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INDEX AND ZEROS OF A FUNCTION
OF A COMPLEX VARIABLE
INTRODUCTION

STATEMENT OF THE PROBLEM. The purpose of this
thesis is t0 consider various methods of determining the
number and location of zeros of an analytic funotion of
a complex variable,

METHOD OF INVESTIGATION. The methods for investi-
gating these questions will involve mostly the geometric
operations with complex numbers and certain principles
which are based upon these operations.,

The thesis begins with the definition of Cauchy
Index., Theorems are derived with the aid of the index
concerning the number and location of the zeros of an
analytiec funetion.

A lemma on index is derived to aid in determining
the number and location of the zeros of a polynomial
in the unit circle. In Chapter IV an interesting re-~
sult is obtained concerning multiple zeros of a function.

Finally, a definition of the level curves of a
complex variable is given with theorems and results ob-
tained concerning the zeros and multiple points of the
level curves. This is followed by an illustrated ex-

ample of the level curves of a function.



INDEX AND ZEROS OF A FUNCTION
OF A COMPLEX VARIABLE
CHAPTER I
CAUCHY INDEX

DEFINITION OF INDEX (CAUCHY). Let g(t) and h(%) be
two continuous functions of the variable t which varies
in the interval a<t<b. The functions g(t) and h(t)
do not vanish simultaneously and gla) # 0, g(b) #0. As
t varies from a to b the quotient h(t)/g(t) may become
infinite and change its sign. Let m denote the number of
times it changes from +a0D to-0c0, and n denote the num-
ber of times it changes from -0O to +00., The semi-
difference (m - n)/2 will be called the index of
h(t)/g(t) in [a,b] and will be denoted by

I,y (B/8) or simply I(h/g).

Theorem 1. There exists a unigue continuous func-
tion ¢ of the variable ¢ satisfying
1) tan @ =h(t)/g(t)
and for ¢t =a coinciding with the principal value of
arct&nﬁl(a)/g(aﬂ .

Proof(7,p.183): Let T be an arbitrary number of
the interval [e,b] for which g(T) # 0. If in the inter-
val a &t T the quotient h(t)/g(t) changes from+ & to
-00 m(T) tims; and from -00 to + @ n(T) times, then



2) = arotanﬂl(T)/s('l'_)] + 7[m(T) - n(T)
is the unique continuous solution of the egquation
3) tang@ =h(t)/g(t)
reducing to erctan[h(a)/gla)] for T=a.
When t varies from a to b the total variation in ¢

is
@(v) - @Hla) =arotanEa(b)/g(bﬂ - arctan(h(a)/g(a])
+ Mm(v) - n(b]]
or simply
@(b) - ¢@(a) =arctan[h(b)/g(b)] - erctan(h(a)/gla])
+2I(h/g).
Q.E.D.

Corollary 1. Let C be a simple closed curve such
that h(b)=h(a) # 0, and g(b) =g(a) # 0. Then the
total variation in @ along C is

27I(h/g).

Proof: From the results of the preceding theorem,
1) @(b) - @la)=arctan [(b)/g(b]] - arctan[h(a)/g(a)]

+2mwi(h/g).
But since C is a simple closed curve
2) arctanﬂ)(b)/g(bﬂ = arctanﬁx(a)/g(aﬂ
therefore

@(b) - ¢(a) = 27I(h/g).

Q.E.D.



Let f(z)=g(t) +ih(t) be an analytic function of
the complex variable z within an open region D; continu-
ous on its boundary C and not vanishing on C. The
boundary can be represented parametrically by the con-
tinuous functions,

x=x(%) ; y=y(t)
where in order to describe C in the positive sense, ¢
varies from a to b.

At any point z, of C, the complex number r(zo) has
an infinite number of amplitudes, which differ from each
other by multiples of 2w, If a°4-1b° is any one of the
logarithms of f(z,), then b, is an amplitude of £(z4).
This is because

ﬂzo):‘ao-tiba = °a° ojbo

:oa°(oos b. +41isinbd ).
o o

The real and imaginary parts of f(z) on C are
functions of t:

g(t) ; h(s)
which satisfy the requirements of g(t) and h(t) for dis-
cussion of the index of the quotient

h(t)/g(t).

This index does not depend on the way in which the

closed curve C is represented and can be called the in-

dex of the c¢losed curve C and denoted accordingly by



Is(n/g).

This index for & closed curve C is obviously always a
positive or negative integer or zero. While most
theorems concerning index are for closed ouries, the
next two theorems give interesting results for a
straight line.

Theorem 2. lLet L be a line in the complex plane
on which a given rth degree polynomial f(z) =g(t) +ih(t)
has no zeros. let Acara £(z) denote the net change in
arg f(z) as point z traverses L in a specified direction
and let p and q denote the number of zeros of f(z) to
the left and to the right of this direction of L
respectively. Then

P - q= 21(h/g).

Proof: If 27, Zp, «+oy Zp denote the zeros of f(z)
to the left of L relative to a specified direction and
Zpals Zpaps coc0 g denote the zeros of f(z) to the
right of L, then
1) f(z) =ay(z - 2,)(z - Zp)e..(z - zp)(z - "p-t-l)"'

(z - zq)

and
2) arg f(z)=arg a +arg (z - z,) +arg (z - 25)+ ...
+arg (z - zp)-f... +arg (z - zq).
Now the net change in arg f(z) as point z tra-

verses L is given by
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3) A.arg £(z) = é_‘ldcars (z - 24) "'3?::;140“.8 (z - zJ)-

It is obvious that as the point z traverses L in a speci-
fied direction the net change in arg (z - z,) is7r or
- T according as z, is to the left or %o the right of
L relative to the specified direction.
Then
4) fdcars (z - 24) = pm
i=1
and
5) J_‘%.].Acarg (z - zj) = -qrm.
Therefore
6) Qgerg £(z) = pT- qIT
or
7) » - a=(1/yq) Agarg £(z).
But by Theorem 1,
8) A,erg f(z) = 2WI(h/g)
then
p - q=(1/w)[2™I(n/g)]] = 21(n/g).

(Note: Above theorem cannot be extended, e.g., oz)

Q.E.D.

Corollary 2. Let L be a line on which a given



r-th degree polynomial f(z)=g(t)+ih(t) has no zeros,
and let the point z traverse L under the conditions of
Theorem 2. Then

p = [ +21(n/g)]
and

q = & [r -21(n/g)]

Proof: Now by the preceding Theorem 2,

1) p - q=2I(h/g)

and since f(z) is an r-th degree polynomial
2) p+gq=r

Then adding 1) and 2)

2p = r + 2I(h/g)
or

p =i[r + 21(n/g]] .

Subtracting 1) from 2)

2q = r - 2I(h/g)
or

q =[x - 21(n/g)].

QeB.D.

Theorem 3. Let f{(z)=g(t)+1ih(t) be analytic in-
terior to a simple closed curve C and continuous and
different from zero on C. Let K be the curve described
in the W-plane by the point W=r(z) and let Asarg £(z)
denote the net change in arg f(z) as the point z tra-

verses C once over in the comnterclockwise direction.



Then the number p of zeros of f(z) interior to C,
counted with their multiplicities, is

p =I,(h/g).

That is, it is the number of times that K winds about
the point W =0.

Proof(1,p.240): If 23, Zp, «cey z, denote the
zeros of f(z) igsido C and Zoa1r Bpepr s z, denote
those outside C, then

£(z) =may(z - 2,)(z = 25)eeelz - zp)...(z - 2, )F(z)
and

arg f(z) =arg an-t—?lars (z - zj) +£arg (z - zj)

z J=p+l
+arg F(z).

Now as the point z describes C counterclockwise,
(see Figure I) arg (z - sj) changes by 2T when 1l:j2p,
and has a zero net change when p<j*n. Also there is a
zero net change in arg F(z). Then
1) Acarg £(z) = 27p.

arg(z-z,w)

Figure I.



Now the total variation of the argument of £(z)
according to Corollary 1 of Theorem 1, is given by
2) Agarg f{z) = 271, (h/g).

Substituting the value of ASGarg £(z) from 2) into
equation 1), the equation for the number of zeros of
£{z) interior to C is

2mp = 2mwiz(b/g)
or

» =I,(n/g)
that is, the number of zeros of f£(z) interior to the
closed curve C is simply the index of the guotient

h(t)/g(t)

Q.EB.D.

Theorem 4. Let P(z)=g(t)+ih(t) and Q(z)=
sl(t)+ iq{t) be analytic interior to a simple closed
curve C, continuous and different from zero on C, and

12(z)] < [a(z)] onc,
and let r(z)=P(z)+Q(z)=32(t)+1h2(t). Then F(z)
has the same number of zeros interior to C as does Q(z).
That is,

I,(n /g) = Ic(hzlsz)

Proof: Let F(z)=wQ(z), where
1) w=1+P(z)/Q(z).

Now if q denotes the number of zeros of Q(z) in C, then

according to Theorem 3,



2) (1/2m) Agerg Qlz)=4q =ic(hl/sl).

Since |P(z)/Q(z)| <1 on C, the point w defined in
equations 1) describes (see Figure I1) a closed curve
M which lies interior to the circle with center at

w =1 and radius 1. Thus, point w remains always in the

Figure 1I
right half-plane. The net change in arg w as w varies

on [ is therefore zero. This means according to
equations 1) that
3) O erg F(z) = Ae“‘ w4+ Acare z) = O arg Q(z).
Then according to equations 2)
(1/21!? Acarg P(z)=q :Ic(hl/sl)
that is, F(z) has the same number of zeros interior to
C as does Q(z), and from the results of Theorem 3,
(1/2m) &arg F(z) -=-Ic(h2/sz)

therefore,
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I(hy/8;) = Iy(hp/gy).

Q.E.D.

STATEMENTS OF THEOREMS CONCERNING ZEROS OF ANALYTIC
FUNCTIONS. The proofs of the following stated theorems
may be found in the literature cited following the
statements of the theorems.

Theorem 5. If f(z) is analytic inside and on a

closed contour C, and is not zero on the contour, then

£ .
(1/271) l-ﬂ-g:-} az = N

where N is the number of zeros inside the contour (a
zero‘or order m being counted m times). (8,p.115)

Theorem 6. Let C be a simple closed contour, in-
side eand on whioh f(z) is emalytic. Then if R(:'r(z)}
vanishes at 2k distinet points on C, f(z) has at most
k zeros inside C. (8,p.123)

Theorem 7. If f(z) has n zeros inside C, then
£*(z) has n-1 zeros inside C. (8,p.122)

Theorem 8. Rouche's Theorem: If £(z) and g(z)

are analytic inside and on a closed contour C, and
|&lz)| < [£(z)] on ¢,

then f(z) and f£(z)+ g(z) have the same number of

zeros inside C. (8,p.116)
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CHAPTER II1
A LEMMA ON INDEX

Lemma 1. If none of the four numbers gl(a), g(b),
h{a), h(b) is zero, then

I(b/g) + I(g/n) = &
where

S=0 ir [n(a)/glal] [R(v)/elb]] 7 0,

&=1 if h(a)/gla) > 0, h(b)/g(d) <0,

S=-1 ir n(a)/gla) < 0, h(b)/g(db) > o.

Proof: Let tl; tz, "% oy tk be k points where either
g(t) or h(t) vanishes and changes its sign. Let €=%1 be
a unit of the same sign as h(a)/g(a). By the definition
of index

Ig,q(b/el¥ I, g(e/h) =0 if act<t
and

I&,ﬂ (h/g) + I@’t] (g/h)=2€ it 5 < b <ty
Next,

Ie,q /e + Ig,4 (g/h) = 4€ -2€ if t.< t<t,
and

I1n,q(b/e) + Im,q (8/h)=2€ -z€+2€ 1f B34t <%,.
In general

I, (b/e) + Ig,p)(e/h)= {

k 3¢ if k is odd
*(é -e+€-ooo +'(‘1) e ): }
0 if k is even

Since k is odd or even according as
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[b(a)/gla)] [a(v)/g(v]] <0 or >0,
the desired result is obtained.

APPLICATION TO RATIONAL BOUNDARY CURVES. If the
boundary C is a rational curve, so that

x=x(t) and y=y(%)
are rational functions of %, or composed of a finite
number of rational arcs and f(z) is a polynomial, then
the index of C can be found by regular operations.

Let S be an are of a rational curve C. On this
are

h(t)/g(t) = P,/P
where P; and P are polynomials in ¢ not vanishing simul-
taneously. Now divide P by Py and let Ql be the quo-
tient and -P, the remainder, so that

P =Pl°'1 - PZ
Repeat the above using Pl and P2 obtaining

P1=P2Q2 - PB
Continuing this process, we obtain a finite number of
equations

4 ::PlQ1 - PZ

P1=FQ, - By

- L L ] e @ . L

Pr2™Fp 1%y - Fps
where Pr is a constant different from O.



Now we have

I(e/my) = Lg(q - £2) = -L(Ry/py)
Next

Ig(Py/Py) +I(Py/Ry) = 5 85,

where Sl‘is determined by the preceding Lemma 1.

Then

Ig(P/P)) = -4 & +I4(P,/P,)
Similarly

Ig(P /Py) = - 3, + Ig(Py/Py),
where

88, = I(2,/P)) + I (P /P,).
Continue until

Lo, /P y) = -8, + T2 /R,
However, since P, is a constant,

IS(Pr-J./Pr) =0,
Hence

I (B/Py) = -4( S+ S, +.0u+ 8 )
From ;

Ig(P,/P) + I (B/P)) = 49,
it follows that

Ig(P/P) = 3(8 + S+ ...+ S_ ).

This sum S + %+ see Sr-l has an explanation in
terms of the number of variations of sign in the se-

quence of polynomials.

13



Let V{t) be the number of variations of sign in
the sequence P(t), Pl(t), swiag Pr(t). From the defi-
Mﬁnofé,ﬁ,unskpitmnwsmm

8 +8 +...+3d_, =¥(b) - V(a).
Then
Ig(P,/P) — ¥i(b) - V{a) .

This last result was derived assuming that neither
of the sequences

Pl{a), Pl(a), s o Pr(a)

P(b), Pl(b), ves 3 Pr(b)
contains zeros. The result is correct, however, even

if this should be the case, provided
Pla) # 0, P(b) # 0.
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CHAPTER III
THE NUMBER OF ZEROS OF A POLYNOMIAL
IN THE UNIT CIRCLE Izl = 1

It is profitable to transform this circle (z|=1
into a semiplane by using the transformation

1) z:%'_;_i-_. é

To show that this transformation transforms |z|=|
into the upper half €-plane it is sufficient to show
that the circumference of the circle in the z-plane
transforms into the real exis in the €-plane, that
is; for any point on the unit cirecle in the z-plane, &
has a real value; and that any point interior to the
circle in the z-plane transforms into a point in the
upper half ?-plano.

Solving 1) for ?,

- i Z+l
€= -2

Now on the unit circle in the z-plane

z:re"o =z ¢os @ +1 sin O, since r=1.

Then

?.; -3 08 O +1 sin O +1
cos O+ 1 sin 0 -1

€08 © -1 +1 sin © ¢cos O -1 -1 sin ©

E=-1 gos @ +1+1i 8in 0  ,  cos @ -1 -i 8in O

After a slight simplification this reduces to
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- _sin ©
?"1‘:%3?0

Therefore & is real for any point on the unit circle
1a=1.

It is obvious that any point interior to the circle
(zl=1 transforms into the upper half &’-plane. Just take
any interior point of the unit ecircle and substitute in
the transformation for z. For z=0, the orgin in the
z-plane, &=i. That is, the origin in the z-plane
transforms into the point i in the €-plane.

In the light of the preceding discussion it is evi-
dent that if z/r be writtem for z in the transformation
1) the result is a general transformation that trans-
forms the circle (z|=r in the z-plane into the upper
half &-plene.

The problem of finding the number of zeros of the
polynomial f(z) of degree n which are situated in the
domain I1zl1<1l is equivalent to the problem of finding the
number of roots of the equation

(&4 1)%(%:':__}) =F§) =P +iP =0.

in the semiplane Q( €) > o.

Denoting this number by N we have

R = I(Pl/P)
the index of PllP corresponding to the boundary of a
semicircle of sufficiently large radius R to contain all
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the roots of F(&) = 0 with Q( €) » 0. If we denote

the semieircular arc by C, we have
2) N=Ipgg(P/P) + L(Py/P)

Part A: The index Ic(Pl/P) = n/2 if C is a semi-
circle of sufficiently large radius as mentioned above.

-1
Let F(€) = é‘ + 0 + seetoy,
2 iej
where cj = rjo
Now for = Rei¢ we have

P = R%co0s ng + rlnn'lcoa B, + (n-1)@] + ...4r c0s 8,

Pl-'— R%sin n? + rlR"'lsin [§1 +(n-1 )gﬂ+ . .+rns:ln On.
Then
P,/P = Ein n @ +(r; ;R}sin B;-t—(n-l}%lﬂ..ﬁrn;nn)sin &n
1 cos 1 ¢ + (r3/R)cos By +(n-1)@ln .. ATy/RT)c0s Oy
3 NP :10: :?*/’; 3' 7 with obvious abbreviations.

Now for an € » 0, arbitrarily small, we can take

Ro so large that

| AR, @) <€, Ii.é&%.ﬂl‘ < €,

|£(R,P)| < €, forR ZR
Let A4 = T/,n and divide the interval (0,TT)
into the 2n +1 intervals



(0,4), (4,34), (34,54), ..., [{4n-3)4,(4n-1)4],
[(4n-1)a,m].

In the intervals [(4k-1)4,(4k+1)a] , k=0, 1, ..., n,

[cos ng|<1/¥2
and

|cos ngp + B(R,@)| > (1//2) - € » 0;
hence these intervals do not contribute anything to the
index of P,/P, In the intervals [(4k+l)a,(4k+3)A],
k=0, 1, +.., n-1, the numerator of 3) has the sign of
(--l)k and does not vanish, since

(-1)* sin ng Zz sin (W/4) = INZ
and

(-1)% sin ngp + (-1)R(R, @) 7 (1/17) - € > 0.
Similarly the denominator is a monotone function for the
derivative of the denominator does not change sign. For

P=(4k+l)a

(-1)* [os n@ + 4 (R, ¢) 7 (1/VZ)- € >0,
and for P = (4k+3)4

(-1)5°1 [Gos ngp + B(R, 9]] 7 (1//2)-€ 7 o.
thorofore; in each of the n intervals, the guotient
P,/P passes through infinity and changes sign from +
to - , and

I(Py/P) = n/2.

Part B: Returning to 2), we now have

H:—-E—m -g-ﬂ*_n °

18



This is based on the assumption that the equation

£(z) = O has no roots on the unit circle. In order %o
determine whether this is the case and to see how to
proceed in such an eventuality, observe first that the
possible root z =1 can easily be discovered and removed,
so that we can suppose to begin with that £(l) # O.

The real roots of F(€) =0 correspond to possible roots
on the unit circle. If there are such roots the algo-
rithm described in obtaining the formula

IS(Pl/P) = ¥(b) EV(!)

will show this; namely, the first remainder which di-
vides the preceding one will be not a constant but a
polynomial P, containing all the common roots of P=0
end P; =0. The number of roots on the unit circle will
be exactly given by the degree of P,. To find the num-
ber of roots of F(€) =0 with positive imaginary parts,
consider the equation
HEWE = (B/2) + 1R /Pp) = B 4 iry

having no real zeros. By division obtain the following

T = - P
P Ry -

L = PéQz - PB

T =P B - Pt
r-2 r-1r-l1 r
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where

] - e, T
Pk ?k/Pr » PL=1

The numbers of variations in the sequence

P, P B .. B2

for €=-09 end € = + 0O, however, are the same
as for the original series

By Bys Pas woss B
However in place of n, the degree of f(z), we must sub-
stitute n - k, where k is the degree of Pr‘ The
general formula for the number of roots of f£(z) = 0
inside the unit circle will be

N= Nay - H?-\-n - K

ILLUSTRATED EXAMPLE. The discussion above will be
illustrated for the polynomial

1}  f£iz) = 23° - 4sz*+ 527 - 52°+3z - 1
Since z =1 is a root; divide f(z) by z-1l. Then
2) f£(z) = (z-l)(Zz" - 223 +32% - 2z +1)
Using the transformation
z = (€-1)/(€+1) in the last fector of 2) we

have
(€-1)\ = o(@-1)4_ 5(€-1)3  ,(€-1)2 (€-i
I R o) 2G5 + 3G Ay +

and writing 3) in the form

) = €+ 1)”:({,;})
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then
4 RE) = 2(0-1)* -2(@-1) (@+1) + 3(€-1)2 (1) %
-2(',’-1)('¢+1)3 + i)t

Expanding the terms in 4) and collecting like terms

F(€) = P +1P, = (2¢* -12¢¢ +10) +1(-4¢+ 4§)
so that

P= 2& -12¢2+10, P =-4&+L4€

Now dividing P by Pl

P=BR, - P, = (-4€+ 48)(-2§) - (-106%+10)
so that
P, = 10€° - 10

Then dividing P, by P

1 2 to get

Py=B - Py = (106% - 10)(-,5€) - (0)
therefore P3 is zero. The four polynomials are then
5) P=2& -12&+10

PE-4S+4E

P2=1oé-1o

P3::0

Now since the order of Py is 2, there are two more
roots on the unit circle meking a total of 3. To deter-
mine N,, and N_n, substitute G = coand €=-o00 in the
polynomials 5) end count the variations in sign.



For @=+00| + e +
For @=-00| + | + | +

Evidently Ngp= 2 and N_g=0. Then substituting
these values in the general formula for the number of

roots of f(z) = O inside the unit cirecle

) =
Therefore there are two roots inside the unit circle.

N N -n.,.rm-x _2-0+4-2 _ ,

The original function under consideration can be
factored into

£(z) = (z - 1)(z%+ 1)(22° - 22 + 1)
from which we can see that the roots are located as
determined above.

As another example of slightly different nature,
take for the polynomial

£(z) = 22° + 4z* +112° + 1722 +12z + 1
and proceeding in exactly the same manner as before,
we find for the sequence of polynomials:

P =25 - 18€% + 5

P,= 20€ + 4 €

P,z ZSé -5

Py= - 192/23€

P‘:: 5

Now since the order of P‘ is zero, there are no

22
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more roots on the unit circle other than z=-l. This
root, as before, was removed from the polynomial be-
fore the method was undertaken.

Again determine Noo and N_go by substituting
? = +00 and €= -00in the sequence of polynomials

and counting the variastions of sign.

4 Pl PZ P3 P‘
For e: + @ + e & e &
For €= -co + -~ + + +

Therefore Ngo= 2 and N_g= 2. Then substituting
these values in the general formula for the number of

roots of f£(z) = 0 inside the unit circle

R=§Q-B.?+n-k ____2-2;4-0_:2

Then there are two roots inside the unit circle.
Evidently there are two other roots outside the unit
eircle, and this is seen to be the case by observing

the location of the roots of f(z) in factored form.

£(z) = (z+41)(z°%+ 4)(22°% + 22 +1)

From the factored form it is obvious that there are
two roots outside the unit circle, two roots inside,
and one root on the circle. This is in agreement with

the results found above.



CHAPTER IV
A RESULT CONCERNING MULTIPLE ZEROS

The zeros of f(z) =u+iv are the intersections
of the curves u=0; v=0.

Theorem 9. At an n-tuple zero of the analytiec
function £(z), each of the curves u=0, v=0 has an
n-tuple point; and the two curves intersect at an
angle of (1/n)(7/2) at the n-tuple zero.

Proof: No generality is lost by taking the zero :
of f(z) to be at z=0, and writing

£(s)= aoi‘zn + of (a1 **)
so0 that
1) u=ar® cos(e+ né,) + Of lr(n*l)
and
2) v=zar® sin(« + n8,) + of |r|n"'l).

Now by the fundamental theorem of algebra each
of the curves u =0, v=0 has an n-tuple point at r=0,

For the curves in 1) and 2) the direations of the
tangents to u=0, v=0, are given by

3) d.+n°l=Q2-§é!—1-)Tr’ n:o, l. 2’ sese
and
P4 o(+n62= nt, Al 3.8 e

or
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né; = (20 +1)TW-A

n82= nmr -K .

Then

8; =(1/2n)(2n + 1) ™ - */n

8, =(1/n)(n m-).

Now the angle between the two curves u=0, v=0,
will be the difference between the angles 81 and 92.
That is,

8; - 8, =(1/n)(amm +T/2 - -nT +a«)

=(1/n)(T/2).
Q.E.D.
AN EXAMPLE FOR n=3. Consider the function

£(z) = (z-2)° = Qx+iy) - 3J°
= [(::--2)3 - 372(::-22-] + 1 k-y3) + y(3x2-12x+12ﬂ

Then
1) w=(xa)’ - 3y°(x=2) = 0
3 ¥y = (-13) + y(3x® - 12x+12) = 0
Solving for x in terms of y in u =0, and for y in terms
of x in v=0, obtain from 1)
3) x-2=0; x-2 =/3y; x-2= -3y
end from 2)
4) y=0; y=V3x -vi2; y=-("3x - Vi2).

These curves are plotted in Figure III, and an in-

spection of the slopes shows clearly that the curves
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intersect at an angle of 30°. This agrees with the re-
sults of the last theorem for (1/3)(77/2) is 30°.

- (r3x-Viz)

y=
é> X=2

. _%x-2 A '\\ ," 4;;§4=V33b-ﬁi

\ / Y= 35
M

Figure III.
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CHAPTER V
ZEROS OF LEVEL CURVES

DEFINITION OF A LEVEL CURVE. The locus of a point
z which moves in the plane of the complex variable z so
that the modulus of a function of f(z) remains constant
is defined as a level curve of f{(z). The equation of
such a curve may be written in the form |f(z)| =M
where M is the constant modulus. By giving M all values
from zero to +00, we obtain an infinite number of
curves. Clearly, one and only one of these passes
through any given point in the plane.

Theorem 10. For an analytic funetion f(z) a level
curve has a double point, if, and only if, it passes
through a zero of f£'(z).

Proof(8,p.121): The equation of a level curve is

ﬂ2+V2:02

and this has a double point if, and only if,
1) wu + v, =0

0

2) nn,-+ rv,

Both of these conditions are satisfied if f£*(z) 0.
Conversely, equation 2) may be written

3) -uv -+ vu =0.

Then squering and adding equations 1) and 3)
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2 8.8 2
(a_ + v ){u +v) = 0.
x x
Hence, u = 0 and v = 0, that is,
x x

£'(z) =
Q.E.D.

Theorem 1l. If C is a simple closed level curve,
And £(z) is analytic inside and on C, then f(z) hes
at least one zero inside C.

Proof(8,p.121): Let

£(z) = u +iv = cel® on C, so that ¢ is a con-
stant, Then

o-.-‘\/n2 + v° s, © =arctan (v/u).
Let S be the length of C measured from some fixed
point on it. Then

1) 0=£ = (¥ + v§¥)(1/0)

40~ (ufr - v“)u/oz)

Now d8/ds cannot vanish on C. For if it did on
squaring and adding equations 1) and 2)
(u24 vR) Edu/ds)z-c- (dv/ds)z_‘ = 0, that is,
du/ds =0, dv/ds =0.
Now
3) au/ds = u,(dx/as) + u (day/ds),
4) dv/as =-vx(dx/ds) * vy(dy/ds): -ny(dx/ds)-mx(dy/ds),
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so that squaring and adding equations 3) and 4)

5) (Ili + n:;) [(dx/ds)2+ (dy/da)z_]:o.

The last factor is 1, so that u =0, "= 0, that
is,

£'(z) = 0.

This is impossible on a level curve without double
points by the previous theorem.

It follows that d8/ds has the same sign at all
points of C, i.e., that © increases or decreases
steadily round the contour. Hence its variation round
the contour is not zero. Then by Theorem 3 there is
at least one zero inside C.

Q.E.D.

AN EXAMPLE OF A LEVEL CURVE. As an example of
the level curves of a function, suppose that
£f(z) = sin z.

Then ( 31P0‘r°)

| £(z)] B |sin(x +iy)| 4 Bin(x +1y]} (ein(x - iy}
= 4(cosh 2y -~ cos 2x)
and the level curves are given by
cosh 2y - ¢o0s 2x =2)I2
where M ranges from O to +00,
Since cosh 2y and cos 2x are both even functions,

the curves are symmetrical about both axes of
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coordinates. Also since cos 2x is periodic, it is
sufficient to trace the curves which lie in the strip
bounded by the lines x=2(T/2). If M does not exceed
unity, the curves meet the x-axis where sin x = t ii;
otherwise the curves do not meet OX at all. When x
vanishes

M = |sin iy| = % sinh y,
according as y is positive or negative. Thus for all
values of M the curves meet OY in two points equi-
distant from the origin.

Consider the curve for which M=1l., Its equation
may be reduced to the form

sinh y = * cosx
The curve passes through the points

(¢7/2, 0) eand [, tleg(1+ vV2).
At each of the first two points it has a node, the

tangents at which make angles of T/, with OX.
The form of the curves is indicated in the figure
below. YTm-.rs
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When M is less than unity we have a series of
ovale with their centers at the points (nw,0),
where n = 0,t1,%t2, ... . When M is equal to unity,
we obtain a curve which cuts OX at the points whoi*o
x is equal to an odd multiple of T/2. For values
of M greater then unity the curve is in two distinet
branches above and below the x-axis.
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