
AN ABSTRACT OF THE THESIS OF

Can K. Sandalci for the degree of Master of Science in Computer Engineering

presented on May 8, 1996.

Title:

Three Dimensional Monte Carlo Simulator with Parallel Multigrid Poisson Solver.

Abstract approved.

Cretin K. Koc

We present the results of embedding a multigrid solver for Poisson's equa­

tion into the parallel 3D Monte Carlo device simulator, PMC-3D. First we compare

the sequential multigrid implementation to the sequential Successive Overrelaxation

(SOR) Monte Carlo code used previously in PMC-3D. Depending on the conver­

gence threshold, we obtain significant speedups ranging from 6 to 15. The parallel

multigrid implementation is done by extending the partitioning algorithm and the

interprocessor communication routines used in the SOR implementation to service

multiple grids. The Monte Carlo code with the parallel multigrid Poisson solver is

4 to 9 times faster than the Monte Carlo code with the parallel SOR code, based

on timing results on a 32-processor nCUBE multiprocessor.

Redacted for Privacy

@Copyright by Can K. Sandalci

May 8, 1996

All rights reserved

Three Dimensional Monte Carlo Simulator with Parallel Multigrid Poisson Solver

by

Can K. Sandalci

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed May 8, 1996

Commencement June 1996

Master of Science thesis of Can K. Sandalci presented on May 8, 1996

APPROVED:

Major Professor, representing Computer Engineering

Chair of the Departm-ent o omputer Engineering

Dean of the G duate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Can Sandalci, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my major professor, cetin

K. Koc, whose constant support, encouragement and guidance made this research a

very valuable academic experience. I also owe special thanks to Prof. Sthephen M.

Goodnick, for his guidance, valuable comments and support throughout the course

of this research.

My special thanks are due to professors Ben Lee and Goran N. Jovanovic for

serving on my defense committee.

I would also like to thank Marco Saraniti for helpful discussions and valuable

comments in relation to this work. Additional thanks go to Shankar S. Pennathur

for many helpful discussions about the PMC-3D simulation package.

Finally, with sincere appreciation, I would like to thank my parents, for their

unending love, encouragement and support throughout my life. I am grateful to

them, for their uncountable sacrifices to make me start the life at a better point

than they once did.

Financial support for this research was provided by the National Science

Foundation.

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

2 THE PMC-3D DEVICE SIMULATOR 4

2.1 The nCUBE Multicomputer System 5

2.2 Basic Monte Carlo Algorithm 6

2.3 Parallel 3-D Monte Carlo Device Simulator 8

2.4 The SOR Solver 9

2.5 Summary 15

3 THE MULTIGRID SOLVER 16

3.1 Principles of the Multigrid Method 17

3.2 Implementation Details 21

3.2.1 Discretization 21

3.2.2 Coarsening 22

3.2.3 Boundary Conditions 23

3.2.4 Relaxation Method 24

3.2.5 Restriction and Prolongation 25

3.2.6 Parallelization 27

3.3 Summary 29

4 RESULTS AND DISCUSSIONS 30

4.1 Timings for the Serial and Parallel PMC-3D 30

TABLE OF CONTENTS (Continued)

Page

4.2 Discussion 32

4.3 Future Work 35

BIBLIOGRAPHY 36

LIST OF FIGURES
Figure Page

2.1	 Hypercube topology examples for dimensions 2, 3, and 4. 5

2.2	 The flow diagram of the simple Monte Carlo algorithm. 7

2.3	 The flow diagram of the parallel Monte Carlo device simulation. 10

2.4	 The geometrical partitioning of the semiconductor device domain

onto a hypercube of 16 processors. 11

2.5	 The finite differencing stencil for the Poisson's equation. 12

2.6	 The 2-D representation of the communication pattern of the red-black

ordered SOR solver. 13

2.7	 Workload contributions of different parts of the PMC-3D code. . 14

3.1	 Error smoothing effect of the iterative schemes. 18

3.2	 Two common multigrid cycles are (a) V Cycle (-y = 1) and (b) W

Cycle (-y = 2). 20

3.3	 Two dimensional representation of the multiprocessor coarsening
scheme. 22

3.4	 The intergrid transfer operators. a) Prolongation. b) Restriction. 26

3.5	 Two dimensional representation of the parallel implementation of the

restriction operation. 28

3.6	 Two dimensional representation of the parallel implementation of the

prolongation operation. 29

4.1	 The MESFET structure used as a model problem for the simulations. 30

4.2	 The communication overhead for the multigrid solver. 33

4.3	 The computation time of the Poisson solver versus convergence

threshold for the serial code running on a HP 712/80, for 100 PMC­
3D iterations. 34

4.4	 The computation time of the Poisson solver versus convergence

threshold for the serial code running on a 32 node nCUBE multi­
computer, for 100 PMC-3D iterations. 34

LIST OF TABLES
Table Page

4.1	 The timings of the PMC-3D device simulator with SOR and MG

solvers on a single HP 712/80 workstation. 31

4.2	 The timings of the PMC-3D device simulator with SOR and MG

solvers on a 32 node nCUBE multiprocessor. 31

THREE DIMENSIONAL MONTE CARLO SIMULATOR WITH

PARALLEL MULTIGRID POISSON SOLVER

1. INTRODUCTION

The increasing computational power of today's supercomputers has made

computer aided design (CAD) an important aspect of microelectronics. With con­

stantly decreasing semiconductor device dimensions, there is a need for full, three-

dimensional (3D) simulation tools. The feedback provided using these simulators

will increase the efficiency and speed of the integrated circuit (IC) design process.

As the dimensions shrink and the internal electrical fields increase, the tra­

ditional semiconductor analysis tools which are based on low-order moments of the

Boltzmann transport equation (e.g. the drift-diffusion model) fail to accurately rep­

resent the physical characteristics of the device. The Monte Carlo technique is a

quite general and well established stochastic method, which has been applied to a

variety of problems ranging from statistical physics to optimization problems. Solu­

tion of the Boltzmann transport equation using the Monte Carlo method is currently

the most widespread technique used in semiconductor device simulation [1]. In the

Monte Carlo method, the evolution of an ensemble of particles in energy or mo­

mentum space is simulated, where each simulated particle represents a collection of

charge carriers. The motion of the charge carriers (electrons and holes) is assumed

to be given by classical trajectories, interrupted by random, instantaneous scatter­

ing events. The motion and trajectories of the simulated particles are influenced

by the electrical fields in the device, which are determined from the spatial charge

distribution, by solving the Poisson's equation. The random scattering events are

2

generated stochastically using a random number generator and the quantum me­

chanical scattering probabilities for all possible mechanisms in the semiconductor.

The solution of particle motion is synchronized with the solution of Poisson's equa­

tion, so that the time evolution of the fields in the device are accurately represented,

which in turn are used in accelerating the particles over each time step.

The main complaint against the Monte Carlo modeling is the excessive com­

putational time associated with it, particularly when combined with the solution of

Poisson's equation in 3D. Consierable speedup compared to Monte Carlo technique

has been reported in [3], where alternate particle methods using the lattice-gas cellu­

lar automaton are used for solving the Boltzmann equation. However, the principal

bottleneck in the calculation is the solution of the Poisson's equation in 3D.

Parallel computing platforms provide some relief to the computational re­

quirements of the Monte Carlo simulation. The parallel Monte Carlo Simulator,

PMC-3D [4, 6] was developed at Oregon State University, which was implemented

on a distributed memory nCUBE multiprocessor system. The development of par­

allel Monte Carlo simulation not only reduces the execution times associated with

most typical simulation problems, but also enables the solution of problems larger

in computational complexity, such as full three dimensional device simulations.

Significant speedup of the 2D Monte Carlo simulation has been reported by

Saraniti et al [8] using a multigrid (MG) method for solving the Poisson's equation.

In the Poisson solver module of the PMC-3D simulation package, a successive over

relaxation (SOR) scheme was implemented. Subsequent studies have shown that

the Poisson Solver uses up to 90% of the computation time in device simulation

of real 3D structures [5]. Hence, a speedup obtained in the Poisson module imply

a significant overall speedup in the PMC-3D code. The implementation of a MG

3

Poisson solver and the replacement of the former SOR solver in the PMC-3D code

were considered in this work.

This thesis is organized as follows. In Chapter 2, a brief outline of the PMC­

3D code is provided following the basic principles of the Monte Carlo technique

as applied to semiconductor device simulations. The SOR Poisson solver is dis­

cussed and detailed internal timings of the PMC-3D package are provided to justify

the need for a Poisson solver upgrade. In Chapter 3, the principles of the multi-

grid method are described and the implementation details of the three dimensional

parallel multigrid Poisson solver are explained. Finally, in Chapter 4, the obtained

results and accomplishments, as well as suggestions for future research are provided.

4

2. THE PMC-3D DEVICE SIMULATOR

With the increasing computing power of todays supercomputers, the inte­

grated circuit (IC) development process is moving from an experimentally based

approach to realistic computer simulations. For more than a decade, the most com­

mon tool for semiconductor device analysis has been the drift-diffusion model which

represents the first two moments in the Boltzmann transfer equation. One of the

main assumptions of this model is that a local relation exists between the electrical

field and the carrier velocity of the form

v = µE,

where ,u, is the field dependent carrier mobility. With shrinking device sizes, this

assumption is no longer valid and more realistic simulation models are needed. One

of this approaches is the Monte Carlo method which by itself is quite general and

has been applied to variety of problems for decades.

Most of the current two-dimensional simulation packages are based on the

assumption that the change in physical quantities over the third dimension (the

width of the device) is negligible. This assumption is not always true, especially

if high technology submicron devices are being simulated. The PMC-3D is a three

dimensional device simulation package which is composed of a k-space Monte Carlo

simulator and a Poisson solver as an extension to it. Since our main area of interest

is improving the Poisson solver, only a brief outlook on the PMC-3D and the Monte

Carlo method is provided in this chapter. The interested reader is referred to [6]

and [7] for more detailed information.

This chapter is organized as follows. First some information about the

nCUBE multicomputer system is provided on which the PMC-3D code is being

5

0100 0101

00 01 000/D0

110

10 010

k=2 k=3 k=4

FIGURE 2.1. Hypercube topology examples for dimensions 2, 3, and 4.

developed. Then the PMC-3D algorithm is explained following some basic informa­

tion about the Monte Carlo method. Finally the SOR Poisson solver is introduced,

and detailed timings about the PMC-3D device simulator is provided to justify the

need for a Poisson solver upgrade.

2.1. The nCUBE Multicomputer System

The nCUBE multicomputer system consists of a host processor and an array

of processing elements interconnected in a hypercube topology. A hypercube of di­

mension k consists of 2k processing elements which have direct physical connection

to k other processors. The processing elements are numbered ranging from 0 to

2k 1 and two processors are directly connected, if and only if their binary rep­

resentations differ by only one bit. Figure 2.1 illustrates the hypercube topologies

with dimensions 2, 3, and 4. The main advantage of this topology comes from the

fact that, the message transfer time between any two processors is 52(k).

6

The nCUBE2 multicomputer at Sandia National Laboratories consists of

1024 processors with 4 MB of local memory. The processors have 64 bit general

purpose CPU's. The communication cost between two nodes can be characterized

by a startup delay of 50-150 //sec. and a data transfer rate of about 2.2 MB/sec.

The host programs execute on a Sun microcomputer under Unix operating system

where the parallel code executes on nCUBE2 nodes under Vertex operating system.

2.2. Basic Monte Carlo Algorithm

The simulation of a particle representing a group of carriers in the device

begins by generating its free-flight time according to the probability distribution de­

termined by the scattering probabilities. The probability that a particle experiences

a collision between the small time interval t and t + dt is given by

P(t)dt = Fe-rtdt,

where F is the total scattering rate which is the sum of the rates corresponding to

different scattering mechanisms, as

F = E Fi(v(t)) + Fs(v(t)).

The individual scattering rates are functions of the particle velocity (or equivalently

energy or momentum). By adding a self-scattering term F5, which does not change

any of the particles parameters, the total scattering rate F remains constant which

allows us to determine the random free-flight time as

1tr = In r'

where r is a uniformly distributed random variable between 0 and 1. During the

free flight, the electron wave vector k changes continuously according to the relation

7

particle N = 1

Flight time
shorter than
time step?

Yes

Calculate new parameters at the

end of flight.

Choose scattering event.

Calculate new parameters.

Accelerate until the end of

the time step.

Calculate new parameters.

Particle N = N + 1.

Yes

Calculate average

Yes

End

FIGURE 2.2. The flow diagram of the simple Monte Carlo algorithm [6].

hfc = eE

where k, e and E represent the carriers wave vector, charge and energy respectively

and Ti is the Planck constant divided by 27. Each particle is accelerated according

to the above relationship during the free flight. Then the scattering mechanism

responsible for terminating the free-flight is determined according to the relative

probabilities of all possible mechanisms. Finally, the wave vector k and the energy

of the particle is updated according to the chosen scattering mechanism and the

8

particle is ready for the next free flight. The entire process is repeated for each

particle until the end of the time step.

The ensemble of particles being simulated allows us to determine the instan­

taneous distribution function of the particles as well as the macroscopic average

quantities such as drift velocity and average energy. The general structure of the

algorithm is presented in Figure 2.1. The interested reader is referred to [1] and [2]

for further details.

2.3. Parallel 3-D Monte Carlo Device Simulator

The PMC-3D algorithm is an extension of the standard k-space Monte Carlo

method described in the previous section. Real space coordinates in three dimen­

sions are added and the particle charges are assigned to the grid points. These

charge values are used for solving the Poisson's equation on the entire grid. The

Monte Carlo part is decoupled from the solution of the Poisson's equation over the

interval of one time step. The particles are accelerated according to the forces de­

rived from the solution of the Poisson's equation in the previous time step. Each

simulated particle represents a superparticle with the effective charge selected so as

to ensure the initial charge neutrality of the device.

The device grid is divided into three dimensional subgrids using the recursive

bisectioning algorithm and assigned to processors using a gray code mapping. The

recursive bisectioning works by splitting the device domain into two parts represent­

ing roughly equal amount of work and splitting the subgrids recursively until the

desired number of subproblems are obtained. The mapping of a three dimensional

grid on to a hypercube with 16 processing units is shown in Figure 2.3.

9

010 110 bio

----1101

O100y 100 000

FIGURE 2.3. The geometrical partitioning of the semiconductor device domain
onto a hypercube of 16 processors. The processors are labeled using binary numbers
and the external interaction region between adjacent processors is shaded.

Each processor simulates the subensemble of particles using the Monte Carlo

method. The particles that cross the subgrid boundary during the time-step are

transferred among the neighboring processors. After the charge assignment is done,

the Poisson's equation is solved. In the next time step the forces derived from the

solution of the Poisson's equation are used for accelerating particles. The typical

flow diagram of the Parallel Monte Carlo simulation is shown in Figure 2.4. Since

our primary point of interest is solving the Poisson's equation, the interested reader

is referred to [7] and [4, 6] for further details. The original PMC-3D code uses a red-

black ordered SOR solver for solving the Poisson's equation. The implementation

details of this solver will be discussed in the next section.

10

Define physical system.

Input run parameters.

Map device to processors.

Calculate scattering probabilities and

Initial conditions of motion.

time t = 0

time t = t + dt

Simulate subensemble of Simulate subensemble of
particles using Monte Carlo particles using Monte Carlo

Transfer particles Transfer particles
to neighbors to neighbors

t=Ndt?

Yes

Assign charge to subgrid Assign charge to subgrid

Iterate Poisson Solver

Converged ?

Yes

Read potentials from Read potentials from
neighbors to external regions neighbors to external regions

Yes

FIGURE 2.4. The flow diagram of the parallel Monte Carlo device simulation [4].

11

2.4. The SOR Solver

The solution of the Poisson equation specifies the position dependent poten­

tials and thus, the electrical field across the device that is used to accelerate the

particles appropriately. In the PMC-3D code, the Poisson's equation is solved using

the Successive Overrelaxation method. In this section, a brief description of the

method is given [4]. The Poisson's equation is given by

v20 P

Es

where 0, p, and Es refer to the spatially varying electrical potential, the charge

density and the material dielectric permittivity respectively. The Poisson's equation

can be expanded in three dimensions as

a20 320 02
=

aX2 ay2 az2 c,

and can be discretized using finite differences on a general nonuniform grid as

1 (Ox+1,y,z Ox,y,z Ox,y,z 4'x-1,y,z +hx_ + hx+ hx+ hx_

1 (0x,y+1,z Ox,y,z Ox,y,z Ox,y-1,z
hy_ + hy+ hy+ hy_

1 (Ox,y,z+1 Ox,y,z Ox,y,z Ox,y,z-1 Px,y,z=
hz_ + hz+ hz+ hz_ 2Es '

where hx, hy, and hz are the grid spacings in the x, y, and z directions respectively.

The plus and minus signs in the subscript denote different directions as seen in

Figure 2.5.

The value of the Ox,y,z after the (n 1)th iteration can be obtained by mod­

ifying the above equation as

1

0x,y,z = tig)x+1,y,z t20x-1,y,z t30x,y+1,z+

Px,y,zt40x,y-1,z t50x,y,z+1 t60x,y,z-1)
Es

12

21>

y

FIGURE 2.5. The finite differencing stencil for the Poisson's equation.

where ti, i = 1..6 are constants calculated appropriately from the grid spacings.

Using the above equation, the potential in the (n + 1)th iteration is calculated as

An+1 wd.,* + (1 .,\
' \ "-')Vx,y,z

where w is the relaxation parameter in the range 1 < w < 2.

The three dimensional grid is divided into two subgrids, corresponding to red

and black orderings of the grid-points, like the black and white squares of a chess­

board, as seen in Figure 2.6. Every relaxation sweep consists of two half sweeps,

in which red and black points are updated alternatively. In the parallel implemen­

tation, before every half sweep, each processor communicates with its neighboring

processors via message passing to obtain the updated potential values of the op­

posite colored grid points that are external to its subgrid. Convergence is reached

13

41'

processor #1 processor #2

FIGURE 2.6. The 2-D representation of the communication pattern of the red-black
ordered SOR solver. The light and dark arrows represent the communication at­
tempts before relaxing the red and black ordered points respectively.

when the maximum norm of the residual in all subgrids is less than or equal to a

fixed convergence threshold.

The relaxation parameter w is determined dynamically using the Chebyshev

acceleration method as,

w(o)

w(1/2) = 1/(1 P2Jacobi)

W(n+1/2) = 1/(1 Pjacob (n)/4)) n = 1/ 2, 1, Do

where nr Jacobi is the spectral radius of the Jacobi iteration. The beauty of this

approach comes from the fact that the norm of the error always decreases with each

iteration while the asymptotic rate of convergence remains the same as the ordinary

SOR.

The SOR method is easily parallelizable and fast compared to other methods,

e.g, Jacobi and Gauss Seidel. However, the problems with the traditional iterative

methods still prevail. The speed of convergence degrades with increasing iteration

14

numbers, while the number of iterations to reach a specific convergence threshold

increase with increasing grid sizes.

The timing figures for the PMC-3D code, shown in Figure 2.7, clearly indicate

that the SOR Poisson solver is the main bottleneck in the PMC-3D code. Hence, a

significant speedup in this part, will greatly influence the performance of the PMC­

3D algorithm.

o Initialization procedure
Poisson Solver70 A Monte Carlo simulation

60

50

40

30

20

10

0

32 64 96 128

Number of processors

FIGURE 2.7. Workload contributions of different parts of the PMC-3D code. The
device simulated is a typical MESFET device and 50000 particles are used in the
simulation.

15

2.5. Summary

In this chapter we explained the basic principles of the Monte Carlo method

and briefly discussed the parallel Monte Carlo device simulator, PMC-3D. Then we

focused on the SOR Poisson solver, and provided detailed internal timings of the

PMC-3D package. The Poisson solver takes around 60% to 90% of the simulation

time depending on the number of carriers being simulated, hence the PMC-3D device

simulator will highly benefit from a speedup achieved in this module.

16

3. THE MULTIGRID SOLVER

The multigrid technique is a well-established approach for solving ordinary

and partial differential equations. Its main advantage over other iterative methods,

e.g., the SOR, is that its convergence speed is immune to increasing grid point

numbers or more accurate convergence thresholds [10, 11, 13, 16].

The well known iterative methods, Jacobi and Gauss-Seidel, were designed

for solving small linear systems. A lot of variants have been proposed which are

suitable for hand-held calculations. The successive overrelaxation method (SOR)

achieved an improvement by a slight systematical modification, and the Chebyshev

acceleration was yet another important improvement. Despite all improvements,

the traditional iterative methods still exhibit decreasing convergence speeds.

The need for faster solvers was the main motive of the development of the

multigrid method. Although it is referred to as "the multigrid method" in the litera­

ture, it has also become clear that multigrid is a family of methods, called "multilevel

techniques" [9]. From device simulation point of view, its easily parallelizable and

fast in nature, making the multigrid method one of the best choices for solving the

Poisson's equation, which takes around 60% to 90% of the PMC-3D [4] simulation

time.

This chapter is organized as follows. In the first section, the basic principles

of the multigrid approach are discussed, focusing on the aspects that are relevant

for solving the Poisson's equation. Section 2 concentrates on the details of our

three-dimensional implementation including the parallelization and the limitations.

Finally a brief summary of the discussed ideas is presented.

17

3.1. Principles of the Multigrid Method

In this section, we discuss the basic aspects of the multigrid method. The

primary emphasis will be on the three dimensional Poisson's equation and its finite-

difference discretization. For simplicity in parallel implementation, we have chosen

to use homogenous, uniformly spaced grids to avoid line and/or plane relaxations.

The details regarding the implementation can be found the next section.

We describe the main idea behind the multigrid approach, taking the three

dimensional Poisson's equation as an example. The Poisson's equation can be ex­

pressed as follows

Lu = f,

where L represents the V2 operator, u is the potential distribution, and f is the

normalized charge distribution, p(x, y, z) / 8. Let v denote the approximation to u,

and e denote the corresponding error, where e = u v. In this case, the residual r

is

r = f Lv,

where Lv is the approximation to the forcing function f. It is easy to show that the

error e obeys the so-called residual equation

Le = r.

Let Lnun = fn denote the finite difference discretization of the Poisson's equation on

the grid, Q, and the next coarser grid be Qn_1. The simplest multigrid approach is

the two level coarse grid correction. In this scheme, the residual r is first transferred

to the next coarser grid as

Inn-11.n,=

18

where Inn-1 is the residual weighting or restriction which is a fine to coarse transfer

operator. Then, the residual equation on the coarse level

Ln_ien-i = Inn-lrn

is solved exactly, either by means of an iterative method such as SOR or directly.

Ln_1 is some coarse grid approximation to the dense grid Laplacian Li, which corre­

sponds to the same finite difference discretization of the problem on the coarser grid.

After the residual equation is solved on the coarse level, the error is interpolated to

the dense grid. This estimated error component is then added as a correction to NTT,

as

Vn +- V 71 + In L-1 in-lr/
n-1 n-1 n n

The advantage of this scheme comes from the error smoothing effect of the relaxation

operators [14, 15]. In the Fourier domain, the low frequency components of the error

vector are slightly reduced while the high frequency components practically vanish

in a few relaxation sweeps. This effect can be demonstrated by means of a simple

one-dimensional example. The one dimensional Poisson's equation with the forcing

function f = 0 is,

02u
= 0, u(0) = u(1) = 0

axe

To demonstrate the error smoothing effect of the iterative schemes, a delta Dirac

function is chosen as the initial v value. After four simple Gauss Seidel iterations,

Figure 3.1 clearly shows the rapid reduction of the high frequency components of

the error. At this point, it is practical to define the boundary between high and low

frequencies as 7r/2. If the error is transferred to a double spaced grid, due to aliasing

[16], some of the low frequency components, overlap with the high frequencies as

19

0--- Initial
0-- After 4 relaxation sweeps

coarse grid approximation

-0

0,

2

0 a­

0 n/2 TC

FIGURE 3.1. Error smoothing effect of the iterative schemes.

can be seen in Figure 3.1. Thus the same relaxation scheme can efficiently reduce

these overlapped components on the coarse grid.

With these ideas in mind, a simple two-level coarse grid correction cycle can

be described as follows:

1. Pre-smoothing:

2. Calculate the residual: rn = fn Lvn

3. Restriction: Prrirn.

4. Solve exactly on 0-1 H71-1 = Ln 1 1fn-1.

5. Interpolation: en

6. Correction: v'n vn + en.

20

7. Post-smoothing: v'n < S7v22v'n.

Here Si,' denotes k relaxation sweeps of an appropriate relaxation scheme. The

details about the interpolation, restriction and smoothing operators will be discussed

in the next section. The notation change in steps 3, 4 and 5 is for the purpose of

uniform expressions at all levels. Note that with this notation change, the equation

in step 4 has the same form as the original equation, Lu = f. Applying the entire

procedure recursively 7 times in step 4, one can produce different multigrid cycles,

e.g., the V-Cycle for 7 = 1 or the W cycle for 7 = 2, as seen in Figure 3.2. Using

W cycles with a pointwise red-black ordered Gauss-Seidel relaxation scheme and a

homogenous grid with uniform grid spacings gives the best performance upgrade in

a reasonable development time.

(a) (b)

FIGURE 3.2. Two common multigrid cycles are (a) V Cycle (7 = 1) and (b) W
Cycle (7 = 2). Here vi denotes pre-smoothing and v2 denotes post-smoothing. Also
S is the exact solution operator, \ is the fine to coarse grid restriction operator,
and jt is the coarse to fine grid prolongation operator.

21

3.2. Implementation Details

In this section, we discuss the implementation details of the multigrid Pois­

son solver. The coarsening scheme, intergrid transfer operators, relaxation scheme,

discretization and the parallelization of the method are explained in the following

parts.

3.2.1. Discretization

In any numerical solution of continuous equations, the formulation of a good

discretization scheme is the first step. For a multigrid solver, the discrete equations

need to be written for the entire set of grids with different grid spacings. The three

dimensional Poisson's equation

a2 0 a2 0 a2 0
± ±ay2 az2aX

can be discretized using finite differences and a homogenous grid with uniform spac­

ing as

1
[0x-1,y,z + Ox+1,y,z + Ox,y-1,z + Ox,y+1,z +

h2n

Px,y,z
Ox,y,z-1 + Ox,y,z+1 60x,y,z]

Es '

where hn is the uniform grid spacing of the grid Stn. One of the problems we are

facing here is the approximation of the L operator on the coarser grids [13]. The

first approach is defining the equations Liu/ = f1 for all levels 1 c {0, 1, ...} by the

same discretization. This method is suitable for the Poisson problem. There is

another method called, the Galerkin approximation, which in the finite difference

case needs additional computation for defining L1_1. As we are interested in solving

the Poisson's equation, discretizing the problem on the entire set of grids is the

suitable choice.

22

processor #0 processor #1

FIGURE 3.3. Two dimensional representation of the multiprocessor coarsening
scheme. Here S27, is the densest, S272-1 is the next coarser, and C2n-2 is the coarsest
grid.

3.2.2. Coarsening

For the multigrid approach, the choice of the grid set is crucial. The first task

is to create a hierarchical set of grids ranging from the finest grid Stn to the coarsest

possible one, Qk. Here, determining the coarsest possible level is the key aspect. As

long as the boundary conditions of the original grid can be represented on a coarser

grid, coarsening is allowed. The representation of the boundary conditions on the

coarser levels is discussed in the next part.

In our implementation, the coarsening factor we used is 1/2, which implies

that the grid spacing of the next coarser level is twice as big as the grid spacing of

the relatively finer level. In Figure 3.3, a two dimensional example of the coarsening

scheme we used is represented, considering the multi-processor case.

The multigrid method does not have any restrictions concerning the total

number of grid-points. However, choosing the number of points of the form 2k + 1

23

for all three directions (but not necessarily with equal k values) would simplify the

restriction and the prolongation operators and improve the convergence ratio of the

Poisson Solver.

3.2.3. Boundary Conditions

The treatment of the boundary conditions is one of the most crucial parts of

the multigrid method. For a semiconductor device simulation, there are two main

types of boundary conditions. The first are Dirichlet boundary conditions, which

arise around the contacts and have a fixed potential value. The second are Neumann

boundaries, in which the potential value is unavailable but the value of the electrical

field, hence the first derivative of the potential is fixed.

Dirichlet boundary conditions need to be mapped to all grids with at least one

boundary point per contact. Let the grid point at (xi, Yi, zi) belong to an electrical

contact with the potential value Oa. Then the boundary value on the finest grid

is the contact potential Oa. On the coarser levels, we are trying to approximate

the error on this potential value. The potential at the contact is fixed and known

exactly, and thus, the corresponding error on the coarser grids must be zero, i.e.,

{Oa n = 0 (finest level)
Oxi,yi,zi

0 n 0 (on all other levels)

Neumann boundaries are treated the same way over the entire grid set al­

though their mapping is not as crucial as the Dirichlet boundaries [8]. For Neumann

boundaries, a second order approximation is made where the first derivative of the

potential is approximated as

1
kVx"y zr-1 Vx,Y,zr+11) = e = constant

2

24

where zr represents the point next to the Neumann boundary and E is the electrical

field at the boundary point. Hence a zero electrical field at the boundary implies

vx,y,zr+i = vx,y,,r_i as the boundary potential.

3.2.4. Relaxation Method

The main goal of the relaxation scheme is to reduce the high frequency com­

ponents of the error on any given grid. There can be several suitable relaxation

schemes for a specific problem depending on the boundary conditions and the coars­

ening method.

The efficiency of a relaxation scheme can be measured by the smoothing

factor [14, 15]. For a cubic grid with Nx Nx N grid points with periodic boundary

conditions, the Fourier transform of the error e is given by

N/2

ex,y,z = E c(Bt., es, et) exp [i(Orx + Osy + etZ)],

where Or = rir /N, O = sTIN,Ot=t7IN, and c is the magnitude of the frequency

component of the error for a given frequency. The amplification factor of the 0{,,,,t}

component due to one relaxation is,

-e(0)
p(0) =

c(0)

where 0 = (0,,0,,Ot), and T represent the frequency components of the error after

the relaxation sweep. Finally the smoothing factor is defined by

p max p(0),
mr<101<ir

where p is the grid coarsening factor. Here a double coarsening scheme implies

p = 1/2.

25

In our implementation we chose to use a red-black ordered pointwise Gauss-

Seidel relaxation scheme, which has a typical smoothing factor p, 1/2, [16] over the

cubic grid discussed above. This smoothing factor implies that the high frequency

components of the error are reduced by almost an order of magnitude in three

relaxation sweeps. This smoothing rate is achieved only for the non-degenerate

case where the grid spacings in all three dimensions are the same. The smoothing

properties of a pointwise relaxation scheme are very poor if a standard coarsening

on a nonuniform grid is used [9, 11].

The reason for the poor smoothing effect comes form the fact that a pointwise

relaxation scheme has a smoothing effect only with respect to the direction that

has the smallest grid spacing. Thus, for a decent smoothing effect, according to

the various configurations of the grid spacings, line and/or plane relaxations are

required, which are difficult to implement in parallel. As the multigrid solver is

designed to be a replacement for the former SOR solver, we chose to use a pointwise

red-black ordered Gauss-Seidel relaxation scheme and restricted the grids to be

homogenous and uniformly spaced along all three dimensions.

3.2.5. Restriction and Prolongation

Another important component of the multigrid method is the restriction and

prolongation operators. After generating the hierarchical grid set, the next step is

designing the tools for residual transfers from coarse to fine grid and the opposite

way for the error.

26

1/64 ­
(3,

1/32

1/643.- 1/32© 1/64(r

(a) (b)

FIGURE 3.4. The intergrid transfer operators. a) Prolongation: The arrows denote
the coarse grid points to be used for interpolating the dense grid point. The numbers
attached to the arrows denote the contribution of the specific coarse grid point. b)
Restriction: A 27-point full weighting scheme is used. The number in front of each
grid point denotes its weight in this operation.

The prolongation operator we used is a modified version of the two dimen­

sional nine point prolongation [13], symbolized by the stencil

1 1 1

4 2 4

1 1
1

2 2

1 1 1

4 2 4

The three cases for the three dimensional prolongation operation are shown in Fig­

ure 3.4a. The arrows denote the contributing coarse grid points, where the attached

numbers are the corresponding weighting factors.

The restriction operator is a little more difficult to implement. There are

two different useful approaches, namely the full weighting and the half weighting

restriction [13, 16]. In our experience, a full weighting residual transfer operator is

27

necessary for a stable solution. According to [13], the two-dimensional full weighting

restriction, also called nine point restriction can be symbolized by the stencil

1 2 1

1

16
2 4 2

1 2 1

and is the adjoint of the nine point prolongation. For our three dimensional prob­

lem, the dense grid points that take part in the regular full weighting scheme are

listed with the corresponding weighting factors in Figure 3.4b. Although there are

27 points to be considered, the nature of the red/black ordered Gauss-Seidel relax­

ation scheme allows us to concentrate on 13 of those points as the residual values

corresponding to the last updated color are always zero.

3.2.6. Parallelization

Several parallel implementations of the multigrid method has been reported

in the literature [16-19]. Our parallelization of the multigrid code is essentially the

same as the former SOR implementation described in Chapter 2. The partitioning

and the communication routines are extended to service the hierarchical grids, hence

the communication pattern and the partitioning logic is preserved. In Figure 3.3, the

partitioning and the coarsening of the grid is represented, using a two dimensional

example. Since the red-black ordered Gauss-Seidel relaxation operator is simply

the SOR with w = 1, the communication pattern of the smoothing operator also

remains unchanged [4, 5].

As in the SOR solver, each relaxation sweep consists of two half sweeps

corresponding to the two orderings of the grid points. Each processor updates the

potential values of the grid points belonging to the subgrid mapped to its memory.

28

processor #1 processor #2

FIGURE 3.5. Two dimensional representation of the parallel implementation of the
restriction operation. The dashed arrow denotes the communication operation that
needs to be done for that specific case, before the residual restriction is performed.

Before each half sweep, the processors need to communicate via message passing

with its neighboring processors. This way the potentials of the oppositely colored

grid points external to the processor's subgrid are obtained. After the smoothing

operation is performed, the residual values are calculated. The residual values of

the last updated grid set is zero. Before the residual restriction is performed, each

processor again communicates with its neighboring processors to obtain the non­

zero residual values of the grid points external to its subgrid. This way a correct

restriction to the coarser levels is achieved. A two dimensional representation of the

parallel implementation of the restriction operator is shown in Figure 3.5.

The same situation is valid for the prolongation operator as well. The pro­

longation operation is performed after either a post-smoothing or an exact solution

operation. In our implementation, these two operations, although different in func­

tionality, are very similar. The exact solution operation is nothing but the former

29

processor #1 processor #2

FIGURE 3.6. Two dimensional representation of the parallel implementation of
the prolongation operation. The dashed arrows denote the communication opera­
tion that needs to be done for that specific case, before the error prolongation is
performed.

SOR solver applied to the coarsest level. Before the prolongation is performed, each

processor communicates with its neighboring processors to obtain the updated po­

tentials of the grid points external to its subgrid. Then the prolongation operation

is performed and the error is interpolated to the finer levels. A two dimensional

representation of the parallel implementation of the prolongation operator can be

seen in Figure 3.6.

3.3. Summary

In this chapter, we described the principles of the multigrid technique, em­

phasizing the solution of the Poisson's equation. Then we explained the implemen­

tation details, discussing our implementation choices and the reasons behind them.

The simulation results and the discussions are presented in the next chapter.

30

4. RESULTS AND DISCUSSIONS

In this chapter we present the results of our experiments in simulating a

MESFET device structure illustrated in Figure 4.1. We have executed the PMC-3D

code with both the SOR and the multigrid solver for 100 iterations to compare their

timings. The grid we used is a 129 x 65 x 33, homogenous grid with uniform spacings

in all three dimensions.

0.11g O.11µ
0.29g 0.47g <--)", 0.29g

,4(). 4).- 4 >,

FIGURE 4.1. The MESFET structure used as a model problem for the simulations.

4.1. Timings for the Serial and Parallel PMC-3D

The timings and speedups of the serial PMC-3D code with the SOR solver

and with the multigrid solver are presented in Table 4.1. The Monte Carlo simulation

is performed on 32000 particles and the timings are in seconds. As can be seen from

the table, the serial PMC-3D with the MG solver is 5 to 15 times faster than the

PMC-3D with the SOR solver, while the Poisson solver alone has speedup values

31

TABLE 4.1. The timings of the PMC-3D device simulator with SOR and MG
solvers. The simulation is run for 100 time steps with different convergence thresh­
olds on a 129 x 65 x 33 homogenous grid with uniform grid spacings on a single
HP 712/80 workstation. 32000 particles are simulated. The timings are in seconds.

PMC-3D with SOR PMC-3D with MG Speedup

Threshold Poisson Total Poisson Total Poisson Total

10-3 14, 879.82 15, 595.59 2, 145.84 3, 117.65 6.93 5.00

10-6 76, 208.28 77, 029.05 5, 664.77 6, 576.83 13.45 11.71

10-9 153, 118.90 153, 952.04 9, 779.32 10, 728.29 15.65 14.35

10-12 225, 867.00 226, 735.04 14, 160.49 15, 124.02 15.95 14.99

TABLE 4.2. The timings of the PMC-3D device simulator with SOR and MG
solvers. The simulation is run for 100 time steps with different convergence thresh­
olds on a 129 x 65 x 33 homogenous grid with uniform grid spacings on a 32 node
nCUBE multiprocessor. 20000 particles are simulated. The timings are in seconds.

PMC-3D with SOR PMC-3D with MG Speedup

Threshold Poisson Total Poisson Total Poisson Total

10-3 2917.611 3340.020 596.367 1121.035 4.89 3.05

10-6 15093.156 15515.990 2064.199 2589.482 7.31 5.99

10-9 31167.143 31653.002 3486.319 4011.031 8.94 7.89

10-12 4927.825 5453.801

32

between 7 to 16 depending on the convergence threshold. As stated in Chapter

2, the Poisson solver takes most of the simulation time. Thus, the actual speedup

observed in the PMC-3D device simulator is close to that of the Poisson module.

The same set of timings are taken on a 32 node nCUBE multiprocessors with 20000

particles and are presented in Table 4.2. Overall speedup values ranging from 3 to

8 are obtained corresponding to different convergence thresholds, while the Poisson

solver alone has speedup values between 5 to 9.

4.2. Discussion

The difference in speedup values between the serial and the parallel case,

arises from the fact that the communication load for the multigrid solver is higher

than that of SOR. Although the amount of data transferred between processors

decreases with increasing grid-spacing in the multigrid method, the number of com­

munication attempts and the number of iterations are generally higher than those

in the SOR solver.

The communication workload for both the SOR and MG solvers is estimated,

assuming that there is a subgrid in the device which has six other neighboring sub-

grids. In this case, using the average communication satrtup time and the data

transfer rate figures for the nCUBE2 multiprocessor system at Sandia Laboratories,

the estimated communication volumes for both the SOR and MG solvers is illus­

trated in Figure 4.2. From the Figure, it is obvious that the exact solution operation

performed on the coarsest level in the MG solver is the main cause for the excessive

communication load in the MG solver.

As mentioned in Chapter 3, the computation time of the multigrid solver

increases only linearly with respect to the decrease in the convergence threshold.

33

250

200

150

100
Exact solution operation in the MG Solver

50

oo
10 20 30 40 50 60 70 80 90 100

PMC-3D iterations

FIGURE 4.2. The communication overhead for the multigrid solver.

However, the computation time of the SOR solver tends to grow exponentially.

This effect can be seen in Figure 4.3 and 4.4, in which we plot the computation time

as a function of the convergence threshold.

We have presented our experiments in embedding the MG solver in place of

the SOR solver for solving the Poisson's equation. We obtained speedups between

6 to 15 for the serial code and 4 to 9 for the parallel code. The simulations were

performed on a 129 x65 x33 homogenous grid with uniform grid spacings in order to

simulate the MESFET structure whose exact dimensions are shown in Figure 4.1.

The speedups of the Multigrid Solver developed are comparable with the ones pre­

sented by Saraniti et al in [8]. The speedups achieved in the Poisson solver module

effectively decreased the total simulation time as predicted in Chapter 2.

34

0-- SOR
"4 0 MG10

to-5

10-6

10-7

10-8

10 "9

10-1°

10-11

10-12

0 5,004 1*105 1.5*105 2*105
Poisson time in seconds on HP 712/80

FIGURE 4.3. The computation time of the Poisson solver versus convergence
threshold for the serial code running on a HP 712/80, for 100 PMC-3D iterations.

10'3 0 SOR0 MG10'4

10'5

10'6

10'7

10'8

10"9

100

10'11

10'12

0 1*104 2*104 3*104 4*104
Poisson time in seconds on nCUBE

FIGURE 4.4. The computation time of the Poisson solver versus convergence
threshold for the serial code running on a 32 node nCUBE multicomputer, for 100
PMC-3D iterations.

35

4.3. Future Work

The current MG implementation can be improved to serve nonuniform and in-

homogenous grids. As stated in Chapter 3, the requirement for uniform homogenous

grids arises from the fact that pointwise Gauss-Seidel relaxation has a smoothing

effect with respect to the "dominant direction" of the operator which is the direction

with the smallest grid-size. To achieve good smoothing rates for nonuniform grids,

plane and/or line relaxations may be necessary. Plane and line relaxations demand

excessive communication volumes in the parallel implementation, however, Thole

and Trottenberg demonstrated [21] that a two dimensional multigrid solver can be

efficiently used for plane relaxation. Thus, this might be the next development stage

for the Poisson solver.

The speedup degradation effect of the excessive communication workload

of the exact solution operation in the MG solver is demonstrated in Figure 4.2.

One way to decrease the communication workload in the MG solver is, performing

the exact solution operation on a single processor instead of a set of processors.

Although this approach will introduce some speedup degradation, it will not be as

high as the excessive communication workload of the current implementation.

Another problem in parallel multigrid implementations is the number of idle

processors in the coarser levels. Chan and Tuminaro address this issue in [20],

hence this direction is yet another possibility for improving the current multigrid

implementation.

36

BIBLIOGRAPHY

[1] C. Jacoboni and P. Lug li. The Monte Carlo Method for Semiconductor Device
Simulation. Vienna, Austria: Springer-Verlag, 1989.

[2] C. Moglestue. Monte Carlo Simulation of Semiconductor Devices. Chap­
man & Hall, 1993.

[3]	 K. Kometer, G. Zandler, and P. Vogl. Lattice-gas cellular-automaton method
for semiclassical transport in semiconductors. Physics Reviews B, 46:1382-1394,
July 1992.

[4] U. A. Ranawake, C. Huster, P. M. Lenders, and S. M. Goodnick. PMC-3D: A
parallel three-dimensional Monte Carlo semiconductor device simulator. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
13(6):712-724, 1994.

[5] S. S. Pennathur and S. M. Goodnick. Monte Carlo investigation of three-
dimensional effects in sub-micron GaAs MESFETs. Inst. Phys. Conf. Ser., No
141, Chapter 7, 1995.

[6] U. A. Ranawake Cluster partitioning approaches to parallel Monte Carlo simu­
lation on multiprocessors. PhD thesis, Oregon State University, Oregon, 1992

[7] S. S. Pennathur Monte Carlo device modelling applications on parallel comput­
ers. PhD thesis, Oregon State University, Oregon, 1995

[8] M. Saraniti, A. Rein, G. Zandler, P. Vogl and P. Lug li. An efficient multigrid
Poisson solver for device simulations. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 15(2):141-150, 1996.

[9]	 A. Brandt. Multigrid tchniques: 1984 Guide with applications to fluid dynam­
ics. Monograph 85, Gesselschaft fiir Mathematik and Datenverarbaeitung mbH
Bonn, Postfach 1240, D-5205 St. Augustin 1, Germany, 1984.

[10] A. Brandt. Rigorous quantitative analysis of multigrid, I: Constants coeffi­
cients two-level cycle with L2-norm. SIAM Journal on Numerical Analysis,
31(6):1695 -1735, 1994.

[11] K. Stiiben and U. Trottenberg. Multigrid methods: Fundamental algorithms,
model problem analysis and applications. In W. Hackbusch and U. Trottenberg,
editors, Multigrid Methods, Proceedings of the Conference, Lecture Notes in
Mathematics, Number: 960, pages 1-176, Köln-Porz, November 23-27, 1981,
Berlin: Springer-Verlag.

37

[12] A. Brandt. Guide to multigrid development. In W. Hackbusch and U. Trotten­
berg, editors, Multigrid Methods, Proceedings of the Conference, Lecture Notes
in Mathematics, Number: 960, pages 220-312, Köln-Porz, November 23-27,
1981, Berlin: Springer-Verlag.

[13] W. Hackbusch. Multi-Grid Methods and Applications. Berlin: Springer-Verlag,
1985.

[14] J. Kuo and C. Levy. Two-color Fourier analysis of the multigrid method
with red-black Gauss-Seidel smoothing. Applied Mathematics and Computation,
20:69-87, 1989.

[15] I. Yavneh. Multigrid smoothing factors for red-black Gauss-Seidel relaxation
applied to a class of elliptic operatos. SIAM Journal on Numerical Analysis
32(4):1126-1138, 1995.

[16] A. Brandt. Multigrid solvers on parallel computers. In M. H. Schultz, editor,
Elliptic Problem Solvers, pages 39-84 New York, Academic Press, 1981.

[17] 0. A. Mc Bryan, P. 0. Fredericson, J. Linden, A. Schiiller, K. Stiiben, C. A.
Thole and U. Trottenberg. Multigrid methods on parallel Computers A survey
of recent developements. IMPACT of Computing in Science and Engineering,
3:1-75, 1991.

[18] L. R. Matheson and R. E. Tarjan. A critical analysis of multigrid methods
on massively parallel computers. Tecnical Report CWI Tract 103, Center for
Mathematics and Computer Science, P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands, 1993.

[19] A. Greenbaum. A multigrid method for multiprocessors. Applied Mathematics
and Computation, 19:75-88, 1986.

[20] T. F. Chan, R. S. Tuminaro. Design and implementation of parallel multigrid
algorithms. Technical Report 87.21, Research Institute for Advanced Computer
Science, NASA Ames Research Center Moffet Field, CA 94035, 1987.

[21] C. A. Thole and U. Trottenberg. Basic smoothing procedures for the multi-
grid treatment of elliptic 3D operators. Applied Mathematics and Computation,
19:333-345, 1986.

