
 - 1 -

Females’ and Males’ End-User Debugging Strategies:
A Sensemaking Perspective

VALENTINA GRIGOREANU, MARGARET BURNETT
Oregon State University

SUSAN WIEDENBECK
Drexel University

JILL CAO, KYLE RECTOR
Oregon State University

Although there have been decades of research into how professional programmers debug, only recently has work

begun to emerge about how end-user programmers attempt to debug their programs. Without understanding how

end-user programmers approach debugging, we cannot build tools to adequately support their needs. To help fill this

need, this paper reports the results of a qualitative empirical study that investigates in detail female and male end-

user programmers‘ sensemaking about a spreadsheet‘s correctness. Using our study‘s data, we derived a

sensemaking model for end-user debugging and then categorized participants‘ activities and verbalizations

according to this model. We then used the categorized data to investigate how our participants went about

debugging. Among the results are identification of the prevalence of information foraging during end-user

debugging, two successful strategies for traversing the sensemaking model, ties to gender differences in the

literature, sensemaking sequences leading to debugging progress, and sensemaking sequences tied with troublesome

points in the debugging process. The results also reveal new implications for the design of spreadsheet tools to

support female and male end-user programmers‘ sensemaking as they debug.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—debugging aids;

H.1.2 [Models and Principles]: User/Machine Systems—human factors; human information processing; software

psychology; H.4.1 [Information Systems Applications]: Office Automation—spreadsheets.

General Terms: Human Factors

Additional Key Words and Phrases: End-user programming, end-user software engineering, debugging, debugging

strategies, gender differences, gender HCI, sensemaking, spreadsheets

1. INTRODUCTION

Although twenty years ago, the idea of end users creating their own programs was still a revolutionary concept,

today, end-user programming has become a widespread phenomenon. In fact, in the U.S., there are now more end-

user programmers than professional programmers [Scaffidi et al. 2005]. Today‘s end-user programmers include

anyone who creates artifacts that instruct computers how to perform an upcoming computation. Examples include an

accountant creating a budget spreadsheet, a garage mechanic entering rules to sort email, or a teacher authoring

educational simulations of science phenomena. The pervasiveness of end-user programming today is in part due to

research advances such as graphical techniques for programming, programming by demonstration, and innovative

ways of representing programs (described, for example, in [Kelleher and Pausch 2005; Myers et al. 2006; Nardi

1993]), and in part due to the popularity of spreadsheets [Scaffidi et al. 2005].

Along with the ability to create programs comes the need to debug them, and work on end-user debugging is

only beginning to become established. The numerous reports of expensive errors in end users‘ programs, especially

V. Grigoreanu is currently affiliated with the School of Electrical Engineering and Computer Science at Oregon

State University in Corvallis, Oregon. Authors‘ email addresses: i.valentina.g@gmail.com,

burnett@eecs.oregonstate.edu, susan.wiedenbeck@cis.drexel.edu, coach@eecs.oregonstate.edu,

rectorky@eecs.oregonstate.edu.

 - 2 -

spreadsheets (e.g., [Boehm and Basili 2001; Butler 2000; EUSPRIG 2009; Panko 1998; Panko and Orday 2005]),

make clear that supporting end users‘ debugging efforts is important. There has been recent work on tools for end-

user debugging to fill this need (e.g., [Abraham and Erwig 2007; Ayalew and Mittermeir 2003; Burnett et al. 2003;

Burnett et al. 2004; Ko and Myers 2004; Wagner and Lieberman 2004]), but a key issue that remains largely

unanswered is how end-user programmers go about debugging. We believe that knowing more about end users‘

debugging strategies is important to informing the design of better tools to support their debugging.

This paper helps to fill this gap in knowledge by considering end-user debugging from a sensemaking

perspective. Sensemaking is a term used to describe how people make sense of the information around them, and

how they represent and encode that knowledge, so as to answer task-specific questions [Russell et al. 1993]. As we

discuss in more detail in Section 2, sensemaking models provide a detailed view of strategies people use when trying

to make sense of information they need, in situations in which much of the information available may be irrelevant

to the problem at hand. Since such situations are precisely the sort encountered by debuggers—perhaps especially so

by end-user debuggers with little training in debugging techniques—we posit that sensemaking is a suitable lens

from which to gain new insights into debugging.

To understand how end-user programmers solve debugging problems, it is important to take into account

individual differences in problem-solving styles. To gain insights into individual differences, it is often useful to

consider identifiable subpopulations, and that is our approach here. One such division that has reported important

differences in end-user debugging is gender [Beckwith et al. 2005; Beckwith et al. 2006; Grigoreanu et al. 2006;

Grigoreanu et al. 2009; Subrahmaniyan et al. 2008], and as a result, debugging tool improvements have begun to

emerge that have been helpful to both males and females [Grigoreanu et al. 2008].

Therefore, in this paper, we investigate the following research question:

How do male and female end-user programmers make sense of spreadsheets‟ correctness when debugging?

To answer this question, we collected detailed activity logs and think-aloud data from end users debugging a

spreadsheet, and used the results to derive from earlier sensemaking research into intelligence analysts [Pirolli and

Card 2005] a new model of sensemaking for end-user debuggers. Our model is particularly suited for use with

empirical work, because it is expressed solely in terms of the data being processed by the user rather than on internal

mental activities that do the processing. We use it in this paper to characterize our end-user debugging data in terms

of sensemaking sequences, sensemaking subloops, and relationships between sensemaking and debugging. Among

the results were the identifications of: the prevalence of information foraging during end-user debugging, two

successful ways of traversing the sensemaking model and their ties to literature on gender differences, sensemaking

sequences leading to debugging progress, and sensemaking sequences tied with troublesome points in the debugging

process. Finally, we discuss how these results can be taken into account to build future tools for end-user debuggers.

2. BACKGROUND AND RELATED WORK

2.1 Debugging by End-User Programmers

There have been decades of research on professional programmers‘ debugging strategies (see [Romero et al. 2007]

for a summary), but the works most related to this paper are those on novice programmers‘ debugging strategies,

end-user programmers‘ debugging feature usage, and end-user programming. Note that novice programmers are not

necessarily the same as end-user programmers. Novice programmers program in order to learn the profession so that

they can become professional developers. End-user programmers usually do not aspire to become professional

developers; instead, their programming interest is more likely to be in the result of the program rather than the

program itself [Nardi 1993]. Such differences in goals can play out in differences in motivation, in degree of intent

to achieve software quality, and in the importance placed on understanding the fine points of the program. However,

like novices, end-user programmers usually do not have professional programming experience, and therefore

research into novice programmers‘ debugging is pertinent to end-user debugging.

Given that novice programmers program in order to learn, a number of researchers have looked into how novice

programmers gain skill. One recent effort in this direction was research into the learning barriers faced by this

population [Ko et al. 2004], which reported barriers of six types: design, selection, coordination, use, understanding,

and information. Although the discussion of these relate mainly to the context of creating a new program from

scratch, the barriers also tie to debugging, since difficulties with understanding a program‘s behavior can lead the

programmer to a debugging mode. In fact, research on novice programmers shows that program comprehension is

key to successful debugging (e.g., [Jeffries 1982; Nanja and Cook 1987]). For example, fixing a program with

 - 3 -

multiple modules can become intractable if the programmer does not understand the dependencies of the modules

[Littman et al. 1986]. Also, how a programmer goes about comprehending a program matters. For example, reading

a program in the order in which it will be executed has been empirically shown to be superior to reading the program

from beginning to end like text [Jeffries 1982]. The essence of previous research into novice programmers points to

their need for a sound understanding of the high-level structure of the program and the interactions among parts of

the program in order to debug or maintain software effectively. The literature on novice programming was

summarized in [Kelleher and Pausch 2005; Pane and Myers 1996].

To be precise about understanding strategies, we first introduce the nuances between two related terms

employed in this paper: strategems and strategies. A strategem is a complex set of thoughts and/or actions, while a

strategy is a plan which may contain strategems for the entire task [Bates 1990]. For the remainder of this section,

we focus on empirical findings and theories about end-user programmers‘ debugging behaviors and strategems.

Empirical research of end users‘ debugging has begun to appear in recent years [Abraham and Erwig 2007;

Beckwith et al. 2005; Beckwith et al. 2006; Beckwith et al. 2007; Fern et al. 2009; Grigoreanu et al. 2006;

Grigoreanu et al. 2008; Grigoreanu et al. 2009; Kissinger et al. 2006; Ko and Myers 2004; Phalgune et al. 2005;

Prabhakararao et al. 2003; Rode and Rosson 2003; Subrahmaniyan et al. 2008]. One useful finding relating to how

end users make sense of their programs‘ flaws is Rode and Rosson‘s empirical work showing how users ―debugged

their programs into existence‖ [Rode and Rosson 2003]. That is, they began with an initial solution, then iteratively

found flaws with it, and expanded their solution to correct those flaws, which required adding new functionalities at

the same time, debugging that new functionality to uncover more flaws, and so on. One difficulty in such debugging

efforts has been end users‘ difficulties judging whether the program is working correctly [Phalgune et al. 2005]. To

inform supporting end-users‘ debugging, studies investigating end users‘ information needs during debugging

revealed that much of what end-user programmers wanted to know during debugging was ―why‖ and ―why not‖

oriented [Ko and Myers 2004], and that they also wanted to know more about strategies for debugging, not just

features for doing so [Kissinger et al. 2006].

A reason this paper explicitly considers the gender of participants in our analysis is the recent body of research

suggesting that females and males may go about debugging (and other software development tasks) differently

[Beckwith et al. 2005; Beckwith et al. 2006; Beckwith et al. 2007; Grigoreanu et al. 2008; Ioannidou et al. 2008;

Kelleher et al. 2007; Rosson et al. 2007]. For example, in spreadsheet debugging, females‘ self-efficacy (confidence

about spreadsheet debugging) [Bandura 1986] has been lower than males‘, as has their willingness to use new

debugging features, which in some cases led to lower performance outcomes [Beckwith et al. 2005; Beckwith et al.

2006]. In contrast to the females in these studies, the males‘ self efficacy was not correlated with their willingness to

use the same new features. These studies are consistent with other studies of females‘ and males‘ technical and

quantitative tasks revealing females to have lower self-efficacy than males in such tasks [Torkzadah and Koufteros

1994; Busch 1995; Gallagher et al. 2000; Hartzel 2003]. Research also reports that females tend to be more risk-

averse than males [Byrnes et al. 1999; Finucane 2000; Powell and Ansic 1997]. The attributes of risk averseness and

low self-efficacy are related, and may snowball. For example, risk-averse females who try out new debugging

features and are not immediately successful may experience further reduced self-efficacy as a result, thereby

enhancing the perception of risk in adopting the features.

Pertinent to end users‘ sensemaking about program bugs, Meyers-Levy‘s Selectivity Hypothesis describes two

strategies in how people process information [Meyers-Levy 1989]. According to the Selectivity Hypothesis, males

prefer to use a heuristic (or selective) approach that involves striving for efficiency by following contextually salient

cues, whereas females process information comprehensively, seeking a more complete understanding of the

problem. Empirical work supports this theory [Meyers-Levy 1989; O‘Donnell and Johnson 2001], some of which

has taken place in the context of an end-user programming tasks. In a study of spreadsheet auditing, female auditors

were statistically more efficient (completed the task in less time and used fewer information items) than males in a

complex analytical procedures task through use of comprehensive information processing, whereas males were

statistically more efficient (used fewer information items) than females in a simple task through use of selective

information processing [O‘Donnell and Johnson 2001]. Research into female and male effective end-user debugging

strategems also seem related to their preferred information processing styles: females‘ (but not males‘) success has

been tied to the use of code inspection, whereas males‘ (but not females‘) was tied to dataflow [Grigoreanu et al.

2009; Subrahmaniyan et al. 2008]. In both of these studies, females were observed to use the elaborative information

processing with code inspection to examine formulas broadly and in detail to get the big picture of the spreadsheet.

Males‘ use of dataflow, on the other hand, was to follow a particular formula‘s dependencies, in essence being

selective about the information being pursued by going for depth early, but at the expense of a comprehensive

understanding of the spreadsheet.

 - 4 -

2.2 Sensemaking

Dervin began developing human-centric models in 1972, creating the Sensemaking methodology for the design

of human communication systems. This methodology was grounded in her model of how a person makes sense of

his or her situation, referred to as the sensemaking triangle. The most complete presentation of Dervin‘s early work

on the sensemaking triangle model is [Dervin 1984], and a more modern overview of her sensemaking work is

[Dervin et al. 2003]. According to Dervin‘s triangle model, an individual trying to make sense of a complex

situation steps through a space-time context. Beginning with the current situation (what he or she knows now), the

individual then moves through the space to recognizing gaps in understanding (questions, confusions, muddles) that

must be ―bridged‖ via resources (ideas, cognitions, beliefs, intuitions), leading to analysis and outcomes (effects,

consequences, hindrances, impacts). Although Dervin‘s work mostly appeared in Communications literature, her

goals align with those of Human-Computer Interaction (HCI) research that aims to design and implement human-

centric communication systems [Dervin et al. 2003].

A series of sensemaking models later began to appear in Computer Science literature, particularly HCI. These

new models focused primarily on Dervin‘s ―bridge‖ aspect of sensemaking. An early effort in this regard, before the

term ―sensemaking‖ had been adopted by the HCI community, was Shrager and Klahr‘s experiment on

instructionless learning [Shrager and Klahr 1986]. Non-technical participants were given a programmable toy and

told to figure it out, without any manual or help. The study revealed that participants went through an orientation

phase followed by a hypothesis phase: after direct attempts to control the device failed, participants systematically

formulated hypotheses about the device by observation and tested them by interacting with the device. If hypotheses

were not confirmed, the participants refined and tested them iteratively. The authors used these results to form a

theory of how users make sense of a program based on its outputs, with a focus on participants‘ partial schemas

developed through observation and hypothesis testing.

One of the earliest appearances of the term ―sensemaking‖ in HCI was Russell et al.‘s work on a model of the

cost structure of sensemaking [Russell et al. 1993] known as the Learning Loop Complex. In this work, the authors

observed how Xerox technicians made sense of laser printers: they entered a learning loop to seek suitable

representations of the problem, then instantiated those representations, then shifted the representations when faced

with residue (e.g., ill-fitting data, missing data, unused representations), and finally consumed the encodons (i.e.,

instantiated schemas) and representations they created [Russell et al. 1993].

Since that time, other versions of sensemaking models have emerged for different domains, of which Stefik et

al. provide a good overview [Stefik et al. 2002]. Most of these models depict roughly the same sort of process, each

providing a progression by which existing information or knowledge is turned into new knowledge useful to a target

task. Even so, there remains controversy over what exactly sensemaking is and how sensemaking research should be

performed. These differences in perspective are summarized in [Leedom 2001; Klein et al. 2006]. As these

summaries point out, the psychological perspective focuses on creating a mental model, and takes into account

elements that are not sensemaking per se, but may contribute to sensemaking, including creativity, curiosity

comprehension, and situation awareness. The naturalistic decision-making perspective on sensemaking is

empirically based and keeps expert analysts in the center of the sensemaking process, but uses decision aids as

needed to improve the process. The human-centered computing perspective critiques intelligent systems intended to

automatically solve the problem of sensemaking. For example, in intelligent systems, fused data from multiple

sources reduce information overload, but hide the data from the analyst, which negates the analysts‘ expertise and

prevents the development of their own interpretations [Leedom 2001; Klein et al. 2006].

Of particular interest to this paper is the relatively recent Pirolli/Card Sensemaking Model for Analysts [Pirolli

and Card 2005]. As with other sensemaking research, Pirolli and Card pointed out that sensemaking is not based on

direct insights or retrieving a final answer from memory, but rather a process that involves planning, evaluating, and

reasoning about alternative future steps [Pirolli and Card 2005]. Their sensemaking model (Figure 1) can be viewed

as a more detailed version of Russell et al,‘s Learning Loop Complex. Like the Russell et al. model, the Pirolli/Card

model focuses on how users‘ representations of data change during sensemaking. Pirolli and Card derived this

model through cognitive task analysis and think-aloud protocol analysis of intelligence analysts‘ sensemaking data.

The derived overall process is organized into two major loops of activities: first, a foraging loop for searching,

filtering, reading, extracting information, and second, a sensemaking loop for organizing the relevant information

into a large structure that leads to knowledge products. (These loops are coupled in Russell et al.‘s works too

[Russell et al. 1993; Furnas and Russell 2005].) The Pirolli/Card model can be viewed as a model with a low-level

focus on Dervin‘s ―bridge‖ component and Russell et al.‘s learning loop complex,‖ and this low-level focus made it

a good fit for our interest in investigating end-user debugging in a fine-grained way. We will thus return to the

Pirolli/Card model in Section 5.

 - 5 -

3. THE SENSEMAKING STUDY

3.1 Procedure

The study, conducted one participant at a time, used the think-aloud method. Each participant first read and signed

the informed consent paperwork. We then conducted a pre-session interview about their spreadsheet background,

which covered whether the participant had previously used spreadsheets for school, work, or personal reasons, and

about the types of formulas he or she had written (Table 1). We then gave the participant a brief tutorial and warm-

up exercise, described in Section 3.4, to ensure familiarity with Excel‘s audit features and with verbalizing during

the task.

Each participant was asked to ―make sure the spreadsheet is correct and, if [you] find any errors, fix them.‖ We

also provided the paper handout, shown in Figure 2, to give an overview of the way the spreadsheet was supposed to

work. The participants had 45 minutes to debug the spreadsheet. The data we captured during the sessions were

video showing their facial expressions, audio of their think-aloud verbalizations, synchronized screen recordings of

the entire session (including pre-session background interviews and the task itself), and their final Excel

spreadsheets.

3.2 Participants

Ten participants (five men and five women) participated in our study. To take part in our study, participants were

required to have experience with Excel spreadsheet formulas. Background in computer science was not allowed

beyond the rudimentary requirements of their majors. Participants received a $20 gratuity for their participation.

Figure 1. Pirolli and Card’s sensemaking model for intelligence analysts. The rectangles represent how the data

representation changes at each step, while the arrows represent the process flow [Pirolli and Card 2005].

 - 6 -

We discarded the data of a participant whose verbalizations were inaudible and the data of a participant whose

Excel experience was so much lower than he had claimed during recruitment that he was unable to proceed with the

debugging task. The remaining eight participants were undergraduate and graduate students at Oregon State

University majoring in animal science, biochemistry, business administration, mechanical engineering, pharmacy,

and rangeland ecology/management. Table 1 details participant backgrounds.

3.3 Task and Materials

The spreadsheet the participants debugged was fairly complex. It consisted of the worksheet thumbnailed in

Figure 2 and a small second sheet that produced frequency statistics and a chart of the grades calculated in the main

sheet. We obtained the spreadsheet from the EUSES Spreadsheet Corpus of real-world spreadsheets [Fisher II and

Rothermel 2005], most of which were obtained from the web. We chose the spreadsheet for the following reasons.

First, it was complicated enough to ensure that we would obtain a reasonable amount of sensemaking data. Second,

its domain (grading) was familiar to most participants, helping to avoid intimidating participants by the domain

itself. Third, its real-world origin increased the external validity of our study. Finally, it has been used successfully

in other studies (e.g., [Beckwith et al. 2007]), which not only provided evidence as to suitability for spreadsheet

users in a lab setting, but also allowed us to harvest the bugs made by previous participants for use in the current

study. We seeded the spreadsheet with a total of ten real bugs harvested from the spreadsheets of Beckwith et al.‘s

participants, who were Seattle-area adult spreadsheet users from a variety of occupations and age groups. None had

computer science training or occupations, but all were experienced Excel users. Hence, the bugs we harvested from

their work were realistic in terms of the kinds of bugs real end users generate.

Table 1: Study participants‘ spreadsheet background.

Participant Major Spreadsheet Experience
Computer Science

Background

P05200830

(Male)
Biochemistry /

Biophysics

(undergraduate)

School: chemistry labs. No programming

experience. Formula experience: standard deviations, quadratic

formulas, and basic arithmetic.

P05211130

(Female)

Business

Administration

(undergraduate)

School, work, personal: checking paperwork (bank

statements, personal records).

An undergraduate

business class on

Business Application

Development.
Formula experience: SUM, IF, SUB, other basic functions.

P05211600

(Male)

Animal Science

(graduate)

School, work, personal: in classes, manages his own and

his dorms‘ finances.

An introductory

computing class with

some HTML.

Formula experience: basic arithmetic, statistics, and

calculus.

P05220830

(Male)

Mechanical

Engineering

(undergraduate)

School, work, personal: created a spreadsheet for timing

races and others for running a club.

A Q-BASIC class in

high school and is

familiar with

MATLAB.
Formula experience: basic formulas, VLOOKUP,

embedded IF, etc.

P05221230

(Male)

Mechanical

Engineering

(undergraduate)

School and work: works as an accountant. No programming

experience. Formula experience: AVERAGE, MIN, MAX, COUNT,

COUNTA.

P05270830

(Female)

Rangeland

Ecology and

Management

(graduate)

School, work, personal: was an accountant six years, and

now uses it for her research and labs.

No programming

experience (wrote a

few macros years ago,

but did not think she

remembered how).

Formula experience: basic Excel formulas, IF, statistics

formulas.

P05281130

(Female)

Pharmacy

(undergraduate)

School: spreadsheets for labs and graphs/charts for reports. An introductory CS

class. Formula experience: SUM, AVERAGE, MAX, MIN, and

basic arithmetic.

P05290830

(Female)

Animal Science

(undergraduate)

School, work: was a club treasurer and calculated interest

rates for classes.

No programming

experience.

Formula experience: basic arithmetic, statistical formulas,

and also financial formulas (N, PMT, FV, PV, I).

 - 7 -

We harvested a variety of bug types from these previous users. Six of the harvested bugs were formula

inconsistencies with respect to other formulas in the same row or column. For example, some cells‘ formulas

omitted some students‘ grades in calculating the class average. Three more bugs were logic errors that had been

propagated by their original authors over the entire row or column (e.g., using the ―>‖ operator instead of ―>=‖). The

last bug was not part of any group of similar formulas: it counted lab attendance as a part of the total points, but

should not have done so. This collection of ten real end-user bugs provided variety in the types of bugs our

participants would need to track down and fix.

3.4 Spreadsheet Environment and Tutorial

The environment for the study was Excel 2003. To make sure participants were familiar with some of Excel‘s

debugging features, we pointed the ―auditing‖ collection out to them in a pre-session tutorial and suggested that

these features might help them make debugging progress. However, participants were free to use any Excel features

they wanted.

The tutorial‘s wording was about features per se, and carefully avoided hints about how to use these features

strategically. Table 2 summarizes the features we presented during the tutorial. The tutorial was hands-on: the

participant used the features as the tutorial went along. In addition, since most participants had not used these

features prior to this experiment, everyone had five minutes after the tutorial to try the features out on their own

before moving on to the main task.

3.5 Analysis Methodology

We began by labeling the debugging state changes (―bug found‖, ―bug fixed‖, and ―reevaluating fix‖) in all eight of

the participants‘ videos. Since these identifications did not require subjective judgments, only one researcher was

Figure 2. (Top) A thumbnail of the description handout of the grade-book spreadsheet. (Bottom) Blowup of

description Box F.

 - 8 -

needed for this part. Sometimes participants believed they had fixed a bug when in fact they had not, so we also

labeled these state changes as correct/incorrect. For example, editing a formula incorrectly was labeled ―incorrect

bug fix‖. Labeling these debugging state changes had two purposes. First, they pointed out milestones in the

participants‘ success at the task as time progressed. Second, the count of participants‘ successful bug fixes was used

to identify the corner cases for further analysis, namely the most successful and least successful female and male, a

total of four participants.

For the four selected participants, two researchers then independently coded the videos according to the

sensemaking codes to be described in Table 4 (which will be presented in Section 5), using the following procedure.

First, each researcher independently coded 20 minutes of one of the four transcripts (about 10% of the total video

data), using videos as well as written transcripts in order to have full access to the context in which actions were

performed and words were spoken. The coders reached an 84% inter-rater reliability, calculated using the Jaccard

index. Given this level of agreement, the two researchers then split up the remaining videos and coded them

independently.

4. RESULTS: PARTICIPANTS’ SUCCESS AT DEBUGGING

To provide context for the remainder of the results, we begin with the participants‘ success levels. Table 3 shows

each participant‘s number of bug-find, bug-fix, and fix-reevaluation actions. We defined a bug-find action as

Table 2. The Excel 2003 debugging features, namely Excel auditing tools plus formula tool tips, covered in the

“tour of features” tutorial.

Feature Description

The Arrow Features show the relationships

between spreadsheet formulas. Left to right:

Trace/Remove Precedent Arrows, Trace/Remove

Dependent Arrows, and Remove All Arrows.

Tool tips can be brought up by hovering over

formulas to aid in their understanding.

The Evaluate Formula tool allows users to see

intermediate results, by observing how nested

parts of a formula are calculated step by step.

The Error Checking tool points suspicious

formulas with a green triangle. These cells can

either be stepped through in order or examined

directly within the spreadsheet.

The Watch Window tool allows users to watch

one or more formulas and their results, which

might be helpful when inspecting cells of interest

which might have scrolled off the screen.

Table 3. For the bugs (10 in total) that needed fixing, these are the participants’ successful and unsuccessful find

and fix actions, as well as how many times they reevaluated the fixes they attempted. The top-scoring and bottom-

scoring participants we selected for further detailed analysis are highlighted.

Participant Bug Finds Bug Fixes Evaluations

of Fixes Correct Incorrect Correct Incorrect

P05211130 (Female) 9 0 6 0 5

P05220830 (Male) 8 0 6 8 8

P05281130 (Female) 6 2 5 2 5

P05270830 (Female) 5 0 4 1 4

P05211600 (Male) 5 0 2 2 1

P05221230 (Male) 4 0 2 4 3

P05290830 (Female) 3 0 1 7 2

P05200830 (Male) 1 1 0 1 5

 - 9 -

identifying a seeded incorrect formula as being faulty, a bug-fix action as changing a faulty formula, and a fix-

evaluation action as checking a bug-fix action. We also used an ―incorrect‖ modifier for the bug finds and bug fixes.

Specifically, when the participant mistakenly identified a correct formula as being faulty, we labeled it as an

incorrect bug-find, and when a participant edited a formula in a way that left the formula incorrect, we labeled it an

incorrect bug-fix.

As Table 3 shows, participants‘ sensemaking about where the bugs lurked was more successful than their

sensemaking about how to fix those bugs. Specifically, in finding the bugs, six out of eight of the participants made

no mistakes, and the remaining two made only one or two mistakes. When it came to actually fixing the bugs, only

three of the participants made more correct fixes than incorrect ones, and one participant‘s incorrect fix count was as

high as eight.

The number of reevaluations averaged to less than one reevaluation per fix (51 fixes and 33 reevaluations). This

is consistent with prior work that suggested reevaluation in debugging tends to be undersupported in spreadsheets,

and users may believe that the immediate recalculation feature is sufficient for reevaluation purposes (a ―one test

proves correctness‖ view) [Wilcox et al. 1997].

To investigate end users‘ sensemaking about spreadsheet correctness, we selected a subset of the participants to

examine in detail. We chose the four most extreme participants two with the most bugs fixed (one female and one

male), and the two with the fewest bugs fixed (one female and one male). These participants correspond to the

shaded rows in Table 3, and the remainder of this paper focuses on them. From now on, we will refer to these four

as SF (successful female, participant P05211130), SM (successful male, participant P05220830), UF (unsuccessful

female, participant P05290830), and UM (unsuccessful male, participant P05200830).

5. RESULTS: THE SENSEMAKING MODEL FOR END-USER DEBUGGERS

5.1 Three Sensemaking Loops

Pirolli and Card characterized intelligence analysts‘ sensemaking in terms of a major loop and its subloops,

reflecting the iterative nature of sensemaking. Our data echoed this iterative character, but our participants‘ subloops

were organized under not one but three major loops that corresponded to different classes of challenges in our

participants‘ work. Our model is presented in Table 4.

We term the major loop, in which participants reasoned about the bugs and spreadsheet formulas/values, the

Bug Fixing Sensemaking Loop; the loop in which they reasoned about the environment, the Environment

Sensemaking Loop; and the loop in which they reasoned about common-sense topics and/or the domain, the

Common Sense and Domain Sensemaking Loop. Considering these loops separately provided the conceptual benefit

of focusing on the challenges introduced by a particular programming environment or domain separately from the

challenges introduced by the difficulties of debugging that are independent of the environment or domain.

The Bug Fixing Sensemaking Loop was where our participants spent most of their time. We devote the next

subsection to it.

The Environment Sensemaking Loop arose multiple times for all four participants. It was triggered when

participants tried to make sense of Excel features or syntax. For example:

SF: “So, I‟m clicking on the trace dependents. [Excel displays a small thumbnail of a table with an arrow

pointing from it to the formula.] [Participant hovers over the little table and then tries clicking on it.

Nothing happens.] And it goes to wherever… There‟s a little box, but I don‟t know what that means.”

These visits to the Environment Sensemaking Loop were sometimes disadvantageous, but other times led to

leaps forward. We will point to examples of both in upcoming sections.

The third sensemaking loop was the Common Sense/Domain Sensemaking Loop. This loop involved reasoning

about general knowledge items, such as trying to remember mathematical principles, or conventions used in the

domain such as trying to recall how grades are usually computed. This loop was less common with our participants,

perhaps because, as college students, they were very familiar with grade computations. Here is an example of

accessing this loop:

SM: “In the grading, it says students must attend 70% of the labs in order to pass the course. Are, uh, is it

possible to be waived from the labs?”

 - 10 -

Because they are peripheral to our main research questions, we did not perform detailed analyses of the

Environment and Common Sense/Domain Sensemaking Loops. However, we did code the instances of these loops‘

presence so that we could see the interactions between these loops and the Bug Fixing Sensemaking Loop.

5.2 The Bug Fixing Sensemaking Loop

In the Bug Fixing Loop, participants gathered information about the spreadsheet logic and made sense of it in order

to create the final product, namely a bug fix. We derived the elements of our Bug Fixing Loop directly from the

Pirolli/Card model for intelligence analysts [Pirolli and Card 2005]. We chose the Pirolli/Card model over the other

sensemaking models presented in Section 2.2 because of Pirolli/Card‘s low-level focus on how data are used to

bridge a gap. This low-level focus on Dervin‘s ―bridge‖ aspect, combined with the high-level overview of the entire

problem-solving process, mapped well to our investigation of end-user programmers‘ debugging processes.

Pirolli and Card characterized their model as consisting of four high-level sensemaking steps: information

gathering, schematic representation of the information, development of an insight through manipulation, and the

creation of a knowledge product. These steps clearly apply to the end-user debugging task. Information gathering

Table 4. A side-by-side view of how Pirolli and Card’s Sensemaking model and definitions compare with our node-

oriented sensemaking model of end-user debugging. Node numbers refer to those in Figure 1. Our model elements

(the right hand column) were also our sensemaking code set; see text for details.

The Sensemaking Model for Analysts

[Pirolli and Card 2005]

The Sensemaking Model for End-User Debuggers

External Data Sources (node 1): All

of the available information.

External Data Sources: Same as Pirolli/Card.

Shoebox (node 4): Much smaller set

of data, relevant for processing.

Shoebox: Data that a participant deemed relevant enough to “touch” in

the spreadsheet or study environment.

Examples: Particular cells selected, spreadsheet description handouts

read, menus of features perused, help documents accessed, etc.

Evidence File (node 7): Even smaller

set of data extracted from the

shoebox items.

Evidence File: Extracted from the shoebox, data that attracted a

participant’s interest enough for follow-up.

Example: Wanting to find out more information about a suspicious cell.

Schema (node 10): A large structure

or overview of how the different

pieces of data from the evidence file

fit together: a re-representation of the

data.

Schema: A structure or pattern a participant noticed as to how cells or

information related.

Examples: Declaring that all cells in an area were behaving properly or

that a cell(s) did not fit the pattern.

Hypotheses (node 13): A tentative

representation of the conclusions with

supporting arguments.

Hypothesis: A tentative idea about how to fix a particular bug based on

the participant’s schema.

Example: “So it’s saying that the group average is higher than it really

was. I would say that is a mistake, since the formulas below it include all

of them, this formula should include all” (Participant SF).

Presentation (node 16): The work

product.

Presentation: The work product.

Example: An edit to fix a formula (the edit could be right or wrong).

Reevaluate (edge 15, from node 16 to

13): After the presentation has been

created, checking to make sure that

the Presentation is indeed accurate.

Reevaluate: After changing a formula, making sure that the change was

in fact correct.

Examples: Trying to input different value to see the result of the newly

edited formula, reviewing the formula to evaluate its correctness.

 Environment Sensemaking: A sensemaking loop for figuring out the

environment.

Examples: Trying to understand Excel’s error triangle feature or formula

syntax.

 Common Sense and Domain Sensemaking: A sensemaking loop for

answering questions about common-sense and domain questions.

Example: Trying to figure out how weighted averages are normally

computed.

 - 11 -

involves finding data relevant to the task at hand by, for example, identifying relevant information on the handout or

locating formulas and values relevant to a bug. An example of schematic representation is building a comprehensive

picture of how multiple parts of the spreadsheet work together. An example of development of an insight is realizing

the significance of a particular unexpected output value. Finally, the primary knowledge product is a formula

modification intended to fix the bug.

Given this correspondence, the elements of the Bug Fixing Loop in our model mapped directly from the nodes

from the Pirolli/Card model. All the data representation steps of the Pirolli/Card model are nodes; these are steps 1,

4, 7, 10, 13, and 16 in Figure 1. Given the complete set of nodes, the Pirolli/Card edges connecting neighboring

nodes (representing mental activities that connect these nodes) are implicit. Therefore, the only edge we included

explicitly was step 15 (Reevaluate), since reevaluation of changes has long been reported to be fundamental to

debugging (e.g., [Nanja and Cook 1987]).

Table 4 shows our model‘s correspondence with Pirolli/Card‘s model. Note that the exclusion of the edges

(except for step 15) simplifies our model. Excluding the edges had no real disadvantage because edges are implicit

in node changes—to get from one node to another, one must traverse the edge connecting them. The nodes represent

data with which a user works (such as the ―shoebox‖), not the process by which the user works with that data (such

as ―skimming‖). The advantage of this data-oriented model was that the resulting code set greatly facilitated

analysis: it was much easier for researchers to reliably (i.e., with high agreement) identify the data representation

with which a participant was working than to reliably identify the process a participant was using. The right column

of Table 4 thus served as our code set (except the top row which was participant-independent and therefore not of

interest to our research questions). We used this code set according to the methodology previously described in

Section 3.5.

Figure 3 shows thumbnails of the participants‘ progressions through the sensemaking steps up and down the

Bug Fixing Sensemaking Loop. (Full-sized versions of these graphs will be shown later in Figure 5.) The graphs

show participants ―climbing‖ the Bug Fixing Sensemaking Loop, and then dropping down to earlier steps of the

model. Note the prevalence of traversing adjacent nodes in the Bug Fixing Sensemaking Loop upward in direct

succession. For example, participants often advanced from adding to the evidence file (yellow) to structuring that

information into a schema (orange).

Exceptions to the forward progressions through consecutive steps of the Bug Fixing Loop were sometimes due

to switches to the other two loops (Environmental or Common Sense/Domain). In the thumbnails, these loop

switches are simply shown as gaps (white space in Figure 3), such as in Participant SF‘s second half. Another

exception was steps backward through the sensemaking model, sometimes returning to a much earlier step in the

process, as we shall see in more detail shortly.

6. RESULTS: SENSEMAKING MODEL TRAVERSAL STYLES AND STRATEGIES

6.1 Dominance of Foraging during Sensemaking

Figure 4 shows the sensemaking traversal frequencies for each sensemaking node in the Bug Fixing Loop, with

separators marking the major subloops of the model. Left of the separators are the nodes Pirolli and Card grouped

into the ―foraging subloop,‖ in which people search for information and classify information related to their task at

Figure 3. These thumbnails show the participants’ upward climbs and downward drops in Bug Fixing sensemaking

steps. X-axis: time. Y-axis: the step in the Bug Fixing sensemaking loop, from Shoebox to Reevaluate. (Time spent

in the Environment and Common Sense/Domain Loops appear as horizontal gaps.) Top left: Participant SF. Top

right: Participant SM. Bottom left: Participant UF. Bottom right: Participant UM.

 - 12 -

hand. Right of the separators are the nodes of the Pirolli/Card ―sensemaking subloop,‖ in which people organize and

make inferences from the information they have collected [Pirolli and Card 2005].

Information foraging has an associated theory of its own, termed information foraging theory [Pirolli and Card

1999]. The theory is based on optimal foraging theory, which describes how predators (animals in the wild) follow

scent to a patch where the prey (food) is likely to be. Applying these notions to the domain of information,

information foraging theory predicts that predators (people in need of information) will follow scent through cues in

the environment to the information patch where the prey (the information itself) seems likely to be. Information

foraging theory has primarily been used to understand web browsing, but also recently has been applied to

understanding and predicting professional developers‘ code navigation during debugging [Lawrance et al. 2008].

Figure 4 reveals two interesting points about information foraging. First, although the information foraging part

of sensemaking consists of only two steps, those two steps alone accounted for half to two-thirds of all four

participants‘ time!

Their use of foraging was to gather information about how spreadsheet cells and formulas were working and

how they interrelated. Everyone began this way. For example, Participant UF used the ―Evaluate Formula‖ tool

(Table 2) early in the session to look through numerous formulas and figure out how they worked.

An example illustrating promotion from Shoebox to Evidence in the foraging subloop was Participant SM‘s

identification of cell G12‘s ―strange‖ness. A second example was Participant UF‘s identification of F12 and cells

like it as being of interest and decided to gather new information to pursue them.

SM: [pauses] “Interesting. I think that G12 is a strange one. None of these students had special

considerations or anything, right?”

UF: “If true, that tells the percentage. And if F12 is... Oh I bet those mean what the actual percentage is...

[referring to symbols she was having difficulties figuring out] I‟m going to look at the trace buttons to

figure out where everything is coming from.”

Figure 4. The amount of time in minutes (y-axis) spent at each Sensemaking model step (x-axis) by the participants.

The vertical bars separate the information foraging subloop (left of the bars) from the sensemaking subloop (right of

the bars).

 - 13 -

The second point that can be seen in Figure 4 is the remarkable similarity among three of the participants‘ (SF,

UF, and UM) allocation of time. Also note how much their sensemaking style was dominated by the foraging

subloop. In contrast, Participant SM‘s style was somewhat more evenly distributed across sensemaking steps. Note

that both styles were associated with successful debugging in that both were styles of participants who were quite

successful.

6.2 Sensemaking and Systematic Information Processing

The Selectivity Hypothesis [Meyers-Levy 1989] offers an explanation for the differences between the two types of

sensemaking loop traversals used successfully. Recall that the Selectivity Hypothesis predicts that females will

gather information comprehensively: getting a comprehensive understanding before proceeding with detailed

follow-up. The Selectivity Hypothesis also predicts that the males will be more selective in the information they

gather, such as tending to follow up on a salient cue right away. Meyers-Levy terms this style ―heuristic processing,‖

but because that style is characterized as being selective, we will refer to it as ―selective processing.‖ Note that

neither style is implied to be better than the other; rather, the distinction is that the former is less selective than the

latter as to which information to process.

Meyers-Levy proposed the Selectivity Hypothesis to describe people when working systematically. The

Merriam-Webster Dictionary defines a systematic approach as ―a methodical procedure or plan marked by

thoroughness and regularity.‖ The concept of a plan is closely related to the concept of strategy, defined by

Merriam-Webster Dictionary as a ―plan devised or employed toward a goal.‖ Both successful participants indeed

demonstrated strategic thoroughness and regularity, but the unsuccessful participants did not, and therefore fall

mostly outside the scope of the Selectivity Hypothesis, as the next few paragraphs explain.

As Figure 5 helps to show, Participant SF spent most of her time in the foraging subloop viewing all cells in

context, gathering Shoebox data (green, lowest row) and organizing it into Evidence (yellow, next row up). She

appeared to place newly collected information into the context of the overall spreadsheet and of her other data

gathered, as evidenced both by the regularity of occurrence and the length of time she spent in the Schema step

(orange, third row from the bottom). Also the content of her utterances during these moments expressed her views of

the role of each part of the evidence:

SF: “And, what else do we have? <looks at the description handout> So we checked all the bottom

rows. And... <looks at screen> We checked to make sure [the area of grades] was hardcoded up at the

top, to remain consistent, not going off formulas. So, and... Let‟s look in the section for class averages.

Class summary.”

She seemed to have a threshold of ―enough‖ information before moving beyond the Schema step to act upon it,

as evidenced by the fact that she fixed bugs mostly in a batch, after having collected and processed much of the

available information first. The only bug she fixed immediately upon finding it was an obvious fix, and did not

interrupt her information gathering for long. Her approach worked well for her: recall from Table 3 that she

correctly found nine bugs (more than any other participant), fixed six of them correctly, and had no incorrect fixes.

However, the comprehensive process also held disadvantages for Participant SF. Her method in the case of

uncertainty was to gather more information. For example, when she thought one of the formulas looked odd (the

second correct find, marked with a cross, in Figure 5‘s SF graph, at minute 12) but all of the cells within that region

seemed equally incorrect, she did not pursue the fix right away, but rather continued with comprehensive

information gathering. A disadvantage manifested itself when she did not mark the formula in any way for follow-

up, and ultimately neglected to return to it. In addition to forgetting about that bug she found but never fixed,

another disadvantage of comprehensive processing for Participant SF was that she did not abandon her

comprehensive approach when it ceased to help her make progress. Instead, during the second half of the task, she

spent most of her time following Excel‘s Error Checking feedback about where bugs might lie. She stayed with her

comprehensive traversal through all 202 of Excel‘s ―green triangle‖ warnings, even after spending over 10 minutes

in this loop with only one bug find resulting. She did not attempt to fix this bug either, appearing to again rely on her

memory of where the bug was, and ultimately did not follow up on a fix for it either. Instead, she opted to keep

going comprehensively for the remaining 12 minutes of the task, during which time she found one more bug just

before the time limit was reached.

In contrast to Participant SF, Participant SM was selective as to which information he gathered. He foraged only

until he found a new bug to work on, at which point he narrowed his interest to trying to fix that bug, by moving up

from the foraging subloop to the sensemaking subloop to Presentation and Reevaluation. For example, Participant

SM found the same bug Participant SF found at minute 12; it was the second bug both of them found. But unlike

Participant SF, he followed up on this bug right away. This happened to be the most difficult of the ten bugs to fix,

 - 14 -

but he continued to pursue it, spending a lot of time iterating on the Schema, Hypothesis, Presentation, and

Reevaluation steps. He found this bug in minute 8 and fixed it in minute 32; during this time, as Figure 5 shows,

Participant SM iterated through the sensemaking loop to reach the Presentation step nine times! In contrast,

Participant SF, who gathered much more information up front, never iterated to the top of the sensemaking loop

more than once for any bug fix. Participant SM‘s process worked well for him: he found eight bugs successfully and

fixed six of them (including the bug with which participants had the most difficulty).

However, the selective processing style also held disadvantages for Participant SM. He missed much of the

information that had enabled Participant SF to spot and fix several bugs early. Participant SF fixed six bugs during

the first half of the task, compared to only two by Participant SM. Furthermore, comprehensive processing might

have provided useful information in solving the difficult bug upon which he spent so much time, in addition to

potentially helping to find and fix some of the other bugs more quickly.

We have pointed out how consistent the above details for the successful participants were with the Selectivity

Hypothesis. This consistency was triangulated against other aspects of the data in multiple ways. First, the amount

of time spent in each subloop (Figure 4, previous section) helps to confirm Participant SF‘s comprehensive style and

Participant SM‘s selective style. Second, Participant SF‘s batch of several Presentation instances (bug fix attempts)

together versus Participant SM‘s incremental timing of each Presentation instance (Figure 5) also helps to confirm

Participant SF‘s comprehensive style and Participant SM‘s selective style. Third, consider the number of transitions

between steps. Figure 6 traces participants‘ sensemaking paths through the sensemaking model. Notice Participant

Figure 5. Full-sized view of the Sensemaking steps (y-axis) performed by four participants (from top to bottom: SF,

SM, UF, UM) over time (x-axis). The top of each graph also shows the number of correct and incorrect finds and

fixes, as well as the reevaluated fixes. =correct (filled) or incorrect (hollow) finds; =correct (filled) or incorrect

(hollow) fixes; =reevaluates. UM has more correct finds and fixes in this figure than in Table 3, because UM

introduced two bugs along the way that he later found and fixed. (The table refers only to the 10 seeded bugs.) The

other three participants did not introduce bugs.

 - 15 -

SF‘s heavy emphasis on traversals between Shoebox to Schema, forming a cleanly separated ―module‖ with only

one transition between the ―middle‖ of that subloop and bug follow-ups in the upper subloop. In contrast, Participant

SM‘s most common transition was from Hypothesis to Presentation: his style showed a fairly uniform amount of

activity on each upward transition progression in his pursuit of each bug, from Shoebox to Presentation and

Reevaluation.

On the other hand, Participants UF and UM were mostly not systematic. One of these participants (UF)

expressed plans but did not follow them; the other (UM) did not express plans at all. Further, neither showed signs

of regularity or thoroughness. Instead, their approach seems better described as a sequence of counterproductive

self-interruptions [Jin and Dabbish 2009].

We illustrate this first with Participant UF. Like Participant SF, Participant UF at first followed the layout of the

specifications comprehensively (exhibiting regularity), but unlike Participant SF, she abandoned the comprehensive

approach at her first bug find (minute 7). She focused on this bug (selective processing) for only three minutes, then

found a second bug and chose to switch to that one instead (which she fixed immediately). This switch was

productive in an immediate sense, but cost a loss of context regarding the first bug [Jin and Dabbish 2009]. Jin and

Dabbish point out that triggered self-interruptions‘ disadvantages include difficulty refocusing on the first task‘s

context, and likelihood of causing later self-interruptions. Indeed, at this point, about 10 minutes in, Participant UF‘s

systematicness ended. For the rest of her session, her behavior was neither regular nor thorough: there ceased to be

evidence of any ―big picture‖ awareness, the focus of her verbalizations and formula reading shifted dramatically

without closure on any one section or bug before moving on to the next, and her actions (cells selected for reading or

Figure 6. Frequency of transitions between sensemaking model steps by participant. Notice participant SF (top left)

and participant UF (bottom left) transition mostly between different steps of the information foraging loop.

Participant SM (top right) climbs up the sensemaking ladder in a mostly ordered manner, while participant UM

takes a mixed approach and transitions into the Environment Loop more than any other participant.

 - 16 -

editing) tended to be unrelated to the plans she did verbalize. Her behavior lacked the coverage to be considered

comprehensive. Nor was it a systematic selective approach; for example, it was very different from Participant SM‘s

selective but thorough focus on one bug, in which he always persevered with his most recent bug find until he had

fixed it.

For example, although Participant UF occasionally expressed intent to follow up on one bug, she often

immediately followed such verbalizations with actions unrelated to her expressed intent. For example, she expressed

a plan at minute 18: ―Okay, I‘m gonna focus on the ‗letter grades‘ <the first bug she found> because it seems like

there is some inconsistency in how they are being calculated. Uhh, I‘m not going to worry about the ‗lab grades‘

because they all completed all of the labs. I‘m going to ignore the ‗total points‘ because it seems like those are all

correct.‖ This verbalization was, however, not followed by pursuing ‗letter grades‘; instead, she spent six minutes on

‗total points‘ (which she had said she planned to ignore), and then seven minutes on ‗GPA‘. Following this, she

briefly once again returned to the ‗letter grade‘ formula, but for less than a minute, after which she moved to a new

bug she then noticed in the ‗waived‘ formula, never returning again to ‗letter grade.‘ None of her activities after

minute 12 led to any successful bug fixes.

Participant UM‘s approach was similar to Participant UF‘s but was even more ad hoc. Unlike Participant UF,

who verbalized plans that she did not follow up on, Participant UM did not verbalize any plans at all. Many of his

focus switches from one cell to the next were less than one second apart, far too little time to actually read a formula

or warning message associated with that cell. ―There was a, like, little green arrow thing next to D22. As I was

looking down the list, and I just clicked on it. And then I just clicked on the error checking and...‖ This is in sharp

contrast to the way Participant SF used the same Error Checking (green triangles) tool. When she used this tool, her

verbalizations described use of the tool in the context of the whole spreadsheet, stating that she wanted to look at all

of the inconsistent formula warnings in the spreadsheet (systematic comprehensive processing). When Participant

UM used the same tool, his ad hoc behavior and quick attention switches suggest that the tool was instead primarily

a self-interruption trigger.

Considering sensemaking from the standpoint of systematicness thus yields three classes of insights. First, for

the two participants whose behavior was systematic, our data supports the Selectivity Hypothesis, with the female

choosing a comprehensive information processing style and the male following a selective information processing

style, just as the Selectivity Hypothesis predicts. Second, we observed several advantages and disadvantages with

each systematic style. Third, the lack of systematicness of the other two participants helps us to understand why they

ran into trouble and where. A ―why‖ insight comes from the details revealing their numerous self-interruptions with

attendant loss of context, and ―where‖ insights are revealed by the graphs in Figures 4-6, which make clear that both

unsuccessful participants spent a lot of time trying to build a Schema and also switched quickly in and out of the

Environment Loop. These are two of the trouble spots we describe in more detail in the next section.

7. RESULTS: SENSEMAKING TROUBLE SPOTS

7.1 The Environment and Common Sense / Domain Loops

Recall that our sensemaking model has three loops: the main Bug Fixing Loop, the Environment Loop, and the

Common Sense / Domain Loop. When participants exited the main Bug Fixing Loop to go into one of the other two

loops, it was usually to go to the Environment Loop. Departures to the Common Sense / Domain Loop were few in

number, and tended to be short in duration, but it is not surprising that our participants did not spend much time

trying to make sense of the domain, since grade calculation is familiar to students.

Self-interruptions to switch to the Environment Loop arose in two situations. The first was when participants

were having difficulties with some construct in the software (formula syntax, features, etc.). Participant UM had

many instances of this situation, transitioning in and out of the Environment Loop almost twice as often as the other

three participants (Figure 6). For example, while using the Evaluate Formula feature to understand a lengthy

formula, he said:

UM: “And then, when I click this „Evaluate Formula‟ button, it says if Z12 is greater… I forget what the

name of the symbol… The greater than or equal to symbol. [Clicks Evaluate a couple of times] False.

[Clicks Evaluate some more.] He gets an F. [Shakes head.] That doesn‟t make any sense.”

The other three participants also spent time trying to understand features‘ meanings and operators or functions

they could use. For example:

 - 17 -

UF: “I‟m just trying to figure out again how to do an „AND‟ statement. [Tries it and gets an error

message.] Yeah, I figured that would happen.”

SM: “Um, how would I assign a number to W? [Pauses.] Let me do a look-up formula. [Searches Help for

VLOOKUP.]”

The second situation in which participants switched to the Environment Loop arose when they wanted the

environment‘s suggestions on what to do next. An example of this was Participant SF‘s reliance on Excel‘s green

triangles to lead her through suspicious cells in the hopes of finding more bugs. She spent about twice as many

minutes in the Environment Loop as any of the other participants (SF: 10.8 min, SM: 5.8 min, UF: 3.7 min, UM: 4.2

min).

SF: “So the rest of them are correct. [Double checking that they‟re correct.] And, what else do we have?

[Decides to follow up on Excel‟s green Error Checking triangles] <details omitted> Trying to figure out

why… Hm… <details omitted> Why is that one [formula] inconsistent from the one next to it?”

Participant UM also tried to follow Excel‘s Error Checking feedback about what to do next, although with less

success.

The graphs of the successful versus unsuccessful participants show a marked difference in their excursions into

the Environment Loop (Figure 5). The two successful participants both tended to remain in the Environment Loop

for longer periods at a time than the other two participants, cycling through it until they reached the goals that had

sent them into the Environment Loop. The unsuccessful participants, on the other hand, tended to spend only short

times in the Environment Loop, usually returning to the Bug Fixing Loop without a satisfactory answer. In these

outcomes, participants‘ short times in the Environment Loop were simply interruptions, and did not deliver benefits

to their debugging efforts.

7.2 Sticking Points Moving Up the Sensemaking Steps

As Figure 5 shows, instances in which participants made progress—with new bugs found or fixes at least

attempted—were almost all marked by (1) rapid transitions between (2) adjacent steps (3) upward in the

sensemaking model. The rapidity of the transitions during successful periods is apparent in Figure 5: the periods

culminating in bugs found or fixes attempted were characterized by numerous tiny chunks of time spent in one step

before moving to another sensemaking step. A close look at the figure shows not only the rapidity of transitions, but

also that the transitions during these periods of progress were almost entirely between adjacent sensemaking steps,

and were almost entirely upward.

Deviations from this pattern were usually signs of trouble. A case in point was the unsuccessful participants‘

propensity to get ―stuck‖ on the Schema step. We were alerted to this possibility by the odd looking bumps in their

graphs at the Schema step in Figure 4. In fact, as Figure 7 shows, during the first half of the task, the two

unsuccessful participants were stuck at the Schema step for minutes at a time. There were no bug finds during these

long stretches and, upon exiting the Schema step, the participants almost always went all the way back to the

Shoebox (which can be seen in Figure 5), rather than progressing upward to Hypothesis or down to the adjacent

Evidence File to reconsider the usefulness of data previously identified as being pertinent. Thus, the Schema step, in

which participants synthesized the information they had decided was relevant evidence, was clearly a trouble spot

for the two unsuccessful participants.

Transitions between some sensemaking steps may be detectable by tools. For example, attempts to fix bugs are,

by definition, edits to cells that have formulas in them. Similarly, periods characterized by displaying several

Figure 7. Excerpts from Figure 5 to bring out times spent in the Schema step. Note that the successful participants

(top two) switched in and out of the Schema much more quickly than their unsuccessful counterparts (bottom two),

who had a tendency to get stuck on that step.

 - 18 -

different formulas may correspond to the Shoebox step, and periods characterized by reviewing formulas already

viewed before may correspond to the Evidence step. If these kinds of detection can be automatically done, tools may

be able to use this information to discern when a user is stuck at the Schema step and having trouble making

debugging progress. This knowledge might then be used to focus on-line help or assistance tools that users access

during these periods.

7.3 Moving Down the Sensemaking Steps

Although upward transitions tended to move incrementally, downward transitions were less predictable. In fact,

participants had more than twice as many ―step skips‖ in their downward transitions as they did in upward

transitions. When moving in a downward direction, they most often fell all the way down to the Shoebox stage, as

Figure 6 shows. A possible interpretation of these fallbacks to the beginning is that it may have seemed easier for

participants to make progress based on newly collected data than to sort out which of the earlier steps led to a correct

or incorrect conclusion.

Only one step was less subject to the ―back to square one‖ phenomenon: the Presentation step. Recall that

Reevaluate was a transition (edge) from the Presentation step down to the Hypothesis step, resulting in either the

validation or rejection of the hypothesis. For all four participants, this step was the only step in which returning to

the previous step dominated over going back to the beginning.

What happened from the Hypothesis step on, is still a mystery. The Sensemaking model might suggest that

participants would then search for support for their hypothesis in the Schema step, perhaps judging which

assumptions made at that step were correct and incorrect, determining whether to move up or down from there.

However, the transition from Hypothesis back to the Schema was taken only once by Participant SM and Participant

UF, and never by Participant SF and Participant UM. Thus, it appears that the participants neither incrementally

changed nor revisited their Schema after the Hypothesis step.

8. DISCUSSION

The previous section‘s analysis makes clear the contrast in sensemaking traversal patterns between trouble spots

versus instances of forward progress. This contrast suggests opportunities on how tools might detect the user‘s

sensemaking step, which could lead to tools whose support is targeted at exactly that sensemaking stage.

For example, user accesses of help mechanisms were a sign of detours to the Environment Loop, and quick

abandonment of a feature for which the user had just sought help would suggest that the detour was an unproductive

one. This implies a need for the tool to explain the subject matter a different way if the user returns to the feature

later. Other examples that could be detected by tools were long periods of formula inspections, which were usually

in the Shoebox stage, and periods of follow-ups such as tracing formulas back through dataflow, which were often

signs of the Evidence stage.

If tools like these were able to detect the user‘s current sensemaking step and compare it to the last few

sensemaking steps, the tool might then be able to tailor its behavior depending on whether the user was progressing

up the sensemaking loop versus systematically moving down versus falling down precipitously. For example, recall

that often, the participants‘ downward transition patterns skipped many steps, thereby losing portions of sense

already made, as with Participant SF who forgot about bugs she had already located and therefore never attempted to

fix. Tools that could help users record and track evidence and hypotheses already gathered might be possible in a

very low cost way, enabling users to systematically revisit otherwise forgotten or erroneously rejected assumptions.

Just as a Sudoku player might recognize the usefulness of keeping track of penciled-in assumptions about which

values are still viable for a square, and crossing them out one at a time, for end-user programmers the externalization

of assumptions might help them notice important patterns and see interrelationships they may not have detected

when keeping everything in the head. Two tool examples that allow tracking of one kind of assumptions in

spreadsheet debugging are value range assertions for Forms/3 [Burnett et al. 2003] and Excel‘s data validation

feature. Perhaps future, lighter weight tools are possible that allow tracking of other assumptions the user has made

but might want to revisit.

One thing the model revealed was the dominance of information foraging. This aspect of sensemaking occupied

half to two-thirds of participants‘ time; yet, foraging in end-user debugging has not yet been discussed in the

literature on end-user programming practices. There is, however, recent research about professional programmers‘

debugging that has proposed tool possibilities based on information foraging theory: for example, constructs such as

scent could be used to analyze the efficacy of environments, tools, and source code [Lawrance et al. 2008]. Our

results also suggest the need for tools to explicitly support information foraging by end-user debuggers, in this case

 - 19 -

in spreadsheets, where theory constructs such as scent could be applied to spreadsheet formulas, layout, and

structure.

Further, the model revealed that the two information processing styles proposed by others‘ research appeared to

correspond to successful foraging, namely the comprehensive and selective styles. However, while both

comprehensive and selective processing were successful styles, both also had disadvantages. For example,

Participant SF lost track of bugs she had found while focusing on comprehensive processing, and Participant SM‘s

bug finding and fixing seemed hampered by a lack of information. The lack of systematicness and its toll on the

other two participants was far more obvious. Finally, although most of the participants attempted to traverse the

spreadsheet systematically at least during some periods, they all missed some cells. These examples suggest that

tools should facilitate systematic traversals of the spreadsheet, and further should do so in a way that is conducive to

either the comprehensive or to useful selective styles of information processing, such as depth first.

As with all empirical studies, our study‘s threats to validity need to be taken into account in assessing our

results. An internal validity threat in our study is that the specific spreadsheet or the specific bugs seeded could

affect the participants‘ sensemaking process as they debugged. To reduce this threat, we harvested bugs that had

been created as side effects of other work by experienced spreadsheet users working on the same real-world

gradebook spreadsheet used in our study. A lack of understanding of Excel 2003 could also have influenced results,

which we attempted to mitigate by requiring participants to be familiar with Excel 2003, (in fact, selecting the ten

most experienced volunteers who responded to our recruitment notice), and giving a tutorial on certain features to

ensure specific skill levels. Our study contains a construct validity threat because think-aloud data is known to be a

highly imperfect representation of what humans actually think. We attempted to mitigate this threat by also

collecting behavior data (actions), which were used for triangulating with spoken data. Regarding external validity, a

think-aloud study is by definition an artificial situation that does not occur in the real world. Further, our participants

may not be representative of the larger population of end-user spreadsheet users. In addition, lab experiments entail

artificial constraints; in our case these included a tutorial before the task, a short time (45 minutes) to complete the

debugging task, and presence of a computer-based video-recorder, any of which could have influenced participants‘

actions. These threats can be fully addressed only through future studies using different spreadsheets, bugs, and

participants, and we hope future researchers will be interested in making use of our model for exactly this purpose.

9. CONCLUSIONS AND FUTURE WORK

This work represents the first application of sensemaking research to end-user debugging. To gain a sensemaking

perspective on end users‘ debugging, we began by deriving a sensemaking model for end-user debugging. The

model owes its roots to the Pirolli/Card sensemaking model for intelligence analysis, and from this start, we derived

the new model for end-user debugging from our participants‘ data. The data revealed not just one major

sensemaking loop, but three intertwined major loops, which we termed the Bug Fixing Loop, the Environment

Loop, and the Common Sense / Domain Loop. We then used the model and its three major loops to shed light on

end users‘ debugging approaches and problems that arose in the sensemaking central to debugging.

One contribution of this work has been (1) a new model of sensemaking by end-user debuggers, which consists

of three connected sensemaking loops: one for reasoning about the ―program‖ itself, one for reasoning about the

programming environment, and one for reasoning about the domain. This model then enabled empirical

contributions revealing (2) the dominance of information foraging in our end users‘ debugging efforts, (3) two

successful strategies for systematic sensemaking and their consistency with gender difference literature in

information processing styles, (4) a detailed account of transitions among sensemaking steps and among the three

sensemaking loops in our model, (5) the sensemaking sequences that were tied to successful outcomes versus those

that identified trouble, and (6) specific sensemaking trouble spots and consequent information losses. These findings

suggest a number of opportunities for researchers and tool designers to consider how to support end users‘

sensemaking as they debug.

Regarding our own future work, we plan to do exactly that—experiment with tool ideas to better support end-

user debuggers‘ sensemaking. We plan an intertwined set of further empirical work and tool experimentation. The

purpose of these efforts will be to investigate how an end-user programming environment can better support end-

user debugging by following opportunities and fulfilling needs the sensemaking model has helped reveal. The

empirical component will not only inform our efforts, but also will help us ultimately to understand whether our new

tools work and how tools might best support their sensemaking efforts of female and male end-user programmers.

We believe that the fresh perspective the sensemaking model provides on the difficult task of debugging may hold

 - 20 -

the key to paving the way to a new generation of sensemaking-oriented debugging tools, and we hope other

researchers will join us in these investigations.

ACKNOWLEDGEMENTS

We thank George Robertson for introducing us to sensemaking research, Peter Pirolli for his thoughts on our

mapping of his sensemaking for intelligence analysts model to end-user debugging, and Joe Markgraf, Akshay

Subramanian, and Rachel White for their help transcribing the participants‘ think-aloud videos. Laura Beckwith‘s

background research into implications of the selectivity hypothesis on male and female problem solvers was also a

key influence on this work. We especially thank the participants of our study. This work has been supported in part

by the EUSES Consortium under NSF 0325273, by NSF 0917366, by AFOSR FA9550-09-1-0213, and by an IBM

Faculty Award.

REFERENCES

ABRAHAM, R. AND ERWIG, M. 2007. A type system based on end-user vocabulary. In Proceedings of the Symposium on Visual Languages and

Human-Centric Computing. IEEE, 215-222.

AYALEW Y. AND MITTERMEIR R. 2003. Spreadsheet debugging. In Proceedings of the European Spreadsheet Risks Interest Group.
BANDURA, A. 1986. Social Foundations of Thought and Action. Prentice Hall, NJ.

BATES, M. 1990. Where should the person stop and the information search interface start? Information Processing and Management, 26(5).

575–591.
BECKWITH, L. BURNETT, M., WIEDENBECK, S., COOK, C., SORTE, S., AND HASTINGS, M. 2005. Effectiveness of end-user debugging

software features: Are there gender issues? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 869-

878.
BECKWITH, L. KISSINGER, C., BURNETT, M., WIEDENBECK, S., LAWRANCE, J., BLACKWELL, A., AND COOK, C. 2006. Tinkering and

gender in end-user programmers‘ debugging, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,

231-240.
BECKWITH, L., INMAN, D., RECTOR, K., AND BURNETT, M. 2007. On to the real world: Gender and self-efficacy in Excel. In Proceedings of

the Symposium on Visual Languages and Human-Centric Computing. IEEE, 119-126.

BOEHM, B. AND BASILI, V. 2001. Software defect reduction top 10 list. Computer, 34(1), 135-137.
BURNETT, M., COOK, C., PENDSE, O., ROTHERMEL, G., SUMMET, J., AND WALLACE, C. 2003. End-user software engineering with

assertions in the spreadsheet paradigm. In Proceedings of the International Conference on Software Engineering. IEEE, 93-103.

BURNETT M., COOK C., AND ROTHERMEL G. 2004. End-user software engineering. Communications of the ACM 47(9), 53-58.
BUSCH, T. 1995. Gender differences in self-efficacy and attitudes toward computers. Journal of Educational Computing Research 12(2), 147-

158.

BUTLER, R. 2000. Is this spreadsheet a tax evader? How HM Customs and Excise test spreadsheet applications, In Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences, 6 pages.

BYRNES, J. P., MILLER, D. C., AND SCHAFER, W. D. 1999. Gender differences in risk taking: A meta-analysis. Psychological Bulletin 125.

367-383.
DERVIN, B. 1984. A theoretic perspective and research approach for generating research helpful to communication practice, Public Relations

Research and Education, 1(1). 30-45.

DERVIN, B., FOREMAN-WERNET, L., AND LAUNTERBACH, E. (Eds.). 2003. Sense-making methodology reader: Selected writings of Brenda
Dervin. Cresskill, NJ: Hampton Press, Inc., 215-231.

EUSPRIG 2009. Spreadsheet Mistakes News Stories, European Spreadsheet Risks Interests Group site,

http://www.eusprig.org/stories.htm, Accessed June 5, 2009.
FERN, X., KOMIREDDY, C., GRIGOREANU, V., AND BURNETT, M. 2009. Mining problem-solving strategies from HCI data. ACM Transactions

on Computer-Human Interaction (to appear).

FINUCANE, M., SLOVIC, P., MERZ., C-K., FLYNN, J., AND SATTERFIELD, 2000. T. Gender, race and perceived risk: the white male effect.
Health, Risk and Society 2(2), 159-172.

FISHER II, M. AND ROTHERMEL, G. 2005. The EUSES Spreadsheet Corpus: a shared resource for supporting experimentation with spreadsheet
dependability mechanism. 1st Workshop on End-User Software Engineering. 47-51.

FURNAS, G. AND RUSSELL, D. 2005. Making sense of sensemaking. ACM CHI „05 Extended Abstracts on Human Factors in Computing

Systems. ACM, 2115-2116.
GALLAGHER A., DE LISI R., HOLST P., MCGILLICUDDY-DE LISI A., MORELY M., AND CAHALAN C. 2000. Gender differences in advanced

mathematical problem solving, J. Experimental Child Psychology 75, 3, 165-190.

GRIGOREANU, V., BECKWITH, L., FERN, X., YANG, S., KOMIREDDY, C., NARAYANAN, V., COOK, C., AND BURNETT, M. 2006. Gender
differences in end-user debugging, revisited: What the miners found. In Proceedings of the Symposium on Visual Languages and Human-

Centric Computing. IEEE, 19-26.

GRIGOREANU, V., CAO, J., KULESZA, T., BOGART, C., RECTOR, K., BURNETT, M., AND WIEDENBECK, S. 2008. Can feature design reduce
the gender gap in end-user software development environments? In Proceedings of the Symposium on Visual Languages and Human-Centric

Computing. IEEE, 149-156.

GRIGOREANU, V., BRUNDAGE, J., BAHNA, E., BURNETT, M., ELRIF, P., AND SNOVER, J. 2009. Males‘ and Females‘ Script Debugging
Strategies. Second International Symposium on End-User Development. Springer, 205-224.

HARTZEL, K. 2003. How self-efficacy and gender issues affect software adoption and use. Communications of the ACM 46, 9, 167-171.

 - 21 -

IOANNIDOU, A., REPENNING, A., AND WEBB, D. 2008. Using scalable game design to promote 3D fluency: Assessing the AgentCubes

incremental 3D end-user development framework. In Proceedings of the Symposium on Visual Languages and Human-Centric Computing.
IEEE, 47-54.

JEFFRIES, R. A. 1982. Comparison of debugging behavior of novice and expert programmers. Paper presented in the AERA Annual Meeting.

Pittsburgh, PA, Department of Psychology, Carnegie Mellon University.
JIN, J. AND DABBISH, L. 2009. Self-interruption on the computer: A typology of discretionary task interleaving. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. ACM, 1799-1808.

KELLEHER, C. AND PAUSCH, R. 2005. Lowering the barriers to programming: A survey of programming environments and languages
for novice programmers, ACM Computing Surveys.

KELLEHER, C., PAUSCH, R., AND KIESLER, S. 2007. Storytelling Alice motivates middle school girls to learn computer programming, In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1455-1464.
KISSINGER, C., BURNETT, M., STUMPF, S., SUBRAHMANIYAN, N., BECKWITH, L., YANG, S. AND ROSSON, M. 2006. Supporting end-user

debugging: What do users want to know? In Proceedings of the Working Conference on Advanced Visual Interfaces, ACM, 135-142.

KLEIN, G., MOON, B., AND HOFFMAN, R.R. 2006. Making sense of sensemaking 1: Alternative Perspectives. IEEE Intelligent Systems 21(4).
IEEE, 70-73.

KO, A. AND MYERS, B. 2004. Designing the Whyline: A debugging interface for asking questions about program behavior, In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems. ACM, 151-158.
KO, A., MYERS, B., AND AUNG, HTET HTET 2004. Six learning barriers in end-user programming systems, In Proceedings of the Symposium

on Visual Languages and Human-Centric Computing. IEEE, 199-206.

LAWRANCE, J., BELLAMY, R., BURNETT, M., AND RECTOR, K. 2008. Using information scent to model the dynamic foraging behavior of
programmers in maintenance tasks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1323-1332.

LEEDOM, D. K. 2001. Final report: Sensemaking symposium. http://www.dodccrp.org/events/

2001_sensemaking_symposium/docs/FinalReport/Sensemaking_Final_Report.htm. Command and Control Research Program, Office of the
Assistant Secretary of Defense for Command, Control, Communications and Intelligence.

LITTMAN, D. C., PINTO, J., LETOVSKY, S., AND SOLOWAY, E. 1986. Mental models and software maintenance. In Papers Presented At the

First Workshop on Empirical Studies of Programmers on Empirical Studies of Programmers. Ablex Publishing Corporation, NJ, 80-98.
MEYERS-LEVY, J. 1989. Gender differences in information processing: A selectivity interpretation. In P. Cafferata and A. Tybout, (Eds),

Cognitive and Affective Responses to Advertising. Lexington Books, MA.
MYERS, B., KO, A., AND BURNETT, M. 2006. Invited research overview: End-user programming. In Extended Abtracts of the SIGCHI

Conference on Human Factors in Computing Systems. ACM, 75-80.

NANJA, N. AND COOK, C. 1987. An analysis of the on-line debugging process. In Empirical Studies of Programmers: Second Workshop, Ablex
Publishing Corporation, NJ, 172-184.

NARDI, B. A. 1993. A small matter of programming: Perspectives on end-user computing. MIT Press, MA.

O‘DONNELL, E. AND JOHNSON, E. 2001. The effects of auditor gender and task complexity on information processing efficiency. International
Journal of Auditing 5, 91-105.

PANE J. AND MYERS B. 1996, Usability issues in the design of novice programming systems, Carnegie Mellon University, School of

Computer Science, Technical Report CMU-CS-96-132.
PANKO, R. 1998. What we know about spreadsheet errors. Journal of End User Computing 10(2). 15-21.

PANKO, R. AND ORDAY, N. 2005. Sarbanes-Oxley: What about all the spreadsheets? In Proceedings of the European Spreadsheet Research

Information Group.
PHALGUNE, A., KISSINGER, C., BURNETT, M., COOK, C., BECKWITH, L. AND RUTHRUFF, J. 2005. Garbage in, garbage out? An empirical look at

oracle mistakes by end-user programmers, In Proceedings of the Symposium on Visual Languages and Human-Centric Computing. IEEE, 45-

52.
PIROLLI, P. AND CARD, S. 1999. Information foraging, Psychology Review 106(4). 643-675.

PIROLLI, P. AND CARD, S. 2005. The sensemaking process and leverage points for analyst technology as identified through cognitive task

analysis. Proceedings of the International Conference on Intelligence Analysis. MITRE, VA.
POWELL M. AND ANSIC, D. 1997. Gender differences in risk behaviour in financial decision-making: An experimental analysis. Journal of

Economic Psychology 18(6). 605-628.

PRABHAKARARAO, S., COOK, D., RUTHRUFF, J., CRESWICK, E., MAIN, M., DURHAM, M., AND BURNETT, M. 2003. Strategies and

behaviors of end-user programmers with interactive fault localization. In Proceedings of Symposium on Human-Centric Computing

Languages and Environments. IEEE, 15-22.

RODE J. AND ROSSON M. 2003, Programming at runtime: Requirements and paradigms for nonprogrammer web application
development, In Proceedings of Symposium on Human-Centric Computing Languages and Environments. IEEE. 23-30.

ROMERO, P., DU BOULAY, B., COX, R., LUTZ, R., AND BRYANT, S.. Debugging strategies and tactics in a multi-representation software

environment. International Journal on Human- Computer Studies 61. 992-1009.
ROSSON, M., SINHA, H., BHATTACHARYA, M., AND ZHAO, D. 2007. Design planning in end-user web development. In Proceedings of the

Symposium on Visual Languages and Human-Centric Computing. IEEE, 189-196.

RUSSELL, D. M., STEFIK, M. J., PIROLLI, P., AND CARD, S. K. 1993. The cost structure of sensemaking. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 269-276.

SCAFFIDI, C., SHAW, M. AND MYERS, B. 2005, Estimating the numbers of end users and end user programmers, In Proceedings of the

Symposium on Visual Languages and Human-Centric Computing. IEEE, 207-214.
SHRAGER, J. AND KLAHR, D. 1986. Instructionless learning about a complex device: the paradigm and observations. International Journal of

Man-Machine Studies 25. 153-189.

STEFIK, M., BALDONADO, M., BOBROW, D., CARD, S., EVERETT, J. LAVENDEL, G., MARIMONT, D., NEWMAN, P., RUSSELL, D., AND

SMOLIAR, S. 2002. The knowledge sharing challenge: The sensemaking white paper.

http://www2.parc.com/istl/groups/hdi/papers/sensemaking-whitepaper.pdf.

SUBRAHMANIYAN, N., BECKWITH, L., GRIGOREANU, V., BURNETT, M., WIEDENBECK, S., NARAYANAN, V., BUCHT, K., DRUMMOND, R.,
AND FERN, X. 2008. Testing vs. code inspection vs. what else? Male and female end users‘ debugging strategies. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. ACM, 617-626.

 - 22 -

TORKZADEH, G. AND KOUFTEROS, X. 1994. Factorial validity of a computer self-efficacy scale and the impact of computer training.

Educational and Psychological Measurement 54(3). 813-821.
WAGNER, E. AND LIEBERMAN H. 2004. Supporting user hypotheses in problem diagnosis on the web and elsewhere. In Proceedings of

the International Conference on Intelligent User Interfaces, ACM, 30-37.

WILCOX, E., ATWOOD, J., BURNETT, M., CADIZ, J., AND COOK, C. 1997. Does continuous visual feedback aid debugging in direct-
manipulation programming systems? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 258-265.

AUTHOR STATEMENT

No part of this paper has previously been published or submitted anywhere: it is completely original. The related

work references our earlier work on female and male end-user programmers‘ debugging. This is our first

examination of end-user debugging‘s relationship to sensemaking models.

