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[11 An Eulerian analysis for wave forcing of three-dimensional (3D) wave-averaged mean
circulation in the surf zone is presented. The objective is to develop a dynamically
consistent formulation for applications in a 3D primitive equation model. The analysis is
carried out for the case of shallow-water linear waves interacting with wave-averaged
depth-independent horizontal currents that vary on larger space scales and timescales.
Variations in wave properties are governed by a wave action equation that includes wave-
current interactions and dissipation representative of wave breaking. Wave forcing of the
mean currents consists of a surface stress and a body force. The surface stress is
proportional to the wave energy dissipation. The body force includes one term that is
related to gradients of part of the radiation stress tensor and a second term that is related to
the vortex force and is proportional to a product of the mean wave momentum and the
vertical component of the mean vorticity vector. In addition, there is a nonzero normal
velocity at the mean surface that arises from the divergence of the mean Eulerian

wave mass flux. This velocity results in an additional momentum flux forcing of the mean
flow. Applications of this formulation to the DUCK94 field experiment are presented

in part 2.
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1. Introduction

[2] The interactions between waves and longer period
flow and the forcing of mean currents by waves have been
the subject of many previous studies [e.g., Longuet-Higgins
and Stewart, 1962, 1964; Bowen, 1969; Hasselmann, 1970,
1971; Longuet-Higgins, 1973; Mei, 1989; Garrett, 1976;
Smith, 2006] (see also the comprehensive discussion by
Phillips [1977]). Most of this work has been in the frame-
work of one- or two-dimensional, depth-integrated currents.
This approach has had considerable success in predicting
wave-driven currents and wave-averaged surface elevation
in the nearshore surf zone (e.g., recent studies by Ruessink
et al. [2001], Reniers et al. [2004], and Long and Ozkan-
Haller [2005]). It seems clear, however, that development of
a three-dimensional modeling capability for the wave-aver-
aged circulation that resolves both vertical and horizontal
spatial structure would be extremely useful, for example, for
application to sediment transport problems. A prerequisite
for the development of that capability is a dynamically
consistent derivation of the structure of the wave forcing.
The primary objective of the present paper is to begin to
develop such a rational formulation for wave forcing of a
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three-dimensional (3D) primitive equation model of the
nearshore. An application of this formulation to conditions
found during the DUCK94 field experiment, including
detailed model-data comparisons, is presented by Newberger
and Allen [2007] referred to here as NA2.

[3] Initial efforts to look at depth-dependent effects of
wave forcing in the surf zone include one-dimensional
vertical models with undertow calculated to balance the
effects of the waves [e.g., Svendsen, 1984b; Deigaard et al.,
1991; Garcez Faria et al., 2000]. Quasi-three-dimensional
models have been developed which combine a horizontally
two-dimensional shallow-water model with an approximate
submodel for the vertical current structure [e.g., Svendsen
and Putrevu, 1994; Putrevu and Svendsen, 1999; Van
Dongeren et al., 1999]. The increase in horizontal turbulent
diffusion caused by three-dimensional dispersion is included
in this type of model.

[4] Other studies describing the effects of waves on mean
currents have involved primarily nonbreaking, deep-water
waves. These include the work of Craik and Leibovich
[1976] and of Garrett [1976] that describe possible gener-
ation mechanisms for Langmuir circulation. In these cases,
it is the interactions between the waves and currents that are
important. In another example, Hasselmann [1970] looks at
mean currents generated by waves in a rotating environment
and shows that rotation should not be neglected for times
approaching an inertial period. In this study, we consider
both the effects of wave breaking and of wave-current
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interactions with our results applicable to the nearshore surf
zone.

[5] The development of fully three-dimensional models
of the wave-averaged circulation requires an understanding
of the distribution of the wave forcing in the vertical. The
wave forcing may include both a body force acting on the
interior of the fluid and a surface stress. One relevant issue
is that of the determination of the surface stress which acts
to generate vorticity. De Vriend and Kitou [1991] discuss
the forcing of a three-dimensional model and point out the
inconsistency, when the waves are inviscid and irrotational,
of nonzero surface stress seemingly indicated by Eulerian
models. This issue has also been discussed, for example, by
Dingemans et al. [1987].

[6] A generalized Lagrangian mean (GLM) theory for
nonlinear waves has been developed by Andrews and
Meclntyre [1978]. Groeneweg and Klopman [1998] describe
a three-dimensional GLM formulation for long-crested,
nonbreaking waves and apply a one-dimensional formula-
tion of this model to explain laboratory observations of
modification of the vertical profile of an imposed current by
the presence of waves. A two-dimensional (vertical and
across flume) GLM model with nonhydrostatic pressure
correction is used by Groeneweg and Battjes [2003] to
further study the same laboratory experiments. Mellor
[2003, 2005] describes a three-dimensional model using
phase averaging with wave following coordinates. In the
context of Eulerian primitive-equation models, McWilliams
and Restrepo [1999] and McWilliams et al. [2004] have
derived wave forcing for nondissipative waves and applied
the results to oceanic simulations of wave influenced
circulation.

[7] The goal here is to derive approximate, dynamically
consistent expressions for the wave forcing that can be used
to extend an existing three-dimensional primitive equation
model, the Princeton Ocean Model (POM) [Blumberg and
Mellor, 1987], for application to the wave-averaged circu-
lation in the surf zone. The unmodified POM includes
forcing by surface stress from wind, surface fluxes of heat
and fresh water and bottom stress calculated from a qua-
dratic drag parameterization. A two-equation turbulent
closure, the Mellor-Yamada level 2.5 scheme [Mellor and
Yamada, 1982], is used to calculate turbulent eddy coef-
ficients. In the surf zone, additional factors become impor-
tant. Breaking waves exert a stress on the wave-averaged
currents and create an increase of near surface turbulence.
The onshore flux of mass in the waves must also be taken
into account. Interactions of waves and currents near the
bottom boundary increase the bottom stress felt by the mean
currents above the boundary layer. These effects must be
added to the model in a dynamically rational manner to
simulate the surf-zone currents. In addition, a wave model is
required to provide the wave-averaged wave energy density,
dissipation rate and wave number needed to force the wave-
averaged circulation.

[8] In this paper we will develop an Eulerian formulation
for wave forcing of a three-dimensional primitive equation
model for wave-averaged currents. As an initial step in
solving the general problem we will restrict our attention to
shallow-water waves and depth-independent horizontal cur-
rents. Consistent with application to the surf zone, we will
not assume that the currents are weak relative to the wave
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propagation speed so that the waves may be changed by the
presence of the mean currents.

[v] Although many aspects of the wave forcing of mean
currents have been addressed previously, [e.g., Hasselmann,
1971; Longuet-Higgins, 1973; Deigaard and Fredsoe,
1989; Deigaard, 1993; Rivero and Arcilla, 1995], we have
not been able to find a single, unified analysis that includes
all the components necessary to formulate dynamically
consistent forcing for a three-dimensional model of the
wave-averaged currents in the nearshore. One important
point is the inclusion of wave-current interactions in both
the wave and current equations. Additionally, it is necessary
to properly evaluate the correlation between the horizontal
and vertical wave velocities. This correlation is zero for
waves propagating without change of shape. It has been
shown in particular cases that nonzero values of this term
caused by dissipation [Deigaard and Fredsoe, 1989;
Deigaard, 1993], shoaling [Rivero and Arcilla, 1995] or
rotation [Hasselmann, 1970] cannot be ignored in calculat-
ing the three-dimensional forcing terms. We note that none
of these results are directly applicable by themselves to the
problem considered here with time variation in both the
mean wave properties and the mean currents, sloping
topography and wave-current interactions.

[10] In section 2 we look at the general Eulerian framework
for three-dimensional forcing extending the approach of
Hasselmann [1971] to address calculation of the partition of
the wave forcing into a surface stress and a body force. The
special case of depth-independent horizontal currents and
shallow-water waves is worked out in detail in sections 3
and 4. Discussion and conclusions are presented in section 5.
Details of the derivations are presented in Appendices A—D.
Numerical solutions obtained using the forcing derived in this
paper are presented in NA2.

2. Interactions of the Mean Current and Waves

[11] Hasselmann [1971] has examined the interactions
between gravity waves and the larger-scale flow. We begin
by using his equations (1)—(5) for the total flow modified to
include the effects of rotation and vertical turbulent mixing.
Thus the governing equations in Cartesian (x, y, z) coor-
dinates are

e vy s =0, (1)
U+ (uz)x-i-(uv)y-l-(uw)z-l—% —fo=1F 2)
i () (), ) 42 =, (3)

Wi+ (uw)x+(vw)y+(wz)z+% =g, (4)

where u = (u, v, w) is the velocity vector, x and y the
horizontal coordinates, z the vertical coordinate, p the
pressure, p the constant density, fthe Coriolis parameter and
subscripts x, y, z and ¢ denote partial differentiation. The
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terms 75 and 7% represent vertical gradients in the turbulent
Reynolds stress associated with the vertical turbulent
velocities.

[12] We assume no imposed external stress at the surface
(i.e., no wind stress) and that the bottom stress is zero. The
surface and bottom boundary conditions are

=7 =0,

p=p' atz =, (5)

n+un.+vg, —w=0 atz=n, (6)

=7 =0, uHy+VvHy +w=0

at z = —Ho, (7)

where p” is the atmospheric pressure assumed in the
following to be uniform and therefore neglected, 7 the free
surface and H, the undisturbed water depth.

[13] We define an averaging operator ( ) as an appropri-
ate average over wave timescales which retains the slower
time variations of the large-scale currents and use it to
separate the mean (wave-averaged) velocity and fluctuating
components of the total flow such that, if u = u,, + i/,

U=, u=0. (8)
This operator is applied to the equations for the total flow
(1)—(4) to obtain the equations for the mean flow which, we
assume, in addition, is in hydrostatic balance,

U +v, +w. =0 9)

m

P"=pg(h—z). (10)

7).+ @v), + @w), + g, —fv

= —(ﬁ> —(u’v’)y—(u’w’)z —pr+T

(11)

vt+(ﬁﬂx+—@ﬂy+(vwg4—g@+ja

= (@), (") (W), = py + 7., (12)
. y

where p™ is the mean pressure in the absence of waves and

p" is the wave contribution to the mean pressure. Boundary

conditions applied at the mean surface 7 are [Hasselmann,

1971]

ﬁ[—i—ﬁﬁx—Q—Vﬁy—W:—Mf—N[; atz =1, (13)

where

T 7]
M* :/ udz, MY :/ vdz.
] ]
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The boundary condition (13) at z =7 is discussed further in
Appendix A. At the bottom,

™ =7 =0, wHo, +VHoy + W =0
atz = *H(). (15 )
Additional boundary conditions for 7 and 7 at z = 7 are
required.

[14] As pointed out by Hasselmann [1971] these equa-
tions are not closed. Equations for the fluctuating part of the
flow are required. We will assume that the fluctuations
comprise approximately linear waves with near-surface
dissipation representing breaking waves. The inclusion of
dissipation for the waves will allow us to apply the wave
forcing to flow in the surf zone where breaking and
dissipation at the surface are important processes. Breaking
waves are clearly not linear, but this assumption allows
analytical progress. It also retains physically important
aspects of the lowest order wave dynamics that have made
possible valuable results in previous studies of closely
related problems [e.g., Thornton and Guza, 1983, 1986;
Deigaard and Fredsoe, 1989]. We note, however, that
applications to observed surf zone or laboratory flows
frequently are significantly more accurate when the linear
wave results are supplemented by the addition of a
submodel for turbulent surface rollers [Svendsen, 1984a;
Fredsoe and Deigaard, 1992; Stive and De Vriend, 1995;
Reniers and Battjes, 1997; Reniers et al., 2004]. Existing
roller models are necessarily rather idealized approxima-
tions, but they have the advantage that they can be readily
appended to other formulations. The addition of a roller
submodel to the wave forcing formulation derived here is
discussed, applied, and evaluated with model-data compar-
isons in NA2.

[15] The waves act as forcing for the wave-averaged
currents in three ways. First, as the body forces arising from
the wave-averaged nonlinear wave terms that appear on the
right hand side of (11) and (12). Additional forcing is in the
form of a flux of mass at the wave-averaged surface (13).
As discussed below, dissipating (i.e., breaking) waves will
exert a stress at the wave-averaged surface. Wave dissipation
in the wave bottom boundary layer is also important in some
cases [Deigaard and Fredsoe, 1989; Longuet-Higgins, 2005]
but will not be considered here.

[16] We obtain equations for the wave- and depth-
averaged wave momentum by integrating the equations
for the total momentum (2) and (3) from the mean surface
7 to the free surface n = 7j + 1 and applying the averaging
operator. These integrals and averages are evaluated with
the same assumptions and methods that are used in
derivations of depth-integrated equations [e.g., Phillips,
1977; Hasselmann, 1971; Smith, 2006]. We assume that
the velocity components can be analytically continued to the
mean surface when the instantaneous surface is below 7 so
that averages such as that in (14) can be defined. As in the
case of the assumption of linear waves, analytic continua-
tion is of questionable validity in the surf zone where the
instantaneous surface is not clearly defined and the region
between the trough and crest is an appreciable portion of the
water column. It is consistent with the assumption of linear
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waves and will be employed here to allow estimation of the
forcing terms.

[17] To evaluate the terms in the mean wave momentum
equations we will further assume that the total near surface
current can be expressed as a Taylor series about the value at
the mean surface. From (2) and (3), we obtain, respectively,

MT +2(uM™) +(uM” + va)y—u(M;‘ + Mj)

3 (7) () @

=-—7% atz=7, (16)

My +200M”) +(@M” + M), v (M;; + M{)

g <F> @) (W) ﬁy

— VW M+

=-—7 atz=T]. (17)
These equations relate the wave-averaged surface stress
components 7° and 7 at the mean surface 7 to ¥/w/(7]) and
v'w/(m) as well as to time and space variations in the wave
momentum and the near-surface mean velocity component
u and v. Note that the wave-current interaction terms
[Garrett, 1976] that were omitted in Hasselmann’s [1971]
analysis are included. With an appropriate wave model, (16)
and (17) provide formulae for evaluating the mean surface
stress.

[18] Kirby and Chen [1989] discuss the effects of weak
vertically sheared flows on surface waves. Their results
point out the difficulty of describing the waves in the
presence of vertically sheared mean flow. The determination
of an appropriate wave model that includes at least, shoal-
ing, dissipation and wave-current interactions in the pres-
ence of mean currents with O(1) vertical shear is not
addressed here and remains a topic for future research. In
the sections 3 and 4 we will develop expressions for the
wave forcing in the special case of shallow-water waves and
currents using the expressions (16) and (17) to calculate the
surface stress.

3. Shallow Water Currents With Linear Waves

[19] We specialize the results of section 2 to shallow-
water waves in the presence of depth-independent horizon-
tal mean currents. Approximate wave solutions are obtained
for the case of slowly varying mean currents and topography.
Consistent with application to the surf zone, the mean
currents may be comparable in magnitude to the wave
propagation velocity. In section 4 these wave solutions are
utilized to calculate the time-averaged wave forcing terms
for the mean flow.

[20] We define scales appropriate for linear waves in
shallow water and slowly varying depth-independent hori-
zontal currents and topography. Length scales are L,
K™' <« Ly for the waves and mean currents, denoted by
subscripts w and B respectively, where K is a typical wave
number. Other length scales are A for the wave amplitude
and H for the water depth, both assumed to be much smaller
than L,,. The mean surface elevation 77 is assumed to scale
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with H. The timescale for the waves 7,, and currents T,
scale as T, = &' < Ty where & is a typical wave
frequency. The wave scales are related by the shallow-water
dispersion relationship so that a typical wave speed ¢ =
(gi)"* =K =1L w/ Ty The veloc1ty scales are U,, = cA/H
for the waves and Uy = ¢ for the currents. From the
continuity equation, the vertical velocities scale so that
W, =HU,J/L, and Wy = HU g/Lz. We assume that

e=1L,/Ly=T,/Tp < 1. (18)

The waves are assumed to be linear and shallow water; that
is, the parameters

w=HK < 1 (19a)

a=A4K < 1, (19b)

and in addition

B=A/H=o/u<1 (19¢)
is required for shallow-water waves to be approximately
linear. We further assume that

B < e (19d)
The mean wave properties, such as amplitude and wave
number, are assumed to vary on the same large space and
timescales as the mean velocities and topography. In the
shallow-water approximation, the vertical gradient of the
stress 72 and 72 must be independent of depth except in
frictional boundary layers. We assume that these stress
terms are of at most order e.

[21] We assume that the velocity components u, v and w,
and surface elevation 7 can be expressed as a sum of slowly
varying quantities Up, Vg, W3, and 1 corresponding to the
mean currents, with timescales and space scales 7 and L,
and wave quantities u,,, v,,, w,,, and 7, varying on shorter
wave scales. The Eulerian average (8) can be considered as
an average at a fixed spatial point over multiple wave
periods, T7,, where the averaging time is small compared
to the timescale of the currents 7. The terms 72 and 77 are
assumed to be the sum of mean and fluctuating parts.

[22] We define the nondimensional horizontal velocity
and surface elevation

u* =u/Us = Bu, /U, + Up/Us = fu* + U, (20a)

* = n/H = Bn,/A+ng/H = Bt + 1y, (20b)

slow time,

=1/Tp = et = et™,

(1)
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and coordinates

* =x/Lp = eKx = ex”. (22)

Note that uj and 7 are functions of the variables (x*, y*,
*) while U} and 7} are functions of the slow variables (X*,
Y*, T*). With this scaling, the depth-integrated and wave-
averaged wave momentum vector M = (M", M) (14) in
nondimensional form is

M* =M/HU = BZM/A ’

,8/ u; a3 llﬂ]w (23)

[23] Using this scaling, the nondimensional equations for
the shallow-water approximation from (1)—(4) are (omitting
the superscript asterisks)

6(uwx + Vi + sz) + E([]BX + Vpy + WBZ) =0, (24)

ﬁuwt + eUpr + 52 ((uwuw) (unw) (WM uw) )
—+ 56((% Us) y+(wUsg)y+(wiUsg), )
+ ﬁ((Uguw)x—i-(VBuw)y—i-(WBuW)Z) + e((UsUs),y

+ (VBUB)Y+(WBUB)Z) - 6ﬁ)(VB + ﬁvw)

_(EnBX + ﬁ,r]wx) + 67—;7 (25)

BV + Var + <(”w"w)x+(vaw)y+(wwvw)z)
+ Be((uVg) x+ v Va) y+ (Wi Vp),)
+ ﬁ((Uva) +(Vevw),+(Wavi), ) +€e((UsVs)y
+ (VVs)y+(WsV3).) + efo(Us + Buw)

~(emsy + By ) + 7L, (26)
where the horizontal velocity u is depth-independent, f, = f /
ew and f is a typical value of the Coriolis parameter
assumed to be order € as are the stress terms. The parameter
fo is included in the equations as an O(1) dimensionless
place holder for the Coriolis parameter f. The boundary
conditions are given by (5)—(7).

3.1. Mean Flow Equations
[24] Applying the averaging operator, ( ), to (24)—(26)
we obtain equations for the mean flows:

Upx + Vpy + Wp. = 0, (27)
Upr + UpUpx + VUspy — %ZFE —foVs
= —ngy + €77, (28)
g
Ver + UgVpx + VgVpy — ?Fb +/oUs
= —ngy + e, (29)
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where the continuity equation (27) has been used to rewrite
the nonlinear terms in (28) and (29). The wave forcing
terms are given by

Fy =— ((uwuw)x + (vwtw), + (quw)z>

- (uwuwx + unwy)v (30)
Fi = - ((uwvw)x + (vaw)y + (WWVW)z)
- (uwvwx + vawy) ’ (3 1)

where the continuity equation for the wave variables,

(24)—(27), has been used to eliminate the w,,. terms in (30)

and (31). The velocity components (U, V', W) are defined in

the region —H <z <. Note that wave forcing terms such as
1

Uylyy = €3

2 (32)

(i)
are derivatives of wave-averaged quantities and therefore of
order (€). These terms will be evaluated below.

[25] The nondimensional kinematic boundary condition
at the mean surface 7z, equivalent to the dimensional
boundary condition (13) [Hasselmann, 1971], is

ner + Usngy + Vatlgy — Wa(1np)

=B (Mjy +M,y) atz=ng (33)
The bottom boundary condition is
UBHOX + VBHOY + WB(*H()) =0 atz= *H(). (34)

Equations (27), (33) and (34) imply that the mean depth-
integrated continuity equation is

gy + (HUp ) y+(HVp)y= —° (My +M;y), (35)

where

H=Hy+ng (36)

is the mean water depth. The boundary conditions for the
stress terms are determined below.

3.2. Wave Equations

[26] The equations for the waves, obtained by subtracting
(27), (28) and (29) from (24), (25) and (26) are

Uy + Viy + Wy = 07 (37)
Uyt + G(MW UBX + Vy UBY) + UBuwx + VBuwy - EfOVW
/Xl B
e T 5;_;713 ’ (38)
Vit + E(quBX + Vw VBY) + UBVWJ( + VBwa + €f6u»v
ET,y|z=r;R 39
_77wy + ﬂH ) ( )
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where the continuity equations (27) and (37) have been used
to rewrite the nonlinear wave-mean flow terms and where
the relatively small O(3) nonlinear wave-wave terms have
been omitted. We have also assumed that the wave breaking
process leads to a time-dependent stress (77, 7%) at the
mean surface 7. Effects of wave-resolved near-surface
stresses associated with wave breaking are discussed and
modeled, for example, by Veeramony and Svendsen [2000],
utilizing the analysis of laboratory measurements of
Svendsen et al. [2000].
[27] The boundary conditions are

nwt + E{uWnBX + anBY + nw(UBX + VBY)}

+ Uanx + Vany —wy =0 at z = 1p (40)

e{uwHox + vwHoy} +w, =0 atz= —H, (41)
The depth integral of (37), together with the kinematic
boundary conditions for the waves (40) and (41), implies
that the depth-integrated continuity equation for the waves
is

My T H{uwx + wa} + Uanx + Vany

+ E{UWHX + v, Hy + T]W(UBX + VBy)} =0. (42)

From (38), (39) and (42), the corresponding equation for the
wave energy density

772 u? -+ V2
E L= _W H W w 4
W= H (= (43)
is
Ewt + {77wHuw + EWUB}X + {anvW + EW VB}y
m m
= —6{ (Hui + ?W) Usx + (Hvi + %) Vy
1 ,
+ Huyv,, (Upy + Vax) — 3 (T"™u,, + T’va)}, (44)

where the relatively small O(3*) wave terms on the right
hand side of (35) are neglected.

3.3. Solution of the Wave Equations

[28] The evaluation of the wave forcing terms (30) and
(31) in the mean flow equations requires a solution of (38),
(39) and (42) for the waves. We obtain the relevant
approximate solution by using slow variables

X=e, Y=¢y, T=et, (45)

and assuming that the horizontal wave velocities can be
expressed to order € as

wy = [Uo(X,Y,T)+icU) (X, Y, T)]

-exp(iO(X, Y, T)/e), (46)
Vo = [Vo(X,Y,T) +ieVi(X,Y,T)]
-exp(iIO(X, Y, T)/e), (47)
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and that the surface elevation is given by

My =AX, Y, T)exp(iO(X, Y, T)/e), (48)
where A4 is the complex amplitude and © is the phase
function, such that
Or=-w, Ox=k, Oy=]1 (49)
with w the absolute frequency and (k, /) = k the wave
number vector. We define K to be the magnitude of Kk,

K=(2+2)" (50)

These definitions imply

ky = Z)(, kT = —Wy, lT = —Wy. (51)
[209] We assume that (7™, 77%) is a real multiple of the
wave velocity vector (u,, v,,) and that it scales so that

™= —BRu,, ™= —BRvy,, (52)
where R > 0 is of order one and is a function of the slow
variables X, ¥, T. As a result,

T/xuw + T/va = —5R(”‘2v + V%v)’ (53)
where R may depend on the wave amplitude and frequency,
water depth and mean velocity. This assumption is clearly
an idealization of the dissipative processes due to breaking
waves at the surface, but it provides a useful method to
incorporate general effects of wave-breaking into the
present formulation.

[30] Substituting u,, (46), v,, (47), and n,, (48) into (38),
(39) and (42) gives at first order:

l'U()(*u)+ U3k+ VBI) = *l‘kA, (54)
iVo(—w+ U3k+ VBI) = —ilA, (55)
iA(—w + Ugk + Vl) + iHUgk + iHVyl = 0. (56)
With the relative frequency defined as
Wy =W — UBk* VBl, (57)
(54) and (55) may be written
UOZA—k7 VOZA—I, (58)
Wy Wy
Substituting (58) in (56) implies
W = HK?, (59)

so that the relative frequency w, satisfies the nondimen-
sional shallow-water dispersion relation.
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[31] The wave-averaged energy density E = E,, is given
by
o H(UUS + V) g
E — F — n\vn"v + 0 0 — AA
v 4 4

(60)

where an asterisk indicates the complex conjugate. The
contribution from the potential energy is equal to that of the
kinetic energy. The phase speed c and group speed c, are
equal

cz%: (H)'?, (61a)
cx =00~ (), (61)

and the components of the wave velocity vector are
c= (") = (ck/K,cl/K). (61c)
At order ¢, from (42) the complex amplitude 4 satisfies

Ar + (HUo)X-l-(HVo)Y—HUlk—HV]l

+ (Upd)x+(VpA)y= 0, (62)
where from (38) and (39)
Uiw, = — [Upr + UpUpx + VaUpy + UyUpy
+VoUgy —f()V() + Ay +RUO] (63)
Viw, = — [Vor + UgVox + VeVoy + UoVpx
+VoVsy +foUs + Ay + RV, (64)

We substitute the velocity components from (58), (63) and
(64) into (62) to determine the equation for the amplitude A.
The resulting amplitude equation implies, after considerable
but straightforward manipulation, the wave action equation
with dissipation:

@), eswiy,

+ {(cu VB)E}Y: -

)
r Wr

(65)
where €¢; = RE is the energy dissipation.

4. Wave Forcing of the Mean Circulation

[32] The three components of the wave forcing of the
mean currents can be calculated from the wave velocities
given by (46), (47), (58), (63) and (64). The first compo-
nent, calculated in section 4.1 is the flux of mass through
the mean surface (33) [Hasselmann, 1971]. The second
component, determined in section 4.2 and Appendix B is
the body force (30), (31) arising from the average of the
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wave nonlinear terms. The remaining term is the surface
stress caused by the breaking waves and is discussed in
section 4.3. The relationship of this formulation to the
radiation stress gradient forcing for depth-averaged mean
currents is discussed in Appendix D.

4.1. Surface Boundary Condition

[33] The surface kinetic boundary condition (33) is
equivalent to a nonzero velocity perpendicular to the mean
surface 7.

Wi = Wg —ngr — Upngy — Vanjgy
Ek El
2 x Y 2
— P (M + M) = — =i B
P ( w WY) B { (Wr>x+ (Wr> Y}

Note that this boundary condition results in a mean
momentum flux forcing at the surface. This forcing appears
explicitly, for example, in the depth-integrated momentum
balance for the mean flow (D7) in Appendix D.

4.2. Body Forces
[34] We calculate the body forces as

(66)

Fi = —{?Ruw Rutry + Ry, %uwy} (67)

F = —{Ru, Ry + Ry, Ry, | (68)
where R is the real part of a complex number and the
complex velocities are given by (46) and (47). Evaluation of
the body force Fj is discussed below with most of the
calculations outlined in Appendix B. A similar procedure
gives .

[35] The first term in the body force Fj is

(i i) = { (o) ()}

- 2 (UOU(TX n UOXU(;“>
G (kZAA*) G (sz)
4\ i Jy 2\« /)y

The other term Rv,,fu,,, is calculated in Appendix B and is
given by (B7). From (69) and (B7) we find that

) K? kE [ k IE [k
o) ()
zwr Wr \Wr X Wy \Wr Y

IEK? . IE
- 2 (Vex — Uy +/0) + 3 (kw,y — ler):|~

i

(69)

(70)

With (59) and wave momentum

M, = (M}

W

M) = (Ek e, El ), (71)

(70) reduces to

1 (E\ M
FFeel—2(=
)

]_}J:)(Vgx— Uy -‘rfo)} (72)
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From a similar calculation we find

ngﬁ{—%(g)y—%(Vﬂx—UBy +f0)}~ (73)

[36] The terms involving (£/H)y and (E/H)y can be seen
to come directly from part of the radiation stress in the two-
dimensional depth-averaged formulation [Longuet-Higgins,
1973; Smith, 2006] (and Appendix D). Without restriction
to shallow-water waves, Longuet-Higgins [1973] shows
that, in the depth-integrated case with weak currents and
no time variation of the wave field, the radiation stress
forcing can be expressed as the sum of two terms, one a
gradient term which reduces to the first terms of (72) and
(73) in the limit of shallow-water waves and the other
proportional to the wave dissipation which we will show
to be the surface stress in this formulation.

[37] The other terms in (72) and (73) are related to the
vortex force [Leibovich, 1980]. These terms result from the
wave-current interactions [Garrett, 1976; McWilliams et al.,
2004; Smith, 2006] and involve a product of the wave
momentum and the vertical component of the vorticity of
the mean velocities V3, — Up, plus the Coriolis parameter
fo- We note that an identical form of this depth-independent
vortex force was found by McWilliams et al. [2004] in the
shallow water limit (section 12) of their depth-dependent
results for nondissipative waves and weak currents.

4.3. Surface Stress

[38] Equations (16) and (17) for the surface stress in
terms of the wave-averaged wave momentum are derived
by integrating the momentum equations (25)—(26) for the
total flow from the mean surface 7 to the free surface 7 =
ng + 0On, and wave averaging. With the assumptions of
section 3, the nondimensional wave-averaged surface stress
(16) in the X direction reduces to

=3
% = — My — (2UsMy)  — (UM, + VM),

E ,
+ Up (vax + nyvY) - TX + /oM,
1 ,— k2 kl
+ E (%MW §RWW) |z='r]B - E;% Npx — EE Ny -

r

(74)

The term (Ru,, fw,,)|.—,, is evaluated in Appendix C and is
given by:

_ Exy EP
(?Ruw Efiww) |z:n3 = 6{7 “ 5 Hy

7

. Ek? )
— M2 (Vx — Upy + /o) + mHX - (M),
. Elk Ek? Elk
*(A/[wcy)ﬁwszY - TzHOX - LT%HOY}.
(75)

[39] An equation for the time rate of change of the x and y
components of the wave momentum vector can be derived
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from the wave action equation (65) by multiplying by £ and
[, respectively. The resulting equation for the X component
is

My + [My(c" + Up) | +[M(c" + V5)],

E Sdk
—Hy + M* M = — .
+ o X + M; Upx + M, Vax o

(76)

Substituting the value of (Ru,Rw,,)|.-
M, from (76) into (74) we obtain

from (75) and

"z

Fiﬁdk
7w

, atz=ng. (77)

It follows similarly that the surface stress in the Y direction
is

F Edl

7 = (78)

at z = njp.

Consequently, the surface stress vector has a magnitude
that is directly related to the near-surface wave dissipation
and a direction that is aligned with that of the wave
propagation, in agreement with the findings of Deigaard
and Fredsoe [1989] and Deigaard [1993] [see also
Fredsoe and Deigaard, 1992, chapter 6].

[40] It may be noted that the calculation of (Ru,, Jtw,,)|.—,,
(75) shows explicitly that the gradient of the pressure
contribution to the radiation stress Ey/2, which arises in
(74) from integration over the surface layer from 7 to 7,
does not contribute directly to a surface stress, consistent
with physical reasoning [De Vriend and Kitou, 1991].
Likewise, the combined substitution of (75) and (76) into
(74) shows the same result for the wave-current interaction
terms involving products of U, V3 and M;,, M,

[41] The results found in sections 4.1—4.3 provide the
required expressions for the wave forcing terms in the mean
flow equations (27)—(33). We note that, as discussed in
Appendix D, the depth-integral of the resulting equations,
with the body force specified as in section 4.2 and the
boundary conditions found in sections 4.1 and 4.3, agrees
exactly with previously derived depth-integrated equations
for the mean flow [Smith, 2006].

5. Discussion

[42] With the objective of establishing a rational approx-
imation in an Eulerian frame of reference for forcing of
wave-averaged circulation in the surf zone represented by
three-dimensional primitive-equation models, we derive the
forcing for the case of depth-independent horizontal cur-
rents and shallow-water waves. We include wave-current
interaction terms in both the wave and mean equations. We
find that the surface stress is nonzero only when there is
dissipation of wave energy near the surface. The body force
consists of two parts, one related to the gradients in part of
the radiation stress tensor with modifications for variation is
water depth. The other is a wave-current interaction term
that involves a product of the wave momentum and the
vertical vorticity of the mean current plus the Coriolis
parameter. It is related to the vortex force of Craik and
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Leibovich [1976] [see Leibovich, 1983; Garrett, 1976;
Smith, 2006]. We find that the evaluation of the terms
involving (u,,w,,) and (v,,w,,) is critically important for a
consistent estimation of the forcing. The proper specifica-
tion of the wave-related surface stress cannot be determined
without the correct evaluation of these terms.

[43] The wave-current interactions that result in the vor-
tex force term are frequently omitted from surf zone models
based on scaling arguments that assume relatively weak
currents. We have made a deliberate choice to scale the
currents here so that these interaction terms are retained.
One advantage is that it helps demonstrate the relation of
surf zone forcing models to the substantial, but generally
separate, set of wave-current interaction results that origi-
nated in studies of Langmuir circulation [e.g., Leibovich,
1983]. A second advantage is that the present formulation
remains valid in the weak current limit. Thus, if the currents
are weak in the applications, the wave-current interaction
forces will be correspondingly small, but the remaining
wave forcing will be properly specified. In the companion
paper NA2, we use this formulation to force a three-
dimensional primitive equation model and compare the
results with observations from the DUCK94 field experi-
ment. It is shown there that the wave-current interaction
forcing terms can play an appreciable role. The extension of
the present results to include depth-dependent currents is
clearly needed and is a topic for future research.

Appendix A: Wave-Averaged Surface Boundary
Conditions

[44] The wave-averaged boundary condition (13) at the
mean surface 7 was derived originally by Hasselmann
[1971]. Physically, it states that the divergence of the
horizontal time-averaged wave mass flux, which in an
Eulerian formulation occurs between the wave crests and
troughs [e.g., Phillips, 1977], is balanced by a mean
normal mass flux at the mean free surface. This same
boundary condition naturally arises in the asymptotic
wave-averaged Eulerian analyses of McWilliams and
Restrepo [1999] and of McWilliams et al. [2004]. Results
that might appear to be different are obtained, however, in
the recent analyses of Mellor [2003, 2005] where time
averages in an Eulerian frame of reference are not utilized,
but rather time averages in a wave-following coordinate
system are used.

[45] Questions naturally arise concerning the differences,
especially with respect to implementation in three-
dimensional models in Eulerian coordinates. To obtain
some insight into these issues, it is useful to reexamine
the original Hasselmann [1971] derivation. Accordingly,
following Hasselmann [1971], taking (x, y) derivatives of
(14) and adding, we find

MM = (wn v, — (@74+57,) L

g
—0—[ (ux + vy)dz.

n

(A1)
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Integrating the last term in (A1) after substitution of w, from
(1), we obtain

(nt +un, + iy, — W) ‘z:n

= (ﬁ,—i—ﬁn_x—i-Vn_y—W)L:ﬁ—ﬁ—Mf-i-M}y,, (A2)

where the equation (7),)|.—, = (77;)|.—; has been added. From
(6), the left hand side of (A2) is zero which implies (13).
The point to be emphasized here is that (A2) is an equation
that converts a time average at the wave-following free
surface 7 into an equivalent relationship between time-
averaged variables at 77 and the divergence of the time-
averaged Eulerian wave mass flux. It seems clear that if
equations are being formulated for implementation in an
Eulerian coordinate model, time averages at wave-following
locations need to be properly converted to time averages at
fixed spatial locations as in (A2). We also call attention to
Appendix D where it is shown that boundary condition (13),
which implies (33), is necessary to provide consistency with
separately formulated depth-integrated equations for the
mean flow [Smith, 2006].

Appendix B: Evaluation of (Rv,Ru,,)

[46] Evaluation of (Jtv,,u,,) is required to find the body
force term in section 4.2. We divide the terms of (v, sy,
into parts that can be more easily evaluated,

€

(?va §Ruwy) =1

[E1 + E> + E5 + E4), (B1)

where

) *
a5 (%) (),
w} wr /)1 wr/)r

3
L o)
w? w ) g wr) r
2441

= lky — klr] =
w [lhr 7] w3

r r

[ku}y — le}, (BZ)

12

A%k k
= = AU +A4* U (=
w? W w

r ’ X r/ X

A*k A
+AVB( ) +A* Vg <—k)
wr )y wr /)y
AA*k AA*]
+2Upy }

r Wy

Ey

+2Upx

Pl k k
== {Ugw—r (AA*)X—i-VBw—r (44%),

r

k k
+2UgAA™ (—) +2VpAA* <—>
wr/) x wr)y

k i
+2AA*W—UBX +2AA*w—UBy}, (B3)
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Al
£ - {AUB( 7 aru (%)
wr /)y
+AVB( ),
A%k AA*1
+2VBX +2Vgy " }
Ik l .
=7w—r{UB (44%), +VBW—V(AA )y

! /
+2UpAA™ (—) H2VpAA* <—)
wr) x wr )y

k !
+24A4% — Vpy + 244" — VBY} ,

r Wy

fodd? 1} {
] ;K w,.k)y+AA (f) |

P AA*L [k K>
:E(AA )y +2 o (—) —2—fodd”.

W)y

(B4)

Ey = & {(AA
wr

(BS)

r r

Using w, = w — kUp — IV we find

24A4*

E1 +E2 +E3 = [lkwry — l wrx

3
+1(k* + 1) (Upy — Vayx)]. (B6)

Combining this result with the definition of £4 completes

the computation.
el P " 144* [k
1= (44 =
2{2@( bt (w)

L K2 .
— 144 J(VBX — Upy +/0)

”

(?va %uwy) =

144*
+
w

(ker Zer):|
2 IE [k IEK?
sz Ex +— (E) y* 3 (Vay — Upy

IE
+ E (kwry - lwr)():| .

i

+ /o) (B7)

The expression (B7) may be rewritten in a form useful in
Appendix C.

H e 1 :
- (Rvy Ruy) == (M3c*) AM],(Vex — Usy

2
EP Ey
0 — Hy —— B8
+10) + 3ty = (B8)
where we use
i EK? K’Ex Eki 2EK’Ky
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Appendix C: Evaluation of (Ru,Rw,)| .-y,

[47] Evaluation of (Ru,Rw,)|.—,, is required to find the
surface stress in section 4.3. We evaluate (Jtu,, Rtw,)|.—,, a

(Raw Tow) ., -

B
= / (%uw §wa)za'z + (?Ruw Rww) i
—H,
(C1)
where

(Rt o)y, = —6{8%(uw)2H0X + Rty RoHoy b (C2)

The continuity equation for the waves (37) implies that

(§Ruw S“EWW)Z: —{%uw Rty + € (S‘Euw S?VW) y— Rv, §Ruw},

(C3)

where {(Ru,Ru,,)} and {(Rv,Ru,,)} are calculated in (69)
and (B8) respectively, and

1 (A4 (EK
T2\ W )y ey

Substituting (C2), (C3) and (C4) into (C1) we find (75).

(?va §Ruw)

(C4)

Appendix D: Comparison With the
Depth-Integrated Equations

[48] Integrating the total horizontal momentum equations (25)
and (26) from the bottom H, to the free surface 7 and wave-
averaging gives the equations for the total wave-averaged momen-
tum M = (M, M”) in terms of the radiation stresses [Phillips, 1977,
Garrett, 1976; Smith, 2006]. The total wave-averaged momentum
in the x direction is given by

N
Mx:/ wdz = M + M2, (D1)

7H0

where

B
M= / Updz, (D2)

—H,

is the contribution from the mean flow and M, (23) is the
contribution from the waves. For depth-independent
horizontal currents and shallow-water waves this becomes

My + {HUg* } +{H(Up V) }y+Hnpy — foM5,
= B {-M); + oM, — {Sex + 2UsM }

—{Sq + UM}, + VsM; } , }, (D3)
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where we again assume that 7 is zero on the free surface 7
and where S\, and S}, are components of the radiation stress
tensor

T 7 k" E E
Sxx:/ w4+ prdz=E—+—-=Mc" + =, (D4)
—Hy Wy 2 2
Y Lo
Sy = / Uy Vy dz = Ei = Myfrcy = M{'CJ' (DS)
i —Hy Wy
In addition,
Mj = HUp. (D6)

Subtracting the wave momentum equation (76) from (D3), we
obtain the equation for the depth-integrated and wave-
averaged momentum [Garrett, 1976; Smith, 2006],

My, + {HUZ } A+{H(Us Vi) }y+Hnpy — oM,

, k
= ﬁz{M‘%(VBx — Usy +.ﬁ)) + ;d

/3

N H(E
—Up(Myy + M) — 5 (ﬁ)x}'

[49] The same equation is obtained by depth integrating
(28) for Uzy and by using (27), (66), (72) and (77). The
wave forcing terms on the right hand side of (D7) are from
left to right: the depth integral of the vortex contribution to
the three-dimensional body force plus the wave Coriolis
term, the surface stress from wave breaking, the advection
of mean velocity by the nonzero surface velocity perpen-
dicular to the mean surface and a term from the part of the
radiation stress gradient that includes the effects of sloping
bottom and changes in wave energy density. Note that the
surface boundary condition (13), which translates in section 3
to (33), results in the momentum flux term — Uz(M;, x + M,,y)
which is necessary to provide the agreement that should be
found between the depth-integral of (28) and the separately
derived depth-integrated equation (D7) [Smith, 2006]. Con-
sistent with Smith [2006] the only part of the radiation stress
gradients that remains explicitly when the wave momentum
is subtracted from the depth-integrated equation for the total
flow is the finite depth term, which for shallow water is
—H(E/2H)y. The remainder of the forcing consists of wave-
current interaction terms and the surface stress arising from
dissipation in the surface layer. The latter, of course, is
related to radiation stress gradients resulting from wave
energy variations produced by dissipative processes near the
surface [Longuet-Higgins, 1973].

(D7)
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