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Although there have been decades of research into how professional programmers debug, only recently has work 

begun to emerge about how end-user programmers attempt to debug their programs. Without understanding how 

end-user programmers approach debugging, we cannot build tools to adequately support their needs. To help fill this 

need, this paper reports the results of a qualitative empirical study that investigates in detail female and male end-

user programmers‘ sensemaking about a spreadsheet‘s correctness. Using our study‘s data, we derived a 

sensemaking model for end-user debugging and then categorized participants‘ activities and verbalizations 

according to this model. We then used the categorized data to investigate how our participants went about 

debugging. Among the results are identification of the prevalence of information foraging during end-user 

debugging, two successful strategies for traversing the sensemaking model, ties to gender differences in the 

literature, sensemaking sequences leading to debugging progress, and sensemaking sequences tied with troublesome 

points in the debugging process. The results also reveal new implications for the design of spreadsheet tools to 

support female and male end-user programmers‘ sensemaking as they debug. 

 

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—debugging aids; 

H.1.2 [Models and Principles]: User/Machine Systems—human factors; human information processing; software 

psychology; H.4.1 [Information Systems Applications]: Office Automation—spreadsheets. 

General Terms: Human Factors 

Additional Key Words and Phrases: End-user programming, end-user software engineering, debugging, debugging 

strategies, gender differences, gender HCI, sensemaking, spreadsheets 

 

 

1. INTRODUCTION  

Although twenty years ago, the idea of end users creating their own programs was still a revolutionary concept, 

today, end-user programming has become a widespread phenomenon. In fact, in the U.S., there are now more end-

user programmers than professional programmers [Scaffidi et al. 2005]. Today‘s end-user programmers include 

anyone who creates artifacts that instruct computers how to perform an upcoming computation. Examples include an 

accountant creating a budget spreadsheet, a garage mechanic entering rules to sort email, or a teacher authoring 

educational simulations of science phenomena. The pervasiveness of end-user programming today is in part due to 

research advances such as graphical techniques for programming, programming by demonstration, and innovative 

ways of representing programs (described, for example, in [Kelleher and Pausch 2005; Myers et al. 2006; Nardi 

1993]), and in part due to the popularity of spreadsheets [Scaffidi et al. 2005].  

Along with the ability to create programs comes the need to debug them, and work on end-user debugging is 

only beginning to become established. The numerous reports of expensive errors in end users‘ programs, especially 

 

V. Grigoreanu is currently affiliated with the School of Electrical Engineering and Computer Science at Oregon 

State University in Corvallis, Oregon. Authors‘ email addresses: i.valentina.g@gmail.com, 

burnett@eecs.oregonstate.edu, susan.wiedenbeck@cis.drexel.edu, coach@eecs.oregonstate.edu, 

rectorky@eecs.oregonstate.edu. 

 



 - 2 - 

spreadsheets (e.g., [Boehm and Basili 2001; Butler 2000; EUSPRIG 2009; Panko 1998; Panko and Orday 2005]), 

make clear that supporting end users‘ debugging efforts is important. There has been recent work on tools for end-

user debugging to fill this need (e.g., [Abraham and Erwig 2007; Ayalew and Mittermeir 2003; Burnett et al. 2003; 

Burnett et al. 2004; Ko and Myers 2004; Wagner and Lieberman 2004]), but a key issue that remains largely 

unanswered is how end-user programmers go about debugging. We believe that knowing more about end users‘ 

debugging strategies is important to informing the design of better tools to support their debugging. 

This paper helps to fill this gap in knowledge by considering end-user debugging from a sensemaking 

perspective. Sensemaking is a term used to describe how people make sense of the information around them, and 

how they represent and encode that knowledge, so as to answer task-specific questions [Russell et al. 1993]. As we 

discuss in more detail in Section 2, sensemaking models provide a detailed view of strategies people use when trying 

to make sense of information they need, in situations in which much of the information available may be irrelevant 

to the problem at hand. Since such situations are precisely the sort encountered by debuggers—perhaps especially so 

by end-user debuggers with little training in debugging techniques—we posit that sensemaking is a suitable lens 

from which to gain new insights into debugging.   

To understand how end-user programmers solve debugging problems, it is important to take into account 

individual differences in problem-solving styles. To gain insights into individual differences, it is often useful to 

consider identifiable subpopulations, and that is our approach here. One such division that has reported important 

differences in end-user debugging is gender [Beckwith et al. 2005; Beckwith et al. 2006; Grigoreanu et al. 2006; 

Grigoreanu et al. 2009; Subrahmaniyan et al. 2008], and as a result, debugging tool improvements have begun to 

emerge that have been helpful to both  males and females [Grigoreanu et al. 2008]. 

Therefore, in this paper, we investigate the following research question: 

How do male and female end-user programmers make sense of spreadsheets‟ correctness when debugging? 

To answer this question, we collected detailed activity logs and think-aloud data from end users debugging a 

spreadsheet, and used the results to derive from earlier sensemaking research into intelligence analysts [Pirolli and 

Card 2005] a new model of sensemaking for end-user debuggers. Our model is particularly suited for use with 

empirical work, because it is expressed solely in terms of the data being processed by the user rather than on internal 

mental activities that do the processing. We use it in this paper to characterize our end-user debugging data in terms 

of sensemaking sequences, sensemaking subloops, and relationships between sensemaking and debugging. Among 

the results were the identifications of: the prevalence of information foraging during end-user debugging, two 

successful ways of traversing the sensemaking model and their ties to literature on gender differences, sensemaking 

sequences leading to debugging progress, and sensemaking sequences tied with troublesome points in the debugging 

process. Finally, we discuss how these results can be taken into account to build future tools for end-user debuggers. 

 

2. BACKGROUND AND RELATED WORK 

2.1 Debugging by End-User Programmers 

There have been decades of research on professional programmers‘ debugging strategies (see [Romero et al. 2007] 

for a summary), but the works most related to this paper are those on novice programmers‘ debugging strategies, 

end-user programmers‘ debugging feature usage, and end-user programming. Note that novice programmers are not 

necessarily the same as end-user programmers. Novice programmers program in order to learn the profession so that 

they can become professional developers. End-user programmers usually do not aspire to become professional 

developers; instead, their programming interest is more likely to be in the result of the program rather than the 

program itself [Nardi 1993]. Such differences in goals can play out in differences in motivation, in degree of intent 

to achieve software quality, and in the importance placed on understanding the fine points of the program. However, 

like novices, end-user programmers usually do not have professional programming experience, and therefore 

research into novice programmers‘ debugging is pertinent to end-user debugging. 

Given that novice programmers program in order to learn, a number of researchers have looked into how novice 

programmers gain skill. One recent effort in this direction was research into the learning barriers faced by this 

population [Ko et al. 2004], which reported barriers of six types: design, selection, coordination, use, understanding, 

and information. Although the discussion of these relate mainly to the context of creating a new program from 

scratch, the barriers also tie to debugging, since difficulties with understanding a program‘s behavior can lead the 

programmer to a debugging mode. In fact, research on novice programmers shows that program comprehension is 

key to successful debugging (e.g., [Jeffries 1982; Nanja and Cook 1987]). For example, fixing a program with 
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multiple modules can become intractable if the programmer does not understand the dependencies of the modules 

[Littman et al. 1986]. Also, how a programmer goes about comprehending a program matters. For example, reading 

a program in the order in which it will be executed has been empirically shown to be superior to reading the program 

from beginning to end like text [Jeffries 1982]. The essence of previous research into novice programmers points to 

their need for a sound understanding of the high-level structure of the program and the interactions among parts of 

the program in order to debug or maintain software effectively. The literature on novice programming was 

summarized in [Kelleher and Pausch 2005; Pane and Myers 1996].  

To be precise about understanding strategies, we first introduce the nuances between two related terms 

employed in this paper: strategems and strategies. A strategem is a complex set of thoughts and/or actions, while a 

strategy is a plan which may contain strategems for the entire task [Bates 1990]. For the remainder of this section, 

we focus on empirical findings and theories about end-user programmers‘ debugging behaviors and strategems. 

Empirical research of end users‘ debugging has begun to appear in recent years [Abraham and Erwig 2007; 

Beckwith et al. 2005; Beckwith et al. 2006; Beckwith et al. 2007; Fern et al. 2009; Grigoreanu et al. 2006; 

Grigoreanu et al. 2008; Grigoreanu et al. 2009; Kissinger et al. 2006; Ko and Myers 2004; Phalgune et al. 2005; 

Prabhakararao et al. 2003; Rode and Rosson 2003; Subrahmaniyan et al. 2008]. One useful finding relating to how 

end users make sense of their programs‘ flaws is Rode and Rosson‘s empirical work showing how users ―debugged 

their programs into existence‖ [Rode and Rosson 2003]. That is, they began with an initial solution, then iteratively 

found flaws with it, and expanded their solution to correct those flaws, which required adding new functionalities at 

the same time, debugging that new functionality to uncover more flaws, and so on. One difficulty in such debugging 

efforts has been end users‘ difficulties judging whether the program is working correctly [Phalgune et al. 2005]. To 

inform supporting end-users‘ debugging, studies investigating end users‘ information needs during debugging 

revealed that much of what end-user programmers wanted to know during debugging was ―why‖ and ―why not‖ 

oriented [Ko and Myers 2004], and that they also wanted to know more about strategies for debugging, not just 

features for doing so [Kissinger et al. 2006]. 

A reason this paper explicitly considers the gender of participants in our analysis is the recent body of research 

suggesting that females and males may go about debugging (and other software development tasks) differently 

[Beckwith et al. 2005; Beckwith et al. 2006; Beckwith et al. 2007; Grigoreanu et al. 2008; Ioannidou et al. 2008; 

Kelleher et al. 2007; Rosson et al. 2007]. For example, in spreadsheet debugging, females‘ self-efficacy (confidence 

about spreadsheet debugging) [Bandura 1986] has been lower than males‘, as has their willingness to use new 

debugging features, which in some cases led to lower performance outcomes [Beckwith et al. 2005; Beckwith et al. 

2006]. In contrast to the females in these studies, the males‘ self efficacy was not correlated with their willingness to 

use the same new features. These studies are consistent with other studies of females‘ and males‘ technical and 

quantitative tasks revealing females to have lower self-efficacy than males in such tasks [Torkzadah and Koufteros 

1994; Busch 1995; Gallagher et al. 2000; Hartzel 2003]. Research also reports that females tend to be more risk-

averse than males [Byrnes et al. 1999; Finucane 2000; Powell and Ansic 1997]. The attributes of risk averseness and 

low self-efficacy are related, and may snowball. For example, risk-averse females who try out new debugging 

features and are not immediately successful may experience further reduced self-efficacy as a result, thereby 

enhancing the perception of risk in adopting the features.   

Pertinent to end users‘ sensemaking about program bugs, Meyers-Levy‘s Selectivity Hypothesis describes two 

strategies in how people process information [Meyers-Levy 1989]. According to the Selectivity Hypothesis, males 

prefer to use a heuristic (or selective) approach that involves striving for efficiency by following contextually salient 

cues, whereas females process information comprehensively, seeking a more complete understanding of the 

problem. Empirical work supports this theory [Meyers-Levy 1989; O‘Donnell and Johnson 2001], some of which 

has taken place in the context of an end-user programming tasks. In a study of spreadsheet auditing, female auditors 

were statistically more efficient (completed the task in less time and used fewer information items) than males in a 

complex analytical procedures task through use of comprehensive information processing, whereas males were 

statistically more efficient (used fewer information items) than females in a simple task through use of selective 

information processing [O‘Donnell and Johnson 2001]. Research into female and male effective end-user debugging 

strategems also seem related to their preferred information processing styles: females‘ (but not males‘) success has 

been tied to the use of code inspection, whereas males‘ (but not females‘) was tied to dataflow [Grigoreanu et al. 

2009; Subrahmaniyan et al. 2008]. In both of these studies, females were observed to use the elaborative information 

processing with code inspection to examine formulas broadly and in detail to get the big picture of the spreadsheet. 

Males‘ use of dataflow, on the other hand, was to follow a particular formula‘s dependencies, in essence being 

selective about the information being pursued by going for depth early, but at the expense of a comprehensive 

understanding of the spreadsheet.  
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2.2 Sensemaking 

Dervin began developing human-centric models in 1972, creating the Sensemaking methodology for the design 

of human communication systems. This methodology was grounded in her model of how a person makes sense of 

his or her situation, referred to as the sensemaking triangle. The most complete presentation of Dervin‘s early work 

on the sensemaking triangle model is [Dervin 1984], and a more modern overview of her sensemaking work is 

[Dervin et al. 2003]. According to Dervin‘s triangle model, an individual trying to make sense of a complex 

situation steps through a space-time context. Beginning with the current situation (what he or she knows now), the 

individual then moves through the space to recognizing gaps in understanding (questions, confusions, muddles) that 

must be ―bridged‖ via resources (ideas, cognitions, beliefs, intuitions), leading to analysis and outcomes (effects, 

consequences, hindrances, impacts). Although Dervin‘s work mostly appeared in Communications literature, her 

goals align with those of Human-Computer Interaction (HCI) research that aims to design and implement human-

centric communication systems [Dervin et al. 2003].  

A series of sensemaking models later began to appear in Computer Science literature, particularly HCI. These 

new models focused primarily on Dervin‘s ―bridge‖ aspect of sensemaking. An early effort in this regard, before the 

term ―sensemaking‖ had been adopted by the HCI community, was Shrager and Klahr‘s experiment on 

instructionless learning [Shrager and Klahr 1986]. Non-technical participants were given a programmable toy and 

told to figure it out, without any manual or help. The study revealed that participants went through an orientation 

phase followed by a hypothesis phase: after direct attempts to control the device failed, participants systematically 

formulated hypotheses about the device by observation and tested them by interacting with the device. If hypotheses 

were not confirmed, the participants refined and tested them iteratively. The authors used these results to form a 

theory of how users make sense of a program based on its outputs, with a focus on participants‘ partial schemas 

developed through observation and hypothesis testing. 

One of the earliest appearances of the term ―sensemaking‖ in HCI was Russell et al.‘s work on a model of the 

cost structure of sensemaking [Russell et al. 1993] known as the Learning Loop Complex. In this work, the authors 

observed how Xerox technicians made sense of laser printers: they entered a learning loop to seek suitable 

representations of the problem, then instantiated those representations, then shifted the representations when faced 

with residue (e.g., ill-fitting data, missing data, unused representations), and finally consumed the encodons (i.e., 

instantiated schemas) and representations they created [Russell et al. 1993].   

Since that time, other versions of sensemaking models have emerged for different domains, of which Stefik et 

al. provide a good overview [Stefik et al. 2002]. Most of these models depict roughly the same sort of process, each 

providing a progression by which existing information or knowledge is turned into new knowledge useful to a target 

task. Even so, there remains controversy over what exactly sensemaking is and how sensemaking research should be 

performed. These differences in perspective are summarized in [Leedom 2001; Klein et al. 2006].  As these 

summaries point out, the psychological perspective focuses on creating a mental model, and takes into account 

elements that are not sensemaking per se, but may contribute to sensemaking, including creativity, curiosity 

comprehension, and situation awareness. The naturalistic decision-making perspective on sensemaking is 

empirically based and keeps expert analysts in the center of the sensemaking process, but uses decision aids as 

needed to improve the process. The human-centered computing perspective critiques intelligent systems intended to 

automatically solve the problem of sensemaking. For example, in intelligent systems, fused data from multiple 

sources reduce information overload, but hide the data from the analyst, which negates the analysts‘ expertise and 

prevents the development of their own interpretations [Leedom 2001; Klein et al. 2006]. 

Of particular interest to this paper is the relatively recent Pirolli/Card Sensemaking Model for Analysts [Pirolli 

and Card 2005]. As with other sensemaking research, Pirolli and Card pointed out that sensemaking is not based on 

direct insights or retrieving a final answer from memory, but rather a process that involves planning, evaluating, and 

reasoning about alternative future steps [Pirolli and Card 2005]. Their sensemaking model (Figure 1) can be viewed 

as a more detailed version of Russell et al,‘s Learning Loop Complex. Like the Russell et al. model, the Pirolli/Card 

model focuses on how users‘ representations of data change during sensemaking. Pirolli and Card derived this 

model through cognitive task analysis and think-aloud protocol analysis of intelligence analysts‘ sensemaking data. 

The derived overall process is organized into two major loops of activities: first, a foraging loop for searching, 

filtering, reading, extracting information, and second, a sensemaking loop for organizing the relevant information 

into a large structure that leads to knowledge products. (These loops are coupled in Russell et al.‘s works too 

[Russell et al. 1993; Furnas and Russell 2005].) The Pirolli/Card model can be viewed as a model with a low-level 

focus on Dervin‘s ―bridge‖ component and Russell et al.‘s learning loop complex,‖ and this low-level focus made it 

a good fit for our interest in investigating end-user debugging in a fine-grained way. We will thus return to the 

Pirolli/Card model in Section 5.  
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3. THE SENSEMAKING STUDY 

3.1 Procedure 

The study, conducted one participant at a time, used the think-aloud method. Each participant first read and signed 

the informed consent paperwork. We then conducted a pre-session interview about their spreadsheet background, 

which covered whether the participant had previously used spreadsheets for school, work, or personal reasons, and 

about the types of formulas he or she had written (Table 1). We then gave the participant a brief tutorial and warm-

up exercise, described in Section 3.4, to ensure familiarity with Excel‘s audit features and with verbalizing during 

the task.  

Each participant was asked to ―make sure the spreadsheet is correct and, if [you] find any errors, fix them.‖ We 

also provided the paper handout, shown in Figure 2, to give an overview of the way the spreadsheet was supposed to 

work. The participants had 45 minutes to debug the spreadsheet. The data we captured during the sessions were 

video showing their facial expressions, audio of their think-aloud verbalizations, synchronized screen recordings of 

the entire session (including pre-session background interviews and the task itself), and their final Excel 

spreadsheets. 

3.2 Participants 

Ten participants (five men and five women) participated in our study. To take part in our study, participants were 

required to have experience with Excel spreadsheet formulas. Background in computer science was not allowed 

beyond the rudimentary requirements of their majors. Participants received a $20 gratuity for their participation. 

 
Figure 1. Pirolli and Card’s sensemaking model for intelligence analysts. The rectangles represent how the data 

representation changes at each step, while the arrows represent the process flow [Pirolli and Card 2005]. 
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We discarded the data of a participant whose verbalizations were inaudible and the data of a participant whose 

Excel experience was so much lower than he had claimed during recruitment that he was unable to proceed with the 

debugging task. The remaining eight participants were undergraduate and graduate students at Oregon State 

University majoring in animal science, biochemistry, business administration, mechanical engineering, pharmacy, 

and rangeland ecology/management. Table 1 details participant backgrounds.  

3.3 Task and Materials 

The spreadsheet the participants debugged was fairly complex. It consisted of the worksheet thumbnailed in 

Figure 2 and a small second sheet that produced frequency statistics and a chart of the grades calculated in the main 

sheet. We obtained the spreadsheet from the EUSES Spreadsheet Corpus of real-world spreadsheets [Fisher II and 

Rothermel 2005], most of which were obtained from the web. We chose the spreadsheet for the following reasons. 

First, it was complicated enough to ensure that we would obtain a reasonable amount of sensemaking data. Second, 

its domain (grading) was familiar to most participants, helping to avoid intimidating participants by the domain 

itself. Third, its real-world origin increased the external validity of our study. Finally, it has been used successfully 

in other studies (e.g., [Beckwith et al. 2007]), which not only provided evidence as to suitability for spreadsheet 

users in a lab setting, but also allowed us to harvest the bugs made by previous participants for use in the current 

study. We seeded the spreadsheet with a total of ten real bugs harvested from the spreadsheets of Beckwith et al.‘s 

participants, who were Seattle-area adult spreadsheet users from a variety of occupations and age groups. None had 

computer science training or occupations, but all were experienced Excel users. Hence, the bugs we harvested from 

their work were realistic in terms of the kinds of bugs real end users generate. 

Table 1: Study participants‘ spreadsheet background. 

Participant Major Spreadsheet Experience 
Computer Science 

Background 

P05200830 

(Male) 
Biochemistry / 

Biophysics  

(undergraduate) 

School: chemistry labs.  No programming 

experience. Formula experience: standard deviations, quadratic 

formulas, and basic arithmetic. 

P05211130  

(Female) 

Business 

Administration 

(undergraduate) 

School, work, personal: checking paperwork (bank 

statements, personal records). 

An undergraduate 

business class on 

Business Application 

Development. 
Formula experience: SUM, IF, SUB, other basic functions. 

P05211600 

(Male) 

Animal Science 

(graduate) 

School, work, personal: in classes, manages his own and 

his dorms‘ finances. 

An introductory 

computing class with 

some HTML. 

 
Formula experience: basic arithmetic, statistics, and 

calculus. 

P05220830 

(Male) 

Mechanical 

Engineering 

(undergraduate) 

School, work, personal: created a spreadsheet for timing 

races and others for running a club. 

A Q-BASIC class in 

high school and is 

familiar with 

MATLAB. 
Formula experience: basic formulas, VLOOKUP, 

embedded IF, etc. 

P05221230 

(Male) 

Mechanical 

Engineering 

(undergraduate) 

School and work: works as an accountant. No programming 

experience. Formula experience: AVERAGE, MIN, MAX, COUNT, 

COUNTA. 

P05270830 

(Female) 

Rangeland 

Ecology and 

Management 

(graduate) 

School, work, personal: was an accountant six years, and 

now uses it for her research and labs. 

No programming 

experience (wrote a 

few macros years ago, 

but did not think she 

remembered how). 

Formula experience: basic Excel formulas, IF, statistics 

formulas. 

P05281130 

(Female) 

Pharmacy 

(undergraduate) 

School: spreadsheets for labs and graphs/charts for reports. An introductory CS 

class.  Formula experience: SUM, AVERAGE, MAX, MIN, and 

basic arithmetic. 

P05290830 

(Female) 

Animal Science 

(undergraduate) 

School, work: was a club treasurer and calculated interest 

rates for classes. 

No programming 

experience. 

Formula experience: basic arithmetic, statistical formulas, 

and also financial formulas (N, PMT, FV, PV, I). 
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We harvested a variety of bug types from these previous users. Six of the harvested bugs were formula 

inconsistencies with respect to other formulas in the same row or column. For example, some cells‘ formulas 

omitted some students‘ grades in calculating the class average. Three more bugs were logic errors that had been 

propagated by their original authors over the entire row or column (e.g., using the ―>‖ operator instead of ―>=‖). The 

last bug was not part of any group of similar formulas: it counted lab attendance as a part of the total points, but 

should not have done so. This collection of ten real end-user bugs provided variety in the types of bugs our 

participants would need to track down and fix.  

3.4 Spreadsheet Environment and Tutorial 

The environment for the study was Excel 2003. To make sure participants were familiar with some of Excel‘s 

debugging features, we pointed the ―auditing‖ collection out to them in a pre-session tutorial and suggested that 

these features might help them make debugging progress. However, participants were free to use any Excel features 

they wanted.  

The tutorial‘s wording was about features per se, and carefully avoided hints about how to use these features 

strategically. Table 2 summarizes the features we presented during the tutorial. The tutorial was hands-on: the 

participant used the features as the tutorial went along. In addition, since most participants had not used these 

features prior to this experiment, everyone had five minutes after the tutorial to try the features out on their own 

before moving on to the main task. 

3.5 Analysis Methodology 

We began by labeling the debugging state changes (―bug found‖, ―bug fixed‖, and ―reevaluating fix‖) in all eight of 

the participants‘ videos. Since these identifications did not require subjective judgments, only one researcher was 

 

 
 

Figure 2. (Top) A thumbnail of the description handout of the grade-book spreadsheet. (Bottom) Blowup of 

description Box F. 
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needed for this part. Sometimes participants believed they had fixed a bug when in fact they had not, so we also 

labeled these state changes as correct/incorrect. For example, editing a formula incorrectly was labeled ―incorrect 

bug fix‖. Labeling these debugging state changes had two purposes. First, they pointed out milestones in the 

participants‘ success at the task as time progressed. Second, the count of participants‘ successful bug fixes was used 

to identify the corner cases for further analysis, namely the most successful and least successful female and male, a 

total of four participants. 

For the four selected participants, two researchers then independently coded the videos according to the 

sensemaking codes to be described in Table 4 (which will be presented in Section 5), using the following procedure. 

First, each researcher independently coded 20 minutes of one of the four transcripts (about 10% of the total video 

data), using videos as well as written transcripts in order to have full access to the context in which actions were 

performed and words were spoken. The coders reached an 84% inter-rater reliability, calculated using the Jaccard 

index. Given this level of agreement, the two researchers then split up the remaining videos and coded them 

independently. 

 

4. RESULTS: PARTICIPANTS’ SUCCESS AT DEBUGGING 

To provide context for the remainder of the results, we begin with the participants‘ success levels. Table 3 shows 

each participant‘s number of bug-find, bug-fix, and fix-reevaluation actions. We defined a bug-find action as 

Table 2. The Excel 2003 debugging features, namely Excel auditing tools plus formula tool tips, covered in the 

“tour of features” tutorial.  

Feature Description 

 

The Arrow Features show the relationships 

between spreadsheet formulas. Left to right: 

Trace/Remove Precedent Arrows, Trace/Remove 

Dependent Arrows, and Remove All Arrows. 

 

Tool tips can be brought up by hovering over 

formulas to aid in their understanding. 

 

The Evaluate Formula tool allows users to see 

intermediate results, by observing how nested 

parts of a formula are calculated step by step. 

 

The Error Checking tool points suspicious 

formulas with a green triangle. These cells can 

either be stepped through in order or examined 

directly within the spreadsheet. 

 

The Watch Window tool allows users to watch 

one or more formulas and their results, which 

might be helpful when inspecting cells of interest 

which might have scrolled off the screen. 
 

Table 3. For the bugs (10 in total) that needed fixing, these are the participants’ successful and unsuccessful find 

and fix actions, as well as how many times they reevaluated the fixes they attempted. The top-scoring and bottom-

scoring participants we selected for further detailed analysis are highlighted. 

Participant Bug Finds Bug Fixes Evaluations 

of Fixes Correct Incorrect Correct Incorrect 

P05211130 (Female) 9 0 6 0 5 

P05220830 (Male) 8 0 6 8 8 

P05281130 (Female) 6 2 5 2 5 

P05270830 (Female) 5 0 4 1 4 

P05211600 (Male) 5 0 2 2 1 

P05221230 (Male) 4 0 2 4 3 

P05290830 (Female) 3 0 1 7 2 

P05200830 (Male) 1 1 0 1 5 
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identifying a seeded incorrect formula as being faulty, a bug-fix action as changing a faulty formula, and a fix-

evaluation action as checking a bug-fix action. We also used an ―incorrect‖ modifier for the bug finds and bug fixes. 

Specifically, when the participant mistakenly identified a correct formula as being faulty, we labeled it as an 

incorrect bug-find, and when a participant edited a formula in a way that left the formula incorrect, we labeled it an 

incorrect bug-fix.  

As Table 3 shows, participants‘ sensemaking about where the bugs lurked was more successful than their 

sensemaking about how to fix those bugs. Specifically, in finding the bugs, six out of eight of the participants made 

no mistakes, and the remaining two made only one or two mistakes. When it came to actually fixing the bugs, only 

three of the participants made more correct fixes than incorrect ones, and one participant‘s incorrect fix count was as 

high as eight. 

The number of reevaluations averaged to less than one reevaluation per fix (51 fixes and 33 reevaluations). This 

is consistent with prior work that suggested reevaluation in debugging tends to be undersupported in spreadsheets, 

and users may believe that the immediate recalculation feature is sufficient for reevaluation purposes (a ―one test 

proves correctness‖ view) [Wilcox et al. 1997]. 

To investigate end users‘ sensemaking about spreadsheet correctness, we selected a subset of the participants to 

examine in detail. We chose the four most extreme participants two with the most bugs fixed (one female and one 

male), and the two with the fewest bugs fixed (one female and one male). These participants correspond to the 

shaded rows in Table 3, and the remainder of this paper focuses on them. From now on, we will refer to these four 

as SF (successful female, participant P05211130), SM (successful male, participant P05220830), UF (unsuccessful 

female, participant P05290830), and UM (unsuccessful male, participant P05200830). 

 

5. RESULTS: THE SENSEMAKING MODEL FOR END-USER DEBUGGERS  

5.1 Three Sensemaking Loops 

Pirolli and Card characterized intelligence analysts‘ sensemaking in terms of a major loop and its subloops, 

reflecting the iterative nature of sensemaking. Our data echoed this iterative character, but our participants‘ subloops 

were organized under not one but three major loops that corresponded to different classes of challenges in our 

participants‘ work. Our model is presented in Table 4. 

We term the major loop, in which participants reasoned about the bugs and spreadsheet formulas/values, the 

Bug Fixing Sensemaking Loop; the loop in which they reasoned about the environment, the Environment 

Sensemaking Loop; and the loop in which they reasoned about common-sense topics and/or the domain, the 

Common Sense and Domain Sensemaking Loop. Considering these loops separately provided the conceptual benefit 

of focusing on the challenges introduced by a particular programming environment or domain separately from the 

challenges introduced by the difficulties of debugging that are independent of the environment or domain.  

The Bug Fixing Sensemaking Loop was where our participants spent most of their time. We devote the next 

subsection to it.  

The Environment Sensemaking Loop arose multiple times for all four participants. It was triggered when 

participants tried to make sense of Excel features or syntax. For example: 

SF: “So, I‟m clicking on the trace dependents. [Excel displays a small thumbnail of a table with an arrow 

pointing from it to the formula.] [Participant hovers over the little table and then tries clicking on it. 

Nothing happens.] And it goes to wherever… There‟s a little box, but I don‟t know what that means.” 

These visits to the Environment Sensemaking Loop were sometimes disadvantageous, but other times led to 

leaps forward. We will point to examples of both in upcoming sections. 

The third sensemaking loop was the Common Sense/Domain Sensemaking Loop. This loop involved reasoning 

about general knowledge items, such as trying to remember mathematical principles, or conventions used in the 

domain such as trying to recall how grades are usually computed. This loop was less common with our participants, 

perhaps because, as college students, they were very familiar with grade computations. Here is an example of 

accessing this loop: 

SM: “In the grading, it says students must attend 70% of the labs in order to pass the course. Are, uh, is it 

possible to be waived from the labs?” 
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Because they are peripheral to our main research questions, we did not perform detailed analyses of the 

Environment and Common Sense/Domain Sensemaking Loops. However, we did code the instances of these loops‘ 

presence so that we could see the interactions between these loops and the Bug Fixing Sensemaking Loop. 

5.2 The Bug Fixing Sensemaking Loop 

In the Bug Fixing Loop, participants gathered information about the spreadsheet logic and made sense of it in order 

to create the final product, namely a bug fix. We derived the elements of our Bug Fixing Loop directly from the 

Pirolli/Card model for intelligence analysts [Pirolli and Card 2005]. We chose the Pirolli/Card model over the other 

sensemaking models presented in Section 2.2 because of Pirolli/Card‘s low-level focus on how data are used to 

bridge a gap. This low-level focus on Dervin‘s ―bridge‖ aspect, combined with the high-level overview of the entire 

problem-solving process, mapped well to our investigation of end-user programmers‘ debugging processes.  

Pirolli and Card characterized their model as consisting of four high-level sensemaking steps: information 

gathering, schematic representation of the information, development of an insight through manipulation, and the 

creation of a knowledge product. These steps clearly apply to the end-user debugging task. Information gathering 

Table 4. A side-by-side view of how Pirolli and Card’s Sensemaking model and definitions compare with our node-

oriented sensemaking model of end-user debugging. Node numbers refer to those in Figure 1. Our model elements 

(the right hand column) were also our sensemaking code set; see text for details. 
 

The Sensemaking Model for Analysts  

[Pirolli and Card 2005] 

The Sensemaking Model for End-User Debuggers 

External Data Sources (node 1): All 

of the available information. 

External Data Sources: Same as Pirolli/Card. 

Shoebox (node 4): Much smaller set 

of data, relevant for processing.  

Shoebox: Data that a participant deemed relevant enough to “touch” in 

the spreadsheet or study environment.  

Examples: Particular cells selected, spreadsheet description handouts 

read, menus of features perused, help documents accessed, etc. 

Evidence File (node 7): Even smaller 

set of data extracted from the 

shoebox items. 

Evidence File: Extracted from the shoebox, data that attracted a 

participant’s interest enough for follow-up.  

Example: Wanting to find out more information about a suspicious cell. 

Schema (node 10): A large structure 

or overview of how the different 

pieces of data from the evidence file 

fit together: a re-representation of the 

data. 

Schema: A structure or pattern a participant noticed as to how cells or 

information related.  

Examples: Declaring that all cells in an area were behaving properly or 

that a cell(s) did not fit the pattern. 

Hypotheses (node 13): A tentative 

representation of the conclusions with 

supporting arguments. 

Hypothesis: A tentative idea about how to fix a particular bug based on 

the participant’s schema.  

Example: “So it’s saying that the group average is higher than it really 

was. I would say that is a mistake, since the formulas below it include all 

of them, this formula should include all” (Participant SF). 

Presentation (node 16): The work 

product. 

Presentation: The work product. 

Example: An edit to fix a formula (the edit could be right or wrong). 

Reevaluate (edge 15, from node 16 to 

13): After the presentation has been 

created, checking to make sure that 

the Presentation is indeed accurate.  

Reevaluate: After changing a formula, making sure that the change was 

in fact correct.  

Examples: Trying to input different value to see the result of the newly 

edited formula, reviewing the formula to evaluate its correctness. 

 Environment Sensemaking: A sensemaking loop for figuring out the 

environment.  

Examples: Trying to understand Excel’s error triangle feature or formula 

syntax.  

 Common Sense and Domain Sensemaking: A sensemaking loop for 

answering questions about common-sense and domain questions.  

Example: Trying to figure out how weighted averages are normally 

computed. 
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involves finding data relevant to the task at hand by, for example, identifying relevant information on the handout or 

locating formulas and values relevant to a bug. An example of schematic representation is building a comprehensive 

picture of how multiple parts of the spreadsheet work together. An example of development of an insight is realizing 

the significance of a particular unexpected output value. Finally, the primary knowledge product is a formula 

modification intended to fix the bug. 

Given this correspondence, the elements of the Bug Fixing Loop in our model mapped directly from the nodes 

from the Pirolli/Card model. All the data representation steps of the Pirolli/Card model are nodes; these are steps 1, 

4, 7, 10, 13, and 16 in Figure 1. Given the complete set of nodes, the Pirolli/Card edges connecting neighboring 

nodes (representing mental activities that connect these nodes) are implicit. Therefore, the only edge we included 

explicitly was step 15 (Reevaluate), since reevaluation of changes has long been reported to be fundamental to 

debugging (e.g., [Nanja and Cook 1987]).  

Table 4 shows our model‘s correspondence with Pirolli/Card‘s model.  Note that the exclusion of the edges 

(except for step 15) simplifies our model. Excluding the edges had no real disadvantage because edges are implicit 

in node changes—to get from one node to another, one must traverse the edge connecting them. The nodes represent 

data with which a user works (such as the ―shoebox‖), not the process by which the user works with that data (such 

as ―skimming‖). The advantage of this data-oriented model was that the resulting code set greatly facilitated 

analysis: it was much easier for researchers to reliably (i.e., with high agreement) identify the data representation 

with which a participant was working than to reliably identify the process a participant was using. The right column 

of Table 4 thus served as our code set (except the top row which was participant-independent and therefore not of 

interest to our research questions). We used this code set according to the methodology previously described in 

Section 3.5. 

Figure 3 shows thumbnails of the participants‘ progressions through the sensemaking steps up and down the 

Bug Fixing Sensemaking Loop. (Full-sized versions of these graphs will be shown later in Figure 5.) The graphs 

show participants ―climbing‖ the Bug Fixing Sensemaking Loop, and then dropping down to earlier steps of the 

model. Note the prevalence of traversing adjacent nodes in the Bug Fixing Sensemaking Loop upward in direct 

succession. For example, participants often advanced from adding to the evidence file (yellow) to structuring that 

information into a schema (orange). 

Exceptions to the forward progressions through consecutive steps of the Bug Fixing Loop were sometimes due 

to switches to the other two loops (Environmental or Common Sense/Domain). In the thumbnails, these loop 

switches are simply shown as gaps (white space in Figure 3), such as in Participant SF‘s second half. Another 

exception was steps backward through the sensemaking model, sometimes returning to a much earlier step in the 

process, as we shall see in more detail shortly. 

 

6. RESULTS: SENSEMAKING MODEL TRAVERSAL STYLES AND STRATEGIES 

6.1 Dominance of Foraging during Sensemaking 

Figure 4 shows the sensemaking traversal frequencies for each sensemaking node in the Bug Fixing Loop, with 

separators marking the major subloops of the model. Left of the separators are the nodes Pirolli and Card grouped 

into the ―foraging subloop,‖ in which people search for information and classify information related to their task at 

 

 

  

  
 

Figure 3. These thumbnails show the participants’ upward climbs and downward drops in Bug Fixing sensemaking 

steps. X-axis: time. Y-axis: the step in the Bug Fixing sensemaking loop, from Shoebox to Reevaluate. (Time spent 

in the Environment and Common Sense/Domain Loops appear as horizontal gaps.) Top left: Participant SF. Top 

right: Participant SM. Bottom left: Participant UF. Bottom right: Participant UM. 
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hand. Right of the separators are the nodes of the Pirolli/Card ―sensemaking subloop,‖ in which people organize and 

make inferences from the information they have collected [Pirolli and Card 2005]. 

Information foraging has an associated theory of its own, termed information foraging theory [Pirolli and Card 

1999]. The theory is based on optimal foraging theory, which describes how predators (animals in the wild) follow 

scent to a patch where the prey (food) is likely to be. Applying these notions to the domain of information, 

information foraging theory predicts that predators (people in need of information) will follow scent through cues in 

the environment to the information patch where the prey (the information itself) seems likely to be. Information 

foraging theory has primarily been used to understand web browsing, but also recently has been applied to 

understanding and predicting professional developers‘ code navigation during debugging [Lawrance et al. 2008].  

Figure 4 reveals two interesting points about information foraging. First, although the information foraging part 

of sensemaking consists of only two steps, those two steps alone accounted for half to two-thirds of all four 

participants‘ time!  

Their use of foraging was to gather information about how spreadsheet cells and formulas were working and 

how they interrelated. Everyone began this way. For example, Participant UF used the ―Evaluate Formula‖ tool 

(Table 2) early in the session to look through numerous formulas and figure out how they worked.   

An example illustrating promotion from Shoebox to Evidence in the foraging subloop was Participant SM‘s 

identification of cell G12‘s ―strange‖ness. A second example was Participant UF‘s identification of F12 and cells 

like it as being of interest and decided to gather new information to pursue them. 

SM: [pauses] “Interesting.  I think that G12 is a strange one. None of these students had special 

considerations or anything, right?”  

UF: “If true, that tells the percentage. And if F12 is... Oh I bet those mean what the actual percentage is... 

[referring to symbols she was having difficulties figuring out] I‟m going to look at the trace buttons to 

figure out where everything is coming from.” 

   

   
 

Figure 4. The amount of time in minutes (y-axis) spent at each Sensemaking model step (x-axis) by the participants. 

The vertical bars separate the information foraging subloop (left of the bars) from the sensemaking subloop (right of 

the bars). 
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The second point that can be seen in Figure 4 is the remarkable similarity among three of the participants‘ (SF, 

UF, and UM) allocation of time. Also note how much their sensemaking style was dominated by the foraging 

subloop. In contrast, Participant SM‘s style was somewhat more evenly distributed across sensemaking steps. Note 

that both styles were associated with successful debugging in that both were styles of participants who were quite 

successful. 

6.2 Sensemaking and Systematic Information Processing 

The Selectivity Hypothesis [Meyers-Levy 1989] offers an explanation for the differences between the two types of 

sensemaking loop traversals used successfully. Recall that the Selectivity Hypothesis predicts that females will 

gather information comprehensively: getting a comprehensive understanding before proceeding with detailed 

follow-up. The Selectivity Hypothesis also predicts that the males will be more selective in the information they 

gather, such as tending to follow up on a salient cue right away. Meyers-Levy terms this style ―heuristic processing,‖ 

but because that style is characterized as being selective, we will refer to it as ―selective processing.‖ Note that 

neither style is implied to be better than the other; rather, the distinction is that the former is less selective than the 

latter as to which information to process. 

Meyers-Levy proposed the Selectivity Hypothesis to describe people when working systematically. The 

Merriam-Webster Dictionary defines a systematic approach as ―a methodical procedure or plan marked by 

thoroughness and regularity.‖ The concept of a plan is closely related to the concept of strategy, defined by 

Merriam-Webster Dictionary as a ―plan devised or employed toward a goal.‖  Both successful participants indeed 

demonstrated strategic thoroughness and regularity, but the unsuccessful participants did not, and therefore fall 

mostly outside the scope of the Selectivity Hypothesis, as the next few paragraphs explain. 

As Figure 5 helps to show, Participant SF spent most of her time in the foraging subloop viewing all cells in 

context, gathering Shoebox data (green, lowest row) and organizing it into Evidence (yellow, next row up). She 

appeared to place newly collected information into the context of the overall spreadsheet and of her other data 

gathered, as evidenced both by the regularity of occurrence and the length of time she spent in the Schema step 

(orange, third row from the bottom). Also the content of her utterances during these moments expressed her views of 

the role of each part of the evidence:  

SF: “And, what else do we have? <looks at the description handout> So we checked all the bottom 

rows.  And... <looks at screen> We checked to make sure [the area of grades] was hardcoded up at the 

top, to remain consistent, not going off formulas. So, and... Let‟s look in the section for class averages. 

Class summary.”  

She seemed to have a threshold of ―enough‖ information before moving beyond the Schema step to act upon it, 

as evidenced by the fact that she fixed bugs mostly in a batch, after having collected and processed much of the 

available information first. The only bug she fixed immediately upon finding it was an obvious fix, and did not 

interrupt her information gathering for long. Her approach worked well for her: recall from Table 3 that she 

correctly found nine bugs (more than any other participant), fixed six of them correctly, and had no incorrect fixes. 

However, the comprehensive process also held disadvantages for Participant SF. Her method in the case of 

uncertainty was to gather more information. For example, when she thought one of the formulas looked odd (the 

second correct find, marked with a cross, in Figure 5‘s SF graph, at minute 12) but all of the cells within that region 

seemed equally incorrect, she did not pursue the fix right away, but rather continued with comprehensive 

information gathering. A disadvantage manifested itself when she did not mark the formula in any way for follow-

up, and ultimately neglected to return to it. In addition to forgetting about that bug she found but never fixed, 

another disadvantage of comprehensive processing for Participant SF was that she did not abandon her 

comprehensive approach when it ceased to help her make progress. Instead, during the second half of the task, she 

spent most of her time following Excel‘s Error Checking feedback about where bugs might lie. She stayed with her 

comprehensive traversal through all 202 of Excel‘s ―green triangle‖ warnings, even after spending over 10 minutes 

in this loop with only one bug find resulting. She did not attempt to fix this bug either, appearing to again rely on her 

memory of where the bug was, and ultimately did not follow up on a fix for it either. Instead, she opted to keep 

going comprehensively for the remaining 12 minutes of the task, during which time she found one more bug just 

before the time limit was reached. 

In contrast to Participant SF, Participant SM was selective as to which information he gathered. He foraged only 

until he found a new bug to work on, at which point he narrowed his interest to trying to fix that bug, by moving up 

from the foraging subloop to the sensemaking subloop to Presentation and Reevaluation. For example, Participant 

SM found the same bug Participant SF found at minute 12; it was the second bug both of them found. But unlike 

Participant SF, he followed up on this bug right away. This happened to be the most difficult of the ten bugs to fix, 
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but he continued to pursue it, spending a lot of time iterating on the Schema, Hypothesis, Presentation, and 

Reevaluation steps. He found this bug in minute 8 and fixed it in minute 32; during this time, as Figure 5 shows, 

Participant SM iterated through the sensemaking loop to reach the Presentation step nine times! In contrast, 

Participant SF, who gathered much more information up front, never iterated to the top of the sensemaking loop 

more than once for any bug fix. Participant SM‘s process worked well for him: he found eight bugs successfully and 

fixed six of them (including the bug with which participants had the most difficulty). 

However, the selective processing style also held disadvantages for Participant SM. He missed much of the 

information that had enabled Participant SF to spot and fix several bugs early. Participant SF fixed six bugs during 

the first half of the task, compared to only two by Participant SM. Furthermore, comprehensive processing might 

have provided useful information in solving the difficult bug upon which he spent so much time, in addition to 

potentially helping to find and fix some of the other bugs more quickly. 

We have pointed out how consistent the above details for the successful participants were with the Selectivity 

Hypothesis. This consistency was triangulated against other aspects of the data in multiple ways. First, the amount 

of time spent in each subloop (Figure 4, previous section) helps to confirm Participant SF‘s comprehensive style and 

Participant SM‘s selective style. Second, Participant SF‘s batch of several Presentation instances (bug fix attempts) 

together versus Participant SM‘s incremental timing of each Presentation instance (Figure 5) also helps to confirm 

Participant SF‘s comprehensive style and Participant SM‘s selective style. Third, consider the number of transitions 

between steps. Figure 6 traces participants‘ sensemaking paths through the sensemaking model. Notice Participant 

 
 

Figure 5. Full-sized view of the Sensemaking steps (y-axis) performed by four participants (from top to bottom: SF, 

SM, UF, UM) over time (x-axis). The top of each graph also shows the number of correct and incorrect finds and 

fixes, as well as the reevaluated fixes. =correct (filled) or incorrect (hollow) finds; =correct (filled) or incorrect 

(hollow) fixes; =reevaluates. UM has more correct finds and fixes in this figure than in Table 3, because UM 

introduced two bugs along the way that he later found and fixed. (The table refers only to the 10 seeded bugs.) The 

other three participants did not introduce bugs. 



 - 15 - 

SF‘s heavy emphasis on traversals between Shoebox to Schema, forming a cleanly separated ―module‖ with only 

one transition between the ―middle‖ of that subloop and bug follow-ups in the upper subloop. In contrast, Participant 

SM‘s most common transition was from Hypothesis to Presentation: his style showed a fairly uniform amount of 

activity on each upward transition progression in his pursuit of each bug, from Shoebox to Presentation and 

Reevaluation. 

On the other hand, Participants UF and UM were mostly not systematic. One of these participants (UF) 

expressed plans but did not follow them; the other (UM) did not express plans at all. Further, neither showed signs 

of regularity or thoroughness. Instead, their approach seems better described as a sequence of counterproductive 

self-interruptions [Jin and Dabbish 2009]. 

We illustrate this first with Participant UF. Like Participant SF, Participant UF at first followed the layout of the 

specifications comprehensively (exhibiting regularity), but unlike Participant SF, she abandoned the comprehensive 

approach at her first bug find (minute 7).  She focused on this bug (selective processing) for only three minutes, then 

found a second bug and chose to switch to that one instead (which she fixed immediately). This switch was 

productive in an immediate sense, but cost a loss of context regarding the first bug [Jin and Dabbish 2009]. Jin and 

Dabbish point out that triggered self-interruptions‘ disadvantages include difficulty refocusing on the first task‘s 

context, and likelihood of causing later self-interruptions. Indeed, at this point, about 10 minutes in, Participant UF‘s 

systematicness ended. For the rest of her session, her behavior was neither regular nor thorough: there ceased to be 

evidence of any ―big picture‖ awareness, the focus of her verbalizations and formula reading shifted dramatically 

without closure on any one section or bug before moving on to the next, and her actions (cells selected for reading or 

 
 

Figure 6. Frequency of transitions between sensemaking model steps by participant. Notice participant SF (top left) 

and participant UF (bottom left) transition mostly between different steps of the information foraging loop. 

Participant SM (top right) climbs up the sensemaking ladder in a mostly ordered manner, while participant UM 

takes a mixed approach and transitions into the Environment Loop more than any other participant. 



 - 16 - 

editing) tended to be unrelated to the plans she did verbalize. Her behavior lacked the coverage to be considered 

comprehensive. Nor was it a systematic selective approach; for example, it was very different from Participant SM‘s 

selective but thorough focus on one bug, in which he always persevered with his most recent bug find until he had 

fixed it. 

For example, although Participant UF occasionally expressed intent to follow up on one bug, she often 

immediately followed such verbalizations with actions unrelated to her expressed intent. For example, she expressed 

a plan at minute 18: ―Okay, I‘m gonna focus on the ‗letter grades‘ <the first bug she found> because it seems like 

there is some inconsistency in how they are being calculated. Uhh, I‘m not going to worry about the ‗lab grades‘ 

because they all completed all of the labs. I‘m going to ignore the ‗total points‘ because it seems like those are all 

correct.‖ This verbalization was, however, not followed by pursuing ‗letter grades‘; instead, she spent six minutes on 

‗total points‘ (which she had said she planned to ignore), and then seven minutes on ‗GPA‘. Following this, she 

briefly once again returned to the ‗letter grade‘ formula, but for less than a minute, after which she moved to a new 

bug she then noticed in the ‗waived‘ formula, never returning again to ‗letter grade.‘ None of her activities after 

minute 12 led to any successful bug fixes. 

Participant UM‘s approach was similar to Participant UF‘s but was even more ad hoc. Unlike Participant UF, 

who verbalized plans that she did not follow up on, Participant UM did not verbalize any plans at all. Many of his 

focus switches from one cell to the next were less than one second apart, far too little time to actually read a formula 

or warning message associated with that cell. ―There was a, like, little green arrow thing next to D22. As I was 

looking down the list, and I just clicked on it. And then I just clicked on the error checking and...‖ This is in sharp 

contrast to the way Participant SF used the same Error Checking (green triangles) tool. When she used this tool, her 

verbalizations described use of the tool in the context of the whole spreadsheet, stating that she wanted to look at all 

of the inconsistent formula warnings in the spreadsheet (systematic comprehensive processing). When Participant 

UM used the same tool, his ad hoc behavior and quick attention switches suggest that the tool was instead primarily 

a self-interruption trigger. 

Considering sensemaking from the standpoint of systematicness thus yields three classes of insights. First, for 

the two participants whose behavior was systematic, our data supports the Selectivity Hypothesis, with the female 

choosing a comprehensive information processing style and the male following a selective information processing 

style, just as the Selectivity Hypothesis predicts. Second, we observed several advantages and disadvantages with 

each systematic style. Third, the lack of systematicness of the other two participants helps us to understand why they 

ran into trouble and where. A ―why‖ insight comes from the details revealing their numerous self-interruptions with 

attendant loss of context, and ―where‖ insights are revealed by the graphs in Figures 4-6, which make clear that both 

unsuccessful participants spent a lot of time trying to build a Schema and also switched quickly in and out of the 

Environment Loop. These are two of the trouble spots we describe in more detail in the next section. 

 

7. RESULTS: SENSEMAKING TROUBLE SPOTS   

7.1 The Environment and Common Sense / Domain Loops 

Recall that our sensemaking model has three loops: the main Bug Fixing Loop, the Environment Loop, and the 

Common Sense / Domain Loop. When participants exited the main Bug Fixing Loop to go into one of the other two 

loops, it was usually to go to the Environment Loop. Departures to the Common Sense / Domain Loop were few in 

number, and tended to be short in duration, but it is not surprising that our participants did not spend much time 

trying to make sense of the domain, since grade calculation is familiar to students. 

Self-interruptions to switch to the Environment Loop arose in two situations. The first was when participants 

were having difficulties with some construct in the software (formula syntax, features, etc.). Participant UM had 

many instances of this situation, transitioning in and out of the Environment Loop almost twice as often as the other 

three participants (Figure 6). For example, while using the Evaluate Formula feature to understand a lengthy 

formula, he said: 

UM: “And then, when I click this „Evaluate Formula‟ button, it says if Z12 is greater… I forget what the 

name of the symbol… The greater than or equal to symbol. [Clicks Evaluate a couple of times] False. 

[Clicks Evaluate some more.] He gets an F. [Shakes head.] That doesn‟t make any sense.”  

The other three participants also spent time trying to understand features‘ meanings and operators or functions 

they could use. For example: 
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UF: “I‟m just trying to figure out again how to do an „AND‟ statement. [Tries it and gets an error 

message.] Yeah, I figured that would happen.” 

SM: “Um, how would I assign a number to W? [Pauses.]  Let me do a look-up formula. [Searches Help for 

VLOOKUP.]” 

The second situation in which participants switched to the Environment Loop arose when they wanted the 

environment‘s suggestions on what to do next. An example of this was Participant SF‘s reliance on Excel‘s green 

triangles to lead her through suspicious cells in the hopes of finding more bugs. She spent about twice as many 

minutes in the Environment Loop as any of the other participants (SF: 10.8 min, SM: 5.8 min, UF: 3.7 min, UM: 4.2 

min).  

SF: “So the rest of them are correct. [Double checking that they‟re correct.] And, what else do we have? 

[Decides to follow up on Excel‟s green Error Checking triangles] <details omitted> Trying to figure out 

why… Hm… <details omitted> Why is that one [formula] inconsistent from the one next to it?” 

Participant UM also tried to follow Excel‘s Error Checking feedback about what to do next, although with less 

success.  

The graphs of the successful versus unsuccessful participants show a marked difference in their excursions into 

the Environment Loop (Figure 5). The two successful participants both tended to remain in the Environment Loop 

for longer periods at a time than the other two participants, cycling through it until they reached the goals that had 

sent them into the Environment Loop. The unsuccessful participants, on the other hand, tended to spend only short 

times in the Environment Loop, usually returning to the Bug Fixing Loop without a satisfactory answer. In these 

outcomes, participants‘ short times in the Environment Loop were simply interruptions, and did not deliver benefits 

to their debugging efforts. 

7.2 Sticking Points Moving Up the Sensemaking Steps 

As Figure 5 shows, instances in which participants made progress—with new bugs found or fixes at least 

attempted—were almost all marked by (1) rapid transitions between (2) adjacent steps (3) upward in the 

sensemaking model. The rapidity of the transitions during successful periods is apparent in Figure 5: the periods 

culminating in bugs found or fixes attempted were characterized by numerous tiny chunks of time spent in one step 

before moving to another sensemaking step. A close look at the figure shows not only the rapidity of transitions, but 

also that the transitions during these periods of progress were almost entirely between adjacent sensemaking steps, 

and were almost entirely upward. 

Deviations from this pattern were usually signs of trouble. A case in point was the unsuccessful participants‘ 

propensity to get ―stuck‖ on the Schema step. We were alerted to this possibility by the odd looking bumps in their 

graphs at the Schema step in Figure 4. In fact, as Figure 7 shows, during the first half of the task, the two 

unsuccessful participants were stuck at the Schema step for minutes at a time. There were no bug finds during these 

long stretches and, upon exiting the Schema step, the participants almost always went all the way back to the 

Shoebox (which can be seen in Figure 5), rather than progressing upward to Hypothesis or down to the adjacent 

Evidence File to reconsider the usefulness of data previously identified as being pertinent. Thus, the Schema step, in 

which participants synthesized the information they had decided was relevant evidence, was clearly a trouble spot 

for the two unsuccessful participants. 

Transitions between some sensemaking steps may be detectable by tools. For example, attempts to fix bugs are, 

by definition, edits to cells that have formulas in them. Similarly, periods characterized by displaying several 

 
 

Figure 7. Excerpts from Figure 5 to bring out times spent in the Schema step. Note that the successful participants 

(top two) switched in and out of the Schema much more quickly than their unsuccessful counterparts (bottom two), 

who had a tendency to get stuck on that step. 
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different formulas may correspond to the Shoebox step, and periods characterized by reviewing formulas already 

viewed before may correspond to the Evidence step. If these kinds of detection can be automatically done, tools may 

be able to use this information to discern when a user is stuck at the Schema step and having trouble making 

debugging progress. This knowledge might then be used to focus on-line help or assistance tools that users access 

during these periods. 

7.3 Moving Down the Sensemaking Steps  

Although upward transitions tended to move incrementally, downward transitions were less predictable. In fact, 

participants had more than twice as many ―step skips‖ in their downward transitions as they did in upward 

transitions. When moving in a downward direction, they most often fell all the way down to the Shoebox stage, as 

Figure 6 shows. A possible interpretation of these fallbacks to the beginning is that it may have seemed easier for 

participants to make progress based on newly collected data than to sort out which of the earlier steps led to a correct 

or incorrect conclusion.  

Only one step was less subject to the ―back to square one‖ phenomenon: the Presentation step. Recall that 

Reevaluate was a transition (edge) from the Presentation step down to the Hypothesis step, resulting in either the 

validation or rejection of the hypothesis. For all four participants, this step was the only step in which returning to 

the previous step dominated over going back to the beginning.  

What happened from the Hypothesis step on, is still a mystery. The Sensemaking model might suggest that 

participants would then search for support for their hypothesis in the Schema step, perhaps judging which 

assumptions made at that step were correct and incorrect, determining whether to move up or down from there. 

However, the transition from Hypothesis back to the Schema was taken only once by Participant SM and Participant 

UF, and never by Participant SF and Participant UM. Thus, it appears that the participants neither incrementally 

changed nor revisited their Schema after the Hypothesis step. 

 

8. DISCUSSION 

The previous section‘s analysis makes clear the contrast in sensemaking traversal patterns between trouble spots 

versus instances of forward progress. This contrast suggests opportunities on how tools might detect the user‘s 

sensemaking step, which could lead to tools whose support is targeted at exactly that sensemaking stage.  

For example, user accesses of help mechanisms were a sign of detours to the Environment Loop, and quick 

abandonment of a feature for which the user had just sought help would suggest that the detour was an unproductive 

one. This implies a need for the tool to explain the subject matter a different way if the user returns to the feature 

later. Other examples that could be detected by tools were long periods of formula inspections, which were usually 

in the Shoebox stage, and periods of follow-ups such as tracing formulas back through dataflow, which were often 

signs of the Evidence stage.  

If tools like these were able to detect the user‘s current sensemaking step and compare it to the last few 

sensemaking steps, the tool might then be able to tailor its behavior depending on whether the user was progressing 

up the sensemaking loop versus systematically moving down versus falling down precipitously. For example, recall 

that often, the participants‘ downward transition patterns skipped many steps, thereby losing portions of sense 

already made, as with Participant SF who forgot about bugs she had already located and therefore never attempted to 

fix. Tools that could help users record and track evidence and hypotheses already gathered might be possible in a 

very low cost way, enabling users to systematically revisit otherwise forgotten or erroneously rejected assumptions. 

Just as a Sudoku player might recognize the usefulness of keeping track of penciled-in assumptions about which 

values are still viable for a square, and crossing them out one at a time, for end-user programmers the externalization 

of assumptions might help them notice important patterns and see interrelationships they may not have detected 

when keeping everything in the head. Two tool examples that allow tracking of one kind of assumptions in 

spreadsheet debugging are value range assertions for Forms/3 [Burnett et al. 2003] and Excel‘s data validation 

feature.  Perhaps future, lighter weight tools are possible that allow tracking of other assumptions the user has made 

but might want to revisit. 

One thing the model revealed was the dominance of information foraging. This aspect of sensemaking occupied 

half to two-thirds of participants‘ time; yet, foraging in end-user debugging has not yet been discussed in the 

literature on end-user programming practices. There is, however, recent research about professional programmers‘ 

debugging that has proposed tool possibilities based on information foraging theory: for example, constructs such as 

scent could be used to analyze the efficacy of environments, tools, and source code [Lawrance et al. 2008]. Our 

results also suggest the need for tools to explicitly support information foraging by end-user debuggers, in this case 
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in spreadsheets, where theory constructs such as scent could be applied to spreadsheet formulas, layout, and 

structure.  

Further, the model revealed that the two information processing styles proposed by others‘ research appeared to 

correspond to successful foraging, namely the comprehensive and selective styles. However, while both 

comprehensive and selective processing were successful styles, both also had disadvantages. For example, 

Participant SF lost track of bugs she had found while focusing on comprehensive processing, and Participant SM‘s 

bug finding and fixing seemed hampered by a lack of information. The lack of systematicness and its toll on the 

other two participants was far more obvious. Finally, although most of the participants attempted to traverse the 

spreadsheet systematically at least during some periods, they all missed some cells. These examples suggest that 

tools should facilitate systematic traversals of the spreadsheet, and further should do so in a way that is conducive to 

either the comprehensive or to useful selective styles of information processing, such as depth first. 

As with all empirical studies, our study‘s threats to validity need to be taken into account in assessing our 

results. An internal validity threat in our study is that the specific spreadsheet or the specific bugs seeded could 

affect the participants‘ sensemaking process as they debugged. To reduce this threat, we harvested bugs that had 

been created as side effects of other work by experienced spreadsheet users working on the same real-world 

gradebook spreadsheet used in our study. A lack of understanding of Excel 2003 could also have influenced results, 

which we attempted to mitigate by requiring participants to be familiar with Excel 2003, (in fact, selecting the ten 

most experienced volunteers who responded to our recruitment notice), and giving a tutorial on certain features to 

ensure specific skill levels. Our study contains a construct validity threat because think-aloud data is known to be a 

highly imperfect representation of what humans actually think. We attempted to mitigate this threat by also 

collecting behavior data (actions), which were used for triangulating with spoken data. Regarding external validity, a 

think-aloud study is by definition an artificial situation that does not occur in the real world. Further, our participants 

may not be representative of the larger population of end-user spreadsheet users. In addition, lab experiments entail 

artificial constraints; in our case these included a tutorial before the task, a short time (45 minutes) to complete the 

debugging task, and presence of a computer-based video-recorder, any of which could have influenced participants‘ 

actions. These threats can be fully addressed only through future studies using different spreadsheets, bugs, and 

participants, and we hope future researchers will be interested in making use of our model for exactly this purpose. 

 

9. CONCLUSIONS AND FUTURE WORK  

This work represents the first application of sensemaking research to end-user debugging. To gain a sensemaking 

perspective on end users‘ debugging, we began by deriving a sensemaking model for end-user debugging. The 

model owes its roots to the Pirolli/Card sensemaking model for intelligence analysis, and from this start, we derived 

the new model for end-user debugging from our participants‘ data. The data revealed not just one major 

sensemaking loop, but three intertwined major loops, which we termed the Bug Fixing Loop, the Environment 

Loop, and the Common Sense / Domain Loop. We then used the model and its three major loops to shed light on 

end users‘ debugging approaches and problems that arose in the sensemaking central to debugging.  

One contribution of this work has been (1) a new model of sensemaking by end-user debuggers, which consists 

of three connected sensemaking loops: one for reasoning about the ―program‖ itself, one for reasoning about the 

programming environment, and one for reasoning about the domain. This model then enabled empirical 

contributions revealing (2) the dominance of information foraging in our end users‘ debugging efforts, (3) two 

successful strategies for systematic sensemaking and their consistency with gender difference literature in 

information processing styles, (4) a detailed account of transitions among sensemaking steps and among the three 

sensemaking loops in our model, (5) the sensemaking sequences that were tied to successful outcomes versus those 

that identified trouble, and (6) specific sensemaking trouble spots and consequent information losses. These findings 

suggest a number of opportunities for researchers and tool designers to consider how to support end users‘ 

sensemaking as they debug. 

Regarding our own future work, we plan to do exactly that—experiment with tool ideas to better support end-

user debuggers‘ sensemaking. We plan an intertwined set of further empirical work and tool experimentation. The 

purpose of these efforts will be to investigate how an end-user programming environment can better support end-

user debugging by following opportunities and fulfilling needs the sensemaking model has helped reveal. The 

empirical component will not only inform our efforts, but also will help us ultimately to understand whether our new 

tools work and how tools might best support their sensemaking efforts of female and male end-user programmers. 

We believe that the fresh perspective the sensemaking model provides on the difficult task of debugging may hold 
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the key to paving the way to a new generation of sensemaking-oriented debugging tools, and we hope other 

researchers will join us in these investigations. 
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