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INDEX AND ZEROS OF . YtJNOTION 
01 A COMPLEX VARIABLE 

INTRODUCTI ON 

STATEMENT OF TITh PROBLEM. The purpose of this 

thesis is to consider various methods of determining the 

number and location of zeros of an analytic function of 

a complex variable, 
METHOD OF INVESTIGATION. The methods for investi- 

gating these questions will involve mostly the geometric 

operations with complex numbers and certain principles 

which are based upon these operations, 

The thesis begins With the dofinition of Cauohy 

Index. Theorems are derived with the aid of the index 

concerning the number and location of the zeros of an 

analytic function. 
A lemma on index is derived to aid in determining 

the number and location of the zeros of a polynomial 

in the unit circle. In Chapter IV an interesting re- 

suit is obtained concerning multiple zeros of a function. 

Finally, a definition of the level curves of a 

complex variable is given with theorems and results ob- 

tamed concerning the zeros and multiple points of the 

level curves, This is followed by an illustrated ex- 

ample of the level curves of a function, 



INDEX A1'D ZEROS OF A FUNCTION 
OF A COMPLEX VARIABLE 

CHAPTER I 

CAU CUY INDEX 

DEFINITION OF INDEX (GAUdY). Let g( t) and h(t) be 

two continuous functions of the variable t which varies 

in the interval The functions g(t) and h(t) 

do not vanish simultaneously and g(a) O, g(b) O. As 

t varies from a to b the quotient h(t)/g(t) may become 

infinite and change its sign. Let in denote the number of 

times it changes from +to-, and n denote the num- 

ber of times it changes from- to+. The semi- 

difference (n - n)/2 will be called the index of 

h(t)/g(t) in [a,b] and will be denoted by 

or simply I(h/g). 

Theorem 1. There exists a uniue continuous fune- 

tion Ø of the variable t satisfying 

1) tan Ø=h(t)/g(t) 

and for ta coinciding with the principal value of 

arotani(a)/g(a 

Proof(7,p.l3): Lot T be an arbitrary number of 

the interval ,b] for which g(T) O. If in the inter- 

val a.ttT the quotient h(t)/g(t) changes from4 to 

-.00 m(T) times, and from -00 to 4- n(T) times, then 
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2) Ø arotani(T)/g(T + 7T&«T) - n(TU 

is the unique continuous solution of the equation 

3) tanØ =h(t)/g(t) 

reducing to arotanffi(a)/g(all for Ta. 

is 

When t varies from a to b the total variation in Ø 

Ø(b) - Ø(a)=.arctanffi(b)/g(b -arotan(a)/g(aD 

,' 1Tn(b) - n(b)] 

or simply 

Ø(b) - Ø'(a) =arctani(b)/g(b -arctan(a)/g(a 

+2 TrI(h/g). 

c.E.D. 

Corollary 1. Let C be a simple closed curve such 

that h(b) h(a) O, and g(b) =.g(a) O. Then the 

total variation in $ along C is 

2 7TI(h/g). 

Proof: From the results of the preceding theorem, 

i) Ø(b) - (a)arctan(b)/g(b - arotanffi(a)/g(a 

t 2 7T1(h/g). 

But since C is a simple closed curve 

2) arctani(b)/g(bJ arctan[h(a)/g(a 

there fore 

Ø(b) - Ø'(a) = 27T1(h/g). 

r w i-' '% .&. iS 
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Lot f(z) g(t) +-ih(t) be an analytio function of 

the complex variable z within an open region D; continu- 

ous on its boundary C and not vanishing on C. The 

boundary- can be represented parametrically by the con- 

tinuous funetions 

x:x(t) ; 
yy(t) 

where in order to describe C in the positive sensed t 
varies from a to b. 

At any point z0 of C, the complex number f(z0) has 

an infinite number of amplitudes, which differ from each 

other by multiples of 2T. If a0+ ib0 is any one of the 

logarithms of f(z0), then b0 is an amplitude of 

This is because a4ib a ib 
O 

e e 
o 

ea0(oos b0 + i sin b0). 

The real end imaginary parts of f(z) on C are 

functions of t 

g(t) ; h(t) 
which satisfy the requirements of g(t) and h(t) for dis- 

cussion of the Index of the quotient 

h(t)/g(t). 

This Index does not depend on the way in which the 

closed curve C is represented and can be called the in- 

dex of the closed curve C and denoted accordingly by 



M 

This index for a closed curve C is obviously always a 

positive or negative integer or zero. While most 

theorems concerning index are for closed curves, the 

next two theorems give interesting results for a 

straight line. 

Theorem 2. Let L be a line in the complex plane 

on which a given rth degree polynomial f(zÌ g(t) s-ih(t) 

has no zeros. Let 4ar f(z) denoto the net change in 

arg f(z) as point z traverses L in a specified direction 

and let p and q denote the number of zeros of f(z) to 

the left and to the right of this direction of L 

respectively. Then 

p - q : 21(h/g). 

Proof: It z1, z2, .., z denote the zeros of f(z) 

to the left of L relative to a specified direction and 

zp4.l, z2, ..., z denote the zeros of f(z) to the 

right of L, then 

1) f(z) a(z - z1)(z - z2)0..(z -z)(z - 

(z -z) 

and 

2) arg f(z)arg a+arg (z - z1)4arg (z - z2)+ 

+arg (z -z)4... +arg (z - 

Now the net change in arg f(z) as point z tra- 
verses L is given by 



3) arg f(z) çarg (z - z1) 0arg (z - za). 

il 

It is obvious that as the point z traverses L in a speci- 

fied direction the net change in arg (z - Zn) isrror 

- -rr according es Zn is to the left or to the right of 

L relative to the specified direction. 

Then 

) arg (z - z1) = p7r 

and 

5) ¿0arg (z - zj) 
jp+l 

There fore 

6) 0arg f( z) pTt - 

or 

7) p - q . (l/) .0arg f(z). 

But by Theorem 1, 

S) arg f(z) = 2TEI(h/g) 

then 

p -q.(l/iT)[21TI(h/g 2I(h/g). 

(Note: Above theorem cannot be extended, e.g., eZ) 

.E.D. 

Corollary 2. Let L be a line on which a given 



r-th degree polynomial f(z)g(t)+ih(t) has no zeros, 

and let the point z traverse L under the conditions of 

Theorem 2. Then 

p 

and 

q. 2I(h/g)] 

Proof: Now by the preceding Theorem 2, 

1) p - q = 21(h/g) 

and since f(z) is an r-th degree polynomial 

2) p+q=r 
Then adding 1) and 2) 

2p r + 21(h/g) 

p .+2I(h/g)J. 

Subtracting 1) from 2) 

2q r - 21(h/g) 

= . - 21(h/g)]. 

.E.D. 

Theorem 3. Lot f(z)=g(t)+ih(t) be analytic in-. 

tenor to a simple closed curve C and continuous and 

different from zero on C. Let K be the curve described 

in the W-plane by the point Wf(z) and let ¿carg f(z) 

denote the net change in arg f(z) a the point z tra- 

verses C once over in the counterclockwise direction. 
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Then the nuzither p of zeros of f(z) interior to C, 

counted with their inultiplicities, is 
p =10(h/g)e 

That Is, it is the number of tiznes that K wind3 about 

the point W=.O. 

Proof(1,p.240): If z1, z2, ..., z denote the 

zeros of f(z) inside C and z1, z2, Z denote 

those outside C, then 

and 

f(z) a(z - z1)(z - z2)...(z -z)...(z -z)F(z) 

arg f(z) arg an+ar (z - zj) - arg (z - zj) 
jp+1 

+arg 1(z). 
Now as the point z describes C counterclockwise, 

(see Figure I) arg (z - Zj) changes by 2T when 1tjp, 
and has a zero net change when p'jn. Also there is a 

zero net change in arg 1(z). Then 

i) ¿0arg f(z) 2lrp. 

Figure I. 



Now the total variation of the argument of f(z) 

according to Corollary 1 of Theorsm 1, is given by 

2) 0arg f( z) = 2 7TI(h/g). 

Substituting the valuo of 0arg f(z) from 2) into 

equation 1), the equation for the number of zeros of 

f(z) interior to C is 

27Tp 27T10(h/g) 

or 

p =I(h/g) 

that is, the number of zeros of t(z) interior to the 

closed curve C is simply the index of the quotient 

h(t)/g(t) 

Theorem 4. Let P(z) = g(t) +ih(t) and (z)= 

g1(tH iht) be analytic interior to a simple closed 

curve C, continuous and different from zero on C, and 

IP(z)I ¿. (ç(z)( on C, 

and let F(z)=P(z)+Q(z)g2(t)+ih2(t). Then F(z) 

has the sanie number of zeros interior to C as does (z). 

That is, 

10(h1/g1) = 10(h2/g2) 

Proof: Let F(z)wQ(z), where 

1) w=14-P(z)/Q(z). 

Now if q denotes the number of zeros of Q(z) in C, then 

according to Theorem 3, 



2) (l/2rr) 0arg '( z) = q = 10(h1/g1). 

Since ¡P(z)/(z)I .< 1 on C, the point w defined in 

equations 1) describes (see Figure II) a closed curve 

P which lies interior to the circle with center at 

w = 1 and radius 1. Thus, point w rename always in the 

t,sI pkiie 

Figure II 

/ 

right half-plane. The net change in arg w as w varies 

on r' is therefore zero. This rans a000rdi to 

equations 1) that 

3) Aarg F(z) arg w + IX arg Q(z) = ¿Iarg (z). 

Then according to equations 2) 

(l/2) 0arg F(z) = q I0(h1/g1) 

that is, F() has the sane number of zeros interior to 

C as does (z), and from the results of Theorem 3, 

(l/2îr) Aar F(z)-I0(h2/g2) 

therefore, 



Q.i.D. 

lo 

STATENTS OP TkIEORFQJS CONCÁtRi'ELNG ZEROS OF .hNALYIC 

FUNCTIONS. The proots of the following stated theorems 

iay be found in the literature cited following the 

stateaonts of the theorems. 

Theorem 5. If f(z) is analytic inside and on a 

closed contour C, and is not zero on the contour, then 

(l/2rri) z = N 

where N is the number of zeros inside the contour (a 

zoro of order m being counted n t1mes) (8,p.l15) 

Theorem 6. Let C be a simple closed contour, in- 

side and on which f(z) is analytic. Then if 
vanishes at 2k distinct poInts on C, f(z) has at most 

k: zeros inside C. (8,p.123) 

Theorem 7 If f(z) has n zeros inside C, then 

t'Cz) has n-]. zeros inside C. (,p.l22) 
Theorem 8. Rouohe's Theorem: If t(z) and g(z) 

are analytic inside and on a closed contour C, and 

(t(z)) on o, 

then f(z) and f(z)+g(z) bave the same number of 

zeros inside C. (8,pll6) 
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A LMM. ON INDEX 

Lemma i. If none of the four numbers g(a), g(b), 

h(a), h(b) is zero, then 

where 

I(h/g) + I(g/h) = 

o ir (a),'g(a5 i(b)/g(b)J 7 0, 

if h(a)/g(&) 0, h(b)/g(b) '-0, 

if h(a)/g(a) & 0, h(b)/g(b) ?0. 

"j 

Proof: Let t1, t2, .., t] be k points where either 

g(t) or h(t) vanishes and changes its sign. Let Et1 be 

a unit of the sanie sign as h(a)/g(a). By the definition 

of index 

Ia,tj(h/)+ I[a,tJ(ß/11) =0 if at<t1 

+ I1,(g/h)=k if 

Next, 

(h/g) + I,tj(h)E_E if t2' t'..t3 

-'t 

I,J(h/) +I,tj(/h)E -kE+ if t3tt4. 

In general 

I [a, b) 
(h/g) + I 

Ca, b] ( g/h) 

1k E it k is odd 
-#-...s-(-l) . )= 

j if k is even 

Since k is odd or even according as 
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i(a)/g(a)J i(b)/g(b)]<O or ?O, 

the desired result is obtained. 

APPLICATION TO RATIONAL BOUNDARY CURVES. If the 

boundary C is a rational curve, so that 

x=x(t) and yy(t) 

are rational functions of t, or composed of a finito 

number of rational ares and f(z) is a polynomial, then 

the index of C can be found by regular operations. 

Let S be an aro of a rational curve O. On this 

h(t)/g(t) P1/P 

where P1 and P are polynomials in t not vanishing simul- 

taneously. Now divide P by P1 and let Q1 be the quo- 

tient and -P2 the remainder, so that 

PP1Q - P2 

Repeat the above using P1 and P2 obtaining 

P1P2Q2 - P3 

Continuing this process, we obtain a finite number of 

o quati one 

P =P1Q1 - P2 

P1'2Q2 - p3 

. . . . . . . 

r-2 r-1r-1 

where r is a constant different from O. 
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Now we have 

xs(P/Pi) I8(Q1 i(P2/p1) 

Next 

:t8(P2/P]) +Xs(P1/P2) SI, 

where S1 is determined by the preceding Lemma 1. 

Then 

Is ( P/P1 . - 
''l 1S 12 

Similarly 

15(P1/P2) = 
'2 

15(P2/P3), 

where 

_ i(P3/P2). 

Continue until 

IS(Pr 2/P ) + 

However, since is a constant, 

Is(Pr i/Pr) = 

Hence 

15(P/P1) £'2 + 

From 

18(P1/P) + 15(P/P1) S, 

it follows that 

I(P/P) + g1+... 1)i 

This sum S + has an explanation in 

terms of the number of variations of sign in the se- 

quence of polynomials. 



14 

Let v(t) be the number of variations of sign in 

the sequenoe P( t), P1( t), P( t). From the defi- 

nition of c, 
, 
.., it follows that 

Then 

'f S1+.,. =.V(b) - V(a). 

Is(P/P) 
V(b - V(a) 

2 

This last result was derived assuming that neither 

of the sequences 

P(a), P1(a), ... 
, 
P,(a) 

P(b), P1(b), ... P(b) 

contains zeros. The result is correct, however, even 

ir this should be the ease, provided 

P(a) O, P(b) O. 
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CHAPTER III 

THE NUMBER OF ZEROS OF TOLYNOMIAL 

IN THE UNIT CIRCLE ¿Z1 1 

It is profitable to transform this circle (ZI]. 

into a semiplane by using the transforïwìtion 

1) t+ i 
To show that this transformation transforms iz11 

into the upper half Ç-plane it is sufficient to show 

that the circumference of the circle in the z-plane 

transforms into the real axis in the e-plane, that 

is, for any point on the unit circle in the zplane % 

has a real value; and that any point interior to the 

circle in the z-plane transforms into a point ir the 

upper half q-piane. 

Solving 1) for q, 

q = _j z#1 

Now on the unit circle in the z-plane 

zro 00$ Q +1 sin , since r=1. 

Then 

Q- -i eQs Q+1 sin Q1-1 ( cos Q+i sin Q -1 

'=-i 008 +1+i sin Q cos -1 -i sin 
r -1 +1 sin 00 Q -1 -1 sin 

After a slight simplification this reduces to 



sin Q 
1-coz Q 

Therefore 91s real for any point o the unit circle 
I :1. 

It is obvious that any point interior to the circle 
(z =1 transforms into the 

any interior point of the 

the transforxaation for z. 

z-plane, q=i. That is, 
transforms into the point 

In the light of the 

16 

upper half Ç'_plane. Just take 

unit circle and substitute in 
For zO, the origin In the 

the origin in the z-plane 

I In the q-piane. 
receding discussion it is evi- 

dent that if z/r be written for z in the transformation 

1) the result is a general transformation that trans- 

forms the circle gzg=r in the z-plane into the upper 

half q-plane. 

The problem of finding the number of zeros of the 

polynomial f(z) of degree n which are situated In the 

domain IzI4l is equivalent to the problem of finding the 

number of roots of the equation 

(Ç' 
) 

= P + IP1 O. 

in the seniiplane Q( ) V O. 

Denoting this nwuber by N we have 

N I(P1/P) 

the index of P1/P corresponding to the boundary of a 

semicircle of sufficiently large radius R to contain all 
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the roots of F() O with () O. If we denote 

the semicircular aro by C, we have 

2) r 
R, R) 

(p1/p) - I (P1/P) 

Part A: The index 10(P1/P) = n/2 lf C is a semi- 

circle of sufficiently large radius as mentioned above. 

Let F() = .. 

fll4 0, 
where 

c 
= re19u 

Now for Ç= Re we have 

P = R005 nf -f- r1R' eos[1+(n-l)q5J#...+rcos e, 

Pf-R'sin n9 * r1R'sin11.t-(n-l)(+0..+rsin Q11. 

Then 

p /p sin 
1 cos n + (r1/R) 008 )ç+. . . .4 r/R) cos Ç 

or 

3) p /p sin n(p#o(.(R, ) with obvious abbreviations. 
00$ 

Now for an E O, arbitrarily small, we can take 

R0 so large that 

/,9(R,)j '.e, 1a,9(R1')I < 
dp 

loHR, )I 
, for R R0 

Let /4n and divide the interval (0,11) 

into the 2n +1 intervals 
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(o,4), (,3A), (3,5g), .., 4n-3)4,(4.n-1)j, 

i: 
(4n-.1)4, ir]. 

In the intervals j3I4c_1)4,(4k+1)6] , k.O, 1, ..., n, 

fcos n(i/1 
and 

¡cos ncp+,,9(R,9) (1/ - ? O; 

hence these intervals do not contribute anything to the 

index of P1/P. In the Intervals 4k+1)A,(I4.3)] 

k=O, 1, ..., n1, the numerator of 3) has the sign of 
(1)k and does not vanish, since 

(1)k 
sin ' sin (lr/4) = i/fr 

and 

(1)k sin nP + (-l)(R, 9) (i/Y) - 7 

Similarly the denominator is a monotone function for the 

derivative of the denominator does not change sign. For 

(_1)k os n 9(R,J (i//)- 'O, 

and for V= (4k+3) 

(_1)k ¡os nço . 

p (i/r- O. 

Therefore, in each of the n intervals, the juotient 

P1/p passes through infinity and changes sign from + 

to - , and 

10(P1/P) n/2. 

Part B: Returning to 2), we now have 

N- cø - 

- 2 
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This is based on the assumption that the equation 

f(z) = O has no roots on the unit circle. In order to 

determine whether this is the case and to see bow to 

proceed in such an eventuality, observe first that the 

possible root z=l can easily be discovered and removed, 

so that we can suppose to begin with that t(l) O. 

The real roots of F(q)O corres,ond to possible roots 

on the unit circle. If there are such roots the algo- 

rithm described in obtaining the formula 

18(P1/P) _V(b) -V(a) 
- 2 

will show this; namely, the rirst remainder which di- 
vides will not a constant but a 

polynomial r containing all the common roots of P0 
and P10. The number of roots on the unit circle will 

be exactly given by the degree of r To find the num- 

ber of roots of F(Ç)O with positive imaginary parts, 

consider the eQuation 

F(q)/P = tP/Pr) 

r 1tPilPr) P' + 1P1 

having no real zeros. By division obtain the following 

pt 

Pi P2-P3 

o e e . o o 

P' =P' c -P' 
r-2 r-1 r-1 r 
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where 

kr ' r 

The numbers of variations in the sequence 

p' p' F' P' , 
1, r 

for =- and = , however, are the same 

as for the original series 

P, P1, P2, 

however in plac 

stitute n - k, 

general formula 

inside the unit 

NN - 

of n, the degree of f(z), we must sub- 

where k Is the degree of P The 
r 

for the number of roots of f(z) O 

circle will be 

N+n - k 
2 

ILLUSTRATED E.X.AMJJLE. The discussion above will be 

illustrated for the polynomial 

1) f(z) 2z5 - 4z4+ 5z3 - 5z24-3z - 1 

Since zl is a root, divide f(z) by z-1. Then 

2) f(z) (z-l)(2z4 - 2z3+3z2 - 2z+-l) 

Using the transformation 

z = (-i)/(Çti) in the last fctor of 2) we 

have 

3) 
((_i)\_2(Ç-i)4 
____ - (.q1)4 

2(-i)3 
(giJ3 

+1 tÇi) 

and writing 3) in the form 

7(q) = ___ 
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then 

4) F(')= 2(-i) -2(q-i)3tç+i).3(-i)2(+i)2 

-2(-i)(Çti)3+ (Ç...1j4 

Expanding the terms in 4) and collecting like terms 

= P i-iP1 (2ç4 -12...-10)i-i(-4+ 4Ç) 

so that 
P 2 -12+-1O, P1-4Ç3+4 

Now dividing P by P1 

'fi = (-4ç3 4Ç)(-Ç) -(-104 10) 
so that 

P2 10 - 10 

Then dividing P1 by P to get 

P1P2Q.2- P3 (loÇ -l0)(-1Ç) - (0) 

therefore P3 Is zero. The four polynomials are then 

5) P= 2 -12*10 

L'2 10e-10 

P30 

Now since the order of is 2, there sre two more 

roots on the unit circle making a total of 3. To deter- 

mine N and N_ substitute ooand '=-a in the 

polynomials 5) and count the variations in sign. 
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P P1 P2 P3 

For 1- - -fr 

+ .f-. -4- 

ívident1y 2 and Then substituting 

these values in the general formula for the number of 

roots of f(z) = O inside the unit circle 

2-0+4-2 2 

Therefore there are two roots inside the unit circle. 

The original function under consideration can be 

factored into 

f(z) = (z - 1)(z2-i- 1)(2z2 - 2z + 1) 

from which we can see that the roots are located as 

determined above. 

As another example of slightly different nature, 

take for the polynomial 

f(z) -p4z4 -.-1lz -f-17z2 +l2z -i.l 

and proceeding in exactly the same manner as before, 

wo find for the 

P25- 
P1= 204 - 

P2= 23Ç2 - 

P3= - 192/i 

P4=5 

sequence of polynomials: 

11-5 

5 

Now since the order of P4 is zero, there are no 



niore roots on the unit circle other than z-l. This 

root, as before, was renioved from the polynomial be- 

fore the method was undertaizen. 

.gain determine N and N_1 br substituting 

# and q -OOin the sequence of polynomials 

and counting the variations of sign. 

For # 

For - 

23 

P P1 P2 P3 P4 

Therefore 2 and 2. Then substituting 

these values in the general formula for the number of 

roots of f(z) = O inside the unit circle 

NNnk 2-2+4-O 2 

Then there are two roots inside the unit circle. 

Evidently there are two other roots outside the unit 

circle, and this is seen to be the o&ae by observing 

the location of the roots of f(z) in factored form. 

f(z) = (z41)(z24 4)(2z2+ 2z 'l) 

From the factored form it is obvious that there are 

two roots outside the unit circle, two roots inside, 

and one root on the circle. This is in agreement with 

the results found above. 
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CHAPTER IV 

A R8ULT CONCERNING MULTIPLE ZEROS 

The zeros of t(z)u+iv are the intersections 

of the curves u=O, vO. 

Theorem 9. At an n-tupis zero of the analytic 

function f(z), each of the curves uO, vO has an 

n-tupis point; and the two curves Intersect at an 

angle of (l/n)(TT/2) at the n-tupis zero. 

Proof: No generality is lost by taking the zero 

of f(z) to be at z=O, and writing 

in 
f(z) = as z t O( (zI') 

so that 

1) uar oos(+ n91) + O( 

and 

2) var1 sin(.(. + ne2) + O( lrIh1). 

Now by the fundamental theorem of algebra each 

of the curves uO, v=O has an n-tuple point at rO. 

For the curves in 1) and 2) the direotions of the 

tangents to u0, vi.O, are given by 

3) o+ne1(4''-)rr, fl=O, 1, 2, 

and 

14.) o(+n92n1T, n0, 1, 2, 
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(2n +1) - 

n82=nrr -.( 
Then 

øi .(l/2n)(2n + 1)11 - 

2 
(1/n)(n ir .) 

Now the angle between the two curves u O, V 

will be the difference between the angles e 

That is, 

Then 

- 8 = (l/n)(nrr +/2 - -fir *) 
(1/n)( 71/2). 

Q.E.D. 

AN EXAMPLE FOR n3. Consider the function 

f(z) (z-2) [tx+.iy) - 2J 

- 3y2(x_2J + i Lr-3 + y(3x2-12x12 

1) u = (x-2)3 - 3y2(x-2) O 

2) y = (-y3) -,- y(3x2 - 12x12) O 

Solving for x in ternis of y in u =0, and for y in terms 

of x in y 0, obtain from 1) 

3) x-20; x-2 =15y; x-2 = 

and from 2) 

4 ) y = O ; y . i5;: - vr = - ( f5 - VT'). 

These curves are plotted in Figure III, and an in- 

speotion of the slopes shows clearly that the curves 
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intersect at n angle of 300. This agrees with the re- 

sults of the last theorem for (l/3)(11/2) is 300. 

:--- \ / /f1XT 

/ (_T 

o4í 

/ 

Figure III. 
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CHLPTER V 

ZEROS OF LEVEL CURVES 

DEFINITION OF A LEVEL CURVE. The locus of a point 

z which moves in the plane of the complex variable z so 

that the modulus of a function of f(z) remains constant 

is defined as a level curve of f(z). The equation of 

such a curve may be written in the form f(z) M 

where M is the constant modulus. By giving M all values 

froni zero to -i-co, we obtain an infinite number of 

curves. Clearly, one and only one of these passes 

through any given point in the plane. 

Theorem 10. For an analytic function f(z) a level 

curve has a double point, if, and only if, it passes 

through a zero of f'(z). 
Proof(8,p.121): The equation of a level curve is 

u2 + T2 

and this has a double point if, and only if, 

1) uu1+vv=O 

2) uu ±vv =0 
Y y 

Both of these conditions are satisfied if f'(z) O. 

Conversely, equation 2) may be written 

3) _uvx+vuxO. 
Then squaring and adding equations 1) and 3) 
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2 2 2 2 

(u + y )(u y ) O. 
X X 

Hence, u O and y O, that is, 
X X 

f'(z) O. 

Theorem U. If C is a simple closed level curve, 

and t(z) is analytic Inside and on C, then f(z) has 

at least one zero inside C. 

Proof(8,p.121): Let 

f(z) u i- iv = ce19 on C, so that o is a con- 

stant. Then 

c=iJu2 + y2 , marotan (v/u). 

Let S be the length of C measured from some fixed 

point on it. Then 

1) O(u +v)(i/c) 
da 

2 d$_i dv - ydU111102 I - I I 

Now d8/ds cannot vanish on C. For if it did on 

squaring and adding equations 1) and 2) 

(u2#v2) gdu/ds)24.- (dv/ds) O, that is, 

du/ds0, dv/ds=O. 

Now 

3) du/ds u(dx/ds) -- u(dY/as)1 

4) dv/dg -_v(dx/ds) +- v7(dy/ds)= -u (dx/ds)+u (dy/as), 
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so that squaring and adding equations 3) and 4) 

5) (u. .p.. 
U2y.) [(dx/ds)24. (dy/ds)2J=0. 

is, 

The last factor is 1, so that u10, uO, that 

f'(z) 0. 

This is impossible on a level curve without double 

points by the previous theorem. 

It follows that d8/ds has the same sign at all 

points of C, i.e0, that 9 increases or decreases 

steadily round the contour. Hence its variation round 

the contour is not zero. Then by Theorem 3 there is 

at least one zero inside C. 

.E.D. 

AN ßXAMPLE 01 A LEVEL CURVi. As an example of 

the level curves of a function, suppose that 

f(z) sin z. 

Then (3, p 40) 

2 2 . 

If(z)I Isin(x+iy)I in(x+iyjftsin(x - iyj 

(cosh 2y - cos 2x) 

and the level curves are given by 

cosh 2y - Gos 2x 2M2 

where M ranges from O to +00. 

Since costi 2y and cos 2x are both even functions, 

the curves are symmetrical about both axes of 



coordinates. Also since cos 2x Is periodic, it is 

suffiolent to trace the curves which lie in the strip 

bounded by the hues x(Tr/2). ir ii does not exceed 

unity, the curves meet the x-axis where &in x ± M; 

otherwise the curves do not nieet OX tt all. When x 

vanishes 

M sin lyl = t sinh y, 

according as y is positive or negative. Thus for aU. 

values of M the curves meet CT In two points ecjui- 

distant from the origin. 

Consider the curve for wiIch M1. Its equation 

may be reduced to the form 

sinh y t cosx 

The curve passes through the points 

(t7172, O) and Eo, tiog(l+iJ. 

At each of the first two points it has a node, the 

tangents at which make angles of 1T/4 With OX. 

The form or the curves is Indicated in the figure 

be low. 

FIGURE IV 

3E.' 
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When M is less than unity we have a erie of 

ovals with their centers at the }?oints (n,O), 

where n O,tl,±2, ... . When M is equal to unity, 

we obtain a curve whioh cuts OX at the points where 

i is equal to an odd multiple of «/2. For values 

of M greater than unity the curve is in two distinot 

branches above and below the x-axis. 
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