, 2

[µ+ 1/ζ − η̄/(ρ+ 1/ζ)]−1, k = 3, 4.

(4.45)

Therefore, we have

γZFk |c=−1 = γZFk |W=W 2 , (4.46)

γMMSE
k |c=−1 = γMMSE

k |W=W 2 . (4.47)
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Combining the scenarios c = 1 andW = W 1, we claim that both schemes (angle rotation

with c = ±1 and transmit antenna shuffling with W = W 1/W 2) have the same BER

performance with a ZF or MMSE receiver. Following the same arguments we can also

verify that this result holds no matter on which transmit antenna the angle rotation

c = ±1 is applied.

Because any pair of shuffling matrices in SW could be selected for 1-bit transmit

antenna shuffling, we have the following lemma:

Lemma 4 With a ZF or MMSE equalizer, the 1-bit angle rotation scheme proposed

in [41] has the same performance with 1-bit transmit antenna shuffling with shuffling

matrices W 1 = [i1, i2, i3, i4] and W 2 = [i1, i2, i4, i3]. Furthermore, it does not perform

better than the 1-bit transmit antenna shuffling scheme with a pair of properly selected

shuffling matrices.

Lemma 4 gives the relative performance between angle feedback scheme and transmit

antenna shuffling scheme with 1-bit feedback. With two or more feedback bits, it is

difficult to compare the performance of the two schemes analytically. We thus resort

to simulations, through which we observe that transmit antenna shuffling with only two

bits of feedback performs better than angle feedback with infinite number of feedback

bits.

4.3 Simulation Results

We simulate the bit-error rate (BER) performance of an uncoded DSTTD system with

4 transmit antennas, and 2 and 3 receive antennas. The system employs quadrature

phase-shift keying modulation and an MMSE receiver. Channel coefficients are i.i.d.,
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Figure 4.3: Performance of 1-bit angle feedback scheme with c = ±1 on the second trans-
mit antenna and 1-bit transmit antenna shuffling scheme with shuffling set {W 1,W 2}.

circularly symmetric, complex Gaussian random variables with zero mean and unit vari-

ance. BER is averaged over 106 independent channel realizations. 4×103 QPSK symbols

are transmitted over each channel realization.

First we verify that 1-bit angle feedback scheme with c = ±1 has the same perfor-

mance with 1-bit transmit antenna shuffling scheme with shuffling matrix set {W 1,W 2}

which we claimed at Lemma 4. Angle rotation is applied on the second transmit antenna.

Fig. 4.3 shows the BER curves of both schemes with above 1-bit feedback setting match

each other exactly and this confirms our analytical results.
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Figure 4.4: Performance comparison between angle feedback scheme (1-bit: c = ±1,
2-bit: c = ±1,±j) and transmit antenna shuffling scheme (1-bit: {W 2,W 3}, 2-bit:
{W 2,W 3,W 4,W 5}, 3-bit: SW ) .

We further conduct simulations with different settings. For transmit antenna shuffling

scheme, 1-bit transmit antenna shuffling set is {W 2,W 3}; two-bit shuffling matrix set is

{W 2,W 3,W 4,W 5}; three-bit transmit antenna shuffling matrix set is SW . The angle

rotation scheme uses c = ±1 for 1-bit angle rotation and c = ±1,±j for 2-bit angle

rotation. Angle rotation is applied on the second transmit antenna. The results are

shown in Fig. 4.4. We observe that the 1-bit transmit antenna shuffling scheme with

new shuffling set has a better performance than the 1-bit angle feedback scheme; 2-

bit transmit antenna shuffling performs better than angle feedback scheme with infinite



60

number of feedback bits. This demonstrates that transmit antenna shuffling scheme is

much more effective than the angle rotation scheme in term of feedback gain.

4.4 Conclusion

A comprehensive comparison of the performance of angle feedback scheme and transmit

antenna shuffling scheme for DSTTD systems is provided in this chapter. We have shown

that transmit antenna shuffling outperforms angle feedback under the same feedback

bits. The reason is that transmit antenna shuffling effectively boosts the minimum post-

processing SNR among all data streams by maximizing the quantity ρµ − η defined in

this chapter, whereas angle feedback only minimizes η; thus the potential achievable by

balancing ρ and µ for maximizing the minimum post-processing SNR is not explored.
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Chapter 5 – Pilot Power in Training-Based MMSE Channel

Estimation for Closed-Loop MIMO Systems

5.1 Introduction

Coherent communications need channel information at the receiver. One way for

the receiver to acquire channel information is through training. In the training pro-

cess, the training symbols (also called pilot symbols) that are known to the receiver are

transmitted for estimation of the unknown channel coefficients at the receiver.

Training design for various wireless systems has been studied extensively. In [78]

training symbols constructed using space-time codes for the MIMO systems over the

quasi-static, frequency-selective channels is proposed. In [100], the optimal pilot se-

quences and the optimal placement of pilot tones are derived in the sense of minimizing

the MSE of the channel estimate in MIMO-OFDM systems. General classes of optimal

training signals for channel estimation in MIMO-OFDM systems are developed in [101]

using the MSE criterion. Optimal placement of training signals for frequency-selective

channels is derived by maximizing a capacity lower bound and minimizing the outage

probability, in [102] and [103], respectively. The training design regarding the number

of training intervals, the training sequence, and the training power is optimized to max-

imize a capacity lower bound in MIMO frequency-flat, block-fading channels in [84],

and in the single-input single-output (SISO) frequency-selective block-fading channels

in [104]. A similar problem regarding the optimal number of training symbols, the train-

ing sequence, and the training symbol placement and the power allocation between data

symbols and training symbols is solved for OFDM systems in frequency-selective, block-
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fading channels in [105]. For the doubly-selective fading channels, the optimal training

design is addressed in [106–108].

These works address training design for the open-loop wireless systems. It is well

known that if channel knowledge is available at the transmitter, the transmitter could

adapt to the channel condition to improve the system performance, e.g., capacity. Feed-

back schemes have been adopted in some wireless standards (e.g., [82]) to form the

closed-loop systems to improve performance. But in the training-based systems with

limited training power, channel estimation error is inevitable and it introduces chan-

nel uncertainty, which could significantly affect the achievable rate - the capacity lower

bound [109,110].

In this chapter, we focus on power allocation between training and data for the closed-

loop MIMO systems over flat Rayleigh-fading channels. We follow the block fading model

in [84] and analyze two power control schemes: spatial power control, and spatial and

fading power control. In the spatial power control scheme, all fading blocks are assigned

equal power; data power is optimized within each block, but no adaptation is made to

compensate fading across block boundaries. In the spatial and fading power control

scheme, power adapts to fading variations in addition to spatial power control; thus

power assigned to fading blocks varies depending on the fading condition. Both schemes

optimize the power allocation between training and data in a approach of maximizing

the ergodic capacity lower bound. We first show that power allocation in the open-

loop MIMO systems is still optimal in closed-loop MIMO systems with only spatial

power control. Then we show that the power allocation scheme for the open-loop MIMO

systems is asymptotically optimal for the closed-loop MIMO systems with both spatial

and fading power control.

This chapter is structured as follows. Section 5.2 describes the system model and the
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training design. In Section 5.3, the capacity lower bound for closed-loop training-based

MIMO systems is derived. In Section 5.4, we consider power allocation between training

and data for closed-loop systems. First, we focus on power allocation for the case of

spatial power control. Then we extend it to the case of spatial and fading power control.

Simulation results are provided in Section 5.5, followed by conclusion in Section 5.6.

5.2 System Model

Consider a MIMO system with M transmit antennas and N receive antennas over

a frequency-flat block-fading channel, where channel coefficients keep constant over a

block of T symbol intervals and change independently in the next block. We denote

the channel coefficients by matrix H, whose (i, j)th element represents the channel gain

between the ith transmit antenna and the jth receive antenna. The elements of H

are i.i.d., circularly symmetric, complex Gaussian random variables following CN (0, 1),

H ∈ CM×N . In the training-based channel estimation schemes, transmission in each

fading block is partitioned into two phases [84]: training phase and data transmission

phase, whose durations are denoted by Tp and Td symbol intervals, respectively. The

data transmission phase follows the training phase. Clearly, Tp + Td = T .

We assume the same training signal is used in every fading block. In the training

phase within a fading block, the received signals can be expressed as

Yp = XpH+Np (5.1)

where matrix Yp ∈ CTp×N is the received signals over Tp training intervals, Xp ∈ CTp×M

is the matrix of training signals known to the receiver, Pp is the power allocated for
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training symbols which satisfies Pp = Tr(XpX
H
p ), and Np ∈ CTp×N is the matrix of noise

samples at the receiver, independent of Xp. The elements of Np are i.i.d., circularly

symmetric, complex Gaussian random variables following CN (0, 1).

In the data transmission phase, the received signals can be expressed as

Yd = XdH+Nd (5.2)

where Yd ∈ CTd×N is the matrix of the received signals over Td data intervals, Xd ∈

CTd×M is the matrix of the transmit signals, E
{

Tr(XdX
H
d )
}

is the data power in the

block, andNd ∈ CTd×N is the matrix of noise samples at the receiver. The elements of Nd

are i.i.d., circularly symmetric, complex Gaussian random variables following CN (0, 1).

In the training phase the receiver performs linear MMSE channel estimation using

received signal Yp and the known pilot data Xp to estimate the channel. Denote Ĥ as

channel estimate. Because channel coefficients independently change from block to block

in the considered block-fading model, the receiver must estimate channel at the beginning

of each fading block. In closed-loop system model, we assume that there is an error-free

feedback channel from the receiver to the transmitter with unlimited bandwidth (thus,

there is no delay) so that the receiver can send channel estimate Ĥ to the transmitter

right after the training phase. We adopt the training signal designed in [84] because

before training the transmitter does not have channel knowledge of current block in

closed-loop systems1.

1Although the channel information fed back in the previous blocks can not be used for data transmis-
sion in the current block, it can be exploited by the transmitter for channel statistics, e.g., covariance of
channel coefficients, to facilitate the training signal design. It is shown in [73] that the optimal training
for spatially correlated MIMO channels is to pour the training signal power along the eigen directions of
the transmit covariance matrix using a waterfilling solution. In our i.i.d. channel model, the transmit
covariance of channel coefficients is an identity matrix. Following the training signal design rule in [73],
it can be shown that the training signal designed in [84] is optimal in terms of waterfilling on eigenmodes
of the transmit covariance matrix.
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It is shown in [84] that the optimal training signal Xp is in the form

XH
p Xp =

Pp
M

IM . (5.3)

Because IM is of rank M , Tp ≥ M . In other words, a meaningful estimation of MN

channel coefficients needs at least MN observations. Since the N receivers provide N

independent observations per training interval, at least M training intervals are needed.

Let H̃ represents the MMSE channel estimation error. H can be written as

H = Ĥ+ H̃. (5.4)

Ĥ and H̃ are independent under MMSE estimation. The elements of Ĥ and H̃ are i.i.d.,

following CN (0, σ2
Ĥ
) and CN (0, σ2

H̃
), respectively, and their variances satisfy

σ2H = σ2
Ĥ
+ σ2

H̃
= 1. (5.5)

With the training signal given in (5.3), the variance of the MMSE channel estimation

error is given by [84]

σ2
H̃

=
1

1 + Pp/M
. (5.6)

Eq. (5.6) shows that given a total training power Pp, MMSE channel estimation error is

independent of training interval TP .

After the transmitter receives Ĥ through the feedback, it starts data transmission

conditioned on Ĥ. We explicitly express the data power assigned to the fading block

with channel estimate Ĥ as Pd(Ĥ), since the transmitter can adjust its power with the

knowledge of Ĥ using fading control. The average data power per fading block satisfies
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E[Pd(Ĥ)] = P̄d. With training power Pp, the average power for each fading block is

P̄ = Pp + P̄d. In a closed-loop system with limited P̄ , the length of training intervals

Tp and power allocation between Pp and P̄d affect the overall system capacity. If too

much time is dedicated to training, there will not be enough time for data transmission;

if too much power is dedicated to training, there will not be enough power for data

transmission. Thus, we optimize Tp and P̄d (or Pp) by maximizing a capacity lower

bound given T and P̄ .

5.3 Capacity Lower Bound for the Closed-loop Training-based
MIMO Systems

Each row of Xd represents the data transmitted at one data transmission interval.

The row vectors ofXd are assumed to be mutually independent. In one data transmission

interval, the received signal y can be written as

y = xĤ+ xH̃+ n

= xĤ+ v. (5.7)

Note that only Ĥ is known at both the receiver and the transmitter in the closed-loop

system model. The product term xH̃ is an additional noise term at the receiver since H̃

is unknown to the receiver. v = xH̃+ n denotes the combined noise term, which is no

longer Gaussian distributed and can be shown to be uncorrelated with the term xĤ [84].

The exact channel capacity in (5.7) under channel uncertainty v is unknown in the

literature. Since v contains the input signal x, the capacity-achieving distribution of

input signal x is unknown. The widely used technique is to derive the capacity lower

bound, a guaranteed achievable rate by treating noise v as a Gaussian noise with same
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power [84, 102, 104]. With the knowledge of channel estimate Ĥ at the transmitter and

the assumption that the distribution of x conditioned on Ĥ is Gaussian, given channel

estimation error σ2
H̃

and transmit power p for the considered transmission interval, a

lower bound of the instantaneous mutual information between x and y is given by [111]

Ilower(x;y|Ĥ, σ
2
H̃
, p) = log2 det

(

IN +
1

1 + σ2
H̃
p
ĤHRx|ĤĤ

)

(5.8)

where the transmit signal covariance matrix is expressed as Rx|Ĥ = E[(x|Ĥ)(x|Ĥ)H ]

and the transmit power is p = Tr(Rx|Ĥ).

Since all elements of Ĥ follow CN (0, σ2
Ĥ
), we normalize Ĥ and let H̄ = Ĥ/σĤ . The

elements of H̄ are i.i.d. and follow CN (0, 1). In the rest of this chapter, we use H̄,

instead of Ĥ, to simplify the analysis. For example, the data power is expressed as

Pd(Ĥ) = Pd(H̄). We rewrite (5.8) in a more compact form as

Ilower(x;y|H̄, σ
2
H̃
, p) = log2 det

(

IN + H̄HRx|H̄H̄
)

(5.9)

where Rx|H̄ =
σ2
Ĥ

1+σ2
H̃
p
Rx|Ĥ.

5.3.1 Instantaneous Capacity Lower Bound Given H̄, σ2
H̃
and p

We define the effective transmit power as

peff(σ
2
H̃
, p)

∆
= Tr(Rx|H̄) =

σ2
Ĥ
p

1 + σ2
H̃
p
. (5.10)

Maximizing (5.9) by finding the input signal covariance Rx|H̄ to obtain an instantaneous
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capacity lower bound, which is expressed by

Cinst(H̄, σ
2
H̃
, p) =max

Rx|H̄

log2 det
(

IN + H̄HRx|H̄H̄
)

, (5.11)

subject to Tr
(

Rx|H̄

)

≤ peff(σ
2
H̃
, p), is straightforward (for example, see standard water-

filling technique in [2] and [112, Th. 7]). Singular value decomposition of the channel

matrix H̄ in (5.9) is expressed as

H̄ = UΛV H

where U and V are unitary matrices with dimension M ×M and N ×N , respectively,

and Λ is an M × N diagonal matrix with K1 ordered singular values of H̄, denoted

as λ
1
2
1 (H̄) ≥ λ

1
2
2 (H̄) ≥· · · ≥ λ

1
2
K1

(H̄), where K1 = min(M,N). If M > K1, we add

λK1+1(H̄) = · · · = λM (H̄) = 0 whenever needed. The optimal covariance is in the form

of

Rx|H̄ = Udiag
(

peff,1(σ
2
H̃
, p), · · · , peff,M(σ2

H̃
, p)
)

UH

with
M
∑

k=1

peff,k(σ
2
H̃
, p) = peff(σ

2
H̃
, p) , peff,k(σ

2
H̃
, p) ≥ 0 (5.12)

where peff,k(σ
2
H̃
, p) denotes the effective power on the eigen-direction of the kth ordered

eigenvalue λk(H̄) (of H̄H̄H) and is determined by

peff,k(σ
2
H̃
, p) =















0 if λk(H̄) = 0

(

ν(H̄, σ2
H̃
, p)− 1

λk(H̄)

)+
otherwise

(5.13)
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where the operator (x)+ returns max{x, 0}, ν(H̄, σ2
H̃
, p) is the water-filling level and is

determined by (5.12) as

ν(H̄, σ2
H̃
, p) =

1

m

( m
∑

k=1

1

λk(H̄)
+ peff(σ

2
H̃
, p)

)

(5.14)

with m being the number of non-zero peff,k(σ
2
H̃
, p)

′
s. The solution of Cinst(H̄, σ

2
H̃
, p) in

terms of eigenvalue λi(H̄)’s is

Cinst(H̄, σ
2
H̃
, p) =

m
∑

k=1

{

log2
[

λk(H̄)ν(H̄, σ2
H̃
, p)
]

}+
. (5.15)

We assume the transmitter can vary its transmit power over any intervals in both the

training phase and the data transmission phase, as required by fading power control. On

the other hand, if the transmitter can not vary the transmit power in any transmission

intervals, then the optimal length of the training intervals must be found numerically

[84,104].

Denote Pd,i(H̄) as the data power assigned to the ith data transmission interval with

power constraint
∑Td

i=1 Pd,i(H̄) = Pd(H̄). The following lemma gives the instantaneous

capacity lower bound of fading block H̄.

Lemma 5 When transmit power at any transmission intervals can be adjusted, given

training power Pp and data power Pd(H̄) for the block with channel estimate H̄, the

maximum sum rate of the instantaneous capacity lower bound over the block is achieved

by Tp =M , Td = T −M , and Pd,i(H̄) = Pd(H̄)/(T −M).

Proof. The variance of channel estimation error, σ2
H̃
, is determined by Pp through (5.6).

When the power at any transmission intervals can be adjusted, given training power Pp,

M is the smallest meaningful training length. Letting Tp = M will not degrade the
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estimation accuracy. Thus data transmission can take any left transmission intervals up

to T −M . Let us assume Td = T −M . The sum rate of the instantaneous capacity lower

bound in the block H̄ can be expressed as

Cinst-block(H̄, Pp, Pd(H̄))= max
Pd,i(H̄)′s

T−M
∑

i=1

Cinst(H̄, σ
2
H̃
, Pd,i(H̄))

subject to:

T−M
∑

i=1

Pd,i(H̄) = Pd(H̄)

This is a standard optimization problem and can be solved using Lagrange multipliers

[113]. The solution is expressed as

Pd,i(H̄) =
Pd(H̄)

T −M

∆
= pd(H̄), i = 1, ..., T −M (5.16)

which implies that all available data transmission intervals of T −M must be used with

equal power pd(H̄) and Td = T −M , furthermore

Cinst-block(H̄, Pp, Pd(H̄)) = (T −M)Cinst

(

H̄, σ2
H̃
, pd(H̄)

)

(5.17)

with σ2
H̃

= 1
1+Pp/M

.

5.3.2 Ergodic Capacity Lower Bound Given Pp and P̄d

For systems operating in fading environments, we aim at maximizing ergodic capacity

lower bound. Given training power Pp and training interval Tp = M , under an average

data transmit power E[Pd(H̄)] = P̄d, the ergodic capacity lower bound per transmission
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interval (channel use) with consideration of training effect is

Clower(Pp, P̄d) = max
{Pd(H̄)}

E

[

1

T
Cinst-block(H̄, Pp, Pd(H̄))

]

= max
{pd(H̄)}

E

[

T −M

T
Cinst

(

H̄, σ2
H̃
, pd(H̄)

)

]

, (5.18)

subject to E[pd(H̄)] = P̄d/(T −M), which is equivalent to E[Pd(H̄)] = P̄d.
{

Pd(H̄)
}

,

or equivalently
{

pd(H̄)
}

, represents all possible power loading policies. Once again

σ2
H̃

= 1
1+Pp/M

. The second equality follows from (5.16) and (5.17). The solution of

pd(H̄) can be shown, by using Lagrange multipliers, to meet

∂Cinst

(

H̄, σ2
H̃
, pd(H̄)

)

∂pd(H̄)
= γ (5.19)

where γ is a constant, representing the global marginal capacity gain and is determined

by power constraint E[Pd(H̄)] = P̄d. It can be derived using (5.15) combined with (5.10)

and (5.14) that the instantaneous marginal capacity gain over the assigned power is

∂Cinst(H̄, σ
2
H̃
, p)

∂p
=

1

ln 2

1

ν(H̄, σ2
H̃
, p)

σ2
Ĥ

(

1 + σ2
H̃
p
)2 > 0. (5.20)

Since ν(H̄, σ2
H̃
, p) is an increasing function of p, which can be derived by using (5.10)

and (5.14), (5.20) shows that the instantaneous marginal capacity gain decreases when

the assigned power increases. Condition (5.19) shows that the ergodic capacity lower

bound is maximized if the instantaneous marginal capacity gain in any data transmission

intervals (if assigned power) reduces to γ. It also implies that there could be no power for

some data transmission intervals because at these intervals their instantaneous marginal

capacity gains are always less than γ. Note that in the block-fading channel, if no power
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is allocated for one data transmission interval within a block, by Lemma 5 the whole

block does not have data power either2. Clearly, there is no close-form expression for

ergodic capacity lower bound although bound achieving condition (5.19) is simple.

5.4 Power Allocation Between Training Phase and Data Transmis-
sion Phase

Given average power per transmission block P̄ = Pp + P̄d, where Pp is the training

power reserved for each fading block and E[Pd(H̄)] = P̄d, the percentage of P̄ for data

transmission that maximizes the ergodic capacity lower bound is unknown for closed-

loop MIMO systems. In this section, we solve this problem in two scenarios. In the first

scenario, all fading blocks are assigned the same power P̄ , there is no power adaptation

to the fading, i.e., Pd(H̄) = P̄d. In the second scenario, data transmit power Pd(H̄) is

adjusted according to channel H̄, subject to E[Pd(H̄)] = P̄d.

5.4.1 Optimal Power Allocation When Pd(H̄) = P̄d: Spatial Power

Control

When Pd(H̄) = P̄d, that is, there is no fading power control and only spatial power

control is performed, (5.18) becomes

Clower(Pp, P̄d) = E

[

1

T
Cinst-block(H̄, Pp, P̄d)

]

= E

[

T −M

T
Cinst

(

H̄, σ2
H̃
,

P̄d
T −M

)

]

. (5.21)

Let P̄ = Pp + P̄d denote the total power for one fading block, and let

P̄d = αP̄ , Pp = P̄ − P̄d = (1− α)P̄

2Training is still performed at this block.
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where 0 < α < 1. parameter α indicates how much power is used for data transmission.

We need to optimize α to maximize Clower(Pp, P̄d) in (5.21), or equivalently, to maximize

E
[

Cinst(H̄, σ
2
H̃
, P̄d

T−M )
]

. From (5.14) and (5.15), we observe that α affects Cinst only

through peff and we can show that

∂Cinst

∂peff
=

1

ln 2

1

ν
> 0 (5.22)

since ν > 0 in (5.14). Cinst is maximized if peff is maximized.

Substituting σ2
H̃

= 1
1+(1−α)P̄ /M

and p = αP̄
T−M into peff in (5.10), and letting

∂peff
∂α

= 0

We obtain the solution of α which is given by

αs =















1
2 , if T = 2M ;

b−
√

b2 − ab
a , if T 6= 2M

(5.23)

where a = P̄ (T − 2M) and b = (T −M)(P̄ +M). We verify that the solution αs here is

identical to the one given in [84] for open-loop systems with Tp =M .

Note that αs is derived by maximizing Cinst(H̄, σ
2
H̃
, P̄d

T−M ) in a specific fading block

with channel estimate H̄, but the solutions do not depend on H̄. This implies that the

solution is not only local optimum for specific fading block H̄, but also global optimum

for any fading blocks. Therefore, the ergodic capacity lower bound in (5.21) is maximized

under (5.23).
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5.4.2 Power Allocation When Pd(H̄) Adapts to Fading: Spatial and
Fading Power Control

We have considered the first scenario where a fixed power P̄d is assigned to data

transmission in each fading block and only spatial power control is performed within

each fading block. We derive the optimal power allocation and training intervals. Since

no restrictions are imposed on the power of each transmission interval, naturally the

transmitter should also be able to adjust its power in different fading blocks. This allows

the transmitter to perform fading power control to further improve the channel capacity

lower bound.

Note that in our model, P̄ is the average power per fading block used for both training

and data transmissions. At the training phase of each fading block, we allocate a fixed

percentage of P̄ to Pp, Pp < P̄ , for training and adjust the data power Pd(H̄) according

to the channel condition H̄. Intuitively, when the channel is in deep fading, less power

should be allocated; when the channel condition is good, more power should be assigned.

Pd(H̄) must meet the following power constraint

E[Pd(H̄)] = P̄d = P̄ − Pp. (5.24)

Once a fading block with channel estimate H̄ is assigned data power Pd(H̄), by

Lemma 5 Pd(H̄) should be evenly distributed among all T −M data intervals. Within

each interval, waterfilling is performed along the eigen directions. With spatial and fading

power control, Pd(H̄) needs to meet (5.19). The optimal power allocation parameter α,

denoted by αsf = P̄d/P̄ , needs to be solved in the sense of maximizing the capacity lower

bound in (5.18). The subscript sf of αsf denotes that α is optimized under spatial and

fading power control.
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Unfortunately, there are no close-form expressions for (5.18). Although (5.19) pro-

vides a necessary and sufficient condition to reach the capacity lower bound given Pp

and P̄d, it is rather difficult to find the solution Pd(H̄) without resorting to a numeri-

cal approach. If the capacity lower bound is further maximized by optimally allocating

power between the training phase and the data transmission phase, it would be virtually

impossible to find an analytical solution. For this reason, it is of interest to find the

asymptotic solution to gain some insights about the behavior of power allocation.

5.4.2.1 Asymptotic Solution

When min(M,N) increases while the ratio ofM and N is fixed, the distribution of the

normalized eigenvalues of a large random central Wishart matrix tends to converge to a

non-random distribution. For any square matrix A with only real eigenvalues, let FA

denote the empirical distribution function (edf) of the eigenvalues of A, that is, FA(x)

is the proportion of eigenvalues of A that is less than or equal to x. An important result

from [114]:

Lemma 6 Assume on a common probability space: Let XM be an M ×N matrix with

i.i.d. complex entries and unit variance. N = N(M) with M/N → d, d is a positive

constant, as M → ∞. TM , M ×M random Hermitian nonnegative definite, with FTM

converging almost surely in distribution to a probability distribution function (pdf) T on

[0,∞) as M → ∞. XM and TM are independent. Let T
1/2
M be the square root of a

nonnegative Hermitian matrix TM , and let

BM = (1/N)T
1/2
M XMXH

MT
1/2
M

then, FBM converges in distribution almost surely to a non-random pdf f as M → ∞.
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Based on Lemma 6, we have the following theorem.

Theorem 7 When min(M,N) → ∞, and the ratio of M and N is a fixed constant,

T > M and P̄ /T 9 0. The optimal power allocation parameter αsf under spatial and

fading power control converges to αs in (5.23) almost surely and Pd(H̄) = P̄d = αsfP̄ =

αsP̄ almost surely holds.

Proof. See Appendix B.

Theorem 7 provides an asymptotic solution which shows that fading power control is

unnecessary when min(M,N) → ∞ and M/N is a constant. All fading blocks should be

assigned the same data power P̄d and the problem of the optimal power allocation under

spatial and fading power control policy reduces to the problem of spatial power control

only, which is addressed in Section 5.4.1. Although this is an asymptotic solution, we

find in simulations that αsf for systems with a finite number of antennas at both sides is

very close to its counterpart αs. Furthermore, extensive simulations show that for finite

MIMO antenna array, αsf is upper bounded by αs. We conjecture that this bound is

true, although we have not yet been able to prove it.

Conjecture 8 For any size of MIMO antenna array, αsf ≤ αs, where equality holds

when min(M,N) → ∞ and M/N is a constant.

5.5 Simulation and Discussion

In this section, we simulate the capacity lower bound of several MIMO systems with

different number of antennas. SNR is defined as ρ = P̄ /T .

We clarify the quantities to be used in the simulations: αsf denotes the optimal

α when spatial and fading power control is applied. It is obtained by numerical search
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since there is no analytical solution when the number of antennas is finite; αs denotes the

optimal α when spatial power control is applied; Copen denotes the open-loop capacity

lower bound [84] using αs from (5.23); Cperfect,sf represents the closed-loop capacity with

perfect channel knowledge at both the transmitter and the receiver. The perfect channel

knowledge is provided by a genie so that no training is needed. Cperfect,sf is obtained by

using both spatial and fading power control; Cs is the closed-loop capacity lower bound

with spatial power control only in Section 5.4.1 using αs; Csf is the closed-loop capacity

lower bound with spatial and fading power control, and is obtained by using αsf, unless

explicitly specified otherwise.
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Figure 5.1: Capacity comparison of various schemes (M = N = 2, ρ = 0 dB).

We first simulate the performance of a 2 × 2 MIMO system. Fig. 5.1 shows that

when only spatial power control is performed, the capacity gain of Cs over Copen at
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Figure 5.2: Capacity with M = N = 2, ρ = 10 dB and ρ = 20 dB.

ρ = 0 dB is greater than the gains at ρ = 10 dB and ρ = 20 dB as shown in Fig. 5.2.

The gain almost vanishes when at ρ = 20 dB; this shows that channel knowledge at

the transmitter becomes unnecessary in the high-SNR regime when only spatial power

control is performed.

We also plot the capacity of Csf using αsf obtained by numerical search. The gain of

Csf using αsf over Csf using αs is hardly noticeable. This shows that even if the number

of antennas is not large, αs could provide a suboptimal solution in spatial and fading

power control policy, instead of αsf, which must be determined via numerical search.

On the other hand, both Fig. 5.1 and Fig. 5.2 show that the gain of Csf using αs

or αsf over Cs is very limited. This shows that spatial and fading power control does

not provide significant gain over spatial power control only and suggests that capacity
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Figure 5.3: αsf vs. αs, where αsf is obtained through numerical search (M = N = 2).

Cs can well approximate capacity Csf, and the scheme that employs only spatial power

control is sufficient in the closed-loop MIMO systems to realize the feedback gain. This

finding is of particular interest since in frequency division duplex (FDD) systems, the

transmitter acquires channel information by feedback from the receiver. Since feedback

channel is often bandwidth limited, the quantized covariance feedback scheme without

fading power control [116]3 allows us to implement a simple codebook to realize most of

capacity gain.

Fig. 5.3 and Fig. 5.4 show that the gap between αs in (5.23) and αsf decreases as

SNR increases; the difference becomes negligible in high-SNR regime. We conjecture

that αsf converges to αs when SNR approaches infinity, although an exact proof appears

3All quantized covariance matrices in the codebook from [116] have unit trace which means transmit
power keeps constant for data transmission for any fading blocks.
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Figure 5.4: αsf vs. αs, where αsf is obtained through numerical search (M = N = 4).

to be difficult.

Fig. 5.5 shows that the gap between αs and αsf reduces when min(M,N) increases.

This confirms the conclusion we draw in Theorem 7 that αs is asymptotically optimal

for the MIMO systems with spatial and fading power control when min(M,N) → ∞.

5.6 Conclusion

This chapter has explored power allocation between training phase and data transmis-

sion phase in closed-loop MIMO systems. Due to channel estimation errors, the exact

channel capacity and capacity-achieving input distribution are unknown. We focus on

input with a Gaussian distribution to derive the capacity lower bound and then max-
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imize this lower bound by optimizing power allocation in training-based, closed-loop

MIMO systems. When only spatial power control is used, the optimal power allocation

αs is the same as that in the open-loop systems. When both spatial and fading power

control is performed, we show, by using the theory of large random matrices, that op-

timal power allocation αsf converges to αs, the case of spatial power control only when

min(M,N) → ∞. This asymptotic result provides insights about the relationship of αsf

and αs. When the number of antennas is small, it is shown via simulations that the

power allocation αsf is still very close to αs and the closed-loop capacity gap between Csf

using αsf and Csf using suboptimal αs is very small. Therefore, suboptimal αs, instead

of αsf, could be used for spatial and fading power control without causing a significant
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capacity loss. We also find in the simulations that the capacity of the closed-loop MIMO

systems under spatial power control using αs is sufficient to approximate the capacity

Csf promised by spatial and fading power control using αsf; thus complex fading power

control may not be necessary in practice.
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Chapter 6 – Diversity-Multiplexing Tradeoff of Multiple

Beamforming

6.1 Introduction

The antenna elements of a MIMO system could be exploited for spatial multiplexing

gain and/or diversity gain (to increase the link reliability). The fundamental diversity-

multiplexing tradeoff (DMT) is addressed in [7] for i.i.d., Rayleigh-fading MIMO channels

when CSI is available only at the receiver (CSIR). It is well known that CSI at the

transmitter (CSIT) can further improve the system performance. For example, the

single beamforming, which communicates through the largest channel eigenmode, results

in an average error probability proportional to 1/SNRMN at high SNR [21] for any

fixed data rate, where M is the number of transmit antennas and N is the number of

receive antennas. For multiple beamforming, where two or more channel eigenmodes

are used (say K, 1 < K ≤ min{M,N}), the diversity order is derived in [21] and is

shown to be (M −K +1)(N −K +1) when independent K symbols are simultaneously

transmitted through theK largest channel eigenmodes at a fixed rate. In [118], the DMT

of MIMO systems with both CSIT and CSIR is investigated with independent data

streams transmitted over the channel eigenmodes using water-filling power allocation

with short term power constraint, but without coding over channel eigenmodes and time.

The DMT of each of individual substreams is obtained and the result is used to derive

an optimal rate allocation scheme to obtain the optimal DMT of spatial multiplexing.

In this chapter, unlike [21, 118] that assume perfect CSIT, we are interested in the

optimal DMT of multiple beamforming systems where only the right singular vectors of
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channel matrix corresponding to the first K largest singular values are available at the

transmitter (i.e., partial CSIT). The resulting optimal DMT can provide a performance

limit for limited feedback unitary precoding [32]. On the other hand, MIMO systems

with perfect CSIT do not have a finite diversity order if CSIT are fully exploited [119].

6.2 System Model

Again, we consider a MIMO system withM transmit antennas and N receive antennas

over a frequency-flat, block-fading channel. The N ×M channel matrix H has i.i.d.

entries, each of which is a circularly symmetric, complex Gaussian random variable with

zero mean and unit variance, i.e., [H ]ij ∼ CN (0, 1). [H ]ij (the element at the ith row

and the jth column of H) represents the path gain (channel coefficient) between the jth

transmit antenna and the ith receive antenna. The channel matrix H remains constant

within a block of T symbols, i.e., the block length is much smaller than the channel

coherent time. The system model per transmission can be expressed as

ỹ = Hx̃+ w̃ (6.1)

where x̃ ∈ CM×1 and ỹ ∈ CN×1 are the transmitted and received signals, respectively.

The N × 1 vector w̃ is the circularly symmetric, complex Gaussian noise and has i.i.d.

entries, w̃i ∼ CN (0, 1). The transmitted signal x̃ is normalized so that the total transmit

power per channel use satisfies

1

T
E[
∥

∥

∥
X̃

∥

∥

∥

2

F
] ≤ SNR
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where X̃ = [x̃1, ..., x̃T ] is a block of transmitted signal. SNR here refers to the average

SNR at each receive antenna, and ‖·‖2F is the Frobenius norm of a matrix.

We assume that the receiver knows the channel matrix H perfectly. Define

m
∆
= max{M,N}, n

∆
= min{M,N}.

The singular value decomposition (SVD) of H is written as

H = UΛ̄V H

where U and V are unitary matrices of size N × N and M ×M , and Λ̄ is an N ×M

diagonal matrix with n nonnegative singular values λ
1
2
i of H on its main diagonal. In

fact, the diagonal entries of Λ̄ are the nonnegative square roots of the eigenvalues of

HHH if N ≤ M (or HHH if N > M); the columns of U are the eigenvectors of

HHH ; and the columns of V are the eigenvectors of HHH.

With SVD of H , when V is known at the transmitter we can rewrite the channel

model (6.1) as

ȳ = Λ̄x̄+ w̄ (6.2)

where ȳ = UH ỹ, x̄ = V H x̃, and w̄ = UHw̃ contains i.i.d., circularly symmetric, com-

plex Gaussian entries of zero mean and unit variance, i.e., w̄i ∼ CN (0, 1), since unitary

transformation does not change the distribution of w̃. x̄ is the equivalent transmitted

signal vector and can be completely constructed at the transmitter. Eq. (6.2) effectively

decouples the channel (6.1) into n independent, parallel channels

ȳi = λ
1
2
i x̄i + w̄i, 1 ≤ i ≤ n (6.3)
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since the rest of components of ȳ (if any) are independent of the transmitted signal

and the x̄i’s for i > n (if any) don’t have any contribution. We call these independent,

parallel channels the channel eigenmodes (or eigenchannels), since the transmission and

the reception are performed along the column vector directions of V and U , respectively.

Using the channel eigenmodes for data transmission (known as beamforming) requires

linear precoding at the transmitter (see [22, and references therein]). Without of loss

generality, we assume λn ≥ ... ≥ λ1 ≥ 0.

We consider multiple beamforming with size K (1 < K ≤ n) and assume that only

K column vectors of V corresponding to the first K largest eigenvalues are known, and

the instantaneous eigenvalues are not known at the transmitter. Therefore, the channel

eigenmodes

ȳi = λ
1
2
i x̄i + w̄i, n−K + 1 ≤ i ≤ n, (6.4)

are used. We use

y = Λx+w (6.5)

to express (6.4) in a vector-matrix form, where Λ is a K × K diagonal matrix with

λ
1
2
n−K+1, ..., λ

1
2
n on its main diagonal. K × 1 vectors y, x, and w are, respectively, the

output, input, and noise of channel eigenmodes. E[wwH ] = I. In multiple beamforming,

the transmit power still needs to satisfy the total power constraint

1

T
E[‖X‖2F ] ≤ SNR

where X = [x1 x2 · · · xT ] ∈ CK×T and xi is the transmitted signal vector of the ith

channel use within a block.

Diversity gain and multiplexing gain are two fundamental concepts in DMT theory.
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MIMO channels provide spatial diversity to improve link reliability. A MIMO channel

with M transmit antennas and N receive antennas provides MN individual transmit-

receive antenna pairs. The goal of the diversity gain is to provide the receiver with

multiple independently faded replicas of the transmitted symbols in the spatial domain.

Statistically, the probability that all independently faded replicas experience deep fading

simultaneously is small. Thus, the link reliability is improved.

On the other hand, the MIMO channel ergodic capacity with CSIR in the high-SNR

regime can be well approximated as [1, 2]

C(SNR) ≈ n log
SNR

M
.

The channel capacity increases with SNR as n log SNR. Compared with log SNR, the

SISO ergodic capacity with CSIR in the high-SNR regime, n serves as the multiplexing

gain. In order to achieve a certain fraction of the capacity in the high-SNR regime, we

consider schemes that support a data rate which also increases with SNR. We need to

define a scheme as a family of codes {C(SNR)} with coding over a block (with coding

length T ), one at each SNR level. Let R(SNR) be the rate of the code C(SNR). If the

supported data rate of this scheme meets

R(SNR) ≈ r log SNR,

then we say that multiplexing gain r is achieved.

Definition: A coding scheme {C(SNR)} is said to achieve a spatial multiplexing gain
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r and a diversity gain d if the data rate

lim
SNR→∞

R(SNR)

log SNR
= r

and the average error probability (averaged over the channel fading, the noise and the

transmitted signals)

lim
SNR→∞

logPe(SNR)

log SNR
= −d.

For each r, define d∗(r) to be the supremum of the diversity gain achieved over all

schemes.

We define the symbol
.
= to denote exponential equality, i.e., if

lim
SNR→∞

log f(SNR)

log SNR
= c

we write f(SNR)
.
= SNRc. The symbols

.
≤ and

.
≥ are similarly defined.

6.3 Optimal DMT of Multiple Beamforming

6.3.1 Outage Probability - A Lower Bound on Error Probability

In this subsection, we calculate the outage probability in the high-SNR regime, which

provides a lower bound on error probability, an upper bound on diversity gain.

The outage probability of the channel described by (6.5) is defined as [7]

Pout(R) = inf
Q≥0,Tr{Q}≤SNR

Pr(log det(I +ΛQΛH) < R)

= inf
Q≥0,Tr{Q}≤SNR

Pr(log det(I +QΛ2) < R)
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where Q = E[xxH ]. Since Pout(R) can be upper-bounded by taking Q = (SNR/K)I

and lower-bounded by taking Q = (SNR)I, we have

Pr(log det(I +
SNR

K
Λ2) < R) ≥ Pout(R) ≥ Pr(log det(I + SNRΛ2) < R).

At high SNR,

lim
SNR→∞

log Pr(log det(I + SNR
K Λ2) < R)

log SNR

= lim
SNR→∞

log Pr(log det(I + SNR
K Λ2) < R)

log SNR
K

= lim
SNR→∞

log Pr(log det(I + SNRΛ2) < R)

log SNR
.

We have

Pout(R)
.
= Pr(log det(I + SNRΛ2) < R)

= Pr(log
n
∏

i=n−K+1

(1 + SNRλi) < R).

In order to compute Pout(R), we need the joint probability density (pdf) function

of {λn−K+1, ..., λn}. We first review the joint pdf of all eigenvalues of an uncorrelated

central Wishart matrix and the joint pdf of transformations of these eigenvalues given

in [7, Lemma 3].

Lemma 9 Let R be an m×n random matrix with i.i.d. CN (0, 1) entries. Suppose that

m ≥ n, λ1 ≤ λ2 ≤ · · · ≤ λn are the ordered nonzero eigenvalues of RHR. Then the joint

pdf of λi’s is

p(λ1, ..., λn) = K−1
m,n

n
∏

i=1

λm−n
i

∏

i<j

(λi − λj)
2e−

∑n
i=1 λi
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where Km,n is a normalization constant. Define αi := − log λi/ log SNR, for all i. The

joint pdf of the random vector α = [α1, ..., αn] is

p(α) = K−1
m,n(log SNR)

n
n
∏

i=1

SNR−(m−n+1)αi

∏

i<j

(SNR−αi−SNR−αj )2 exp

[

−
n
∑

i=1

SNR−αi

]

by changing variable λi = SNR−αi , for all i.

Let R = r log SNR, where 0 ≤ r ≤ K [118]. In the high-SNR regime, we have

Pout(r log SNR)
.
= Pr(log

n
∏

i=n−K+1

(1 + SNRλi) < r log SNR).

Let λi = SNR−αi . At high SNR, (1 + SNRλi)
.
= SNR(1−αi)+ , where (x)+ denotes

max{0, x}. We have

Pout(r log SNR)
.
= Pr

[

n
∏

n−K+1

SNR(1−αi)
+
< SNRr

]

= Pr

[

n
∑

n−K+1

(1− αi)
+ < r

]

.

Define α1 = (α1, ..., αn−K) and α2 = (αn−K+1, ..., αn). In order to calculate the proba-

bility of
∑n

n−K+1 (1− αi)
+ < r, we need the marginal pdf of α2 which can be expressed

as

p(α2) =

∫ ∞

αn−K+1

...

∫ ∞

α2

p(α)dα1...dαn−K .

By definition, for i < j, αi ≥ αj . Denote the setA2 := {(αn−K+1, ..., αn) :
∑n

i=n−K+1(1−
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αi)
+ < r}. The outage probability is obtained as

Pout(r log SNR)

.
=

∫

A2

p(α2)dα2

=

∫

A2

(

∫ ∞

αn−K+1

...

∫ ∞

α2

p(α)dα1...dαn−K

)

dαn−K+1...αn

=

∫

A2

(
∫ ∞

αn−K+1

...

∫ ∞

α2

K−1
m,n(log SNR)

n
n
∏

i=1

SNR−(m−n+1)αi

∏

i<j

(SNR−αi − SNR−αj)2

· exp

[

−
n
∑

i=1

SNR−αi

]

dα1...dαn−K

)

dαn−K+1...dαn

We are interested in the SNR exponent of Pout(r log SNR) in the high-SNR regime, i.e.,

lim
SNR→∞

log Pout(r log SNR)

log SNR
,

using the same arguments in [7]: 1) The term K−1
m,n(log SNR)

n has no effect on the SNR

exponent because

lim
SNR→∞

log[K−1
m,n(log SNR)

n]

log SNR
= 0;

2) For any αi < 0, the term exp(−SNR−αi) decays with SNR exponentially. At high

SNR, the integral over any αi < 0 can be ignored. Therefore, the integrals are only

considered for any αi ≥ 0. For any αi ≥ 0, at high SNR, exp(−SNR−αi) approaches

1 when αi > 0, and approaches 1/e when αi = 0, this form has no effect on the SNR

exponent and can be ignored. For any i < j, αi ≥ αj. Let us define the following set:

A
′

2 := {α2 ∈ RK+|αn−K+1 ≥ ... ≥ αn ≥ 0 and

n
∑

i=n−K+1

(1− αi)
+ < r} (6.6)

A
′

1 := {α1 ∈ R(n−K)+|α1 ≥ ... ≥ αn−K ≥ αn−K+1} (6.7)
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where Rm+ represents the set of m× 1 vectors with non-negative elements. The integral

becomes

Pout(r log SNR)
.
=

∫

A
′
2

(
∫

A
′
1

n
∏

i=1

SNR−(m−n+1)αi

∏

i<j

(SNR−αi − SNR−αj )2dα1

)

dα2.

(6.8)

We have the following theorem about the outage probability when SNR→ ∞.

Theorem 10 For the beamforming channel described by Eq.(6.5), let the data rate be

R = r log SNR(b/s/Hz), with 0 ≤ r ≤ K. The outage probability satisfies

Pout(r log SNR)
.
= SNR−dout(r)

where

dout(r) = inf
α2∈A

′
2

[

(n−K + 1)(m −K + 1)αn−K+1 +
n
∑

n−K+2

(m− n+ 2i− 1)αi

]

(6.9)

and A
′

2 is defined in (6.6).

Proof. Please see Appendix C.

Given 0 ≤ r ≤ K, dout(r) can be explicitly calculated as follows.

1. Denote the coefficient of αi (n−K + 1 ≤ i ≤ n) as ci. We have

cn−K+1 = (n−K + 1)(m−K + 1) > 0

ci = m− n+ 2i− 1 > 0 i = n−K + 2, ..., n

(6.10)
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2. Find the largest index i, denoted as i∗, (n−K + 1 ≤ i∗ ≤ n) such that

i∗ = arg min
n−K+1≤i1≤n

1

i1 − n+K

i1
∑

i=n−K+1

ci (6.11)

3. When n− i∗ ≤ r ≤ K,

αn−K+1 = ... = αi∗ =
K − r

i∗ − n+K
,

αi∗+1 = ... = αn = 0;

and

dout(r) =
K − r

i∗ − n+K

i∗
∑

i=n−K+1

ci

When 0 ≤ r ≤ n− i∗,

αn−K+1 = ... = αn−⌈r⌉ = 1,

αn−⌈r⌉+1 = ⌈r⌉ − r,

αn−⌈r⌉+2 = ... = αn = 0;

and

dout(r) =

n−⌈r⌉
∑

n−K+1

ci + αn−⌈r⌉+1cn−⌈r⌉+1

where ⌈x⌉ denotes the smallest integer not less than x.

This procedure can be well explained using Fig. 6.1. There areK identical containers

of height 1, labeled αn−K+1 to αn. When the faucet is turned on, the water level goes

up. The water level in each container is the value of its corresponding α. The first

i∗ − n+K containers from αn−K+1 to αi∗ are connected together at their bottom such
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Figure 6.1: Solution of α2 by water-pouring.

that they always have the same water level. When overflow occurs, water goes to the

next containers (on the right, for i ≥ i∗+1) one by one through the water pipes with each

connecting two adjacent containers at their top. If water is not shut down, all containers

are eventually full, i.e. αn−K+1 = ... = αn = 1, and this is the case of r = 0. For the

general case of 0 ≤ r ≤ K, water is shut down when the condition
∑n

i=n−K+1(1−αi)
+ = r

is met and the optimal values of αi’s to reach dout(r) are determined by the final water

level.

Consider coding across K independent channel eigenmodes in the channel described

by (6.5). The transmission rate per channel use is R = r log SNR. We assume a Gaussian

codebook X of size 2RT . Each codeword X i has a coding length of T , 1 ≤ i ≤ 2RT ,

which means that transmission of each codeword needs to use channel (6.5) T times, i.e.,
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Xi ∈ CK×T . T is much less the channel coherent time such that during each codeword

transmission, the channel is constant. Since the transmitter has no knowledge of the

channel matrix Λ, the construction of codebook X is independent of Λ such that each

codeword is chosen from i.i.d. Gaussian ensemble. The transmission of codeword Xi

is independent of channel matrix Λ and is uniformly drawn from the codebook. The

channel with codeword transmission can be written as

Y = ΛX +W (6.14)

whereX, Y , and W ∈ CK×T . By Fano’s inequality, the lower-bound of the average error

probability, that is, the lower-bound of the probability the receiver detects a codeword

other than the one the transmitter sends, is determined by the following lemma.

Lemma 11 For the channel in (6.5), let the data rate be R = r log SNR(b/s/Hz). For

any coding scheme, the probability of a detection error is lower-bounded by

Pe(SNR)
.
≥ SNR−dout(r) (6.15)

where dout(r) is defined in (6.9).

Proof. Follow the proof of [7, Lemma 5] with H being replaced by Λ, we have this

result.

6.3.2 Gaussian Bound - An Upper Bound on Error Probability

Next we develop an upper-bound on Pe(SNR). We assume that the channel input X

is drawn from codebook X with data rate R = r log SNR(b/s/Hz). The average error
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probability is upper-bounded as [7]

Pe(SNR) = Pout(R)P (error | outage) + P (error, no outage)

≤ Pout(R) + P (error, no outage).

Using the same technique in the proof of [7, Theorem 2], we can show that

P (error, no outage)
.
≤

∫

¯
A

′
2

SNR−dG(α2,r)dα2

where

dG(α2, r) = (n−K + 1)(m−K + 1)αn−K+1+

n
∑

i=n−K+2

(m− n+ 2i− 1)αi + T [
n
∑

i=n−K+1

(1− αi)
+ − r]

and

Ā
′

2 = {α2 ∈ RK+|αn−K+1 ≥ ... ≥ αn ≥ 0 and

n
∑

i=n−K+1

(1− αi)
+ ≥ r}

represents the set of no-outage event, a complement of the set of outage event A
′

2. In

the high-SNR regime,
∫

¯
A

′
2

SNR−dG(α2,r)dα2 is dominated by
∫

¯
A

′
2

SNR−dG(r)dα2 with

dG(r) = min
α2∈

¯
A

′
2

dG(α2, r). (6.16)

When the coding length T satisfies

T ≥ T ∗ ∆
= max

{⌈

1

i∗ − n+K

i∗
∑

i=n−K+1

ci

⌉

, cn

}

(6.17)
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where cn = m−n+2n−1 = m+n−1, the minimum is reached when
∑n

i=n−K+1(1−αi)
+ =

r. The term in (6.16) is expressed as

dG(r) = min∑n
i=n−K+1(1−αi)+=r

[

(n−K + 1)(m −K + 1)αn−K+1

+

n
∑

i=n−K+2

(m− n+ 2i− 1)αi

]

.

From (6.9), we can verify that dG(r) = dout(r), for 0 ≤ r ≤ K, and

Pe(SNR) ≤ Pout(R) + P (error, no outage)

.
≤ SNR−dout(r) + SNR−dG(r)

.
= SNR−dout(r). (6.18)

Combining (6.15) with (6.18), we have

Pe(SNR)
.
= SNR−dout(r).

Let d∗MB(r) denote the optimal DMT of multiple beamforming with T ≥ T ∗. The largest

diversity gain obtained by any coding scheme, for 0 ≤ r ≤ K, is

d∗MB(r) = dout(r).

Clearly, when r = 0, d∗MB(0) = d∗max =MN ; when r = K, d∗MB(K) = d∗min = 0.
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6.4 Optimal DMT of Multiple Beamforming with T ≥ T ∗ versus

Fundamental Optimal DMT of Multiple Antenna System with
CSIR with T ≥ M +N − 1

In this section, we evaluate the optimal DMT of multiple beamforming to gain

insights of the tradeoff. The fundamental optimal DMT of independently Rayleigh-faded

multiple-antenna channels with CSIR, denoted as d∗CSIR(r), is given by the piecewise-

linear function connecting the point (k, d∗CSIR(k)), k = 0, 1, ..., n, where

d∗CSIR(k) = (m− k)(n− k) (6.19)

when the coding length T ≥M +N − 1 [7, Theorem 2].
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Figure 6.2: Diversity-multiplexing tradeoff: d∗MB(r) and d∗CSIR(r) (M = N = 6 and
K = 3, 4).
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Fig. 6.2 shows the tradeoff curves of multiple beamforming with K = 3 and K = 4

in a system with 6 transmit antennas and 6 receive antennas. The fundamental tradeoff

curve of the same system with CSIR is also included. When K = 3, the tradeoff curve

d∗MB(r) is a straight line connecting the points (0, 36) and (3, 0) and d∗MB(r) < d∗CSIR(r),

for 0 < r ≤ 3; when K = 4, the tradeoff curve overlaps with the fundamental tradeoff

curve for 0 ≤ r ≤ 2 and d∗MB(2) = d∗CSIR(2) = 16. When 2 ≤ r ≤ 4, d∗MB(r) is a straight

line connecting the points (2, 16) and (4, 0) and d∗MB(r) < d∗CSIR(r) when 2 < r ≤ 4.

For Fig. 6.3, the system settings are M = 5, N = 4, and K = 2, 3. When K = 2, the

tradeoff curve d∗MB(r) is a straight line connecting the points (0, 20) and (2, 0). d∗MB(r)

is equal to d∗CSIR(r) when r = 0 and is strictly less than d∗CSIR(r) when 0 < r ≤ 2. When

K = 3, d∗MB(r) = d∗CSIR(r) when 0 ≤ r ≤ 2 and d∗MB(r) < d∗CSIR(r) when 2 < r ≤ 3.

In Fig. 6.2 and Fig. 6.3 we observe that d∗MB(r) ≤ d∗CSIR(r). The following Theorem

summarizes this result.

Theorem 12 Given any multiplexing gain r, 0 ≤ r ≤ K (1 ≤ K ≤ n), the optimal

diversity gain of multiple beamforming of channel (6.5) d∗MB(r) with T ≥ T ∗ is less than

or equal to the optimal diversity gain d∗CSIR(r) provided by the same multiple antenna

system with CSIR when T ≥ m+n−1, where T ∗ is given in (6.17). For the special case

of K = n, d∗MB(r) = d∗CSIR(r).

Proof. Assume T ≥ T ∗ for d∗MB(r) and T ≥ m+ n − 1 for d∗CSIR(r). First we consider

K = n. It’s obvious that d∗MB(r) = d∗CSIR(r) by comparing (6.9) with [7, Eq. 14]. Both

DMT curves are identical and they are both piecewise-linear function connecting the

points (k, (m − k)(n − k)), k = 0, 1, ..., n.

Now consider K < n. Please note d∗MB(r) = 0 when r ≥ K, while d∗CSIR(r) > 0 when

K ≤ r < n and d∗CSIR(r) = 0 when r ≥ n. In order to finish the proof, we only need to
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Figure 6.3: Diversity-multiplexing tradeoff: d∗MB(r) and d∗CSIR(r) (M = 5, N = 4 and
K = 2, 3).

show d∗MB(r) ≤ d∗CSIR(r) when 0 ≤ r ≤ K.

Between the point k and k + 1 (k = 0, ..., n − 1), d∗CSIR(r) is a straight line and has

the slope

(m− k − 1)(n − k − 1)− (m− k)(n − k) = −(m+ n− 2k − 1). (6.20)

Recall in step 3) of the calculation of dout(r) in Section 6.3, there are two regions:

n− i∗ ≤ r ≤ K and 0 ≤ r ≤ n− i∗, where the optimal diversity is calculated differently.

By definition of i∗ in (6.11):
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1. When n−K + 2 ≤ i∗ ≤ n, we have

1

(i∗ − 1)− n+K

i∗−1
∑

i=n−K+1

ci ≥
1

i∗ − n+K

i∗
∑

i=n−K+1

ci

which implies

1

i∗ − n+K

i∗
∑

i=n−K+1

ci ≥ ci∗ (6.21)

i) When 0 ≤ r ≤ n− i∗,

d∗MB(r) =

n−⌈r⌉
∑

n−K+1

ci + αn−⌈r⌉+1cn−⌈r⌉+1

where αn−⌈r⌉+1 = ⌈r⌉ − r. When r takes integer k, 0 ≤ k ≤ n − i∗, with

ci in (6.10) plugged in, d∗MB(k) =
∑n−k

n−K+1 ci = (n − k)(m − k). Comparing

d∗MB(k) with (6.19), we have d∗MB(k) = d∗CSIR(k). When r is not an integer,

say k < r < k + 1 (k = 0, ..., n − i∗ − 1), d∗MB(r) is a straight line connecting

(k, d∗MB(k)) and (k + 1, d∗MB(k + 1)) with a slope of −cn−⌈r⌉+1 = −cn−k =

−(m − n + 2(n − k) − 1) = −(m+ n − 2k − 1), which is the same as (6.20).

Therefore, we have d∗MB(r) = d∗CSIR(r) for 0 ≤ r ≤ n− i∗. The optimal DMT

curve d∗MB(r) exactly matches the fundamental DMT curve d∗CSIR(r) in this

region.

ii) When n− i∗ < r ≤ K,

d∗MB(r) =
K − r

i∗ − n+K

i∗
∑

i=n−K+1

ci,

is a straight line connecting (n − i∗,
∑i∗

i=n−K+1 ci) and (K, 0) with a slope
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−1
i∗−n+K

∑i∗

i=n−K+1 ci. Using (6.20), we can verify that the slope of d∗CSIR(r)

when n − i∗ ≤ r ≤ K is lower bounded by −(m + n − 2(n − i∗) − 1) =

−(m− n+ 2i∗ − 1) = −ci∗ . By (6.21), −1
i∗−n+K

∑i∗

i=n−K+1 ci ≤ −ci∗ . Since at

r = n− i∗, d∗MB(n− i∗) = d∗CSIR(n− i∗) ( both tradeoff curves start decaying

from same point), we have d∗MB(r) ≤ d∗CSIR(r) for n− i∗ < r ≤ K.

2. When i∗ = n−K + 1:

i) When 0 ≤ r ≤ n− i∗ = K − 1, using the same arguments as in case i) of 1),

we have d∗MB(r) = d∗CSIR(r), for 0 ≤ r ≤ K − 1.

ii) When n− i∗ = K−1 < r ≤ K, we use arguments slightly different from those

in case ii) of 1). In this region,

d∗MB(r) = (K − r)cn−K+1,

is a straight line connecting (K−1, cn−K+1) and (K, 0) with a slope−cn−K+1 =

−(n − K + 1)(m − K + 1). Using (6.20), we find the slope of d∗CSIR(r):

−(m+n−2K+1) when K−1 ≤ r ≤ K. Since −cn−K+1 < −(m+n−2K+1)

and d∗MB(K− 1) = d∗CSIR(K− 1), we have d∗MB(r) < d∗CSIR(r) for K− 1 < r ≤

K.

Combining 1) and 2), we complete the proof.

For any fixed-rate transmission, the multiplexing gain r = 0. The maximum diversity

gain provided by multiple beamforming is d∗MB(0) = MN . Comparing d∗MB(0) with the

results in [21, 118], which show that the scheme transmitting K symbols independently

drawn from the same constellation (equivalent to the same data rate on each channel

eigenmode) with coding length T = 1 on the first K (K > 1) largest channel eigenmodes
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has a maximum diversity order (M − K + 1)(N − K + 1), we observe an increase in

diversity gain of

MN − (M −K + 1)(N −K + 1) = (K − 1)(M +N −K + 1) > 0.

This diversity increase is provided by coding over both channel eigenmodes and time.

In Fig. 6.2 and Fig. 6.3, the optimal DMT curve d∗MB(r) decreases faster when K is

small than the one with a large K. This can be explained as follows. As K decreases,

more channel eigenmodes are discarded, losing protection that could have been provided

by the channel. Thus, when r increases, the error rate increases faster when K is small.

6.5 Optimal DMT of Multiple Beamforming with T ≥ T ∗ versus
Optimal DMT of Spatial Multiplexing with CSIT with T = 1

in [118]

The optimal DMT of spatial multiplexing with CSIT is derived without coding across

eigenmodes and time, i.e., independent n symbols with coding length T = 1 are sent

over n eigenchannels [118]. Since Full CSIT is available at the transmitter, the capacity-

achieving water-filling power allocation is performed on the symbols on all available

eigenmodes based on instantaneous eigenvalues λi’s. The channel model (6.5) becomes

y = ΛPx+w, (6.22)

where P is a K×K diagonal matrix with diagonal entries p1, ..., pK . pk is the power for

the symbols on the eigenmode corresponding to the kth largest eigenvalue λn−k+1. For

notation simplicity, we denote the kth largest eigenvalue as λ̃k = λn−k+1. pk = (µ−λ̃−1
k )+

due to water-filling principle and µ is determined by the short term power constraint
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∑K
k=1 pk = SNR (i.e., no power adaptation to the fading in the time domain). The

individual DMT dkS(r) of the kth (1 ≤ k ≤ n) largest eigenchannel with water-filling

power allocation for the channel model (6.22) without coding over eigenmodes and time

is given by [118, Theorem 1]

d
(k)
S (rk) = dk(1− rk) 0 ≤ rk ≤ 1 (6.23)

where dk = (m−k+1)(n−k+1). Based on this result, for the general case of 0 ≤ r ≤ n,

by imposing the optimal rate allocation (
∑I

k=1 rk = r, I ≥ ⌈r⌉) that assures the same

SNR exponent d(I, r) = dk(1 − rk) for the active I substreams and further maximizing

the resulting d(I, r) over I (⌈r⌉ ≤ I ≤ n), the optimal DMT curve of channel (6.22),

denoted as d∗CSIT(r), can be obtained for the spatial multiplexing systems with full CSI

at the transmitter without coding over eigenmodes (space) and time.

Now we compare d∗MB(r) and d
∗
CSIT(r). First, Theorem 12 shows that when K = n,

d∗MB(r) = d∗CSIR(r) for the entire range of r, i.e., 0 ≤ r ≤ n. [118, Theorem 3] shows

that d∗CSIT(r) = d∗CSIR(r) only when r = 0, n and d∗CSIT(r) < d∗CSIR(r) when 0 < r < n.

Therefore, d∗CSIT(r) ≤ d∗MB(r) for 0 ≤ r ≤ n when K = n. This result is not surprising

since d∗CSIT(r) is derived without coding over space and time, i.e., coding independently

over eigenmodes and time. On the other hand, d∗MB(r) is obtained with coding over

space and time even with partial CSI1. This shows coding is more beneficial.

To gain more insights, consider equal power allocation pk = SNR
K , instead of water-

filling power allocation pk = (µ − λ̃−1
k )+, and no coding over space and time for K

eigenchannels, K = 1, ..., n−1. It is straightforward to go through the steps in [118, IV.A]

1Clearly water-filling power adaptation is not possible in the configuration of multiple beamforming
since eigenvalue information is not available at the transmitter.
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to obtain the

P ke (Rk)
.
= Pr(λ̃k ≤ SNRrk−1)

where Rk = rk log SNR is the data rate of the kth largest eigenmode corresponding to

λ̃k. P ke (Rk) is the symbol error rate of the corresponding eigenmode. Following the

technique in the proof of [118, Theorem 1], we have same result d
(k)
S (rk) = dk(1 − rk)

for 0 ≤ rk ≤ 1 as in (6.23). This shows that water-filling power allocation with short

term power constraint
∑K

k=1 pk = SNR without coding over space and time has no

advantage in terms of maximizing diversity gain over equal power allocation; both power

allocation schemes indeed have exactly the same DMT. For fair comparison between

d∗MB(r) and d
∗
CSIT(r) for K = 1, ..., n− 1, we only use the full CSIT of the first K largest

channel eigenmodes, denoted as CSITK , for spatial multiplexing. Since the optimal

DMT of multiple beamforming for any K is obtained by using equal power allocation

with coding over space and time (T ≥ T ∗), intuitively it should be better than the DMT

of spatial multiplexing with CSITK using water-filling power allocation with short term

power constraint (equivalent to equal power allocation) and the optimal rate allocation,

but without coding over space and time.

Next, we derive d∗CSITK
(r), for K = 1, ..., n − 1. This is a direct extension of [118,

Theorem 3]. Following the same arguments, we can show that d∗CSITK
(r) is a piecewise-

linear function connecting the points (0,mn), (r1(k), d
∗
S(k)), and (K, 0), where

r1(k) = k − dk+1





k
∑

j=1

1/dj





d∗S(k) = (m− k)(n− k) for k = 1, ...,K − 1

(6.24)

with dk = (m−k+1)(n−k+1). In Fig. 6.4, we plot the optimal DMT curves of d∗MB(r),



106

d∗CSIT3
(r) and d∗CSIR(r) withM = N = 5 and K = 3. The plot shows d∗CSIT3

(r) ≤ d∗MB(r)

for 0 ≤ r ≤ 3.
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Figure 6.4: Diversity-multiplexing tradeoff: d∗MB(r), d
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(r) and d∗CSIR(r) (M = N = 5
and K = 3).

In general, we have following result.

d∗CSITK
(r) ≤ d∗MB(r) 0 ≤ r ≤ K, (6.25)

for K = 1, 2, ..., n.

The proof is provided as follows:

Since the case of K = n has been analyzed in the beginning of this section, we only
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focus on K = 1, ..., n − 1. In the proof of Theorem 12, we show that 1) The optimal

DMT d∗MB(r) is a piecewise-linear function connecting the points (k, (m − k)(n − k)),

for k = 0, 1, ..., n − i∗, and the point (K, 0) (See illustration in Fig. 6.5, where the point

C = (n− i∗, [m−(n− i∗)][n−(n− i∗)]) and the point B = (K, 0)); 2) d∗MB(r) = d∗CSIR(r),

for 0 ≤ r ≤ n− i∗.

When k = 1, ..., n − i∗, the performance degradation of d∗CSITK
(r) compared with

optimal DMT curve d∗MB(r) (equivalent to d
∗
CSIR(r)) can be characterized by multiplexing

gain loss [118]

∆r(k) = k − r1(k) = dk+1





k
∑

j=1

1/dj



 > 0 (6.26)

at the diversity gain (m− k)(n − k). Thus, we have

d∗CSITK
(r) ≤ d∗MB(r) 0 ≤ r ≤ r1(n− i∗) (6.27)

and equality holds when r = 0.

Next, we need to show d∗CSITK
(r) ≤ d∗MB(r) when r1(n−i

∗) < r ≤ K. To facilitate the

analysis, we first show that the function d∗CSITK
(r) with r ∈ [0,K] is a convex function

2.

The curve of d∗CSITK
(r) when 0 ≤ r ≤ K has K line segments. The line represented

by the kth segment from left to right, denoted as Lk, has a slope of (which can be derived

2Convex function [120, 3.1.1]: A function f : Rn → R is convex if domf is a convex set and if for
all x, y ∈ domf , and θ with 0 ≤ θ ≤ 1, we have f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). Convex
set [120, 2.14]: A set C is convex if the line segment between any two points in C lies in C, i.e., if for
any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have θx1 + (1− θ)x2 ∈ C.
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using (6.24))

ρk = −
1

∑k
j=1 1/dj

and

ρ1 < ρ2 < ... < ρK .

We can see d∗CSITK
(r) = max{L1(r), ..., LK(r)} when 0 ≤ r ≤ K. Since Lk is a convex

function (a line is both convex and concave function), and it is well known that if

f1, ..., fm are convex, then their pointwise maximum f(x) = max{f1(x), ..., fm(x)} is

also convex [120, 3.23], we readily have that d∗CSITK
(r) with r ∈ [0,K] is a convex
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function.

Define a linear function g1(r) representing the line segment connecting the points

A = (r1(n−i
∗), [m−(n−i∗)][n−(n−i∗)]) and B = (K, 0). See illustration in Fig. 6.5. By

using the convex function definition, we have d∗CSITK
(r) ≤ g1(r) with r1(n−i

∗) ≤ r ≤ K.

In order to show d∗CSITK
(r) ≤ d∗MB(r) when r1(n − i∗) < r ≤ K, we only need to show

g1(r) ≤ d∗MB(r) when r1(n− i∗) < r ≤ K.

When i∗ = n, g1(r) = d∗MB(r) with 0 ≤ r ≤ K. Thus we have g1(r) ≤ d∗MB(r) with

r1(n − i∗) ≤ r ≤ K.

When i∗ = n−K + 1, ..., n − 1, by definition of i∗ in (6.11), we have

1

i∗ − n+K

i∗
∑

i=n−K+1

ci <
1

i∗ + 1− n+K

i∗+1
∑

i=n−K+1

ci

which implies

1

i∗ − n+K

i∗
∑

i=n−K+1

ci < ci∗+1.

Using the arguments regarding the slope of each segment in d∗MB(r) in the proof of

Theorem 12, we can easily show that when 0 ≤ r ≤ n− i∗, each segment of d∗MB(r) has a

slope smaller than − 1
i∗−n+K

∑i∗

i=n−K+1 ci (i.e., the absolute value of the slope is greater

than 1
i∗−n+K

∑i∗

i=n−K+1 ci), which is the slope of segment BC with points B = (K, 0)

and C = (n − i∗, [m− (n− i∗)][n− (n− i∗)]). Thus,

g2(r) ≤ d∗MB(r) 0 ≤ r ≤ K (6.28)

where g2(r) is defined as a linear function representing the segment of BC and its ex-

tension between r = 0 and r = K. Since point A locates horizontally on the left side of
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point C (due to multiplexing gain loss in (6.26)), we have

g1(r) ≤ g2(r) r1(n− i∗) ≤ r ≤ K. (6.29)

Combining (6.28) and (6.29), we conclude that g1(r) ≤ d∗MB(r) with r1(n− i∗) ≤ r ≤ K.

Thus

d∗CSITK
(r) ≤ d∗MB(r) r1(n− i∗) ≤ r ≤ K. (6.30)

Consider both (6.27) and (6.30), we have (6.25).

6.6 Conclusion

In this chapter, we have analyzed the optimal DMT of multiple beamforming in

MIMO channels. We show that multiple beamforming with T ≥ T ∗ based on eigenvector

information at the transmitter does not increase the diversity gain compared with the

fundamental DMT of MIMO channels with CSIR and T ≥M +N − 1. Compared with

the optimal DMT of spatial multiplexing with full CSIT of the first K largest channel

eigenmodes using the scheme without coding over space and time, however, the optimal

DMT of multiple beamforming with T ≥ T ∗ is still better. Water-filling power allocation

with short-term power constraint (i.e., water-filling over space but not over time) does

not have any DMT advantage over equal power allocation if independent data streams are

sent over channel eigenmodes in parallel with coding length of T = 1. Thus, space-time

coding is important to explore the potentially achievable DMT.
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Chapter 7 – Conclusion

7.1 Summary

In this thesis, we first study the problem of binary index assignment for beamforming

codewords when the feedback channel is not error free. In a noisy feedback channel,

feedback errors are inevitable in the feedback indices. They lead to incorrect beamform-

ing vectors to be applied at the transmitter and thus degrade beamforming performance.

An index-assignment algorithm that minimizes the impact of feedback errors are pro-

posed. The proposed algorithm performs better than random index assignments. We

also prove that when there exist feedback errors, for a beamforming system with Mt

transmit antennas and Mr receive antennas, the diversity order is only Mr in an i.i.d.

Rayleigh-fading channel.

Second, in the limited-feedback beamforming scheme, the receiver must determine

the best codeword from the beamforming codebook and sends its index to the trans-

mitter. Exhaustive codeword search for the large-size codebooks becomes impractical

when the receiver has the limited computational power. The problem becomes worse

for OFDM systems where multiple subcarriers or subcarrier groups have to select their

own beamforming vectors simultaneously. We propose an ordering algorithm to reduce

the number of codeword being searched with negligible performance loss, thus reducing

codeword search complexity and search time.

Third, we compare angle feedback scheme and transmit antenna shuffling feedback

scheme for double space-time transmit diversity (DSTTD) systems with four transmit
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antennas and at least two receive antennas. Both schemes are simple and easy to imple-

ment. Transmit antenna shuffling feedback scheme for DSTTD systems has been adopted

in IEEE 802.16e standard. It is of interest to have a performance comparison between

these two schemes. First, we establish the equivalence between minimizing interference

terms and minimizing MSE of linear MMSE or ZF receiver in angle feedback scheme.

Then we show that angle rotation is sufficient to be applied on one transmit antenna,

which can be chosen arbitrarily in advance. For transmit antenna shuffling scheme, we

present a simplified general result about the selection of antenna shuffling matrices. We

prove that 1-bit angle feedback scheme does not provide a better performance than the

1-bit transmit antenna shuffling feedback scheme. We also show by simulations that

transmit antenna shuffling feedback is better than angle feedback with more than 1-bit

feedback in an i.i.d. Rayleigh-fading channel.

Fourth, we consider training power allocation for a closed-loop MIMO system in i.i.d.,

Rayleigh flat-fading channels with power constraint. For a block fading model with block

length T , if more intervals are dedicated to training, there will be fewer time slots left

for data transmission; if more power is dedicated to training, there will be less power for

data transmission. By maximizing the achievable rate, we first consider power allocation

between the training phase and the data transmission phase when every fading block is

assigned the same power so that only spatial power control is performed. In this case, we

show that the optimal percentage of the power used for training (or data transmission)

is the same as that in open-loop systems. We then consider power allocation between

the training phase and the data transmission phase when the transmitter varies data

power to adapt fading using both spatial and fading power control. We show that the

optimal percentage of the average power used for training asymptotically converges to

its counterpart in the first case where only spatial power control is performed.
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Finally, we analyze the optimal DMT of multiple beamforming in MIMO channels.

We show that multiple beamforming with T ≥ T ∗ based on eigenvector information at

the transmitter does not increase the diversity gain compared with the fundamental DMT

of MIMO channel with CSIR and T ≥ M + N − 1. Compared with the optimal DMT

of spatial multiplexing with full CSIT of the first K largest channel eigenmodes using

the scheme without coding over channel eigenmodes (i.e., space) and time, however, the

optimal DMT of multiple beamforming with T ≥ T ∗ provides a better diversity gain.

This advantage is guaranteed by space-time coding.

7.2 Future work

In analyzing the problem of optimal power allocation between training and data trans-

mission, we have assumed the symbol synchronization is ideal for both open-loop systems

and closed-loop systems. This is not realistic in certain applications where each burst of

the transmission packet must carry known symbols, known as a training sequence, for

synchronization. Like training-based channel estimation, training-based synchronization

has the same problem in training sequence design. In a block fading model with a block

length of T symbol intervals and power constraint, if more symbol intervals are dedicated

to synchronization, there will be fewer time slots for data transmission; if more power is

dedicated to synchronization, there will be less power for data transmission. How to de-

sign the optimal training sequence for synchronization or how to jointly design training

sequence for both synchronization and channel estimation in the sense of maximizing

achievable rate is of great value.
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Appendix A – Proof of Lemma 3

Please note in transmit antenna shuffling scheme, the rotation factor c1 = c2 = c3 =

c4 = 1. In the first step of the proof of the lemma, we claim that

ρµ− η =

M
∑

m=1

(ρmµm − ηm),

where ρm =
∑2

i=1

∑2
k=1

∣

∣hiℓm(k)

∣

∣

2
, µm =

∑2
i=1

∑2
k=1

∣

∣giℓm(k)

∣

∣

2
and ηm = |δ1,m|

2+|δ2,m|
2,

with

δ1,m =

2
∑

k=1

(h∗1ℓm(k)g1ℓm(k) + h2ℓm(k)g
∗
2ℓm(k)),

δ2,m =
2
∑

k=1

(h∗1ℓm(k)g2ℓm(k) − h2ℓm(k)g
∗
1ℓm(k)).

In this appendix, we give a detail proof of this claim using mathematical induction

method:

a) when Nr = 2, there is only one combination set which is ℓ1 = [1 2], the claim can be

verified easily.
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b) Assume the claim is valid for Nr = K, where K > 2, we have

ρµ− η
∆
= ΞK

=

( 2
∑

i=1

K
∑

j=1

|hij |
2

)( 2
∑

i=1

K
∑

j=1

|gij |
2

)

−

∣

∣

∣

∣

K
∑

j=1

h∗1jg1j +
K
∑

j=1

h2jg
∗
2j

∣

∣

∣

∣

2

−

∣

∣

∣

∣

K
∑

j=1

h∗1jg2j −
K
∑

j=1

h2jg
∗
1j

∣

∣

∣

∣

2

=

MK
∑

m=1

(ρmµm − ηm).

MK =







K

2






combination sets are {[1 2], [1 3], ..., [1 K], [2 3], [2 4], ..., [2 K], ..., [(K −

1) K]} with two indices in each set.

By mathematical induction theory, we need to show for Nr = K+1 the claim is valid

too under the assumption that the claim is valid when Nr = K. When Nr = K + 1, we

have

ρµ− η
∆
= ΞK+1

=

( 2
∑

i=1

K+1
∑

j=1

|hij |
2

)( 2
∑

i=1

K+1
∑

j=1

|gij |
2

)

−

∣

∣

∣

∣

K+1
∑

j=1

h∗1jg1j +

K+1
∑

j=1

h2jg
∗
2j

∣

∣

∣

∣

2

−

∣

∣

∣

∣

K+1
∑

j=1

h∗1jg2j −
K+1
∑

j=1

h2jg
∗
1j

∣

∣

∣

∣

2

= ΞK +∆.
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where

∆ =

( 2
∑

i=1

K
∑

j=1

|hij |
2

) 2
∑

i=1

|gi(K+1)|
2 +

( 2
∑

i=1

K
∑

j=1

|gij |
2

) 2
∑

i=1

|hi(K+1)|
2

−
(

h1(K+1)g
∗
1(K+1) + h∗2(K+1)g2(K+1)

)

K
∑

j=1

(

h∗1jg1j + h2jg
∗
2j

)

−
(

h∗1(K+1)g1(K+1) + h2(K+1)g
∗
2(K+1)

)

K
∑

j=1

(

h1jg
∗
1j + h∗2jg2j

)

−
(

h1(K+1)g
∗
2(K+1) − h∗2(K+1)g1(K+1)

)

K
∑

j=1

(

h∗1jg2j − h2jg
∗
1j

)

−
(

h∗1(K+1)g2(K+1) − h2(K+1)g
∗
1(K+1)

)

K
∑

j=1

(

h1jg
∗
2j − h∗2jg1j

)

Please note when Nr = K+1, MK+1 =







K + 1

2






combination sets (MK+1 =MK +K)

contain allMK sets in Nr = K case andK new sets [1 (K+1)], [2 (K+1)], ..., [K (K+1)].

Without loss of generality, we let ℓMK+l = [l (K + 1)] represent K new sets (1 ≤ l ≤ K)

and let ℓm’s (1 ≤ m ≤MK) be the other MK sets. We have

MK+K
∑

m=MK+1

(ρmµm − ηm) =

MK+K
∑

m=MK+1

ρmµm −

MK+K
∑

m=MK+1

ηm
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Plug receive antenna indices contained in new sets into ρm, µm and ηm, we have

MK+K
∑

m=MK+1

ρmµm =

( 2
∑

i=1

K
∑

j=1

|hij |
2

) 2
∑

i=1

|gi(K+1)|
2

+

( 2
∑

i=1

K
∑

j=1

|gij |
2

) 2
∑

i=1

|hi(K+1)|
2

+K

( 2
∑

i=1

|hi(K+1)|
2

) 2
∑

i=1

|gi(K+1)|
2

+

K
∑

j=1

(

(

2
∑

i=1

|hij |
2
)

2
∑

i=1

|gij |
2

)

MK+K
∑

m=MK+1

ηm =
(

h1(K+1)g
∗
1(K+1) + h∗2(K+1)g2(K+1)

)

K
∑

j=1

(

h∗1jg1j + h2jg
∗
2j

)

+
(

h∗1(K+1)g1(K+1) + h2(K+1)g
∗
2(K+1)

)

K
∑

j=1

(

h1jg
∗
1j + h∗2jg2j

)

+
(

h1(K+1)g
∗
2(K+1) − h∗2(K+1)g1(K+1)

)

K
∑

j=1

(

h∗1jg2j − h2jg
∗
1j

)

+
(

h∗1(K+1)g2(K+1) − h2(K+1)g
∗
1(K+1)

)

K
∑

j=1

(

h1jg
∗
2j − h∗2jg1j

)

+K

( 2
∑

i=1

|hi(K+1)|
2

) 2
∑

i=1

|gi(K+1)|
2

+

K
∑

j=1

(

(

2
∑

i=1

|hij |
2
)

2
∑

i=1

|gij |
2

)

.

and we can verify
MK+K
∑

m=MK+1

(ρmµm − ηm) = ∆.
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We complete the proof that when Nr = K + 1,

ρµ− η = ΞK +∆ =

MK
∑

m=1

(ρmµm − ηm) +

MK+1
∑

m=MK+1

(ρmµm − ηm)

=

MK+1
∑

m=1

(ρmµm − ηm)

In the second step of proof of the lemma, we claim that

ρmµm − ηm = Λm − |Γm|
2

with

Λm =

4
∑

i=1

4
∑

j=1,j 6=i

|~iℓm(1)~jℓm(2)|
2

−2ℜ







4
∑

i=1



~
∗
iℓm(1)~iℓm(2)

4
∑

j=i+1

~jℓm(1)~
∗
jℓm(2)











.

We give a step by step derivation about this claim:

ρmµm − ηm =
(

2
∑

i=1

2
∑

k=1

∣

∣

∣
hiℓm(k)

∣

∣

∣

2
)(

2
∑

i=1

2
∑

k=1

∣

∣

∣
giℓm(k)

∣

∣

∣

2
)

− δ∗1,mδ1,m − δ∗2,mδ2,m

= A−B
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where

A = |h1ℓm(1)
|2|g1ℓm(2)

|2 + |h1ℓm(1)
|2|g2ℓm(2)

|2

+ |h1ℓm(2)
|2|g1ℓm(1)

|2 + |h1ℓm(2)
|2|g2ℓm(1)

|2

+ |h2ℓm(1)
|2|g1ℓm(2)

|2 + |h2ℓm(1)
|2|g2ℓm(2)

|2

+ |h2ℓm(2)
|2|g1ℓm(1)

|2 + |h2ℓm(2)
|2|g2ℓm(1)

|2

B = 2ℜ

{

h∗
1ℓm(1)

h1ℓm(2)

(

g1ℓm(1)g
∗
1ℓm(2)

+ g2ℓm(1)g
∗
2ℓm(2)

)

+h∗
2ℓm(1)

h2ℓm(2)

(

g1ℓm(1)g
∗
1ℓm(2)

+ g2ℓm(1)g
∗
2ℓm(2)

)

+
(

h1ℓm(1)h2ℓm(2) − h1ℓm(2)h2ℓm(1)

)(

g∗
1ℓm(1)

g∗
2ℓm(2)

− g∗
1ℓm(2)

g∗
2ℓm(1)

)

}

Let

A′ = |h1ℓm(1)
|2|h2ℓm(2)

|2 + |h1ℓm(2)
|2|h2ℓm(1)

|2

+|g1ℓm(1)
|2|g2ℓm(2)

|2 + |g1ℓm(2)
|2|g2ℓm(1)

|2

B′ = 2ℜ

{

h∗
1ℓm(1)

h1ℓm(2)h2ℓm(1)h
∗
2ℓm(2)

+ g∗
1ℓm(1)

g1ℓm(2)g2ℓm(1)g
∗
2ℓm(2)

−
(

h1ℓm(1)h2ℓm(2) − h1ℓm(2)h2ℓm(1)

)(

g∗
1ℓm(1)

g∗
2ℓm(2)

− g∗
1ℓm(2)

g∗
2ℓm(1)

)

}

Use the fact that |a|2 + |b|2 − 2ℜ(a∗b) = |a − b|2, where a and b are complex numbers.
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We have

A′ −B′ = |h1ℓm(1)h2ℓm(2) − h1ℓm(2)h2ℓm(1)|
2

+|g1ℓm(1)g2ℓm(2) − g1ℓm(2)g2ℓm(1)|
2

+2ℜ

{

(

h1ℓm(1)h2ℓm(2) − h1ℓm(2)h2ℓm(1)

)

×
(

g∗
1ℓm(1)

g∗
2ℓm(2)

− g∗
1ℓm(2)

g∗
2ℓm(1)

)

}

= |Γm|
2

Note that

A+A′ = |h1ℓm(1)
|2
{

|h2ℓm(2)
|2 + |g1ℓm(2)

|2 + |g2ℓm(2)
|2
}

+|h2ℓm(1)
|2
{

|h1ℓm(2)
|2 + |g1ℓm(2)

|2 + |g2ℓm(2)
|2
}

+|g1ℓm(1)
|2
{

|h1ℓm(2)
|2 + |h2ℓm(2)

|2 + |g2ℓm(2)
|2
}

+|g2ℓm(1)
|2
{

|h1ℓm(2)
|2 + |h2ℓm(2)

|2 + |g1ℓm(2)
|2
}

has a unique structure which shows A + A′ is the sum of four terms, each of which (in

each line on the right-hand side of equation) represents the product of the channel power

from one logical transmit antenna to the ℓm(1)th receive antenna and the sum of channel

powers from the other three logical transmit antennas to the ℓm(2)th receive antenna.

Due to symmetry, we have

A+A′ =

4
∑

i=1

4
∑

j=1
j 6=i

|~iℓm(1)~jℓm(2)|
2.
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On the other hand,

B +B′ = 2ℜ

{

h∗
1ℓm(1)

h1ℓm(2)

(

h2ℓm(1)h
∗
2ℓm(2)

+ g1ℓm(1)g
∗
1ℓm(2)

+ g2ℓm(1)g
∗
2ℓm(2)

)

+ h∗
2ℓm(1)

h2ℓm(2)

(

g1ℓm(1)g
∗
1ℓm(2)

+ g2ℓm(1)g
∗
2ℓm(2)

)

+ g∗
1ℓm(1)

g1ℓm(2)g2ℓm(1)g
∗
2ℓm(2)

}

= 2ℜ

{ 4
∑

i=1

(

~
∗
iℓm(1)~iℓm(2)

4
∑

j=i+1

~jℓm(1)~
∗
jℓm(2)

)

}

The second equality comes from the fact that the value of B +B′ is constant no matter

which permutation matrix is applied at transmitter. In fact, the right-hand side of first

equality is nothing but the mutual products of six terms of ~∗
iℓm(1)

~iℓm(2)’s, (1 ≤ i ≤ 4),

under any permutation matrices.

Now, we can show

ρmµm− ηm = A−B = (A+A′)− (B +B′)− (A′ −B′) = Λm− (A′ −B′) = Λm − |Γm|
2

where Λm is independent of W . Combining the above two steps, we have

argmax
W∈SW

(ρµ− η) = argmax
W∈SW

M
∑

m=1

(ρmµm − ηm)

= argmax
W∈SW

M
∑

m=1

(Λm − |Γm|
2)

= argmin
W∈SW

M
∑

m=1

|Γm|
2 .

This completes the proof of Lemma 3.
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Appendix B – Proof of Theorem 7

Clearly the entries of matrix H̄H are still i.i.d. Gaussian random variables with unit

variance. The identity matrix IM is a special case of an M ×M random Hermitian non-

negative matrix whose eigenvalue pdf is δ(x− 1), where δ(·) is the Dirac-delta function.

Based on Lemma 6, and consider XM = H̄H and TM = IM , the distribution of the

eigenvalues of (1/N)H̄HH̄ converges in distribution to a non-random pdf f1 as M → ∞.

LetK1 = min(M,N) andK2 = max(M,N) , H̄HH̄ has at mostK1 non-zero eigenvalues.

We scale (1/N)H̄HH̄ by N/K1. The distribution of the eigenvalues of (1/K1)H̄
HH̄ still

converges in distribution to a non-random pdf fλ as M → ∞ and we have fλ(x) =

f1(x ·K1/N). This shows that the eigenvalue distributions for any channel realizations

tend to be the same when the number of transmit and receive antennas approach infinity

and their ratio is fixed. Furthermore, fλ(x) is expressed as [2]

fλ(x) =















1
2π

√

(x+x − 1)(1− x−
x ) for x ∈ [x−, x+];

0 otherwise

with x± =
(

√

K2/K1 ± 1
)2

.

For simplicity, whenever the condition that K1 → ∞ is applied in this proof, it means

that both K1 and K2 approach infinity and their ratio is a constant. From (5.15) we
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have

Cinst(H̄, σ
2
H̃
, p) =

K1
∑

k=1

[log2(λkν)]
+

= K1

(

1

K1

K1
∑

k=1

[

log2(
λk
K1

·K1ν)

]+
)

.

When K1 → ∞, λk
K1

→ x ∈ [x−, x+] in eigenvalue spectrum with pdf fλ(x), K1ν → µ,

µ is the water level of the effective power poured in inverse eigenvalue spectrum. Thus,

when K1 → ∞, we obtain

Cinst(H̄, σ
2
H̃
, p)

K1
=

1

K1

K1
∑

k=1

[

log2(
λk
K1

·K1ν)

]+

→

∫ x+

x−

[log2(xµ)]
+ fλ(x)dx (B.1)

where µ must be finite and can be shown as follow. From (5.14), we have

peff =

m
∑

k=1

(

ν −
1

λk

)+

=
1

K1

K1
∑

k=1

(

K1ν −
K1

λk

)+

. (B.2)

When K1 → ∞, (B.2) becomes

∫ x+

x−

(µ −
1

x
)+fλ(x)dx = peff =

σ2
Ĥ
p

1 + σ2
H̃
p
. (B.3)

Since P̄ /T > 0, Pp/M > Pp/T = (1 − α)P̄ /T > 0 for 0 < α < 1. Using (5.6), we have

σ2
H̃
< 1 and σ2

Ĥ
= 1− σ2

H̃
> 0. When p is finite, µ must be finite.

From (B.1), we can see that for any channel realization H̄, the instantaneous capacity
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lower bound normalized by K1, when K1 → ∞, is determined by µ and fλ(x) only.

Let us define

−→
C inst =

∫ x+

x−

[log2(xµ)]
+ fλ(x)dx. (B.4)

We will compute ∂
−→
C inst
∂p to evaluate how

−→
C inst changes as p changes. Note that

∂
−→
C inst

∂p
=
∂
−→
C inst

∂µ

∂µ

∂peff

∂peff
∂p

. (B.5)

From (B.4) and the first and the second equality of (B.3), we have

∂
−→
C inst

∂µ
=

1

ln 2

1

µ

∫ x+

1
µ

fλ(x)dx,

∂µ

∂peff
=

(

∫ x+

1
µ

fλ(x)dx

)−1

,

∂peff
∂p

=
σ2
Ĥ

(

1 + σ2
H̃
p
)2 .

Therefore, we obtain

∂
−→
C inst

∂p
=

1

ln 2

1

µ

σ2
Ĥ

(

1 + σ2
H̃
p
)2 > 0. (B.6)

In order to maximize capacity, using Lagrange multipliers we need ∂
−→
C inst
∂p = γ∞. γ∞

is determined by the average data power P̄d. Because when K1 → ∞ the eigenvalue

spectrum follows pdf fλ(x) which is independent of channel realization H̄, (B.3) shows

that µ is a positive increasing function of p and is uniquely determined by p. Thus,

(B.6) shows that
−→
C inst is uniquely determined by p. It is easily to show in order to make

∂
−→
C inst
∂p = γ∞ hold for any data transmission intervals, p should be the same at any data
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transmission intervals. We readily have following results:

Pd(H̄) = P̄d.

Thus, when K1 → ∞, fading power control reduces to fixed power assignment. The

optimal power allocation parameter αrf → αs, and the following equalities almost surely

hold:

Pd(H̄) = P̄d = αsfP̄ = αsP̄

which proves Theorem 7.



137

Appendix C – Proof of Theorem 10

This proof follows the line of [7, proof of Theorem 4]. Starting from (6.8), we need to

prove

F (SNR)
∆
=

∫

A
′
2

(
∫

A
′
1

n
∏

i=1

SNR−(m−n+1)αi

∏

i<j

(SNR−αi − SNR−αj )2dα1

)

dα2
.
= dout(r),

where

A
′

2 = {α2 ∈ RK+|αn−K+1 ≥ ... ≥ αn ≥ 0 and
n
∑

i=n−K+1

(1− αi)
+ < r}

A
′

1 = {α1 ∈ R(n−K)+|α1 ≥ ... ≥ αn−K ≥ αn−K+1}.

Since when αi = αj the integral is zero, only distinct αi’s are considered in the integral.

By definition αi > αj for i < j and (SNR−αi − SNR−αj )2 ≤ (0 − SNR−αj )2 for i < j.
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We have

F (SNR) ≤ F̄ (SNR)

∆
=

∫

A
′
2

(∫

A
′
1

n
∏

i=1

SNR−(m−n+1)αi

∏

i<j

(0− SNR−αj)2dα1

)

dα2

=

∫

A
′
2

(∫

A
′
1

n
∏

i=1

SNR−(m−n+2i−1)αidα1

)

dα2

=

∫

A
′
2

(∫

A
′
1

n−K
∏

i=1

SNR−(m−n+2i−1)αidα1

) n
∏

i=n−K+1

SNR−(m−n+2i−1)αidα2

= C1(m,n,K)(ln SNR)(K−n)·
∫

A
′
2

SNR−(n−K)(m−K)αn−K+1

n
∏

i=n−K+1

SNR−(m−n+2i−1)αidα2

= C1(m,n,K)(ln SNR)(K−n)·
∫

A
′
2

SNR−(n−K+1)(m−K+1)αn−K+1+
∑n

i=n−K+2 −(m−n+2i−1)αidα2

.
=

∫

A
′
2

SNR−(n−K+1)(m−K+1)αn−K+1−
∑n

i=n−K+2 (m−n+2i−1)αidα2

=

∫

A
′
2

SNR−f(α2)dα2

The first exponential equality uses the fact that

lim
SNR→∞

log[C1(m,n,K)(ln SNR)(K−n)]

log SNR
= 0
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where C1(m,n,K) =

n−K
∏

i=1

[i(m− n) + i2] is a finite positive real coefficient, which is a

function of m, n and K, and is independent of SNR. and

f(α2) = (n−K + 1)(m−K + 1)αn−K+1 +
n
∑

i=n−K+2

(m− n+ 2i− 1)αi

Denote α∗
2 = arg inf

A
′
2
f(α2). We can follow the exact same technique in [7] to prove

that

F̄ (SNR)
.
= SNR−f(α∗

2)

by replacing A
′
and I = [0,mn]n in [7, eq. (45)] with A

′

2 and I = [0,mn]K , respectively.

We have

F (SNR)
.
≤ SNR−f(α∗

2) (C.1)

In order to finish the proof, we develop a lower bound on F (SNR). For any δ > 0,

define the set

Sδ = {α : αi − αj ≥ δ,∀ i < j}
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F (SNR) =

∫

A
′
2

(
∫

A
′
1

n
∏

i=1

SNR−(m−n+1)αi

∏

i<j

(SNR−αi − SNR−αj )2dα1

)

dα2

≥

∫

A
′
2∩Sδ

(∫

A
′
1∩Sδ

n
∏

i=1

SNR−(m−n+1)αi

∏

i<j

(SNR−αi − SNR−αj )2dα1

)

dα2

≥

∫

A
′
2∩Sδ

(
∫

A
′
1∩Sδ

n
∏

i=1

SNR−(m−n+1)αi

∏

i<j

[(1− SNR−δ)SNR−αj ]2dα1

)

dα2

= (1− SNR−δ)n(n−1)

∫

A
′
2∩Sδ

(
∫ ∞

αn−K+1+δ
...

∫ ∞

α2+δ

n
∏

i=1

SNR−(m−n+2i−1)αidα1...dαn−K

)

dα2

= (1− SNR−δ)n(n−1)C1(m,n,K)(ln SNR)(K−n)

·

∫

A
′
2∩Sδ

SNR−f(α2)−C2(m,n,K)δdα2

.
= (1− SNR−δ)n(n−1)

∫

A
′
2∩Sδ

SNR−f(α2)−C2(m,n,K)δdα2

where C2(m,n,K) =

n−K
∑

i=1

[i(m− n) + i2]. Given δ > 0, the last equality has the domi-

nated SNR exponent

inf
α2∈A

′
2∩Sδ

f(α2) + C2(m,n,K)δ

which approaches f(α∗
2) when δ → 0, since f(α2) is a continuous function. Thus we

have

F (SNR)
.
≥ SNR−f(α∗

2). (C.2)

Combining (C.1) and (C.2), we finish the proof.




