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APPLYING PROBABILITY TO A PARTICULAR HIRING PRACTICE 

CHAPTER I 

THE THEORY OF COUNTING 

One problem arises more often than any other in our study of 

counting. That is the problem of determinin{: the size, number of 

elements, of a set of n- tuples of objects of some nature. Because of 

its frequent occurrence and its applicability to other ideas of countinz 

it is regarded as the basic principle of counting and is developed 

as follows : If X is a set of ordered n- tuples of objects, 

we determine the size of X by first determining the number, 

m l' of objects that may be used as the first component of an n- tuple. 

Next determine the number, rriZ, o± objects that may be used as t ":.e 

second component of an n -tuple where the first component has alrea71y 

been chosen. Then determine the number, m3, of objects that may- 

be used as the third component where the first two components have 

already been chosen. We continue in this manner until we have do -- 

termined the number, m , 
n 

of objects that may be used as the nth 

component of an n -tuple where the first (-ß_.1) components have already 

been chosen. The size of the set X of n- tuples is the product of the 

numbers ml, ,rn° ,m 
1 

A permutation is one form of the n- tuple. It is an arrangement 

of n different objects in a given order. I Jeter. mining the number of 

permutations or n- tuples there would b n _Sufic es for the first 
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component, n -1 for the second, n -2 for the third, continuing 

until all n spaces are filled. The number of permutations will then 

be the product n(n- 1)(n -2) 1. This number is named n! and 

reads "n factorial!' 

An important application of the above is to the problem of 

finding the number of subsets of a set. Suppose we are to find how 

many possible subsets can be formed from a set X if the set con- 

tains n elements. We may first find the number of subsets of size 

k that can be found where k = 1, 2, , n. The sum of these will 

be the total number of subsets. Let xk be the number of subsets of 

size k. Each subset of size k would have k! permutations; 

therefore, xk k! would be the number of n- tuples of 

size k resulting from our original set X. By our basic principle, 

n(n- 1)(n -2) (n -k +1) is also the number of n- tuples which can be 

drawn from set X. Therefore, 

xkk! = n(n-1)(n-2) (n-k+ 1) 

The expression 
k! (n -k)! 

n(n-1)(n-2) (n-k+1) 
xk k! 

n(n-1)(n-2) (n-k+1)(n-k)! 
xk k!(n-k)! 

n! 
xk k! (n-k)! 

n! occurs so frequently that we replace it 

= 
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with a symbol, namely (k), and is the number of subsets of size 

k that may be formed from a set of size n. 

Another problem of counting is finding the number of partitions 

of a set. A partition of a set X is a subdivision of the set into dis- 

joint subsets, called cells of the partition, which exhaust the whole 

set. That is, we need to know the number of ways in which one can 

partition a set of size n into r cells so that the first cell has 

size n1, the second cell has size n2 and so on, where 

n1 +n2 +n3 + +nr = n. 

For the first cell of n1 items there are n items available; 

therefore, there are (n ) ways in which the elements in the first 
n1 

cell can be selected. There are now n -n1 items available from 

which to select the n2 items that go into the second cell, so there 

are 
n-nl 

( n2 
ways in which to select the elements for the cell of n2 

items. Continuing in this manner, we determine that the elements in 

the rth cell containing n r items can be selected in 

nl- n2 -n3- nr ways. The product of these expressions is 
n r 

the number of ways in which a set of size n can be partitioned into 

r cells and would be 

( n ) (n-nl) (n 
nl n2 (n-n1-n2-. 1) 

nl n n3 nr 

1) 

-nr 

n - 

( 
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However, 

( n 
n! 

(n-n1)! 
1 

(n-n1-n2)! 

nl nl! (n-nl)! ' n2 n2! (n-n1-n2)! ' n3 n3! (n-n1 n2 n3)! 

Therefore, 

n-n 
1 

n! (n-nl)! 
( n1 n2 n2 ) nl! n2! (n-nl)! (n-n1-n2), n 

1! 
n2! (n-n1-n2)! 

and 

( n) 
n! (n-n1-n2)! 

n1 
n2 n n3 n nl! n2! n3! (n-n1-n2)! (n-nl--n2-n3)! 

n! 
n1! n2! n3! (n-nl -n2-n3)! 

Continuing in this manner, we get for our final expression 
n! which we denote by the symbol ( 

n 
nl. n2! n3. nr. nl, n2, n3 nr 

The above partition is an ordered partition. An ordered 

partition is the case where two partitions with identical cells are 

considered to be two different partitions if the order in which the 

cells appear is changed. In determining the number of unordered 

partitions, the case where two partitions as described above are 

considered the same, we first determine in how many ways one 

partition could be written by merely changing the order of the cells. 

n-r.l n-n 1-n2 
)= ( 

) 

n 1 n! 
)( 

n-nl n-n1-n2 

( )( ) 

). 

2 

1 
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Suppose a partition of a set X contains r cells. Let x r 

be the number of unordered partitions of that set. Then r! would 

be the number of ways each of the unordered partitions could be 

written by merely permuting the cells. Therefore, x r r! would 

be the number of ordered partitions. It follows that 

and 

n 
x r! _ r n1, n2, n3, ,n 

n 1 
x = r nl, n2, n3, nr r. 

which is the number of ways in which a set of size n can be 

partitioned into r unordered cells. 
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CHAPTER II 

BASIC PROBABILITY THEORY 

Probability is defined as follows: First determine U, the 

possibility set, that is the set of all possible events. To each element 

of U assign a positive number for a measure (weight), m(x), so 

that the sum of the weights assigned is one. Then the measure of a 

set, m(X), is the sum of the weights of its elements. Find the 

truth set of the statement, P, under consideration and the measure 

of this set is the probability of statement p and is denoted Pr[ p] . 

Before considering any particular probability problems we have 

to develop a few properties of probability measure. Since the prob- 

ability of a statement is obtained directly from the measure, m(X), 

of its truth set, we may develop properties of m(X) and translate 

to statements about probability. 

1. m(X) = 1 if and only if X = U. 

By definition we assigned a positive measure to each element 

of U such that the sum of the elements is 1. Since U 

contains all the elements, it has measure 1. Assume 

X U. Then X must be a proper subset of U; therefore, 

U contains elements that are not contained in X. Then 

4 



7 

m(X) = m(U) minus the weight of those elements which is 

positive by definition; therefore, m(X) = 1 minus some 

positive number and thus is less than one. 

2. m(X) = O if and only if X = ¢. 

If X = ç5, then X has no elements and therefore m(X) =O. 

Assume that X 0. Then X has at least one element and 

by definition this element has a positive measure and m(X) 

is positive. 

A consequence of the proofs of the above two properties is the 

following property. 

3. 0 < m(X) < 1 for any set X. 

4. For two sets X and Y, m(X jY) = m(X) +m(Y) if and only if 

X and Y are disjoint. 

m(X) +m(Y) is the sum of weights of the elements of X 

added to the sum of the weights of the elements of Y. If 

X and Y are disjoint, then the weight of every element 

of X v Y is added once and only once and 

m(X) + m(Y) = m(X JY). 

If X and Y are not disjoint, then the weight of 

every element contained in both X and Y is added twice; 

/ 
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that is, every element of XnY has its weight added twice 

in the sum m(X) +m(Y). Thus this sum is greater than 

m(X v)() by the amount m(X By properties 1 and 

2, if XnY is not empty then m(X nY) > O. Hence 

m(X) +m(Y) > m(X vY). Our proof also shows that in general 

we have the following property. 

5. For any two sets X and Y, m(X _)Y) = m(X)+ m(Y) - m(X nY). 

6. m(X)= 1-m(X). 

In the statement of property 5, let Y = X , the complement 

of X. 

m(X ) = m(X) + m(X) - m(X X) 

m(U)= m(X) + m(X) - m(0) 

1 = m(X) + m(X) - 

m(X) = 1 - m(X) . 

Translating the above properties to properties of probabilities 

we arrive at the following: 

1. Pr[ p] = 1 if and only if p is logically true. 

2. Pr[ p] = 0 if and only if p is logically false. 

0 
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3. 0 < Pr[ p] < 1 for any statement p. 

4. Pr[p V q] = Pr[ p] + Pr[ q] if and only if p and q are 

inconsistent. 

5. Pr[ pV q] = Pr[ p] + Pr[ q] - Pr[ pA q] for any two statements 

p and q. 

Pr[^ p] = 1 - Pr[ p] . 

In our definition of probability the method of assigning weights 

to the possibility set was left open. The assigning of these weights 

depends upon the likelihood of each of the possibilities which varies 

from one situation to another. 

One instance where the assigning of weights can be formulated 

is the situation where all possibilities are equally likely and we have 

what we refer to as the case of the equiprobable measure. In this 

case, all possibilities will be assigned the same weight. 

Consider a situation where U has n elements and all are 

equally likely. Since the sum of the n measures is 1, each 

1 element has measure - . Therefore, for any subset X of U, 
n 

m(X) is where r is the number of elements in X. 

6. 

- 
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CHAPTER III 

A PARTICULAR HIRING PRACTICE 

Consider now an employer who in his hiring practices prefers 

to have the applicants interviewed and rated by a number of people on 

his staff. This could be done by having all interviewers interview all 

applicants and having each interviewer rank the applicant he feels is 

most qualified first and to continue to rank them from there as he feels 

they are qualified. Of the many requirements the employer could now 

select, to decide which of the applicants he would hire, let us suppose 

he chooses the following one. 

An applicant will be hired if he is ranked first by at least two 

of the interviewers and at least second by a third interviewer. It 

seems quite obvious, however, that with a small number of applicants 

and a large number of interviewers a number of applicants could meet 

the requirements even though the interviewers were to rank the appli- 

cants at random. In fact, it will be shown that with five applicants and 

nine interviewers someone must receive at least two firsts and a 

second. 

It is also obvious that the same problem would result if the 

employer should change his requirements to three firsts, one first 

and two seconds or to some other requirement. Therefore, the 
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employer is interested in determining how many interviewers are 

needed with different numbers of applicants so that the probability of 

someone receiving two firsts and at least a second when ranked at 

random is kept reasonably low. This will assure him that a person 

meeting the requirements is considered qualified. 

The question now arises as to what this probability should be. 

To help determine this let us suppose that this practice is conducted 

four times a year. Over a period of ten years it will be used 40 times. 

Therefore, if we choose a number of interviewers such that the prob- 

ability is 1/40 it is likely that someone may be hired during the ten 

years even though they may have been rated at random. Let us sup- 

pose he decides that a probability of 0.01 would be sufficiently small. 

This will not guarantee that he will avoid a selection by chance alone, 

without regard to qualifications, but it reduces the probability to one 

for every 100 times used or one in every 2; years. 

Our problem is then to determine, with n applicants and 

m interviewers, the probability that someone may be rated first by 

two interviewers and at least second by a third when the ratings are 

done at random. 

Our statement p is "Someone will receive two firsts and 

at least one second. " This problem will then be solved by determining 

Pr[^ -p] and by the property Pr[ p] = 1 -Pr[ 



12 

Consider first the specific case of three interviewers and n 

applicants. 

Step i. Determine U. U is the set of all possible sets of ratings. 

An element of U is then a set containing one order of 

ratings from each interviewer. 

Step ii. Determine the measure of each element of U. Since all 

sets of ratings are equally likely this is the case of the 

equiprobable measure. We therefore determine the size of 

U. The total number of sets of reports, elements of U, 

possible is (n! )3. This was found by realizing that after 

the first interviewer rated the applicants in n! ways each 

succeeding interviewer could also rate in n! ways. For 

three interviewers we then arrive at (n! )3 
3 

1 

The measure of each element is then 3 
(n! ) 

Step iii. Determine the truth set for ..p. 

sets of ways. 

First we have this happening when no one receives two firsts. 

How many ways can this happen ? 

First interviewer has n choices for first. 

Second interviewer has n -1 choices for first. 

Third interviewer has n -.i choices for first. 

. 
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After which each has (n -1)! ways of rating the rest of the applicants. 

Therefore, n(n- 1)(n -2)[ (n- 1)! ] 3 is the number of ways in which no 

one receives two firsts. 

Second, someone may receive two firsts but not another first 

or second from the third interviewer. To determine in how many ways 

this can happen let A, B and C be the three interviewers. 

A B C 
Choices for first n 1 n -1 

Choices for second n -1 n -1 n -2 

Choices for third n -2 n -2 n -2 

Choices for fourth n -3 n -3 n -3 

Assuming A and B had rated the same person first, B had 

only one choice for first after A had chosen. If no one was to re- 

ceive three firsts C had n -1 choices for first and if the first 

choice of A and B was not to receive a second, C had n -2 

choices for second. Therefore, when A and B had the same 

person first we had n(n- 1)(n- 1)(n- 1)(n -2)[ (n -2)! ] 
3 sets of ratings 

satisfying ^ p. However, .A and C could have rated the same 

man first, or likewise, B and C; therefore, three times the above 

number of ratings actually exist where someone receives two firsts 



14 

but not at least another second. Adding the number of ways no one 

receives two firsts and the number of ways someone receives two 

firsts but not at least another second we have 

n(n- 1)(n -2)[ ( n - . 1 ) ! ] 3 +3n(n- 1)3(n -2)[ (n -2)! ] 3 elements in our truth 

set for ^-p. Since the measure of each element was 

measure of the truth set will be 

n(n-1)(n-2)[ (n- 1)! ] 3+ 3n(n-1)3(n-2)[ (n-2)! ] 3 

(n! )3 

which is the probability of ^-p. Therefore, 

Pr[p] - 1 - 
[ (n- 2)! ] 

3[ n(n-1)4(n-2)+ 3n(n- 1)3(n-2)] 

n3(n-1)3[(n-2)+]3 

n2-4 
2 

n 

4 

n 

Example 1. Let n 

Pr[p, _ 
4 

3c, 

Example 2. Let n = 10 

4 Pr[p] = 

101- 

the 1 3, 
(n!) 

1 

3 

4 
9 

3 
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Consider now, the general case of m interviewers and n 

applicants. 

Step i_ Determine U. U, as before, is the set of all sets of ratings. 

Step ii. Determine the measure of each element of U. Since each 

of the m interviewers can rank the applicants in n! ways 

the total number of sets of ratings is (n! )m. The measure 
1 

of each element is then 
( n' ) 

)m 

Step iii Determine the truth set for ^-p. The statement ^-p is 

" No one receives two firsts and at least one second. " This 

can happen in a number of ways. 

First, this can happen when no one receives two firsts, as 

follows: Let A l' A2, A3, . ,Am be the m interviewers. As 

before, the number of choices for each place, when no one receives 

two firsts, is shown below. 

Al A2 A3 A4 A5 ... Am 
first choice n n-1 n -2 n -3 n -4 n -(m- 1) 

second choice n -1 n -1 n -1 n -1 n-1 n -1 

third choice n -2 n -2 n -2 n -2 n -2 n -2 

fourth choice n -3 n -3 n -3 n -3 n -3 n -3 
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Therefore, no one will receive two firsts in 

n(n- 1)(n -2). [ (n -(m- 1)] [ (n-1): ] m ways. 

Second, this could happen when one person receives two 

firsts but not another first or second. Below we have assumed the 

person received his two firsts from Al and A2 and have 

determined the number of possible choices just as we did earlier 

in our specific example with three interviewers. 

Al A2 A3 A4 A5 ... Am 

first choice n. 1 n -1 n -2 n -3 n -(m -2) 

second choice n -1 n -1 n -2 n -2 n -2 n -2 

third choice n -2 n -2 n -2 n -2 n -2 n -2 

fourth choice n -3 n -3 n -3 n -3 n -3 n -3 

However, we assumed Al and A2 rated the same man first. It 

could have been any pair of interviewers so we must multiply the 

product of our above expressions, which is the number of ratings 

possible for each pair, times the number of possible pairs. To find 

the number of possible pairs we determine the number of ways the 

m raters can be partitioned into a group of two and another group 

of m-2 which is ( n1 2,rn -2). Thus we arrive at the total 
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2! (m '2)! n(n-1)(n-2) . [ n-(m-2)] (n-1)2(n-2)m- [ (n-2)!1m 
. 

Third, this can happen when two persons each receive two 

firsts but neither receives another first or second. The number of 

choices for each place by each rater making this possible is shown 

below. 

Al A2 A3 A4 A5 A6 A7. . . Am 

first choice n 1 n-1 1 n-2 n-3 n-4 n--(m-3) 

second choice n-2 n-2 n-2 n-2 n-3 n-3 n-3 n-3 

third choice n-2 n-2 n-2 n-2 n-2 n-2 n-2 n-2 

fourth choice n-3 n-3 n-3 n-3 n-3 n-3 n-3 n-3 

The product of these is the number of ratings when Al and A2 

rate the same person first and A3 and A4 rate the same person 

first. We must now multiply this product by the number of ways we 

can select two pairs out of m things. The order of the two pairs 

is of no consequence to us so we now determine the number of un- 

ordered partitions of m things into three cells of sizes 2, 2, and 

m. 1 

m -4 which is ( ) - . Therefore, 
2, 2, m -4 2! 
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m! n(n-1)(n-2) [ n- (m-3)] (n-2) (n-3)m-41 (n-2)! ] m is the 
2! 2! (m-4)! 2' 

number of ways two persons might each get two firsts but not another 

first or second. 

Continuing in this manner, three persons receiving two firsts 

but not another first or second can happen in 

m! n(n- 1)(n -2)... [ n- (m-4)] (n- 3)6(n- 4)m -6[ (n -2)! ] zn 
2! 2! 2! (m -6)! 3! 

ways. 

Similarly, for four persons, the number of possibilities will be 

m! n(n- 1)(n -2) 4 n- [ (m -5)] (n- 4)8(n- 5)m -8[ (n -2)! ] m . 

2! 2! 2! 2! (m -8)! 4! 

For five persons, the number of possibilities will be 

m! n(n- 1)(n -2) [ n- (m -6)] (n- 5)10(n -6)m 10[ 
2)!]m. 

2! 2! 2! 2! 2! (m -10)! 5! 

Consider now the general case where exactly r applicants 

receive two firsts but none of these r applicants receive at least 

another second. Setting a chart up as before, 2r raters are needed 

in order that r people get two firsts. A2r would have rated first 

the same applicant as A2r -1; therefore, A2r has only one choice 

possible for first. A 2r -1 
would have r -1 of the n choices 

unavailable to him for first since r -1 pairs were formed through 

rater A2r 
2 A2r +l would have o less first place choice than 

A2r -1 and each succeeding rater would have one less choice than the 

previous rater. The last rater, Am, would not be able to choose 

any of the r applicants who have two firsts. He also would not be 

able to choose any of the first choices of the raters between A r 

(n- 
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and himself which is m -2r -1 more choices not available. He 

therefore has n- [m- (r +1)] choices available for first. 

In the second position, raters A1,A2, ,A2r have n -r 

choices available if none of the r applicants with two firsts are to 

receive a second. The remaining raters have the same r choices 

and their own first choice unavailable leaving n -(r +1) choices for 

second place. 

The remaining places have no bearing on the hiring; therefore, 

the only choices unavailable are the ones each rater has chosen pre- 

viously. 

Al 

first 
choice n 

A2 

1 

A3. 

n -1 

`42r-1 

n -(r -1) 

A2r 

1 

A2r+1 A2r+2 

n -r n -(r +1) 

Am 

n- [m- (r +1)] 

second 
choice n -r n -r n -r n -r n -r n -(r +l) n -(r +1) n -(r +1) 

third 
choice n -2 n -2 n -2 n -2 n -2 n -2 n -2 n -2 

fourth 
choice n -3 n -3 n -3 n -3 n -3 n -3 n -3 n -3 

The product of these numbers of choices is the number of 

ratings possible for this pairing of raters. We now determine in 
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how many ways we can select r pairs out of the m things if the 

order of the r pairs is inconsequential. We have r cells of size 

two and a remaining cell of size m -2r; thus we arrive at 

m! 

(2! )r(m -2r), r! 
mine the number of ways r applicants can each receive two firsts 

ways of pairing the m raters. We can now deter- 

while none receive at least another second with m raters. This 

number will be 

m! 

(2! )r(m-2r)' r' 
n(n-1). . . [ n-[ m-(r+1)] ] (n-r)2r[ n-(r+l)] m2r[(n-2!)]m . 

The largest number of persons that could receive two firsts 

when there are m interviewers is the greatest integer part of -2 . 

This greatest integer part is to be noted by the symbol L-21. If we 

continue to count possibilities beyond the case where five persons 

receive two firsts but not another first or second we will eventually 

arrive at the case where t Z] 
persons receive two firsts. Following 

the pattern, the number of possibilities will be 

m! 21-n211 

(2!)2 (na -rm Aril! m 
2 2 rr-2C Z 

n(n-1) (n- 2) [n-{nz- (C 2±1)}] (n-C2 i 
) 

x [n-(r Z]+1)] [(n-2)!]m 



The sum of all these numbers is the number of possibilities 

in the truth set of gyp. Remembering that each element has 

measure 1 the measure of the truth set of )m 

Pr[--p], is given by the following expression. 

n(n-1)(n-2) [ n-(m-1)] [ (n-1)!] + 

m! 
2! (m -2)! 

21 

which. is 

n(n- 1)(n-2). [ n-(m-2)] (n- 1)2m-2[ (n-2)! 
] m + 

m! n(n-1)(n-2). .[n-(m-3)](n-2(n-3)n-4[(n-2)1 ]+ 2!2!2!(m-4)' 

m! r 2r 
+ n(n-1)(n-2) [n- m-(r+l) ,!1 (r- r [n-(r+l)]m [ 

(2! ) (m-2r)!r! r 

+ 
rr rr 

m! n(n-1)(n-2) [ n- {m-([ }] 

(2! ) (m-L ml 
2)! m1! 

2 

1 

)m 

, 

t Z 

X (n-[m])2[ 
2[n-([ Z'-1)]m 

2[ ,1 ri) 
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So that we may write the expression within the parentheses 

as a summation, we rewrite the first term of the summation as 

m! 

(2! )00! (m -0)! 
n(n- 1)(n-2). [ n- (m- 1)] (n-0)0(n 1)m[ (n-2) ! ] m 

Now factoring out m! [ (n -2)! ] m, expressing the remainder 

as a summation, reducing our coefficient of the summation and 

solving for Pr[ p] we arrive at the following equation. 

Pr[p]= 1 - 

[2]+1 
m! n(n-1)(n-2)...[n (m-j)][n-O_IA 2(J-1)(n j)m-2(j-1) 

m 
n (n-1 

2j-1[ m-2(J-l)] ! (J-1)! j=1 
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CHAPTER IV 

PROGRAMMING THE PROBABILITY FUNCTION 

From the expression derived in Chapter III it is still difficult 

to draw any conclusions about the probability that, with a given number 

of applicants and a given number of interviewers rating the applicants 

at random, an applicant might receive two firsts and at least another 

second. To do this we will have to compute the Pr[ p] for various 

numbers of applicants and interviewers. This can most easily be 

done through the use of a computer. 

The basic strategy is to give the computer an initial number of 

applicants, A, and an initial number of interviewers (raters), RA, 

and have it determine Pr[p] . After printing these values of A, RA, 

and Pr[p] it will increment RA by one, determine a new value for 

Pr[p] and print the new values of A, RA and Pr[p] . It will con- 

tinue incrementing RA and printing data until some designated final 

value for RA is reached. The computer will then return RA to its 

initial value, increment A by one, determine Pr[p] and then re- 

turn to incrementing RA by one until the final value of RA is reached 

for A +1 applicants. It will continue in this manner, incrementing 

through all values of RA for each value of A. 

The initial and final values of A and RA are given to the 

computer on a data card following the program enabling us to use the 



program again later with any new values of A and RA. 
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The program which follows is written in FORTRAN language. 

Variables different from those in the expression of Chapter III are 

used making it necessary to explain the program in detail. To do 

this the flow chart will be drawn vertically along the left side with 

the change in variables and a necessary explanation along the right. 

Flow Chart 

1 

Read nn, 
A, RA, AF,RF 

I = R 
2 

S= 0 

D = 1 

Rl = R 
F = 0 

G = O 

E = R-i 
C = O 

Change of Variables 

A = initial value of n 
RA= initial value of m 
AF =final value of n 
RF =final value of ni 

D = 

R1 = m-2(j-1) 
F = 2(j-1) 
G = 

E m-j 
C -- j-1 

Explanation 

Instructs computer 
to read data card. 
The numbers appear- 
ing in the circles are 
used only as labels 
so that we can later 
instruct the computer 
to return to that point. 
These are not fol- 
lowed sequentially. 

This enables us to 
save our initial RA 
so that we may return 
to it after increment- 
ing A each time. 

When evaluating the 
summation we begin 
with j =1. The values 
given at this time are 
correct for j =1; how- 
ever, when we move 
to j =2, each willhave 
to be incremented in 
its own way as is done 
later in the program. 

I [ 

j-] 
= 



A2 = A-C 
C2= C='=2 

AR 2=A 2* -,-C 2 

A3 = A-D 
AR 3 =A 3 >,<*R 1 

V 

B = 0 

P = 1 

P2=1 
FA =F 

A2 =n-(j-1) 
C2 = 2(j-1) 
AR2=(n-(j-1))2(j-1) 
A3 = n-j 
AR3=(n-j)m-2(j-1) 

FA=2(j-1) 

A1=n,n-1, ,rn-(an-j) 
P=n(n-- l ). . . (n-(m-j)) 

R2=m-2(j-1) 
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S represents the 
entire summation 
and changes as we 
increase j. We 
begin with S = 0 and 
add to it the value 
found for each j. 

AR 2 and AR3 are 
two expressions in 
the numerator which 
are first evaluated 
for j =1. After all 
expressions have been 
evaluated for j =1 we 
will return and evalu- 
ate for j =Z, and so 
on. 

B, P and P2 willbe 
used to increment and 
determine n(n- 1) 

(n- (m -j)) 

This cycle enables us 
to determine P, 
the final part of the 
numerator. 

Al=-A-B 
P = P*A1 
B = B -1 



P2=P2>'R2 
FA=FA+1 

P2=(m-2(j-1))! 

P3=2 

P4 
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Before we proceed to 
determine (m- 2(j -1))! 
for values of 
m- 2(j -1) other than 
zero we must instruct 
the computer to re- 
place 0! by 1. 

This cycle determines 
P2, a part of the 
denominator, for val- 
ues other than zero. 

Enables us to incre- 
ment so that we may 
determine (j -1)' 

This cycle evaluates 
P4, which completes 
the denominator. 

P4=P4*G2 
G2=G2+1 

-(j-. 1)! 



S=AR 2*AR 3-!<P/ ( P 2*P 3>uP4 )+S 

C = C+1 
D=D+l 

R1 =R1-2 
E _ E--1 
F = F+2 
G =G+1 

R6 = n 

R6 = m! 
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When the computer 
first reaches this 
point, it has evaluated 
the summation for 
j =1. 

These are the incre- 
ments necessary to 
proceed to the next 
value of j. 

Tests on the value of 

j. If j < +l go - 2 

back to 14 and solve 

for S. If j > - + 1 

move out of the cycle. 

This cycle determines 
R6, the numerator of 
the coefficient of the 
summation. 

) 



17 

A5 = A**R 
A6 =A-1 
A7 = A6**R 
A8 = A5*A7 

A9 = R6/A8 

PROBN = A9 *S 
PROB = 1 -PROBN 

PRINT nn 
\AR, PROB 

A5 =nm 
A6 = n-1 
A7 = (n- 1)m 
A8 = nm(n-1)111 

A9 = 
m! 

nm(n- 1)m 

PROBN = PrHp] 
PROB = Pr[ p] 
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A8 is the denomina- 
tor of the coefficient 
of the summation. 

A9 is the coefficient 
of the summation. 

When the computer 
reaches this point for 
the first time it de- 
termines Pr[ p] for 
initial A and initial 
RA. 

Increments number of 
raters. 

Tests to see if we 
have reached the final 
value of R. If not, 
the computer again 
evaluates using a new 
value of R. If we 
have reached final 
value of R we move 
on, 

V 

18 

R =R+ 
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We now increment the 
number of applicants 
and restore the num- 
ber of raters back to 
initial value. 

This is a test to see 
if we have passed the 
final number of appli- 
cants. If not, we go 
back and continue. If 
the final value has 
been passed we pro- 
ceed to 1 which 
stops the computer. 
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CHAPTER V 

CONCLUSION 

After determining the probability that having n applicants 

for a job and m interviewers rating them at random someone might 

receive at least two firsts and another second when n = 3, 4, 5, 6, , 100 

and m = 3,4, 5, , 10 we have a table of probabilities containing 784 

pairs of numbers. This being too large a table to include in its entirety, 

only the more interesting results are included in the brief table below. 

APPLICANTS INTERVIEWERS PROBABILITY 

3 

10 

5 

3 

3 

9 

0.44444445 

0. 04000000 

1. 00000000 

19 3 0.01108034 

20 3 0.01000000 

35 4 0. 01256344 

40 4 0.00966718 

62 5 0. 00996066 

88 6 0. 00986202 

100 6 0.007 681 18 

100 7 0. 013 24901 

The first two results have been included because these were 

the specific examples chosen in the early part of Chapter III. The 
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third was chosen because it was stated in the first part of Chapter III 

that with five applicants and nine interviewers someone must satisfy 

the requirements. The probability of one means that it is true that 

someone will receive two firsts and at least one second. 

The remaining eight were chosen because this particular 

employer decided that a probability of O. 01 would be sufficiently 

low. It can be seen that with 19 applicants and three interviewers 

the probability is greater than 0.01. However, with 20 applicants, 

three interviewers appear to be satisfactory. To keep the probability 

less than or equal to O. 01, we cannot increase to four interviewers 

until we have 40 applicants for the job. The rest of these data 

show when we can increase to five and also to six, but with 100 or 

less applicants we would never need seven interviewers. 

By using the same program and changing only the data card we 

could determine the probability for any combination of applicants and 

interviewers. This will enable us to choose a number of interviewers 

for any number of applicants so that the probability of someone re- 

ceiving two firsts and at least a second, by chance alone, will be below 

any number we wish. 
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